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Abstract

Although game-tree search works well in perfect-information games, there are problems in trying
to use it for imperfect-information games such as bridge. The lack of knowledge about the opponents’
possible moves gives the game tree a very large branching factor, making the tree so immense that
game-tree searching is infeasible.

In this paper, we describe our approach for overcoming this problem. We develop a model of imperfect-
information games, and describe how to represent information about the game using a modified version
of a task network that is extended to represent multi-agency and uncertainty. We present a game-
playing procedure that uses this approach to generate game trees in which the set of alternative choices
is determined not by the set of possible actions, but by the set of available tactical and strategic schemes.

In our tests of this approach on the game of bridge, we found that it generated trees having a much
smaller branching factor than wonld have been generated by conventional game-tree search techniques.
Thus, even in the worst case, the game tree contained only about 1300 nodes, as opposed to the ap-
proximately 6.01 x 10** nodes that would have been produced by a brute-force game tree search in the
worst case. Furthermore, our approach successfully solved typical bridge problems that matched situ-
ations in its knowledge base. These preliminary tests suggest that our approach has the potential to
yield bridge-playing programs much better than existing ones—and thus we have begun to build a full
implementation.
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MD 20742.

*This work supported in part by an AT&T Ph.D. scholarship to Stephen J. J. Smith, Maryland Industrial Parinerships
(MIPS) grant 501.15, Great Game Products, and NSF grants IRT-8907890 and NSFD CDR-88003012.



1 Introduction

Although game-tree search works well in perfect-information games (such as chess [2, 16}, checkers [20],
and othello [15]), it does not always work so well in other games. For example, the game of bridge is an
imperfect-information game, in which no player has complete knowledge about the state of the world, the
possible actions, and their effects. As a consequence, the branching factor of the game tree is very large,
making the tree so immense that game-tree searching is completely infeasible. Thus, a different approach is
needed.

In this paper, we describe an approach to this problem, based on the observation that bridge is a game of
planning. The bridge literature describes a number of tactical and strategic schemes for dealing with various
card-playing situations. It appears that there is a small number of such schemes for each bridge hand, and
that each of them can be expressed relatively simply. To play bridge, many humans use these schemes to
create plans. They then follow those plans for some number of tricks, replanning when appropriate.

We have taken advantage of the planning nature of bridge, by adapting and extending some ideas from
task-network planning. To represent the tactical and strategic schemes of card-playing in bridge, we use
instances of multi-agent methods—structures similar to the task decompositions used in hierarchical single-
agent planning systems such as Nonlin [25, 26], NOAH [19], and MOLGEN [24], but modified to represent
raulti-agency and uncertainty. To generate game trees, we use a procedure similar to task-network decom-
position.

This approach produces game tree in which the number of branches from each state is determined not
by the number of actions that an agent can perform, but instead by the number of different tactical and
strategic schemes that the agent can employ. If at each node of the tree, the number of applicable schemes
is smaller than the number of possible actions, this will result in a smaller branching factor, and a much
smaller search tree. For example, a prototype implementation of our approach produced game trees of no
more than about 1300 nodes in the worst case—a significant reduction from the approximately 6.01 x 10%*
nodes that would have been produced by a brute-force game tree search in the worst case.

Since our approach avoids generating all possible moves for all agents, it is in essence a type of forward
pruning. Although forward pruning has not worked very well in games such as chess [3, 27], our study of
forward pruning [23] suggests that forward pruning works best in situations where there is a high correlation
among the minimax values of sibling nodes. We believe that bridge has this characteristic. This encourages
us to believe that our approach may work well in the game of bridge—and a preliminary study of our
prototype implementation suggests that our approach can do well on at least some bridge hands. To test
this idea further, we are developing a full implementation of the approach.

This paper is organized as follows. Section 1.1 discusses related work. Section 2 presents our formalism
for representing certain kinds of imperfect-information games, and the uncertainty that can occur in them.
Section 3 presents our structure for representing game-playing knowledge using a task-network formalism
that is modified to represent multi-agency. Section 4 describes an abstract game-playing procedure based on
this structure. Section 5 describes our preliminary tests of an implementation of this procedure in the game
of bridge. Section 6 contains concluding remarks.

1.1 Related Work‘

The strongest work on bridge has focused on bidding [11, 12]. However, there are no really good computer
programs for card-playing in bridge—most of them can be beaten by a reasonably advanced novice. The
approaches used in current programs are based almost exclusively on domain-specific techniques. Some pro-
grams (such as Great Game Products’ Bridge Baron program) do decision-making by repeatedly generating
random hypotheses for what hands the opponents might have, and doing a full game tree-search for each
hypothesized hand—but this approach is feasible only late in the game, after most of the tricks have been
played. Recently, Frank and others [9] have proposed a proof-planning approach, but thus far, this approach
has only been used for planning the play of a single suit.

Some work has been done on extending game-tree search to deal with uncertainty, including Horacek’s
work on chess [13], and Ballard’s work on backgammon [1]. However, these works do not deal with the kind
of uncertainty that we discussed in Section 1, and thus it does not appear to us that these approaches would
be sufficient to accomplish our objectives.



Wilkins [28, 29] uses “knowledge sources” to generate chess moves for both the player and the opponent,
and then chooses the move to play by investigating the results. In their intent, these knowledge sources are
similar to the multi-agent methods that we describe in Section 3. However, since chess is a perfect-information
game, Wilkins’ work does not deal with uncertainty and incomplete information.

Qur work on hierarchical planning draws on Tate’s [25, 26] which in turn draws on Sacerdoti’s [17, 18].
In addition, some of our definitions were motivated by those in [5, 6].

2 A Model of Imperfect-Information Games

In this section, we describe a formalism for expressing imperfect-information games having the following
characteristics:

1. Only one player may move at at time.

2. Each player need not have complete information about the current state S. However, each player has
enough information to determine whose turn it is to move.

3. A player may control more than one agent in the game (as in bridge, in which the declarer controls
two hands rather than one). If a player is in control of the agent A whose turn it is to move, then the
player knows what moves A can make.

4. If a player 1s not in control of the agent A whose turn it is to move, then the player does not necessarily
know what moves A can make. However, in this case the player does know the set of possible moves
A might be able to make; i.e., the player knows a finite set of moves M such that every move that A
can make is a member of M.

Our motivating example isthe game of bridge. The specific problem we wish to address is how the declarer
should play the game after the bidding is over (i.e., once trump suit has been chosen and one of the declarer’s
opponents has made an initial lead). There are four hands around the table; our player will play two hands
(vhe declarer and the dummy), and two external agents (the defenders) will play the other two hands. The
two hands played by our agent are in full view of our agent at all times; the two other hands are not, hence
the incomplete information. .

In order to talk about the current state S (or any other state) in an abstract manner, we will consider
it to be a collection of ground atoms (i.e., completely instantiated predicates) of some function-free first-
order language £ that is generated by finitely many constant symbols and predicate symbols. We do not
care whether or not this is how S would actually be represented in an implementation of a game-playing
program.

Among other things, S will contain information about who the players are, and whose turn it is to move.
To represent this information, we will consider S to include a ground atom Agent(z) for each player &, and a
ground atom Turn(y) for the player y whose turn it is to move. For example, in the game of bridge, S would
include the ground atoms Agent(North), Agent(South), Agent(East), and Agent(West). If it were South’s
turn to move, then S would include the ground atom Turn(South).

We will be considering S from the point of view of a particular player P (who may be a person or a
computer system). One or more of the players will be under P’s control; these players are called the controlled
agents (or sometimes “our” agents). The other players are the uncontrolled agents, or our opponents. For each
controlled agent x, we will consider S to include a ground atom Control(z). For example, in bridge, suppose
P is South. Then if South is the declarer, S will contain the atoms Control(South) and Control(North).

Since P is playing an imperfect-information game, P will be certain about some the ground atoms of S,
and uncertain about others. To represent the information about which P is certain, we use a set of ground
literals Ig called P’s state information set (we will write I rather than Is when the context is clear). Each
positive literal in Is represents something that P knows to be true about S, and each negative literal in Ig
represents something that P knows to be false about S. Since we require that P knows whose turn it is to
move, this means that Iy will include a ground atom Turn(y) for the agent y whose turn it is to move, and
ground atoms — Turn(z) for each of the other agents.

For example, in bridge, suppose that P is South, South is declarer, it is South’s turn to move, and South
has the 6 but not the 7é. Then Is would contain the following atoms (among others):
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Control(North), - Control(East), Control(South), — Control(West),
- Turn(North), = Turn(East), Turn(South), = Turn(West),
Has(South,6ék), — Has(South,7)

Unless South somehow finds out whether West has the 7, Is would contain neither Has(West,7é) nor
-+ Has(West, 7éh).

In practice, P will know I but not S. Given a state information set I, a state S is consistent with I if
every literal in I is true in S. I* is the set of all states consistent with I.

P might have reason to believe that some states in I* are more likely than others. For example, in bridge,
information from the bidding or from prior play often gives clues to the location of key cards. To represent
this, we define P’s belief function to be a probability function p : I* — [0, 1], where [0, 1] is the set of reals
falling between 0 and 1.

To represent the possible actions of the players, we use STRIPS-style operators. More specifically, if
Xo, X1, X2,...,Xn are variable symbols, then we define a primitive operator O(Xo; X1, Xa, ..., Xy) to be
the following triple:!

1. Pre(O) is a finite set of literals, called the precondition list of O, whose variables are all from the set
{Xo, X1, Xa,...,X,}. Pre(O) must always include the atoms Agent(X,) and Turn(Xo).

2. Add(O) and Del(O) are both finite sets of atoms (possibly non-ground) whose variables are all from
the set {Xo, X1, Xa,..., Xn}. Add(O) is called the add list of O, and Del(O) is called the delete list, of
0.

For example, in bridge, one operator might be PlayCard(P; S, R), where the variable P represents the player
(North, East, South or West), S represents the suit played (&, ¢, ©, or #), and R represents the rank (2,
3,...,9, T, J, Q K, or A). Pre(PlayCard) would contain conditions to ensure that player P has the card of
suit S and rank R. Add(PlayCard) and Del(PlayCard) would contain atoms to express the playing of the
card, the removal of the card from the player’s hand, and possibly any trick which may be won by the play
of the card.

We define applicability in the usual way, that is, a primitive operator O is applicable in a state S if every
literal in Pre(O) is in S. If an instantiation of a primitive operator (say O(ao; a1, @s,...,ay,)) is applicable
in some state S, € I*, and if Control(ag) holds, then we require that the instantiation be applicable in all
states S € I*. This will guarantee that, as required, if P is in control of the agent ag whose turn it is to
move, then P will have enough additional information to determine which moves ag can make. In bridge, for
example, this means that if P has control of South, and it is South’s turn, then P knows what cards South
can play.

We define S to be the set of all states. We define Z to be the set of all state information sets.

An objective function is a partial function f : § — [0, 1]. Intuitively, f(S) expresses the perceived benefit
to P of the state S; where f(S) is undefined, this means that S’s perceived benefit is not known. In bridge,
for states representing the end of the hand, f might give the score for the participant’s side, based on the
number of tricks taken. For other states, f might well be undefined. '

Game-playing programs for perfect-information games make use of a static evaluation function, which is
a total function e : § — [0, 1] such that if S is a state and f(S) is defined, then e(S) = f(S). In imperfect-
information games, it is difficult to use e(S) directly, because instead of knowing the state S, all P will know
is the state information set I. Thus, our game-playing procedure will instead use a distributed evaluation
function e*(I) = 3 ¢ pe p(S)e(S). Intuitively, e*(I) expresses the estimated benefit to P of the set of states
consistent with the state information set I. Qur game-playing procedure will use e* only when it is unable
to proceed past a state.?

A gameis a pair G = (£, O) where L is the planning language and @ is a finite set of operators. Given a
game G, an problem in G is a quadruple P = (Ig,,p, f, €), where Ig, is the state information about an initial
state Sp, p is a belief function, f is an objective function and e is a static evaluation function. For example,

1The semicolon separates Xo from the rest of the arguments because X, is the agent who uses the operator when it is Xo's
turn to move.

ZHowever, we can imagine that in time-sensitive situations, one might want to modify our procedure so that it sometimes
uses e* on nodes that it can proceed past, just as chess-playing computer programs use a static evaluation function rather than
searching to the end of the game.



if G is the game of bridge, then the problem P would be a particular hand, from a particular player’s point
of view. All the information required to compute e* is expressed in e and p, thus we need not include e* in
our definition of P.

3 Networks of Multi-Agent Methods

We define a primitive operator method, or just operator method, M, to be a triple (Task(M), Pre(M),
Operator(M)), where

1. Task(M) is a task. This may either be the expression ‘NIL’ or a syntactic expression of the form
M(Xo;X1,Xa,...,X,) where each X; is a variable of L.

2. Pre(M) is a finite set of literals, called the precondition list of M. Pre(M) must always include all of

the literals in the precondition list of the operator O(tg,%1,. . .,tm), where O is as described below.
3. Operator(M) is a syntactic expression O(to,t1,...,tm). O is an operator in O, and #o,t1,...,t, are
terms of L.

For example, in bridge, the playing of a single card would probably have its own primitive operator
method M. Task(M) might be PlayCardMethod(P; S, R). Operator(M) would be the syntactic expres-
sion PlayCard(P; S, R), where PlayCard(P; S, R) is the primitive operator described in Section 2. Pre(M)
would be identical to the precondition list for PlayCard(P; S, R).

A decomposable method M is a triple (Task(M), Pre(M), Expansion(M)), where

1. Task(M) is again either the expression ‘NIL’ or a syntactic expression of the form M (Xo; X1, Xo,.. ., X»),
where each X; is a variable of L.

2. Pre(M) is a finite set of literals, called the precondition list of M. Pre(M) must always include the
atom Agent(Xy).

3. Expansion(M) is a (possibly empty) tuple of tasks (T1(t1,1,%1,2,- - -, t1,my), To(t2,1,22.2, - - - 1 t2,mu)s + - o
Tk(tk,latk,z) .. ')tk,n:bk))-

For example, Figure 1 shows part of the network of multi-agent methods that we use for finessing in bridge..
In this figure, each box represents a decomposable method.

If an instantiation of a method (say M(ao;a1,as,...,a,)) is applicable in some state S, € I*, and if
Control(ag) holds, then we require that the instantiation be applicable in all states S € I*. This will
guarantee that if P is in control of the agent ag whose turn it is to move, then P will have enough additional
information to determine which methods are applicable. In bridge, for example, this means that if P has
control of South, and it is South’s turn, then P knows what strategic and tactical schemes South can employ.

Let M be a set of operator methods and decomposable methods. Then M is a network of multi-agent
methods (since the Expansions of methods serve to link methods, the term “network” is appropriate.)

4 Game-Playing Procedure

Our game-playing procedure constructs a decision tree, then evaluates the decision tree to produce a plan
for how to play some or all of the game. It then executes this plan either until the plan runs out, or until
some opponent does something that the plan did not anticipate (at which point the procedure will re-plan).
The details of the procedure are described in this section.
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Figure 1: The part of the network of multi-agent methods for the game of bridge that deals with finessing.

4.1 Constructing a Decision Tree

Given a network of multi-agent methods and a state information set I, our game-playing procedure uses
these methods to construct a decision tree rooted at 1.3 A decision tree resembles a game tree.* It contains
two kinds of non-leaf nodes: decision nodes, representing the situations in which it is P’s turn to move, and
external-agent nodes, representing situations in which it is some external agent’s turn to move. The tree’s
leaf nodes are nodes at which the procedure does not have any methods to apply, either because the game
has ended, or because the methods simply don’t tell the procedure what to do.

3We use the term “decision tree” as it is used in the decision theory literature [10, 7, 8}, to represent a structure similar to
a game tree. We are not employing decision trees (also, and less ambiguously, referred to as comparison trees [14]) as they are
defined in the sorting literature ([4], p. 173.) We apologize for the confusion, but it is inescapable.

4In the decision theory literature, what we call external-agent nodes are usually called chance nodes, because decision
theorists usually assume that the external agent is random. What we call leaf nodes are usually called consequence nodes,
because they represent the results of the paths taken to reach them.
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Figure 2: A piece of the decision tree that might be generated by the finessing part of the network of
roulti-agent methods for the game of bridge.

Each node of the decision tree T will contain a state information set and a sequence of 0 or more tasks
to be solved. Our procedure for creating T is as follows:

Let the root node of T be a node containing the state information set I and no tasks.
loop:

1. Pick a leaf node u of T such that u is not the end of the game and we have never tried to expand
u before. If no such node exists, then exit, returning T'. Otherwise, let I, be the state information
set in u, and U = (U1, Us,...,U,) be the sequence of tasks in u.

2. For each instantiated method M that is applicable to u, let v be the node produced by applying
M to u. Install v into T as a child of u. (Below, we define the terms ‘instantiated method,’
‘applicable,” and ‘produced.’) '

repeat

As an example of the operation of this procedure, Figure 2 shows a piece of a decision tree that the
procedure might generate for finessing, using the network showin in Figure 1.

An instantiated method is any ground instance M of some method M. Let u be a node whose state
information set is I, and whose task sequence is & = (U1,Us,...,U,). Then an instantiated method M is
applicable to u if the following conditions hold:

1. Either U is empty and Task(M) is NIL, or Task(#) matches U;.
2. Some state S consistent with I, satisfies Pre(M), i.e., some state S € I* satistfies Pre(M).

If P is in control of the agent a, whose turn it is to move at node u, and if one state S consistent with
1, satisfies Pre(M), then all states S’ consistent with I, (i.e., all S" € I}) satisfy Pre(3M). We made this
property a requirement of our multi-agent methods in Section 3.

If P is not in control of the agent a, whose turn it is to move at node u, then it is possible for one state S;
consistent with I, to satisfy Pre(M), while some other state S5 consistent with 7, does not satisfy Pre(3).
In this case, our procedure will need to make the assumption that Pre(M) holds, so that it can investigate
what happens when some opponent makes a move using the instantiated method M. Other instantiated
methods M1, My, ..., M, will investigate what happens in states where Pre(M) does not hold.

For example, in Figure 2, before investigating the move Play(West; ¢, 4), our procedure would need to
make the assumption that West holds the 4<. The procedure would investigate the other moves for West
under different assumptions (say, that West holds the K¢, or that West holds no cards in the ¢ suit.)

If M is applicable to u, then applying M to u produces the node v whose state information set I, and
task sequence V are as follows:



e If M is a decomposable method, then I, = I,UPre(M). Intuitively, I, is I, with all the conditions in
Pre(M) assumed.

If M is an operator method, then
I, = I, UPre(M) U Add(Operator(M)) — Del(Operator(M)).

Intuitively, I, is I, with all the conditions in Pre(M) assumed, and then all the conditions in Add(3)
added, and all the conditions in Del(M) deleted.

o If M is a decomposable method and Expansion(M) = (Vi,Va, ..., Vi), then V = (V4, ..., Vin, Us, Us, . . .,
Un). If M is an operator method, then V = (Us,Us,...,Uy,). Intuitively, this corresponds to saying
that the tasks V1, V5, ..., Vi, need to be solved before attempting to solve the tasks Uy, Us, ..., U,.

4.2 Evaluator and Plan Execution

Given a decision tree T, P will want to evaluate this tree by assigning a utility value to each node of the
tree. As we generate the decision tree T' (as described in the previous section), it is possible to evaluate it
at the same time. However, for the sake of clarity, this section describes the evaluation of T as if the entire
tree T' had already been generated.

In perfect-information games, the usual approach is to use the minimax procedure, which computes the
rnaximum at nodes where it is P’s move, and the minimum at nodes where it is the opponent’s move. In the
decision theory literature, this procedure is referred to as the Wald maximin-return decision criterion. This
decision criterion is less appropriate for imperfect-information games: since we do not know what moves
the opponent is capable of making, it makes less sense to assume that the opponent will always make the
move that is worst for us. Thus, a more complicated criterion which considers the belief function is to be
preferred, such as the weighted-average-of-utilities criterion outlined below.

Let u be an external-agent node whose children are the nodes uj,us,...,u,. For each u;, let I; be
the state information set contained in u;. Suppose we have already computed a utility value v; € [0,1]
for each u;. Then we define a external-agent criterion to be an algorithm C that returns a utility value
v = C(u,u1,ug, ..., u,) for the node u.®

Many external-agent criteria can be used, taking ideas from the pure decision criteria (such as Hurwicz’s
~ optimism-pessimism index, Savage’s minimax regret, and Wald’s maximin return, known to computer scien-
tists as minimax). Some will make use of the belief function p, others will not. In bridge, we would generally
use an external-agent criterion that would give a weighted average, using p, of the utility values v; resulting
from the best move the opponents could make in all the states consistent with the state information set I.

Given a decision tree, a external-agent criterion for each uncontrolled agent, an objective function, and
a belief function, we define an evaluation of the decision tree as follows:

1. The utility value of a leaf node u is the value of ¢*(I), where I is the state information set associated
with u. Recall that if f, the objective function, is defined at a state S, then e(S) = f(S). Thus, if we
have reached a the end of the game, then the objective function is used, as desired.

2. The utility value of an external-agent node u is the value C'(u,u1, ug, ..., un), where u, us, ..., u, are
the children of u.

3. The utility value of a decision node u is the maximium of the utility values of its children.

Although this evaluation may be computed recursively as defined, there may also be more efficient compu-
tations (for example, if C(u, uy,uz,. .., u,) were the minimum of the utility values of uy,us, ..., u,, then we
could use alpha-beta prumng)

Once the decision tree is solved, a plan (a policy in the decision theory literature) has been created P
will, at the state information set associated with any decision node, simply choose the method that leads to
the node with highest utility value.

5This definition of external-agent criterion is somewhat different from the usual definition of decision criterion in decision
theory (e.g. [10], p. 28), which essentially defines decision criteria on a two-level structure of decision nodes and chance nodes,
without the belief function p. However, we believe that our definition, while in theory is not always as powerful, is in practice
strong enough to implement most decision criteria we would want in most domains.
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Figure 3: One of the hands that Tignum correctly solved. Ranks in boldface represent cards that won tricks.

P follows the plan as far as possible. If the plan takes P to the end of the game, then the problem is solved.
If the plan should terminate before the end of the game-—which may occur either because an external agent
performs an action which is not present in the plan, or because the plan has reached a previously unexpanded
node—then P simply re-plans, starting at the node where the plan ends.

5 Implementation and Preliminary Tests in Bridge

To test our approach, we implemented and tested a small prototype, called Tignum. Since Tignum is
a prototype and its knowledge base was both too small and too inaccurate, we did not carry out extensive
tests. However, as described in this section, we performed some preliminary tests of Tignum on a suite of
bridge hands.

We developed our suite of bridge hands with several criteria in mind. Some of them were developed
in order to present various “worst case” situations to Tignum, some were developed to represent “normal”
bridge hands, and some were developed to represent situations that cause problems to previously developed
bridge programs.

Our test of Tignum had the following results:

¢ On our suite of hands, the largest search tree generated by Tignum contained 1301 nodes. Since
we selected our suite of hands to include hands that we thought would generate “worst-case” sized
search trees, we believe that Tignum will not generate search trees significantly larger than this. This
represents a large improvement over the 6.01 x 10** nodes that would be generated by a brute-force
game-tree search.

¢ On hands that presented situations to Tignum that could be solved by schemes in Tignum’s limited
knowledge base, Tignum came up with the correct plans. An example is shown in Figure 3, where
Tignum successfully sets up and takes a club ruff in dummy.

These results were encouraging enough that we decided to proceed with the full implementation of our
approach, called Tignum II, which we are still developing.

1

6 Conclusion

In this paper, we have described an approach to playing imperfect-information games. By using techniques
adapted from task-network planning, our approach reduces the large branching factor that results from
uncertainty in the game. It does this by producing game trees in which the number of branches from each
state is determined not by the number of actions that an agent can perform, but instead by the number of



different tactical and strategic schemes that the agent can employ. By doing a modified game-tree search on
this game tree, one can produce a plan that can be executed for multiple moves in the game.

Our approach appears to be particularly suited to bridge, since bridge is an imperfect-information game
that is characterized by a high degree of planning during card play. Thus, to test our approach, we have
implemented a prototype system that uses these techniques to do card-playing in the game of bridge. In
testing this prototype, we have found that it produces game trees small enough that it can search them all
the way to the end of the game—and by doing so, it can successfully solve typical bridge problems that
matched situations in its knowledge base.

These preliminary tests suggest that this approach has the potential to yield bridge-playing programs
much better than existing ones—and thus we have begun a full implementation of our approach. We hope
that our work will be useful in a variety of imperfect-information games.
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