
ABSTRACT

Title of dissertation: MULTI-OBJECT TRACKING, EVENT MODELING,
AND ACTIVITY DISCOVERY IN
VIDEO SEQUENCES

Seong-Wook Joo
Doctor of Philosophy, 2007

Dissertation directed by: Professor Rama Chellappa
Department of Electrical and Computer Engineering,
Department of Computer Science

One of the main goals of computer vision is video understanding, where ob-

jects in the video are detected, tracked, and their behavior is analyzed. In this

dissertation, several key problems in video understanding are addressed, focusing

on video surveillance applications.

Moving target detection and tracking is one of the most fundamental tasks

in visual surveillance. A new moving target detection method is proposed where

the temporal variance is used as a measure for characterizing object motion. Our

method is experimentally shown to produce high detection rates while keeping low

false positive rates.

In tracking multiple objects, it is essential to correctly associate targets and

measurements. We describe an efficient multi-object tracking approach that main-

tains multiple hypotheses over time regarding the association of targets and mea-

surements. The data association problem is solved by a combinatorial optimization

technique which finds the most likely association allowing track initiation, termina-

tion, merge, and split. Experimental results show that our method tracks through

varying degrees of interactions among the targets with high success rate.

Recognizing complex high-level events requires an explicit model of the struc-

ture of the events. Our approach uses attribute grammar for representing such

event, which formally specifies the syntax of the symbols and the conditions on

the attributes. Events are recognized using an extension of the Earley parser that

handles attributes and concurrent event threads. Various examples of recognizing

specific events of interest and detecting abnormal events are demonstrated using

real data.

Unsupervised methods for learning human activities have been largely based

on clustering trajectories from a given scene. However, conventional clustering algo-

rithms are not suitable for scenes that have many outlier trajectories. We describe

a method for finding only salient groups of trajectories, using the probability of tra-

jectories accidentally forming a group as the measure of significance of the group.

The grouping algorithm finds groups that maximizes significance, while automati-

cally determining the threshold for significance. We validate our approach on real

data and analyze its performance using simulated data.

MULTI-OBJECT TRACKING, EVENT MODELING, AND
ACTIVITY DISCOVERY IN VIDEO SEQUENCES

by

Seong-Wook Joo

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Committee:
Professor Rama Chellappa, Chair/Advisor
Professor Larry Davis
Professor David Jacobs
Professor Gang Qu
Professor Amitabh Varshney

c© Copyright by
Seong-Wook Joo

2007

Acknowledgments

I would like to express my deep gratitude for my advisor, Professor Rama

Chellappa for giving me an opportunity to work on such a fascinating subject as

computer vision, providing support both academically and financially. It was truly

an honor to have studied under his guidance. I also want to thank Dr. Qinfen

Zheng who co-advised me during the early years of my doctoral studies and provid-

ing an important starting point for my dissertation. I appreciate the constructive

suggestions and helpful comments given by my committee members, Professor Larry

Davis, Professor David Jacobs, and Professor Amitabh Varshney. I also thank Pro-

fessor Gang Qu for agreeing to serve as the Dean’s Representative. I am grateful

for Professor Samir Khuller and Minkyoung Cho for their fruitful discussions on

the combinatorial algorithms used in this dissertation. Special thanks goes to Dr.

Kyungnam Kim for providing me data used in one of my experiments. Interactions

with colleagues at the Center for Automation Research were helpful in many ways

for my studies. Discussions with my office mates Naresh Cuntoor, Pavan Turaga,

and Feng Guo were especially enjoyable and insightful. Last but not least, I want

to thank my father who inspired me to study computer science and my mother’s

unceasing support through the years of my studies. I cannot thank enough my wife

Chag-Hee Lee for always being by my side and encouraging me. Most of all, I thank

God who has guided every step of my life.

ii

Table of Contents

List of Tables v

List of Figures vi

1 Introduction 1
1.1 Motivation . 1
1.2 Approach . 3
1.3 Original Contributions . 5
1.4 Organization . 7

2 Moving Target Detection Based on Temporal Variance 8
2.1 Introduction . 8
2.2 The temporal variance measure . 10
2.3 Removing the trail artifact . 13
2.4 Performance evaluation . 16

2.4.1 Implementation . 16
2.4.2 Performance metric . 17
2.4.3 The dataset . 17

2.5 Experimental results . 18
2.5.1 The effect of object speed . 18
2.5.2 Comparison with background subtraction 22

2.6 Summary . 24

3 A Multiple Hypothesis Approach for Multi-Object Visual Tracking 27
3.1 Introduction . 27
3.2 Related work . 28
3.3 Background . 31

3.3.1 Classical small target tracking 31
3.3.2 An efficient method of generating association hypotheses . . . 33

3.4 Object detection . 34
3.5 Tracking model . 35
3.6 Hypotheses generation . 36

3.6.1 Linear cost hypothesis generation 39
3.6.2 Hypothesis revision and update 44

3.7 Implementation . 48
3.8 Experimental results . 49
3.9 Summary . 55

4 Visual Event Recognition Based on Syntactic Models of Events 57
4.1 Introduction . 57
4.2 Detection and tracking . 60
4.3 Primitive events and attributes . 61
4.4 Representation of events using attribute grammars 63

iii

4.4.1 Attribute grammars . 63
4.4.2 Thread consistency . 65

4.5 Recognition of events by parsing . 66
4.5.1 Online parsing . 67
4.5.2 Managing concurrent events 68

4.6 System implementation . 71
4.7 Experiments . 71

4.7.1 Detection of specific events . 72
4.7.2 Detection of abnormal events 75

4.8 Discussion . 81

5 Activity Discovery by Finding Salient Groups of Trajectories 82
5.1 Introduction . 82
5.2 Related work . 83
5.3 Approach . 85
5.4 An illustrative example: 2-D points 88
5.5 Finding salient groups of trajectories 90

5.5.1 Representation for trajectories 91
5.5.2 Background model of trajectories 92
5.5.3 Region defined by a trajectory group 93

5.6 Experimental results . 96
5.6.1 Results from real surveillance videos 96
5.6.2 Performance measures . 100
5.6.3 Quantitative results . 104
5.6.4 Results from synthetic data 106

5.6.4.1 The effect of the number of sampled points in a tra-
jectory . 107

5.6.4.2 The effect of the number of trajectories 108
5.6.4.3 The effect of the relative number of background tra-

jectories . 109
5.7 Discussion . 110

6 Conclusion and Future Work 112

A Algorithm for the minimum weight edge cover 115

Bibliography 117

iv

List of Tables

2.1 Characteristics of the test sequences 18

2.2 Performance measurements for the lowest possible false positive rate
obtained . 23

4.1 Attribute grammar for casing vehicles in a parking lot. 74

4.2 Attribute grammar for normal events in a parking lot. 77

5.1 Quantitative results from dataset 1. 106

5.2 Quantitative results from dataset 2. 106

v

List of Figures

2.1 One-dimensional example of the variance measure 13

2.2 Results of combining variance and background subtraction 15

2.3 Sample frames from the test sequences and the detection results . . . 19

2.4 The effect of object speed . 21

2.5 ROC curve for pixels detected in a noisy frame 24

2.6 The test sequence with rapid illumination changes 25

2.7 Performance under rapidly changing illumination 25

3.1 An example of a target-measurement association hypothesis repre-
sented by a bipartite graph. tN and mD are dummy nodes that covers
unassociated measurements and targets, respectively 37

3.2 Association of area targets and blob measurements. (a) nonlinearity
in merging and splitting into parts. (b) linear approximation 38

3.3 Illustration of partitioning the solution space given the current solu-
tion E = {e1, e2, e3}. 41

3.4 The algorithm for generating k-best hypotheses given multiple parent
hypotheses . 43

3.5 Estimated tangent points on the bounding box of the merged mea-
surement. 46

3.6 Sample frames from the multiple hypothesis tracking result. 50

3.7 Comparison between multiple hypothesis (a)–(d) and single hypoth-
esis (e)–(h). Frames 398 and 403 show before and after target split.
Frame 410 contains false positive measurement. 51

3.8 Sample frame from the full soccer video. 53

3.9 Tracking success rates on the full soccer video under (a) varying de-
grees of occlusion, (b) different number of targets involved in an event. 54

3.10 Sample interactions for which tracking failed. (a): bouncing targets
(target bounding boxes are not shown for clarity), (b): bad target
location estimate within a merged measurement. 54

vi

3.11 Tracking results from security videos. (a)–(c): camera 1, (d)–(f):
camera 2. 56

4.1 Algorithm for handling multiple event threads in the scanning step. . 70

4.2 A block diagram of the event recognition system 71

4.3 Recognition results for casing vehicles in the parking lot. (a) A person
walks in, cases vehicles, and walks away. (b) A person drives in, cases
vehicles, and drives away. (c) A person drives in, stops twice, and
walks into the building. 75

4.4 Normal events in the parking lot. 79

4.5 Normal events in the parking lot. (a)–(c): Dropping off a person.
(d)–(f): Picking up a person. 79

4.6 Abnormal events in the parking lot. (a)–(c): Illegal parking. (d)–
(f): Parking and not entering the building. (g)–(i): Parking and not
exiting the vehicle for a long time. 80

5.1 Clustering result for 2-D point data. 90

5.2 Salient clusters detected in the parking lot dataset 1. 97

5.3 Salient clusters detected in the parking lot dataset 2. 98

5.4 Ground truth clusters for the parking lot dataset 1. 101

5.5 Spectral clustering result for the parking lot dataset 1. 101

5.6 Single-link clustering result for the parking lot dataset 1. 101

5.7 Ground truth clusters for the parking lot dataset 2. 102

5.8 Spectral clustering result for the parking lot dataset 2. 102

5.9 Single-link clustering result for the parking lot dataset 2. 102

5.10 ROC plots for the hierarchical clustering methods. 105

5.11 The effect of the number of sampled points in a trajectory. (n = 200,
nf = 133) . 108

5.12 The effect of the number of total trajectories in the dataset. 109

5.13 The effect of the relative number of background trajectories. 110

vii

Chapter 1

Introduction

Surveillance cameras are becoming ubiquitous, however human resources to

supervise and process the abundant video data are expensive and limited. Auto-

matic video surveillance address this problem by recognizing activities of interest

without human intervention. In this dissertation we discuss several key components

of automatic video surveillance.

1.1 Motivation

Detecting moving objects is one of the most fundamental tasks in video surveil-

lance. A common approach for detecting moving objects is background subtraction

where a statistical model of the background pixels is compared against each image

frame in the video. However, this approach typically requires some training period

to construct the background model. Although techniques exist for adaptively up-

dating the background model, they are generally not robust to rapid changes in

the background. Also, background subtraction does not effectively handle tempo-

rally transient spike noise caused by the noise in the image or by abrupt but small

displacement of objects in the scene. This is because in this approach, temporal

information is not fully utilized.

Persistently tracking the moving objects is also of great interest in video sur-

1

veillance. A great amount of work in the computer vision community has been

focused on tracking a single target. On the contrary, relatively less attention was

given to tracking multiple objects simultaneously. In multi-object tracking, the prob-

lem of determining which observation arises from which target (which is commonly

referred to as data association) must be addressed. Moreover, in visual tracking

where the targets often occlude each other, targets may appear to merge or split.

Many approaches for this problem has been ad-hoc, often extending the single-object

tracking methods to multi-object case.

Recognition of short-term events such as human gesture has been studied

extensively using statistical pattern recognition techniques, such as Hidden Markov

Models. However, it is difficult to apply the same approach to the problem of

recognizing events that span extended periods of time with complex structure, often

involving multiple interacting objects. By structure we mean the spatial, temporal

or other relations among the sub-components of the data. Such complex events can

be better recognized by explicitly modeling the structure of an event. It is known

from theoretical studies that learning a non-trivial structural model from examples

is very difficult [13]. Therefore, the state-of-the-art approaches for these problems

are based on human designed models that reflect domain knowledge. The remaining

issue then is to devise an appropriate representation of the model such that it is

flexible enough to be able to describe complex structures yet simple and intuitive

for the human designer. Existing representations for short-term events such as finite

state automata or Hidden Markov Models may not have adequate expressive power.

On the other hand, generic logic-based representations may not be well suited for

2

expressing temporal structures, though it is possible.

While it is possible to classify relatively simple patterns of activities using su-

pervised training methods, it is desirable to detect and classify frequent patterns of

activities in an unsupervised manner. Unsupervised clustering approaches have been

successfully applied to activity analysis in some domains. But a difficulty lies in the

fact that in a general surveillance scene, there may exist many patterns that does

not correspond to any frequent activity. For such scenarios, conventional clustering

methods may produce non-meaningful clusters and the outliers may bias the char-

acteristics of the clusters that represent true activities. Thus it is important to find

only the clusters that are significant using some reasonable measure of significance.

1.2 Approach

We employ local temporal variance as a measure for moving object detection.

The pixel-wise temporal variance is efficiently computed through a recursive filter

with exponential window. The exponentially decreasing nature of the window allows

for sensitive detection of consistent change in the pixel values while the relatively

large window size suppresses transient noise. Since we estimate the variance online

from a temporal window covering the past data, a trail of non-zero variance is

measured behind the moving object. To reduce the effect of this artifact, a simple

background model is used to suppress the variance in regions that is part of the

background with high confidence.

Our approach for multi-object tracking is based on Multiple Hypothesis Track-

3

ing (MHT) by Reid [51], which is one of the classical methods for multi-target track-

ing in the “small target” (including radar or sonar data) tracking community. In

small target tracking, the association between targets and measurements are as-

sumed to be one-to-one, meaning at most one measurement is associated with a

target and vice versa. We relax this assumption to allow association of a single

target with multiple measurements and multiple targets with a single measurement,

which is more suitable for visual tracking of object of relatively large size. Following

the approach of MHT, a number of the most likely associations are hypothesized

and propagated over time. However, the number of possible data association is ex-

ponential in the number of targets and exhaustive enumeration is often impractical.

We propose an efficient method of searching for the k-best hypothesis association

given the targets and the object detection information. Further, we deal with the

nonlinearity of the association cost for blob targets using a linear approximation

method in the hypothesis generation step.

For recognizing high-level events, we propose to use syntactic models. In syn-

tactic models, patterns are expressed by a sequence of symbols which corresponds

well with the sequential nature of events. Specifically, we choose to use attribute

grammars (context-free grammars with attributes associated with the symbols) for

representing the events. In contrast to conventional grammars, attribute gram-

mars are capable of describing features that are not easily represented by syntactic

patterns that uses finite symbols. Using an online attribute context-free language

parser as the main framework, we describe a complete real-time event recognition

system. The motion trajectories generated by tracking moving objects are used

4

as the raw data for recognizing events. Primitive events and their attributes are

extracted from the trajectories, which are incrementally parsed according to the

attribute grammar to recognize high-level events. Our approach handles multiple

concurrent events involving multiple entities by associating object identification la-

bels with event threads. The attribute grammar may be used to model specific

events of interest or general events that typically occur in a scene. In the latter

case, the modeled events are recognized and labeled with the event category, while

events that does not follow the grammar are labeled as abnormal.

We present a method to automatically discover salient activities using a very

general model of trajectories. Our approach is motivated by prior work in percep-

tual organization for detecting salient groups of image features. Specifically, the

probability of trajectories accidentally forming a group is used as the measure of

significance of the group. The probability is derived from an assumed general model

of random background trajectories and a definition of the spatial region determined

by a group of trajectories. The grouping algorithm finds maximally non-accidental

groups and automatically determines the threshold for significance.

1.3 Original Contributions

• A novel measure for detecting moving object is proposed, which is based on

a combination of temporal variance-based motion detection and background

modeling. In addition, a thorough performance analysis is given for both our

approach and a common background modeling (Kernel density estimation)

5

approach.

• A fully automatic real-time multi-object tracker is demonstrated that is ca-

pable of handling a comprehensive types of object behaviors and interactions.

In particular, the merging and splitting of objects handled by a theoretically

sound bipartite graph edge covering model. Through the use of a combina-

torial optimization technique (minimum weighted graph edge covering), this

method efficiently generates the most probable multiple hypotheses regarding

the joint association between targets and measurements.

• We have introduced attribute grammar for high-level event representation,

which has not been done before to our knowledge. The Earley parsing algo-

rithm is extended to handle multiple concurrent threads of events and multiple

objects in a single event. In addition, the conventional attribute grammar is

extended to include uncertainty in the conditions on the attributes, which is

used to assign a degree of confidence for an event. A new method for abnor-

mal event detection is proposed using a syntactic model of normal events for

constrained surveillance scenes.

• Applying the principle of non-accidentalness to trajectory features for activ-

ity recognition has not been done previously to our knowledge. The notion

of regions for evaluating the accidental probability is defined in a principled

manner, which results in a theoretically plausible means of determining the

threshold for significance. We also propose an agglomerative clustering algo-

rithm that directly optimizes the non-accidentalness criterion.

6

1.4 Organization

The next two chapters (2 and 3) correspond to two lower levels of processing

temporal visual information, namely detection and tracking. Chapter 2 describes

our method of detecting moving object based on temporal variance, and in Chap-

ter 3 the multiple hypothesis approach for tracking multiple objects are discussed.

The following two chapters are related to higher level interpretations of the visual

information. Chapter 4 deals with the use of attribute grammars for recognizing

high-level events and detecting abnormal events. Chapter 5 discusses our approach

for discovering patterns of activities using the measure of accidental probability for

groups of trajectories. Chapter 6 summarizes the conclusions of this dissertation

and discusses the future work. Relevant background material and survey of related

literature are included in the beginning each chapter.

7

Chapter 2

Moving Target Detection Based on Temporal Variance

2.1 Introduction

Moving target detection and localization is one of the most fundamental tasks

in visual surveillance. Assuming that the video is taken from a stationary camera,

moving target detection algorithms are mostly based on either some kind of image

differencing or background modeling.

A simple moving target detection can be achieved by subtracting and thresh-

olding two successive frames from a sequence. However, frame differencing alone is

not robust enough for most applications. Jain and Nagel [32] used an accumulation

of the thresholded difference images with respect to a reference frame. A Moving

object detection method by Paragios and Tziritas [47] used the consecutive image

difference in a Markov Random Field formulation. Rosin [52] compared several dif-

ferent criteria for choosing the threshold for change detection. A comprehensive

survey on general change detection in images is given by Radke [50].

Background modeling methods construct a model of the stationary background

and then each pixel of a video frame is classified as a part of a moving object,

if the pixel is not likely to be from the background. Stauffer and Grimson [54]

modeled each pixel value as a mixture of K Gaussians and used an approximate

on-line algorithm to update the model. In [19], Elgammal et al. used kernel density

8

estimation to model each pixel of the background and applied a threshold on the

probability to obtain the foreground. False detection was suppressed by considering

the local spatial information in the model. To achieve further robustness, results

from two separate models, a short-term model with selective update and a long-term

model with blind update are combined to produce the final result.

Background subtraction methods typically require some training period to

construct the background model and are generally not robust to rapid changes in

the background. We suggest a novel approach for moving object detection using the

local temporal variance as the main criteria. In addition, a simple background model

is used to enhance the detection. The algorithm not only requires minimal compu-

tation and memory but also quickly adapts to a changing background, eliminating

the need for the training period. Our method is also robust to image degradation

that is previously unobserved, and thus unmodeled.

To the best of our knowledge, temporal variance has not been used directly as

the main measure for target detection. In [28], the local temporal mean of difference

images and adaptive background modeling was combined. The Dynamic Retina [49]

used the local temporal mean as an intensity normalization factor to measure the

intensity offset caused by camera jitter as well as object motion. Temporal variance

of the spatial average of consecutive frame difference was used in [2] to determine

when to update the threshold for background subtraction.

In this chapter, we describe the use local temporal variance as a measure of

moving object detection. The following section describes the temporal variance

measure in detail. Next, we show how a simple background model is utilized to

9

remove the artifact coming from the use of a local window. Finally, we describe

our performance metric based on the bounding boxes and centroids of the objects,

followed by the evaluation results.

2.2 The temporal variance measure

Since an object in a video generally occupies a small spatial area and almost

always moves with a limited speed, the changes in the pixel values caused by the

moving object are localized in the spatio-temporal domain. It is the pixel-wise tem-

poral locality that we wish to exploit. Although consecutive two-frame differencing

is highly adaptive to changes in the scene, it is also very sensitive to noise. Therefore,

we use information from multiple frames for robustness. One natural way to mea-

sure the amount of change in some time interval is the variance. Further, we apply

an exponentially decaying weight (window) to the pixel values to save computation

and memory. This is easily computed by the recursive filter

m(t) = αm(t− 1) + (1− α)x(t)

m2(t) = αm2(t− 1) + (1− α){x(t)}2

v(t) = m2(t)− {m(t)}2 (2.1)

where x(t) is the value of the pixel at time (frame) t, α is the decay rate, v(t) is the

variance, and t = 1, 2, In order to avoid floating point operations, the equations

10

can be rewritten as

m(t) = ((N − 1)m(t− 1) + x(t))/N

m2(t) = ((N − 1)m2(t− 1) + {x(t)}2)/N

v(t) = m2(t)− {m(t)}2 (2.2)

where N = 1/(1 − α) is a measure of the size of the exponential window. The

initial value m(1) and m2(1) are respectively set as x(1) and x(1)2. Moving target

detection can be achieved by thresholding this variance. Note that the variance

measure is reduced to the consecutive frame differencing by using a uniform window

of length 2:

m(t) = (x(t− 1) + x(t))/2

m2(t) = ({x(t− 1)}2 + {x(t)}2)/2

v(t) = m2(t)− {m(t)}2

= {x(t− 1)− x(t)}2/2 (2.3)

This approach uses the variance directly as the measure whereas background

subtraction methods model the background with the variance information (or proba-

bility distribution in general) and use the pixel values as the measure. This strategy

is similar in spirit to the Resonant Retina [26] where the variance arising from cam-

era jitter is actively used to collect useful information. The increase in variance of

a pixel is caused by an object with a different intensity entering the pixel. Fur-

11

thermore, since an object usually has texture or is non-rigid, as the object moves

through, the pixel tends to have even larger variance. The advantage of using an

exponential window, apart from its simplicity is that it is sensitive to the initial

entry of the object and suppresses noise to some degree. Large coherent change in

the signal is quickly amplified, while temporary noise is smoothed out. Assuming a

simplified case of perfectly still background and a moving object of uniform intensity

i.e., a square pulse temporal signal, the variance is expressed as

v(t) =

0, t ≤ 0

A2(1− αt)αt, 0 < t ≤ T

A2(1− αT)αt−T
{
1− (1− αT)αt−T

}
, t > T

(2.4)

where the pulse starts right after time 0 and ends at time T , A is the intensity

difference between the background and the object, and α is the window decay rate.

The maximum value of v(t) in the interval 0 < t ≤ T is

max(v(t)) =

A2(1− αT)αT , T < − log 2/ log α

(A/2)2, T ≥ − log 2/ log α

(2.5)

meaning the peak in v(t) is suppressed if the pulse duration T is short. Note that

the critical point t = −log2/logα coincides with the half-life of the exponential

window. As an example, Figure 2.1(a) illustrates two different pulse durations and

the square-root of the variance. The short pulse at t = 10 results in a smaller peak

variance than the case with the longer duration starting from t = 60. Figure 2.1(b)

12

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18

20

t

input
stddev

0 20 40 60 80
0

20

40

60

80

100

120

t

input
stddev

(a) (b)

Figure 2.1: One-dimensional example of the variance measure

shows an example taken from a single pixel of a video with a person walking through

it. Unfortunately, because the window has a long “tail”, the variance decreases too

slowly over time. This results in the detection of the moving object with a long

trail behind its trajectory (Figure 2.2(a)). Note that there is a tradeoff between the

window size N and the robustness of detection: a small N will shorten the trail but

cannot suppress the noise very well.

2.3 Removing the trail artifact

To eliminate the trail effect, a simple background subtraction is performed

combining the result with the variance. The background is simply modeled by

mean and variance, which are also obtained from recursive filtering.

mbg(t) = ((Nbg − 1)mbg(t− 1) + x(t))/Nbg

m2bg(t) = ((Nbg − 1)m2bg(t− 1) + {x(t)}2)/Nbg

vbg(t) = m2bg(t)− {mbg(t)}2 (2.6)

13

m2bg(t) denotes the background mean and vbg(t) is the background variance. The

window size Nbg should be large compared to N so that the background model covers

a longer period and is robust to noise. The mean and variance is updated only if

the pixel is not part of the foreground. In order to avoid including any part of the

foreground to the background model, an enlarged foreground region is obtained by

thresholding the temporal variance from Equation (2.2) against a small value.

The background model is used to derive a confidence measure of the detected

foreground. Assuming a Gaussian distribution for each background pixel, one mea-

sure of a given pixel being a foreground can be obtained by the error function

fconf(t) =
1

σ

√
2

π

∫ d

0

e−z2/2σ
2

dz (2.7)

where d = |x(t)−mbg(t)| and σ =
√

vbg(t). The error function is close to linear near

zero. However, we need a function that is very small near the background intensity

so that it strongly suppresses false detection. Experience shows that the following

sigmoidal function is adequate for our purpose

fconf (t) =

1
2

(
1− cos

(
πd
rσ

))
, 0 ≤ d ≤ rσ

1, d > rσ

(2.8)

where r is a scale factor that determines the range of the function having the tran-

sition from 0 to 1. Finally, the square-root of the variance is multiplied by the

confidence value and thresholded to obtain the detection mask. (From here on,

“variance” refers to the square-root of the variance.) The threshold is defined as

14

(a) (b)

(c)

Figure 2.2: Results of combining variance and background subtraction

some factor of the average background variance over all the pixels. Figure 2.2(a),(b),

and (c) shows the variance, the confidence values, and the final detection mask, re-

spectively.

By combining the variance measure and background subtraction, the algo-

rithm retains the robustness of the variance measure while effectively removing false

detection in the trail. If background subtraction happens to give a false positive,

the variance measure is robust enough to suppress the error. False negatives from

background subtraction are less critical since they tend to occur sparsely. Even

when background subtraction fails overall, the result would at least be similar to

15

using the variance alone.

2.4 Performance evaluation

2.4.1 Implementation

The temporal window size for our variance-based method was chosen as N = 4

and Nbg = 8, the range for the confidence function was fixed at r = 9. The sigmoidal

function in Equation 2.8 is discretized into a lookup table for faster computation.

The algorithm implemented in Matlab can process 1.5 to 3 frames per second on a

1.7 GHz Pentium 4 processor, depending on the frame size. Another implementation

of a simpler version of the algorithm written in C++ achieves real-time rate of 30

frames per second.

At a higher level, the location of the moving object is determined by finding the

bounding box of the object and choosing the centroid of the detection mask inside the

box as the center of the object. Instead of looking for connected components, which

is computationally expensive, we use 1-dimensional projections of the detection

image mask to find the bounding boxes. First the mask is projected on the vertical

vector i.e., count the number of pixels in each horizontal scan line, and are segmented

into chunks that form horizontal strips in the 2-dimensional mask. Each strip is

projected on the horizontal vector to get the left and right sides of the box. A final

projection to the vertical vector gives a tight top and bottom bound. The boxes that

are close together are merged and boxes with sparse pixels are removed. Although

there exist configurations where this algorithm fails, most common situations are

16

handled correctly.

2.4.2 Performance metric

Three types of performance metrics were used for sequences that have bound-

ing boxes as ground truth.

• Detection rate is defined as the fraction of the ground truth boxes that are

successfully detected by the algorithm. By successful detection we mean the

centroid of the detected object is inside the ground truth box.

• False positive rate is the total number of detection centroids that does not

land on any of the ground truth boxes, divided by the number of frames.

• Multiple detection refers to the average number of detection inside the ground

truth box that is successfully detected. This indicates the amount of “broken

up” detection of an object.

The ground truth bounding boxes were not quite correct—occasionally part of the

object protruded out a few pixels from the box. In our experiments, the ground

truth boxes were enlarged by 5 pixels in all directions to correct this error.

2.4.3 The dataset

The PETS 2001 datasets were used to evaluate the performance since the

ground truth information for some of the sequences is publicly available. However,

the ground truth is in the form of bounding boxes for the objects. To accurately

17

Sequence Num. of frames Frame size Object size Travel distance (x,y)

1 410 320 × 490 14.8 × 41.1 (470, 61)
2 139 392 × 322 71.7 × 50.6 (355, 53)
3 341 490 × 306 18.1 × 53.2 (413, 94)

Table 2.1: Characteristics of the test sequences

evaluate the performance of the detection algorithm, the sequence is cut and cropped

so that only one moving object exists in each sequence, or two objects do not

intersect each other. The reason for this is that when objects merge and split, the

detected centroid does not always fall inside a ground truth bounding box. This error

is caused by the bounding box algorithm, not from the main detection algorithm.

Three sequences, 1, 2, and 3, respectively containing a walking person, a moving

car, and another person were selected for testing (Figure 2.3). The characteristics

of each sequence are summarized in Table 2.1. Units are in pixels. Object size is

the average size of the bounding box over all frames. Travel distance refers to the

distance of the box centers between starting and ending frames. All the images were

converted to 256-level grayscale.

2.5 Experimental results

2.5.1 The effect of object speed

For the variance measure, the window size should be adjusted according to the

speed of the object. A slow object requires a long window; otherwise, the interior

of the object becomes hollow with small variance, especially when the object has

18

(a)

(b)

(c)

Figure 2.3: Sample frames from the test sequences and the detection results

19

little texture e.g., a solid colored object (see the vehicle in Figure 2.2(a)) or when an

infrared sequence is used. Conversely, a shorter window is desirable for a fast object

so that the length of the trail is minimized. For this experiment, the threshold factor

was fixed at 5.

Various object speeds were simulated by skipping or interpolating the original

frames. To speed up the object, larger frame steps were taken. Conversely to slow

down the object, sub-frames were created by linear interpolation between consecu-

tive frames, in which case the frame step was defined as a fraction. Figure 2.4 shows

the detection performance with respect to the frame step. Faster object speed in-

creased the false detection rate but did not degrade the detection rate. This is a

consequence of using background subtraction: Even if the detection step based on

variance had a long trail, background subtraction suppressed it, avoiding the bias

that would have occurred towards the tail. At slower speeds, the detection rate

slightly decreased and multiple detection increased. This is because the window size

becomes relatively shorter compared to the object speed, and the detection is broken

up into front and rear parts. This effect was amplified for larger objects (sequences

2 and 3). Multiple detection is considered relatively less critical in moving target

detection applications and the current fixed window size appears to be sufficient.

However, for some situation where the object speed is expected to be excessively

fast or slow, the window size should be adjusted in advance for better performance.

20

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
sequence 1

frame step (log
2
 scale)

det rate
FP rate
multi det

(a)

−4 −2 0 2 4
0

0.5

1

1.5

2

frame step (log
2
 scale)

sequence 2

det rate
FP rate
multi det

(b)

−4 −2 0 2 4
0

0.5

1

1.5

2

2.5

frame step (log
2
 scale)

sequence 3

det rate
FP rate
multi det

(c)

Figure 2.4: The effect of object speed

21

2.5.2 Comparison with background subtraction

A background subtraction method using kernel density estimation (KDE) [19]

was also implemented for comparison. For the training phase, a section of frames was

used which contains only the background. The number of training frames used was

set to be equal to the number of samples. Shadow detection was not implemented

and the same bounding box algorithm was used.

The identical test sequences were given as input for both our variance-based

and the background subtraction algorithm. For KDE, 40 samples are used (more

samples did not significantly increase the performance for the test sequences) and

only the “short term model” is used. For the variance-based algorithm, 5 consecutive

frames consisting of only the background were added in front of the test sequence.

The background-only frames were not required for our algorithm to work, but was

included to remove the errors caused by inaccurate estimates of the parameters

during the initial frames. This allows a fair evaluation of the long-term performance.

The results are shown in Table 2.2. A set of different thresholds was used for each of

the algorithms. For most thresholds, both methods achieved perfect detection. Since

it is difficult to compare the two results objectively, the threshold that produced the

lowest false positive was selected for each algorithm. It was observed that our

algorithm tended to have lower false positives under similar multiple detections.

In order to compare the performance under a temporary image quality degra-

dation, 20 frames from sequence 1 were selected with the last frame recompressed

using JPEG compression quality rate of 50%. (The original frame was in JPEG

22

Sequence—
Detection rate False Positive rate Multiple detection

Proposal KDE Proposal KDE Proposal KDE

1 1.0000 1.0000 0.0366 0.0512 1.1098 1.2415
2 1.0000 1.0000 0.0000 0.0863 1.0072 1.0000
3 1.0000 1.0000 0.0000 0.0528 1.0323 1.0469

Table 2.2: Performance measurements for the lowest possible false positive rate
obtained

format with a quite low compression ratio at 3.8%.) The resulting frame has a root

mean squared error of 2.8966 and relative root mean squared error (with respect to

the spatial variance) of 0.0880. Pixel-wise ground truth mask was manually gener-

ated for the last frame. The two algorithms were tested with varying thresholds.

The ROC curve for the detection on the last frame is shown in Figure 2.5. Our pro-

posed algorithm consistently gave less false positive rate under equal true positive

rate. Since background modeling approaches rely on the history of the pixel values,

it is likely to give false positives for the values that exceed the modeled noise range.

On the contrary, our variance measure does not rely on history and is effective in

handling moderate spike noise as described in Equation (2.5).

Next, performance under rapidly changing illumination was compared. The

test frames are from another sequence of PETS 2001 dataset for which the ground

truth is not available. We used manual selection and interpolation to generate a

ground truth bounding box data. The number of frames is 600 with frame size 454

× 360. Figure 2.6 shows a plot of the average intensity for each frame and two frames

with the minimum and maximum mean intensity. For the KDE method, in addition

to the “short-term” model, the “long-term” model that covers the entire sequence

23

0 0.002 0.004 0.006 0.008 0.01 0.012
0.6

0.65

0.7

0.75

0.8

0.85

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

KDE
Proposal

Figure 2.5: ROC curve for pixels detected in a noisy frame

was used to remove persistent false positives. Figure 2.7 plots the false positive

rate vs. the detection rate, as defined in Section 2.4.2. For our proposed method,

only the threshold was varied whereas for KDE, various thresholds and sample sizes

were used. The plot shows that our algorithm gives higher detection rates with low

false positive rates. The KDE approach needs to keep a small number of samples

to quickly adapt to the changing illumination but on the other hand requires large

enough samples to be accurate. However, our approach does not require a large

number of samples, therefore is more adaptive.

2.6 Summary

We have proposed a temporal variance-based approach for moving target de-

tection. The variance measure is robust to noise and gives a low false detection rate.

The trail artifact is greatly reduced by a simple background modeling method. Ex-

24

0 100 200 300 400 500 600
80

100

120

frame

m
ea

n
in

te
ns

ity

(a)

(b) (c)

Figure 2.6: The test sequence with rapid illumination changes

0 0.1 0.2 0.3 0.4 0.5
0.8

0.85

0.9

0.95

1

false positive rate

de
te

ct
io

n
ra

te

proposal
KDE

Figure 2.7: Performance under rapidly changing illumination

25

periments show that a fixed window size can be used for a reasonable range of object

speeds. Under normal conditions, our method performed as well as the KDE-based

background subtraction approach. In addition, our approach performs better than

KDE under temporary compression noise and rapidly changing illumination. The

algorithm is simple and fast and is highly adaptive to changing conditions, making

it suitable for a wide range of real-time surveillance applications.

26

Chapter 3

A Multiple Hypothesis Approach for Multi-Object Visual Tracking

3.1 Introduction

Visual tracking of multiple objects involves not only localizing each object in

the scene, but also the problem of data association. Since the observation originat-

ing from one target object may interfere with observations from other targets, all

targets and observations should be jointly associated in a coherent manner. Often

in computer vision applications, object detection information may be given, which

greatly simplifies the object localization problem. In this chapter, we use moving

object detection to localize objects and focus mainly on the data association prob-

lem. Further, we restrict ourselves to tracking relatively small objects that have

little useful appearance information.

Data association methods for multiple target tracking have been studied for

many years in the small target (e.g., radar or sonar) tracking community. Since

targets are assumed to be small in these methods, it is assumed that a target and

its measurement is associated in a one-to-one manner i.e., a target is associated with

at most one measurement and vice versa. Well known data association approaches

used in this context include Joint Probabilistic Data Association Filter (JPDAF)

[4] and the Multiple Hypothesis Tracking (MHT) by Reid [51]. The small target

tracking problem is very similar to visual object tracking in static cameras in that the

27

observation (measurement) data can be given by the detection algorithm rather than

features being searched over some large data (image). However, unlike in the small

target tracking problem, objects detected in images may split or merge. We propose

a tracking algorithm based on MHT, relaxing the association constraint to allow

association of a single target with multiple measurements and multiple targets with

a single measurement. We refer to this type of association as multiple association. In

addition, an efficient k-best hypothesis generation algorithm for multiple association

is proposed. Further, we deal with the nonlinearity of the association cost for blob

targets using a linear approximation method in the hypothesis generation step.

A survey of related work is given in Section 3.2, followed by some discussion on

the background work related to this chapter in Section 3.3. The detection method

and the tracking model for individual targets are respectively described in Section 3.4

and Section 3.5. Discussions on multiple hypothesis generation for the multiple

associations are presented in Section 3.6. In Section 3.7 the implementation issues

are addressed and the experimental results are given in Section 3.8.

3.2 Related work

We briefly review some related prior work that addressed the data association

problem in multi-object tracking.

One type of approach is to consider a finite sequence of measurement sets

and create a graph that represents the possible associations from one time step to

another, then extract the optimal set of trajectories from the graph. The method

28

used in Medioni et al. [43] used a graph where each edge was assigned a weight

based on pixel correlation and spatial distance. The blobs that were split due to

noise were merged by clustering tracks in the graph. The trajectory for each object

was extracted from the graph by searching for an optimal path where the cost of

a path was a function of the similarity measure between the nodes and the length

of the path. A similar approach was adopted in [8] where the graph representation

implicitly retained multiple hypotheses regarding the possible trajectories. Dynamic

occlusion was handled by deferring the association for multiple time steps. The

best hypothesis was updated over time from the dynamically created graph. The

method by Han et al. [25] may also be viewed as a graph-based approach. A

graph that maintains multiple hypotheses was maintained with their corresponding

likelihood. The association hypothesis included object split and merge in addition

to track initiation, termination and missing measurement. The likelihood of a joint

association was defined by individual likelihoods of the trajectories and a global

likelihood of the detection image. These approaches often rely on ad-hoc techniques

for extracting the trajectories.

Other approaches associate the existing targets with the measurements at

each time step. These approaches typically assumes one-to-one association between

targets and measurement and thus require techniques to segment the merged mea-

surements caused by dynamic occlusion. Javed and Shah [33] used a suboptimal

greedy algorithm for target association. The occluded objects was predicted by

the overlap of the target regions, in which case the measurements for each target

was estimated from the nearest sub-region of the merged measurement. Chen et

29

al. [7] described a method that uses bipartite graph matching for target associa-

tion, which finds the optimal joint association under the one-to-one assumption.

Merged blobs were segmented by finding the modes of the projected intensity dis-

tribution. In [21] the problem of merged and split measurements was handled by

creating virtual measurements so that each target may be associated with exactly

one (virtual) measurement. This is done by respectively splitting and merging the

conflicting measurements and extra measurements within the validation gates (fea-

sible regions) of targets. The most likely joint association among all association is

selected in each time step.

Khan et al. [37] used a Markov chain Monte Carlo (MCMC) technique to

deal with the association problem. Multiple hypotheses were generated regarding

joint associations that allow split and merge of targets through MCMC sampling

in the joint association space. The joint distribution of the target locations was

represented by a set of hybrid samples each corresponding to a different hypothesis.

MCMC sampling was also used in [63]. In contrast to the approximate nature of

MCMC methods, our approach is based on an efficient combinatorial optimization

algorithm that directly finds the best hypotheses.

It is noted that there is a large body of work on particle filtering methods

for jointly estimating the locations of targets as well as the associations [29, 6, 40],

which is beyond the scope of this chapter.

30

3.3 Background

3.3.1 Classical small target tracking

We summarize the two classical methods for small target tracking—JPDAF

and MHT. The basic approach described here should serve as the background for

this chapter. Both approaches consider a set of feasible hypotheses regarding joint

associations between targets and their measurements, along with their joint prob-

abilities. The target states are assumed to follow Gaussian distributions and have

linear dynamics thus the Kalman filter is used to track the targets.

JPDAF considers joint association hypotheses with the latest (current) mea-

surements only. Possible associations in the hypothesis are: target-measurement

association, undetected target, false measurement. Targets assumed to be initial-

ized by some other means and a fixed number of targets is assumed. The probability

of a joint association event is given by

P (θ|Z1:t) =
1

c
p(Zt|θ, Z1:t−1)P (θ) (3.1)

where θ represents a joint association hypothesis, Z is the measurements, t denotes

the current time step, and c is a normalization constant. p(Zt|θ, Z1:t−1) is the joint

measurement likelihood given by a product of the individual (Gaussian) likelihoods,

assuming conditional independence of the measurements given the association. The

prior probability P (θ) on the association is based on the number of false measure-

ments and true detections. To combine the multiple hypotheses in the current time

31

step, the association probabilities are marginalized over all feasible associations. The

probability P (θji|Zt) of associating measurement j with target i is defined as

βji =
∑

θ

P (θ|Z1:t)ω̂ji(θ) (3.2)

where ω̂ji is 1 if j is associated with i and 0 otherwise. Finally, each target i is

updated with the “combined measurement” using βji as the summing weight.

In contrast to JPDAF, Reid’s MHT approach considers cumulative history

of all feasible association hypotheses up to the current time, resulting in a tree of

hypotheses. Since the hypotheses are maintained over the time steps, this approach

is capable of initiating new targets. Thus the association of a measurement to a new

target is considered in addition to the three type of associations used in JPDAF.

Let Θ1:t
l denote the lth cumulative hypothesis

Θ1:t
l = {Θ1:t−1

s(l) , θt
l} (3.3)

where s(l) denotes the index of the previous (parent) hypothesis which the current

hypothesis θt
l is based on. The probability of the cumulative hypothesis is given by

P (Θ1:t
l |Z1:t) =

1

c
p(Zt|θt

l , Θ
1:t−1
s(l) , Z1:t−1)P (θt

l |Θ1:t−1
s(l) , Z1:t−1)P (Θ1:t−1

s(l) |Z1:t−1) (3.4)

where the prior probability P (θt
l |Θ1:t−1

s(l) , Z1:t−1) on the current hypothesis is evalu-

ated as in JPDAF. Since multiple hypotheses are created in the current time based

on multiple parent hypotheses, the cumulative hypotheses form an exponentially

32

growing tree. Thus the number of hypotheses need to be reduced by ignoring the

less likely ones. Common techniques [4] include “N -scan-back” pruning where all

the subtrees except the most probable one are removed from the node N time steps

back, and various thresholding methods.

3.3.2 An efficient method of generating association hypotheses

The previously described methods enumerate all feasible associations given

the targets and the measurements. This makes the computational complexity of

the algorithms exponential. Recently, Cox and Hingorani [9] introduced an efficient

method of generating only the k-best association hypotheses, which was based on

Murty’s ranked assignment algorithm [46]. This method was used to track multiple

point features using the MHT framework. We briefly describe the formulation of

the association problem and the algorithms used in their work.

For tracking point targets, the problem of generating the optimal one-to-one

association hypothesis can be mapped to an assignment problem as defined below.

Definition 3.1 Given an edge weighted graph G = (V, E), A minimum weight

perfect matching is a subset of edges E ′ ⊂ E such that every vertex in V is incident

on exactly one edge in E ′ and the sum of the weights in E ′ is minimum.

Polynomial time algorithms exist for minimum weight perfect matching [53]. The

problem of finding the minimum weight perfect matching in a bipartite graph is

called the assignment problem. The target-measurement association can be ex-

pressed by a bipartite graph with one set of vertices representing the target and the

33

other set representing the measurements. The weights for the edges in the bipartite

graph are assigned as the negative log-likelihoods of the measurement given a target,

the sum of which corresponds to the joint likelihood (product of likelihoods).

Murty’s algorithm finds k assignments that have the lowest weights among all

the possible assignments in polynomial time. The algorithm works by repeatedly

finding the next best solution for the assignment problem excluding the solutions

already found. The exclusion of solutions are achieved by solving a set of modified

assignment problems (we call these the sub-problems) such that each sub-problem

excludes some edges in the existing solutions and no solutions for the sub-problems

are identical. Each sub-problem effectively partitions the set of all possible assign-

ments (we call this the solution space) where each partition does not contain any of

the existing solutions.

3.4 Object detection

The silhouettes of the moving objects (blobs) are detected using background

subtraction techniques [36, 38]. Connected component analysis is applied to the

binary map to obtain the bounding boxes of each measurement represented as

z = (cx, cy, dx, dy)
T (3.5)

where cx and cy are the target center, dx and dy denote the size of the bounding box.

A simple size filter that removes small detections is then applied. We do not attempt

to segment the detected objects (for example as in [44]), which is very difficult for

34

small objects or objects with similar appearances.

3.5 Tracking model

The standard Kalman filter [4] is used to estimate the individual target states.

The process and measurement model are expressed as

xt = Axt−1 + w (3.6)

zt = Hxt + v (3.7)

where xt and zt denote the state and the measurement at time t, A and H are the

process and measurement matrices, and w and v denote the process and measure-

ment noise, respectively. The state xt is defined as

xt = (cx, cy, dx, dy, vx, vy)
T (3.8)

where cx and cy are the target center, dx and dy denote the size of the target bounding

box, and vx and vy represent the velocity of the target (the time index t has been

35

omitted). The following process and measurement matrices are used

A =

1 0 0 0 1 0

0 1 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

,H =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

(3.9)

where A represents a constant velocity model with constant object size. In this

work, we assume that the targets have little distinguishable features in appearance.

Therefore we do not model the appearance of the targets although it can be included

in the target model.

3.6 Hypotheses generation

We propose a multiple hypothesis approach that handles objects (1) entering

and (2) exiting the view, (3) merging and (4) splitting, as well as (5) detection of

an object as split parts due to the limitation in background subtraction.

Let nT and nM denote the number of targets and measurements, respectively.

An association hypothesis can be represented by a bipartite graph as shown in Fig-

ure 3.1. The nodes ti and mj respectively correspond to targets and measurements.

The node tN is a dummy node that covers all measurements not associated with any

existing targets and similarly the dummy node mD covers any unassociated targets.

36

t
1

t
2

t
3

t
4

t
5

m
1

m
2

m
3

m
4

m
5

t
N

m
D

t
6

Figure 3.1: An example of a target-measurement association hypothesis represented
by a bipartite graph. tN and mD are dummy nodes that covers unassociated mea-
surements and targets, respectively

The only constraint in the association is that each node should have at least one

incident edge. If all mj’s are associated or all ti’s are associated, tN is connected

to mD. An exhaustive enumeration of all such possible hypotheses would result in

2nT nM hypotheses, which may become infeasible even for moderately large values of

nT and nM .

The problem of finding an optimal multiple association in a bipartite graph

can be posed as a problem of finding the minimum weight edge cover (MWEC) in a

bipartite graph.

Definition 3.2 Given an edge weighted graph G = (V, E), A minimum weight edge

cover is a subset of edges E ′ ⊂ E such that every vertex in V is incident on at least

one edge in E ′ and the sum of the weights in E ′ is minimum.

Fortunately, an algorithm exists which reduces the MWEC problem to a minimum

weighted graph matching problem in polynomial time [53]. Details on this algorithm

are given in Chapter A. Hereafter, the term association cost will be used in place

37

t
i1

t
i2

mj

mj1

mj1 mj2

t
i

mj

ti

zij’

(a) (b)

Figure 3.2: Association of area targets and blob measurements. (a) nonlinearity in
merging and splitting into parts. (b) linear approximation

of edge weight. Murty’s algorithm can also be adapted to the ranked MWEC prob-

lem. However, in tracking bounding boxes of targets it is not reasonable to directly

map the measurement log-likelihood to the edge cost (weight), since the problem of

multiple association of targets and measurement blobs is not entirely linear in the

sense that the sum of individual association costs may not accurately represent the

joint association cost. For example, when an object is detected as split parts, the

cost of associating a target with all the split parts should be less than the sum of

individual association costs. Similarly, for the case of two targets associated with a

single measurement (merge), the cost should be less than the individual sum if the

appearance—or the size—of the merged blob is significantly different from either of

the targets. Figure 3.2(a) illustrates these two situations. We propose a two-pass

approach that approximates the optimal k-best solution.

38

3.6.1 Linear cost hypothesis generation

In the first pass, a linear approximation to the multiple association problem

is used to generate the k-best solution. We treat the predicted targets and the

measurements as point targets by considering only the center coordinates (cx, cy)
T.

This assumption significantly reduces the nonlinearity in the cost function. However,

for the merged measurements which often results in a blob larger than either of the

individual targets, it is unreasonable to assume that the center of the measurement is

the location of the “point”. In order to approximate the true distance to a potentially

merged measurement, we assume that all measurements are merged measurements

and the distance is determined by the following procedure:

• Let x̃′i be the center coordinates of the ith predicted target state x̃i and denote

z′ij as the approximated measurement center within the measurement zj for

association with x̃i.

• For each pair x̃i, zj, determine z′ij by the following rule.

– If the measurement zj is smaller than the target x̃i, the center of zj is

used as z′ij.

– Otherwise, shift x̃i to the interior of zj such that the shifted distance is

a minimum and use the shifted x̃′i as z′ij, as shown in Figure 3.2(b).

Using the approximated z′ij, the cost between x̃i and zj is defined as

C(i, j) = −2 log(N (z′ij;H
′x̃′i,S

′)) (3.10)

39

where N (x;m,Σ) denotes the normal distribution with mean m and covariance

matrix Σ, and H′x̃′i and S′ denote the predicted measurement and covariance of the

point measurement, respectively. Fixed costs are assigned for the dummy nodes.

C(i,D) = cD, i = 1, . . . , nT

C(N, j) = cN , j = 1, . . . , nM (3.11)

C(N,D) = 0

The cost C(N, D) for the edge connecting the two dummy nodes are set as zero

so that this edge can always be chosen when needed without affecting the cost of

the solution. The cost matrix C represents a fully connected bipartite graph for

the MWEC problem. The solution to the MWEC for the bipartite graph can be

obtained using the reduction to the assignment problem and any general algorithm

for the assignment problem. In our implementation the assignment alogrithm by

Jonker and Volgenant [35] is used.

We now describe the method for generating the k-best solution to the problem

using a modification of Murty’s algorithm. The key idea of Murty’s algorithm is

that given a problem and its solution, the problem may be “partitioned” into a

set of sub-problems which partitions the solution space that does not include the

solution of the original problem. Here the problem is the MWEC, given by the

association cost matrix. Specifically, given the best MWEC solution (set of edges)

E(1) = {e1, . . . , en} to a problem P0, the solution space can be partitioned into set

S1 that does not include the first edge e1 of E(1), and set S1 that does. S1 can in

40

S0

E={e1,e2,e3}

-e
1

+e1

S1
+e1,-e2 +e1,+e2

+e1,+e2,

-e
3

+e1,+e2,+e3

S2

S1
S2 S3 E

E1 E2 E3

Figure 3.3: Illustration of partitioning the solution space given the current solution
E = {e1, e2, e3}.

turn be partitioned into S2 and S2, where S2 includes e1 but excludes e2, and S2

includes e1 and e2, and so forth. Figure 3.1 illustrates an example of the partitioning

for E(1) = {e1, e2, e3}.

Let Pm be the sub-problem whose possible solution space is the mth partition

Sm. We observe that the sub-problem Pm needs to be constrained such that some

edges are forced in the solutions and other edges are excluded from the solutions.

Excluding an edge (i, j) is done simply by removing the edge from the cost matrix

Cm of the problem (set Cm(i, j) = ∞). To force an edge (i, j), we set Cm(i, j) = 0

and solve the MWEC problem, after which we add (i, j) to the solution. Note that

the MWEC solution will not always include (i, j) but this does not affect the cost

of the solution, therefore adding (i, j) gives the optimal solution with the forcing

constraint. Thus a constrained problem Pm is defined by the pair 〈Fm,Cm〉 where

Fm is a list of forced edges.

To obtain the second-best solution, we solve all subproblems {P1, . . . , Pn} of

E(1). Let {E1, . . . , En} be the respective solutions of {P1, . . . , Pn}. The minimum

41

cost solution Em among {E1, . . . , En} is the second best solution E(2). Then the

sub-problem Pm corresponding to Em = E(2) is partitioned into its sub-problems.

The next best solution is the one with the least cost from the sub-problems of E(2)

and all previous sub-problems (from E(1) in this case). This process is repeated until

E(k) is obtained.

So far we assumed that only one parent hypothesis existed from which the

problem P0 was constructed. When multiple hypotheses Θ1, . . . , Θk exist from the

previous time step, the best solution from each of the hypotheses is added to a list

from which the minimum cost solution is selected. A new hypothesis θ′l consists of

a solution E together with the parent hypothesis Θs(l) from which the problem of

the solution was constructed. Also, the cumulative cost, which is the sum of the

cost of θ′l and Θs(l), is used to select the k-best hypotheses. Figure 3.4 describes the

algorithm precisely.

The inner for-loop systematically creates sub-problems by temporarily remov-

ing one edge from the existing solution E and cumulatively forcing the edge to

subsequent sub-problems. Note that the dummy-to-dummy edge (Ns, D) is never

removed from the problem, where Ns denotes the index of the dummy target in the

hypothesis Θs. Also, once an edge (i, D) is forced i.e., target i is not associated with

any measurement, all other edges from target i are removed. This is to prevent any

contradictory solution which associates a target to both a real measurement and

the dummy measurement. Similarly, appropriate edges are removed when (Ns, j) is

forced. In this work, we do not consider any solution that includes a path longer

than two i.e., a target that is both split and merged at the same time. The last two

42

for each existing hypothesis Θs

create problem P from Θs and {zj|j = 1, . . . , nM}
E ← solution of P
add 〈P,E, Θs〉 to the list L

for l = 1 . . . k or until L is empty

extract next best 〈P, E, Θs〉 from L
output hypothesis θ′l ← 〈E, Θs〉
for each non-forced edge e = (i, j) 6= (Ns, D) in E

P ′ ← P
remove e from P ′ and solve P ′

if solution E ′ for P ′ exists
add 〈P ′, E ′, Θs〉 to L

add e to forced edges F of P
if j = D

remove (i, j′), j′ = 1, . . . , nM

else if i = Ns

remove (i′, j), i′ = 1, . . . , nT

else if F includes a path longer than two

break (stop partitioning from E)

else if F includes a tree

for each leaf node l of the tree

from P, remove all edges /∈ F incident on l

Figure 3.4: The algorithm for generating k-best hypotheses given multiple parent
hypotheses

if-statements attempt to avoid solutions that include such cases by limiting certain

configurations of the forced edges. (Note that there is still a small chance of gen-

erating such an association. However in our experience, such solutions were rarely

generated.)

Now we analyze the complexity of the algorithm given in Figure 3.4. First we

show that the number of edges in any sub-problems in the algorithm is linear in the

number of nodes in the graph.

Lemma 3.1 The number of edges in the solution of any sub-problem in Figure 3.4

43

is O(n), where n is number of nodes in the graph defining the sub-problem.

Proof Suppose that the solution E of problem P contains no cycles so the edges

forced in each sub-problem P ′ contains no cycles. The new edges added to the

solution by solving MWEC contains no path connecting two nodes that are both

incident on any of the forced edges (otherwise, it is not a minimum cost solution),

thus the solution E ′ is acyclic. Since the initial best solution is acyclic, by induction,

none of the solutions of the sub-problems are acyclic. Undirected acyclic graph of

n nodes have at most n − 1 edges therefore the number of edges in any solution is

O(n).

The MWEC problem has a time complexity of O(n3) since the reduction to the

assignment problem takes O(n2) time [53] and Jonker and Volgenant’s algorithm [35]

takes O(n3), where n is the number of nodes. Therefore from lemma 3.1, creating

and solving sub-problems for each best hypothesis takes O(n4) time. We repeat this

k times so the total time complexity is O(kn4).

3.6.2 Hypothesis revision and update

In the second pass, each hypothesis from the first pass is revised to handle

targets splitting into parts and to use the full state and measurement vectors for

updating the targets and the cumulative hypotheses. The following process is ap-

plied to each hypothesis θ′l = 〈E, Θs〉.

For each predicted target x̃i in Θs, it is determined whether x̃i has been split

or merged according to E. If x̃i is split, each measurement zj associated with x̃i is

44

initially treated as a split part from the same target and is a candidate to be merged

back. Specifically, the minimum enclosing bounding box is formed by adding the zj’s

in the order of increasing center distance from x̃i. The merging process continues

as long as the size of the enclosing box satisfies the condition

(
Bdx < x̃dx + β

√
Sdx,dx

)
∧

(
Bdy < x̃dy + β

√
Sdy,dy

)
(3.12)

where B denotes the enclosing bounding box, S is the predicted measurement co-

variance, subscripts dx and dy denote the width and height component of the vector,

and β is a tolerance parameter. The nearest measurement is added to B regardless

of the condition. Finally, B is used as the revised measurement ẑi for x̃i and the

rest of the measurements are treated as unassociated. If any zj is also associated

with another x̃i′ i.e., x̃i is split and merged at the same time, θ′l is discarded.

For targets that are merged according to θ′l, their ẑi’s are estimated by the

following process: Let z be the (merged) measurement that the targets are associated

with. We exploit the constraint that each of the four sides of z should be tangent to

at least one target. For simplicity, it is assumed that exactly one target is tangent

to each side. Assuming targets are roughly elliptical, we define the tangent points of

a target as the center points on the sides of the bounding box. To determine which

target is tangent to each side of z, the tangent points on the sides are estimated

using the local center of mass of the blob along each side as shown in Figure 3.5.

Then for each side, the target with the nearest distance between its tangent point

and the estimated tangent point is chosen. The targets that are chosen to be tangent

45

Figure 3.5: Estimated tangent points on the bounding box of the merged measure-
ment.

to the sides of z are given appropriate measurement ẑi. For each target that is not

tangent to any sides, ẑi is given by the procedure for z′ij in section 3.6.1, using as

the measurement the region in the blob that is not occupied by any tangent targets.

Lastly if the target is neither split nor merged, we let ẑi = zj.

Next, each target in θ′l is updated using ẑi as the measurement. In addition,

if the target is merged, its velocity is exponentially decreased over time. We re-

initialize the state of the target from which a new target is split, instead of updating

it. Unassociated targets are removed and new targets are created for unassociated

measurements in this step. (We assume that false negative measurements are rare

and remove a target once it is unassociated. However, this decision may be deferred

by either counting the number of consecutive unassociations of each target or by

hypothesizing both the removal and the temporary unassociation of a target.) Let

θl be the revised hypothesis that reflects this new set of target states. The updated

cumulative hypothesis is expressed as

Θ1:t
l = {Θ1:t−1

s(l) , θt
l} (3.13)

46

where t is the time index and s(l) denotes the parent hypothesis index of θl.

Finally, the cumulative cost of Θ1:t
l is updated. The probability of the cumu-

lative joint association hypothesis can be expressed as

p(Θ1:t
l |Z1:t) =

1

c
p(Zt|θt

l , Θ
1:t−1
s(l) , Z1:t−1)p(θt

l |Θ1:t−1
s(l) , Z1:t−1)p(Θ1:t−1

s(l) |Z1:t−1) (3.14)

where Zt denotes the set of measurements at time t. The normalizing constant c

may be ignored for comparison between hypotheses since it is common across all

hypotheses. We formulate the first two factors as

nT∏
i=1

(
[N (ẑi;Hx̃i,S)]δ(i)

)
(PD)nD(PN)nN (PS)nS (3.15)

where δ(i) is 1 if x̃i is associated and 0 otherwise. PD, PN , and PS respectively

represent the density of Poisson distributed events for unassociated targets, unas-

sociated measurements, and targets split into parts, which are given as constant

parameters. nD, nN , nS denote the respective number of such events determined by

θt
l [51]. (The dependency on θl and Θs(l) in (3.15) is omitted for conciseness.) We

take the logarithm of the probability to derive the cost of Θ1:t
l

C(Θ1:t
l) = −2 ln(p(Θ1:t

l |Z1:t)) =

− 2

(
nT∑
i=1

ln [N (ẑi;Hx̃i,S)]δ(i) + nD ln(PD) + nN ln(PN) + nS ln(PS)

)

+ C(Θ1:t−1
s(l)) (3.16)

47

3.7 Implementation

The costs cD and cN for the dummy nodes in the first pass should be given

values such that it generates diverse hypotheses. If they are too small, normal

targets may be hypothesized as terminated and the correct measurement associated

with a new target. This may prevent more useful hypotheses from being generated

such as merging and splitting. In particular, cN should be large enough so that

targets split in parts are hypothesized as split, rather than being associated with

only one part. This will ensure that the measurements are given a chance to be

merged back in the second pass. On the other hand, the probabilities PD and PN

should be given values that more or less reflect the actual probabilities. Note that

PS acts as a penalty for a target being split into parts multiple times. When a target

slowly splits into multiple targets, it may be difficult to distinguish between a real

split (θ1) and a temporary split into parts (θ2) in the current time. However as time

progresses, the cost of splitting multiple times in θ2 outweighs the cost of creating

a new target in θ1 and the correct hypothesis gets selected.

In order to increase the efficiency and generate more useful hypotheses, we

apply two different hypothesis pruning strategies. First, hypotheses with costs ex-

ceeding the best cost by more than the threshold Tc are removed in the generation

process. Second, we keep track of the age of each cumulative hypotheses and prune

the ones with age Ta or older. The age is incremented when the cumulative hy-

pothesis is updated. (The best hypothesis is always given age zero.) Further, the

hypothesis generation algorithm is modified so that only the best cumulative hy-

48

pothesis may branch into multiple child hypotheses. This ensures that alternative

hypotheses from the best hypothesis, which tends to be the useful ones, survive long

enough.

3.8 Experimental results

We first present results on video segments from a soccer game. A subset of the

VS-PETS 2003 “football” dataset is used to validate the effectiveness our multiple

hypothesis approach. The frame size is 320 × 240 pixels and lasts 600 frames. For

this video, the algorithm written in C++ achieved real time performance. Back-

ground subtraction was done by a simple variant of the method described in [36].

Using at most k = 20 hypothesis, all 18 targets including the ball were correctly

tracked. Figure 3.6 (a)–(c) show sample frames from the tracking result containing

merged targets and targets split into parts. Figure 3.6 (d) shows object detection

results corresponding to Figure 3.6 (c). The black boxes and the white boxes rep-

resent the measurements and the target states, respectively. The numbers below

the white boxes denote unique identification numbers for the targets. During the

entire sequence, there were 7 instances of two objects merging and then separating

correctly. 2 of the instances involved near-complete overlap between two people,

each lasting 38 frames and 104 frames.

To validate the effectiveness of maintaining cumulative multiple hypotheses

over time, we compared the result between using multiple hypotheses and single

hypothesis. The single hypothesis implementation used multiple hypotheses (k =

49

(a) frame 445 (b) frame 475 (c) frame 549 (d) frame 549

Figure 3.6: Sample frames from the multiple hypothesis tracking result.

20) in the first pass, but kept only the single best hypothesis at each time step.

The previous video was used for both algorithms and to simulate false positive

measurement, we chose a small area in frame 410 and lowered its intensity. Figure 3.7

highlights the difference in the results between the two approaches. In frame 398,

a target initially appeared from the left as a group of two persons merged together

then a target was split from the group in frame 399. After several frames (in frame

403) the multiple hypothesis approach correctly split the group, as mentioned in

Section 3.7. However, using a single hypothesis, the two persons in target 2249 kept

getting merged back due to the absence of alternative hypotheses. Also, the multiple

hypothesis algorithm correctly removed the noise (target 1557) in frame 410 after

3 frames. This was possible because both the removal of the noise and merging of

the noise with target 3 were hypothesized. Due to the accumulated cost of moving

the false target to target 3, eventually the hypothesis that removed the false target

was chosen. The single hypothesis algorithm failed to remove the false target since

at each time step, moving the false target cost less than removing it.

To evaluate the performance under different degrees of interaction between

targets, we tested our method using the entire video from the VS-PETS 2003 dataset

for which the ground truth data was available. This video has frames of size 720×

50

(a) frame 398 (e) frame 398

(b) frame 403 (f) frame 403

(c) frame 410 (g) frame 410

(d) frame 413 (h) frame 413

Figure 3.7: Comparison between multiple hypothesis (a)–(d) and single hypothesis
(e)–(h). Frames 398 and 403 show before and after target split. Frame 410 contains
false positive measurement.

51

576 pixels, lasts 2500 frames, and contains 59 unique targets in the ground truth

data. Figure 3.8 shows a sample output frame from this video. The performance

regarding occlusion handling is measured by the success of tracking over the duration

of pairwise occlusion events. An occlusion event is defined by an instance where

two initially separated ground truth targets overlap then separate. We regard the

tracking as successful if the two corresponding tracked targets exist before the event

and have centers that are each within their ground truth targets after the event.

179 occlusion events were identified from the video excluding events with very short

duration or very small overlap. Our method successfully tracked the targets in 136

events using k = 20. Figure 3.9(a) shows the number of events and the number of

successfully tracked events, classified by different degrees of occlusion. The degree

of occlusion for an event is defined as the ratio

overlapped area/ min(target 1 area, target 2 area) (3.17)

Figure 3.9(b) shows the performance depending on the total number of targets

involved in an event. By involved we mean a target spatially and temporally overlaps

any target in the pairwise occlusion event. (The “4” in the x-axis represent four

or more involved targets.) The performance decreased with increasing degree of

occlusion and the number of targets involved. However, under reasonable degrees of

target interactions, the performance was very good. Tracking errors were typically

caused by severe overlap combined with either a sudden change in the velocity

during the overlap i.e.,“bouncing” targets (Figure 3.10(a)), or a bad estimate of

52

Figure 3.8: Sample frame from the full soccer video.

measurements within a merged measurement (Figure 3.10(b)).

In the next experiment, our method was tested using two videos, each contain-

ing a complex interaction among a group of four persons. The two videos were taken

from two different outdoor security cameras. Both have a resolution of 320 × 240

pixels and last 180 frames. For these videos, a more sophisticated background sub-

traction algorithm [38] is used. Using k = 5 hypotheses, our algorithm successfully

tracked all targets in both videos. Figure 3.11 shows the plot of the average overlap

over time, along with sample frames roughly corresponding to peaks in the plot.

The average overlap for a frame is defined as

1− total target area that is not overlapped∑
i

area of targeti

(3.18)

The results show the effectiveness of the algorithm for estimating measurements for

53

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

fr
eq

ue
nc

y

degree of occlusion

total
successful

90%

84%

83%

56%

38%

2 3 4
0

20

40

60

80

100

fr
eq

ue
nc

y

number of objects in interaction

total
successful

82%

79%

66%

(a) (b)

Figure 3.9: Tracking success rates on the full soccer video under (a) varying degrees
of occlusion, (b) different number of targets involved in an event.

(a) (b)

Figure 3.10: Sample interactions for which tracking failed. (a): bouncing targets
(target bounding boxes are not shown for clarity), (b): bad target location estimate
within a merged measurement.

54

each target within a merge measurement given in section 3.6.2.

3.9 Summary

We have presented a multi-object tracking approach based on the multiple

hypothesis tracking method by Reid. Since in visual tracking the objects may split

and merge, the data association problem was posed as a minimum weight edge

cover problem. A polynomial-time algorithm was developed for generating the k-

best hypotheses regarding the multiple association. Our implementation achieved

real-time performance for relatively low-resolution videos. The experiment results

show that the multiple hypotheses approach is effective in recovering from data

association errors and that our approach is robust against varying degrees of target

interactions.

55

(a) frame 48 (d) frame 36

(b) frame 147 (e) frame 129

0 50 100 150
0

0.2

0.4

0.6

0.8

1

frame number

av
er

ag
e

ov
er

la
p

cam 1

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

frame number

av
er

ag
e

ov
er

la
p

cam 2

(c) (f)

Figure 3.11: Tracking results from security videos. (a)–(c): camera 1, (d)–(f):
camera 2.

56

Chapter 4

Visual Event Recognition Based on Syntactic Models of Events

4.1 Introduction

Surveillance cameras are becoming ubiquitous, however human resources to

supervise and process the abundant video data are limited. Automatic visual sur-

veillance addresses this problem by recognizing events of interest without human

intervention. Recognition of short-term events such as human gesture has been

studied extensively using statistical pattern recognition techniques, such as Hidden

Markov Models. However, it is difficult to apply the same approach to the problem

of recognizing events that span extended periods of time with complex structure

involving multiple interacting objects. A major difficulty is that for complex activi-

ties, very little training data is available compared to the huge dimensionality of its

feature space. Also, semantically equivalent activities may often have feature values

that are quite far apart. Such complex events can be more suitably represented by

an explicit model of the structure in the pattern.

There has been substantial amount of work on structural model-based event

recognition. Vu et al. [59] defined a description of an activity as consisting of actors,

logical predicates, and temporal relations between sub-events. The activity recogni-

tion problem was then posed as a constraint satisfaction problem, where the search

process for the temporal constraints was optimized. Ghanem et al. [22] proposed the

57

use of high-level Petri-Nets for representing and recognizing events. Petri-Nets have

the ability to represent sequentiality, concurrency, and synchronization of events. In

their framework, tokens represent objects and firing of a transition corresponds to

the occurrence of a primitive event subject to conditions imposed on the transition.

Ivanov and Bobick [30] described a method of modeling and recognizing activities

using stochastic context-free grammars (CFG) and stochastic parsing. The input

symbols were generated by low-level event detectors based on HMMs. The parser

corrected substitution and insertion errors and handled concurrent tracks from sep-

arate objects using insertion error correction. Consistently associating interacting

objects with an activity was enforced by simple spatial-temporal conditions. The

authors demonstrated results from gesture recognition and outdoor video surveil-

lance. Stochastic CFG was also used by Moore and Essa [45] to recognize events

involving multiple entities where stochastic parsing was applied to each independent

interactions in blackjack games.

Recent work on detection of anomalous activities were mostly based on statis-

tical learning. Stauffer and Grimson [55] extracted feature prototypes from tracked

objects and classified activities by hierarchically clustering the prototypes using the

co-occurrence statistics of the prototypes within a track. Unusual activities are

detected by measuring the deviation from the learned prototype density and the co-

occurrence statistics. Similar approaches include jointly clustering image features

and video segments [64] and clustering n-grams of pre-defined events [24]. Vaswani

et al. [58] modeled a group activity as a dynamic “shape” (object trajectories with

translation, rotation, and scale removed). The shape dynamics is modeled by a con-

58

tinuous HMM and an abnormal activity is defined as a change in the model. Dee

and Hogg [14] modeled pedestrian behavior as a series of linear trajectories that are

directed towards a point in space. Interesting behaviors are detected by measuring

the degree of fit to this model.

In this chapter, we present a real-time event recognition system based on

models of events represented by attribute grammars. In contrast to purely syntactic

grammars, attribute grammars are capable of describing features that are not easily

represented by finite symbols. Primitive events and their attributes are extracted

from the video by detecting and tracking moving objects in the scene. This interme-

diate data is incrementally parsed according to the attribute grammar to recognize

high-level events. Our approach handles multiple concurrent events involving mul-

tiple entities by associating object identification labels with event threads. Uncer-

tainty in the semantic conditions on the attributes are expressed using probabilities,

which are used to generate confidence measure of recognized events. The attribute

grammar may be used to model specific events of interest or general events that

typically occur in a scene. In the latter case, the modeled events are recognized

and labeled with the event category, while events that does not follow the grammar

are labeled as abnormal. Experiment results are presented for recognizing specific

events as well as abnormal events occurring in the parking lot.

In section 4.2 the detection and tracking method used in the system is de-

scribed. Section 4.3 describes how the the primitive events and attributes are ex-

tracted from the tracking data. The attribute grammar and the parsing algorithm

in the context of our system is discussed in sections 4.4 and 4.5, respectively. Next,

59

the implementation of the system and experiment results are respectively described

in sections 4.6 and 4.7.

4.2 Detection and tracking

Moving blobs are detected using background subtraction and are tracked by

associating the blobs with targets. A pixel-wise adaptive Gaussian background

model is used for object detection. Also for each pixel, the local temporal variance

tvar is used as an indicator of motion caused by a moving object. A background

update counter UC is set to UCmax when motion is detected and is decremented

at each frame, which is used to delay the adaptation of a foreground pixel into

the background. Objects are detected from the foreground mask using connected

component analysis. We shall refer to the connected components as measurements.

Tracking is done by associating existing targets from the previous frame with

the measurements in the current frame. A set of associations can be represented by

a bipartite graph where each node has a degree of at least 1, as shown in Figure 3.1.

A node of degree greater than 1 correspond to a target split or merge. A dummy

target and a dummy measurement node respectively covers entered and exited tar-

gets. The optimal association is obtained using a minimum weight bipartite graph

edge covering algorithm [53] where the edge weights in the graph are given by the

Euclidian distance between target and measurement pairs. Target removal are de-

layed by a small number of frames and the measurements that are fragmented into

parts for a short duration are merged back. The bounding box of the measurement

60

is used to update the target state which is tracked by a Kalman filter with a constant

velocity motion model.

Undesirable artifacts caused by the slow adaptation of the background model

are reduced by selectively updating the background in the object level. To prevent

a stationary target from being gradually fragmented, the background corresponding

to the target region is updated simultaneously when its average value of UC is small.

Similarly, to avoid the “ghost” effect where a newly revealed background region is

falsely detected as an object, the background is updated when the average tvar of

a newly detected target is small. This approach is similar to [11] but is selectively

applied using feedback from the tracker.

4.3 Primitive events and attributes

In syntactic pattern recognition [20], the given data is represented by a string

of input symbols from an alphabet (a finite set of symbols). For event recognition,

the symbols correspond to what we call primitive events extracted from the track-

ing data. For example, a primitive event might be generated when a moving object

stops. In a purely syntactic approach, all the information used for recognition is

contained in the string of primitive events. However, it is often desirable to use

additional attributes or features associated with the primitive events. For example,

the exact location in which the primitive event occurs may be significant for de-

scribing an event, but this may not be effectively encoded in the primitive event set.

Attributes are also useful where the number of primitive events is unbounded such

61

as in an event involving arbitrary number of objects each having distinct primitive

events associated with it. In this case, an object identification label can be used as

the attribute of the primitive event.

The basic primitive events used in this work are appear, disappear, start, and

stop. Additional variants of these primitive events with different constraints are used

depending on the application. For each existing target, a set of states is maintained

including the target location in the image, the width and height, the velocity, age

(the number of frames the target has been tracked), and the object type. To reduce

the effect of noise in the tracking data, the location and the velocity are smoothed by

temporal averaging. When a target is created by the tracking algorithm, the target

is given an inactive state. The appear event is generated when its age reaches a

threshold and its bounding box is not on the boundary of the frame i.e., the target

has completely emerged from the frame boundary. However, if the target is split

from another target, the appear event is generated immediately. The type of the

object is also determined when the appear event is generated. A simple classification

such as person and vehicle is achieved based on the dimensions of the target. The

disappear event is generated when the target is no longer tracked. The events start,

and stop are generated by hysteresis thresholding on the speed of the target, where

a high and a low threshold is respectively used for start and stop.

Each primitive event is assigned a set of primitive attributes which includes

id (target identification label), loc (location in 2d coordinates), and timestamp (the

frame number). In some applications, relational attributes such as the id of and

distance to the nearest object may be used.

62

In addition to tracked objects, special objects named contextual objects that

represent semantically significant regions are pre-defined in the given scene. Exam-

ples contextual objects include parking spaces and building entrance.

4.4 Representation of events using attribute grammars

4.4.1 Attribute grammars

Attribute grammars, first introduced by Knuth [39], have been used in syntac-

tic pattern recognition [20] as well as natural language processing [3] and program-

ming languages [1]. An attribute grammar AG is a five-tuple

AG = (G,SD, AD, R, C) (4.1)

where

• G = (VN , VT , P, S) is the underlying context-free grammar. VN and VT rep-

resent the non-terminal and terminal symbols, respectively, P is the set of

productions, and S is the start symbol.

• SD denote a semantic domain consisting of a set of types (e.g., integers or

coordinates) and a set of functions operating on the types.

• AD is a set of attributes associated with each symbol occurring in the pro-

ductions in P . Each attribute is of a certain type.

• R is a set of attribute evaluation rules associated with each production p ∈ P .

63

Attributes are evaluated using functions defined on attribute values of symbols

in p.

• C is a set of semantic conditions associated with each p ∈ P , which are

predicates defined on the attribute values.

Synthesized attributes are initially given with the terminal symbols, which are passed

up the parse tree during parsing, whereas inherited attributes are evaluated top-

down from the parents of the node. The semantic conditions impose constraints on

the value of the attributes such that the production p can be used only when the

conditions are satisfied. (The term semantic here refers to the non-syntactic nature

of the attributes and does not necessarily refer to the meaning of an event.)

We extend the predicates in the semantic condition to real valued functions

with range [0, 1]. The function may have a value of either 0 or 1 (for hard condition)

or have the probability value that the condition is satisfied (soft condition). We

refer to the latter case as the soft predicate. Typical examples of predicates used in

this work include Near(loc1, loc2) and Inside(loc, area) where the former imposes a

constraint that loc1 and loc2 are near each other and the latter refers to a condition

that loc lies within a region denoted by area. Soft predicate names are prefixed by

the letter s e.g., sNear(X1.loc, X2.loc). A conjunction of boolean predicates is ex-

tended to a product of probabilities (assuming independence between the attributes)

and a set of conditions is regarded as satisfied if the product of their probabilities is

non-zero. Each production may be given an optional weight, reflecting the relative

frequency that the production is used to generate the language. The production

64

weights are considered as a “prior” probability on the semantic conditions and are

multiplied to the predicate values.

We use the following notation for the attribute grammar. Words in capital

letters and lower case letters represent nonterminal and terminal symbols, respec-

tively. The symbol in a production for which an attribute is associated is denoted

as Xi where i is the index to the symbol; X0 refers to the symbol on the left hand

side (lhs), X1 denotes the first symbol on the right hand side (rhs), and so on.

An attribute a associated with symbol Xi is denoted Xi.a. Attribute evaluation

rules are listed following each production. For example, Xi.a := f(Xj.b) denotes

that the value of attribute a of Xi is given by the evaluation function f(·) with the

value of attribute b of Xj as the argument. Semantic conditions are expressed as a

conjunction of predicates enclosed in parentheses.

4.4.2 Thread consistency

We handle arbitrary number of concurrent events each of which consist of

a sequence of primitive events which in turn may originate from different objects.

Therefore to keep track of the identity of the object (represented by the attribute id)

that each symbol in the grammar is associated with, a special attribute named thread

consistency id (tid) is implicitly defined for each symbol in the grammar. Subscripts

on the symbols in the rhs of the production describe the implicit evaluation rules

and conditions regarding the tid. The subscript i in a symbol Ai represents the

index to other symbols in the production, starting from 0. For a terminal symbol bi

65

the implicit condition is (b.id = Xi.tid) where Xi denotes the ith symbol. An index

N refers to a “wildcard” symbol whose tid matches any tid. For example, in the

production A → B0C1DNE3, the implied condition is B.tid = C.tid = A.tid and

E.tid = D.tid. For the terminal symbol, tid is given by the attribute id assigned

to the primitive event. Details on how the tid’s are assigned to nonterminals are

described in the next section. The wildcard tid allows us to associate multiple

objects to an event thread involving multiple objects. A typical example is a thread

consisting of a vehicle being parked and then a person exiting from the vehicle.

Ivanov and Bobick [30] used a simple fixed rule to determine whether the change of

object has occurred in a thread. However, our representation is more flexible since

arbitrary conditions can be explicitly described by the attribute grammar.

4.5 Recognition of events by parsing

For real-time surveillance applications it is important to detect events as they

happen, which requires an online parsing algorithm. We have implemented a pars-

ing algorithm for attribute grammars based on the Earley parser [18]. We assume

the order in which the synthesized attributes are evaluated are such that the argu-

ments of each evaluation function are always defined previously. Also, the inherited

attributes for a symbol A are assumed to depend only on the attributes on the left

of A. These assumptions are very natural for describing an event that unfolds over

time (it is natural to refer to attributes that are known from the past rather than

unknown attributes in the future). In such a case, it is straightforward to evaluate

66

attributes and check for conditions in the Earley’s parsing framework.

4.5.1 Online parsing

Earley’s algorithm reads terminal symbols sequentially, creating a set of all

the pending derivations (potential event threads) that is consistent with the current

input terminal symbol. A pending derivation is represented by a state which is

expressed as

i : kX(0) → X(1) . . . X(j) •X(j + 1) . . . X(n) (4.2)

where X(0), . . . , X(n) represent the symbols in the pending production, i is the

index of the current state set, and k refers to the state set from which the nonterminal

X(0) was expanded. The dot marks the current position (j in this state) in the

pending derivation. In addition, a list of attributes and its values are stored for each

symbol in the state. Given the next input terminal symbol, the parsing algorithm

iteratively performs one of the following three operations for each state in the current

state set. We assume the current state is given by (4.2).

• Prediction: If the symbol after the dot, X(j + 1) is a nonterminal A, evaluate

the set of inherited attributes {am} for X(j + 1). For each production that

expands A (let Y (0) be the lhs for this production), add the following state in

the current state set i, and assign {am} to Y (0):

i : iY (0) → •Y (1) . . . Y (n) (4.3)

67

• Scanning: If X(j + 1) is a terminal and matches the next input b, copy the

current state to set i+1, moving the dot to the right of X(j+1), and assigning

all the attributes that are given with b to X(j + 1):

i + 1 : kX(0) → X(1) . . . X(j + 1) • . . . X(n) (4.4)

• Completion: If the dot is in the rightmost position (j = n), check for all

conditions on the attributes of X(0), . . . , X(n). If the conditions are satisfied,

evaluate all synthesized attributes {am}. For each state in state set k (the set

where X(0) was predicted) whose nonterminal Y (h) on the right of the dot is

identical to X(0),

k : k′Y (0) → Y (1) . . . • Y (h) . . . Y (n′) (4.5)

copy the state to the current set i, move the dot over, and assign {am} to

Y (h):

i : k′Y (0) → Y (1) . . . Y (h) • . . . Y (n′) (4.6)

4.5.2 Managing concurrent events

The preceding algorithm is modified to effectively maintain multiple indepen-

dent event threads using the thread consistency id (tid). In the prediction step, tid

68

is inherited to the added state as

Y (0).tid := NID, ifd = N

Y (0).tid := X(d).tid, otherwise

(4.7)

where d is the subscript of X(j + 1) in the current state.

In the scanning step, the input symbol is skipped (ignored by the current

state) if the id of the input is not consistent with the tid specified by the grammar.

Specifically, given the next input symbol b, the procedure shown in Figure 4.1 is

used to determine whether to skip or scan or do both. The skipping process simply

copies the current state to the next state set i+1. This procedure ensures that only

the symbol from the expected object, specified by tid, is considered for the current

thread, but if the expected tid is a “wildcard”, any object is considered. Note that

in the case of a wildcard, the current state is also skipped since the newly associated

object may not be the “correct” object (perhaps not satisfying a condition in a later

step). This nondeterministic behavior enables the parser to initiate and maintain

multiple candidate threads in a common framework. In particular, by specifying the

tid of the start symbol as a wildcard, the parser looks for a potential new thread

each time an input symbol is read. This approach of explicitly associating primitive

events with appropriate threads is in contrast to the approach in [30], where symbols

from concurrent threads are treated as insertion noise. It should be noted that in

case 1 of the algorithm, the object associated with the previous symbol is not allowed

as the new object. Also in the scanning step in case 1, the symbol from a previously

69

// case 1: tid is a wildcard

if (d=N or X(d).tid=NID)

if (X(j+1)=b)

do scan, skip

else

do skip

// case 2: tid matches

else if (X(d).tid=b.id)

if (X(j+1)=b)

do scan

// case 3: event from other threads

else

do skip

Figure 4.1: Algorithm for handling multiple event threads in the scanning step.

skipped object is prevented from being scanned. These exceptions are omitted from

the algorithm in Figure 4.1 for conciseness.

Finally in the completion step, the tid of the last symbol is passed to the

completed nonterminal symbol as a synthesized attribute. The probability for the

condition is treated as the “inner probability” [56] for stochastic parsing and is

accumulated for each of the pending parses.

An event may be classified as abnormal when none of the states successfully

scans the current terminal symbol i.e., the current primitive event is not explained

by any pending event threads. This is a case of a syntactic abnormality. An event

that is recognized as a normal event but with a probability lower than a threshold is

also labeled as abnormal. This can be referred to as a semantic abnormality. In the

case of recognizing specific events of interest, the parser does not label any events

as abnormal.

70

Detector T racker

measurements

Primitive

manager

background update regions

targets
Parser

primitive

events

attributes

input video

event label, parse tree

attribute grammar

Figure 4.2: A block diagram of the event recognition system

4.6 System implementation

The recognition system consists of the detection and tracking module, the

primitive manager, and the parser as shown in Figure 4.2. At each frame, the tracker

provides a list of current targets to the primitive manager. The primitive manager

passes primitive events to the parser only when they are detected. When the parser

recognizes an event, the label of the event is immediately displayed along with its

computed probability. Also, the primitive events that are used in the derivation are

displayed in the location where they have occurred, summarizing the details of the

event. In case of a syntactic abnormality, the primitive event that caused the parse

to fail is displayed. After an event is recognized, the system continually monitors

the video for other events. The entire system, written in C++, runs in real-time on

a common PC platform.

4.7 Experiments

As an example application of detecting a specific event of interest, we demon-

strate the task of detecting a person casing cars in the parking lot. Next, an example

71

is presented for the application of recognizing normal events and detecting abnormal

events in the parking lot.

4.7.1 Detection of specific events

The primitive events used in this experiment are perapp (person appears),

carapp (car appears), disappear, stop, and start. The stop event is given the attribute

dist, which denotes the distance to the nearest vehicle when the event occurred. A

contextual object Fov specifying the field of view of the camera excluding some

margin is used.

Table 4.1 shows the attribute grammar for this event. The casing behavior,

described by the productions expanding CASING and CASING2, involves a person

stopping near a vehicle two times or more. The attribute mindist keeps track of

the minimum among the set of distances to the nearest vehicle over all the stopping

events. Note that the grammar describes not only the key event of casing, but

also the context of the event such as how the person enters and leaves the scene.

Specifically, the low weights (P=0.1) assigned to the last two productions expanding

CASEVEHICLES reflect the low relative frequency that a person following typical

behaviors in a parking lot (driving in and walking away or walking in and driving

away) will case vehicles. To prevent the parser from assigning low probabilities to

long strings, we give large probabilities to recursive productions. The computed

probability for the parse using these production weights will not be a probability

measure. This is acceptable, since we are only interested in the relative likelihood of

72

an event. For associating two different objects with a single event thread such as a

person exiting from a car, a hard predicate is used which involves a threshold that is

predetermined depending on the scene. This is a reasonable choice since the upper

bounds on the size and speed of an object are more or less fixed, given a particular

camera configuration. However, we note that the criterion is fuzzy regarding how

close one should be to a vehicle in order to conclude that the person is casing. Thus

in the condition for CASING, we use a soft predicate sDistNear() defined by a

Gaussian function.

The last production in the grammar shows the error correcting feature of the

grammar. The tracker as described in section 4.2, may lose track of a person and

shortly regain track. However, the two instance of the tracks—and consequently the

event threads that originates from the tracks—are not associated with each other.

The association is done in the parser using the production that links a sequence

of disappear and perapp events into a single thread, given that the two events are

spatially (Near()) and temporally (TimeNear()) close.

We show the result from 3 surveillance videos for recognizing the vehicle casing

event. Figure 4.3 shows a representative frame (top row) and the recognition result

(bottom row) for each sequence. The lightly colored region depicts the contextual

object. In sequence (a), a person walks into the lot, cases vehicles, and walks out

of the lot. Sequence (b) consists of a person driving into the parking lot, casing

vehicles, and driving out of the lot. Sequence 3 contains a person parking a car,

and walking into a building. The person stops twice with no intention of casing

vehicles. Sequences (a) and (b) were correctly recognized as the casing event with

73

P
A

tt
ri

b
u
te

ru
le

s
an

d
S
em

an
ti

c
co

n
d
it

io
n
s

S
→

C
A

S
E

V
E

H
IC

L
E

S
N

1.
0

C
A

S
E

V
E

H
IC

L
E

S
→

p
er

ap
p

0
C

A
S
IN

G
1
d
is

ap
p
ea

r 2
0.

5
N

ot
In

si
d
e(

X
1.

lo
c,

F
ov

),
N

ot
In

si
d
e(

X
3.

lo
c,

F
ov

))
C

A
S
E

V
E

H
IC

L
E

S
→

D
R

IV
E

IN
0
C

A
S
IN

G
1
D

R
IV

E
O

U
T

1
0.

3
C

A
S
E

V
E

H
IC

L
E

S
→

p
er

ap
p

0
C

A
S
IN

G
1
D

R
IV

E
O

U
T

2
0.

1
N

ot
In

si
d
e(

X
1.

lo
c,

F
ov

))
C

A
S
E

V
E

H
IC

L
E

S
→

D
R

IV
E

IN
0
C

A
S
IN

G
1
d
is

ap
p
ea

r 2
0.

1
(N

ot
In

si
d
e(

X
1.

lo
c,

F
ov

))
D

R
IV

E
IN
→

ca
ra

p
p

0
D

S
T

O
P

1
p
er

ap
p

N
1.

0
N

ea
r(

X
3.

lo
c,

X
2.

lo
c)

D
S
T

O
P
→

st
ar

t 0
st

op
1
D

S
T

O
P

2
0.

9
X

0.
lo

c
:=

X
3.

lo
c

D
S
T

O
P
→

st
ar

t 0
st

op
1

1.
0

X
0.

lo
c

:=
X

2.
lo

c
D

R
IV

E
O

U
T
→

d
is

ap
p
ea

r 0
st

ar
t N

D
E

X
IT

2
1.

0
(N

ea
r(

X
2.

lo
c,

X
1.

lo
c)

)
D

E
X

IT
→

st
op

0
st

ar
t 1

D
E

X
IT

2
0.

9
D

E
X

IT
→

d
is

ap
p
ea

r 0
1.

0
C

A
S
IN

G
→

st
ar

t 0
P

E
R

S
T

O
P

1
st

ar
t 2

C
A

S
IN

G
2 3

1.
0

X
0.

m
in

d
is

t:
=

m
in

(X
2.

d
is

t,
X

4.
m

in
d
is

t)
(s

D
is

tN
ea

r(
X

0.
m

in
d
is

t)
)

C
A

S
IN

G
2
→

P
E

R
S
T

O
P

0
st

ar
t 1

C
A

S
IN

G
2 2

1.
0

X
0.

m
in

d
is

t
:=

m
in

(X
1.

d
is

t,
X

3.
m

in
d
is

t)
C

A
S
IN

G
2
→

P
E

R
S
T

O
P

0
st

ar
t 1

1.
0

X
0.

m
in

d
is

t
:=

X
1.

d
is

t
P

E
R

S
T

O
P
→

st
op

0
1.

0
X

0.
m

in
d
is

t
:=

X
1.

d
is

t
P

E
R

S
T

O
P
→

d
is

ap
p
ea

r 0
p
er

ap
p

N
st

ar
t 2

st
op

3
0.

9
X

0.
m

in
d
is

t
:=

X
1.

d
is

t
(T

im
eN

ea
r(

X
2.

ti
m

es
ta

m
p
,X

1.
ti

m
es

ta
m

p
),

N
ea

r(
X

2.
lo

c,
X

1.
lo

c)
)

T
ab

le
4.

1:
A

tt
ri

b
u
te

gr
am

m
ar

fo
r

ca
si

n
g

ve
h
ic

le
s

in
a

p
ar

k
in

g
lo

t.

74

(a) (b) (c)

Figure 4.3: Recognition results for casing vehicles in the parking lot. (a) A person
walks in, cases vehicles, and walks away. (b) A person drives in, cases vehicles, and
drives away. (c) A person drives in, stops twice, and walks into the building.

high likelihood. In particular, in sequence (a) the tracker briefly lost track of the

person but using the error correcting grammar, the parser correctly recognized the

entire sequence as a single event. Sequence (c) was syntactically parsed as a casing

event but with a low likelihood compared to sequence 1 and 2.

4.7.2 Detection of abnormal events

In this experiment, we demonstrate the application of detecting abnormal

events as well as recognizing normal events in a parking lot adjacent to a building.

The primitive events used are carapp, perapp, disappear, carstop, carstart, and car-

stat. carstat denotes the instance where a previously moving car has been stationary

for a long time.

Table 4.2 shows the attribute grammar for typical events that happen in a

parking lot. The first nonterminal symbol derived from the start symbol PARK-

75

INGLOT represents a specific event. The events described by the grammar are:

• PARKING : A person parks the car and enters the building.

• PARKOUT : A person exits the building, gets in a parked car, and drives away.

• DROPOFF : A car enters the lot, drops off a person, who enters the building.

• PICKUP : A person exits the building, gets in a car, which leaves the lot.

• WALKTHRU : A person moves through the lot.

• CARTHRU : A car moves moves through the lot.

Again, the grammar describes not only the key event such as a person getting out

of the car, but also the context of the event. For example, when a person parks a

car in the lot, he or she is expected to enter the building, assuming the lot is only

for people who have a business in the building. By taking the entire context of the

event, the class of abnormal events that can be detected are expanded. For instance,

the two individual events of parking a car and walking out of the lot without entering

the building are not considered abnormal, but the combination of the two makes it

abnormal.

The contextual objects PkSpace1 and PkSpace2 represent the parking areas

in the scene, and BldgEnt indicates the location of the building entrance. Soft

predicates are used where the attributes are expected to vary among the individuals

who perform the event. The soft predicates sNearPt() and sFar() are defined as

Gaussian functions on the distance between two points. sInside(loc, area) is defined

76

G
ra

m
m

ar
p
ro

d
u
ct

io
n
s

A
tt

ri
b
u
te

ru
le

s
an

d
S
em

an
ti

c
co

n
d
it

io
n
s

P
A

R
K

IN
G

L
O

T
→

P
A

R
K

IN
G

N
|P

A
R

K
O

U
T

N
|D

R
O

P
O

F
F

N

P
A

R
K

IN
G

L
O

T
→

P
IC

K
U

P
N
|W

A
L
K

T
H

R
U

N
|C

A
R
T

H
R

U
N

P
A

R
K

IN
G
→

C
A

R
P
A

R
K

0
p
er

ap
p

N
d
is

ap
p
ea

r 2
ca

rs
ta

t 1
(N

ea
r(

X
2.

lo
c,

X
1.

lo
c)

,
sN

ea
rP

t(
X

3.
lo

c,
B

ld
gE

n
t)

)
P
A

R
K

IN
G
→

C
A

R
P
A

R
K

0
p
er

ap
p

N
ca

rs
ta

t 1
d
is

ap
p
ea

r 2
(N

ea
r(

X
2.

lo
c,

X
1.

lo
c)

,
sN

ea
rP

t(
X

4.
lo

c,
B

ld
gE

n
t)

)
C

A
R

P
A

R
K
→

ca
ra

p
p

0
ca

rs
ta

rt
1
ca

rs
to

p
1

X
0.

lo
c

:=
X

3.
lo

c
(N

ot
In

si
d
e(

X
1.

lo
c,

F
ov

),
sI

n
si

d
e(

X
3.

lo
c,

P
k
S
p
ac

e1
,
P

k
S
p
ac

e2
))

C
A

R
S
T

O
P
→

ca
rs

to
p

0
ca

rs
ta

rt
1
C

A
R

S
T

O
P

1
X

0.
lo

c
:=

X
3.

lo
c

C
A

R
S
T

O
P
→

ca
rs

to
p

0
X

0.
lo

c
:=

X
1.

lo
c

P
A

R
K

O
U

T
→

(s
N

ea
rP

t(
X

1.
lo

c,
B

ld
gE

n
t)

,N
ea

r(
X

3.
lo

c,
X

2.
lo

c)
,

p
er

ap
p

0
d
is

ap
p
ea

r 1
ca

ra
p
p

N
C

A
R

S
T
A

R
T

3
d
is

ap
p
ea

r 3
N

ot
In

si
d
e(

X
5.

lo
c,

F
ov

))
C

A
R

S
T
A

R
T
→

ca
rs

ta
rt

0
ca

rs
to

p
1
C

A
R

S
T
A

R
T

1
X

0.
lo

c
:=

X
1.

lo
c

C
A

R
S
T
A

R
T
→

ca
rs

ta
rt

0
ca

rs
to

p
1

X
0.

lo
c

:=
X

1.
lo

c
C

A
R

S
T
A

R
T
→

ca
rs

ta
rt

0
X

0.
lo

c
:=

X
1.

lo
c

D
R

O
P

O
F
F
→

C
A

R
S
T
A

N
D

0
p
er

ap
p

N
d
is

ap
p
ea

r 2
C

A
R

S
T
A

R
T

1
(N

ea
r(

X
2.

lo
c,

X
1.

lo
c)

,
sN

ea
rP

t(
X

3.
lo

c,
B

ld
gE

n
t)

)
D

R
O

P
O

F
F
→

C
A

R
S
T
A

N
D

0
p
er

ap
p

N
C

A
R

S
T
A

R
T

1
d
is

ap
p
ea

r 2
(N

ea
r(

X
2.

lo
c,

X
1.

lo
c)

,
sN

ea
rP

t(
X

4.
lo

c,
B

ld
gE

n
t)

)
C

A
R

S
T
A

N
D
→

ca
ra

p
p

0
ca

rs
ta

rt
1
C

A
R

S
T

O
P

1
X

0.
lo

c
:=

X
3.

lo
c

(N
ot

In
si

d
e(

X
1.

lo
c,

F
ov

))
P

IC
K

U
P
→

p
er

ap
p

0
d
is

ap
p
ea

r 1
C

A
R

S
T
A

R
T

N
d
is

ap
p
ea

r 3
(s

N
ea

rP
t(

X
1.

lo
c,

B
ld

gE
n
t)

,
N

ea
r(

X
3.

lo
c,

X
2.

lo
c)

,
N

ot
In

si
d
e(

X
4.

lo
c,

F
ov

))
W

A
L
K

T
H

R
U
→

p
er

ap
p

0
d
is

ap
p
ea

r 1
(N

ot
In

si
d
e(

X
1.

lo
c,

F
ov

),
N

ot
In

si
d
e(

X
2.

lo
c,

F
ov

),
sF

ar
(X

2.
lo

c,
X

1.
lo

c)
)

C
A

R
T

H
R

U
→

ca
ra

p
p

0
C

A
R

S
T
A

R
T

1
d
is

ap
p
ea

r 1

T
ab

le
4.

2:
A

tt
ri

b
u
te

gr
am

m
ar

fo
r

n
or

m
al

ev
en

ts
in

a
p
ar

k
in

g
lo

t.

77

by the “probit” distribution which is defined as

Φ(d) =

∫ d

−∞
N (x; 0, σ)dx (4.8)

where N (x; 0, σ) denotes the Gaussian distribution, σ is a softness parameter, and

d is the distance from loc to the nearest boundary of a set of areas. This can be

viewed as a hard threshold that has been perturbed by Gaussian noise.

Figure 4.4 shows recognition results for normal events in a parking lot. The

video include three events PARKING, WALKTHRU, and PARKOUT, which over-

laps with one another. The system correctly recognized the three events in the order

that each event has terminated. Note that in Figure 4.4(b) two persons exit from the

car after it was parked. In this case the parser recognized two different PARKING

events, one for each person. However only one instance is shown for readability.

Recognition of DROPOFF, and PICKUP events are shown in Figure 4.5.

Figure 4.6 gives examples of detecting abnormal events. Each row corresponds

to a different abnormal event. The first row represents an illegal parking event. The

event is parsed as a PARKING event but since the location of the parked car is away

from the parking area, a low probability is given and is labeled as abnormal. In the

second event the person exits through a location that is far from the (expected)

building entrance. The third event involves a vehicle that is parked but no person

appears from the vehicle for a long time. Since the carstat symbol is not anticipated

by any pending event thread, it causes a detection of a syntactic abnormality.

78

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.4: Normal events in the parking lot.

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Normal events in the parking lot. (a)–(c): Dropping off a person. (d)–
(f): Picking up a person.

79

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.6: Abnormal events in the parking lot. (a)–(c): Illegal parking. (d)–(f):
Parking and not entering the building. (g)–(i): Parking and not exiting the vehicle
for a long time.

80

4.8 Discussion

We have presented a surveillance system for recognizing specific events and

detecting anomalies in a video using attribute grammars. The system is robust to

tracking errors and also handles the variations on the execution of events by the

production weights in the grammar and by allowing uncertainty in the attributes.

Specific events critical to security are detected by directly modeling the event. Al-

teratively, when it is possible to model most of the events expected to occur in a

scene, anomalies may be defined as all events that does not fit the model to some

degree of certainty. This method may be applied to areas where strict protocols

must be followed such as a high security zone.

81

Chapter 5

Activity Discovery by Finding Salient Groups of Trajectories

5.1 Introduction

It is often desirable to automatically learn various human activities given a

video containing many such examples. Unsupervised methods for learning activi-

ties have been largely based on clustering trajectories of features [55, 57, 27]. The

assumption behind the clustering approach is that repeating patterns of similar tra-

jectories is an indicator of a meaningful activity. These methods use partitional

clustering strategies assuming that each trajectory can be classified into a specific

category. However, this assumption is not always valid when the trajectories are in-

fluenced by not only the structures in the scene but also by various other intentions

of the human. For example in a relatively open space such as parking lot, a person

often does not choose to walk along a common path but move in a seemingly arbi-

trary path for some reason e.g., getting into a car or meeting someone. Therefore

blindly classifying all the trajectories may result in clusters that do not accurately

represent the characteristics of a truly repetitive activity.

We propose a method for finding salient groups of trajectories, inspired by

prior work on perceptual organization in computer vision [41, 15]. Our method

uses the probability of trajectories accidentally forming a group as the measure

of significance of the group, assuming a model of random background trajectories.

82

The grouping algorithm finds maximally non-accidental groups and automatically

determines the threshold for significance. To the best of our knowledge, this principle

of non-accidentalness has not been exploited in human activity analysis.

The following section reviews some prior work related to this chapter. In Sec-

tion 5.3 we describe our approach and present a generic algorithm for discovering

significant clusters based on the non-accidentalness principle. An example of find-

ing significant clusters of 2-D points is presented in Section 5.4. In Section 5.5,

the problem of discovering human activities by grouping trajectories is addressed.

Experimental results from real and synthetic data are given in Section 5.6, followed

by some discussions in Section 5.7.

5.2 Related work

We list some of the prior work where unsupervised clustering methods have

been applied using spatial motion trajectory as the feature. In [34], trajectories ex-

pressed as motion vector sequences are clustered by a self-organizing neural network

with leaky neurons. Makris and Ellis [42] described a method for learning models

of scene structures from observed trajectories. Entry, exit, and stop zones modeled

by a mixture of Gaussians are learned by Expectation-Maximization. Routes are

represented by a spline-like main axis with varying widths, which are incrementally

fitted to the set of trajectories using a heuristic merging algorithm. A similar goal

was pursued in [60], where trajectories are classified into vehicles and pedestrians by

clustering the size, taking the perspective effect into consideration. Each trajectory

83

class is further clustered using the spectral method with a combination of a vari-

ant of the Hausdorff distance and motion direction as the distance measure. Scene

structures were modeled with densities of points and motion directions from each

cluster. In [48] feature trajectories such as sequences of coordinates and orienta-

tions were represented by Hidden Markov Models (HMM). Spectral clustering was

applied to the affinity matrix where the distance measure was based on the fitness of

a trajectory to other HMM’s. A method for estimating the number of clusters was

also described. Hu et al. [27] used fuzzy k-means to cluster the trajectories in two

stages. Spatial clustering was applied to vectors of sampled points, then each cluster

was further clustered according to its temporal characteristics. The clusters were

modeled with a series of Gaussians, which allowed incremental anomaly detection

and behavior prediction.

The notion of randomness against which significance is tested has been used in

cluster validity analysis where the results of clustering are evaluated in an objective

fashion. In cluster validation, some random distribution is assumed as the null

hypothesis regarding the data or the distances between the data samples. A statistic

evaluated from a clustering result is tested against the null hypothesis, where the

rejection of the null hypothesis indicates a valid clustering. Jain and Dubes [31]

discussed in detail various indices used for this statistical test, focusing mainly on

ordinal data. A closely related problem is clustering tendency [31] which is the

problem of deciding whether the data are clustered rather than purely random.

The principle of non-accidentalness for perceptual organization was advocated

by Witkin and Tenenbaum [61] and adopted by Lowe [41]. Perceptual organization

84

refers to a process of grouping image features into structures without prior knowledge

of the contents. This process closely corresponds to the grouping phenomena in

human vision studied by the Gestalt psychologists [41]. Desolneux et al. [15] used

the probability of the number of accidentally aligned edge features as a measure of

“meaningfulness” of the group (extended line segment). They proposed to impose

a threshold on the expected number of “false alarm”s i.e., the groups that are

accidentally aligned in the image. The authors later demonstrated applications of

their framework for several different problems [16].

In the context of model-based object recognition, Grimson and Huttenlocher

[23] developed a method for setting the threshold on the number of image features

that consistently match the model features. They assumed a uniformly distributed

(similarity) transformation of features and derived the probability that a given num-

ber of features coincide (fall inside a regularly spaced buckets) in the transformation

space by chance. A similar approach was described in the work by Cao et al. [5]

where the framework in [15] was applied to a general single-link agglomerative clus-

tering scheme. In contrast to Grimson and Huttenlocher [23], this method considers

regions of different size in the transformation space. Also the distribution of the

random “background” transformation is empirically estimated.

5.3 Approach

Our goal is to identify groups of trajectories that correspond to activities with-

out any prior knowledge about the activities except for a very general assumption on

85

the nature of trajectories. Since no statistical model of an activity is present, classi-

cal decision theory is not effective. This is analogous to the background subtraction

approach for detecting foreground objects, where only the model of the background

is used for the classification of foreground vs. background.

The problem of evaluating the significance of a group of general features is cast

as a statistical test of hypothesis. Let G be a given set of k features selected from

n available features (e.g., points in a multi-dimensional space) and RG be a para-

meterized geometric region of a given class (e.g., hyper-sphere) that tightly encloses

G. The null hypothesis H0 is that the features are independent and identically dis-

tributed according to the background model (e.g., uniform distribution). The test

statistic x is the number of features that are within RG and its probability mass

function is given by the binomial distribution

b(x; n, p(RG)) =

(
n

x

)
p(RG)x(1− p(RG))n−x (5.1)

where p(RG) is the probability that a feature lies within RG under H0. Let Pa(G)

be the probability of accidentally having |G| (the cardinality of G) or more features

in RG, which is given by the binomial tail

Pa(G) =
n∑

x=|G|
b(x; n, p(RG)) (5.2)

Then H0 can be rejected at the confidence level 1−α if the Pa(G) is less than α. The

value of α is chosen such that the expected number of false positives is Nfp, which

86

may be fixed at Nfp = 1. Since the number of false positives is given by NRPa(G),

where NR is the number of possible regions over the entire feature set, the threshold

is set as α = Nfp/NR. Rather than assuming a fixed set of possible regions (e.g.,

based on regular grids) and thus the value of NR a priori as in [15, 5], we propose

to estimate NR depending on the total number of features n. NR is estimated by

the expected number of unique geometric regions that can be defined by all possible

subsets of n features assuming the random background model. It should be noted

that the choice of the threshold Nfp/NR is not sensitive to the successful detection

of salient groups. In fact, it is shown that the threshold on the number of features

k in G asymptotically depends on the logarithm of Nfp and NR [15].

The remaining task is to search for groupings that are significant according to

the previous criterion. As there might be multiple nested subsets whose accidental

probabilities are all below α, we choose to find the grouping that have minimal

probability among them. Exhaustive search over all 2n possible groupings of n

features is clearly not feasible. We employ an agglomerative hierarchical clustering

approach where the criterion function is the sum of accidental probabilities of each

cluster. The algorithm starts by initializing the individual features xi as singleton

clusters. At each iteration, a pair of clusters that satisfies the following condition

is found and merged: Among all pairs Gi, Gj whose individual probabilities both

decrease after merging, i.e. , Pa(Gi∪Gj) < min(Pa(Gi), Pa(Gj)), the value of Pa(Gi∪

Gj) is the minimum. (Pa(xi) is defined as a constant greater than 1.) The detailed

procedure is described in Algorithm 1. Agglomerative clustering has also been used

in [5] but the space in which groupings were searched was restricted to subgraphs

87

of the minimum spanning tree derived from an ad-hoc distance measure.

Algorithm 1 Generic salient cluster detection algorithm based on the non-
accidentalness principle

G ← {Gi = xi}, i = 1, . . . , n
while |G| ≥ 1 do

find a pair of clusters Gi∗ , Gj∗ from G such that (i∗, j∗) = argmin
i<j

Pa(Gi ∪ Gj)

subject to Pa(Gi ∪Gj) < min(Pa(Gi), Pa(Gj))
if (i∗, j∗) exists then
G ← G − {Gi∗ , Gj∗} ∪ {Gi∗ ∪Gj∗}

else
stop

end if
end while
output {Gi|Gi ∈ G, Pa(Gi) < 1/NR}

5.4 An illustrative example: 2-D points

As an illustration of our cluster detection algorithm, we give an example of

clustering 2-D points in the presence of background noise. The background dis-

tribution is assumed to be uniform inside the 2-D image boundary. The class of

geometric region is chosen to be a disc, parameterized by the center coordinates

(xc, yc) and the radius r. Given a set of points G, the region RG that tightly en-

closes G can be defined as the smallest enclosing disc [12] (abbreviated as SED) of

G. The probability of a point being inside RG is given by P (RG) = πr2/A (ignoring

the effects of the image boundary), where A is the area of the image. However,

in order to take into consideration the measurement error in the points, it is more

reasonable to add some margin rδ to r while evaluating P (RG). We define rδ as

half the average of maximum margin that may be added without enclosing another

point, which is approximated by the average nearest neighbor distance of a point

88

given by 1/(2
√

n/A) [10]

rδ ≈ 1/(4
√

n/A) (5.3)

For this example, NR is the number of unique SEDs defined by subsets (with

at least two points) of n points. It is known that the SED of G is determined

by (assuming general position) either three points on the circle that form an acute

triangle or two points that form the diameter of the circle on the boundary. Noting

that a constrained set of three points uniquely defines a SED of some point set, and

any pair of points similarly defines a unique SED, the expectation of NR may be

expressed as

E[NR] ≈ β

(
n

3

)
+

(
n

2

)
(5.4)

where β is the average fraction of three-point subsets whose triangles formed by

the points are acute. While it is possible to obtain E[NR] analytically assuming

uniformly distributed points, it is enough for our purpose to estimate its upper

bound. Assuming large n (n > 3/(1− β) + 2 to be exact) it can be shown that the

expectation is bounded above by
(

n
3

)
thus we use NR =

(
n
3

)
. (The empirical value

of β was around 0.27 for a square image.)

Figure 5.1 shows the results of applying the clustering algorithm on synthetic

data. The data was created by sampling n/4 points each from two Gaussian distri-

butions and n/2 points uniformly distributed in (0, 1)2. Column (a) represents the

input data, (b) shows the detected clusters, and (c) is the dendrogram showing all

the (intermediate) clusters, where the height of the (sub)tree denotes the probability

and the lightly colored horizontal line represent the computed threshold. The top

89

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

−
lo

g 10
(P

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500
0

20

40

60

80

100

−
lo

g 10
(P

)

(a) data (b) detected clusters (c) dendrogram

Figure 5.1: Clustering result for 2-D point data.

and bottom rows respectively show the results from a data of n = 100 and n = 500

points. Both the results were visually reasonable and no false clusters were detected,

which shows the threshold adapts well across wide range of densities.

5.5 Finding salient groups of trajectories

We now describe the main problem that is addressed in this chapter. Given

a set of trajectories of individual humans in a fixed field of view, many of which

are rather arbitrary and not well clustered, our goal is to find (if any) the salient

clusters. The saliency of a group of trajectories is defined by the probability that

the trajectories occur by chance within some region defined by the group. A group

with a low accidental probability is regarded as a result of a common underlying

90

cause and thus is likely to correspond to a semantically meaningful activity. The

following subsections describes our representation of trajectories and the distribution

of background trajectories. The last subsection derives expressions for the accidental

probability Pa(G) that a group of trajectories (G) is formed, and the number of

regions (NR) enclosing subsets of n trajectories. Using these results, Algorithm 1 is

applied to find the salient clusters.

5.5.1 Representation for trajectories

Representations for trajectories used in the literature include sequence of

points sampled over regular time intervals [27, 48], sequence of motion vectors [34],

and set of points [60]. We choose to represent each trajectory as a sequence of a

constant number of points such that they form line segments of equal length. This

is denoted by a list of s points

t = 〈(x0, y0), . . . , (xs−1, ys−1)〉

with the implicit constraint ‖−−−−−−−−−−−−−→(xj−1, yj−1)(xj, yj)‖ = l, (j = 1, . . . , s − 1), or equiva-

lently by the initial point, segment length, and the orientations of the segments

t = 〈(x0, y0), l, θ0, φ1 . . . , φs−2〉

91

where l is the segment length, θ0 is the direction of the first segment, and φj’s denote

the turning angles of subsequent segments, defined by

φj = ∠(
−−−−−−−−−−−−−→
(xj−1, yj−1)(xj, yj),

−−−−−−−−−−−−−→
(xj, yj)(xj+1, yj+1)) (5.5)

where ∠(~u,~v) = arccos(~u · ~v/‖~u‖‖~v‖). This representation approximates the shape

of the trajectory and also expresses the direction. (The term “shape” here refers to a

curve with constant velocity and does not refer to the representation that is invariant

under similarity transform.) Other features such as speed and object size are thought

to contribute less to the distinctiveness of an activity. Limiting the dimensionality

of the feature is also necessary for correctly estimating the background distribution

from limited amount of data.

The points can be extracted from the constant velocity curve derived from

the tracking data. A simple way is to measure the entire length L of the curve by

accumulating the magnitude of the motion vectors and sample points at an interval

of length L/(s − 1) along the curve. The lengths of the line segments obtained by

this method will slightly vary depending on the local curvature of the trajectory but

the error is found to be negligible when a reasonable number of points is used.

5.5.2 Background model of trajectories

It is desirable to impose minimal a priori constraint on the distribution of back-

ground trajectories so that it represents a wide variety of trajectories. Accordingly,

each trajectory is modeled by the following simple generative model: Randomly

92

select an initial point (x0, y0) and the segment length l, then randomly choose the

direction of segments θ0 and φj sequentially. (x0, y0) is modeled as uniform over

some region of the image representing the entry and exit regions. It is difficult to

precisely define such a region without prior knowledge of the scene. However, it is

sufficient for our purposes to use only its approximate area, which is estimated by

considering regions formed by the trajectory end points from a training set of typical

trajectories. l is assumed uniform across an interval which is also estimated from

the training data. The distribution of θ0 is modeled as uniform over the possible

range given (x0, y0) and l i.e., over the range that keeps the segment within the

image boundary. Each subsequent turning angle φj is modeled as having a common

uniform distribution whose support is estimated from a set turning angles from all

segments in the training data. The random variables (x0, y0), l, and φj are assumed

independent.

5.5.3 Region defined by a trajectory group

Given a set of trajectories G = {t1, . . . , tk}, we define its “enclosing region” RG

as the volume in the space of variables representing the trajectories. In the space of

(x0, y0), the region is defined as the smallest enclosing disc parameterized by (xc, yc)

and r as in Section 5.4. The range of l is defined by [la, lb] = [mini{li},maxi{li}].

The remaining variables θ0, φ1 . . . , φs−2 are independent, hence the corresponding

volume is defined by a hyper-rectangle having orthogonal ranges in each dimension.

93

To estimate the ranges of θ0 and φj, we use the mean trajectory of G given by

t̄ = 〈(x̄0, ȳ0), . . . , (x̄s−1, ȳs−1)〉 (5.6)

where x̄j = Σk
i=1x

i
j/k, which is viewed as a representative trajectory of G. The range

of θ0 is approximated by angles from the mean initial point to all the 2nd points in

G

[θa
0 , θ

b
0] = [min

i=1,...,k
{arctan(xi

1 − x0, y
i
1 − y0)}, max

i=1,...,k
{arctan(xi

1 − x0, y
i
1 − y0)}] (5.7)

where the circularity of angles are correctly handled. The range [φa
j , φ

b
j] is defined

by the deviation of the angles from a point in t̄ to all the immediately following

points in G

[φa
j , φ

b
j] = [min

i=1,...,k
{∆φi

j}, max
i=1,...,k

{∆φi
j}] (5.8)

where ∆φi
j = ∠(

−−−−−−−−−−−−−→
(x̄j−1, ȳj−1)(x̄j, ȳ

i
j),
−−−−−−−−−−−−−→
(x̄j−1, ȳj−1)(x

i
j, y

i
j)).

Using the defined volume of RG, the probability of a trajectory being inside

RG is given by

P (RG) =
πr2

R0

· lb − la

Rl

· θb
0 − θa

0

Rθ(x̄0, ȳ0, l̄)

s−2∏
j=1

φb
j − φa

j

Rφ

(5.9)

where R0, Rl, and Rφ are the area (length) of support of the respective distribution

estimated from the training data, and Rθ(x̄0, ȳ0, l̄) is the length of the possible range

of θ0 assuming that the initial point is (x̄0, ȳ0) with segment length l̄ = ‖(x̄1−x̄0, ȳ1−

94

ȳ0)‖. Note that appropriate margins are added to the volume as done in Section 5.4

but are not included in (5.6)–(5.8) for conciseness. The margin for r is the same as

in Section 5.4. Using similar arguments (average neighbor distance) the margins for

the other parameters are given by

δx =
Rx

4n
(5.10)

where x represents l, φ, or θ.

The upper bound on the number of possible regions NR defined by n tra-

jectories is obtained by separately considering (a) the number of enclosing discs

for the initial points (as shown in Section 5.4), (b) the number of tight segment

length intervals given by
(

n
2

)
, and (c) the number of (s − 1)-dimensional hyper-

rectangles enclosing the s − 1 angles. The upper bound on the number of unique

hyper-rectangles tightly enclosing n d-dimensional points can be shown to be
(

n
2d

)

by reasoning that the hyper-rectangle can have at most 2d points on the boundary

assuming general position. An upper bound of NR can be obtained by the product

of the three components (a)–(c)

NR .
(

n

3

)(
n

2

)(
n

2(s− 1)

)
(5.11)

This ignores the dependencies between the three components, which results in over-

estimating NR by a negligible constant factor.

95

5.6 Experimental results

5.6.1 Results from real surveillance videos

We validated our method using videos that contain a scene of a parking lot

adjacent to a building. Two videos, each lasting 90 minutes, were collected from

different days. Humans were tracked from the two videos each resulting in n = 154

and n = 159 trajectories. The training data for estimating the parameters of the

background model was selected from the first tracking data by removing a few

unusual trajectories such as a person turning back. The number of sampled points

was chosen to be s = 5.

Figures 5.2, and 5.3 show the results from each dataset. The salient clusters

are shown in sub-figures (c) and (d). Clusters within each sub-figure are labeled

as black, dashed black, white, and dashed white, corresponding to the increasingly

ordered cluster indices. The dot in one end of the trajectory indicates the initial

point. The scene includes the building entrance/exit in the lower right corner, a

walkway leading to a trail in the top, and two open spaces on the left and right

leading to roads. Each cluster corresponded to natural activities such as exiting

from the building and turning towards a road, or walking straight towards the

walkway, etc. Other activities such as a person walking out of or into a car are not

grouped into a cluster. Although this kind of activity might be meaningful to the

human observer, it could not be detected by the algorithm since the trajectories

were not significantly near each other. One obvious error was found in cluster 3

in Figure 5.3 where trajectories of people coming from the left and people coming

96

data

0 50 100 150
0

20

40

60

80

100

120

140

−
lo

g 10
(P

)

(a) data (b) dendrogram

clusters 1 2 14 23 clusters 5 7 8

(c) salient clusters (d) salient clusters

Figure 5.2: Salient clusters detected in the parking lot dataset 1.

97

data

0 50 100 150
0

20

40

60

80

100

120

−
lo

g 10
(P

)

(a) data (b) dendrogram

clusters 1 3 5 8 clusters 2 15 16 24

(c) salient clusters (d) salient clusters

Figure 5.3: Salient clusters detected in the parking lot dataset 2.

98

out of nearby cars were mixed together due to the proximity of the initial points.

More or less the same set of activities were discovered from both datasets except

that in Figure 5.2, no cluster was found corresponding to cluster 16 in Figure 5.3

(straight trajectories from left to right). In fact, one such cluster was found from

the first dataset by the algorithm but the probability was above the threshold since

only three trajectories were in the cluster. It is also observed that the activity

representing straight trajectories from right to left is detected as two clusters in

both results, as seen by clusters 14, 23 in Figure 5.2 and clusters 1, 5 in Figure 5.3.

This is because our method employs the spatial proximity as the grouping criterion,

which is not effective for groups that are spatially spread out.

For comparison of the results, we applied a spectral clustering and two stan-

dard hierarchical clustering methods on the same datasets and features. The affinity

matrix for spectral clustering was constructed from the Euclidean distances between

trajectories. Then the top k − 1 eigenvectors of the normalized Laplacian matrix

were used to map the features into (k − 1)-dimensional space [62], where k was

determined by visually inspecting the ranked eigenvalues. Finally, 20 repetitions of

k-means clustering was applied to this new data with random initialization, and the

best clustering result was selected using the following criterion:

• Define the “goodness” of a cluster G as f(G) =
√

var(G)/|G|, where var(G)

is the average eigenvalue of the covariance of the 2s-dimensional vectors rep-

resenting trajectories in G.

• For each k-means result, choose the c best clusters that have the lowest f(G)

99

values, where c is the number of clusters determined by our algorithm.

• Select the best k-means result that has the least sum of the c best f(G)

This process reduces the effect of the background trajectories by trying to assign

k − c clusters to them. Note that the number of salient clusters (c) were chosen to

be the same as our algorithm for comparison, but in general, it is difficult to choose

c in spectral clustering.

For hierarchical clustering, the single-linkage and the complete-linkage algo-

rithms [17] were applied using Euclidean distance. Instead of choosing a stopping

criterion, a wide range of threshold was applied by considering all the intermediate

results from every iteration.

To quantitatively analyze the results, ground truth clusters for both datasets

were manually labeled by subjectively judging the activity that each trajectory

belongs to. For example, if a person appeared to enter a car, the corresponding

trajectory was not labeled as “walking towards a path” even if it ended near the

path. The resulting number of clusters was 6 for dataset 1 and 7 for dataset 2.

Figures 5.4 and 5.7 show the ground truth clusters for each dataset.

5.6.2 Performance measures

We define the following performance measures for quantitative analysis:

• False positive rate (FPR) and false negative rate (FNR), which are errors

in the classification between foreground (the set of salient clusters) and back-

ground.

100

clusters 1 2 6 clusters 3 4 5

(a) (b)

Figure 5.4: Ground truth clusters for the parking lot dataset 1.

clusters 3 10 11 13 clusters 1 7 9

(a) (b)

Figure 5.5: Spectral clustering result for the parking lot dataset 1.

clusters 1 14 22 30 clusters 5 7 46 52 clusters 8 31 25

(a) (b) (c)

Figure 5.6: Single-link clustering result for the parking lot dataset 1.

101

clusters 3 4 6 7 clusters 1 2 5

(a) (b)

Figure 5.7: Ground truth clusters for the parking lot dataset 2.

clusters 4 8 10 11 clusters 1 3 9 15

(a) (b)

Figure 5.8: Spectral clustering result for the parking lot dataset 2.

clusters 1 4 5 7 clusters 2 12 15 24 clusters 3 10 33 26

(a) (b) (c)

Figure 5.9: Single-link clustering result for the parking lot dataset 2.

102

• Number of split clusters (NS) and merged clusters (NM): A large NS in-

dicates that many sub-clusters are detected within a true cluster, whereas a

high value of NM means that each detected cluster tend to include multiple

true clusters.

Let G0 and G∗
0 respectively denote the set of background trajectories in the result

of an algorithm and in the ground truth. Similarly, let G = {G1, . . . , Gc} and

G∗ = {G∗
1, . . . , G

∗
c∗} be the set of detected clusters and the set of ground truth

clusters, respectively. The error rates are formally defined by

FPR =
|⋃c

i=1 Gi −
⋃c∗

i=1 G∗
i |

|G∗
0|

(5.12)

FNR =
|⋃c∗

i=1 G∗
i −

⋃c
i=1 Gi|

|⋃c∗
i=1 G∗

i |
(5.13)

NS and NM are defined by first associating the clusters in G with the ones in G∗

then counting the multiplicity of the association from each cluster. The association

is done by determining at each cluster G, which cluster in the other set overlaps the

most with G. This association can be viewed as a directed bipartite graph where

each node i in G has at most one outgoing edge (Gi, Gj′) to G∗ where j is given by

j′ = argmax
j

{|Gi ∩G∗
j |} (5.14)

The outgoing edges from G∗ are also defined symmetrically. The number of split

(merge) is defined by counting the number of nodes in G∗ (G) that have in-degree

103

of more than 1.

NS =
∑c∗

j=1
min(deg−(G∗

j), 1) (5.15)

NM =
∑c

i=1
min(deg−(Gi), 1) (5.16)

5.6.3 Quantitative results

The values of FPR, FNR, NS, and the total number of clusters found by

each of the algorithms for both datasets are summarized in Tables 5.1 and 5.2.

In our method, the false positives were caused by trajectories that are spatially

similar to a cluster but does not represent the activity of the cluster e.g., a person

appearing from a car which happened to be near the path along which many people

walk. The high false positive rate in our method for the dataset 2 is mainly due to

the previously mentioned error in cluster 3. The false negatives were trajectories in

the true clusters that were unusually far from the center of the cluster.

For the spectral clustering method, the false positive rates were near 50% for

both datasets. The false negative rate for dataset 2 was high because the method

failed to detect two of the true clusters. k = 13 and k = 15 were respectively chosen

for datasets 1 and 2 and the same number of clusters as our result was selected

from the candidate clusters, as mentioned. The clustered trajectories are shown in

Figures 5.5 and 5.8. As can be seen in Figure 5.8, one true cluster in dataset 2 was

detected as 4 sub-clusters.

Results from the hierarchical clustering methods are shown in the ROC plots in

Figure 5.10(a) and (b), each corresponding to dataset 1 and 2. In each plot, the solid

104

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

false negative rate

fa
ls

e
po

si
tiv

e
ra

te

D
min

D
max

Saliency

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

false negative rate

fa
ls

e
po

si
tiv

e
ra

te

D
min

D
max

Saliency

(a) dataset 1 (b) dataset 2

Figure 5.10: ROC plots for the hierarchical clustering methods.

line and the dotted line represent the results from the single-linkage (denoted Dmin)

and the complete-linkage (denoted Dmax) algorithms, respectively. Our results,

indicated by an asterisk (∗) in each figure, had lower error rates compared with

both hierarchical algorithms for dataset 1. For dataset 2, our method performed

similar to some choice of parameter in the Dmin algorithm, in terms of classifying

between foreground and background. Each column for Dmin and the Dmax method

in Tables 5.1 and 5.2 is from the result that have the closest error rates as ours, which

is indicated by a circle in each plot of Figure 5.10. Both hierarchical algorithms in

both datasets produced much higher number of clusters at error rates similar to

ours. (The number of clusters did not change much for other choices of parameters

near the circle in the ROC plots.) Also, more activity groups were detected as split

clusters compared to our results. Figures 5.6 and 5.9 respectively show the clustered

trajectories corresponding to Dmin in Tables 5.1 and 5.2.

105

saliency spectral single-link complete-link

FPR 7.3% 50.9% 9.1% 9.1%
FNR 5.0% 0% 5.1% 6.1%

split groups 1 0 2 4
clusters found 7 7 11 21

Table 5.1: Quantitative results from dataset 1.

saliency spectral single-link complete-link

FPR 22.7% 49.1% 24.5% 24.5%
FNR 6.1% 15.2% 6.4% 7.3%

split groups 1 1 2 5
clusters found 8 8 12 22

Table 5.2: Quantitative results from dataset 2.

5.6.4 Results from synthetic data

For further quantitative evaluation of our method, experiments were performed

using synthetic data. We used the six ground truth clusters for the first parking

lot dataset as the reference for generating new datasets. Clusters of foreground tra-

jectories were generated by randomly choosing a trajectory from a reference cluster

and adding Gaussian perturbation noise along the normal of the trajectory at each

point. The standard deviation of the noise given at each point was proportional

to the mean of the nearest neighbor distances of points in the reference cluster.

The number of trajectories in each cluster was assigned proportionally to those in

the reference data. Each background trajectory was independently generated such

that one endpoint is shared by one of the clusters using the following procedure: A

reference trajectory is randomly chosen, then either its initial point p̄0 = (x0, y0)

or its final point p̄s = (xs−1, ys−1) is selected at random. Denote this point as p0.

106

Using the perturbed p0 (as done previously) as the initial point of the background

trajectory, the segment length l and the angles θ0, φ1 . . . , φs−2 are sampled from the

background distribution to create a trajectory. Finally, the order of the points in

this trajectory is reversed if p̄s−1 was selected.

The following sections describe the performance of our algorithm under varying

characteristics of the dataset. The performance in each experiment was measured

by averaging results from 100 synthetic datasets.

5.6.4.1 The effect of the number of sampled points in a trajectory

We first experimented with the number of sampled points s in the trajectory

representation. Synthetic datasets were generated with s varying from 4 to 8. The

total number of trajectories was fixed at n = 200, 133 of which was clustered fore-

ground trajectories. Figure 5.11 shows the performance of the results. Figure 5.12(a)

plots the FPR scaled by a factor of 10 and the FNR. FPR values were much less

than FNR because the generated background ‘noise’ was more or less random com-

pared to the real datasets. (All subsequent plots for FPR are scaled by a factor of

10.) The FPR decreased with s while the FNR increased with sufficiently large

s. This may be loosely explained by the exponential decrease of the volume of RG

with respect to s. As s increases, the accidental probability Pa(G) becomes minimal

with only a small number of trajectories in G thus the algorithm stops short of

detecting many foreground trajectories. Although the estimated background distri-

bution counters this effect by some degree by giving a higher probability to RG, the

107

assumption of independence in the variables in the trajectory representation causes

the underestimation of the probability. For small s, the FNR was slightly high

partly due to sparse clusters with insufficiently high Pa(G). The average NS value

shown in Figure 5.12(b) increased with s, which is an indication of over-segmentation

of some clusters due to smaller Pa(G)’s as explained above. The number of sampled

points used in the subsequent experiments was s = 5 with produces low error rates

while keeping the average value of NS lower than 1. No clusters were merged in

this set of experiments, which is expected since the clusters are far apart.

4 5 6 7 8
0

2

4

6

8

10

12

s

er
ro

r
ra

te
 (

%
)

FPR×10
FNR

4 5 6 7 8
0

0.5

1

1.5

2

2.5

s

av
er

ag
e

nu
m

be
r

splits
merges

(a) (b)

Figure 5.11: The effect of the number of sampled points in a trajectory. (n = 200,
nf = 133)

5.6.4.2 The effect of the number of trajectories

Synthetic datasets with increasing number of total trajectories n were gener-

ated for this experiment. The ratio of foreground trajectories were fixed at 1/3 for

each dataset. Figure 5.12 shows the performance on datasets with n ranging from

60 to 300. The error rates were high when n was small which means the clusters

were not dense enough to be detected as salient. Both FPR and FNR gener-

108

50 100 150 200 250 300
2

4

6

8

10

12

number of trajectories (n)

er
ro

r
ra

te
 (

%
)

FPR×10
FNR

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

number of trajectories (n)

av
er

ag
e

nu
m

be
r

splits
merges

(a) (b)

Figure 5.12: The effect of the number of total trajectories in the dataset.

ally decreased with increasing n except at n = 300 where FPR slightly increased.

This is thought to be caused by the increased number of background trajectories

that are similar to the foreground clusters. Split clusters (NS) occurred at most

approximately once per dataset, which is consistent with the real dataset. The av-

erage number of NS increased with n because of the widely spread nature of one

reference cluster (clusters 14 and 23 combined in Figure 5.2).

5.6.4.3 The effect of the relative number of background trajectories

In this experiment, the ratio of foreground trajectories was varied while the to-

tal number of trajectories was fixed at n = 200. Let nf be the number of foreground

trajectories. As can be seen in Figure 5.13(a), the error rates were very high at

nf = 60. In particular, both FPR and FNR values were substantially higher com-

pared with n = 100 in Figure 5.12(a) where its number of foreground trajectories

is close to 60 (67 to be precise) but with much less background trajectories. The

high FPR is due to background trajectories accidentally forming clusters among

109

60 80 100 120 140 160
0

10

20

30

40

50

60

70

number of foreground trajectories (n=200)

er
ro

r
ra

te
 (

%
)

FPR×10
FNR

60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

1.2

1.4

number of foreground trajectories (n=200)

av
er

ag
e

nu
m

be
r

splits
merges

(a) (b)

Figure 5.13: The effect of the relative number of background trajectories.

themselves or being near true foreground clusters. The cause for the higher FNR

is thought to be a combination of the interference from the background trajectories

and the fact that the foreground trajectories was slightly sparser in this experiment.

The errors decreased as the relative nf increased, as expected. It is seen that for

n = 200, nf should be more than half of n to obtain FPR < 1% and FNR < 10%.

At nf = 60 some merging of clusters were observed in Figure 5.13(b), which is due

to the relative sparseness of the foreground.

5.7 Discussion

We have presented a general framework for finding significant clusters of data

samples in the presence of unclustered background samples. The non-accidentalness

criterion was used to measure the significance of a candidate cluster, assuming a

simple statistical model of the background. For the application of discovering salient

clusters of trajectories, we defined a representation for the trajectory and the region

defined by a group of trajectory representations. It was shown through experiments

110

on real and synthetic data that our method performs well on data with different

characteristics without requiring any tuning of the parameters.

In our method, the absolute location and orientation of the trajectories were

utilized for discovering activities. This approach is valid when the activities are

more or less determined by the fixed structures in the scene e.g., entrance/exits and

pathways. However, there are types of activities that are less dependent on the

spatial location such as getting into a car or jogging in arbitrary direction. These

types of activities are well clustered in different sets of features such as the initial

point and general direction or the (similarity-invariant) trajectory shape and speed.

One future direction is to study the applicability of the non-accidentalness principle

in discovering features that cause the data to be well clustered.

111

Chapter 6

Conclusion and Future Work

We have presented four new approaches that deals with different levels of

problems in computer vision applicable to automatic video surveillance. For de-

tecting moving objects in a video, we introduced the temporal variance as a robust

measure of motion in a video. The problem of tracking multiple objects given the

object detection information was cast as a combinatorial optimization problem of

associating measurements with targets, which provided the theoretical basis for an

efficient multiple hypothesis tracking technique. For recognizing high-level events,

we proposed to model the events using representations based on attribute gram-

mars. In particular, the tracking data was represented by a series of symbols and

their associated attributes, which were classified into different type of events using

an incremental parsing algorithm. It should be noted that the methods described

in later chapters depends on the techniques developed in the earlier chapters. In

addtition, the methods presented in Chapters 2 through 4 are online algorithms

applicable to a real-time video processing system, an example of which was given

in Chapter 4. Finally, we have proposed a novel approach for discovering frequent

patterns of activities based on the principle of non-accidental grouping. Although

this is an off-line method, it may be applied to incremental chunks of data, which

would be appropriate for surveillance applications.

112

Our approaches have been validated using real and simulated data to ensure

that they are useful in practical applications. In particular, the performance evalu-

ation for the temporal variance-based detection method showed that it is effective

and performs better than a background modeling method under various conditions.

Our multi-object tracking approach is demonstrated to handle various degrees of ob-

ject interactions for different types of videos. We have shown multiple examples of

high-level event recognition through an implementation of a fully automatic surveil-

lance system. The activity discovery method is shown to perform well in real data

as well as in synthetic data with various characteristics, whereas a straightforward

application of traditional clustering method produced undesirable results.

There are certainly more work to be done regarding these approaches. Our

object detection method suffers from fragmentation of objects when they move very

slowly and detection would fail if an object stops moving for some time. This is a

disadvantage shared by motion-based object detection approaches. For applications

where these kinds of object behaviors are common, background modeling approaches

should produce better results as they work independently of time, thus object speed.

A combination of both approaches, seamlessly integrating the advantages of the two

would be one future direction.

In our multi-object tracking method, the appearance (e.g., shape, color, or

texture) of each target is not modeled in the tracking framework, assuming that

the appearance between targets are indistinguishable such as in the case with the

camera positioned against the light or an infra-red camera. However, there are cases

where the appearance of the targets are more or less distinct. In such a case the

113

appearance feature extracted from the measurements may be incorporated into the

association cost. This may extend the capability of reacquiring targets that moves

out of the view for a short time and reappear nearby. The formulation of minimum

weight edge cover should be useful for other vision problems such as matching model

features to non-rigid objects.

Non-accidentalness is a general principle that may be applied to different lev-

els of features [41, 15]. For activity recognition, the patterns of activities found by

our method may itself be a feature which may be grouped over a longer time scale.

By focusing on the “outlier” activities, we should be able to detect anomalies. It

would also be interesting to apply the principle to the temporal relationships among

the trajectory features, possibly enabling to learn the patterns of interactions be-

tween objects. Another direction we have not pursued is to apply other perceptual

organization principles to trajectories, such as parallelism and similarity.

114

Chapter A

Algorithm for the minimum weight edge cover

We describe the algorithm for reducing the minimum weight edge cover prob-

lem to the minimum weight perfect matching. In the following, V and E represent

the set of vertices and edges in a graph. w(e) or w(x, y) denotes the weight associ-

ated with edge e or with the edge (x, y) defined by two vertices x, y. w(G) denotes

the sum of edge weights in graph G.

1. Given a connected graph G = (V,E) with edge weights w(e), e ∈ E, we

construct a graph H in the following way:

• Add G and its identical copy G′ = (V ′, E ′) to H. Assign weights to the

copy as w(e′) = 0, e′ ∈ E ′.

• Connect each vertex v ∈ V and its counterpart v′ ∈ V ′ and assign weights

as w(v, v′) = minx∈N(v) w(v, x), where N(v) is the set of vertices adjacent

to v.

2. Find the minimum weight perfect matching MH of H.

3. Construct an edge cover CG by replacing each connecting edges (v, v′) in MH

with the edge (v, x) whose weight was the origin of w(v, v′), then deleting G′

from MH .

Theorem A.1 CG is a minimum weight edge cover of G.

115

Proof By the above construction of H,

w(MH) = w(CG) (A.1)

Since MH is the minimum weight perfect matching of H, given any perfect matching

M̃H ,

w(MH) ≤ w(M̃H) (A.2)

Now given any edge cover C̃G of G we can (reversely) construct a perfect matching

M̃H of H by the following:

1. Remove all paths in C̃G with 3 edges by removing the edge in the middle.

(Note this still results in a valid edge cover.)

2. For each vertex v with degree deg(v) > 1, remove any edge (v, x) from v and

add (x, x′) to M̃H , repeating until deg(v) = 1.

3. For each remaining edge in C̃G, add the two corresponding edges in H to M̃H .

Since by construction of H, w(x, x′) ≤ w(v, x) and w(G′) = 0,

w(M̃H) ≤ w(C̃G) (A.3)

From (A.1), (A.2), and (A.3), for any C̃G and M̃H

w(CG) = w(MH) ≤ w(M̃H) ≤ w(C̃G) (A.4)

116

Bibliography

[1] H. Ablas. Introduction to attribute grammars. In H. Ablas and Melichar B.,
editors, Attribute Grammars, Application and Systems, volume 545 of LNCS.
Springer-Verlag, 1991.

[2] A. Albiol, C. Sandoval, V. Naranjo, and J. M. Mossi. Robust motion detector
for video surveillance applications. In Proc. International Conference on Image
Processing, volume 2, pages 379–82, 2003.

[3] J. Allen. Natural Language Understanding. Benjamin/Cummings, 1995.

[4] Y. Bar-Shalom and T. E. Fortmann. Tracking and Data Association. Academic
Press, 1987.

[5] F. Cao, J. Delon, A. Desolneux, P. Muse, and F. Sur. A unified framework for
detecting groups and application to shape recognition. To appear in Journal of
Mathematical Imaging and Vision.

[6] C. Chang, R. Ansari, and A. Khokhar. Multiple object tracking with kernel par-
ticle filter. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
1:566–573, June 2005.

[7] H.-T. Chen, H.-H. Lin, and T.-L. Liu. Multi-object tracking using dynami-
cal graph matching. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages II:210–II:217, 2001.

[8] Y. S. Chia and W. Huang. Multiple objects tracking with multiple hypotheses
dynamic updating. In Proc. IEEE International Conf. on Image Processing,
pages 569–572, 2006.

[9] I. J. Cox and S.L. Hingorani. An efficient implementation of Reid’s multiple
hypothesis tracking algorithm and its evaluation for the purpose of visual track-
ing. IEEE Trans. on Pattern Analysis and Machine Intelligence, 18(2):138–150,
February 1996.

[10] N. Cressie. Statistics for Spatial Data. Wiley, 1993.

[11] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati. Detecting moving objects,
ghosts, and shadows in video streams. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 25(10):1337–1342, October 2003.

[12] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 2nd edition, 2000.

[13] C. de la Higuera. A bibliographical study of grammatical inference. Pattern
Recognition, 38(9):1332–1348, 2005.

117

[14] H. Dee and D. Hogg. Detecting inexplicable behaviour. In Proc. of the British
Machine Vision Conference, 2004.

[15] A. Desolneux, L. Moisan, and Morel J.-M. Meaningful alignments. Interna-
tional Journal of Computer Vision, 40(1):1–23, October 2000.

[16] A. Desolneux, L. Moisan, and J.-M. Morel. A grouping principle and four appli-
cations. IEEE Trans. on Pattern Analysis and Machine Intelligence, 25(4):508–
513, April 2003.

[17] R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley Interscience,
2nd edition, 2001.

[18] J. Earley. An efficient context-free parsing algorithm. Communications of the
ACM, 13(2):94–102, 1970.

[19] A. Elgammal, D. Harwood, and Davis L. Non-parametric model for background
subtraction. In Proc. European Conference on Computer Vision, volume 2,
pages 751–767, 2000.

[20] K. S. Fu. Syntactic Pattern Recognition and Applications. Prentice Hall, 1982.

[21] A. Genovesio and J.-C. Olivo-Marin. Split and merge data association filter for
dense multi-target tracking. In Proc. International Conf. on Pattern Recogni-
tion, volume 4, pages 677–680, 2004.

[22] N. Ghanem, D. DeMenthon, D. Doermann, and L. Davis. Representation and
recognition of events in surveillance video using petri nets. In Proc. of the IEEE
Workshop on Event Mining, 2004.

[23] W. E. L. Grimson and D. P. Huttenlocher. On the verification of hypothesized
matches in model-based recognition. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 13(12):1201–1213, 1991.

[24] R. Hamid, A. Johnson, S. Batta, A. Bobick, C. Isbell, and G. Coleman. De-
tection and explanation of anomalous activities: representing activities as bags
of event n-grams. In Proc. Computer Vision and Pattern Recognition, CVPR,
volume 1, pages 1031–1038, 2005.

[25] M. Han, A. Sethi, and Y. Gong. A detection-based multiple object tracking
method. In Proc. IEEE International Conf. on Image Processing, volume 5,
pages 3065–3068, 2004.

[26] M.-O. Hongler, Y. L. de Meneses, A. Beyeler, and J. Jacot. The resonant
retina: exploiting vibration noise to optimally detect edges in an image. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 25(9):1051–1062, Sep-
tember 2003.

118

[27] W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank. A system for learning
statistical motion patterns. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 28(9):1450–1464, September 2006.

[28] S. Huwer and H. Niemann. Adaptive change detection for real-time surveillance
applications. In Proc. IEEE International Workshop on Visual Surveillance,
pages 37–45, 2000.

[29] M. Isard and J. MacCormick. Bramble: a bayesian multiple-blob tracker. In
Proc. IEEE International Conf. on Computer Vision, volume 2, pages 34–41,
2001.

[30] Y. A. Ivanov and A. F. Bobick. Recognition of visual activities and interac-
tions by stochastic parsing. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 22(8):852–872, August 2000.

[31] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall,
1988.

[32] R. C. Jain and H. H. Nagel. On the analysis of accumulative difference pictures
from image sequences of real world scenes. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 1(2):206–213, April 1979.

[33] O. Javed and M. Shah. Tracking and object classification for automated surveil-
lance. In Proc. European Conf. on Computer Vision – Part IV, pages 343–357,
2002.

[34] N. Johnson and D. Hogg. Learning the distribution of object trajectories for
event recognition. In Proc. British Machine Vision Conference, volume 2, pages
583–592, 1995.

[35] R. Jonker and A. Volgenant. A shortest path algorithm for dense and sparse
linear assignment problems. Computing, 38:325–340, 1987.

[36] S.-W. Joo and Q. Zheng. A temporal variance-based moving target detector.
In Proc. IEEE International Workshop on Performance Evaluation of Tracking
and Surveillance, January 2005.

[37] Z. Khan, T. Balch, and F. Dellaert. Multitarget tracking with split and merged
measurements. In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR) Vol. 1, pages 605–610, June 2005.

[38] K. Kim, T. H. Chalidabhongse, H. David, and L. Davis. Real-time
foreground-background segmentation using codebook model. Real-Time Imag-
ing, 11(3):172–185, June 2005.

[39] D. E. Knuth. Semantics of context-free languages. Mathematical Systems The-
ory, 2(2), 1968.

119

[40] O. Lanz. Approximate bayesian multibody tracking. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 28(9):1436–1449, September 2006.

[41] D. Lowe. Perceptual Organization and Visual Recognition. Kluwer, 1985.

[42] D. Makris and T. Ellis. Learning semantic scene models from observing activity
in visual surveillance. IEEE Trans. on Systems, Man and Cybernetics, Part B,
35(3):397–408, June 2005.

[43] G. Medioni, I. Cohen, F. Bremond, S. Hongeng, and R. Nevatia. Event detec-
tion and analysis from video streams. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 23(8):873–889, August 2001.

[44] A. Mittal and L. S. Davis. M2tracker: A multi-view approach to segmenting
and tracking people in a cluttered scene. International Journal of Computer
Vision, 51(3):189–203, Feb/Mar 2003.

[45] D. Moore and I. Essa. Recognizing multitasked activities from video using
stochastic context-free grammar. In Proc. of Eighteenth National Conference
on Artificial Intelligence, 2002.

[46] K. G. Murty. An algorithm for ranking all the assignments in order of increasing
cost. Operations Research, 16:682–687, 1968.

[47] N. Paragios and C. Tziritas. Detection and location of moving objects using de-
terministic relaxation algorithms. In Proc. International Conference on Pattern
Recognition, volume 1, pages 201–205, 1996.

[48] F. Porikli and T. Haga. Event detection by eigenvector decomposition using
object and frame features. In Proc. IEEE Workshop on Event Mining, 2004.

[49] P. Prokopowicz and P. Cooper. The dynamic retina: Contrast and motion de-
tection for active vision. International Journal of Computer Vision, 16(3):191–
204, November 1995.

[50] R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam. Image change detection
algorithms: a systematic survey. IEEE Trans. on Image Processing, 14(3):294–
307, March 2005.

[51] D. Reid. An algorithm for tracking multiple targets. IEEE Trans. on Automatic
Control, 24(6):843–854, 1979.

[52] P. L. Rosin. Thresholding for change detection. Computer Vision and Image
Understanding, 86(2):79–95, May 2002.

[53] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume A.
Springer, 2003.

120

[54] C. Stauffer and W. Grimson. Adaptive background mixture models for real-time
tracking. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 246–252, 1999.

[55] C. Stauffer and W. E. L. Grimson. Learning patterns of activity using real-
time tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence,
22(8):747–757, August 2000.

[56] A. Stolcke. An efficient probabilistic context-free parsing algorithm that com-
putes prefix probabilities. Computational Linguistics, 21(2):165–201, 1995.

[57] Xiang T. and Gong S. Video behaviour profiling and abnormality detection
without manual labelling. In Proc. IEEE International Conf. on Computer
Vision (ICCV), 2005.

[58] N. Vaswani, A.K. Roy-Chowdhury, and R. Chellappa. ”shape activity”: a
continuous-state HMM for moving/deforming shapes with application to abnor-
mal activity detection. IEEE Trans. on Image Processing, 14(10):1603–1616,
2005.

[59] V. T. Vu, F. Bremond, and M. Thonnat. Automatic video interpretation: A
novel algorithm for temporal scenario recognition. In Proc. of The Eighteenth
International Joint Conference on Artificial Intelligence (IJCAI’03), August
2003.

[60] X. Wang, K. Tieu, and W. E. L. Grimson. Learning semantic scene models by
trajectory analysis. In Proc. European Conference on Computer Vision, 2006.

[61] A. P. Witkin and J. M. Tenenbaum. On the role of structure in vision. In
J. Beck, B. Hope, and A. Rosenfeld, editors, Human and Machine Vision,
pages 481–543. Academic Press, 1983.

[62] Weiss Y. Segmentation using eigenvectors: A unifying view. In Proc. IEEE
International Conference on Computer Vision, pages 975–982, 1999.

[63] Q. Yu, I. Cohen, G. Medioni, and B. Wu. Boosted markov chain monte carlo
data association for multiple target detection and tracking. In Proc. Interna-
tional Conf. on Pattern Recognition, volume 2, pages 675–678, 2006.

[64] Hua Zhong, Jianbo Shi, and M. Visontai. Detecting unusual activity in video.
In Proc. of Computer Vision and Pattern Recognition, CVPR, volume 2, 2004.

121

