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In the design and implementation of digital signal processing (DSP) systems,

dataflow is recognized as a natural model for specifying applications, and dataflow

enables useful model-based methodologies for analysis, synthesis, and optimization

of implementations. A wide range of embedded signal processing applications can be

designed efficiently using the high level abstractions that are provided by dataflow

programming models. In addition to their use in parallelizing computations for

faster execution, dataflow graphs have additional advantages that stem from their

modularity and formal foundation. An important problem in the development of

dataflow-based design tools is the automated synthesis of software from dataflow

representations.

In this thesis, we develop new software synthesis techniques for dataflow based

design and implementation of signal processing systems. An important task in soft-

ware synthesis from dataflow graphs is that of scheduling. Scheduling refers to the

assignment of actors to processing resources and the ordering of actors that share



the same resource. Scheduling typically involves very complex design spaces, and

has a significant impact on most relevant implementation metrics, including latency,

throughput, energy consumption, and memory requirements. In this thesis, we in-

tegrate a model-based representation, called the dataflow schedule graph (DSG),

into the software synthesis process. The DSG approach allows designers to model

a schedule for a dataflow graph as a separate dataflow graph, thereby providing a

formal, abstract (platform- and language-independent) representation for the sched-

ule.

While we demonstrate this DSG-integrated software synthesis capability by

translating DSGs into OpenCL implementations, the use of a model-based schedule

representation makes the approach readily retargetable to other implementation

languages. We also investigate a number of optimization techniques to improve

the efficiency of software that is synthesized from DSGs. Through experimental

evaluation of the generated software, we demonstrate the correctness and efficiency

of our new techniques for dataflow-based software synthesis and optimization.
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Chapter 1: Introduction

In the design and implementation of digital signal processing (DSP) systems,

dataflow is recognized as a natural model for specifying applications, and dataflow

enables useful model-based methodologies for analysis, synthesis, and optimization

of implementations. A wide range of embedded signal processing applications can be

designed efficiently using the high level abstractions that are provided by dataflow

programming models (e.g., see [6]).

In dataflow-based modeling and design of DSP systems, applications are rep-

resented as directed graphs in which vertices correspond to signal processing hard-

ware/software modules, such as digital filters and fast Fourier transforms (FFTs),

and each edge represents the flow of data from the output of one vertex to the in-

put of another. Vertices in DSP-oriented dataflow graphs are referred to as actors.

Edges in dataflow graphs can be viewed as first in, first out (FIFO) channels that

buffer data as it passes between pairs of communicating actors. Dataflow represen-

tations are useful in exposing parallelism in programs, which has motivated their

extensive study in the context of parallel computation (e.g., see [13]).

In addition to the directed graph structure of dataflow representations, another

distinctive feature in dataflow is that actor execution is decomposed naturally into
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discrete units of execution, which are called firings of the associated actor [20]. Each

firing of an actor A consumes a well defined amount of data values (referred to as

tokens) from its input ports and produces a well defined number of tokens on its

output ports. These numbers of tokens produced and consumed are referred to as

the production and consumption rates that are associated with the given firings and

actor ports. Information about production and consumption rates is often of great

relevance in deriving efficient implementations from dataflow graphs [6].

In addition to their use in parallelizing computations for faster execution,

dataflow graphs have additional advantages that stem from their modularity and

formal foundation. For example, dataflow models can be applied to optimize mem-

ory requirements, enhance portability, and improve energy efficiency [6].

Figure 1.1 shows a simple example of a dataflow graph. This graph consists

of five actors, numbered 1, 2, . . . , 5, and six FIFO channels that are modeled by the

six edges in the graph. For example, the edge directed from Actor 5 to Actor 1

indicates that data produced as output by Actor 5 is consumed as input by Actor

1.

An important problem in the development of dataflow-based design tools is

the automated synthesis of software from dataflow representations. Various soft-

ware synthesis environments for dataflow environments have been presented in the

literature (e.g., see [23, 24, 29, 30, 32]), and dataflow-based software synthesis con-

tinues to be an active area of research in the embedded systems, electronic design

automation, and signal processing communities. In this thesis, we develop new soft-

ware synthesis techniques for dataflow based design and implementation of signal
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Figure 1.1: A simple example of a dataflow graph.

processing systems.

An important task in software synthesis from dataflow graphs is that of schedul-

ing. Scheduling refers to the assignment of actors to processing resources and the

ordering of actors that share the same resource. Scheduling typically involves very

complex design spaces, and has significant impact on most relevant implementation

metrics, including latency, throughput, energy consumption, and memory require-

ments. Our work in this thesis builds on a model-based representation, called the

dataflow schedule graph (DSG), which has been introduced in prior work to model

schedules for dataflow graphs [31]. The DSG approach allows designers to model a

schedule for a dataflow graph as a separate dataflow graph, thereby providing a for-

mal, abstract (platform- and language-independent) representation for the schedule.

A distinguishing aspect of our approach to software synthesis, compared to
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most related software synthesis techniques, is that we leave the design of the schedule

up to the designer rather than generating the schedule automatically as part of the

synthesis process. The schedule design is modeled by the designer using the DSG

model described above.

Requiring the designer to specify the schedule has the disadvantage of requiring

more effort by the designer, but offers the advantage of providing more flexibility

to designers who wish to have more control over the implementation process or

who wish to target architectures or design constraints that are not well supported

by available, fully-automated software synthesis processes. Thus, while at first the

concept of a designer-specified schedule may seem to be purely a limitation, it in

general actually represents a trade-off. This thesis represents an effort to investigate

the side of this trade-off that favors giving more control and flexibility to designers.

More specifically, in this thesis we develop methods to synthesize embedded

software for implementing schedules from abstract DSG representations of the sched-

ules. While we demonstrate this software synthesis capability by translating DSGs

into OpenCL implementations, the use of a model-based schedule representation

makes the approach readily retargetable to other implementation languages. We also

investigate a number of optimization techniques to improve the efficiency of software

synthesized from DSGs. We experiment with our proposed new software synthesis

techniques by implementing them in the dataflow interchange format (DIF) envi-

ronment, which is a software tool that enables experimentation with new kinds of

dataflow-based techniques for modeling, analysis, and optimization [12]. We demon-

strate the correctness and efficiency of our software synthesis techniques through
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experimental evaluation of the generated software from a number of application

examples, including an example of a jitter measurement application for wireless

communications.

Figure 1.2 illustrates a specific design flow to which our proposed new software

techniques can be applied. In this approach, the user specifies a dataflow model of

an application (application graph) and DSG model of a schedule for the application

graph. These two graphs are specified using the DIF Language, which is a language

for specifying abstract signal processing dataflow graphs. An implementation of

the DIF Language is included as part of the DIF environment described above.

Our software synthesis tool receives the application graph and DSG as input, and

generates a software implementation of the DSG together with the application in the

target language (OpenCL in our case). The software synthesis process assumes that

implementations of the application graph actors in the target language are available.

These actor implementations are instantiated in the generated code. Configuration

of and communication between these actors is fully coordinated in the generated

code along with execution of the designer-specified schedule.

A DSG can be a sequential DSG or a concurrent DSG [31]. A concurrent DSG

is composed of multiple sequential DSGs, where communication between different

sequential DSGs is carried through special DSG actors that are devoted to inter-

processor or inter-thread communication. In this thesis, we are concerned primarily

with sequential DSGs, and henceforth, when we write “DSG”, we implicitly mean

“sequential DSG”, unless otherwise stated. We envision that the methods and tools

developed in this thesis will be useful in the context of concurrent DSGs — for
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Figure 1.2: An illustration of a design flow to which our proposed new
software synthesis techniques can be applied.
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example, to synthesize and optimize code that implements the individual sequential

DSGs that make up a concurrent DSG. Extension of the developments in this thesis

to support concurrent DSGs is a useful topic for future work.

7



Chapter 2: Background

In this section, we cover background on dataflow modeling and software syn-

thesis that is relevant for this thesis.

2.1 Synchronous Dataflow

As we discussed in Chapter 1, the dataflow graphs that we are concerned with

in this thesis consist of vertices, called actors, which represent discrete computations,

and edges, which correspond to FIFO communication channels between actors.

Synchronous dataflow (SDF) is a special case of dataflow where the production

and consumption rates of the actors are specified and known in advance. Fig. 2.1

shows an example of an SDF graph. The numbers above the edges represent the

numbers of tokens that will be consumed from and produced onto each edge when

its sink and source actors fire, respectively. For example, Actor 4 in Fig. 2.1 cannot

fire until 4 tokens are available on each of the input edges e1 , e2 and e3 .

A properly-constructed SDF graph can be run indefinitely (e.g., by encapsu-

lating software for the graph within an infinite loop). Moreover, such indefinite or

unbounded execution can be performed with finite memory requirements that can

be predicted at compile time [19]. This capability for indefinite execution under
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Figure 2.1: An example of a synchronous dataflow graph.

bounded memory is of great utility in embedded signal processing.

2.2 Core Functional Dataflow

From the previous section, we discussed how specifying the production and

consumption rates a priori, as in the SDF model, can be advantageous. However,

some applications involve dynamics in the rates at which data is produced and

consumed from actors. SDF is not adequate for working with these dynamic dataflow

applications. Various forms of dynamic dataflow have been introduced to address

this limitation (e.g., see [6]). These dynamic dataflow models of computation provide

more generality compared to SDF in expressing application behavior.

Core functional dataflow (CFDF) is a specific dynamic dataflow model of

computation that we apply in this thesis[25]. In CFDF, each actor has an associated

set of modes. An actor can have any positive integer number of modes. Each mode
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is associated with constant production and consumption rates (“dataflow rates”) on

the actor ports. However, the production and consumption rates can vary across

different modes, and the mode of an actor can change from one firing to the next.

Each CFDF actor has a current mode, which can be viewed as part of its

internal state. When a CFDF actor is fired, it executes based on its current mode,

and produces and consumes data to/from its ports based on the constant dataflow

rates associated with this mode. As part of each firing, a CFDF actor also determines

its next mode, which in turn determines how much input data and output buffer

space (on the actor output edges) must be available to launch the next firing of the

actor. When the actor is fired again, this next mode becomes the actor’s current

mode, and its production and consumption rates are governed by that mode.

2.3 Dataflow Schedule Graphs

As motivated in Chapter 1, dataflow models are used extensively in the design

and implementation of DSP applications, and scheduling is an important aspect

in the process of mapping dataflow models into efficient implementations. Some

scheduling techniques are oriented toward simplicity of scheduler implementation or

fast generation of schedules, and do not incorporate optimization of the constructed

schedules. Other schedulers, which we refer to as optimizing schedulers, are designed

to optimize relevant metrics in the targeted software implementations. These metrics

include latency, throughput, code size, buffer memory requirements, and energy

consumption.
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A wide variety of scheduling techniques has been developed, with most of these

being optimizing scheduler techniques. Many kinds of optimizing schedulers exist,

and these target different subsets of metrics (e.g., scheduling for throughput maxi-

mization or for joint minimization of code size and buffer memory requirements).

A great deal of heterogeneity in dataflow-based design flows is brought about

by this large and growing variety of scheduling techniques, along with the diversity

in their targeted metrics, and the diversity in the hardware platforms on which

the derived schedules are to be executed. To help manage this heterogeneity, the

concept of a model-based representation for dataflow schedules is useful. This concept

has been investigated in recent prior work, such as that by Wu et al. [31], and

more recently, by Zebelein [33]. While conventional use of dataflow graphs in DSP

system modeling is for the modeling of application behavior, model-based scheduling

representations provide for abstract modeling of schedules.

In this thesis, we apply a specific form of model-based schedule representation

called the dataflow schedule graph (DSG) [31]. DSGs are used to model schedules

for CFDF-based application representations. Like CFDF graphs, DSGs are based

on dataflow semantics. When a DSG Gs is used to model the schedule for a CFDF-

based application representation Ga, we distinguish the two graphs by referring to

Ga as the application graph that is associated with the schedule graph (DSG) Gs.

DSGs apply to the highly expressive CFDF model of computation. Thus, they

are significantly more flexible compared to prior model-based, dataflow schedule

representations, such as the synchronization graph representation [4], which were

restricted to SDF- or cyclo-static dataflow (CSDF) [7] application graphs.
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DSGs are constructed using two different types of actors, which are referred

to as reference actors (RAs) and schedule control actors (SCAs). Each RA r is

associated with a specific application graph actor, which is denoted by ref (r) and

referred to as the referenced actor of r. The RA r can be viewed intuitively as a

wrapper around the guarded firing of ref (r) in its enclosing application graph. Here,

by a guarded firing of an application graph actor, we mean the execution of the actor

if it is enabled. If the actor is not enabled, then a guarded firing is effectively like a

no-operation.

An RA has two associated sub-functions, called the pre and post functions

of the RA, that provide placeholders for optional preprocessing and postprocessing

that can be performed prior to and after, respectively, the guarded firing of ref (r)

that is associated with each firing of r.

Intuitively, SCAs are used to perform actions to control the order in which

subsets of RAs are fired. SCAs provide an extensible set of constructs to control the

flow of RA firings, together with the guarded firings of their encapsulated referenced

actors. An example of an SCA is the “loop” SCA, which is illustrated in Fig. 2.2.

The loop SCA can be used to execute individual RAs or chains of connected RAs

repeatedly until some pre-specified or data-dependent termination condition is met.

A pair of related SCAs that provide different control functionality is the “if” SCA

together with the “fi” SCA (sse Fig. 2.3). These SCAs can be used to conditionally

execute portions of a DSG. Another pair of related SCAs is the “snd” SCA and

“rec” SCA, which are used for interprocessor communication and synchronization

when multiple DSGs are executed concurrently.
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Figure 2.2: An illustration of the loop SCA.

Figure 2.3: An illustration of if and fi SCAs.
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An important property of DSGs is the property that given a DSG G, at most

one token can be present in the entire DSG at any given time during execution.

This property is ensured by their construction — that is, by specific rules that RAs,

SCAs, and their connections must conform to. In other words, at any given time

during execution of a DSG, either (a) there are no tokens on any of the FIFOs in the

graph or (b) there is exactly one nonempty FIFO, and this FIFO contains exactly

one token. In general, case (a) may occur during the firing of a DSG actor — that

is, after its input has been consumed and before any corresponding output has been

produced.

For more details on DSG concepts, including RAs and different types of SCAs,

we refer the reader to [31].
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Chapter 3: Related Work

Various prior research efforts are related to the problem of modeling of dataflow

schedules. For example, Lee an Ha presented four classes of alternative scheduling

strategies for real-time DSP systems [18]. These classes include, in decreasing order

of flexibility, fully dynamic, static assignment, self-timed, and fully static scheduling.

Ko et al. proposed a representation called the generalized schedule tree (GST) to

represent a class of schedules called looped schedules [17]. The synchronization graph

is a schedule representation for modeling self-timed, multiprocessor schedules for

homogeneous synchronous dataflow graphs [4]. The model facilitates optimization

of interprocessor communication and synchronization for this class of schedules.

As discussed in Chapter 1, our work in this thesis builds on the dataflow

schedule graph (DSG) representation introduced in [31]. The DSG went beyond

previously-developed schedule models in its handling of dynamic scheduling and

dynamic dataflow application behavior within a unified, dataflow-based schedule

representation. DSGs are capable of representing a large class of static, dynamic,

and quasi-static schedules. DSGs are capable of representing both single and mul-

tiprocessor schedules. This thesis introduces novel software synthesis capabilities

that help to automate the use of DSGs within design flows for model-based signal
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processing.

Zebelin et al. present a unified model in which dataflow graphs and their sched-

ules are represented together within the same model-based representation [33]. In

this model, control flow associated with schedules is represented through composite

actors that control execution of their encapsulated subsystems. This unified, hi-

erarchical modeling approach is significantly different from the distinct application

graph and schedule graph models that are used in the DSG model. This separation

is useful to promote orthogonality in the design process. In particular, the DSG

approach allows schedules and application graphs and their associated hierarchies

to be designed, represented, and manipulated with strong separation of concerns.

For general background on the utility of orthogonalization in system-level design,

we refer the reader to [15]. Orthogonalization is an important consideration in the

design of the DSPCAD Framework [21], which is a software tool that we have used

to prototype the software synthesis techniques introduced in this thesis.

For prototyping of and experimentation with DSG actor implementations, we

use the lightweight dataflow environment (LIDE), which is a component within the

DSPCAD Framework [21, 27]. We present new extensions to LIDE that are useful in

providing efficient support for RAs and SCAs. As described in Section 2.3, RAs and

SCAs are the two main types of actors in DSGs. We apply the dataflow interchange

format (DIF) package, which is another component of the DSPCAD Framework,

to develop data structures and analysis techniques for working with DSGs, and to

implement software synthesis techniques for mapping DSGs into embedded software

realizations [12]. We also extend the DIF Language with features for programming
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DSG-based schedules.

As part of our software synthesis framework for DSGs, we develop a clustering

approach for optimizing the efficiency of the generated code. Here, by clustering

a dataflow graph, we mean the grouping together of a subset of nodes into a “su-

per node” that is treated as a single unit for some kind of subsequent analysis or

optimization. A dataflow algorithm that applies clustering typically applies the

process repeatedly to construct a series of super nodes. Clustering is a general and

widely used technique in dataflow tools. Examples of other kinds of dataflow-based

clustering techniques can be found in [3, 8, 9, 16].
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Chapter 4: DIF-OCL

GPU-based heterogeneous computing platforms are used widely in embedded

signal processing systems. Substantial performance boosts can be achieved from

these platforms through their support for data- and task-level parallelism. In this

chapter, we introduce DIF-OCL, which is a software tool for automated deriva-

tion of OpenCL implementations targeted to heterogeneous CPU-GPU platforms.

DIF-GPU takes as input model-based specifications of signal processing dataflow

graphs and schedules, and translates these into OpenCL implementations that can

be deployed on heterogeneous platforms.

The proposed new design flow using DIF-OCL applies the LIDE-OCL environ-

ment, which integrates LIDE with OpenCL programming, and the DIF Language

and DIF Package, which were introduced in [12].

LIDE, the LIghtweight Dataflow Environment, is a flexible, lightweight design

environment that allows designers to experiment with dataflow-based approaches for

design and implementation of DSP systems[21, 27]. LIDE-OCL is a plug-in of LIDE

for the OpenCL language. LIDE-OCL provides application programming interfaces

(APIs) and libraries for construction and interconnection of dataflow actors using

the OpenCL language.

18



DIF-OCL provides techniques for model-based programming and software syn-

thesis that are complementary to LIDE-OCL. In particular, DIF-OCL automates the

derivation of OpenCL implementations from dataflow graphs that are constructed

using LIDE-OCL actors.

A proposed DIF-OCL-based workflow for dataflow-based development of CPU-

GPU implementations is illustrated in Fig. 4.1. The DIF-OCL framework takes

as input an application graph specified in the DIF Language. Each actor in the

application graph is an instantiation of an actor from a library of pre-defined LIDE-

OCL actors. These actors can in general be a mix of actors that are taken from

the built-in actors within LIDE-OCL, and user-defined LIDE-OCL actors that are

constructed using the APIs and utilities provided in LIDE-OCL.

DIF-OCL also takes as input a specification of a schedule for the given appli-

cation graph. This schedule is specified using the DIF Language in terms of DSG

semantics. The DIF parser is used to construct intermediate representations, based

on data structures within the DIF Package, for the specified application graph and

schedule graph. These representations are jointly processed in DIF-OCL to produce

as output an OpenCL implementation of the given application graph together with

the given schedule. Run-time support for executing the generated schedule effi-

ciently in terms of DSG semantics is also generated as part of the software synthesis

process. The generated OpenCL code can be compiled onto specific target platforms

using the platform-based compilers associated with those platforms, as illustrated

in Fig. 4.1.

An example of the DIF Language representation for a DSG is shown in Fig. 4.2
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Figure 4.1: Workflow based on DIF-OCL.
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Figure 4.2: An illustration of DIF Language code for a DSG: graph
topology definition.

and Fig. 4.3. This example illustrates the first-version syntax for specifying various

useful DSG-related features in the DIF Language. As this thesis represents a pre-

liminary version of DSG software synthesis and the DIF-OCL tool, this syntax is

currently evolving and being refined.

As mentioned above, certain DSG-specific details must be included in DIF

Language specifications of DSGs. These details include the referenced actor asso-

ciated with each RA; iteration counts associated with loop-related SCAs; and the

names of the pre and post functions that are associated with the RAs. Note that

the DIF Language specification of an RA does not necessarily need to have a pre

function or post function. Specification of these functions is therefore optional in

the DIF file for an RA. In the absence of a pre or post specification in the DIF file, it

is assumed that the associated RA does not have such a function associated with it

or equivalently, that the function exists, but simply does nothing (a “no-operation”

function).
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Figure 4.3: An illustration of DIF Language code for a DSG: actor definitions.
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4.1 Internal Representations for Dataflow Constructs in DIF-OCL

As described previously, application graphs and schedule graphs specified using

the DIF Language are converted into internal representations within the DIF-OCL

tool. These intermediate representations are utilized for synthesis and optimization

of the generated software. Principal aspects of the information stored within these

intermediate representations include:

• Graphical connectivity between actors and edges in the application graph and

schedule graph.

• Relevant details about actors in both graphs.

• Relevant details about edges in both graphs.

For example, application graph actors within the DIF-based intermediate rep-

resentation include the following fields:

• Instance name: the name of each specific actor instance.

• Type name: the actor type from which the instance is derived.

• GPU-enabled: a Boolean indicator about whether or not an actor can be

executed on a GPU within the target platform.

• Details about input and output ports.

Examples of fields for schedule graph actors include:

23



• Instance name.

• Type name (e.g., to identify what kind of SCA each SCA instance is associated

with).

• Referenced actor (for RAs).

• Details about input and output ports.

We presently use the same internal edge representation in DIF to represent

LIDE edges that are contained in both application graphs and schedule graphs. Most

fields associated with edges are similar between the two types of graphs. One major

difference is that DSG edges have unit buffer size, while application graph edges

can have any positive integer size. However, this difference is reflected primarily in

the generated LIDE-OCL code, and does not play a major role in the intermediate

representation management and analysis that is presently done within DIF-OCL.

4.2 DIF-OCL Scheduler Optimizations

To help schedule actors in DSG graphs efficiently, we incorporate a number

of optimizations within DIF-OCL. Here, we provide a brief introduction to these

optimizations as they relate to the architecture of DIF-OCL. We discuss the opti-

mizations themselves in more detail in Chapter 6.

Specifically, we have developed two scheduler optimizations in DIF-OCL, which

we refer to as RA region clustering and loop SCA bypass. Intuitively, RA region clus-

tering exploits deterministic control flow within connected regions (or chains) of RAs
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to eliminate certain forms of run-time scheduling overhead when such regions are

executed. The loop SCA bypass optimization is used to streamline the scheduling

of selected constructs for iterative scheduling in DSGs. Both of these operations

operate on a common data structure, which we refer to as a collection of clusters,

within the DIF-OCL tool. This data structure is related to the concept of clustering,

which was briefly introduced in Chapter 3.

Fig. 4.4 provides an illustration of the collection of clusters data structure

within DIF-OCL. The clusters managed by these data structures are all in the

form of directed chains of RAs. By a directed chain in this context, we mean

a directed graph consisting of a sequence of actors (x1, x2, . . . , xN), where x1 has

no input edges within the cluster; xN has no output edges within the cluster; for

i = 1, 2, . . . , (N−1), the cluster contains the edges (xi, xi+1); and the cluster contains

no other edges apart from these (N − 1) edges between successive elements of the

actor sequence.

In this data structure, each cluster is stored as an array and the collection of

all of the managed clusters is stored as an array list. Each element of the array list

stores a distinct cluster. The data structure is implemented as an extension to the

DIF Package.

4.3 Code Generation

In the previous sections of this chapter, we discussed how application graphs

and schedule graphs are specified by the DIF-OCL user, and then how they are
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Figure 4.4: An illustration of the collection of clusters data structure in DIF-OCL.

represented internally inside the DIF-OCL framework. We also provided an overview

of data structures that are applied in a number of scheduler optimizations. The

internal representations of the application and schedule graphs within DIF-OCL are

also useful in synthesizing software for the targeted implementation. In DIF-OCL,

the synthesized software is in the form of an OpenCL program that integrates the

application graph functionality together with the given schedule graph formulation

for how execution of the application graph is to be coordinated.

The DIF-OCL framework generates well-structured, human readable code in

LIDE-OCL format. DIF-OCL divides the generated code into different modules for

the application and schedule graphs, which enhances the modularity of the derived

implementation. For example, a common application graph implementation can be

integrated efficiently with different schedule implementations to experiment with
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alternative schedules for the application.

The OCL package synthesized by DIF-OCL includes two .c files — one for

the application graph and the other for the schedule graph. A third .c file that

contains scheduling functionality is also synthesized. Three header files (.h files)

are also synthesized in correspondence with the synthesized application graph, DSG,

and scheduler implementations. The synthesized application graph and DSG are

constructed as abstract data types (ADTs). These ADTs include methods used for

construction and termination of the graphs.

DIF-OCL also provides a Bash script called dloclconfig to aid in configuring

the compilation of the generated code. This script is not synthesized by DIF-OCL;

instead, it is provided as a standard template that the user can configure (through

appropriate adjustment of right-hand-side parts in assignment statements). The

dloclconfig file is structured based on cross-platform project organization con-

ventions that are used in the DSPCAD Integrative Command Line Environment

(DICE) [5], which is a software package that facilitates design and implementation

of embedded signal processing systems. If one prefers to employ a different process

to compile the synthesized OpenCL software (instead of a process that uses DICE

with the generated dloclconfig file), such a user-defined process can be incorpo-

rated to build the generated package — there is no dependency in the synthesized

software on any particular build process.

In the generated scheduler code (the third synthesized software file described

above), DIF-OCL includes the code for alternative schedulers — that is, alternative

methods for interpreting the synthesized DSG implementation. Presently, the set
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Figure 4.5: An illustration of the different components of synthesized
code that are generated from DIF-OCL.

of generated schedulers includes those that are based on inclusion or exclusion of

the clustering and loop bypass optimizations introduced in Section 4.2. The set of

generated schedulers can easily be extended as more scheduler techniques are incor-

porated into DIF-OCL. The generation of code for alternative scheduler techniques

facilitates experimentation with the techniques to help understand their trade-offs,

and to select the most suitable one for a given application.

Fig. 4.5 provides an illustration of the different components of synthesized

code that are generated from DIF-OCL.
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Chapter 5: DSG Implementation in LIDE-OCL

In this section, we discuss the software implementation of various DSG con-

structs in LIDE-OCL. Recall from Chapter 4 that LIDE-OCL provides applica-

tion programming interfaces (APIs) and libraries for implementing and integrating

dataflow actors and edges using the OpenCL language, and DIF-OCL synthesizes

software that utilizes the APIs and libraries provided by LIDE-OCL. Additionally,

individual actors that are utilized in a DIF-OCL application graph are assumed

to have corresponding LIDE-OCL implementations for their respective bodies of

internal functionality.

A DSG (schedule graph) is specified as input to DIF-OCL using the DIF Lan-

guage (i.e., as a .dif file). This DIF Language input is processed by the DIF parser

and converted into an internal representation within DIF-OCL. During software

synthesis, this intermediate representation is in turn converted into OpenCL code

that implements the DSG based on an abstract data type (ADT) called the DSG

ADT in LIDE-OCL. In the next section, we provide further discussion about the

DSG ADT.
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5.1 DSG ADT in LIDE-OCL

The lightweight dataflow (LWDF) DSG abstract data type (ADT) is a set

of LWDF APIs that allows us to construct, terminate, and perform various oper-

ations using a DSG. For brevity, we refer to this ADT as simply the DSG ADT.

The LWDF-based design of these APIs facilitates their retargetability across dif-

ferent implementation languages, and its integration with the LIDE package. For

background on LWDF and LIDE, we refer the reader to [27, 28].

DIF-OCL currently provides an OpenCL-based implementation of the DSG

ADT. This OpenCL-based implementation is compatible for use with LIDE-OCL.

In the remainder of this thesis, when we discuss the DSG ADT, we refer specifically

to our OpenCL-based implementation of the ADT, unless otherwise specified.

An instance of the DSG ADT represents a specific schedule model, and is

implemented in a header (.h) file and C (.c) file. The header file contains defini-

tions of unique integer constants for the graph elements (actors and edges). These

constants can be used to index into tables associated with graph elements in the

ADT. Such indexing allows a program to access specific graph elements. In other

words, each actor (edge) is associated with a unique index that determines its place

in a common table or array of actors (edges) that is included in a given DSG ADT

instance.

The method for constructing a DSG comprises of four main parts:

• Variable initializations.
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• Edge and actor definitions.

• Construction of a lookup table for determining the type of each actor.

• Construction of lookup tables for determining the source actor and sink actor

associated with each edge.

As described in Chapter 2, there are two types of actors in the DSG model —

reference actors (RAs) and schedule control actors (SCAs). In our implementations

of RAs and SCAs in LIDE, we incorporate a number of additional features, which are

not fundamental to the DSG model, but facilitate the construction and manipulation

of efficient DSG implementations. For example, we incorporate an account of the

last FIFO that is referenced by a DSG actor, which is useful in tracking the flow of

control between actors as a DSG executes.

In Section 5.2 and Section 5.3 we discuss the implementation of RAs and SCAs

in LIDE-OCL.

5.2 RA Implementation

As discussed in Section 2.3, RAs can be viewed as wrappers for firing specific

application graph actors. In general, firing of an RA A in a DSG G corresponds to

a guarded firing of the referenced actor ref (A) in the associated application graph.

More specifically, the following steps are involved in the execution of an RA.

• Preprocessing: As described in Section 2.3, the preprocessing stage of an RA

firing is carried out by the optional pre function that may be associated with
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the RA. If the pre function is not defined for an RA then its pre processing

stage is skipped. A pre function, when it is defined, is provided as a function

pointer argument to the function that initializes an RA.

• Referenced actor invocation: When an RA is initialized, it is associated with

a unique application graph actor as the referenced actor of the RA. A guarded

invocation of the referenced actor is carried out in this core step of the RA

execution process. The guard in this context corresponds to the result of the

lightweight dataflow enable function for the associated actor (e.g., see [28]).

Evaluation of the guard can be bypassed if it is known by some form of static

or dynamic analysis that it will always be true. For example, when executing

DSG-based schedule models of static schedules for synchronous dataflow (SDF)

graphs, it is possible to bypass guard checking in RAs if appropriate methods

are used in the construction of the underlying schedules.

• Post processing: In a manner similar to the preprocessing stage, the post-

processing stage of an RA firing is carried out by the optional post function

that may be associated with the RA. The postprocessing stage is skipped if

no post function is associated with the RA. As with the pre function, when a

post function is defined, it is provided as a function pointer argument in the

initialization of the corresponding RA. One possible use of a post function is

in the derivation of a value that is to be encapsulated in the DSG token that

is produced on the output of the RA. If no such value is provided by the post

function, then the DSG token that is produced can be viewed as having a null
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value associated with it. In this case, the token helps to direct the flow of

control through the DSG even though its value is not relevant.

5.3 SCA Actor Implementation

Schedule control actors (SCAs) in DSGs provide a general mechanism to direct

the flow of DSG tokens in DSGs [31]. Since DSG tokens serve to enable actors that

receive these tokens at their inputs, the direction of such tokens can be viewed as

influencing the order in which actors within a DSG are executed. Currently, four

specific SCA types are provided in DIF-OCL. This library of SCAs can be extended

in future work to include other SCAs that are based on the general “SCA design

rules” defined in [31].

The four types of SCAs that are currently available in DIF-OCL are summa-

rized as follows.

• Loop SCAs. There are two types of loop SCAs in DIF-OCL — static and

dynamic loop SCAs. Loop SCAs are used to direct DSG tokens through a

specific output port for some number of successive iterations before the next

DSG token output by the actor is directed through a second output port.

Tokens on the first output port can be viewed as enabling the body of a loop,

while the second output port can be viewed as being associated with the part

of the DSG that follows the loop. For further details on this type of SCA, we

refer the reader to [31].

A static loop SCA is provided an iteration count as a static (compile time)

33



parameter. On the other hand, a dynamic loop SCA receives iteration counts

from DSG tokens that it consumes on one of its input ports. Thus, the iteration

counts of dynamic loop SCAs can vary at run-time, based on manipulations

to the values of the DSG tokens that are provided to them.

• Conditional SCAs. There are two types of conditional SCAs in DIF-OCL —

the IF SCA and the FI SCA. Intuitively, an IF SCA is used to route its output

DSG token to one of two output ports, thereby enabling one of two different

DSG actors for subsequent execution in the schedule graph. Conversely, the FI

SCA consumes an input DSG token from one of two input ports, and produces

output on a single output port. Thus, a common next actor in the DSG will

be enabled regardless of which input the input DSG token came from. For

further details on the semantics of the IF and FI SCAs, we again refer the

reader to [31].

5.4 DSG Edges in LIDE-OCL

Recall from Chapter 1 that we are focused in this thesis on sequential DSGs,

and when we write “DSG” in this thesis we are implicitly referring to a sequential

DSG. An important property of sequential DSGs is that they contain at most one

token at any given time. We refer to this as the global token population property

of sequential DSGs. That is, given a sequential DSG G, the sum of the number of

tokens across all of the FIFOs in G is at most equal to unity at any point during

execution of G. The sum will be zero during times when the currently executing
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DSG actor has consumed a DSG input token but has not yet produced a token

during the same firing.

The DSG edges in LIDE-OCL are optimized to exploit the global token pop-

ulation property. In particular, each DSG edge in LIDE-OCL is implemented as a

FIFO with unit size. Furthermore, we apply a streamlined FIFO ADT implemen-

tation from LIDE that is designed specifically for the case where the buffer size is

1.

We envision that further optimization is possible to provide a single FIFO

that is shared across all of the edges in a DSG (rather than having separate unit-

size FIFOs for each edge). Such further optimization is a useful direction for future

work.

5.5 Execution of DSG graphs

As discussed previously, DIF-OCL provides capabilities to synthesize an OpenCL

implementation of a DSG that is specified in the DIF Language. We refer to this

synthesized OpenCL implementation as the “synthesized implementation” of the

associated DSG specification. The synthesized implementation of a DSG is encap-

sulated within an instance of the LIDE-OCL DSG ADT, as described in Section 5.1.

To execute its associated DSG, a DSG scheduler can be applied to a DSG

ADT instance. By a DSG scheduler, we mean a software module that takes as

input a DSG, and executes the actors in a manner that preserves DSG semantics —

e.g., by firing DSG actors only when they become enabled by the presence of DSG
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tokens at their inputs. Since a DSG always has at most one DSG token during its

execution, there is always a unique actor that is to be fired next, once the current

firing completes. A DSG scheduler provides a mechanism to carry out this and

other aspects of DSG semantics. When the “DSG” qualification is understood from

context, we may sometimes write “scheduler” in place of “DSG scheduler”.

The optimization of DSG schedulers is itself an interesting topic. We present

a small set of optimized scheduler designs as a starting point in investigating this

topic. These optimized schedulers are presented in Chapter 6. We envision that

further exploration of optimized DSG scheduler design is an interesting topic for

future work.

Since DSGs are themselves dataflow graphs, they can be executed by any

dataflow scheduler that supports the variant of core functional dataflow (CFDF)

semantics that DSGs adhere to. Thus, a scheduler can be used as a DSG scheduler

even if it is not specialized to the semantics of DSGs. For details on the relationship

between DSGs and CFDF semantics, we refer the reader to [31], and for details on

the CFDF model of computation, we refer the reader to [25].

A general scheduler that we apply in our experiments, in addition to the op-

timized DSG-specialized schedulers described above, is an adaptation of the simple

scheduler that is provided in LIDE [27]. The simple scheduler in LIDE applies a form

of scheduling called canonical scheduling of CFDF graphs [26]. Canonical scheduling

can be viewed as a kind of round-robin scheduling for CFDF graphs. This schedul-

ing technique and the LIDE simple scheduler can be adapted easily to handle DSGs

even though DSGs deviate from CFDF semantics in some respects. Advantages of
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the simple scheduler include its simplicity and generality, which make it useful, for

example, during functional validation and rapid prototyping. Its main drawback

is that it can be highly inefficient. Thus, an investigation of efficient scheduling

techniques should typically not be limited to use of the simple scheduler.

In the remainder of this thesis, when we write “simple scheduler”, we mean

(unless otherwise stated) the adapted version of the LIDE simple scheduler that we

use in DIF-OCL.

5.6 Limitations

The current implementation of RAs in DIF-OCL gives the RA programmer

access to the entire context associated with the associated referenced actor. The

actor context is the standard data structure used in LIDE to encapsulate actor-

specific information, including input FIFOs, output FIFOs, parameters, and state

variables [28]. In this sense, the form of RA implemented in DIF-OCL is somewhat

more general than the original definition of RAs in the DSG model of Wu [31].

In Wu’s DSG model, RAs are restricted to manipulating only certain kinds of

data. For example, the pre function can only access the value represented by the

current DSG token, the state of the enclosing RA, and the state of the referenced

actor. However, the RA programmer in DIF-OCL has access to all of the information

in the actor context, as described above. In DIF-OCL, it is the responsibility of the

RA programmer to ensure that the information in the actor context is used within

pre and post functions in a way that does not lead to non-deterministic behavior.
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Study of design rules or systematically-imposed restrictions on this more general

class of RA implementations is a useful direction for future work.
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Chapter 6: Optimizations for DSG Scheduler Design

In Chapter 5, we discussed the role of DSG schedulers in the execution of

DSGs, and we discussed the simple scheduler as one DSG scheduler that we have

applied in our experiments. When applied to a DSG, the simple scheduler operates

by traversing the list of DSG actors at each scheduling step, and performing a

guarded execution of each actor that it visits. That is, as each actor is visited

during the traversal process, the enable function of the actor is first executed. If the

enable function returns true, then the invoke function of the actor is executed, the

current scheduling step is completed, and the scheduler moves to its next scheduling

step.

This kind of “brute force” execution process can be very inefficient — for

example, due to excessive calls to actor enable functions. In this chapter, we de-

velop more efficient techniques for coordinating the execution of actors in DSGs.

These techniques exploit specific characteristics of DSGs to streamline the run-time

interpretation of DSGs.

Further improvements in efficiency may be possible through methods that

generate code for directly executing DSGs. Such methods, for example, might have

code for SCAs generated that is followed by appropriate branching code, where
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this branching code is determined based on the type of SCA being used, and the

particular output port on which the DSG token is produced during a given firing.

Investigation of such direct synthesis methods for DSGs is a useful direction for

future work.

Our interpreted approach for DSG execution has certain advantages, as well.

These advantages relate to similar differences between interpreted and compiled

execution of computer programs. When DSGs are interpreted, only the DSG itself

needs to be synthesized, while the logic for executing the DSG can be re-used through

pre-defined runtime library components, or through a separately provided scheduler.

Similarly, interpreted DSGs facilitate efficient just-in-time scheduling techniques

where DSGs may be constructed, adapted, or input at run-time, and then executed

immediately after they become available. Recent work on just-in-time scheduling

of Parameterized and Interfaced Synchronous DataFlow (PiSDF) graphs has shown

promising results [11]. An interesting direction for future work is the study of just-

time-time techniques for dataflow graphs that utilize the concepts of DSGs, DSG

schedulers, and interpreted DSG execution.

6.1 DSG Token Tracking

The first approach that we present for DSG scheduler optimization is an ap-

proach that we refer to as DSG token tracking (DTT). DTT exploits the global

token population property of DSGs that we discussed in Section 5.4. Recall that

this property ensures that at any given time during execution of a properly con-
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repeat
Invoke the current DSG actor C
Record the index I of the edge on which C has produced its output token
C = sinks [I]

until terminate() = true

Figure 6.1: A pseudocode representation the DTT approach for DSG scheduler
design.

structed DSG, there is at most one DSG token in the graph. Thus, once the firing

of a DSG actor completes, we need only to determine the edge e on which the firing

produces its output DSG token. The sink actor of this edge e is the unique actor

that needs to be executed as the next firing in the interpretation of the enclosing

DSG.

DTT utilizes these concepts, and is based on efficiently tracking DSG tokens

as they are produced during interpretation of a DSG. Here, by “tracking”, we simply

mean determining the edge on which the associated token resides.

The DTT approach can be summarized by the pseudocode-style representation

shown in Figure 6.1. Here, each iteration of the loop executes a single scheduling

step, where each scheduling step is responsible for carrying out a single firing of a

DSG actor and determining the next DSG actor that is to be fired. It is assumed

that the “current DSG actor C” is initialized to be the first actor that is to be

executed when interpretation of the DSG is launched. Similarly, it is assumed that

there is some termination condition terminate() that can be checked to determine

when execution of the DSG is complete. Alternatively, the scheduler can be en-

closed within an infinite loop that is executed indefinitely and may be terminated

asynchronously through some kind of interrupt mechanism.

41



To support our implementation of the DTT approach, as represented in Fig-

ure 6.1, we associate (in the synthesized code) a unique index in the range {0, 1, . . . , (N−

1)} for each DSG edge, where N is the total number of DSG edges. We also syn-

thesize a table (array) sinks [I] that maps these “edge indices” into unique indices

that are associated with the DSG actors. Specifically, sinks [I] gives the index of the

sink actor that is associated with the DSG edge whose index is I.

6.2 RA Region Clustering

RA region clustering, which we briefly introduced in Section 4.2, exploits deter-

ministic control flow within directed chains of RAs. This determinism is exploited

to eliminate overhead associated with tracking of DSG tokens within the chains,

including the costs of table lookups to the sinks array. RA region clustering effec-

tively transforms a directed chain of RAs into a single, hierarchical RA that can be

treated as a single unit when the DSG is interpreted by a scheduler, such as the

DTT scheduler illustrated in Figure 6.1.

RA region clustering is related in some ways to techniques developed by Gu

et al. for managing statically schedulable regions in dataflow programs based on

the CAL language [10]. One significant difference is that RA region clustering is

defined in the context of schedule graphs rather than dataflow-based of application

representations. RA region clustering is also related to the problem of constructing

basic blocks in conventional compiler analysis [1, 2]. RA regions in our context are

different from basic blocks in that they are defined in the context of pure dataflow
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Figure 6.2: A simple illustration of RA region clustering.

representations (e.g., as opposed to hybrid control/dataflow representations); they

are defined in the concept of schedule graphs as opposed to program representations

(similar to the difference with the CAL-based analysis of Gu); and their basic el-

ements (RAs) encapsulate execution of dataflow actors of arbitrary complexity as

opposed to the primitive program statements that form the elements of conventional

basic blocks.

RA region clustering is a general technique that can be used to improve the

performance of a variety of DSG schedulers, including the simple scheduler intro-

duced in Section 5.5 and the DTT scheduler discussed in Section 6.1.

Fig. 6.2 provides a simple illustration of RA region clustering. This is a sim-

plified diagram in which only one port is shown for each of the SCAs in the diagram

— the other ports are omitted since no specific type of SCA is assumed in the

illustration.

Our algorithm for RA region clustering, which we have implemented as part

of DIF-OCL, is sketched in the pseudocode shown in Fig. 6.3. The algorithm can
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startNode denotes the starting node.
s = newStack()
s.push(startNode)
clustered = []
while s.length ! = 0 do

curr node = s.pop()
mark curr node
tempCluster = []
if curr node.type == ref actor then

tempCluster .add(curr node)
if curr node has a successor whose type is not ref actor then

if tempCluster .size() > 1 then
clustered .add(tempCluster)
tempCluster = []

for each node N that is a successor of curr node do
if N is not marked then

s.push(N)

Figure 6.3: A pseudocode representation of the RA region clustering optimization
for DSG scheduler design.

be viewed as a form of depth first search that aggregates maximal directed chains of

RAs into individual clusters (hierarchical RAs). Here, we say that given a directed

graph G and two vertices (nodes) x and y in G, y is a successor of x if the directed

edge (x, y) is in G.

6.3 Loop SCA Bypass Optimization

A general class of optimizations when synthesizing software or designing sched-

ulers for DSGs is the class of SCA-specific optimizations. By an SCA-specific op-

timization, we mean an optimization that exploits the specialized characteristics of

a specific type of SCA or a specific subset of SCA types. SCA-specific optimiza-

tions enable use of the formal DSG-based model for schedule management, while

improving the efficiency of interpreting or generating code for this class of schedules.

44



In this thesis, we introduce one optimization technique, called loop SCA bypass,

that provides an example of an SCA-specific optimization. In the loop SCA bypass

technique, we implement streamlined scheduling of RA chains that are controlled

by loop SCAs, and bypass the treatment of those loop SCAs as general DSG actors.

We have developed loop SCA bypass optimization in a restricted form in which

the optimization can be applied only to a loop SCA that is connected to an RA chain

or to a single hierarchical RA that represents an RA region. Thus, for example, the

technique that we have developed cannot be applied to nested loops. Generalizing

the loop SCA bypass optimization to work with more general uses of SCAs is a

useful direction for future work.

A simple illustration of the loop SCA bypass optimization is shown in Fig. 6.4.

In this example, Actor 1 is a loop SCA, Actor 2 is an RA, and edges incident to

Actor 1 and Actor 2 that are not of direct relevance to this example are omitted.

Now suppose that based on the iteration count received by Actor 1, we need

to execute 5 firings of Actor 2. Using the standard interpretation approach for loop

SCAs, this would involve 10 firings of DSG actors — 5 firings each of Actor 1 and

Actor 2. On the other hand, by using the loop SCA bypass optimization, we need

one firing of Actor 1 (at the entry to the loop), followed by 5 firings of Actor 2, and

then one more firing of Actor 1 (at the exit of the loop). As the iteration count

associated with a loop SCA increases, the performance enhancement due to the loop

SCA bypass optimization becomes more substantial.

In the loop SCA bypass optimization, we keep track of whether the previous

DSG actor invoked is a loop SCA L that is connected to an RA chain X. If so,
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Figure 6.4: An illustration of the loop SCA bypass optimization.

then we iterate directly through the required iterations of X in the generated code

or schedule interpreter rather than using DSG constructs to manage the iteration

control. Once the required number of iterations of X is complete, the iteration

count of L is set to 0. This in turn forces the DSG actor following L (outside of its

associated loop) to be invoked using the standard process for executing the DSG.

6.4 Limitations

In our current implementation of DIF-OCL, RA region clustering and loop

SCA bypass are incorporated into customized DSG schedulers that are synthesized

as part of the software synthesis process. Thus, the optimizations are not applied

in the form of general DSG interpreters that can be used to execute arbitrary DSGs
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without need for synthesis of the scheduler functionality.

This software synthesis approach can be viewed as supporting a kind of hybrid

between interpreted and compiled execution of DSGs. In particular, a standard

interpretation-oriented DSG scheduler structure, based on the DTT technique, is

used as a scheduler template. During software synthesis, the RA region clustering

and loop SCA bypass techniques are integrated into the template in an application-

specific (DSG-specific) manner. The synthesized scheduler is thus specific to the

input DSG; however, the prototyping of the optimizations techniques is simplified

because they are applied in the context of a compact scheduler template.

It is with this rapid prototyping consideration in mind that we have used

this particular synthesis approach to experiment with our first-version designs of

RA region clustering and loop SCA bypass. Integrating these optimizations into a

general DSG interpretation framework is a useful direction for future work.
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Chapter 7: Experiments

To demonstrate the utility of DIF-OCL on a practical application of significant

complexity, we experiment with the jitter measurement application developed in [22].

This is a computationally intensive application that is designed for measurement of

jitter in digital communication waveforms.

Our experiments are carried out on a hybrid CPU-GPU platform that includes

an Intel Core i7-2600K Quad-core CPU with an NVIDIA GeForce GTX680 GPU

running Ubuntu Linux 16.04.2 LTS.

The input to the application is a series of data points that represent successive

samples of a communications waveform. The input is presented to the application

in a text file. We specify configurable application parameters, including the window

size W and number of iterations Z, in a separate file that is input to the application.

For details on the meaning of these parameters, we refer the reader to [22]. In our

experiments, we use W = 13,1072 and Z = 12. The output from the application

is the derived clock period and time interval error (TIE), which are saved by the

application in two text files, respectively.

We use the application graph as specified in [22] with some minor adaptations.

The modified version that we use is illustrated in Fig. 7.1. This application graph is
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in the form of a computation graph [14]. The computation graph model is similar to

the SDF model in that actors are characterized by statically known production and

consumption rates. However, in computation graphs, the number of tokens on an

input edge that is required to enable a firing can be greater than the consumption

rate. This number of tokens required to enable a firing is referred to as the threshold

of the associated actor port or edge. In general, the threshold is greater than or

equal to the consumption rate.

In Fig. 7.1, the numbers next to the output ports represent the production

rates associated with these ports. For all input ports other than the input to DVL,

the threshold T equals the consumption rate C; this common value of T and C is

annotated next to each of these ports. The threshold and consumption rate for the

input port of DVL are specified separately because these values may differ — here,

c represents the consumption rate and τ represents the threshold. For details on

how (c, τ) are determined, we refer the reader to [22].

Descriptions of these actors are reproduced here with minor adaptations from

the corresponding descriptions in [22]:

• DVL: Finds the upper and lower voltage thresholds after sorting the input

data of the current window.

• STR: Assigns high and low voltage states after performing analog to digital

conversion based on the voltage thresholds.

• FSM: Locates transitions from high to low and low to high voltage states.
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Figure 7.1: Application graph for jitter measurement system.

• TRT: Computes the transition time for each voltage transition in the current

window.

• RE: Derives a preliminary estimate of the clock period.

• RRE: Improves the accuracy by refining the clock period estimate.

• LFT: Estimates the clock period using linear filtering and computes interval

errors using the redefined clock period estimate.

• SRC, TIE, CRE: These are actors that interface to input/output files from

which input data is injected into dataflow graph, and output data computed

from the graph is stored, respectively.

Among these actors, the following ones are mapped to the GPU in our imple-
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mentation: RE, RRE, DVL, TRT, LFT, FSM, STR.

We write a .dif file in the DIF Language for this application graph. We

apply this file as input to the DIF-OCL framework as the application graph for our

experiments.

As the schedule graph to be provided as input for this example, we develop a

DSG model of the schedule applied in [22]. This schedule can be expressed as the

sequence of executions

S = (WSRC )DVLSTRFSM TRT RERRELFT TIECRE , (7.1)

where (WSRC ) represents the repeated execution W times of the actor SRC . Recall

that W is the window size parameter for the application.

Our DSG model of this schedule is illustrated in Fig. 7.2. Here, a label of

the form “Rxyz” represents an RA whose referenced actor is XYZ. For example,

Rdvl is an RA whose referenced actor is DVL. There are three SCAs in the graph

of Fig. 7.2: SCA1 is a static loop SCA, SCA2 is a dynamic loop SCA, and SCA3 is

another static loop SCA. In SCA3, the output port corresponding to the exit from

the loop is associated with code to exit the enclosing scheduler. This use of SCA3

allows the whole DSG to be executed for some pre-specified number of iterations

before the DSG execution is terminated.

The “D” next to the input edge to SCA3 indicates a unit delay or initial token

on the associated edge. A DSG needs to have exactly one delay on exactly one of

the edges. The actor at the sink of this edge is the first actor that is to be fired when
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Figure 7.2: DSG model for the jitter measurement system.

the DSG is executed. In our implementation, we use a slightly different technique

to determine the start actor (rather than using the unique delay in the graph). The

technique is functionally equivalent to use of the delay, as illustrated in Fig. 7.2,

and used in our design only for convenience of implementation.

We executed the scheduler graph with the following four DSG scheduler con-

figurations:

• Simple Scheduler [SS]

• DSG Token Tracking scheduler [DTT]

• DSG Token Tracking scheduler with RA Region Clustering [DTTRRC]

• DSG Token Tracking scheduler with Loop SCA Bypass [DTTLSB]

Note that the DTTLSB configuration includes RA region clustering to a lim-

ited extent (see Section 6.2), so this can be viewed as the most “powerful” configura-

tion in terms of the number of different optimizations that co-exist. In contrast, the
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Figure 7.3: Comparison of run-times for the jitter measurement system using various
DSG schedulers. The vertical axis has units of seconds.

DTTRRC configuration incorporates RA region clustering but does not incorporate

the loop SCA bypass optimization.

In each case, we validated the functional correctness of the output by compar-

ison to the output of the original application graph in [22].

The application run-times measured from our experiments are summarized in

the Fig. 7.3. As we can see from these results, SS takes substantially greater time

than the other three configurations, which are optimized in various ways. DTT

eliminates the need to check enable conditions for DSG actors, and RA region clus-

tering further improves performance by exploiting deterministic control flow across

chains of RAs. DTTLSB can be useful in cases where we have extensive looping

being performed inside a schedule. The jitter measurement system has two loop-

ing constructs that collectively involve over one million iterations. These looping

constructs provide opportunities for additional improvement using DTTLSB.

The data in Figure 7.3 is summarized in tabular form in Table 7.1.
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Table 7.1: Comparison in tabular form of run-times for the jitter measurement
system using various DSG schedulers. The units of run-time in this table are seconds.

Scheduling Technique Run-time Percentage Speedup

SS 2.07 0
DTT 1.74 18.5

DTTRRC 1.73 19.3
DTTLSB 1.71 21.0
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Chapter 8: Conclusions

In this thesis, we have developed new methods for synthesizing embedded

software for dataflow-based models of signal processing applications. The novelty

of our methods centers on their support for the dataflow schedule graph (DSG)

as a formal model of schedules for dataflow-based application representations. In

conventional dataflow-based software synthesis techniques, schedules are represented

using formal representations that are very restricted in their applicability or using

general representations that are constructed in ad-hoc ways, without any formal

connection to dataflow. In this thesis, we develop software synthesis techniques that

operate on the DSG model, which is both general in its applicability to a broad class

of static and dynamic dataflow representations, and formal in its underpinnings in

terms of dataflow semantics. We have demonstrated the utility of our proposed new

software synthesis techniques through experiments involving a complex, practical

dataflow application that performs jitter measurement on digital communication

waveforms.

Many useful directions for future work emerge from the developments of this

thesis. These include extension of the proposed software synthesis techniques to

concurrent DSGs, adaptation to other implementation languages beyond OpenCL,
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incorporation of support for a larger variety of SCAs in DIF-OCL, further streamlin-

ing of memory management to exploit the global token population property of DSGs,

further exploration of optimized DSG scheduler design, development of design rules

or systematically-imposed restrictions for reliable RA implementation, and deeper

study of trade-offs between interpreted and compiled execution of DSGs.
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