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A large SAV bed in upper Chesapeake Bay has experienced several abrupt shifts 

over the past half-century, beginning with near-complete loss after a record-breaking 

flood in 1972, followed by an unexpected, rapid resurgence in the early 2000’s, then 

partial decline in 2011 following another major flood event. Together, these trends 

and events provide a unique opportunity to study a recovering SAV ecosystem from 

several different perspectives. First, I analyzed and synthesized existing time series 

datasets to make inferences about what factors prompted the recovery. Next, I 

analyzed existing datasets, together with field samples and a simple hydrodynamic 

model to investigate mechanisms of SAV bed loss and resilience to storm events. 

Finally, I conducted field deployments and experiments to explore how the bed 

affects internal physical and biogeochemical processes and what implications those 

effects have for the dynamics of the system. 

I found that modest reductions in nutrient loading, coupled with several 

consecutive dry years likely facilitated the SAV resurgence. Furthermore, positive 



  

feedback processes may have played a role in the sudden nature of the recovery 

because they could have reinforced the state of the bed before and after the abrupt 

shift. I also found that scour and poor water clarity associated with sediment 

deposition during the 2011 flood event were mechanisms of plant loss. However, 

interactions between the bed, water flow, and waves served as mechanisms of 

resilience because these processes created favorable growing conditions (i.e., clear 

water, low flow velocities) in the inner core of the bed. Finally, I found that that 

interactions between physical and biogeochemical processes led to low nutrient 

concentrations inside the bed relative to outside the bed, which created conditions that 

precluded algal growth and reinforced vascular plant dominance. This work 

demonstrates that positive feedbacks play a central role in SAV resilience to both 

chronic eutrophication as well as acute storm events. Furthermore, I show that 

analysis of long-term ecological monitoring data, together with field measurements 

and experiments, can be an effective approach for understanding the mechanisms 

underlying ecosystem dynamics. 
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Chapter 1: Introduction and overview 

 

Seagrasses and associated submersed aquatic vegetation (SAV) are rooted 

angiosperms that inhabit shallow coastal, estuarine, and inland waters throughout the 

world. SAV are highly productive and carry out important functions in aquatic 

ecosystems. For example, they provide habitat structure to invertebrates and juvenile 

fish and food for waterfowl, manatees, and other organisms (Lubbers et al. 1990; 

Ralph et al. 2013). They can also enhance nutrient cycling (Caffrey and Kemp 1990; 

Risgaard-Petersen et al. 2000; Lawson et al. 2012) and attenuate waves and currents 

(Fonseca and Fisher 1986; Infantes et al. 2012). These functions provide valuable 

ecological services to society, including support for commercial and recreational 

fisheries, eutrophication control, and water clarity improvement, among others 

(Costanza et al. 1997).      

Shallow aquatic ecosystems in which submersed plants dominate primary 

production are considered “pristine” (Valiela et al. 1997). However, systems may 

transition from vascular plant to algal dominance as a function of nutrient loading and 

light availability (Sand-Jensen and Borum 1991; Flindt et al. 1999; Havens et al. 

2001). For instance, at lower nutrient loading rates, phytoplankton growth tends to be 

nutrient limited, and SAV thrive because they can obtain nutrients from sediment 

pore water through root uptake. At higher nutrient loading rates, phytoplankton 

dominate primary production because they have higher nutrient uptake rates than 

SAV and can, therefore, out-compete benthic plants for water column nutrients. 
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Furthermore, phytoplankton attenuate light penetration through the water column 

when in high abundance, thus limiting submersed plant production due to light 

limitation. Systems in which SAV abundance has decreased are often considered to 

be degraded because of the loss of ecosystem services. 

Storm events also play a role in structuring shallow aquatic systems. For 

example, extreme waves and currents generated by high winds and flooding can 

break or uproot SAV, and huge loads of sediment delivered by floodwaters can bury 

plants (Preen et al. 1995; Cabaço et al. 2008). In addition, pulses of suspended 

sediments or nutrients and subsequent algal blooms can degrade water clarity, thereby 

decreasing the amount of light available for SAV production (Moore et al. 1997; 

Longstaff and Dennison 1999). Consequently, extreme weather events can result in 

major SAV losses over a short period of time (e.g., Campbell & McKenzie 2004, 

Cardoso et al. 2008, Grilo et al. 2011, Hanington et al. 2014). 

Although chronic nutrient (nitrogen and phosphorous) loading and acute 

disturbance events are both important external drivers of change in ecosystems 

containing SAV, internal biophysical and biogeochemical processes also play a role 

in the dynamics of these systems. For example, SAV attenuate wave energy and 

current velocity, which causes suspended particles to sink, improves ambient water 

clarity and, thus, enhances plant growth (Ward et al. 1984; De Boer 2007; Gruber and 

Kemp 2010; Carr et al. 2010). SAV also assimilate nutrients and, in some cases, 

enhance nutrient loss through coupled nitrification-denitrification, thereby decreasing 

water column nutrient concentrations (Caffrey and Kemp 1992; McGlathery et al. 

2007). As a result, growth of phytoplankton in the water column and epiphytes on 
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SAV leaves becomes nutrient limited and water clarity improves. One consequence of 

these positive feedback processes is that SAV ecosystems tend to respond nonlinearly 

to external drivers because they help maintain a suitable growing environment despite 

changes in external conditions (Scheffer et al. 1993; Viaroli et al. 2008). However, 

beyond a critical threshold (e.g., a minimum light level needed for plant growth), 

feedback processes no longer act as a buffer and the system suddenly shifts to a 

degraded state. Abrupt ecological changes are often unexpected or surprising because 

there is little change preceding the shift to serve as warning (Scheffer et al. 2012). 

Over the past several decades, most studies documenting SAV dynamics have 

reported global declines, primarily in association with cultural eutrophication 

(Waycott et al. 2009) or extreme weather events such as hurricanes, floods, and heat 

waves (Preen et al. 1995; Rasheed and Unsworth 2011). In an effort to bring back lost 

ecosystem services, management agencies in the United States and throughout the 

world have committed to SAV and seagrass restoration largely through reduction of 

nutrient and sediment loading from anthropogenic sources. Accordingly, a small but 

increasing number of studies have reported SAV recovery in relation to improved 

water clarity resulting from management actions, such as sewage treatment plant 

upgrades (Tomasko et al. 2005; Ruhl and Rybicki 2010; Cardoso et al. 2010). 

Climate-related factors, such as decreased storm intensity and frequency have also 

been cited (Reise and Kohlus 2007).  

An impressive example of SAV recovery recently occurred in a broad shallow 

region of upper Chesapeake Bay known as Susquehanna Flats. SAV at “the flats,” 

historically renowned to fishermen and waterfowl enthusiasts as exceptional wildlife 
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habitat, began to decline when nutrient loading and eutrophication intensified in the 

1960’s (Bayley et al. 1978; Kemp et al. 2005). Following a major flood during 

Tropical Storm Agnes in 1972, submersed plants at Susquehanna Flats virtually 

disappeared for nearly three decades until the early 2000’s, when they rapidly 

recolonized nearly the entire region (>50 km2). Similar to unanticipated ecosystem 

collapses, this sudden recovery was also quite unexpected; however, in this case, the 

trajectory of the rapid change was in the positive direction. Then, in 2011, the region 

experienced another major flood event. However, in contrast to the widespread SAV 

loss that occurred during Tropical Storm Agnes, only half the bed was lost. Together, 

these trends and events provide a unique opportunity to study a recovering SAV 

ecosystem from several different perspectives.  

First, the factors driving the abrupt SAV resurgence are unclear. For example, the 

extended lack of plant recovery after Tropical Storm Agnes is puzzling because it 

appears that environmental conditions at a nearby monitoring station had generally 

satisfied the habitat requirements for SAV in oligohaline regions of Chesapeake Bay 

since water quality monitoring began in 1984 (i.e., April-October median light 

attenuation coefficient <2.0 m-1, total suspended solid and dissolved inorganic 

phosphorous concentrations <15 mg L-1 and 0.67µmol l-1, respectively) (Dennison et 

al. 1993; Kemp et al. 2004). Furthermore, there were also no immediately obvious 

changes in environmental conditions that could be easily linked to the recovery. 

Therefore, in Chapter 2 of this dissertation, I analyze and synthesize existing time 

series datasets to address the questions:  
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1) How do patterns and trends in anthropogenic and climatic variables relate to 

SAV abundance?  

2) Could the sudden resurgence reflect a threshold response to change in 

environmental conditions?  

3) Could feedback processes have played a role in this resurgence? 

Next, the 2011 flood clearly damaged the SAV bed; however the large remaining 

stand of plants suggests that the system was also apparently resilient, or able to resist 

and possibly recover quickly from the disturbance. In Chapter 3, I analyze existing 

datasets, together with field samples and a simple hydrodynamic model, to address 

the questions:  

1) What mechanisms drove SAV loss in response to the flood event? 

2) What mechanisms control SAV ecosystem resilience?  

Finally, preliminary examination of water quality monitoring data shows large 

seasonal differences in nutrient and suspended sediment concentrations between 

sample sites located inside and outside the SAV bed. These differences imply that the 

bed may be affecting flow and, thus, sediment dynamics, as well as nutrient cycling 

and, thus, local nutrient concentrations. In Chapter 4, I address the questions: 

1) What underlying mechanisms drive these biophysical and biogeochemical 

feedbacks?  

2) Do physical and biogeochemical processes interact to affect internal nutrient 

cycling? 

3) What effect do these processes have on the relative composition of primary 

producers in the system? 
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My goal for carrying out this research is to contribute to our understanding of the 

factors controlling the recovery and resilience of SAV populations. Empirical insights 

into feedbacks, resilience, and nonlinear ecosystem dynamics will be broadly relevant 

to the field of ecology as well as to regional and global SAV conservation and 

management applications.  
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Chapter 2: Unexpected resurgence of a large submersed plant 
bed in Chesapeake Bay: Analysis of time series data 
 

 

Abstract 

An historically large (>50 km2) submersed plant bed in upper Chesapeake Bay 

virtually disappeared in 1972 following Tropical Storm Agnes. The bed experienced 

little regrowth until the early 2000s, when plant abundance rapidly increased. Here, 

we analyze a suite of recent (1984-2010) and historical (1958-1983) time series 

datasets to assess alternative explanations for the submersed plant resurgence. 

Change-point analysis showed that spring nitrogen loading increased from 1945-1988 

and decreased from 1988-2010. Analysis of variance on recent time series showed a 

significant difference in submersed aquatic vegetation (SAV) abundance percent 

change during wet years (-7±11%) and dry years (53±20%), indicating that floods 

and droughts likely contributed to SAV loss and growth, respectively. In the historic 

dataset, however, increasingly poor water quality led to SAV loss despite an extended 

drought period, indicating that underlying water quality trends were also important in 

driving change in SAV abundance. Several water quality variables, including nitrogen 

concentration and turbidity, were lower inside the SAV bed than outside the SAV 

bed, implying the presence of feedback processes whereby the bed improves its own 

growing conditions by enhancing bio-physical processes such as sediment deposition 

and nutrient cycling. Together, these analyses suggest that stochastic extremes in 

river discharge and long-term water quality trends synergistically facilitated sudden 
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shifts in SAV abundance and that feedback processes likely reinforced the state of the 

bed before and after the shifts. Management efforts should consider these dynamic 

interactions and minimize chronic underlying stressors, which are often 

anthropogenic in origin. 

 

Introduction 

Change is ubiquitous in natural systems because the environmental conditions 

that affect biota are also inherently variable. Seagrass and associated submersed 

aquatic vegetation (SAV) communities in particular undergo episodes of decline and 

recovery that span seasons to multiple decades. Reports of decline dominate the 

literature, with many examples of SAV loss attributed to chronically degraded water 

quality associated with eutrophication (Kemp et al. 1983) or extreme weather events 

such as hurricanes, flooding, and temperature stress (Preen et al. 1995). Recent 

studies, however, have also reported instances of SAV recovery. Most relate 

expanded plant cover to improved water clarity resulting from management actions, 

such as sewage treatment plant upgrades (Burkholder et al. 2007; Rybicki and 

Landwehr 2007). Climate-related factors, such as decreased storminess (Reise and 

Kohlus 2007) have also been cited. The rate of both negative and positive trends can 

be substantially modified by the combined effects of short-term climatic drivers and 

long-term trends in anthropogenic stressors (Cardoso et al. 2004). 

Change in SAV abundance can be abrupt, either as a linear response to an 

acute event or as a non-linear threshold effect in which a sudden shift occurs after 

gradually changing environmental conditions cross some critical threshold (Scheffer 
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et al. 2001; van der Heide et al. 2007). Theory suggests that feedback processes, 

through which a plant bed modifies its environment in ways that enhance its own 

growth, may facilitate threshold responses. For example, SAV attenuate wave energy 

and current velocity, which causes suspended particles to sink, improves ambient 

water clarity and, thus, enhances plant growth (Ward et al. 1984; Gruber and Kemp 

2010). SAV beds also decrease water column nutrient concentrations, thereby 

precluding the growth of phytoplankton and epiphytes and allowing more light to 

reach the leaf surface (Moore 2004). Positive feedbacks help maintain a suitable 

growing environment despite changes in external conditions. However, beyond a 

critical threshold (e.g., a minimum light level needed for plant growth), feedback 

processes no longer buffer against disturbance and the system suddenly shifts to a 

degraded state (Scheffer et al. 1993). As conditions approach this threshold, resilience 

decreases and a small change in environmental conditions can drive the system 

beyond its ‘tipping point’.  

In some instances, plant reestablishment in bare sediment requires more 

stringent conditions than those needed to maintain an already established bed 

(Scheffer et al. 2001). As a result, restoration of a degraded submersed plant bed can 

be extremely difficult. The initiation of positive and negative shifts at different 

critical conditions (a pattern known as hysteresis) also means that different system 

‘states’ (e.g., bare sediment and sediment colonized by SAV) can exist under the 

same set of environmental conditions (e.g., turbid and clear water).  

An abrupt increase in submersed plant abundance recently occurred in a broad 

shallow region in the upper Chesapeake Bay known as Susquehanna Flats. SAV at 
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‘the flats,’ historically extolled by fishermen and waterfowl enthusiasts as prime 

wildlife habitat, began to decline when nutrient loading and eutrophication intensified 

in the 1960s (Bayley et al. 1978; Kemp et al. 2005). Following Tropical Storm Agnes 

in 1972, submersed plants virtually disappeared for nearly three decades until the 

early 2000s, when they rapidly recolonized nearly the entire region (>50 km2). While 

an extreme flood event apparently triggered the historic demise of SAV at 

Susquehanna Flats, the extended lack of recovery is puzzling because it appears that 

environmental conditions have generally satisfied the habitat requirements for SAV in 

oligohaline regions of Chesapeake Bay since water quality monitoring began in 1984 

(i.e., April-October median light attenuation coefficient <2.0 m-1, total suspended 

solid and dissolved inorganic phosphorous concentrations <15 mg L-1 and 0.67µmol 

L-1, respectively) (Dennison et al. 1993; Kemp et al. 2004).  

Given the valuable ecological services that submersed plant beds provide, 

such as nutrient uptake and habitat for economically important fisheries, it is 

imperative that we refine our understanding of why they disappear and what 

conditions are required for their return. In the Chesapeake Bay region, monitoring 

programs have generated a wealth of detailed time series datasets measuring 

submersed plant abundance since 1958, water quality since 1984, and climate-related 

variables, such as temperature and river discharge since the late 1800s. Here, we 

rigorously examine and analyze these diverse time series datasets to develop an 

explanatory model for the recent rapid recovery of the large SAV bed at Susquehanna 

Flats. Specifically, we investigate 1) how patterns and trends in anthropogenic and 

climatic variables relate to SAV abundance, 2) whether the sudden resurgence could 
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reflect a threshold response to change in environmental conditions, and 3) whether 

feedback processes could have played a role in this resurgence. While retrospective 

data analysis is inherently limited because, for example, the data are restricted to what 

is available and often contain gaps, the inferences developed through such exercises 

can facilitate interpretation of current ecological dynamics as well as prediction about 

the future. Our broader motivation lies in the idea that the methods used and 

explanatory model derived here can be applied elsewhere to explore similar plant bed 

dynamics worldwide.   

Methods 

Study site 

Susquehanna Flats is a broad, tidal fresh-water region located near the mouth 

of the Susquehanna River at the head of Chesapeake Bay (Fig. 2.1a). The shallow 

flats, formed from sand and silt deposited where the Susquehanna River broadens as 

it flows into the Bay, cover roughly 50 km2 with a relatively narrow but continuous 

channel (3-7 m deep) bordering the western side and also relatively deep but 

discontinuous channels to the east and south of the flats. As of 2010, SAV covered 

most of Susquehanna Flats with dense stands of as many as 13 plant species, co-

dominated by Vallisneria americana, Myriophyllum spicatum, Hydrilla verticillata, 

and Heteranthera dubia. 

Data sources 

 The data described herein were collected by various agencies and organizations 

at a range of sampling intervals and durations (Table 2.1). Water quality data were 
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collected at 2-4 week intervals beginning in 1984. We used data from the sampling 

station CB1.1, which we call ‘up-bay,’ located at the mouth of the Susquehanna River 

for most analyses (Fig. 2.1). Because upper Chesapeake Bay hydrology is dominated 

by Susquehanna River outflow (Schubel and Pritchard 1986), data from this station 

are likely representative of water flowing into and around the plant bed. This study 

focuses on chlorophyll a (Chl a), total suspended solids (TSS), Secchi depth, total 

nitrogen (TN), dissolved inorganic nitrogen (DIN), particulate nitrogen (PN), total 

phosphorous (TP), dissolved inorganic phosphorous (DIP), particulate phosphorous 

(PP), particulate carbon (PC), the diffuse downwelling attenuation coefficient (KD), 

and water temperature (temp). We also examined high sampling frequency (4 hour-1) 

water quality data for dissolved oxygen (DO), pH, Chl a, turbidity, and temperature 

measured continuously from April through October since 2007. From 2007-2009, bi-

weekly to monthly water quality data were available for several additional locations 

around Susquehanna Flats, including inside the SAV bed and down-bay from the 

SAV bed. Salinity was not included in this analysis because values in and around the 

plant bed were generally < 1.0, well within the tolerance range of the dominant 

submersed plant species populating the study site (Haller et al. 1974). Susquehanna 

River flow rates were measured at gauging stations located at Conowingo Dam 

(1968-present) and at Harrisburg, Pennsylvania (1890-present). Daily mean TN, TP, 

and TSS (1978-2010) loading rates at Conowingo Dam (Fig. 2.1) were calculated for 

each month based on streamflow and water quality concentrations using the weighted 

regressions on time, discharge, and season (WRTDS) method (Hirsch et al. 2010). 

Mean TN loading rates from 1945-1978 were estimated based on loading rates 
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calculated for Harrisburg (Hagy et al. 2004; Zhang et al. 2013).  

Annual estimates of total SAV cover and crown density from 1984-2010 were 

based on geo-referenced aerial photographs (Table 2.1). Previous studies using aerial 

survey data focused on total area occupied by plants, which we call ‘bed area’ (Orth 

et al. 2010). However we felt that for this region, using a measure of plant abundance 

that reflected plant density was particularly important. From 1984-2000, plants were 

sparsely distributed throughout Susquehanna Flats. While the bed area was large, the 

actual abundance of plants was low. Therefore, we calculated SAV bed area weighted 

for density using a multiplier based on crown density categories (1-4) to estimate an 

index of total plant biomass, which we call ‘bed abundance’ (Moore et al. 2000; 

Rybicki and Landwehr 2007). We characterized temporal SAV trends in terms of 

both bed area and bed abundance, although our statistical analyses focused on the 

latter. We also determined the mean depth of the bed perimeter, which we call 

‘perimeter depth,’ with geographic information systems (GIS) software (Esri ArcGIS) 

by overlaying SAV shape-files on bathymetric data and extracting the depth of the 

SAV shape-file perimeter. Historical SAV data for the period 1958-1975 (Bayley et 

al. 1978) and 1971-1988 (Maryland Department of Natural Resources unpubl.) were 

reported as a unitless annual plant abundance rating based on material recovered with 

a standard rake collected along four transects crisscrossing Susquehanna Flats 

(Bayley et al. 1978). 

Data analyses 

While relative SAV abundance, river discharge, and nitrogen loading data 

were available since 1958 and earlier, regular water quality monitoring did not begin 
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until the 1980s. Thus, our overall approach was to first rigorously analyze and 

synthesize the recent time series datasets (1984-2010), which include SAV 

abundance, water quality, river discharge, and loading, to generate a detailed 

explanatory model for the recent sudden SAV resurgence. We then conducted limited 

statistical analysis on the historical datasets (1958-1983) and used the relationships 

established through analysis of the recent data to make logical assumptions about the 

underlying mechanisms driving change across the entire time series. We performed 

all calculations and plotted all figures with the statistical computing and graphics 

software R with its base and stats packages unless otherwise noted. 

We used change-point analysis to characterize the sudden change in features 

of the SAV bed. A change-point is defined as the point at which the statistical 

properties of a time series abruptly change. In this case, we performed segmented 

regression analysis to test for sudden and sustained changes in trend trajectories for 

bed area, bed abundance, and perimeter depth. We used the R package segmented for 

this analysis (Muggeo 2008). The sample size (n) was 26 years (aerial SAV surveys 

were not conducted at Susquehanna Flats in 1988). This method constrains the 

segments to be continuous; however trends in the historic SAV time series were 

clearly discontinuous. Therefore, we used a slightly different approach for this 

dataset, where change-point selection was based on minimizing the mean squared 

error from iteratively generated two-segment piecewise regression models (Crawley 

2007). Although this approach allows for a more accurate characterization of 

discontinuous breaks in trends, it does not calculate confidence intervals or p-values. 
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We also characterized patterns and trends in environmental drivers. We 

calculated seasonal means for river discharge and water quality. Seasons are defined 

as follows: growing season = June through October; winter = December through 

February; spring = March through May; summer = June through August; fall = 

September through November. For variables that were sampled at multiple depths, we 

calculated the water column mean before calculating seasonal means. We then 

conducted segmented regression analysis on these growing season means to detect 

change-points. We also tested for long-term trends using the non-parametric Mann-

Kendall trend test, which is often the preferred method of trend analysis for 

characteristically non-normal and/or skewed time series datasets (Hirsch et al. 1982). 

Sample sizes ranged from 23 to 26. In addition, because light availability is often a 

key driver of SAV growth (Dennison 1987), we used the non-parametric Spearman 

rank-order test to calculate  correlations between KD and the growing season means 

for parameters with significant long-term trends. To broadly demonstrate how all of 

the environmental variables included in this study were interrelated, we performed 

standardized principal component analysis (PCA) on growing season mean values for 

all surface water quality variables and then tested for correlation between the first 

principal component and growing season mean river discharge using the Spearman 

rank-order test.  

To show how environmental variables were related to bed abundance, we 

constructed simple linear regression models using seasonal means and medians for 

each climatic and water quality parameter as the predictor variable and bed 

abundance as the response variable. We tested the residuals of each model for 
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normality, independence, and heteroskedasticity using the Shapiro, Durbin-Watson, 

and non-constant error variance tests, respectively. We performed data 

transformations (e.g., log) as necessary. Because the bed abundance data were 

autocorrelated, we used differencing to obtain a time series reflecting interannual 

change in bed abundance (i.e., the first difference of y at time t is equal to y(t)-y(t-1)), 

which we call ‘bed change.’ Even after transformation, the relationship between bed 

change and environmental time series was clearly non-linear (i.e., the relationship 

between predictor and response variables changed over time). While environmental 

variables and bed change appeared to be unrelated when bed change was minimal, 

linear relationships were apparent when bed change ≠ 0. Thus, we partitioned the bed 

change dataset into two time periods: ‘stable’ (1984-1998 and 2009-2010, 

characterized by little interannual change) and ‘transition’ (1999-2008, when bed 

abundance rapidly increased). We then conducted piecewise regressions on these 

segments.  

The non-linear nature of these relationships may suggest that the change in 

SAV abundance was related to a threshold response to changes in environmental 

conditions. Segmented regression, in addition to detecting points in time at which a 

temporal trend trajectory shifts, can also be used to identify the threshold value at 

which at the slope of the relationship between predictor and response variables 

changes. Because, again, light is a critical resource for SAV growth, we used 

segmented regression to detect a potential threshold response of bed abundance to 

change in the light environment, as indicated by growing season mean KD. 
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In addition, because extreme weather events can modify SAV trends, we also 

tested for relationships between bed change and extremes in river discharge. We 

classified years with river discharge values exceeding the 75th percentile of growing 

season mean river discharge as ‘wet years’ and those that fell below the 25th 

percentile as ‘dry years’ (United States Geological Survey 

http://md.water.usgs.gov/waterdata/chesinflow/wy/). We classified ‘normal’ river 

discharge values as those between the 25th and 75th percentiles. We then used 

Kruskal-Wallis one-way analysis of variance (ANOVA) by ranks to further 

investigate how weather-related mechanisms affected bed change by testing for 

differences in percent change in bed abundance during wet years, dry years, and 

average years. This test was a better choice than parametric ANOVA because the 

groups were unequal in size and variance was not homogeneous over time. We then 

calculated post-hoc individual comparisons using the Mann-Whitney test.  

To quantify spatial differences in water quality, which may indicate how the 

SAV bed affected ambient growing conditions, we calculated the mean difference and 

a 95% confidence interval between monitoring data collected inside and outside the 

SAV bed for each month during which data were collected (April-October). 

Turbidity, Chl a, DO, and pH were measured at 15 minute intervals with continuous 

monitoring data sondes while grab samples analyzed for DIN were collected every 2-

4 weeks. Because sample sizes were large (n>2000 for most parameters, with the 

exception of DIN) we felt that a significance test (e.g., t-test) would be inappropriate 

because with so many samples, such tests usually yield significant results even if the 

actual differences are minimal (McBride 1993). Rather, we quantified the magnitude 
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of differences (effect size) between sample stations, which, in this context, is more 

ecologically meaningful. 

Results 

There was a change-point indicating sudden plant loss in 1972, which 

coincided with Tropical Storm Agnes (Fig. 2.2a). Several change-points were also 

evident in the recent SAV time series for bed abundance, bed area, and perimeter 

depth. Bed abundance was near zero with little change from 1984-2000, but it 

increased gradually between 2001 and 2004, then rapidly increased to >40 km2 after 

the 2004 change-point (Fig. 2.2a). Bed area was generally constant from 1984 to 

~1998 and then increased to nearly 50 km2 by 2010 (Fig. 2.2b). Perimeter depth 

decreased between 1984-1997, and then increased following a change-point around 

1997 (Fig. 2.2c). These trends are illustrated in more detail by the series of SAV maps 

generated through analysis of aerial photographs (Fig. 2.3), which show that 

submersed plant cover was persistently sparse (<10% cover) through much of the 

1980s and 1990s and then rapidly increased in size and density between 2000 and 

2006. The bed remained persistently large and dense after 2007.  

There were several significant long-term trends in the surface water quality 

time series data (Table 2.2). Notably, water clarity, indicated by KD, improved by 

~40% between 1984 and 2010. TP, PP, PN, and PC concentrations also significantly 

decreased and temperature increased. There was also a change-point in spring N 

loading, which gradually increased prior to 1988 and then began to decrease after 

1988 (p<0.01; Fig. 2.4a). Most significant trends for individual seasonal means 

(winter, spring, summer, fall) were also significant for the entire growing season 
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(June-August). Therefore, we simply report trend test and change-point results for 

growing season means. However, one exception was the significant change-point in 

only spring N-loading, as reported above. Of the trending variables, KD was 

correlated with N load (ρ=0.62, p<0.05), TP (ρ=0.65, p<0.001), PP (ρ=0.66, 

p<0.001), PC (ρ=0.49, p<0.05), and temperature (ρ=-0.86, p<0.001).  

Principal component analysis results show that TN, TP, DIN, DIP, PP, TSS, 

Secchi depth, and KD were interrelated (Fig. 2.5a). These variables all projected 

strongly onto the first principal component (PC1), which accounted for 53% of the 

variance in water quality. PC1 was significantly correlated with river discharge 

(ρ=0.57, p<0.01) (Fig. 2.5b). Chl a, PN, and PC projected strongly onto the second 

principal component (PC2), which represented 20% of the variance in water quality.  

Bed change was related to river flow and several water quality variables 

during the transition period but not during the stable time period (Fig. 2.6; Table 2.3). 

Generally, winter and spring environmental conditions were not related to bed 

change, with the exception of spring TN concentration (R2 = 0.45, p<0.05) and 

possibly TN loading (R2 = 0.47, p<0.07). Relationships between bed change and most 

environmental variables were stronger during the summer and weaker but often 

significant in the fall. Summer mean river flow explained the greatest proportion of 

variance in bed change (R2=0.88 p<0.001). Bed change was, however, not related to 

Chl a, DIN, PN, or PC during any season. Regression results also indicated several 

weaker but significant positive relationships during the stable period between bed 

change and winter and fall TN as well as weak but significant negative relationships 

with spring water temperature. Regression analyses using historical TN loading and 
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river discharge as predictors and SAV relative abundance as the response variable 

yielded no significant results. We used both seasonal mean and median values to 

construct regression models, and we report results for whichever explained more 

variance in bed change. Segmented regression on bed abundance and growing season 

mean KD indicated that the rapid increase in bed abundance occurred around a 

threshold KD value of 1.3 m-1 (p<0.001) with a 95% confidence interval of 1.1 to 1.5 

m-1.  

Extremes in river discharge were related to shifts in bed abundance. In 2003, 

growing season mean river flow was particularly high (1449 m3 s-1; Fig. 2.4b) and bed 

abundance declined by 45%. Conversely, from 1995-2002, there were no wet years 

and no daily flow rates exceeded 10,000 m3s-1. The change-point in SAV total area 

occurred during this time and bed abundance rapidly increased shortly thereafter (Fig. 

2.2). On average, bed abundance increased by 53±20% and 21±10% during dry years 

and normal flow years, respectively, and decreased by 7±11% during wet years (Fig. 

2.7). Kruskal-Wallis ANOVA results indicate that percent change in bed abundance 

was significantly different depending on growing season flow conditions (wet years, 

average flow, dry years; χ2=7.63, p<0.05). Post-hoc comparisons indicate a 

significant difference between bed change during wet years and dry years (p<0.05). 

Although the 1972 demise of SAV was clearly linked to a record river discharge 

maximum (Figs. 2.2, 2.4), this relationship could not be generalized across the entire 

historical dataset, as ANOVA resulted in no significant differences in bed change 

under different flow conditions. 
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Water quality variables measured in and around the SAV bed varied over 

space and time. Turbidity and Chl a were lower inside the bed than up-bay from the 

bed while pH and DO were higher inside the bed (Table 2.4; Fig. 2.8). DIN was lower 

inside the SAV bed compared to both up-bay and down-bay stations and slightly 

lower down-bay compared to the up-bay station. Generally, the magnitude of these 

differences was smaller early in the growing season and increased as the SAV 

growing season progressed. The difference in DIN, which was >30 times lower inside 

the bed compared to up-bay in July and August during peak biomass, was particularly 

striking. Monthly mean DIN concentrations inside the bed ranged from 1.6-2.3 µmol 

L-1 during the summer (July-September) while up-bay concentrations ranged from 39-

54 µmol L-1.   

Discussion 

Here, we first examine the results of our analyses separately to explore 

potential causes and/or effects of each set of observations. We then take a step back 

and consider these disparate observations together to construct an explanatory model 

of the SAV resurgence. Our overall line of reasoning begins with the hypothesis that 

reductions in nutrient loading led to long-term water clarity improvement, and thus, a 

long-term increase in light availability for plant photosynthesis. Then, during a dry 

period from 1997-2002, a critical light threshold was crossed, which, together with an 

absence of storm events, provided ideal conditions for new plant growth. As a result, 

the bed began to expand and colonize deeper water. Finally, as plant density 

increased, positive feedback effects between the bed and ambient water quality 
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facilitated the subsequent rapid SAV resurgence. The following paragraphs provide a 

detailed explanation of this sequence of logic. 

Environmental drivers 

It has been well established that light availability is the most important 

constraint on the growth of submersed plants when other habitat requirements, such 

as substrate composition, wave exposure, and flow regime, are satisfied (Dennison 

1987). Our analyses show that water clarity increased over time and that nitrogen 

loading has been decreasing over the last several decades. We suggest that these 

trends may have been a key component in the SAV resurgence. Other instances of 

SAV restoration have been attributed to decreased nutrient loading and associated 

declines in phytoplankton abundance (Burkholder et al. 2007). Therefore, we were 

surprised to find no significant decline in Chl a concentration and no significant 

correlations between Chl a and KD or Secchi depth. There were, however, declines in 

PN, PC, TP, and PP.  Of these trending parameters, PC, TP, and PP were correlated 

with KD. In addition, principal component analysis showed that Chl a, PN, and PC 

tended to covary (Fig. 2.5). Thus, decreases in particulates, possibly the result of 

reduced nutrient loading, may have been responsible for improved water clarity. 

Furthermore, in tidal freshwater regions of Chesapeake Bay, epiphytes can contribute 

20-60% additional shading beyond light attenuation by dissolved and suspended 

material in the water column (Kemp et al. 2004). Thus, reductions in nutrient loading 

may have also limited the growth of epiphytes, allowing more light to reach the SAV 

leaf surface.  
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Our analyses also suggest that interannual change in bed abundance around 

the trend of recovery was driven by stochastic weather variability, at least during 

transition years. Physical and biological processes in estuaries are often directly 

linked to watershed rainfall and, subsequently, down-stream river discharge into the 

estuary. In the present study, correlation between PC1 and river discharge 

demonstrates that Susquehanna River outflow and, thus, rainfall, was a major driver 

of change for many key water quality parameters, which co-varied as a result of their 

collective response to river flow. Consequently, bed change was also strongly related 

to river flow during the transition period. Because water quality variables often co-

vary (van der Heide 2009), it is difficult to identify which variables were specifically 

responsible for bed change. However, significant correlation among TSS, Secchi 

depth, KD, and river discharge suggests that flow controlled the concentration of 

suspended particles, which affected water clarity and, in turn, bed change. TN and TP 

were also related to river discharge and could have affected epiphyte growth. Because 

river discharge was related to bed change, it comes as little surprise that extremes in 

river discharge were related to substantial SAV loss and growth (Fig. 2.7). 

Interestingly, however, Chl a, PN, and PC were not related to bed change or river 

discharge (Fig. 2.5; Table 2.3). Thus, although these parameters appeared to be 

related to long-term water clarity improvement, they were unrelated to weather-

driven interannual variation in and river discharge and bed change.  

The strong relationships between bed change, river discharge, and water 

quality during June through August in particular demonstrate that the annual change 

in size and density of the SAV bed is largely a function of summer river discharge. 
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Because the dominant macrophyte species at Susquehanna Flats do not generally 

emerge until late spring to early summer (Carter et al. 1985), winter and spring flow 

has little effect on the SAV bed. On the other hand, summer river discharge explained 

nearly 90% of the variability in bed change because plants are especially sensitive to 

turbidity during this critical stage in the growth cycle, when they emerge from the 

sediment and begin to actively grow. These results support modeling studies, which 

simulate severe effects on SAV beds by storms that occur during the height of the 

growing season but muted effects for storms occurring after biomass has peaked 

(Wang and Linker 2005).  

Although summer environmental conditions had the strongest effect on bed 

change, the relationships between bed change and spring TN concentration and TN 

loading (Table 2.3) are also worth noting. In estuarine ecosystems, ecological 

response often lags change in river flow (Hagy et al. 2004).  Our analyses suggest that 

springtime N inputs may have had a similar lagged effect on the SAV bed, possibly 

because of a delayed response between N loading and phytoplankton and/or epiphyte 

production. 

The absence of significant statistical relationships between bed change and 

external drivers during stable years as well as the sudden nature of the SAV 

resurgence implies a non-linear threshold response to improving environmental 

conditions. It appears that a critical threshold in light availability was crossed during 

an extended period of low to normal river flow (1995-2002), when the light 

environment substantially improved. Before the dry period (1984-1994) the average 

percent of incident light reaching the bottom (PLB) was ~17%, which we calculated 
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by assuming a mean depth (z) of 1 m and inserting growing season mean KD values 

into the Lambert-Beer relationship (Iz/Io = e-KD z), where PLB (100 (Iz/Io)) is irradiance 

reaching the sediment surface (Iz) as a percentage of that at the water surface (Io). We 

estimated that PLB was ~27% during the dry period and ~25% after the dry period 

(2003-2010). The light threshold for tidal freshwater SAV in Chesapeake Bay is ~13-

14% (Dennison et al. 1994; Kemp et al. 2004); however this threshold generally 

applies to existing SAV beds rather than initiation of a new bed. That our estimated 

threshold is greater supports the idea that new SAV growth requires more light than 

an already established bed. Thus, although water quality gradually improved across 

the entire 1984-2010 time series, the SAV bed only began to expand after this critical 

threshold was exceeded. 

Comparison of trends in river discharge, N loading, and SAV from 1958-1988 

implies that the same processes described above occurred in reverse. In the decade 

prior to the 1972 SAV demise, bed abundance was declining despite an extended 

drought period (Figs. 2.2, 2.4). N loading was also increasing and, consequently, 

chronic eutrophication led to poor water quality and widespread SAV loss (Bayley et 

al. 1978; Kemp et al. 1983, 2005). Tropical Storm Agnes then pushed the already 

deteriorating SAV system beyond its ‘tipping point’ into a degraded state in 1972. 

Thus, it appears that the ultimate response of the SAV bed to precipitation patterns 

depended on underlying water quality trends. This may explain the lack of statistical 

differences in percent bed change during wet and dry years for these historical time 

series. While the bed tended to expand during dry years in recent decades as water 
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quality improved, deteriorating water quality from the 1950s through the 1980s likely 

precluded this response.   

Internal feedback processes 

Differences in water quality inside and outside the SAV bed suggest the 

presence of strong positive feedback processes (Table 2.4). For example, low 

turbidity inside the plant bed (Fig. 2.8a) was likely the result of particle trapping or 

reduced sediment resuspension due to the effects of bed architecture on local 

hydrodynamics (Ward et al. 1984; Gruber and Kemp 2010). Reduced Chl a inside the 

bed (Fig. 2.8b) could also result from particle trapping or from nutrient limitation 

within the plant bed. Low DIN within the plant bed during summer months (Fig. 

2.8c) is evidence of direct nutrient uptake by plants and/or enhanced denitrification 

within the plant bed (Caffrey and Kemp 1992). This effect on DIN may extend 

beyond the SAV bed, as down-bay DIN concentrations were substantially less than 

those measured up-bay. Elevated pH (Fig. 2.8d) and dissolved oxygen (Fig. 2.8e), 

which are indicative of plant photosynthesis, further illustrate the strong effects of 

dense vegetation on water quality. Seasonality in these spatial patterns demonstrates 

that as plant biomass increased throughout the growing season, so did the magnitude 

of the feedback effects.  

 These feedback processes may explain the threshold-type response of the 

SAV bed to change in environmental conditions. Feedbacks help maintain densely 

vegetated plant beds; however, in the absence of sediment-stabilizing vegetation, 

bottom sediments are easily resuspended, leading to elevated turbidity (Scheffer et al. 

1993). As a result, the system tends to persist within one of these states (clear water 
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with SAV or turbid water without SAV) until an externally driven change in water 

clarity induces a shift into the alternate state. We suggest that exceptional growing 

conditions during the drought period allowed the system to overcome the turbid water 

state, serving as a ‘kick-start’ to facilitate the rapid resurgence. 

Alternative explanations 

An alternative explanation for sparse plant cover from the 1970s through the 

1990s is lack of propagules, possibly the result of scouring or burial during Tropical 

Storm Agnes. The SAV increase in the early 2000s could, thus, be attributed to 

reintroduction of new propagules and bed expansion by rapid clonal growth. This 

occurred in Virginia’s coastal bays, where historically abundant eelgrass (Zostera 

marina) disappeared in the 1930s due to a fungal disease and hurricane damage (Orth 

et al. 2006). When the area was reseeded through restoration efforts in 2001, eelgrass 

flourished because water quality was already suitable for plant growth. In contrast, 

SAV restoration efforts in and around Susquehanna Flats in the late 1980s were met 

with only marginal success, in part due to epiphytic growth on seedlings and 

transplants (Kollar 1989). If lack of propagules was the only limiting factor for plant 

growth in this system, then survival rates for transplants and seedlings should have 

been greater in the absence of other limiting factors, such as light availability. 

Furthermore, patches of Myriophyllem spicatum have persisted on Susquehanna Flats 

since at least the 1960s and Vallisneria americana was always present and often 

abundant along the area’s shoreline (Bayley et al. 1978; Kollar 1989). Presumably, 

these populations could have served as propagule sources for new plants. Therefore, 
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we suggest that inadequate growing conditions are a more likely explanation for lack 

of SAV regeneration following their historic decline. 

Another variable that warrants consideration is the trend of increasing 

growing season mean temperature, which continues to rise at 0.1oC year-1 (Table 2.2). 

Global warming is already causing temperature stress and diebacks for SAV species 

that prefer cold water, such as eelgrass, whose optimal temperature ranges from 10-

20oC (Nejrup and Pedersen 2008). For many freshwater SAV species, however, 

elevated water temperatures that are still within physiological tolerance ranges tend to 

promote increased plant production (Barko and Smart 1981). Because the optimal 

temperature for the dominant species at Susquehanna Flats exceeds 30oC (Van et al. 

1976), warmer water could increase production. From 1984-1992, water temperature 

during the SAV growing season never exceeded 30oC; yet between 1993-2010, 10-

15% of water temperature measurements were greater than 30oC. Because, however, 

SAV were historically abundant in the upper Chesapeake Bay before this recent 

warming trend, we suggest that other factors were more important in driving the 

sudden SAV resurgence. 

Future implications 

These processes and patterns are not unique to Susquehanna Flats. Instances 

of nonlinear temporal trends in submersed plant systems have been suggested for the 

Dutch Wadden Sea (van der Heide et al. 2007), U.S. mid-Atlantic Coastal Bays (Carr 

et al. 2010), as well as shallow lakes in the U.S. (Carpenter et al. 2001) and Northern 

Europe (Scheffer et al. 1993). While the variables affecting SAV systems may differ 

according to particular geographic features and plant species, the underlying 
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mechanisms driving system dynamics are broadly relevant to our understanding of 

ecological change and can help guide SAV management. External perturbations that 

can shock a system are typically stochastic. However, the controlling variables that 

affect an ecosystem’s resilience, or ability to withstand disturbance, are frequently 

related to anthropogenic activity (Walker 2004). Management efforts should consider 

dynamic interactions, which may include threshold effects, between SAV and 

relevant controlling variables. Particularly in light of predicted future increases in 

weather extremes, which are often the source of external perturbations, maximizing 

resilience by minimizing chronic anthropogenic stressors should be a core goal in the 

conservation of SAV ecosystems.  
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Tables 

Table 2.1 Summary of data sources, sampling intervals, and date ranges. 
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Table 2.2 Mann-Kendall trend test results for annual loading rates at Conowingo Dam 

and growing season (June-October) mean water quality variables from 1984-2010. 

Kendall’s τ, associated p-values, and trend slopes are listed. Rows in bold are 

significant at the 0.05 level. 

    Parameter τ p Slope 
TN loading -0.19 0.18 -0.50 
TP loading -0.03 0.82 -0.01 
TSS loading 0.19 0.18 1.42 
TN -0.13 0.36 -0.48 
DIN 0.07 0.65 0.07 
PN -0.30 0.03 -0.10 
TP -0.28 0.04 -0.01 
DIP -0.01 0.97 0.00 
PP -0.40 0.00 -0.01 
PC -0.31 0.03 -0.01 
Chl a -0.19 0.17 -0.09 
TSS -0.04 0.80 -0.02 
Secchi  0.14 0.31 0.00 
KD -0.44 0.00 -0.03 
Temp 0.50 0.00 0.10 
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Table 2.3 Linear regression results for transition (1999-2008) and stable (1984-1998; 

2009-2010) time periods. For each regression, bed change was the response variable; 

seasonal means (or medians, if indicated) for each environmental parameter were the 

predictor variables. An annual median for predictor variable was used instead of the 

mean; blog(predictor variable); bold values are significant at the 0.05 level. Tables 

are presented on the proceeding two pages  
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Table 2.4. Mean water quality differences ± 95% confidence intervals between 

monitoring sites located inside and outside the SAV bed for Chl a, turbidity, 

dissolved oxygen, pH, and dissolved inorganic nitrogen 

 

		
n 

Mean 
difference 

95% confidence 
interval   n 

Mean 
difference 

95% confidence 
interval 

Chl a: Up-bay, SAV bed     DIN: Up-bay, SAV bed     
Apr 597 2.92 2.65 3.19 Apr 10 13.99 0.70 27.28 
May 2189 0.44 0.18 0.70 May 15 11.59 -3.05 26.24 
Jun 1847 3.87 3.69 4.06 Jun 13 50.14 34.82 65.46 
Jul 1248 3.13 2.99 3.28 Jul 15 70.61 65.57 75.66 

Aug 2499 2.78 2.68 2.89 Aug 13 65.15 58.19 72.10 
Sep 2290 3.06 2.95 3.17 Sep 13 63.04 56.67 69.40 
Oct 2323 1.26 1.18 1.33 Oct 15 67.81 31.28 104.35 

Turbidity: Up-bay, SAV bed 
DIN: Down-bay, SAV 
bed   

Apr 623 -0.49 -0.91 -0.08 Apr 3 3.89 -10.71 18.50 
May 1924 0.89 0.41 1.37 May 3 8.46 -7.41 24.32 
Jun 1530 4.87 4.75 5.00 Jun 3 34.76 12.40 57.12 
Jul 676 2.75 2.53 2.97 Jul 3 52.05 7.58 96.52 

Aug 1237 1.23 1.14 1.31 Aug 3 47.82 -17.95 113.60 
Sep 1945 1.69 1.55 1.83 Sep 3 37.12 8.31 65.93 
Oct 1299 5.02 4.65 5.40 Oct 3 37.99 0.49 75.48 

pH: Up-bay, SAV bed     DIN: Up-bay, down-
bay     

Apr 626 -0.08 -0.11 -0.06 Apr 10 10.09 -5.75 25.94 
May 2189 -0.83 -0.85 -0.81 May 15 3.14 -8.96 15.23 
Jun 1696 -1.43 -1.45 -1.42 Jun 13 15.38 -8.76 39.52 
Jul 1732 -1.51 -1.53 -1.49 Jul 15 18.56 -24.28 61.41 

Aug 2540 -1.41 -1.43 -1.39 Aug 13 17.32 -44.91 79.56 
Sep 2679 -1.41 -1.43 -1.40 Sep 13 25.92 1.11 50.73 
Oct 2582 -1.21 -1.23 -1.19 Oct 15 29.83 8.71 50.95 

DO: Up-bay, SAV bed     		
	 	 	 	

Apr 625 -0.37 -0.44 -0.29 		 	 	 	 	
May 2189 -1.53 -1.61 -1.45       
Jun 1901 -2.91 -3.00 -2.81       
Jul 1948 -2.16 -2.25 -2.07       

Aug 2745 -1.54 -1.63 -1.46       
Sep 2878 -1.49 -1.55 -1.43       
Oct 2586 -2.30 -2.37 -2.23       
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Figure captions 
 
Figure 2.1 Location of the Susquehanna River and water quality sampling sites. Dark 

shaded area in the figure on the right indicates the SAV bed aerial extent in 2010. 

 

Figure 2.2 Time series for (a) SAV relative abundance (1958-1983) and bed 

abundance (1984-2010), (b) bed area, and (c) perimeter depth. Solid vertical lines and 

grey shaded areas in the time series plots indicate estimated change-points ± 95% 

confidence intervals (conf. int.). Dashed lines indicate linear trends before and after 

each change-point.  

 

Figure 2.3 1984-2010 SAV cover at Susquehanna Flats. Shades of gray indicate SAV 

density classes. Images were generated through digital analysis of aerial photography. 

Surveys were not flown in 1988.  

 

Figure 2.4 1945-2010 time series for (a) spring daily mean total nitrogen loading and 

(b) growing season (June-October) mean Susquehanna River flow with ‘wet years’ 

(>75th percentile) and ‘dry years’ (<25th percentile) highlighted.  

 

Figure 2.5 (a) Bi-plot illustrating relative loadings of water quality variables onto the 

first and second principal components (PC1 and PC2) and (b) correlation between 

river discharge and PC1.  
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Figure 2.6 Relationship between growing season mean Susquehanna River discharge 

and SAV bed abundance during (a) the transition time period (1999-2008) and (b) the 

stable time period (1984-1998; 2009-2010). 

 

Figure 2.7 Mean percent change in bed abundance ± standard error (SE) during 

normal river flow years, dry years, and wet years. An asterisk indicates significant 

difference at the 0.05 level. 

 

Figure 2.8 2007-2010 monthly means ± standard error (SE) for several water quality 

parameters at sampling stations located inside the SAV bed, up-bay, and, in the case 

of dissolved inorganic nitrogen, down-bay from the SAV bed. Except for DIN, all 

other SE values did not exceed the radius of the data points. NTU- nephelometric 

turbidity units. 
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Figures 
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Figure 2.2 
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Fig 2.3 
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Fig. 2.4 
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Fig. 2.5 
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Fig. 2.6 
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Fig. 2.7 
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Fig. 2.8 
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Chapter 3: Mechanisms of storm-related loss and resilience in a 
large submersed plant bed 
 

Abstract 

There is a growing emphasis on preserving ecological resilience, or a system’s 

capacity to absorb or recover quickly from perturbations, particularly in vulnerable 

coastal regions. However, the factors that affect resilience to a given disturbance are 

not always clear and may be system-specific. We analyzed and synthesized time 

series datasets to explore how extreme events impacted a large system of submersed 

aquatic vegetation (SAV) in upper Chesapeake Bay and to identify and understand 

associated mechanisms of resilience. We found that physical removal of plants 

around the edge of the bed by high flows during a major flood event as well as 

subsequent wind-driven resuspension of newly deposited sediment and attendant 

light-limiting conditions were detrimental to the SAV bed. Conversely, it appears that 

the bed attenuated high flows sufficiently to prevent plant erosion at its inner core. 

The bed also attenuated wind-driven wave amplitude during seasonal peaks in plant 

biomass, thereby, decreasing sediment resuspension and increasing water clarity. In 

addition, clear water appeared to “spill over” into adjacent regions during ebb tide, 

improving the bed’s capacity for renewal by creating more favorable growing 

conditions in areas where plant loss had occurred. These analyses demonstrate that 

positive feedback processes, whereby an SAV bed modifies its environment in ways 

that improve its own growth, likely serve as mechanisms of SAV resilience to flood 
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events. Although this work focuses on a specific system, the synthetic approach used 

here can be applied to any system for which routine monitoring data are available. 

Introduction 

Although intense storm events, such as hurricanes and floods, can restructure 

even the most robust ecosystems (Rappaport and Whitford 1999), estuaries and coasts 

have become particularly vulnerable over the past several decades due to degradation 

associated with chronic anthropogenic stressors, including eutrophication (Taylor et 

al. 1995; Carpenter et al. 1998; Cloern 2001), increasing hypoxia (Diaz and 

Rosenberg 2008), and climate change (Najjar et al. 2010). In addition, overfishing 

(Jackson et al. 2001) and habitat loss (Lotze et al. 2006) threaten the biodiversity that 

enriches estuaries (Duffy et al. 2015). Loss of seagrass and other submersed aquatic 

vegetation (SAV) beds is particularly troubling because of the valuable ecosystem 

services they provide (Costanza et al. 1997; Barbier et al. 2011), such as enhanced 

nutrient cycling (Caffrey and Kemp 1990), shoreline protection through attenuation 

of waves and currents (Koch 2001), and habitat and food provisioning for a host of 

important organisms (Orth et al. 2006; Ralph et al. 2013).  

Coupled to threats from human-induced perturbations are projected increases 

in the frequency and intensity of extreme storm events (IPCC 2014), which leads to 

the question of whether these impaired ecosystems can withstand or rebound from 

such events (Cardoso et al. 2008; Grilo et al. 2011). To address this concern, we need 

to understand the underlying mechanisms that influence the resilience of a system, 

which we define here as its ability to resist or quickly recover from disturbances 

(Folke 2006).  
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Previous work has documented a suite of storm-related mechanisms of SAV 

loss and resilience. For example, extreme currents, waves, wind, and sediment 

loading during storm events can break, uproot, or bury plants (Preen et al. 1995; 

Cabaço et al. 2008) and pulses of suspended sediment or nutrients and subsequent 

algal blooms can degrade water clarity, thereby decreasing the amount of light 

available for plant photosynthesis (Moore et al. 1997; Longstaff and Dennison 1999). 

Meanwhile, plant diversity may buffer against total bed loss (Lande and Shannon 

1996; Reusch et al. 2005), and a number physiological and morphological plant 

acclimation strategies allow for persistence despite decreased light availability 

(Longstaff and Dennison 1999; Maxwell et al. 2014). In addition, biophysical 

feedbacks, through which plant beds alter ambient physical conditions in ways that 

enhance their own growth, may also help plant beds absorb storm impacts (De Boer 

2007). For example, healthy plant beds decrease shear stress exerted on the seabed, 

thereby reducing sediment resuspension and enhancing suspended particle deposition 

(Gambi et al. 1990; Granata et al. 2001; Peterson et al. 2004). SAV can also take up 

water column nutrients (McGlathery et al. 2007) and enhance nitrification and 

denitrification (Caffrey and Kemp 1990; Bartoli et al. 2008), thereby decreasing 

nutrient availability, and, in turn, algal biomass. In both cases, the plant bed, itself, 

acts to increase the amount of light reaching leaf surfaces (Gruber and Kemp 2010). 

If plant loss does occur, recovery potential depends on post-disturbance growing 

conditions and species-specific rates of clonal growth and seedling recruitment 

(Walker et al. 2006). 
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Despite this broad mechanistic understanding of plant responses to storm 

events, observed dynamics are often difficult to predict because drivers and responses 

are typically system-specific (Tomasko et al. 2005). For example, the environmental 

characteristics of a given location, including temperature and salinity, shape the 

composition of SAV species, which differ in their tolerance to any given stressor 

(Orth et al. 2010). In addition, local geographic features, such as bathymetry and 

proximity to tributaries can influence the relative magnitude of stressors that 

accompany storm events (Campbell and McKenzie 2004; Maxwell et al. 2014). Thus, 

detailed information about the biological and physical characteristics that are unique 

to a given system may help elucidate the mechanisms that drive its dynamics.  

Here, we investigate the dynamics underlying the response of an SAV bed to 

storm events using an example from the tidal fresh upper Chesapeake Bay. In 2011, 

the U.S. mid-Atlantic region experienced two major back-to-back storms. The first, 

Hurricane Irene, traversed Maryland coastal waters on 27-28 August, producing 

sustained winds >15 m s-1 in the upper bay but relatively little rainfall. The second 

was a stalled tropical weather system (the remnants of Tropical Storm Lee) that 

generated near-record flooding for several days in early September throughout the 

watershed of the Susquehanna River, the largest tributary of Chesapeake Bay. Several 

years prior, SAV had rapidly recolonized a large shoal in an area of the upper bay, 

known as Susquehanna Flats, forming the largest SAV bed in the bay (Gurbisz and 

Kemp 2014). However, a substantial portion of the bed was lost by the fall of 2011 

following the storms. In this paper, we analyze and synthesize publically available 

monitoring data, which we supplement with additional field samples and a simple 
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hydrodynamic model, to infer the mechanisms driving loss and resilience of this 

large, dense and continuous meadow to the 2011 storm events. Our goal is not only to 

interpret drivers of change in this system, but also to provide an example of how this 

type of synthetic analysis can be used to yield insights into ecosystem dynamics. 

Methods 

Study site 

Susquehanna Flats, located in the tidal freshwater upper Chesapeake Bay, is a 

broad shoal (~1 m average depth) surrounded by deeper channels (ranging from ~2 to 

>6 m) and smaller shoals with narrow flanking beds along the west and north (Fig. 

3.1). The shoals form a subaqueous delta of the Susquehanna River, which 

discharges, on average, 1100 m3 s-1 at Conowingo Dam 16 km north of the river 

mouth. Historically, the Flats and the general region supported dense populations of 

native SAV, punctuated by a rapid increase and decrease of the non-native 

Myriophyllum spicatum in the late 1950s (Bayley et al. 1978). However, SAV 

populations experienced dramatic decline following record flooding that accompanied 

Tropical Storm Agnes in June 1972 (Bayley et al. 1978). Plant aerial cover and 

density on the Flats remained sparse until the early 2000’s, when the trajectory of the 

large bed suddenly changed, with the bed attaining a size (~50 km2) that may have 

mirrored its historic extent. This rapid recovery corresponded to enhanced water 

clarity during an extended dry period and modest long-term reductions in nutrient 

loading (Orth et al. 2010; Gurbisz and Kemp 2014). Co-dominant SAV species 

include wild celery (Vallisneria americana), water stargrass (Heteranthera dubia), 

Eurasian watermilfoil (Myriophyllum spicatum), and Hydrilla verticillata. In the 
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Chesapeake Bay region, these species attain peak biomass in the late summer, 

spreading asexually via rhizome elongation from established patches, or sexually 

from dispersing seeds. Many of these freshwater species are also capable of 

dispersing and establishing from fragments (Sculthorpe 1967).  

Data sources and collection methods 

We compiled a suite of publically available monitoring data that were 

collected between 2007-2013 at a range of sampling intervals by several agencies 

(Table 3.1). Our analyses focused on: (1) annual “peak” SAV area cover and density, 

(2) standard water quality variables measured by the Maryland Department of Natural 

Resources (MDNR) at sites located inside and outside of the SAV bed, including 

turbidity, chlorophyll a (Chl a), total suspended solids (TSS), and the vertical diffuse 

downwelling attenuation coefficient (Kd), and (3) external drivers of water quality, 

including river discharge (measured at Conowingo Dam) and wind speed (measured 

at the CBIBS buoy) (Fig. 3.1). Sample site locations were constrained by the fact that 

the monitoring data had already been collected independent of this project. We 

calculated SAV bed area weighted for plant density using a multiplier based on 

median values of crown density categories (<10%; 10-40%; 40-70%; 70-100%) to 

estimate an index of total plant biomass, which we call ‘‘bed abundance’’ (Moore et 

al. 2000; Rybicki and Landwehr 2007). All SAV data and analyses presented in the 

text are for the large central bed occupying the shoal; however, the maps and time 

series plot presented in Fig. 3.1 also include smaller flanking beds.  

We supplemented these monitoring datasets with additional field samples 

following the two storms in 2012-2014. We collected replicate plant samples near the 
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water quality monitoring sensor inside the SAV bed at monthly intervals starting in 

July in 2012 and May in 2013 and ending in October each year. We also collected 

biomass samples in August 2014. Number of replicates varied (n=3-10) to account for 

patchy SAV cover early in the growing season (5-10 replicates) and relatively 

homogeneous plant cover during peak plant biomass (3 replicates). We sampled plant 

material to a sediment depth of ~20 cm with an acrylic corer (15.5 cm diameter, 35 

cm long) and washed each sample to remove sediment. We separated samples into 

above- and below-ground living tissues and oven dried them at 60oC to constant 

weight (~ 24-48 hours). To measure epiphytic material, we collected three replicates 

of ~10 cm apical sections for each of the dominant species present at each biomass 

sampling location by placing a plastic bag over individual shoots underwater to obtain 

a bag containing the plant segment, associated epiphytic material, and ambient water 

(Twilley et al. 1983). We washed any epiphytic material that had not already 

detached from plant leaves into the bag containing ambient water for each sample. 

We filtered the water onto pre-weighed 45 mm glass fiber filters, which we then dried 

and weighed. We also dried and weighed plant segments to obtain a measure of 

epiphyte mass per unit plant biomass. 

We also measured key water quality variables at several additional stations 

when plant biomass was collected in 2012-2013 as well as along a transect in August 

2014 four times during a tidal cycle starting in the middle of the plant bed and ending 

~1.5 km south of the plant bed. For each sample, we passed a measured water volume 

through pre-weighed and ashed filters (45 mm GFF), which we then rinsed with 

deionized water to remove salts. We dried and weighed the filters to determine TSS 
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concentrations. We analyzed additional filters for Chl a concentrations. The filters 

were extracted in the dark with 90% acetone, sonicated, filtered, and read on a 

fluorometer (10-AU, Turner Designs). We measured dissolved inorganic nitrogen 

(DIN) and dissolved inorganic phosphorous (DIP) in the filtered water 

colorimetrically (Shimadzu UVmini-1240) (Parsons et al. 1984). In addition, we 

measured vertical profiles of photosynthetically active radiation (PAR) at select 

stations using a scalar (4pi) quantum sensor (Li-Cor) to compute Kd. We also 

measured turbidity, Chl a, dissolved O2, pH, temperature, and salinity at each site 

using a YSI 6600 sensor package. 

Statistical analyses 

Our overall data analysis approach was to characterize how the system 

changed after the extreme weather events that occurred in 2011 and to determine 

relationships among physical, chemical, and biological variables to explore potential 

drivers of change in the system. 

 To describe change in properties of the plant bed, we tested for differences in 

monthly mean plant and epiphyte biomass between 2012, 2013, and 2014 using 

Student’s t-test. We also tested whether plant loss based on annual aerial surveys 

flown in late summer (Orth et al. 2010) was related to location within the plant bed 

and April-September maximum river discharge. To conduct this analysis, we 

calculated distance from the edge of the large central plant bed as a measure of 

location within the bed. Using ArcGIS software, we created a grid of equally spaced 

(500 m) sampling points on top of each SAV bed polygon for years during which 

SAV loss occurred (2003, 2006, 2009, 2011) as well as each previous year. We 
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excluded 2012 because, although there was plant loss, maximum discharge was only 

2860 m3 s-1. We suspect, as discussed below, that the effects of the 2011 flood event 

carried over into 2012 and caused additional plant loss despite relatively low flow 

conditions that year. We measured the distance from each point to the perimeter of 

the plant bed prior to loss and we recorded the points at which plant loss occurred 

between years. We then used logistic regression, which is commonly applied for 

binary (e.g., plant loss, no plant loss) response variables (Hosmer and Lemeshow 

2000), to analyze the relationship between the probability of SAV loss, distance from 

the outer edge of the plant bed, and maximum river discharge. We used the Pearson 

χ2 test to assess model fit, in which a significant p-value indicates evidence for lack 

of fit.  

We investigated the magnitude of change in water quality across time and 

space by calculating monthly mean differences between paired (inside vs. outside the 

bed) continuous monitoring observations of turbidity and Chl a. We used bootstrap 

resampling (resamples=1000) with corrected accelerated percentiles (Efron 1987) to 

calculate 95% confidence intervals for the mean differences (confidence intervals that 

include 0 indicate no difference in means). We also used Student’s t-test to test for 

differences in nutrient (DIN, DIP) concentrations inside and outside the plant bed 

before and after the 2011 flood event in both spring and summer. 

We used ordinary least squares linear regression to model relationships among 

TSS, YSI Chl a, turbidity, and Kd with data from concurrent grab samples measured 

at or near established stations located inside and outside SAV bed. In addition, 

because Kd is only measured 2-4 times per month, we used these relationships to 
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estimate a more detailed Kd time series derived from continuous April-October Chl a 

and turbidity data spanning 2010 to 2013 at the SAV bed monitoring site. We then 

used this time series to calculate percent of surface light through the water (PLW) at 1 

m depth using the Lambert-Beer relationship (PLW=100*e-Kd*z, where z=water 

depth) to show how the light environment changed over time inside the SAV bed. To 

account for additional light attenuation by epiphytic material, we used monthly 

epiphyte data, where available, to estimate percent light at the leaf surface (PLL) 

according to the methods outlined in Kemp et al. (2004).  

We also estimated net ecosystem production (NEP) at the same site using 

continuous oxygen, temperature, and wind speed data following previously published 

methods (Caffrey et al. 2014; Howarth et al. 2013). Because the plants appear to be 

the dominant organism at this site in terms of biomass, we assume that NEP is 

primarily a measure of SAV metabolic activity. We can, therefore, use NEP to 

illustrate shorter time-scale changes in bed productivity and investigate potential 

mechanisms of change in production, such as light limitation. We used linear mixed-

effects models to test for differences in monthly mean NEP and the variables that 

affect NEP (viz., PLW, insolation, and temperature) between 2010, when the bed was 

at its pre-storm peak, and subsequent post-storm years (2011 to 2013). The model 

tested for differences in the intercept (i.e., mean) given year and month. Mixed 

models are preferential in this case over analysis of variance or time series methods 

because they can explicitly account for correlation structure that is inherent in time 

series data and also handle large spans of missing data (Pinheiro and Bates 2000), 

which occurred here during winter months when monitoring sensors were removed 
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from the water. We used bootstrap resampling to construct 95% confidence intervals 

for the differences in means (Efron 1987).  

We also used a linear mixed-effects model to (1) explore the extent to which 

river discharge and wind speed were related to turbidity at inside and outside the SAV 

bed sites and (2) to test whether the effect of wind speed changed after the fall 2011 

flood event. Log-transformed turbidity was the response variable. Fixed effects were 

river discharge and wind speed, and random effects included wind speed in relation 

to: (1) the 2011 flood event (before, after), (2) season (spring=April-June; 

summer=July-September), and (3) site (inside or outside the SAV bed). We initially 

also included wind direction; however its effect was not significant, so we excluded it 

from the model. We constructed a series of simplified models by excluding the 

random effects one at a time, and we compared these models to the full model to 

determine whether each variable improved model fit (Laird and Ware 1982). We then 

used bootstrap resampling to construct 95% confidence intervals for differences 

between relevant random coefficients (i.e., differences in the effect of wind speed on 

turbidity across sites and seasons before and after the flood event).  

In all cases, we checked that raw data and model residuals met test 

assumptions (e.g., normality, independence, and heteroskedasticity), and we made 

relevant transformations (e.g., log transformation) as necessary.  

Hydrodynamic model 

We also developed a simple hydrodynamic model based on the same 

principles as the models of Fagherazzi et al. (2003) and Mariotti and Fagherazzi 

(2013) in an effort to strengthen our hypotheses and to provide surrogate data for 
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variables that we believed were important but missing. The model simulates flow and 

bottom stress in an idealized embayment system with geometry that is broadly based 

on the lower Susquehanna River and Susquehanna Flats region, assuming constant 

river flow interacting with a standing wave tide. It was developed for a constant width 

channel (6 m deep) adjacent to variable width subtidal flats (1.5 m deep) with and 

without SAV. The model solves first for the longitudinal flow changes required to 

conserve water volume as the tide rises and falls and as the subtidal flats widen and 

narrow. Flow is then partitioned between the channel and the flats to account for the 

differing influences of friction on flow over the channel and the shoal, assuming a 

slowly varying steady state shallow water balance between horizontal pressure 

gradient and vertical stress gradient. In the absence of SAV, the bottom drag 

coefficient is the same everywhere. In the presence of SAV over the flats, the drag is 

increased following the methods of Chen et al. (2007), with a user-specified ratio 

between the channel and flats drag coefficients simulating the effects of different 

plant densities.  Finally, the lateral flows between channel and flats are adjusted to re-

establish volume conservation. The fraction of the drag responsible for sediment 

transport (the “skin friction”) is calculated following the methods of Chen et al. 

(2007) as well. More model details are available in Appendix I.  

We used the open source software package R to carry out statistical analyses, 

run the model, and generate plots. 

Results 

Density-weighted plant cover (“bed abundance”) of the large central bed 

decreased by 43% between 2010 and 2011, then by another 20% in 2012, followed by 
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slight (~1%) recovery in 2013 (Fig. 3.2). Logistic regression showed that the 

probability of plant loss decreased with distance into the plant bed and increased as 

river discharge increased (Table 3.2). There was also a significant positive interaction 

between distance into the plant bed and river discharge. In other words, most plant 

loss occurred around the outer edge of the plant bed, and higher flows led to greater 

overall plant loss (Fig. 3.3a); however, the proportion of loss at any given distance 

from the edge of the bed increased nonlinearly as river discharge increased (Fig 3b). 

In addition, plant biomass in August and September was significantly greater in 2013 

than 2012 (Table 3.3, Fig. 3.4a) and possibly also in August 2014 compared to 2012 

(p=0.05). There was no significant difference between biomass in August 2013 and 

2014 nor were there any significant differences in below-ground biomass between 

years. August, September, and October epiphyte biomass levels were significantly 

less in 2013 than 2012 (Fig. 3.4b). 

NEP was lower during the spring of 2011-2013 and greater in summer of 

2012-2013 compared to NEP calculated before the storm events in 2010, as indicated 

by 95% confidence intervals for differences in monthly means (i.e., mixed model 

intercepts) that did not include 0 (Fig. 3.5a and 5e). Peak NEP occurred 1 month later 

in 2011 compared to 2010 and 2 months later in 2012 and 2013. PLW was generally 

lower after the storm events compared to 2010 (Fig. 3.5b and 5f) and, for years when 

epiphyte data were collected (2012 and 2013), epiphyte cover increased PLW by 

15%. However, despite overall lower light levels compared to 2010, PLW during the 

summer of 2011-2013 and PLL in 2013 still exceeded 30% for a portion of the 

growing season. There were no differences in insolation after the flood event (Fig. 
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3.5d and 3.5h) and, although temperature was different from pre-storm means during 

some months, these differences did not appear to systematically coincide with 

differences in NEP (Fig. 3.5g-h).   

In general, monthly mean turbidity before 2011 was lower inside the plant bed 

compared to a nearby monitoring station located outside the plant bed (Fig. 3.6a). For 

several months following the fall 2011 storm events and into spring of 2012, turbidity 

was greater inside the plant bed by ~10-30 turbidity units. The difference was much 

less (0 to 1 NTU) during late summer-early fall 2012. Turbidity was again greater 

inside the plant bed by ~10 to 15 NTU in spring 2013 but then it decreased by ~5 

NTU inside the plant bed in summer 2013. Monthly mean water column Chl a was 

also consistently lower inside the plant bed by ~3-7 µg l-1 before 2011 (Fig. 3.6b). 

Chl a was generally lower inside the plant bed in spring and summer of 2011 as well 

but by only ~1 µg l-1. However, in spring and early summer of 2012 and May of 

2013, Chl a was ~ 5-10 µg l-1 greater inside the plant bed. Seasonal peaks in Chl a 

after the flood event appear to lag those of turbidity by ~1-2 months. Regression 

analysis showed that TSS (but not Chl a) was a statistically significant predictor of 

turbidity (Fig. 3.7). Together, turbidity and Chl a measured by monitoring sondes 

predicted Kd by the following formula: Kd = 0.95 + 0.08 * turbidity + 0.03 * Chl a (p 

< 0.001, R2 = 0.74). Mean summer DIN increased from 0.62 + 0.29 to 13.63 + 4.73 

µmol l-1 inside the plant bed; however this difference was not statistically different 

[t(5.12)=-1.87, p=0.12], nor were any other comparisons of DIN or DIP before and 

after the flood event.  
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Visual examination of turbidity, river discharge, and wind speed time series 

suggests that both river discharge and wind had an effect on turbidity but the wind 

effect increased inside the plant bed after the flood event (Fig. 3.8). For example, 

although Hurricane Irene generated high sustained winds, turbidity only increased 

marginally both inside and outside the plant bed. During the flood event, however, 

turbidity increased dramatically, exceeding 600 NTU at both sites. After the flood, 

turbidity was, at times, more than 250 NTU greater inside the plant bed compared to 

the monitoring site outside the bed, particularly during wind events. Results from the 

linear mixed model support these inferences. Susquehanna River discharge and wind 

speed each had a significant positive effect on turbidity (Table 3.4). Including timing 

in relation to the flood event, site, and season improved model fit, meaning that these 

variables modified the effect of wind speed on turbidity. Specifically, the effect of 

wind speed on turbidity increased inside the bed after the flood event (95% 

confidence interval, CI, for the difference in coefficients=0.0005, 0.0019), the effect 

was less in the summer compared to the spring (CI=-0.0023, -0.0006), and the effect 

in the spring was greater inside the bed compared to outside the bed (CI=0.0012, 

0.0022).  

Water quality transect data show that by August 2014, turbidity, and thus 

suspended particle concentrations, were generally lower inside the plant bed (Fig. 

3.9a-c). At high tide, turbidity inside the bed slightly increased starting around 500 m 

from the edge of the bed (Fig 3.9b). However, at low tide, turbidity was consistently 

low to the edge of the bed and slightly lower for ~800 km beyond the outer edge of 

the bed compared to values measured at the same sites at high tide (Fig. 3.9c). Lower 
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turbidity around the southern outer edge of the bed is consistent with the apparent 

clear water plume emanating from the bed (Fig. 3.9a). PLW, calculated using depth at 

mean water and an estimate of Kd derived from turbidity and Chl a data collected at 

transect sites, was highest in the inner core of the plant bed, slightly lower around the 

inner and outer edge of the bed, and lower around the southern end of the transect, 

where the water was both deeper and more turbid (Fig. 3.9 d-e).  

Model simulations for cases with and without the SAV bed on the flats with 

flow based on peak Susquehanna River flow in September 2011 (20,000 m3 s-1) at 

maximum ebb tide show that even in the absence of SAV, the flow and bottom stress 

over the flats were much lower than in the channel (Fig. 3.10). Minimum flows and 

bottom stresses generally occurred in the wide central region of the shoal, 

intermediate values occurred in the northern and southern narrow regions of the 

shoal, and the greatest values occurred in the northern river channel and the southern 

exit channel. When SAV were present, they greatly increased the total drag 

coefficient over the shoal, which greatly decreased flow over the shoal and enhanced 

flow in the channel (i.e., the flow pattern without SAV is greatly exaggerated with 

SAV). As a result, skin friction (the stress acting on the bottom sediments) was 

greatly reduced relative to the no SAV case. Without SAV, the minimum and 

maximum bottom stress values on the shoal were 1.4 and 3.2 Pa, respectively, but in 

the presence of SAV, skin friction on the shoal varied between 0.1-0.3 Pa. It is 

important to note that the total stress over the shoal with SAV remains similar to the 

no SAV case; the difference is that the drag of the plants dominates the total stress in 
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the SAV case, while the drag of bottom sediments dominates the total stress in the no 

SAV case. 

Discussion 

In contrast to the near-complete SAV loss that resulted from Tropical Storm 

Agnes in 1972, the persistence of large portions of the bed on Susquehanna Flats and 

its beginnings of recovery in 2013 following two severe storms in August and 

September 2011 demonstrates its resilience to a strong perturbation. Our analysis of a 

number of monitoring parameters, additional field studies, and modeling suggests that 

several critical biophysical interactions between the bed and its environment coupled 

to the physical characteristics of the region allowed the bed to survive and start to 

recover, particularly after the September 2011 flood event, which produced near-

record flow and sediment loading rates. 

Resistance to sediment loading 

While poor water clarity associated with particle deposition and subsequent 

resuspension likely caused some plant loss and decreased plant production during and 

after the September 2011 flood event, it appears that reduced sediment resuspension 

during periods of peak biomass in 2012 and 2013 led to improved water clarity. We 

argue that this positive feedback between the plant bed and suspended particle 

concentrations served as a mechanism of bed resilience to high rates of sediment 

loading generated by the flood. 

Before September 2011, turbidity and planktonic Chl a were lower inside the 

plant bed (Fig. 3.5a and 3.5b), a pattern consistent with previous studies (Moore 
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2004; Gruber and Kemp 2010; van der Heide et al. 2011). In contrast, higher turbidity 

inside the plant bed during the months immediately after the flood event in September 

2011 and the subsequent two springs suggests that the flood had a lingering effect on 

suspended particle concentrations. Elevated Chl a inside the plant bed during late 

spring and early summer in 2012 and 2013 and greater epiphyte biomass in 2012 

compared to 2013 (Fig. 3.4b, Table 3.3) imply effects on algal production as well. 

Because Kd, which is indicative of the amount of light available to plants, was related 

to both turbidity and planktonic Chl a, greater than normal values of these variables 

inside the plant bed after the flood event could have negatively affected the plant bed 

through light limitation.  

Although the plants, on average, received enough light to survive through 

2011-2013, as April-October median percent light through the water (PLW) and 

percent light at the leaf surface (PLL) at 1 m depth were > 13% and 9%, respectively 

(Dennison et al. 1993; Kemp et al. 2004), episodic extremes in turbidity that were not 

captured by data aggregated across the growing season could have caused plant 

mortality, particularly around the deeper outside and southern edges of the SAV bed 

(Moore et al. 1997; Longstaff and Dennison 1999). For example, PLW was <3%, a 

lethal light level for most freshwater macrophytes (Middleboe and Markager 1997), 

for ~ 1 week during the September 2011 flood event and for periods of 1 to several 

days throughout the following spring (Fig. 3.5b). In addition, light limitation could 

have altered plant phenology and limited plant production. For instance, PLW was 

<30%, the threshold light level below which production in these plants generally 

decreases (Blackburn et al. 1961; Harley and Findlay 1994), until July-August in 
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2012 and 2013. Light limitation early in the growing season could, thus, account for 

the apparent delay of annual peak production (Fig. 3.5a). Furthermore, because 

summer PLW and PLL were generally higher in 2013 compared to 2012, lower 

production rates associated with light limitation may also be responsible for lower 

biomass in 2012. 

However, despite unusually poor springtime water clarity inside the plant bed 

after the flood event, light conditions improved by late summer in 2012 and 2013. 

Concurrent temporal patterns in plant biomass, turbidity, and Chl a suggest that the 

bed, itself, caused this improvement. For example, turbidity and Chl a decreased (Fig. 

3.6) and PLW increased inside compared to outside the plant bed by August in 2012 

and July in 2013 (Fig. 3.5c). These patterns coincided with increases in monthly plant 

biomass to 55 g m-2 and 41 g m-2 respectively (Fig. 3.4), suggesting that, after 

accumulating sufficient plant volume, the bed improved water quality and increased 

light availability, thereby allowing for increased plant production during the summer 

months.  

Our analyses indicate that greater than usual wind-driven resuspension in the 

absence of plants and reduced resuspension when plants were present generated the 

observed patterns in turbidity. Because turbidity was related to both TSS (Fig. 3.7) 

and wind speed (Table 3.4), we can infer that higher wind speeds, in general, led to 

greater concentrations of suspended particles. The increased effect of wind on 

turbidity inside the plant bed during the spring after the flood (Fig. 3.8) further 

suggests that the September 2011 flood event created an environment on the shoal in 

which bottom sediments were highly resuspendible, probably due to substantial 
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deposition (Palinkas et al. 2013) of loose, unconsolidated sediment (Ward 1985; 

Sanford 1994; Sanford 2008) and creation of open scour channels by high flows 

(Luhar et al. 2008). Subsequent wind events then generated turbid conditions through 

resuspension by wind-forced waves, particularly during the spring when plants had 

yet to germinate or had just begun to emerge. However, the diminished effect of wind 

on turbidity during the summer when plant biomass was high (Fig. 3.4) implies a bed 

effect on turbidity. In general, the vertical transfer of turbulent stress to the seabed 

and, thus, sediment resuspension decreases when canopy drag surpasses a critical 

threshold due to increasing plant height and density (Ward et al. 1984; Luhar et al. 

2008, Gruber et al. 2011). Therefore, it appears that once the bed reached a critical 

biomass, canopy drag dissipated wind-driven wave energy and stabilized the seabed, 

thereby allowing more light to reach the leaf surface to support photosynthesis ( De 

Boer 2007; Chen et al. 2007).  

Similar patterns in Chl a (Figs. 3.4b and 3.6b) and higher epiphyte biomass in 

the summer of 2012 compared to 2013 suggest that increased inputs of particle-bound 

nutrients and subsequent resuspension events may also be linked to greater than 

normal planktonic and epiphytic algae production in 2012 and early 2013. Although 

differences in DIN and DIP before and after the flood event were not statistically 

significant, the increase in summer DIN inside the plant bed, although not statistically 

significant, qualitatively suggests that nitrogen concentrations were greater than 

normal after 2011. Furthermore, differences in dissolved nutrients in response to 

increased inputs may not have been be detected because of rapid nutrient assimilation 

associated with algal and plant growth (Malone et al. 1996). We infer that dissolved 
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nutrient loading during the flood event did not likely cause elevated nutrient 

concentrations in the bed because water residence time in the upper Chesapeake Bay 

during high flow events is relatively short. As a result, dissolved nutrients generally 

pass through the region with little assimilation (Schubel and Pritchard 1986). 

However, decomposition of particulate organic nitrogen and desorption of particulate 

phosphorous can increase concentrations of porewater ammonium and phosphate 

(e.g., Kemp et al. 1984, Romero et al. 2006) and sloughing of organic epiphytic 

material during high flows can further add to the sediment nutrient pool (Fonseca et 

al. 1982). Resuspension events can enhance the rate of nutrient flux from the seabed 

to the water column through release of porewater solutes (Tengberg et al. 2003; 

Ståhlberg et al. 2006) and, thus, fuel algal growth. Conversely, the decrease in Chl a 

during the summer of 2012 and 2013 could be linked to decreased sediment 

resuspension and associated dissolved nutrient flux to the water column (Madsen et 

al. 2001). Furthermore, plant nutrient uptake (Cornelisen and Thomas 2006) and 

enhanced denitrification (Caffrey and Kemp 1990; Risgaard-Petersen et al. 2000) 

with increased water residence time inside the plant bed (Nixon et al. 1996; Lara et al. 

2012) may also have decreased nutrient concentrations and, therefore, algal 

production. 

Resistance to high flows 

River discharge during the 2011 flood event exceeded 20,000 m3 s-1, a value 

surpassed only three times previously since monitoring of Susquehanna River flow 

began in the late 1800’s. While mechanical plant breakage, dislodgement, or scour 

and associated uprooting due to high flows likely caused substantial plant loss (Preen 
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et al. 1995; Fonseca and Bell 1998), our analyses and model simulations suggest that 

the bed was also resilient to high flows by attenuating currents and shunting flow 

around the shoal and into surrounding channels.  

The amount of force required to break or dislodge plants is highly variable 

depending on SAV species and sediment composition (Schutten et al. 2005), making 

the relative role of these processes difficult to assess. Our model simulations do 

suggest, however, that sediment scour, root exposure, and associated plant uprooting 

could have occurred, perhaps in conjunction with breakage or dislodging. Generally, 

bottom shear stresses that are greater than ~0.1 to 0.3 Pa result in sediment movement 

at a rate that depends on the difference between the applied stress and the threshold 

stress (Allen 1985). When modeled river flow was 20,000 m3 s-1, bottom stresses 

across a substantial area of the southern region of the flats exceeded this threshold 

(Fig. 3.10d), indicating incipient scour. In addition, although the modeled bottom 

stresses responsible for sediment transport were relatively small, the total drag forces 

were quite large, comparable to shear stresses simulated in our “no-SAV” scenario 

(Fig. 3.10b). These total stresses (about 3 Pa) were borne primarily by the plants, 

which might have been selectively broken or dislodged. Once thinning of the plant 

bed started for any reason, the system would tend towards unstable behavior. Any 

local loss of the protective SAV barrier would lead to greater local sediment scour, 

which, in turn, would lead to further plant loss, and so on. It is, therefore, possible 

that unstable plant loss and sediment scour associated with strong currents may have 

resulted in uprooting that caused large areas of plant loss during the flood. The 

increases in velocity and bottom stress were likely focused in the southern region of 
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the model domain both because of the constriction in width, and because maximum 

ebb tidal currents increase from north to south to conserve tidal volume transport. In 

addition, when the ebbing tide combined with southward river flow, velocity further 

accelerated in the southern region, thereby increasing bottom stress.  

On the other hand, our results also suggest that the plant bed attenuated flow 

during the flood event, as shown by relationships between the spatial distribution of 

plant loss and river discharge during high flow years. For example, the decreasing 

probability of plant loss with increasing distance from the outer edge of the plant bed 

(Fig. 3.3a) implies that inner regions of the bed were protected during flood events. 

The analysis also showed that as river discharge increased, the probability of loss at 

any given distance into the bed increased, suggesting that at higher flow rates, this 

protective capacity decreases. For these reasons, larger plant beds are generally more 

resilient to storm events because their inner core is protected (Gruber et al. 2011; Orth 

et al. 2012).  

Model simulations support the idea the inner bed was sheltered from high 

flows. Bottom stresses on the shoal for the case without SAV were well above the 

threshold required to erode and transport sandy sediments (Figs. 3.10a and 3.10b); 

however, bottom stresses were near or below this threshold when SAV were present, 

particularly in the widest part of the shoal (Figs. 3.10c and 3.10d). This occurs 

because, in addition to attenuating turbulence in the vertical dimension, canopy drag 

also dissipates the horizontal transfer of momentum from the leading edge toward the 

center of a plant bed (Luhar et al. 2008). Furthermore, the plant bed diverts flow from 

the shoal into the channel, resulting in decreased velocities on the shoal and 
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acceleration of currents in the channel (Gambi et al. 1990; Chen et al. 2007; Luhar 

and Nepf 2013). 

Recovery following loss 

In addition to serving as a mechanism of resistance to disturbance, we suggest 

that positive feedback processes are also important for this bed’s recovery. The region 

of higher turbidity around the edge of the plant bed during high tide (Fig. 3.9b) 

suggests that particles are transported into the bed with the rising tide. However, the 

large area of low turbidity outside the bed during low (Fig. 3.9c) tide implies that 

clear water drains out of the bed with the ebbing tide, creating the clear water 

“plume” evident in the aerial photograph (Fig. 3.9a). Because PLW inside the plant 

bed and in the plume region is greater than the minimum light required for plant 

survival (13% of surface irradiance), recovery in this region is likely limited by the 

rate at which the plants can expand clonally or establish satellite colonies from 

fragments and seedlings. Light levels below this threshold at sites outside of the 

plume suggest that inadequate light could limit recovery in this region. However, if 

we use turbidity and Chl a data from the plume region to calculate PLW at the 

southern most transect sites (1.5 m deep), light at the bottom would be 17%, 

exceeding the minimum threshold. If the plume of clear water expands into deeper 

water as the bed expands southward, this process of local a feedback effect “spilling 

over” into adjacent regions could be a key mechanism for the bed’s recovery to its 

pre-storm extent. 
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Inferences about recent and historical weather events 

Although sediment scour and poor water clarity associated with the September 

2011 flood event were likely the primary drivers of plant loss, it is worth noting that 

decreased plant production in spring 2011 compared to 2010 (Fig. 3.5a-b) may have 

weakened the plant bed’s ability to withstand the flood. With precipitation in March 

2011 greater than six times above average, elevated turbidity that spring (Fig. 3.6a) 

likely decreased PLW (Fig. 3.5d), and, thus, also plant production (Alcoverro et al. 

1999; Longstaff and Dennison 1999). In addition, below average water temperatures 

in April 2011 could have delayed plant germination and further decreased plant 

production (McFarland and Shafer 2008), rendering the bed more susceptible to loss 

in the face of additional turbidity pulses (Cabello-Pasini et al. 2002; Yaakub et al. 

2014; Fraser et al. 2014).  

In addition, the inferences developed herein may help explain historical 

patterns of SAV abundance. In 1972, precipitation in the Susquehanna River 

watershed during Tropical Storm Agnes generated a 100- to 200-year flood that 

destroyed nearly the entire Susquehanna Flats SAV bed, with only sparse regrowth 

for several decades (Bayley et al. 1978; Kemp et al. 2005; Gurbisz and Kemp 2014). 

Based on the observed effects of the 2011 flood event, the magnitude of flooding 

likely exceeded the capacity of the bed to attenuate flow in 1972, leading to 

catastrophic plant loss. In fact, in a model run with comparable river flow (30,000 m3 

s-1), bottom stresses on the vegetated shoal ranged from 0.3 to 0.7 Pa (not shown), 

values that lie within or surpass the threshold range for sediment motion. It is also 

possible that the 1972 bed was less dense than the 2011 bed, considering its trajectory 
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of decline prior to Tropical Storm Agnes (Bayley et al. 1978; Kemp et al. 2005), and, 

therefore, less capable of attenuating and diverting flows. The seasonal timing of the 

1972 storm also likely exacerbated bed damage because storms that occur near peak 

plant biomass are generally more destructive to SAV than those that occur after 

(Wang and Linker 2005). With presumably more sediment deposition and plant loss 

compared to the 2011 flood, resuspension in the absence of vegetation likely 

generated turbid conditions for an extended period of time, leading to a self-

reinforcing bare-sediment state (Scheffer et al. 1993). 

Concluding comments 

These analyses suggest that the ultimate effect of a flood event on submersed 

plant populations depends on the balance between mechanisms of plant loss and 

resilience, which involve complex biological, physical, and chemical interactions 

between a plant bed and its environment. In this case, although there was substantial 

SAV loss in response to a major flood event, the system was also remarkably 

resilient, apparently owing to strong biophysical feedback processes carried out by a 

large, dense, healthy SAV bed. Future work should aim to quantify threshold river 

flow rates beyond which plant beds cannot recover as well as the extent to which bed 

size and previous disturbances affect the tipping point. Whether genetic diversity 

interacts with these processes to enhance resilience is another important focus for 

additional research. 

This paper also demonstrates how synthetic analysis of diverse datasets can be 

used to address ecological questions (Carpenter et al. 2009). We followed synthesis 

methods similar to those outlined in Kemp and Boynton (2011). For example, initial 
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plots of data across time and space allowed for visualization of relevant patterns and 

trends. This preliminary information was then used to guide statistical approaches for 

more in-depth analysis. In addition, a simulation model was helpful for analyzing 

mechanisms and providing surrogates for missing but important variables. While 

alone, individual datasets may not be particularly meaningful, together and in the 

context of theory and other studies, they can be used to construct compelling 

explanatory models for ecological phenomena. 
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Tables 

Table 3.1 Summary of publically available data sources 

Data description Source Duration Frequency 
Water quality Maryland Department of Natural 

Resources 
http://mddnr.chesapeakebay.net/eyes
onthebay/ 

2007-
present 

4-6 h-1 

SAV cover  Orth et al. 
http://web.vims.edu/bio/sav/index.ht
ml 

1984-
present 

1 y-1 

River discharge United States Geologic Survey 
http://waterdata.usgs.gov/usa/nwis/u
v?01578310 

1967-
present 

1 h-1 

Meteorological Chesapeake Bay Interpretive Buoy 
System 
http://buoybay.noaa.gov/locations/su
squehanna 

2008-
present 

4-6 h-1 
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Table 3.2 Logistic regression results showing distance from the outer edge of the 

plant bed and April-September mean river discharge as predictors of the probability 

of plant loss. The non-significnant p value for overall model fit shows that there is no 

evidence for lack of fit. Bold: p<0.05 

 
Predictor Coefficient SE Z p 
Constant -3.40 0.96 -3.59 <0.001 
Distance 9.2x10-3 3.3x10-3 -2.83 <0.01 
Discharge 2.0x10-3 5.1x10-4 3.91 <0.001 
Distance:discharge 3.6x10-6 1.6x10-6 2.28 <0.05 

     Overall model fit 
 

χ2  df p 
Hosmer-Lemeshow test 8.14 8 0.4200 
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Table 3.3 Differences in monthly mean plant and epiphyte biomass between years. 

Student’s t-test was used to test for differences in June-October above and 

belowground plant biomass as well as epiphyte biomass between 2012-2013, 2012-

2014 and 2013-2014. Only statistically significant results are shown. Bold: p < 0.05  

 

Sample dates t df p 
2012 
mean 

2012 
SD 

2013 
mean 

2013 
SD 

Above ground plant biomass 
     August -2.54 7 <0.05 60.69 14.36 146.10 93.63 

September -2.42 12 <0.05 71.68 48.01 195.89 149.97 

        Epiphyte biomass 
      August 2.21 14 <0.05 2.12 3.41 0.18 0.19 

Septmeber 2.54 26 <0.05 0.91 0.75 0.42 0.37 
October 4.11 20 <0.01 1.02 0.78 0.23 0.18 
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Table 3.4 Relationships between environmental variables and turbidity, as shown by 

linear mixed effects regression models. Fixed effect predictor variables include 

Susquehanna River discharge and wind speed. Random effects include timing in 

relation to the September 2011 flood (before or after), site (inside or outside the SAV 

bed), season (spring=April, May, June; summer=July, August, September). Random 

effects were sequentially removed to investigate whether each significantly affected 

model fit. Model improvement by including first order autoregressive (AR1) 

correlation structure is also demonstrated 

 
Fixed effect parameter 
estimates 

     Predictor Estimate SE t p 
  Discharge 0.00020 0.00002 9.854 <0.0001 
  Wind speed 0.00056 0.00027 2.091 <0.05 
  

       Effect of random 
terms 

      
Model df AIC BIC 

Log-
likelihood 

Likelihood 
ratio p value 

Maximal 13 189 253 -81 
  Maximal - site 10 460 509 -220 277.2 <0.0001 

Maximal - timing 10 584 633 -282 401.1 <0.0001 
Maximal - season 10 566 616 -273 383.4 <0.0001 
Maximal - slope 
(wind speed) 7 242 276 -114 65.0 <0.0001 
Maximal + AR1  14 -605 -536 317 795.8 <0.0001 
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Figure captions 

Fig. 3.1 The study site, Susquehanna Flats, is located in upper Chesapeake Bay near 

the mouth of the Susquehanna River. Water quality and plant samples were collected 

inside and outside the SAV bed. Wind data came from the Chesapeake Bay 

Interpretive Buoy System (CBIBS) buoy, and river flow data was measured at the 

Conowingo Dam. The SAV bed, as indicated by the dark gray shape, was drawn 

based on aerial photographs taken in 2010 

 

Fig. 3.2 (a) Time series of SAV bed abundance (1958-2013). Data from 1958-1983 

(open circles) represent relative SAV abundance data derived from field sampling by 

Bayley et al. 1978 and the Maryland Department of Natural Resources (unpubl.). 

Data for 1984-2013 (solid circles) represent SAV abundance data derived from aerial 

imagery. We concatenated the time series visually to the best of our ability; however 

it is important to note that they are based on different measurement scales. (b) Maps 

of Susquehanna Flats showing SAV spatial distribution and density cover (shades of 

grey) before (2010), immediately after the September 2011 flood event (2011), and 

two years following the event (2012-2013) 

 

Fig. 3.3 Effect of the interaction between distance from the edge of the plant bed and 

April-September mean river discharge on probability of SAV loss. Trend lines were 

determined by logistic regression analysis 
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Fig. 3.4 2012-2014 monthly (a) plant and (b) epiphyte biomass. Asterisks indicate a 

significant difference at the 0.05 (*) and 0.01 (**) levels 

 

Fig. 3.5 (a-d) Time series for daily net ecosystem production (NEP) and variables that 

may control NEP. (e-h) Differences between 2010 and 2011-2013 monthly means for 

the same variables with 95% confidence intervals, which were calculated by 

bootstrapping linear mixed effect model coefficients. Intervals that include 0 indicate 

no difference 

 

Fig. 3.6 Mean monthly differences + 95% confidence interval between measurements 

made inside and outside the plant bed (i.e., daily measurements at the outside the bed 

site were subtracted from those made inside the bed and those daily differences were 

averaged for each month) for (a) turbidity and (b) Chl a 

 

Fig. 3.7 Relationship between total suspended solids (TSS) and turbidity 

 

Fig. 3.8 Time series for (a) turbidity measured inside (gray) and outside (black) the 

plant bed, (b) 2-day moving average of Susquehanna River discharge measured ~16 

km upriver at Conowingo Dam, and (c) wind velocity measured at the mouth of the 

Susquehanna River and smoothed using a 13-hour moving average 

 

Fig. 3.9 (a) Aerial photo of the SAV bed in 2013 (shaded light gray), the “plume” of 

clear water emanating from its southern edge, and water quality transect sampling 
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sites (black dots). (b-c) Turbidity data for high and low tide, respectively. Dashed 

circles indicate areas of increased turbidity in the inner edge region at high tide and 

lower turbidity immediately outside the plant bed at low tide. (d) Mean water depth at 

transect sites. (e) Percent light through the water (PLW) calculated using turbidity 

and Chl a (to estimate KD) and depth data. 13%, indicated by the dashed line, is the 

minimum light requirement for upper Bay SAV 

 

Fig. 3.10 Hydrodynamic model output showing water velocity (left) and bottom stress 

(right) in the central channel (6 m deep) and later shoals (1.5 m) at peak ebb tide with 

river flow comparable to the September 2011 flood (20,000 m3 s-1). The top panels 

represent the case without SAV on the shoal and the bottom panels are for the case 

with SAV 
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Figures 

 
Fig. 3.1 
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Fig. 3.2 
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Fig. 3.3 
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Fig. 3.4 
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Fig. 3.5 
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Fig. 3.6 
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Fig. 3.7 
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Fig. 3.8 
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Fig. 3.9 
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Fig. 3.10 
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Chapter 4: Interactive effects of physical and biogeochemical 

feedback processes in a large submersed plant bed 

 

Abstract 

Submersed plants are sensitive to high rates of nutrient loading because excess 

algal growth creates light-limiting conditions. However, submersed plant beds can 

also locally modify nutrient cycling through feedback loops whereby algal growth is 

limited and plant growth is enhanced. Most studies on the effect of SAV beds on 

nutrient cycling concentrate on either biogeochemical or physical controlling 

mechanisms. However, we hypothesize that a holistic ecosystem-scale approach 

could yield insights into how these processes interact. We measured a suite of 

physical and biological processes in a large SAV bed in upper Chesapeake Bay and 

developed a simple, 1-D reactive transport model to investigate potential mechanisms 

driving SAV bed effects on nutrient cycling. We observed substantially lower 

concentrations of dissolved inorganic nitrogen and phosphorous (DIN and DIP) inside 

the SAV bed relative to outside the bed during the summer. Denitrification in the 

sediment (mean N2-N flux in August = 50 µmol m-2 h-1) and plant nutrient 

assimilation (August rates=385 µmol N and 25 µmol P m-2 h-1) were mechanisms of 

nutrient removal. We also found that advective transport and tidal dispersion 

decreased inside the SAV bed and water residence time, therefore, increased as the 

plant bed developed. As a result, there was more time for biological processes to 
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reduce DIN and DIP concentrations. Together, these processes create conditions that 

allow SAV to outcompete phytoplankton and epiphytic algae, as water column 

nutrient concentrations were low enough to limit microalgae growth, while sediment 

porewater concentrations were generally sufficient to satisfy SAV nutritional demand. 

The results from this study suggest that interactions between physical and biological 

feedbacks in SAV beds can play a key role in structuring shallow aquatic ecosystems. 

Introduction 

Seagrass and associated submersed aquatic vegetation (SAV) are rooted 

vascular plants that often serve as the foundation of shallow aquatic ecosystems. 

Although humans highly value SAV for the ecosystem services they provide, such as 

habitat structure for diverse and economically important fauna (Costanza et al. 1997), 

these plants are also sensitive to anthropogenic stresses (Orth & Moore 1983, 

Dennison et al. 1993, Kemp et al. 2005). Of particular concern is excess nutrient 

loading and associated algal blooms, which have been linked to widespread SAV loss 

because high algal concentrations decrease light penetration through the water 

column (Waycott et al. 2009). However, SAV beds can also affect local nutrient 

concentrations, which, in turn, can limit algal growth and improve growing conditions 

(Valiela et al. 1997, Havens et al. 2001, McGlathery et al. 2007). 

For example, SAV roots leak oxygen and dissolved organic matter into the 

surrounding sediment, which can enhance rates of denitrification in eutrophic systems 

where nitrate is abundantly available to both autotrophs and denitrifying bacteria 

(Caffrey & Kemp 1990, An & Joye 2001, Risgaard-Petersen 2004). Because 

denitrification converts nitrate to dinitrogen gas, labile nitrogen is removed from the 
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system and substrate availability for algal blooms is limited. In addition, SAV retain 

nutrients in their tissue, thereby temporarily sequestering nutrients that would 

otherwise fuel algal growth during the growing season (Risgaard-Petersen & Ottosen 

2000). 

SAV beds can also modify the physical environment. Generally, the effects of 

SAV beds on physical processes are described in terms of their ability to improve 

water clarity. For example, drag exerted by plants on moving water diminishes 

momentum transfer into SAV beds and decreases shear stress exerted on the bottom 

(Luhar et al. 2008). As a result, suspended particles tend to sink, resuspension 

decreases, and light penetration through the water, therefore, increases (Gacia et al. 

1999, Koch 2001). However, effects on water movement can also interact with 

biogeochemical processes. For instance, when organic particles deposited inside an 

SAV bed are mineralized, porewater nutrient concentrations increase (Kemp et al. 

1984, Hemminga et al. 1991, Gruber & Kemp 2010), which can support plant growth. 

Furthermore, reduced shear stress on the seabed can potentially limit nutrient flux 

from the sediment to the overlying water, thereby retaining porewater nutrients for 

plant root access and limiting availability for benthic algae and phytoplankton uptake 

in the water column (Koch 1999). SAV beds can also decrease tidal exchange with 

adjacent waters (Rybicki et al. 1997), which increases water residence time inside the 

plant bed (Nepf et al. 2007). When a parcel of water is in contact with the sediment 

and plants for a longer period of time, the extent to which assimilation and 

denitrification can remove nutrients increases and water column concentrations 

decrease (Nixon et al. 1996, Dettmann 2001, Seitzinger et al. 2006). 
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Most studies on the effect of SAV beds on nutrient cycling focus on either 

physical or biogeochemical controlling mechanisms. However, a holistic ecosystem-

scale perspective could yield insights into how these processes interact that discrete 

studies, alone, cannot address. Here, we measure and integrate a suite of physical and 

biogeochemical parameters and rate processes in an SAV bed using a large stand of 

submersed plants in upper Chesapeake Bay as an example system. Our goals are 1) to 

investigate the mechanisms driving SAV bed effects on environmental conditions, 2) 

determine the extent to which interactions among physical and biogeochemical 

processes influence these effects, and 3) make inferences about implications for 

ecosystem structure and resilience. 

Methods 

Study site 

Susquehanna Flats is a large (~50 km2) shoal (~1 m deep) flanked by deeper 

(up to ~8-9 m) channels located in the tidal fresh upper Chesapeake Bay that formed 

as a subaqueous delta of the Susquehanna River (Fig. 4.1). Historically, the region 

was renowned to anglers and waterfowl hunters for supporting abundant fish, duck, 

and geese populations, which thrived among the large, diverse SAV beds that covered 

the shoal. In the 1960’s, SAV at the flats began to decline as water quality became 

increasingly degraded (Bayley et al. 1978, Kemp et al. 2005). Then, in June 1972, 

catastrophic flooding during Tropical Storm Agnes destroyed most of the SAV in the 

region. There was little regrowth until the early 2000s, when a large, dense SAV bed 

suddenly repopulated nearly the entire shoal (50 km2) in conjunction with improved 

water clarity during several consecutive dry years and modest long-term reductions in 



 

 94 
 

nutrient loading to the estuary (Orth et al. 2010, Gurbisz & Kemp 2014). Another 

major flood occurred in September 2011. However, this time, only half the bed was 

lost, demonstrating some degree of resilience to extreme weather events (Gurbisz et 

al. 2016). Currently, a mixed assemblage of freshwater SAV species, including 

Vallisneria americana, Heteranthera dubia, Myriophyllem spicatum, and Hydrilla 

verticillata occupy ~25 km2 of the shoal. Although this is only half of its maximum 

extent, the bed is nonetheless the largest continuous stand of SAV in Chesapeake 

Bay.   

Monitoring data description and sources 

We accessed publically available water quality monitoring data measured at 

the Up-bay, Bed 2, and Down-bay sites (Fig. 4.1c) from the Chesapeake Bay Program 

Data Hub (http://www.chesapeakebay.net/data) and the Maryland Department of 

Natural Resources (MDDNR) Eyes on the Bay website (Bed 2 and Up-bay sites; 

http://www.eyesonthebay.net). We also downloaded wind and current velocity data 

measured at the Susquehanna buoy from the National Oceanic and Atmospheric 

Administration (NOAA) Chesapeake Bay Interpretive Buoy System (CBIBS; 

http://buoybay.noaa.gov/locations/susquehanna) and river discharge data measured at 

the Conowingo gauging station (~16 km up-river) from the United States Geologic 

Service (USGS) National Water Information System 

(http://waterdata.usgs.gov/usa/nwis/uv?01578310).  
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Field measurements 

We measured a suite of physical and biogeochemical properties and processes 

during two sets of field deployments. In 2013, we installed 2 PVC platforms, each 

housing an automated water sampler (ISCO 2700) at the Bed 1 site (MLLW=0.2 m) 

and the Edge site (MLLW=0.7 m) (Fig. 4.1c). We also deployed a bottom-mounted 

Nortek acoustic Doppler profiler (ADP) adjacent to each platform. We installed an 

additional automated water sampler adjacent to a data sonde maintained by MDDNR 

attached to a bulkhead outside of but near the SAV bed at the Up-bay site (Fig. 4.1c). 

These instruments were deployed for 6 days when plant biomass was low (July 8-13) 

and again when biomass was high (September 15-20). When we installed the 

platforms and instruments in both July and September, we inserted triplicate dialysis 

pore water samplers (“peepers”) into the sediment at the Edge, Bed 1, and Bed 2 sites 

(Hesslein 1976).  

We programmed water samplers to collect ~900 ml of ambient water every 2 

h from ~20 cm above the bottom in the case of the platform samplers and ~1 m below 

the surface in the case of the bulkhead sampler. We filled the inside of the samplers 

with ice so that water samples would remain chilled until we retrieved them. Each 

day, we replaced the ice, retrieved the sample bottles, and replaced them with empty 

bottles. We vacuum filtered the water samples through glass fiber filters and froze the 

filters and filtrate to store for later chemical analysis. ADPs measured velocity and 

water depth every 10 min throughout the water column with a 5-cm blanking distance 

and 10-cm bins at the Bed 1 site and a 30-cm blanking distance and 30-cm bins at the 

Edge site, which was deeper. The peepers contained five holes covered by a 0.2 µm 
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polycarbonate membrane centered at 5, 8, 11, 15, and 20 cm below the sediment 

surface. We filled the peepers with N2-sparged deionized water prior to installation 

and retrieved them after 10 days. Upon retrieval, we filtered the pore water into vials 

and stored the samples on ice until returning to the lab, where they were frozen. 

Samples for Fe analysis were immediately fixed with hydrochloric acid.  

In August 2014 and May-June 2015, we measured water velocity in the deep 

channel adjacent to the SAV bed (MLLW=8 m) and in a relatively shallow channel, 

which we call the “cut”, in the middle of the SAV bed (MLLW=1.5 m). We deployed 

a ring with an acoustic Doppler current profiler (ADCP) that measured velocity in 0.5 

m bins starting at 1.2 m above the bottom in the deep channel and a small tripod with 

an ADV that measured velocity at 0.9 m above the bottom in the “cut” (Fig. 4.1d). 

Both instruments were programmed to collect data every 10 min for 13 d in early in 

the growing season (May 29-June 10 2015) and 5 d during peak SAV biomass 

(August 11-15 2014).  

We also measured the flux of dissolved gasses (N2 and O2) and nutrients 

(NH!!, NOx, DIP), across the sediment-water interface at 5 sites across the bed when 

instruments were deployed in August 2014 and May 2015, and, additionally, in 

August 2015. The sites included two northern and two southern locations and one 

location near the middle of the bed. The northern and southern sites were selected 

such that each pair contained one site inside the SAV bed and one outside the bed 

(Fig 4.1d). At each site, we collected three replicate 6.35 cm diameter sediment cores 

and ~40 l of ambient water. Upon returning to HPL, we placed the cores in 

environmental chambers set to ambient temperature (27oC August 2014, 25oC May 
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2015, 27oC August 2015) and aerated them with aquarium bubblers overnight. The 

next day, we incubated the sediment cores plus one “blank” core containing only 

water from each site under dark and illuminated conditions (150 µE for all cores in 

May and sites 1 and 5 in August; 38 µE for sites 2-4 in August to simulate shading by 

the plant canopy) and collected a time course of water samples according to the 

methods outlined in Gao et al. (2012). For each core, sediment-water flux rates were 

calculated as the rate of change for each dissolved gas or nutrient in the light and 

dark, corrected for water column rates measured in the blank cores. We also 

measured sediment surface Chl a and grain size. We used a cut-off syringe to 

subsample sediment from the top 1 cm of each core, then placed samples in 15 ml 

centrifuge tubes and froze them for later Chl a analysis. Samples for sediment grain 

size analysis were collected in duplicate push cores at each site. 

In August 2014, we conducted an additional experiment two days after 

collecting the cores to determine the effect of nitrate concentration on flux rates. We 

divided water from Site 4, which had an ambient nitrate concentration of 9.9 µmol l-1, 

into three 20-l containers and added additional nitrate to amend the water in each 

container to a concentration of either 14.5, 58.3, or 100.7 µmol l-1. We replaced the 

overlying water in each of the three sediment cores from each site with water from 

one of each of the three nitrate-amended containers. We also included one “blank” 

core containing no sediment for each nitrate concentration and then ran incubations as 

described above.  

In addition, we measured water quality along a north-south transect across the 

bed four times during the tidal cycle while instruments were deployed in 2014 (Aug 
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14-15) and 2015 (June 5-6). This transect was located adjacent to but not directly 

aligned with the transect described above to take advantage of easier navigation 

through a slightly deeper but nonetheless vegetated trough in the bed. We collected 

~1 l of water every 400 m in the northern portion of the transect and every 600 m in 

the southern portion and immediately placed samples on ice. After completing each 

transect, we filtered the water samples in the field through glass fiber filters using a 

60 ml syringe. Filters and filtered water samples were transported on ice and frozen 

within 4 h for storage until later analysis.  

We also measured SAV biomass at the SAV bed sites (Edge, Bed 1, and Bed 

2) during each of the 2013 deployments and the three SAV bed sites (Sites 2, 3, and 

4) during the 2014 and 2015 deployments. We additionally collected monthly 

biomass samples at the Bed 1 and Bed 2 sites in June-October 2012 and May, June, 

August, and October 2013 to capture change in biomass across the full growing 

season. We sampled plant material to a sediment depth of ~20 cm with an acrylic 

corer (15.5 cm diameter, 35 cm long) and rinsed each sample with ambient water to 

remove sediment. Number of replicates varied (n=3-10) to account for patchy SAV 

cover early in the growing season (5-10 replicates) and relatively homogeneous plant 

cover during peak plant biomass (3 replicates). Samples were stored chilled for < 2 d. 

Laboratory analyses 

Filters and sediment Chl a samples were extracted in the dark with 90% 

acetone and read on a fluorometer (10-AU, Turner Designs). We measured 

nitrate+nitrite (NOx  = NO!! +  NO!!), ammonium (NH!!), and dissolved inorganic 

phosphorous (DIP) in ambient and sediment-water flux samples water 
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colorimetrically (Shimadzu UVmini-1240) following the methods outlined in Parsons 

et al. (1984). Dissolved gasses (N2 and O2) from the sediment flux experiments were 

measured as ratios to Ar using high-precision membrane-inlet mass spectrometry at 

HPL (Kana et al. 1994). Sediment grain size was measured by wet and dry sieving the 

top 2 cm of each push core. We measured plant length and biomass by separating 

plant samples into above- and below-ground living tissues, measuring shoot lengths, 

and oven drying the samples at 60oC to constant weight (~24-48 hours). We ground a 

subset of dried plant and root samples collected across the growing season (n=17 

from the Bed 2 site and n=18 from 6 other sites distributed around the SAV Bed) to 

measure the carbon, nitrogen, and phosphorus content of plant tissue. Particulate C 

and N samples were processed using a CE-440 elemental analyzer (Exeter Analytical) 

and particulate P samples were digested in 1 mol l-1 HCl (Aspila et al. 1976) and 

analyzed colorimetrically for DIP.  

Data analyses 

We used analysis of variance (ANOVA) and t-tests to quantify spatial and 

temporal differences in N2-N flux rates and pore water nutrient concentrations. We 

used linear regression to test for relationships between N2-N flux, sediment Chl a, and 

NOx concentration, and analysis of covariace (ANCOVA) to test whether there were 

spatial differences in flux rates after controlling for NOx concentration. Raw data and 

model residuals were tested to ensure normality, heteroscedasticity, and independence 

assumptions were met and data were transformed as necessary to meet the 

assumptions. In addition, we used a linear mixed effect approach to test for monthly 

across-site differences in routinely monitored water column nutrient concentrations. 
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This method is appropriate because it has relaxed assumptions about independence 

and can explicitly account for autocorrelation structure in time series (Pinheiro and 

Bates 2000). Site and month were treated as random effects on the intercept, which 

means that mean values for each water quality parameter were calculated for each site 

and month. We used bootstrap resampling (n=1000) to calculate the mean difference 

with 95% confidence intervals between sites within each month (Lyubchich et al. 

2015). Confidence intervals that encompass zero are not considered statistically 

“significant.”  

We also estimated monthly (April-October) rates of net community dissolved 

inorganic nitrogen (DIN) and dissolved inorganic phosphorous (DIP) assimilation 

using dissolved O2 data measured continuously by MDDNR from 2007-2015 at the 

Bed 2 site (Fig 4.1c). We first used the open-water method developed originally by 

Odum (1956) and more recently refined by Howarth et al. (2013) and Caffrey et al. 

(2014) to calculate monthly mean net daily ecosystem production rates, as reflected 

by O2 production and consumption. We accounted for atmospheric O2 exchange 

according to theoretical saturation values that change as a function of temperature and 

salinity and a reaeration coefficient based on an empirical relationship with wind 

speed (Marino & Howarth 1993). We assume that production was carried out by a 

combination of SAV, benthic macroalgae (Lyngbya woleii), and epiphytic algae. We 

then used a photosynthetic quotient of 1, (Burris 1981, Kemp et al. 1986), to convert 

O2 production to CO2 assimilation. Next, we used C:N and C:P molar ratios of 13:1 

and 294:1, respectively, to convert C assimilation to N assimilation. These are the 
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average C:N and C:P ratios for SAV and Lyngbya tissue samples collected at the Bed 

2 site. 

Results 

Trends in plant biomass and water quality 

Seasonal patterns: There were pronounced seasonal differences in several 

water quality parameters measured inside and outside the SAV bed (Fig 4.2a-c) that 

coincided with increases in SAV biomass (Fig. 4.2d). Mixed effect model results 

illustrate the magnitude of the differences (Fig. 42e-j). For example, NOx + NH!!, or 

dissolved inorganic nitrogen (DIN), decreased substantially inside the SAV bed, with 

concentrations up to ~70 µmol l-1 less than those measured outside the SAV bed (Fig. 

4.2e and h). DIN was composed primarily of NOx (96%, on average across sites and 

sample dates). In addition, there were seasonal increases in DIP at the Up-bay and 

Down-bay sites but not inside the SAV bed (Fig. 4.2b), which led to lower DIP 

concentrations inside the bed particularly during the summer and fall (Fig. 4.2f and i). 

While Up- and Down-bay Chl a concentrations were generally highest during the late 

spring to early summer, there were two peaks inside the SAV bed, one in May and 

one in September, and a decrease during mid summer (Fig. 4.2c). As a result, July 

Chl a was lower inside the SAV bed compared to Up-bay and Down-bay (Fig. 4.2g 

and j). 

Patterns at high temporal frequency: Automated water sampler deployments 

and concurrent plant biomass measurements show spatial and seasonal differences in 

water quality during low (July 2013) and high (September 2013) biomass at high 
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temporal resolution. Log-transformed biomass at the Bed 1 site increased between 

July and September [t(18)=-4.1, p=0.0006] (Fig. 4.3). There was no significant 

increase at the Edge site because plant cover was patchy, leading to high variance. 

DIN at the bed site decreased between July (mean=41.9, SD=5.8 µmol l-1) and 

September (mean=13.3, SD=15.4 µmol l-1) (Fig. 4.4). Although there were no 

significant differences in DIP, concentrations were generally lower inside the plant 

bed in both July and September (mean difference between Bed 1 and Up-bay=0.18, 

SD= 0.11 µmol l-1; mean difference between Bed 1 and Edge=0.13, SD=0.2 µmol l-1) 

and decreased at all three sites between July and September (mean decrease at all 3 

sites=0.49 µmol l-1). There were semi-diurnal patterns in the DIN and Chl a time 

series, but only during September, when SAV biomass was higher. 

Patterns at high spatial frequency: Transect measurements show differences in 

water quality during low (May) and high (August) biomass at high spatial resolution. 

SAV biomass measurements from August 2014 were abnormally high (>1000 g m2), 

we believe due to sampling error (we may have collected plants outside of the 

sampling area because they were tangled with plants inside the sampling area). We 

present August 2015 data collected at the same site as a proxy because we believe 

they represent more realistic summer biomass values. Log-transformed biomass was 

greater in August 2015 compared to May 2015 at Site 2 [t(2)=-3.9, p=0.05], Site 3 

[t(6)=-4.3, p=0.006], and Site 4 [t(5)=-3.1, p=0.03] (Fig. 4.3). Water quality transect 

data show that there was a strong gradient of decreasing DIN from outside to inside 

the bed, but only in August, when SAV biomass was high (Fig. 4.5a-b). DIP followed 

a different seasonal pattern, whereby concentrations decreased from high to low 
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across the bed when SAV biomass was low but remained consistently low across 

space during high SAV biomass (Fig. 4.5c-d).  

Rate measurements 

Denitrification: N2-N fluxes across the sediment-water interface (Fig. 4.6a) 

are used as a proxy for denitrification rates. Mean ± SD N2-N fluxes across sites 

during the two August experiments were 43.6±31.1 µmol m2 h-1 in the dark and 

57.1±23.6 µmol m2 h-1 in the light (May results are not reported because time series 

were too noisy to calculate flux rates). For August 2014 and 2015 N2-N fluxes in the 

light, there were no significant effects of site [F(4, 18)=1.8, p=1.8], sediment Chl a 

(R2=0.005, p=0.74), or NOx concentration (R2=0.04, p=0.21) on denitrification. There 

was a marginally significant site effect on dark denitrification rates [F(4, 19)=2.889, 

p=0.05]. According to a Tukey post-hoc test, the flux rate at Site 4 was significantly 

less than that at Site 1 (p < 0.05). However, after controlling for NOx concentration, 

there was no significant site effect [F(1, 36)=0.32, p=0.58]. There was a significant 

relationship between dark N2 flux and NOx concentration (Fig. 4.6b). Sediment Chl a 

concentration was not related to dark or light flux rates (R2=0, p=0.96). Sediment 

grain size and Chl a concentrations, and sediment-water flux rates for additional 

parameters are presented in Appendix II (Table AII.1 and Fig. AII.1). 

Because we only have denitrification data for August, we used the average 

light rate and the predicted dark rate according to our empirically derived relationship 

with NOx (we used monthly mean NOx concentrations, Figs. 4.2 and 4.7) multiplied 

by the number of day and night hours each day to calculate daily mean rates for 

April-October (Fig. 4.7a). The assumption that August rates are representative of 
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those for the entire growing season is flawed, as denitrification rates can vary 

seasonally (Kemp et al. 1990). However, our intention was to compare these rates to 

autotroph assimilation rates. Because plant assimilation varies seasonally across a 

much broader range than denitrification (Caffrey & Kemp 1992), we consider this 

extrapolation of denitrification rates to be reasonable. Derived rates ranged from 1.1 

to 1.5 mmol m-2 d-1.   

Autotroph assimilation: Plant C production was 83.6 mmol m-2 d-1, on 

average, with a maximum rate of 230.3 mmol m-2 d-1. N and P uptake rates ranged 

from 1.8 to 10.6 and 0.1 to 0.7 mmol m-2 d-1, respectively. Both followed a seasonal 

cycle similar to that of SAV biomass, with a peak in mid summer and minima in the 

spring and fall (Fig 4.7). N assimilation rates were similar to denitrification rates in 

the spring and fall but >8 times greater in the summer. 

Physical processes 

Physical data collected during the 2013 and 2014-2015 deployments illustrate 

flow patterns across space and time. In general, current velocities followed a semi-

diurnal pattern that coincided with the tidal cycle (Figs. 4.8 and 4.9). At most sites, 

there was net-southward flow due to the influence of Susquehanna River outflow, 

which follows a step-like pattern because river discharge is controlled by timed 

releases from a hydroelectric dam.  

During the 2013 deployments, river flow was 60% greater in July (996 m3 s-1) 

compared to September (402 m3 s-1). Mean current speed, calculated using east and 

north velocity components to reflect the magnitude of measured velocities, was 56% 

greater at the CBIBS buoy (0.09 vs. 0.04 m s-1), 36% greater at the Edge site (0.11 vs. 
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0.07 m s-1), and the same at the Bed 1 site (0.05 m s-1) in July compared to 

September. Mean current speed was 22% greater at the Edge site compared to the 

CBIBS buoy in July and 75% greater in September. In addition, the dominant flow 

direction, or the angle of the principal axis of the velocity time series, shifted from 

337o in July at the Bed 1 site (oriented northwest-southeast, Fig. 4.10a), to 16o in 

September (oriented northeast-southwest Fig. 4.10b). Physical data from additional 

sites in 2013 are available in Appendix II (Figs AII.2 and AII.3). 

During the 2014 and 2015 deployments, river flow was 9% greater in August 

(608 m3 s-1) than in May-June (560 m3 s-1) (Fig. 4.9). Current speed measured by the 

ADCP in the channel was also 9% greater in August (0.25 m s-1) compared to May-

June (0.23 m s-1); however velocity was 33% less (0.06 vs. 0.04 m s-1) at the CBIBS 

buoy and 57% less (0.07 vs. 0.03 m s-1) at the ADV site in August compared to May-

June. Current speed was 69% less at the ADV site compared to the ADCP site in 

May-June and 88% less in August. Velocity at the ADV site was in-phase with 

velocity measured at all other sites in May-June, whereby flow was generally 

northward during flood tide and southward during ebb tide. However, velocity at the 

ADV site was out of phase with the other sites in August, in which case currents 

flowed up-bay during ebb tide and down-bay during flood tide.August ADV data are 

cut short due to equipment malfunction. Additional physical data from 2014-2015 are 

available in Appendix II (Figs AII.4–AII.6). 

Pore water and plant tissue nutrient concentrations 

There were several between-site and between-month differences in pore water 

dissolved nutrient concentrations (Fig 4.11, Tables 4.1 and 4.2). Specifically, 
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NH!! was greater at the Bed 2 site compared to Bed 1 and Edge in July (Fig. 4.11a) 

and Bed 1 in September (Fig. 4.11b), DIP was lower at the Bed 2 site compared to 

Bed 1 and Edge in September (Fig. 4.11d), and Fe was lower at the Edge site 

compared to both other sites in July (Fig. 4.11e) and the Bed 1 site in September (Fig. 

4.11f). In addition, NH!! at Edge and Bed 1 sites increased, and DIP and Fe at the Bed 

2 site decreased between July and September (Table 4.2). Most pore water DIN and 

DIP samples were greater than nominal pore water half-saturation concentrations for 

tidal fresh SAV communities in Chesapeake Bay, with the exception of DIP 

measured at the Bed 2 site (Fig. 4.11d). Pore water nitrogen was composed primarily 

of NH!!(95% on average across all sites and sampling dates). Generally, there was a 

negative relationship between mean Fe and DIP concentrations measured at each site 

(Fig. 4.12). Pore water nutrient profile plots are available in Appendix II (Fig. AII.7).  

Plant tissue nitrogen and phosphorus content ranged from 1.7-4.1 and 0.2-

0.6%, respectively (Fig. 4.13a-b). Tissue C:N molar ratios ranged from 10.2-25.6. 

C:P molar ratios ranged from 163.0-435.4. Tissue C:N ratios appear to follow a 

seasonal pattern, with increasing ratios from June to September and decreasing ratios 

into October (Fig. 4.13b), although the only significant difference was between July 

and September [F(4,21)=3.5, p=0.02]. There were no significant between-site 

differences for C:N [F(5,12)=1.4, p=0.28] or C:P ratios [F(3,8)=0.18, p=0.90]. 

Discussion 

Perhaps the most striking trends we observed were the large seasonal 

differences in DIN and DIP inside the SAV bed relative to up-bay and down-bay 

sites. The concurrent increase in plant biomass suggests that the SAV bed has the 
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capacity to dramatically alter local DIN and DIP concentrations. In the sections that 

follow, we develop an explanatory model for the biological and physical mechanisms 

driving these changes in dissolved inorganic nutrient concentrations inside the plant 

bed and discuss potential ecological implications.  

Mechanisms of decreased DIN inside the plant bed 

Our results show that denitrification is one mechanism of DIN removal from 

the system. The literature on denitrification in SAV beds reports a wide range of 

results, from enhanced denitrification relative to outside the SAV bed (Caffrey & 

Kemp 1992, Flindt 1994, Cornwell et al. 1999) to no difference or decreased rates 

inside the SAV bed (Rysgaard et al. 1996, Welsh et al. 2000, Bartoli et al. 2008). Our 

sediment flux measurements show no difference between sites once the nitrate 

concentration in overlying water is accounted for, probably because the primary 

factor controlling denitrification is nitrate availability (McGlathery et al. 2007). It is 

possible, however, that our sediment water flux experiments may not have captured 

the mechanisms that are thought to enhance denitrification because our cores did not 

contain plants. For example, leaking oxygen from plant roots can increase 

nitrification (the oxidation of NH!! to nitrate) because the process is carried out by 

obligate aerobes (Cornwell et al. 1999). In addition, exudation of dissolved organic 

matter from roots increases the supply of substrate upon which respiratory processes 

depend (Karjalainen et al. 2001).  

Autotroph assimilation appears to be a more important mechanism of DIN 

loss in the plant bed, particularly in the summer when estimated community 

assimilation rates were >8 times greater than denitrification rates. This is not 
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surprising, considering the large amount of SAV biomass that accumulates through 

the growing season. Our estimated net primary production rates are comparable to 

those measured for submersed vascular plants in other systems, which generally fall 

between 80 and 250 mmol C m-2 d-1 but can range from <80 to >400 mmol C m-2 d-1 

(Duarte and Cebrian 1996). It is important to note, however, that our rates are for the 

whole autotrophic community, which includes mats of Lyngbya woleii. Furthermore, 

Lyngbya is a diazotroph and is known to fix N, albeit at low rates, in this system 

(~0.007 nmol N g-1 h-1, J. O’Neil, unpubl.). Determining the relative contribution of 

different autotrophs to DIN assimilation and, possibly, production would require 

additional uptake and N-fixation rate studies.  

Although the rate of biological N removal increases as the SAV growing 

season progresses, the magnitude of the increase does not seem to explain the 

observed seasonal decrease in DIN unless interactions with physical processes are 

also considered. For instance, automated water sampler data imply that DIN interacts 

with tidal flow, especially during peak SAV biomass. At first glance, it appears that 

DIN is advected into the SAV bed by tidal currents, as indicated by increasing DIN 

(Fig. 4.4) and concurrently increasing depth as the tide rises (Fig. 4.8). Nitrogen is 

assimilated and processed through denitrification, and low-N water then flows out of 

the bed with ebbing tidal currents (e.g., Bulthuis et al. 1984). Low DIN 

concentrations south of the bed support the idea that low-N water flows out of the bed 

with the ebbing tide (Fig. 4.5).  

However, the magnitude of the observed decrease in DIN is not possible at the 

timescale of a tidal cycle. If we use assimilation plus dentrification rates from August 
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(431 µmol m-2 h-1) and assume an average depth of 1 m, DIN in a 1 m3 parcel of 

water containing a starting concentration of, say, 60.0 µmol l-1 traversing the bed over 

6 hours would only decrease to 57.4 µmol l-1). A decrease in DIN to, say, 5 µmol l-1 

would take more than 5 days. This suggests that water residence time inside the plant 

bed would have to increase to ~5 days in order to achieve such low DIN 

concentrations. Meanwhile, with a slightly lower rate of biologically mediated N loss 

in May (273 µmol m-2 h-1), the concentration of DIN would decrease to 27 µmol l-1 if 

water residence time was 5 days. Because May DIN was generally ≥40-60 µmol l-1 

(Figs. 4.2 and 4.5) and also more spatially uniform across the bed (Fig. 4.5), exchange 

with water outside the bed must be greater and water residence time, therefore, must 

be shorter early in the growing season. This suggests that as the SAV bed develops, it 

has an increasingly important effect on flow, whereby exchange between the bed and 

surrounding channels decreases and water residence time increases.  

Our current velocity measurements collected at several points during the SAV 

growing season support the idea that the bed affected flow. For example, flow 

attenuation is apparent in the ADCP and ADV data, which show that despite little 

change in river discharge or current speed in the main channel, current speed was, on 

average, 57% less at the ADV site in August 2014 compared to May-June 2015 (Fig. 

4.9). This is consistent with other studies, which show that submersed  aquatic plants 

exert drag on moving water, which decreases flow rates (Fonseca et al. 1982, Gambi 

et al. 1990, Luhar & Nepf 2013).  

The bed also diverts flow around the shoal and into the main channel. This has 

been demonstrated in a previous modeling study of this system (Gurbisz et al. 2016) 
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as well as field and laboratory studies in other systems (Rybicki et al. 1997, Rominger 

& Nepf 2011). During our 2013 deployment, flow at the CBIBS buoy decreased 

approximately in proportion (by ~60%) with the decrease in river flow between July 

and September; however, flow at the Edge site, which is located near the main 

channel, only decreased by 36%. Furthermore, within each of these deployments, 

flow was greater at the Edge site than the CBIBS buoy, but the difference was much 

greater in September. This implies that water is shunted around the bed into the 

channel, and, accordingly, current velocities decrease inside the bed and increase in 

the channel (Fagherazzi et al. 2003).  

Observed changes in flow direction are consistent with this explanation. When 

a dense plant bed occupies a shoal, the rate at which water level changes over the 

shoal often lags that in the channel, resulting in a relative water level difference and 

an associated cross-stream pressure gradient (Rybicki et al. 1997). If the gradient is 

sufficiently large, water tends to flow along the gradient in a direction that can 

potentially be perpendicular to flow in the channel. The change in flow orientation at 

the Bed 1 site between July and September 2013 follows this pattern (Fig. 4.10). Flow 

direction at the ADV site in 2014 did not change because currents likely followed the 

topography of the trough in which the instrument was deployed (Fagherazzi et al. 

2003). However, the fact that velocity measured at this site was out of phase with 

velocity at the other sites but only when SAV biomass was high (Fig. 4.9) further 

implies that flow during peak biomass is dominated by a cross-stream pressure 

gradient generated by the presence of a dense plant bed, whereas flow early in the 
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growing season is dominated by a north-south pressure gradient generated by river 

discharge and northward propagating tidal waves.    

We developed a simple 1-dimensional tidally-averaged reactive transport 

model to test our inferences regarding the interaction between flow and biological 

nitrogen removal processes (García et al. 2008, Hofmann et al. 2008). The model 

calculates the steady-state concentration of DIN along a northwest-southeast oriented 

transect (Fig. 4.1e) spanning the approximate length of the SAV bed (3600 m) 

divided into 9 segments (400 m each) by calculating advective and dispersive fluxes 

across the interface of each segment and biologically mediated DIN loss within each 

segment according to the equation 

!!"#
!"

= !
!"

𝐾 !!"#
!"

− u !!"#
!"

− (assimilation+ denitrification). 

The dispersion coefficient, K, represents tidal dispersion, which we initially estimated 

assuming that K is proportional to the tidal excursion multiplied by tidal flow velocity 

(K ∝ U!"#$L!"#$, Zimmerman 1976). Assuming Ltide≈1375 m and Utide≈0.05 m s-1 (the 

mean current speed measured at the Bed 1 site during low biomass), K≈70 m2 s-1 

(2.5x105 m2 h-1). Tidal excursion (Ltide) was estimated according to the equation 

L!"#$ =
u!"#T
π  

where umax is the maximum tidal velocity measured at the Bed 1 site (0.1 m s-1) and T 

is the tidal period (12 h). For the case with high SAV biomass, we used an 

empirically-derived dispersion coefficient (K≈10 m2 h-1) from measurements made 

inside a stand of aquatic macrophytes ( Lightbody & Nepf 2006). Advective velocity, 

u, represents net down-bay transport resulting from river outflow and was initially 

based on the means of north-south components of flow velocity measured inside the 
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SAV bed (-0.01 m s-1 during low SAV biomass and -0.005 m s-1 during high SAV 

biomass). We supplied DIN concentrations at the up-bay and down-bay boundaries 

and biological loss rates (i.e., the sum of plant assimilation and denitrification rates) 

based on the data presented in Figs. 4.5 and 4.7. We then used “inverse modeling” to 

estimate K and u for June and August, whereby we adjusted these parameters to 

produce model output that matched the tidally averaged DIN concentrations that we 

measured in our June and August water quality transects. We used the R package, 

ReacTran, to implement the model. All relevant equations and example code are 

described in Soetart & Meysman (2012). 

Parameter values used to simulate June and August DIN concentrations (Fig. 

4.14) are listed in Table 4.3. To simulate low DIN concentrations in the center of the 

bed in August, we decreased u and we decreased K linearly from the edge of the bed 

until it reached a constant value. This is consistent with lab and flume studies, which 

demonstrate that K eventually achieves a constant value as water traverses a stand of 

macrophytes (Nepf et al. 1997, Lightbody & Nepf 2006, Murphy et al. 2007). We 

also assigned greater K values in the southern half of the transect compared to the 

northern half in August, which is reasonable given that tidal flow increases as 

distance from the mouth of the river increases and the cross-sectional width of the 

basin constricts.  

We conducted sensitivity analysis to illustrate the relative effect of u, K, and 

biological loss rates on SAV bed DIN concentrations in June and August by running 

the model with each parameter increased and decreased by 25%. The response of 

modeled DIN concentrations to changes in model parameters is small for the case 
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with low SAV biomass. This is because both advective and dispersive fluxes are 

large, thus overwhelming small parameter modifications. Change in DIN 

concentration across space inside the SAV bed is minimal during this time because a 

constant supply is delivered from outside the bed. On the other hand, DIN is more 

sensitive to changes in model parameters in August. Although river discharge was not 

substantially different when we conducted our June and August deployments and 

transect measurements, the flow regime across the plant bed changed dramatically 

due to increased SAV biomass, resulting in decreased advective and dispersive fluxes 

of N across the bed. Because fluxes are relatively small during this time, changes in 

model parameters have a greater effect on DIN concentrations.  

The water residence time (T) for each box of the model can be calculated 

using the volume of water in each box (V, 400 m3) and modeled flow rates into the 

boxes (Q, 36 m3 h-1 during low SAV biomass and 13 m3 h-1 during high biomass) 

according to the equation T=V/Q = 11 h during low biomass and 31 h during high 

biomass. The water residence time at any location along the transect can then be 

estimated by summing the cumulative residence times of all boxes north of a given 

location, assuming that a parcel of water enters the bed from the north and traverses 

the bed towards its southern edge. Residence times in the center of the bed would, 

therefore, be 2 d during low biomass and 6.5 d during high biomass. These times are 

consistent with our estimates of the amount of time required to draw down DIN 

concentrations based on measured denitrification and assimilation rates.  
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Mechanisms of decreased DIP inside the plant bed 

The processes controlling seasonal changes in DIP concentrations differ from 

those driving changes in DIN. While river outflow is the main source of DIN, 

primarily in the form of NO!!, increasingly greater down-bay DIP concentrations 

throughout the year suggest internal phosphorous cycling as an important DIP source. 

DIP concentrations in estuarine waters are often associated with salinity because the 

reduction of sulfate, which is abundant in seawater, to sulfide alters sediment 

biogeochemistry in ways that enhance the release of PO4
3- bound to Fe (Froelich 

1988, Jordan et al. 2008).  For example, although PO4
3- is released from iron 

oxyhydroxides under anoxic conditions in freshwater sediments, the resulting 

dissolved Fe remains available to precipitate PO4
3- once reoxidized in the overlying 

oxic layer and PO4
3- flux into the water column is, thus, minimal. In seawater, 

however, reduced sulfate (sulfide) tends to precipitate dissolved Fe, thereby removing 

sorption sites that would otherwise be available to PO4
3-, leading to increased fluxes 

of PO4
3- from the sediment. Salinity at the Down-bay site generally increases by ~4 

PSU between June and October, when river discharge is typically lowest and 

seawater, can therefore, mix further up the bay. Release of particle-bound P 

associated with decreased river flow, and associated increasing salinity, and sulfide 

could, therefore be a source of seasonal increases in DIP. Concentrations likely 

remain low inside the SAV bed due to rapid autotroph assimilation and reduced 

exchange with waters outside the bed. The negative relationship between pore water 

DIP and dissolved Fe measured inside the bed (Fig. 4.12) is consistent with the idea 

that interactions with Fe are important in controlling DIP concentrations. 
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Our data also suggest sub-seasonal differences between DIN and DIP 

dynamics. For example, our DIN field measurements are generally consistent with 

routine water quality monitoring data (Figs. 4.2a, 4.4, 4.5a-b). However, our 

measured concentrations from automated water sampler deployments in July 2013 

and transect sampling in June 2014-2015 at the Up-bay site were generally greater 

than 2007-2015 monthly means of monitoring samples collected up-bay from the 

SAV bed (Figs. 4.2b, 4.4, and 4.5c). This implies that DIP dynamics at shorter time 

scales may be more variable than DIN dynamics.  

On the other hand, the factors controlling the spatial distribution of DIP across 

the plant bed appear to be consistent with those controlling DIN concentrations. We 

used autotroph phosphorous assimilation rates (Fig. 4.7b), DIP concentrations 

measured outside the SAV bed (Fig. 4.5c-d), and the advective velocity and 

dispersion coefficients derived through our DIN modeling exercise (Table 4.3) to 

simulate DIP concentrations across the SAV bed during low and high biomass. 

Modeled concentrations were generally consistent with those measured in June 2015 

and August 2014 (Fig. 4.14). Note that we made the DIP assimilation rate a function 

of concentration to maintain positive values for the high biomass simulation because 

boundary concentrations were so low. In addition, although modeled DIN was more 

sensitive to model parameter adjustments for the case with high biomass, modeled 

DIP concentrations were not sensitive to parameter variability due to very low DIP 

concentrations. Generally, however, the fact that the model accurately predicts DIN 

and DIP concentrations using the same set of parameters suggests that physical 
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transport processes coupled with biological and biogeochemical processes are 

important in controlling both DIN and DIP concentrations across the SAV bed.  

Ecological implications 

Seasonally low water column DIN and consistently low DIP inside the SAV 

bed could have implications for the structure and function of the system. The 

generally accepted conceptual model of how shallow aquatic ecosystems respond to 

changes in nutrient concentrations describes a shift from benthic vascular plant 

dominance to microalgae dominance as nutrient loading increases, with increasing 

prevalence of benthic macroalgae as an intermediate step (Valiela et al. 1997, Havens 

et al. 2001, McGlathery et al. 2007). Phytoplankton and macroalgae thrive at higher 

nutrient concentrations because they have high nutrient uptake rates and, when 

abundant, they limit the amount of light available to submersed vascular plants. On 

the other hand, SAV thrive at low concentrations because they can satisfy their 

nutrient demand through root uptake from the porewater. Our data suggest that 

primary producer dynamics on the flats adhere to this model.  

First, algal production inside the SAV bed is likely nutrient-limited during the 

summer. For example, the July Chl a minimum inside the SAV bed corresponds with 

the lowest monthly mean DIN concentration measured at this site (1.9 µmol l-1). This 

concentration is also less than nitrogen half-saturation coefficients (KN) for most 

phytoplankton species found in tidal fresh and oligohaline regions of Chesapeake 

Bay, which range from 1.8-2.1 µmol l-1 (Cerco 2000). DIP is also typically lowest in 

July (0.07 µmol l-1), although this concentration is less than the DIP half-saturation 

concentrations (KP) for only some phytoplankton species (typical KP values range 
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from 0.03-0.1 µmol l-1). July and August are also the only months when the DIN:DIP 

ratio (2:1 and 7:1 in July and August, respectively) is below the Redfield ratio (16:1), 

indicating that DIN limitation may be more important than DIP limitation of 

phytoplankton growth inside the plant bed during the summer. Although Lyngbya is 

persistently present inside the SAV bed, it has the capacity to fix N to satisfy its 

nutrient requirements. More work is needed to investigate the role of Lyngbya in 

primary producer dynamics in this system. Meanwhile, DIN concentrations Up-bay 

and Down-bay from the SAV bed are high (>40 µmol l-1) year-round and DIP 

concentrations, although not exceedingly high (monthly means=0.13-0.94 µmol l-1), 

are nonetheless greater than typical KP values for Chesapeake Bay phytoplankton 

(Cerco 2000). This suggests that phytoplankton production outside the SAV bed is 

not nutrient limited.  

In addition, even with low summer water column nutrient concentrations, 

SAV growth does not generally appear to be nutrient limited. Although the KN and KP 

values for SAV leaf uptake (13.6 and 0.9 µmol l-1, respectively) (Cerco & Moore 

2001) exceed summer water column concentrations at some SAV bed sites, half-

saturation coefficients for root uptake (KN=67.9 and KP=4.5 µmol l-1) are generally 

less than or equal to average summer pore water DIN and DIP concentrations (Fig. 

4.11). One exception is September pore water DIP at the Bed 2 site (Fig. 4.11d). 

However, plant tissue C:P molar ratios (Fig. 4.12) are consistently greater than the 

ratio that is thought to indicate P limitation in aquatic vascular plants (474:1), 

suggesting that production is not P-limited (Duarte 2012). Plant tissue C:N ratios 

appear to follow a seasonally increasing trend, approaching values that indicate N 
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limitation (20:1) in September (Duarte 2012). However, only a few plant tissue 

samples contained a C:N ratio>20, supporting the hypothesis that nutrient availability 

does not generally limit SAV growth because sediment pore water nutrients can 

support plant nutritional requirements. The effect of the bed on internal nutrient 

cycling could, therefore, allow the system to maintain benthic vascular plant 

dominance despite relatively high external nutrient loading rates.  

Concluding comments 

This study demonstrates that the interactive effect of submersed plant beds on 

physical and biological processes is an important mechanism driving feedbacks 

between SAV and nutrient cycling. We found that the physical structure of the SAV 

bed at Susquehanna Flats interacts with flow such that water residence time inside the 

bed increases as plant biomass increases. As a result, there is more time for biological 

and biogeochemical processes, including plant assimilation and denitrification, to 

reduce water column nutrient concentrations. These feedbacks likely control the 

transition between primary producer communities in this shallow aquatic ecosystem. 

More information is needed, however, to be able to quantitatively predict how this 

and similar systems will respond to changes in nutrient loading or climatic conditions. 

For example, a unique aspect of this system is its large size. Other studies have shown 

that SAV bed size plays a role in the extent to which physical processes are modified 

(e.g., Gruber et al. 2011), but how do these processes interact with nutrient cycling as 

a function of bed diameter? Explicitly addressing this and similar spatial problems 

could be an important line of future inquiry. 
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Tables 

Table 4.1 Between-site differences in log-transformed sediment pore water 

ammonium (NH!!) and dissolved inorganic phosphorous (DIP), as indicated by 

analysis of variance (ANOVA). Bold p-values indicate the presence of significant 

differences at the 0.05 level.  

 
  df sum sq mean sq F  p 
Jul NH4 

 
        

site 1 8.86 8.86 31.84 <0.0001 
residuals 42 11.69 0.28 

  Sep NH4 
 

        
site 2 4.25 2.13 7.419 0.002 
residuals 40 11.46 0.29 

  Jul PO4           
site 2 26.30 13.13 0.441 0.646 
residuals 41 1219.60 29.75 

  Sep PO4 
 

        
site 2 10.35 5.17 9.729 <0.0001 
residuals 41 21.80 0.53 

  Jul Fe 
 

        
site 2 8.15 4.08 7.911 0.001 
residuals 42 21.63 0.52 

  Sep Fe 
 

        
site 2 4.96 2.48 3.36 0.044 
residuals 42 30.98 0.74     
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Table 4.2 Within-site differences between July and September log-transformed 

sediment pore water ammonium (NH!!) and dissolved inorganic phosphorous (DIP) 

as indicated by t-tests. Bold p-values indicate the presence of significant differences 

at the 0.05 level 

  t df p 
NH!! Edge -2.42 27.35 0.022 
NH!! Bed 1 -2.28 19.86 0.034 
NH!! Bed 2 -1.35 15.83 0.196 
DIP Edge -0.30 11.88 0.770 
DIP Bed 1 -1.28 17.47 0.218 
DIP Bed 2 2.21 21.53 0.038 
Fe Edge 1.39 25.99 0.178 
Fe Bed 1 2.02 10.07 0.060 
Fe Bed 2 2.91 16.59 0.010 

 
 
  



 

 121 
 

Table 4.3 Parameters used in the reactive transport model. Boundary DIN 

concentrations are from measurements made immediately up-bay and down-bay from 

the SAV bed. A single value for K represents constant tidal dispersion all model 

segment interfaces; a vector of coefficients represents different values for K across 

each segment interface 

 

  
Boundary DIN 
concentration 
(µmol l-1) 

Advective 
velocity (v) 
(m h-1) 

Dispersion 
coefficient (K) 
(m2 h-1) 

Internal losses 
(µmol m-3 h-1) 

June 70, 50 36 2.5 x 105 273 

August 80, 20 13 

100, 50, 10, 10, 
10, 10, 10000, 
15000, 20000, 
25000 

431 
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Figure captions 

Fig 4.1 Study site (a) location and (b) bathymetry (0.5 m contours) and sampling sites 

for (c) the 2013 deployments, (d) the 2014-2015 deployments, and (e) the water 

quality transect. Rectangles along the transect represents the reactive model transect 

grid structure 

 

Fig. 4.2 Monthly mean (a) dissolved inorganic nitrogen (DIN), (b) dissolved 

inorganic phosphorous (DIP), and (c) chlorophyll a (chl a), (averaged across 2007-

2014) at the up-bay (dark gray), down-bay (light gray), and bed 2 (black) monitoring 

sites and (d) SAV biomass (averaged across 2012-2013) at the bed 2 site. Error bars 

represent standard error. Most DIN, DIP, and chl a data are from MDDNR. We 

collected all biomass samples and a subset of nutrient and chl a samples. (e-j) are 

bootstrapped mean differences between concentrations measured at the Bed 2 and Up 

bay sites (e-g) and Bed 2 and Down bay (h-j). Error bars represent 95% confidence 

intervals; solid circles represent differences in which the confidence interval does not 

include zero, and are thus considered “significant” 

 

Fig. 4.3 Mean (a) biomass and (b) ratio of plant length to mean water depth at sites 

where instruments were deployed. Error bars represent standard error; horizontal bars 

indicate between-month differences at the p<0.05 (*), p<0.01 (**), and p<0.001 (***) 

significance levels 
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Fig. 4.4 Time series for dissolved inorganic nitrogen (DIN), dissolved inorganic 

phosphate (DIP), and chlorophyll a (chl a) measured during low SAV biomass (July) 

and high SAV biomass (September) 2013 at the Bed 1 (black circles), Edge (dark 

gray triangles), and Up-bay (light gray squares) sites 

 

Fig. 4.5 (a-b) Dissolved inorganic nitrogen (DIN) and (c-d) dissolved inorganic 

phosphorus (DIP) measured along a transect during low SAV biomass (left panels) 

and high SAV biomass (right panels). Gray shaded area represents the location of the 

SAV bed 

 

Fig. 4.6 (a) August (2014-2015) mean N2-N fluxes measured by incubating sediment 

cores in environmental chambers and collecting a time series of dissolved gas 

samples from the overlying water in each core. (b) Relationship between nitrate + 

nitrite (NOx) concentration in the overlying water and N2-N flux rates. Open and 

filled circles represent fluxes measured under ambient conditions and with amended 

NOx concentrations, respectively 

 

Fig. 4.7 Monthly mean (a) autotroph dissolved inorganic nitrogen (DIN) assimilation 

rates (black line, calculated through conversion of net O2 production to CO2 

assimilation according to literature values for SAV photosynthetic quotients, and then 

to DIN assimilation stoichiometrically according to measured C:N molar ratios), 

denitrification rates (gray dashed line), measured through sediment-water N2-N flux 
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experiments, and autotrophic dissolved inorganic phosphorous (DIP) assimilation, 

calculated using the same method as used for DIN 

 

Fig. 4.8 Time series for river discharge, tidal height adjusted to mean lower low water 

(MLLW), and water velocity measured during low SAV biomass (July, left) and high 

SAV biomass (September, right) 2013 

 

Fig. 4.9 Time series for river discharge, tidal height adjusted to mean lower low water 

(MLLW), and water velocity during low SAV biomass (June 2015, left) and high 

SAV biomass (August 2014, right) 

 

Fig 4.10 East-west velocity components plotted against north-south velocity 

components at the Bed 1 site in July (a) and September (b) 2013 illustrate the 

dominant flow direction 

 

Fig 4.11 Summary of pore water nutrient concentrations in July (a-b) and September 

(c-d) 2013 measured at the Bed 1 (white), Edge (light gray), and Bed 2 (dark gray) 

sites. Horizontal bars indicate between-site differences at the p<0.05 (*), p<0.01 (**), 

and p<0.001 (***) significance levels. Dashed lines indicate the half-saturation 

concentration for root uptake by tidal fresh SAV species in Chesapeake Bay (Cerco & 

Moore 2001) 
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Fig 4.12 Relationship between mean pore water Fe and DIP concentrations measured 

at the Edge, Bed 1 and Bed 3 sites during low and high SAV biomass. Error bars 

represent standard errors 

 

Fig. 4.13 Plant tissue (a) percent nitrogen and (b) phosphorous plotted against carbon 

to nitrogen and carbon to phosphorous ratios for samples collected at all sites and on 

all sample dates (x- and y-axes reflect the range of values reported in the literature for 

comparison) and carbon to (c) nitrogen and (d) phosphorous ratios measured at the 

Bed 2 site across months. The horizontal bar indicates a significant difference at the 

(*) p<0.05 level. Dashed lines indicate C:N and C:P ratios that are generally 

considered to be growth-limiting for submersed macrophytes (Duarte 1990) 

 

Fig. 4.14 Reactive transport model output (lines) and tidally averaged dissolved 

inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) concentrations 

(open circles) measured during low SAV biomsass (June 2015) and high SAV 

biomass (August 2014) and modeled responses when parameters were increased and 

decreased by 25% (gray shaded areas) 
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Figures 

Fig. 4.1 
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Fig. 4.2 
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Fig. 4.3 
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Fig. 4.4 
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Fig. 4.5 
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Fig. 4.6 
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Fig. 4.7 
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Fig. 4.8 
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Fig. 4.9 

 

  

Ve
loc

ity
 

(m
 s−1

)  
 

Ve
loc

ity
 

(m
 s−1

)  
 

Ve
loc

ity
 

(m
 s−1

)  
 

0
10

00
20

00

Di
sc

ha
rg

e 
(m

3  s
−1

)
−0

.3
0

0.
3

−0
.7

0
0.

7
−0

.3
0

0.
3

3 4 51 2 23 4 5 6 7

−1
0

1

Day of deploymentDay of deployment

M
LL

W
 (m

)
River discharge

CBIBS

ADCP (main channel)

ADV (SAV bed “cut”)

Tide at up-bay site

Low SAV biomass (June) High SAV biomass (August)



 

 135 
 

Fig. 4.10 
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Fig. 4.11 
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Fig. 4.12 
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Fig. 4.13 
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Fig. 4.14 
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Chapter 5: Summary and synthesis 
 

 

In the three preceding chapters, I used a combination of existing time series 

datasets, field data collection and experiments, and simple simulation models to 

quantify a suite of variables and processes in and around a large SAV bed in upper 

Chesapeake Bay. Together and in the context of theoretical and empirical literature, 

these synthetic analyses allowed me to draw inferences about the internal and external 

drivers of ecological dynamics in this system.  

Chapter 2 showed that modest but statistically significant reductions in 

nutrient loading, coupled with a series of six consecutive dry years without a major 

flood event likely facilitated the SAV resurgence. Furthermore, seasonal differences 

in several water quality variables measured inside and outside the SAV bed implied 

the presence of strong positive feedback processes. These feedbacks may have played 

a role in the sudden nature of the recovery because they could have reinforced the 

state of the bed before and after the abrupt shift.  

Chapter 3 showed that while scour and poor water clarity associated with 

sediment deposition during the 2011 flood event were mechanisms of plant loss, 

interactions between the bed, water flow, and waves served as mechanisms of 

resilience. Specifically, water was shunted around the bed and into the adjacent 

channel, resulting in lower flow velocities in the bed and higher velocities in the 

channel. Plants located towards the center of the bed were, therefore protected from 
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scour during the flood. In addition, the bed attenuated wind driven waves, leading to 

decreased resuspension of recently deposited sediments inside the bed and, thus, 

improved water clarity during periods of high SAV biomass following the flood. 

Furthermore, clear water from the inner core of the bed “spilled over” into adjacent 

regions in which plants were lost, thereby increasing the amount of light reaching the 

bottom and, thus, creating conditions favorable for regrowth. These positive feedback 

processes were mechanisms of resilience because they helped prevent plant loss and 

will potentially facilitate recovery. 

Chapter 4 showed that interactions between physical and biogeochemical 

processes led to low nutrient concentrations inside the bed relative to outside the bed. 

For instance, as the bed developed and plant biomass accumulated throughout the 

growing season, it increasingly attenuated flow, thereby increasing water residence 

time inside the bed. As a result, there was more time for biological and 

biogeochemical processes, such as plant assimilation and denitrification, to draw 

down water column nutrient concentrations during the summer. Phytoplankton and 

epiphyte growth rates were likely nutrient limited, whereas sediment pore water 

concentrations were sufficient to satisfy SAV nutritional demand through root uptake. 

Interactions among these feedback processes, therefore, created conditions that 

precluded algal growth and reinforced vascular plant dominance in the system.  

One recurring theme across all three chapters is the importance of feedback 

processes in controlling the structure and function of this ecosystem. A great deal of 

research has been undertaken over the past half-century to develop our understanding 

of the mechanisms driving ecological feedbacks and how they affect resilience and 
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ecosystem structure. For example, Holling (1973) and May (1977) drew from 

concepts in physics and engineering to develop the mathematical basis for how 

feedbacks influence resilience and breakpoints in natural systems. Scheffer (1990) 

applied the concepts of thresholds and feedbacks to aquatic ecosystems (i.e., shallow 

lakes) and Carpenter et al. (2001) demonstrated that the effect of internal processes on 

aquatic ecosystem structure can be shown through whole-ecosystem manipulative 

experiments. Many studies have subsequently built on these efforts to investigate, in 

detail, the mechanisms controlling biophysical (e.g., Peterson et al. 2004; Bouma et 

al. 2007; Carr et al. 2010; Luhar and Nepf 2013) and biogeochemical (e.g., Caffrey 

and Kemp 1992; Rysgaard et al. 1996; McGlathery et al. 1998; Eyre et al. 2010) 

feedback processes and how they affect shallow aquatic ecosystems.  

My findings are relevant within this broader context because they demonstrate 

that a comprehensive, interdisciplinary approach involving diverse methods can be 

used to gain an in-depth understanding of the underlying mechanisms driving 

feedbacks in an SAV bed and how these processes influence the structure and 

dynamics of a particular system. In addition, although I show that feedbacks allow for 

SAV bed resilience to storm events and eutrophication, these processes are unable to 

act as a buffer beyond threshold rates of water flow, sediment loading, and/or nutrient 

loading. Furthermore, projected climatological increases in the frequency and 

intensity of extreme weather events call into question the future capacity of these 

systems to absorb and recover from disturbances. Management actions should aim to 

proactively cultivate resilient SAV ecosystems by mitigating stressors that can readily 

be controlled (i.e., anthropogenic nutrient and sediment sources). 
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Appendix I: Hydrodynamic model formulation and R code 
 
 

The following R code, developed by L. Sanford and based on Fagherazzi et al. 

(2003), models flow in an idealized embayment system with geometry based on the 

lower Susquehanna River and the Susquehanna Flats region, assuming constant river 

flow interacting with a standing wave tide. The model is developed for a constant 

width deep channel adjacent to a variable width subtidal flat with and without grass. 

The initial solution considers the inviscid case, so all velocities are equal across any 

given cross-section. A second iteration considers the differing influences of bottom 

friction on flow over the channel and the shoals, assuming a slowly varying steady 

state shallow water balance between pressure gradient and vertical stress gradient. 

The script uses the R package pracma, which should be installed in advance of 

running the script. 

Key parameters are river flow (𝑄𝑟) and the square root of the ratio of the 

channel drag coefficient to the shoal drag coefficient (𝑏), which represents increased 

drag on the shoal due to the presence of an SAV bed. 𝑏 = 1 represents no SAV on the 

shoal. We use 𝑏 = 0.2 to represent a dense SAV bed. The simulated velocities for 

𝑏 = 0.2 are consistent with a limited set of velocity measurements we made on the 

shoal and in the channel (Table A1.1). 

River_flow Observed Modeled Location 
996 0.05 0.05 Shoal 
402 0.04 0.05 Shoal 
610 0.13 0.17 Channel 
Table A1.1 Modeled vs. observed flow velocities 
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These parameters can be changed to simulate different river flows or SAV bed 

densities. The depth of the channel (ℎ1) and shoal (ℎ2) can also be modified. 

rm(list=ls())	
Qr	=	1100		
b	=	1		
h1	=	6		
h2	=	1.5				

The first step is to define model geometry. 𝑤1 represents the initial width of the river 

channel; 𝑤2 and 𝑤3 create the curved shape of the shoal. The total width (𝑤) 

includes the curved shoal and straight channel. At its widest point, total width is 5 km 

on each side, for a total of 10 km. The length (𝑥) begins at the head of tide and ends at 

Turkey Point. 𝐴 represents the cumulative surface area for a given distance along 𝑥 (𝑥 

= 18 km). 

library(pracma)	
x	=	seq(0,	18000,	100)	
w1	=	1000	*	rep(1,	length(x))	
w2	=	0.25	*	(x	-	6000)	
w2[w2	<	0]	=	0	
w3	=	3750	*	(1	-	cos(2	*	pi/12000	*	(x	-	6000)))	
w3[1:60]	=	0	
w	=	w1	+	w2	+	w3	
w2	=	w	-	w1	
A	=	cumtrapz(x,	w)	

Next, we define tidal time-varying parameters in the channel (ℎ1) and the shoal (ℎ2). 

𝑡 (h) is a time vector that covers 1 M2 tidal cycle. 𝑜𝑚𝑡 is the tidal radian frequency 

(h-1) and 𝑎𝑡 is the tidal amplitude (m), 

t=seq(0,12.42,0.1)		
omt=2*pi/12.42		
at=0.35		
h1=h1+at*sin(omt*t)		
h2=h2+at*sin(omt*t)	

Total flow (𝑄) is calculated as a combination of river flow (𝑄𝑟) and tidal flow. 
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Q=matrix(0,length(t),length(x))	
dhdt=rep(0,length(t))	
for	(i	in	1:length(t)){	
				dhdt[i]=at*omt*cos(omt*t[i])/3600	
				for	(j	in	1:length(x)){	
								Q[i,j]=(Qr-A[j]*dhdt[i])	
								}	
				}	

Next, we calculate potential flow velocities, where frictional effects are not 

considered. 

Across=matrix(1,length(t),length(x))	
U=matrix(0,length(t),length(x))	
for	(i	in	1:length(t)){	
				Across[i,]=w1*h1[i]+w2*h2[i]	
		U[i,]=Q[i,]/Across[i,]	
}	

Now, we consider changes induced by the shallow water momentum balance and we 

partition flow and velocity between the channel and shoal. 

U1=matrix(0,nrow(U),ncol(U))			
U2=matrix(0,nrow(U),ncol(U))	
Q1=matrix(0,nrow(Q),ncol(Q))		
Q2=matrix(0,nrow(Q),ncol(Q))		
	
for	(i	in	1:length(t)){	
U1[i,]=Q[i,]/(h1[i]*w1+b*sqrt(h2[i]/h1[i])*h2[i]*w2)	
U2[i,]=b*sqrt(h2[i]/h1[i])*U1[i,]			
Q1[i,]=U1[i,]*w1*h1[i]		
Q2[i,]=U2[i,]*w2*h2[i]		
}	
	
dU1dx=matrix(0,length(t),length(x))			
dV1dy=matrix(0,length(t),length(x))	
V2edge=matrix(0,length(t),length(x))	
for	(i	in	1:length(t)){	
				dU1dx[i,]=gradient(U1[i,],100)	
				dV1dy[i,]=	-1*dhdt[i]/h1[i]-dU1dx[i,]	
				}	
kk=which(w2>=0.1)	
for	(i	in	1:length(t)){	
				V2edge[i,kk]=dV1dy[i,kk]*w1[kk]/2*h1[i]/h2[i]	
}	

Calculate curvature of Flats shoal far boundary. 
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dwdx=gradient(w/2,100)	
V2w=matrix(0,length(t),length(x))	
for	(i	in	1:length(t)){	
V2w[i,]=dwdx*U2[i,]	
}	
	
wgrid=100*c(0:round((max(w)/200),digits=0))	
XY=meshgrid(x,wgrid)	
U=array(0,dim=c(size(XY$X)[1],size(XY$X)[2],length(t)))	
V=array(0,dim=c(size(XY$X)[1],size(XY$X)[2],length(t)))	
for	(i	in	1:length(t)){	
			for	(j	in	1:ncol(XY$X)){	
							k1=which(XY$Y[,j]<=w1[j]/2)	#channel	
							k2=which((XY$Y[,j]>w1[j]/2)&(XY$Y[,j]<=w[j]/2))	#shoal	
							U[k1,j,i]=U1[i,j]	
							V[k1,j,i]=XY$Y[k1,j]*dV1dy[i,j]	
							if	(length(k2)>0){	
											U[k2,j,i]=U2[i,j]	
											V[k2,j,i]=	-interp1(c(w1[j]/2,w[j]/2),c(V2edge[i,j],V2w[i
,j]),XY$Y[k2,j],method="linear")	
							}	
			}	
}	

Use velocity to calculate bottom stress (𝜏!) according to the equation 𝜏! = 1000 ∗

0.0015 ∗ 𝑢! + 𝑣! 

wgrid=100*c(0:round((max(w)/200),digits=0))	
XY=meshgrid(x,wgrid)	
taub=array(0.001,dim=c(size(XY$X)[1],size(XY$X)[2],length(t)))	
for	(i	in	1:length(t)){	
				taub[,,i]=1000*0.0015*(U[,,i]^2+V[,,i]^2)	
				}	

Flip the grid to create the top half of the system for 𝑢, 𝑣 and 𝜏!. 

Uneg=array(0,dim=c((size(XY$X)[1]),size(XY$X)[2],length(t)))	
Vneg=array(0,dim=c((size(XY$X)[1]),size(XY$X)[2],length(t)))	
taubneg=array(0.001,dim=c((size(XY$X)[1]),size(XY$X)[2],length(t)))	
for(i	in	1:length(t)){	
		Uneg[,,i]=flipud(U[,,i])	
		Vneg[,,i]=	-(flipud(V[,,i]))	
		taubneg[,,i]=flipud(taub[,,i])	
}	
	
Uneg=Uneg[-51,,]	
Vneg=Vneg[-51,,]	
taubneg=taubneg[-51,,]	
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Unew=array(0,dim=c((2*size(XY$X)[1]-1),size(XY$X)[2],length(t)))	
Vnew=array(0,dim=c((2*size(XY$X)[1]-1),size(XY$X)[2],length(t)))	
taubnew=array(0.001,dim=c((2*size(XY$X)[1]-1),size(XY$X)[2],length(t
)))	
for(i	in	1:length(t)){	
		Unew[,,i]=rbind(Uneg[,,i],U[,,i])	
		Vnew[,,i]=rbind(Vneg[,,i],V[,,i])	
		taubnew[,,i]=rbind(taubneg[,,i],taub[,,i])	
}	

Calculate mean 𝑢, 𝑣, and 𝜏! over all time steps. 

Umean=apply(Unew,1:2,mean)	
Vmean=apply(Vnew,1:2,mean)	
taubmean=apply(taubnew,1:2,mean)	
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Appendix II: Supplementary tables and figures 
 

Tables 

Table AII.1. Sediment sand and mud fractions and sediment chl a (mean, standard 

deviation, mg m-2) from sediment-water flux experiments.  

Site Date % Sand % Mud Sediment chl a 

1 8/4/14 96 4 9.2, 7.8 
2 8/4/14 92 8 34.6, 37.3 
3 8/5/14 65 35 12.9, 8.4 
4 8/4/14 95 5 18.6, 14.8 
5 8/5/14 95 5 12.9, 9.5 
1 5/29/15 97 3 6.4, 0.8 
2 5/29/15 94 6 9.1, 3.9 
3 5/29/15 90 10 28.7, 13.5 
4 5/29/15 93 7 13.8, 7.7 
5 5/29/15 93 7 2.6, 1.5 
1 8/26/15 96 4 5.1, 1.4 
2 8/26/15 73 27 9.9, 3.0 
3 8/26/15 54 46 17.2, 7.4 
4 8/26/15 93 7 12.3, 1.8 
5 8/26/15 92 8 7.7, 2.9 

 

 

  



 

 150 
 

Figure Captions 

Fig. AII.1 Sediment water flux rates for N2-n, nitrate+nitrite (NOx), ammonium 

(NH4), and oxygen (O2) in the dark (shaded bars) and under illumination (white 

bars). 

 

Fig. AII.2 Time series plots from the 2013 deployments, including the same data as 

that presented in Fig. 8 but additionally including wind velocity and flow data 

collected at the Tripod and Bed 2 sites.  

 

Fig. AII.3 East-west vs. north-south velocity components from July (left) and 

September 2013 (right) for all sites in which flow was measured. 

 

Fig. AII.4 Time series plots from the 2014-2015 deployments, including the same 

data as that presented in Fig. 9 but additionally including wind velocity and flow data 

collected at Sites 2 and 4.  

 

Fig. AII.5 Along-channel current velocities in the channel (gray line) and the “cut” 

inside the SAV bed (black line) in June (left) and August (right). 

 

Fig. AII.6 East-west vs. north-south velocity components from May 2015 (left) and 

Aug 2014 (right) 
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Fig AII.7 Depth profiles of porewater nutrient concentrations in July (a-d) and 

September (e-h) 2013 measured at the SAV bed 1 (light green squares), bed 2 (dark 

green triangles) and edge (blue circles) sites.  
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Figures 

Fig. AII.1 
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Fig. AII.2 
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Fig. AII.3 
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Fig AII.4 
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Fig. A2.5 
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Fig. AII.6 
 

 
 
 
 
 

−0.4 0 0.4

−0
.4

0
0.

4 CBIBS

−0.4 0 0.4

−0
.4

0
0.

4

−0.5 0 0.5

−0
.5

0
0.

5 ADCP (channel)

ADP (site 2)

ADP (site 4)

−0.5 0 0.5

−0
.5

0
0.

5

−0.3 0 0.3

−0
.3

0
0.

3

ADV (SAV bed 
“cut”)

−0.3 0 0.3

−0
.3

0
0.

3

−0.1 0 0.1

−0
.1

0
0.

1

−0.2 0 0.2

−0
.2

0
0.

2
N−

S 
ve

loc
ity

 (m
 s−1

)

E−W velocity (m s−1)

E−W velocity (m s−1)

Low biomass (Jun) High biomass (Aug)



 

 158 
 

Fig. AII.8 
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