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Abstract.  In this paper we extensively explore and illustrate the effectiveness of the two-phase

decomposition of scheduling — into clustering and cluster-scheduling or merging — and mapping task

graphs onto embedded multiprocessor systems. We describe efficient and novel partitioning (cluster-

ing) and scheduling techniques that aggressively streamline interprocessor communication and can be

tuned to exploit the significantly longer compilation time that is available to embedded system design-

ers. The increased compile-time tolerance results because embedded multiprocessor systems are typi-

cally designed as final implementations for dedicated functions. While multiprocessor mapping

strategies for general-purpose systems are usually designed with low to moderate complexity as a con-

straint, embedded system design tools are allowed to employ more thorough and time-consuming opti-

mization techniques [32]. We implement a framework for performance comparison of guided

probabilistic-search algorithms against deterministic algorithms. We also present an experimental

setup for determining the importance of different phases in scheduling and the effect of different

approaches in achieving the final results.

1.  Introduction

This research addresses the two-phase method of scheduling [38] that was introduced by

Sarkar [38] in which task clustering is performed as a compile-time pre-processing step and in

advance of the actual task to processor mapping and scheduling process. This method, while sim-

ple, is a remarkably capable strategy for mapping task graphs onto embedded multiprocessor

architectures that aggressively streamlines interprocessor communication. This method has been

explored subsequently by other researchers such as Yang and Gerasoulis [47]. In most of the fol-

low-up work the focus has been on developing simple and fast algorithms for each step [24, 30,

37] and little work has been done on developing more thorough and efficient algorithms. To the
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authors’ best knowledge, there has been also little work on evaluating the idea of decomposition

or comparing scheduling algorithms that are composed of clustering and merging (i.e. two-step

scheduling algorithms) against each other or against one-step scheduling algorithms. 

In [19], we took a new look at this two-step decomposition of scheduling in the context of

embedded systems and developed a more thorough and efficient evolutionary-based clustering

algorithm (called CFA) that was shown to outperform the other leading clustering algorithms.

While multiprocessor mapping and scheduling strategies for general-purpose systems are usually

designed with low to moderate complexity as a constraint, embedded system design tools can tol-

erate significantly longer compilation times due to the fact that embedded multiprocessor systems

are typically designed as final implementations for dedicated functions and modifications to

embedded system implementations are rare [32]. This flexibility allows embedded system design-

ers to employ more thorough and time-consuming optimization techniques and based on this

observation we developed a heuristic capable of exploiting this increased compile-time. We also

introduce a randomization approach to be applied to deterministic algorithms so they can exploit

increases in additional computational resources (compile time tolerance) to explore larger seg-

ments of the solution space. This approach will also provide a method for comparing the guided-

random search algorithms against deterministic algorithms in a fair setup. Few researchers have

included such comparisons in their studies [23][34].

Most existing merging techniques are simple and do not consider the timing and ordering

information generated in the clustering step. In this work, we have modified the ready-list sched-

uling algorithm to schedule groups of tasks or clusters instead of individual tasks. Our algorithm

utilizes the information from the clustering step and uses the tasks’ starting times as determined

during the clustering step to assign priorities to the clusters. We call the employed merging algo-

rithm the Clustered Ready List Scheduling Algorithm or CRLA.

Our contribution in this paper is as follows: We first evaluate a number of leading cluster-

ing algorithms such as CFA (an evolutionary algorithm based clustering algorithm introduced in

[19]), Sarkar’s Internalization Algorithm (SIA) [38] and Yang and Gerasoulis’s Dominant



3

Sequence Clustering (DSC) algorithm [47] in conjunction with a cluster-scheduling or merging

algorithm called CRLA and show that the choice of clustering algorithm can significantly change

the overall performance of the scheduling. We address the potential inefficiency implied in using

the two phases of clustering and merging with no interaction between the phases and introduce a

solution that while taking advantage of this decomposition increases the overall performance of

the resulting mappings. Next, we present a general framework for performance comparison of

guided random-search algorithms against deterministic algorithms and an experimental setup for

comparison of one-step against two-step scheduling algorithms. This framework helps to deter-

mine the importance of different steps in the scheduling problem and effect of different

approaches in the overall performance of the scheduling. We present the results of an extensive

experimental study that show that decomposition of the scheduling process indeed improves the

overall performance and that the quality of the solutions depends on the quality of the clusters

generated in the clustering step. We also discuss why the parallel execution time metric is not a

sufficient measure for performance comparison of clustering algorithms. 

This paper is organized as follows. In the next section we present the background, notation

and definitions used in this paper. In section 3 we state the problem and our proposed framework.

In section 4, we present the input graphs we have used in our experiments. Experimental results

are given in section 5 and we conclude the paper in section 6 with a summary of the paper and

conclusions.

2.  Background and Problem Statement

We represent the applications that are to be mapped into parallel implementations in terms

of the widely-used task graph model. A task graph is a directed acyclic graph (DAG) ,

where

•   is the set of task nodes, which are in one-to-one correspondence with the computational tasks

in the application .

•   is the set of communication edges (each member is an ordered pair of tasks).

•  denotes a function that assigns an execution time to each member of .

G V E,( )=

V

V v1 v2 … v V, , ,{ }=( )

E

t V ℵ→: V
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•  denotes a function that gives the cost (latency) of each communication edge. That

is, for all ;  for all , ; and  is the cost of trans-

ferring data between and  if they are assigned to different processors. This notation is illus-

trated in Figure 1.

2.1 Scheduling and Clustering

The concept of clustering has been broadly applied to numerous applications and research

problems such as parallel processing, load balancing and partitioning [38][29][31]. Clustering is

also often used as a front-end to multiprocessor system synthesis tools and as a compile-time pre-

processing step in mapping parallel programs onto multiprocessor architectures. In this research

we are only interested in the latter context, where given a task graph and infinite number of fully-

connected processors, the objective of clustering is to assign tasks to processors. In this context,

clustering is used as the first step to scheduling parallel architectures and is used to group basic

tasks into subsets that are to be executed on the same processor. Once the clusters of tasks are

formed, the task execution ordering of each processor will be determined and tasks will run

C V: V ℵ→×
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Figure 1: An example of a task graph with 9 task nodes and 10 communication edges
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sequentially on each processor with zero intracluster overhead. The target architecture for the clus-

tering step is a clique (a clique is a graph such that each node pair is joined by an edge, i.e. the

graph is fully connected and every node is connected to ( ) other nodes.) of infinite number

of processors. The justification for clustering is that if two tasks are clustered together and are run-

ning on the same processor when an unbounded number of processors are available then they

should also be mapped to the same processor under a processor constraint, i.e. when the number of

processors is finite [38]. 

In general, regardless of the employed communication network model, in the presence of

heavy interprocessor communication, clustering tends to adjust the communication and computa-

tional time by changing the granularity of the program and forming coarser grain graphs. A per-

fect clustering algorithm is considered to have a decoupling effect on the graph, i.e. it should

cluster tasks that are heavily dependent (data dependency is relative to the amount of data they

exchange or the communication cost) together and form composite nodes that can be treated as

nodes in another task graph. After performing clustering and forming the new graph with compos-

ite task nodes, there has to be a scheduling algorithm to map the new and simpler graph to the

final target architecture. To satisfy this, clustering and list scheduling (and a variety of other

scheduling techniques) are used in a complementary fashion in general. Consequently, clustering

typically is first applied to constrain the remaining steps of synthesis, especially scheduling, so

that they can focus on strategic processor assignments. 

The clustering goal (as well as the overall goal for this decomposition scheme) is to mini-

mize the parallel execution time while mapping the application to a given target architecture. The

parallel execution time (or simply parallel time) is defined by the following expression:

, (1)

where  ( ) is the length of the longest path between node  and the source

(sink) node in the scheduled graph, including all of the communication and computation costs in

that path, but excluding  from . Here, by the scheduled graph, we mean the task

V 1–

τP max tlevel vx( ) blevel vx( )+ vx V∈( )=

tlevel vx( ) blevel vx( ) vx

t vx( ) tlevel vx( )
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graph with all known information about clustering and task execution ordering modeled using

additional zero-cost edges. In particular, if and  are clustered together, and  is scheduled

to execute immediately after , then the edge  is inserted in the scheduled graph.

Although a number of innovative clustering and scheduling algorithms exist to date, none

of these provide a definitive solution to the clustering problem. Some prominent examples of

existing clustering algorithms are:

•  Dominant sequence clustering (DSC) by Yang and Gerasoulis [47],

•  Linear clustering by Kim and Browne [20], and

•  Sarkar's internalization algorithm (SIA) [38].

In the context of embedded system implementation, one limitation shared by many exist-

ing clustering and scheduling algorithms is that they have been designed for general purpose com-

putation. In the general-purpose domain, there are many categories of applications for which short

compile time is of major concern. In such scenarios, it is highly desirable to ensure that an appli-

cation can be mapped to an architecture within a matter of seconds. Thus, the clustering tech-

niques of Sarkar, Kim, and especially, Yang have been designed with low computational

complexity as a major goal. 

However, in embedded application domains, such as signal/image/video processing, the

quality of the synthesized solution is by far the most dominant consideration, and designers of

such systems can often tolerate compile times on the order of hours or even days — if the synthe-

sis results are markedly better than those offered by low complexity techniques. We have

explored a number of approaches for exploiting this increased compile-time-tolerance. These will

be presented in sections 3.1 and 3.2. The first approach is based on genetic algorithms and is

briefly introduced in 2.2 and explored further in section 3.1.

In this paper, we assume a clique topology for the interconnection network where any

number of processors can perform interprocessor communication simultaneously. We also assume

dedicated communication hardware that allows communication and computation to be performed

v1 v2 v2

v1 v1 v2,( )
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concurrently and we also allow communication overlap for tasks residing in one cluster. 

2.2 Genetic Algorithms

Given the intractable nature of clustering and scheduling problems and the promising per-

formance of Genetic Algorithms (GA) on similar problems, it’s natural to consider a solution

based on GAs, which may offer some advantages over traditional search techniques. GAs,

inspired by observation of the natural process of evolution, are frequently touted to perform well

on nonlinear and combinatorial problems [15]. They operate on a population of solutions rather

than a single solution in the search space, and due to the domain independent nature of GA’s, they

guide the search solely based on the fitness evaluation of candidate solutions to the problem,

whereas heuristics often rely on very problem-specific knowledge and insights to get good results. 

A genetic algorithm starts with an initial population of solutions. In a typical genetic algo-

rithm, the search space of all possible solutions of the problem is being mapped onto a set of finite

strings (chromosomes) over a finite alphabet and hence each of the individual solutions is repre-

sented by an array or strings of values. This population is initially generated randomly and

evolves through generations. The ability of each individual solution to be carried over to different

generations is directly related to it fitness. The fitness of each individual basically determines how

well the solution performs in regard to the objectives of the problem. Genetic operators are also

employed to generate new solutions. The basic operators of such a genetic algorithm that are

applied to candidate solutions to form new and improved solutions are crossover, mutation and

reproduction [15]. The crossover operator is defined as a mechanism for incorporating the

attributes of two parents into a new individual. The mutation operator is a mechanism for intro-

ducing necessary attributes into an individual when those attributes do not already exist within the

current population of solutions. Reproduction is analogous to Darwinian survival of the fittest

creature and is the process in which individual strings are selected according to their fitness value

to be passed to the next generation [13][15]. More details about our solution representation and

operator (crossover, mutation, etc.) implementation are given in section 3.

A survey of the literature reveals a large number of papers devoted to the scheduling prob-



8

lem while there are no GA approaches to task graph clustering. As discussed earlier in 2.1, the 2-

phase decomposition of scheduling problem offers unique advantages that are worth further

investigation and experimented thoroughly. Consequently, in this paper we develop efficient GA

approaches to clustering and mapping/merging task graphs.

2.3 Existing Approaches 

IPC-conscious scheduling algorithms have received high attention in the literature and a

great number of them are based on the framework of clustering algorithms. This group of algo-

rithms, which are the main interest of this paper, have been considered as scheduling heuristics

that directly emphasize reducing the effect of IPC to minimize the parallel execution time

[38][47][24][26]. Among existing clustering approaches are Sarkar’s Internalization Algorithm

(SIA) [38] and the Dominant Sequence Clustering (DSC) algorithm of Yang and Gerasoulis [47].

Sarkar’s clustering algorithm has relatively low complexity. It starts with a complete solu-

tion and iteratively makes local changes to it, and thus is likely to be trapped in local minima.

DSC, on the other hand, builds the solution incrementally. It makes changes with regard to the

global impact on the parallel execution time, but only accounts for the local effects of these

changes, and this can lead to the accumulation of suboptimal decisions, especially for large task

graphs with high communication costs, and graphs with multiple critical paths. Nevertheless, this

algorithm has been shown to be capable of producing very good solutions, and it is especially

impressive given its low complexity. 

In comparison to the high volume of research work on the clustering phase, there has been

little research on the cluster-scheduling or merging phase. Among a few merging algorithms are

Sarkar’s task assignment algorithm [38] and Yang’s Ready Critical Path (RCP) algorithm [45].

Sarkar’s merging algorithm is a modified version of list scheduling with tasks being prioritized

based on their ranks in a topological sort ordering. This algorithm has relatively high time com-

plexity. Yang’s merging algorithm is part of the scheduling tool PYRROS [46], and is a low com-

plexity algorithm based on the load-balancing concept. Since merging is the process of scheduling

and mapping the clustered graph onto the target embedded multiprocessor system, it is expected
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to be as efficient as a scheduling algorithm that works on a non-clustered graph. Both of these

algorithms lack this motive by oversimplifying assumptions such as assigning an ordering-based

priority and not utilizing the (timing) information provided in the clustering step. A recent work

on physical mapping of task graphs into parallel architectures with arbitrary interconnection

topology can be found in [21]. A technique similar to Sarkar’s has been used by Lewis, et al. as

well in [27]. GLB and LLB [37] are two cluster-scheduling algorithms that are based on the load-

balancing idea. Although both algorithms utilize timing information, they are inefficient in the

presence of heavy communication costs in the task graph. GLB also makes local decisions w.r.t

cluster assignments which results in poor overall performance.

Due to the deterministic nature of SIA and DSC, neither can exploit the increased compile

time tolerance in embedded system implementation. There has been some research on scheduling

heuristics in the context of compile-time efficiency [28][24]; however, none studies the implica-

tions from the compile time tolerance point of view. Additionally, since they concentrate on

deterministic algorithms, they do not exploit compile time budgets that are larger than the

amounts of time required by their respective approaches.

There has been some probabilistic search implementation of scheduling heuristics in the

literature, mainly in the forms of simulated annealing (SA) algorithms or genetic algorithms

(GA). The simulated annealing algorithms attempt to avoid getting trapped in local minima and

have been successfully used for scheduling problems [35]. GAs have the same characteristic as

SAs regarding local minima and also have other advantages, which are discussed in section 2.2.

Hou et al. [16], Wang and Korfhage [47], Kwok and Ahmad [25], Zomaya et al. [53], and Correa

et al. [8] have proposed different genetic algorithms in the scheduling context. Hou and Correa

use similar integer string representations of solutions. Wang and Korfhage use a two-dimensional

matrix scheme to encode the solution. Kwok and Ahmad also use integer string representations,

and Zomaya et al. use a matrix of integer substrings. An aspect that all of these algorithms have in

common is a relatively complex solution representation in the underlying GA formulation. Each

of these algorithms must at each step check for the validity of the associated candidate solution
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and any time basic genetic operators (crossover and mutation) are applied, a correction function

needs to be invoked to eliminate illegal solutions. This overhead also occurs while initializing the

first population of solutions. These algorithms also need to significantly modify the basic cross-

over and mutation procedures to be adapted to their proposed encoding scheme. We show that in

the context of the clustering/merging decomposition, these complications can be avoided in the

clustering phase, and more streamlined solution encodings can be used for clustering.

Correa et al. address compile time consumption in the context of their GA approach. In

particular, they run the lower-complexity search algorithms as many times as the number of gen-

erations of the more complex GA, and compare the resulting compile times and parallel execution

times (schedule makespans). However, this measurement provides only a rough approximation of

compile time efficiency. More accurate measurement can be developed in terms of fixed compile-

time budgets (instead of fixed numbers of generations). This will be discussed further in 3.2.

As for the complete two-phase implementation there is also a limited body of research

work providing a framework for comparing the existing approaches. Liou, et al. address this issue

in their paper [30]. They first apply three average-performing merging algorithms to their cluster-

ing algorithm and later on run the three merging algorithms without applying the clustering algo-

rithm and conclude that clustering is an essential step. They build their conclusion based on

problem- and algorithmic-specific assumptions. We also believe that reaching such a conclusion

may need a more thorough approach and a specialized framework and set of experiments. Hence,

their comparison and conclusions cannot be generalized to our context in this paper. Dikaiakos et

al. also propose a framework in [12] that compares various combinations of clustering and merg-

ing. In [37], Radulescu et al., to evaluate the performance of their merging algorithm (LLB), use

DSC as the base for clustering algorithms and compare the performance of DSC and 4 merging

algorithms (Sarkar’s, Yang’s, GLB and LLB) against the one-step MCP algorithm. They show

that their algorithm outperforms other merging algorithms used with DSC while it is not always

as efficient as MCP. In their comparison they do not take the effect of clustering algorithms into

account and only emphasize merging algorithms.
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Some researchers [23][34] have presented comparison results for different clustering

(without merging) algorithms (classified as Unbounded Number of Clusters (UNC) scheduling

algorithms) and have left the cluster-merging step unexplored. In section 5, we show that the clus-

tering performance does not necessarily provide an accurate answer to the overall performance of

the two-step scheduling and hence cluster comparison does not provide important information

w.r.t. to the scheduling performance. Hence, a more accurate comparison approach should com-

pare the two-step against the one-step scheduling algorithms. In this research we will give a

framework for such comparisons that take the compile-time budget into account as well.

3.  The Proposed Mapping Algorithm and Solution Description

3.1 CFA: Clusterization Function Algorithm

We propose a new framework for applying GAs to multiprocessor scheduling problems.

For such problems any valid and legal solution should satisfy the precedence constraints among

the tasks and every task should be present and appear only once in the schedule. Hence the repre-

sentation of a schedule for GAs must accommodate these conditions. Most of the proposed GA

methods satisfy these conditions by representing the schedule as several lists of ordered task

nodes where each list corresponds to the task nodes run on a processor. These representations are

typically sequence based [13]. Observing that conventional operators that perform well on bit-

string encoded solutions do not work on solutions represented in the forms of sequences opens up

the possibility of gaining a high quality solution by designing a well-defined representation.

Hence, our solution representation encodes scheduling-related information as a single subset of

graph edges , with no notion of an ordering among the elements of . This representation can

be used with a wide variety of scheduling and clustering problems.

Our representation of clustering exploits the view of a clustering as a subset of edges in

the task graph. Gerasoulis and Yang have suggested an analogous view of clustering in their char-

acterization of certain clustering algorithms as being edge-zeroing algorithms [14]. One of our

contributions in this paper is to apply this subset-based view of clustering to develop a natural,

efficient genetic algorithm formulation. For the purpose of a genetic algorithm, the representation

β β
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of graph clusterings as subsets of edges is attractive since subsets have natural and efficient map-

pings into the framework of genetic algorithms.

Derived from the schema theory (a schema denotes a similarity template that represents a

subset of ), canonical GAs (which use binary representations of each solution as fixed-

length strings over the set  and efficiently handle optimization problems of the form

) provide near-optimal sampling strategies over subsequent generations [5]. Fur-

thermore, binary encodings in which the semantic interpretations of different bit positions exhibit

high symmetry (e.g., in our case, each bit corresponds to the existence or absence of an edge

within a cluster) allow us to leverage extensive prior research on genetic operators for symmetric

encodings rather than forcing us to develop specialized, less-thoroughly-tested operators to han-

dle the underlying non-symmetric, non-traditional and sequence-based representation. Conse-

quently, our binary encoding scheme is favored both by schema theory, and significant prior work

on genetic operators. Furthermore, by providing no constraints on genetic operators, our encoding

scheme preserves the natural behavior of GAs. Finally, conventional GAs assume that symbols or

bits within an individual representation can be independently modified and rearranged, however a

scheduling solution must contain exactly one instance of each task and the sequence of tasks

should not violate the precedence constraints. Thus, any deletion, duplication or moving of tasks

constitutes an error. Traditional crossover and mutation operators are generally capable of pro-

ducing infeasible or illegal solutions. Under such a scenario, the GA must either discard or repair

(to make feasible) the non-viable solution. Repair mechanisms transform infeasible individuals

into feasible ones observing the fact that they may not always be successful. Our proposed

approach never generates an illegal or invalid solution, and thus saves repair-related compilation

time that would otherwise have been wasted in locating, removing or correcting invalid solutions.

Our approach to encoding clustering solutions is based on the following definition.                                                            

Definition 1:  Suppose that  is a subset of task graph edges. Then  denotes

the clusterization function associated with . This function is defined by:

0 1,{ }
l

0 1{ , }

f 0 1,{ } ℜ→:

βi fβ i
E 0 1,{ }→:

β i
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, (2)

where  is the set of communication edges and  denotes an arbitrary edge of this set. When

using a clusterization function to represent a clustering solution, the edge subset  is taken to be

the set of edges that are contained in one cluster. To form the clusters we use the information

given in  (zero and one edges) and put every pair of task nodes that are joined with zero edges

together. The set  is defined as in (3):

. (3)

An illustration is shown in Figure 2. It can be seen in Figure 2.a that all the edges of the

graph are mapped to 1, which implies that the  subsets are empty or . In Figure 2.b

edges are mapped to both 0s and 1s and four clusters have been formed. The associated  subsets

of zero edges are given in Figure 2.c. Figure 3 shows another clusterization function and the asso-

ciated clustered graph. It can be seen in Figure 3.a that tasks , , ,  and  do not have

any incoming or outgoing edges that are mapped to 0 and hence do not share any cluster with

other tasks. These tasks form clusters with single tasks and also are the only tasks running on the

f e( )
0 if e βi∈( )

1 otherwise.

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=

E e

βi
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β βi
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n
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Figure 2. (a) An application graph representation of an FFT and the associated clusterization function ; (b) a
clustering of the FFT application graph, and  (c) the resulting subset  of clustered edges, along with the
(empty) subset  of clustered edges in the original (unclustered) graph.
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processors they are assigned to. Hence, when using the clusterization function definition to map

zero edges onto clusters, tasks that are joined with zero edges are mapped onto the same clusters

and tasks with no zero edges connected to them form single-task clusters. This is shown in Figure

3.b. Given the clustered graph and clusterization function we can define a node subset  (similar

to the edge subset ) that represents the clustered graph. In this definition, every subset  (for

an arbitrary ) is the set of heads and tails (the head is the node to which the edge points and the

tail is the node from which the edge leaves) of edges that belong to edge subset . Hence every

clustering of a graph or a clustered graph can be represented using either the edge subset  or the

node subset  representation (An example of the node subset representation of a task graph is

given in Figure 3.c). In this paper the term clustering represents a clustered graph, where every

pair of nodes in each cluster is connected by a path. A clustered graph in general can have tasks

with no connections that are clustered together. In this research, however, we do not consider such

clusters. We also use the term clustering and clustered graph interchangeably.

Because it is based on clusterization functions to represent candidate solutions, we refer to

our GA approach as the clusterization function algorithm (CFA). The CFA representation offers

some useful properties that are described below:

Property 1: Given a clustering, there exists a clusterization function that generates it.
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Figure 3. (a) A clustering of the FFT application graph and the associated clusterization function . (b) The
same clustering of the FFT application graph, and  where single-task clusters are shown, (c) Node subset
representation of the clustered graph.
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Proof:  Our proof is derived from the function definition in (2). Given a clustering of a graph, we

can construct the clusterization function  by examining the edge list. Starting from the head of

the list, for each edge (or ordered pair of task nodes) if both head and tail of the edge belong to the

same cluster (  ) then the associated edge cost would be

zero and according to (2)  (this edge also belongs to  i.e. ). If the head and

tail of the edge do not belong to the same cluster

( ) then . Hence by examining the

edge list we can construct the clusterization function and this concludes the proof.

Property 2: Given a clusterization function, there is a unique clustering that is generated by it.

Proof:  The given clusterization function  can be represented in the form of a binary array with

the length equal to  where the th element of array is associated with the th edge  and the

binary values determine whether the edge belongs to a cluster or not. By constructing the clusters

from this array we can prove the uniqueness of the clustering. We examine each element of the

binary array and remove the associated edge in the graph if the binary value is 1. Once we have

examined all the edges and removed the proper edges the graph is partitioned to connected com-

ponents where each connected component is a cluster of tasks. Each edge is either removed or

exists in the final partitioned graph depending on its associated binary value. Hence anytime we

build the clustering or clustered graph using the same clusterization function we will get the same

connected components, partitions or clusters, and consequently, the clustering formed by a clus-

terization function is unique.

There is also an implicit use of knowledge in CFA-based clustering. In most GA-based

scheduling algorithms, the initial population is generated by randomly assigning tasks to different

processors. The population evolves through the generations by means of genetic operators and the

selection mechanism while the only knowledge about the problem that is taken into account in the

algorithm is of a structural nature, through the verification of solution feasibility. In such GAs the

search is accomplished entirely at random considering only a subset of the search space. How-

fβ

ek ek∀ vi vj,( )= vi cx∈( ) vj cx∈( )∧( )

f ek( ) 0= βx ek βx∈

vi cx∈( ) vj cx∉( )∧( ) vi cx∉( ) vj cx∈( )∧( )∨( ) f ek( ) 1=

fβ

E i i ei
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ever, in CFA the assignment of tasks to clusters or processors is based on the edge zeroing con-

cept. In this context, clustering tasks nodes together is not entirely random. Two task nodes will

only be mapped onto one cluster if there is an edge connecting them and they can not be clustered

together if there is no edge connecting them, because this clustering can not improve the parallel

time. Although GAs do not need any knowledge to guide their search, GAs that do have the

advantage of being augmented by some knowledge about the problem they are solving have been

shown to produce higher quality solutions and to be capable of searching the design space more

thoroughly and efficiently [1][8].

The implementation details of CFA are given in the next 3 sections.

3.1.1 Coding of Solutions

The solution to the clustering problem is a clustered graph and each individual in the ini-

tial population has to represent a clustering of the graph. As mentioned in the previous section, we

defined the clusterization function to efficiently code the solutions. Hence, the coding of an indi-

vidual is composed of an -size binary array, where  and  is the total number of edges

in the graph. There is a one to one relation between the graph edges and the bits, where each bit

represents the presence or absence of the edge in a cluster. 

3.1.2 Initial Population

The initial population consists of binary arrays that represent different clusterings. Each

binary array is generated randomly and every bit has an equal chance for being 1 or 0. 

3.1.3 Genetic Operators

As mentioned earlier, our binary encodings allow us to leverage extensive prior research

on genetic operators rather than forcing us to develop specialized, less-thoroughly-tested opera-

tors to handle the non-traditional and sequence-based representation. Hence, the genetic operators

for reproduction (mutation and crossover) that we use are the traditional two-point crossover and

the typical mutator for a binary string chromosome where we flip the bits in the string with a

n n E= E
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given probability [15]. Both approach are very simple, fast and efficient and none of them lead to

an illegal solution, which makes the GA a repair-free GA as well.

For the selection operator we use binary tournament with replacement [15]. Here, two

individuals are selected randomly, and the best of the two individuals (according to their fitness

value) is the winner and is used for reproduction. Both winner and loser are returned to the pool

for the next selection operation of that generation.

3.1.4 Fitness Evaluation

As mentioned in section 2.2, a GA is guided in its search solely by its fitness feedback,

hence it is important to define the fitness function very carefully. Every individual chromosome

represents a clustering of the task graph. The goal of such a mapping is to minimize the parallel

time; hence, in CFA, fitness is calculated from the parallel time , (from (1)), as follows:

, (4)

where  is the fitness of an individual  in the current generation or population

;  is the maximum or worst case parallel time computed in ;

and is the parallel time of that individual in . Thus, to evaluate the fit-

ness of each individual in the population, we must first derive the unique clustering that is given

by the associated clusterization function, and then schedule the associated clusters. Then from the

schedule, we compute the parallel time of each individual in the current population and the fitness

for each individual will be its distance from the worst solution. The more the distance the fitter the

individual is. To schedule tasks in each cluster, we have applied a modified version of list sched-

uling that abandons the restrictions imposed by a global scheduling clock, as proposed in the DLS

algorithm [41]. Since processor assignment has been taken care of in the clustering phase, the

scheduler needs only to order tasks in each cluster and assign start times. The scheduler orders

tasks based on the precedence constraints and the priority level [38] (the task with the highest

τP

Fitness Indi Pt( , ) WorstCaseParallelTime Pt( ) ParallelTime Indi P t,( )–=

Fitness Indi Pt( , ) Ind i

P t WorstCaseParallelTime Pt( ) Pt

ParallelTime Ind i Pt( , ) Pt



18

blevel has the highest priority). Additionally, to reduce the processor idle times, an insertion

scheme has been applied where a lower priority task can be scheduled ahead of a higher priority

task if it fits within the idle time of the processor and also satisfies its precedence constraints

when moved to this position. The parallel time of the associated scheduled graph constitutes the

fitness of each individual (member of the GA population) as defined in (4).

The implemented search method in our research is based on simple (non-overlapping)

genetic algorithms. Once the initial population is generated and has been evaluated, the algorithm

creates an entirely new population of individuals by selecting solution pairs from the old popula-

tion and then mating them by means of the genetic operators to produce the new individuals for

the new population. The simple GA is a desirable scheme in search and optimization, where we

are often concerned with convergence or off-line performance [15]. We also allow elitism in

CFA. Under this policy the best individual of  or the current population is unconditionally car-

ried over to  or the next generation to prevent losing it due to the sampling effect or genetic

operator disruption [51][10]. During our experiments we observed that different clusterings can

lead to the same fitness value, and hence in our implementation, we copy the  best solutions to

the next generations. In our tests  varied from 1 to 10 percent of the population so in the worst

case 90 percent of the solutions were being updated in each generation.

The process of reproduction and evaluation continues while the termination condition is not

satisfied. In this work we ran the CFA for 3000 generations regardless of the graph size or applications.

3.2 Randomized Clustering: RDSC, RSIA

Two of the well-known clustering algorithms discussed earlier in this paper, DSC and

SIA, are deterministic heuristics, while our GA is a guided random search method where elements

in a given set of solutions are probabilistically combined and modified to improve the fitness of

populations. To be fair in comparison of these algorithms, we have implemented a randomized

version of each deterministic algorithm — each such randomized algorithm, like the GA, can

exploit increases in additional computational resources (compile time tolerance) to explore larger

P t

P t 1+

n

n
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segments of the solution space.

 Since the major challenge in clustering algorithms is to find the most strategic edges to

“zero” in order to minimize the parallel execution time of the scheduled task graph, we have

incorporated randomization into to the edge selection process when deriving randomized versions

of DSC (RDSC) and SIA (RSIA). In the randomized version of SIA, we first sort all the edges

based on the sorting criteria of the algorithm i.e. the highest IPC cost edge has the highest priority.

The first element of the sorted list — the candidate to be zeroed — then is selected with probabil-

ity , where  is a parameter of the randomized algorithm (we call  the randomization parame-

ter); if this element is not chosen, the second element is selected with probability ; and so on,

until some element is chosen, or no element is returned after considering all the elements in the

list. In this last case (no element is chosen), a random number is chosen from a uniform distribu-

tion over  (where  is the set of edges that have not yet been clustered). 

In the randomized version of the DSC algorithm, at each clustering step two node priority

lists are maintained: a partial free task (a task node is partially free if it is not scheduled and at least

one of its predecessors has been scheduled but not all of its predecessors have been scheduled) list

and a free task (a task node is free if all its predecessors have been scheduled) list, both sorted in

descending order of their task priorities (the priority for each task in the free list is the sum of the

task’s  and . The priority value of a partial free task is defined based on the 

IPC and computational cost — more details can be found in [47]). The criterion for accepting a

zeroing is that the value of  of the highest priority free list does not increase by such

zeroing. Similar to RSIA, we first sort based on the sorting criteria of the algorithm, the first ele-

ment of each sorted list then is selected with probability , and so on. Further details on this gen-

eral approach to incorporating randomization into greedy, priority-based algorithms can be found

in [52], which explores randomization techniques in the context of DSP memory management.

When , clustering is always randomly performed by sampling a uniform distribu-

tion over the current set of edges, and when , the randomized technique reduces to the cor-

responding deterministic algorithm. Each randomized algorithm version begins by first applying

p p p

p

0 1 … T 1–, ,{ , } T

tlevel blevel tlevel

tlevel vx( )

p
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the underlying (original) deterministic algorithm, and then repeatedly computing additional solu-

tions with a “degree of randomness” determined by . The best solution computed within the

allotted (pre-specified) compile-time tolerance (e.g., 10 minutes, 1 hour, etc.) is returned.

Through extensive experiments, we have found the best randomization parameters for RSIA and

RDSC to be 0.10 and 0.65, respectively. 

Both RDSC and RSIA are capable of generating all the possible clusterings (using our

definition of clustering given in 3.1). This results because in both algorithms the base for cluster-

ing is zeroing (IPC cost of) edges by clustering the edges and all edges are visited at least once (In

RSIA edges are visited exactly once) and hence every two task nodes have the opportunity of

being mapped onto the same cluster. 

3.3 Merging

Merging is the final phase of scheduling and is the process of mapping the clustered graph

to the parallel embedded multiprocessor system where a finite number of processors is available.

This process should also maintain the minimum achievable parallel time while satisfying the

resource constraints. As mentioned earlier for the merging algorithm, we have modified the

ready-list scheduling heuristic so it can be applied to a cluster of nodes (CRLA). This algorithm is

indeed very similar to the Sarkar’s task assignment algorithm except for the priority metric:

studying the existing merging techniques, we observed that if the scheduling strategy used in the

merging phase is not as efficient as the one used in the clustering phase, the superiority of the

clustering algorithm can be negatively effected. To solve this problem we implemented a merging

algorithm (clustered ready-list scheduling algorithm or CRLA) such that it can use the timing

information produced by the clustering phase. We observed that if we form the priority list in

order of increasing  of tasks (or ), tasks

preserve their relative ordering that was computed in the clustering step.

, is the latest starting time of task  and  or the latest com-

pletion time is the latest time at which task  can complete execution. Similar to Sarkar’s task

assignment algorithm, the same ordering is also maintained when tasks are sorted within clusters. 

p

LSTTOPOLOGICAL SORT– ORDERING–( , ) blevel

LST v i( ) LCT vi( ) t vi( )–= v i LCT vi( )

v i
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In CRLA (similar to Sarkar’s algorithm) initially there are no tasks assigned to the 

available processors. The algorithm starts with the clustered graph and maps it to the processor

thorough  iterations. In each stage, a task at the head of the priority list is selected and along

with other tasks in the same cluster is assigned to one of the  processors that gives the minimum

parallel time increase from the previous iteration. For cluster to processor assignment we always

assume all the processors are idle or available. The algorithm finishes when the number of clus-

ters has been reduced to the actual number of physical processors. An outline of this algorithm is

presented in Figure 4. In the following section we explain the implementation of the overall sys-

tem.

3.4 Two-phase mapping

In order to implement the two-step scheduling techniques that were described earlier, we used

the three addressed clustering algorithms: CFA, RDSC and RSIA in conjunction with CRLA. Our

experiments were set up in two different formats that are described in the sections 3.4.1 and 3.4.2.

3.4.1 First Approach

In the first step, the clustering algorithms, being characterized by their probabilistic search

of the solution space, had to run iteratively (not once) or for a given time budget. Through exten-

p

V

p

1 Algorithm Merging (CRLA)
2 Input : A clustered graph, with execution time, intercluster communication estimates, and

multiple processors (clusters) with task ordering within each cluster.
3 Output : An optimized schedule of the clustered graph onto P  processors.
4

5 Initialize list LIST of size P such that , for 

6 Initialize  where s are sorted based on their blevel or (LST, TOTALORDER)

7  For  to 

8  If ( )

9 select a processor , s.t. the merging of cluster( ) and LIST( ) gives the best .

10 Merge cluster( ) and LIST( ).

11 Assign all the tasks on cluster( ) to processor , update LIST( ). 

12 for all tasks on LIST( ) set 

13 Endif
14 Endfor

LIST p( ) φ← p 1 P:=

PRIORITYLIST v1 … v V,( , )← vi

j 1← V

proc vj( ) 1 … P,{ , }∉

i v j i Pτ

vj i

vj i i

i proc vk( ) i←

Figure 4. A sketch of the employed cluster-scheduling or merging algorithm (CRLA).
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sive experimentation with CFA using small and large size graphs we found that running CFA for

3000 iterations (generations) is the best setup for CFA. CFA finds the solution to smaller size

graphs in earlier generations (~1500) but larger size graphs need more time to perform well and

hence we set the number of iteration to be 3000 for all graph sizes. We then ran CFA for this num-

ber of iterations and monitored and recorded the running time of the algorithm as well as the

resulting clustering and performance measures. We used the recorded running time of CFA for

each input graph to determine the allotted running time for RDSC or RSIA on the same graph.

This technique allows comparison under equal amounts of running time. After we found the

results of each algorithm within the specified time budget, we used the clustering information as

an input to the merging algorithm described in section 3.3 and ran it once to find the final map-

ping to the actual target architecture. In most cases, the number of clusters in CFA’s final result is

more than the number in RSIA or RDSC. RSIA tends to find solutions with smaller numbers of

clusters than the other two algorithms. To compare the performance of these algorithms we set the

number of actual processors to be less than the minimum achieved number of clusters. Through-

out the experiments we tested our algorithms for 2, 4, 8 and 16 processor architectures depending

on the graph sizes. 

3.4.2 Second Approach

Although CRLA employs the timing information provided in the clustering step, the over-

all performance is still sensitive to the employed scheduling or task ordering scheme in the clus-

tering step. To overcome this deficiency we modified the fitness function of CFA to be the

merging algorithm. Hence, instead of evaluating each cluster based on its local effect (which

would be the parallel time of the clustered graph mapped to infinite processor architecture) we

evaluate each cluster based on its effect on the final mapping. Except for this modification, the

rest of the implementation details for CFA remain unchanged. RDSC and RSIA are not modified

although the experimental setup is changed for them. Consequently, instead of running these two

algorithms for as long as the time budget allows, locating the best clustering, and applying merg-
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ing in one step, we run the overall two-step algorithm within the time budget. That is we run

RDSC (RSIA) once, apply the merging algorithm to the resulting clustering, store the results, and

start over. At the end of each iteration we compare the new result with the stored result and update

the stored result if the new one shows a better performance. 

The difference between these two approaches is shown in Figure 5. Experimental results

for this approach are given in section 5. 

3.5 Comparison Method

The performance comparison of a two-step scheduling algorithm against a one-step

approach is an important comparison that needs to be carefully and efficiently done to avoid any

biases towards any specific approaches. The main aim of such a comparison is to provide solid

answers to several unanswered questions regarding multi-step scheduling algorithms such as: Is a

pre-processing step (clustering here) required for multiprocessor scheduling? What is the effect of

each step on the overall performance? Should both algorithms (for clustering and merging) be

complex algorithms or an efficient clustering algorithm only requires a simple merging algo-

rithm? Can a highly efficient merging algorithm make up for a clustering algorithm with poor per-

formance? What are the important performance measures for each step?

The merging-step of a two-step scheduling technique is a modified one-step ready list sched-

uling heuristic that instead of working on single task nodes, runs on clusters of nodes. Merging algo-

RDSC/RSIA/CFA

Time Budget

Deterministic
Merging (~ 0 time)

First
Approach +

RDSC/RSIA/CFA +
Deterministic Merging

Time Budget

Second
Approach

t (compile time)

t (compile time)

Time_Budget

Solution found at t =Time_Budget

Solution found at t =Time_Budget

Time_Budget

Figure 5. The diagrammatic difference between the two different implementations of the two-step clustering and
cluster-scheduling or merging techniques.
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rithms must be designed to be as efficient as scheduling algorithms and to optimize the process of

“cluster to physical processor mapping” as opposed to “task node to physical processor mapping”. 

To compare the performance of a two-step decomposition scheme against a one-step

approach, since our algorithms are probabilistic (and hence time-tolerant) search algorithms (e.g.

CFA, RDSC and RSIA), we need to compare them against a one-step scheduling algorithm with

similar characteristics, i.e. capable of exploiting the increased compile time and exploring a larger

portion of the solution space. To address this need, first we selected a one-step evolutionary based

scheduling algorithm, called combined genetic-list algorithm or CGL [8], that was shown to have

outperformed the existing one-step evolutionary based scheduling algorithms (for homogeneous

multiprocessor architectures.) Next we selected a well-known and efficient list scheduling algo-

rithm (that could also be efficiently modified to employed as cluster-scheduling algorithm). The

algorithm we selected is an important generalization of list-scheduling, which is called ready-list

scheduling [43] and has been formalized by Printz [36]. Ready-list scheduling maintains the list-

scheduling convention that a schedule is constructed by repeatedly selecting and scheduling ready

nodes, but eliminates the notion of a static priority list and a global time clock. In our implemen-

tation we used the  metric to assign node priorities, which is defined in section 2. We

also used the insertion technique (to exploit unused time slots) to further improve the scheduling

performance. With the same technique described in section 3.2, we also applied randomization to

the process of constructing the priority list of nodes and implemented a randomized ready-list

scheduling (RRL) technique that can exploit increases in additional computational resources

(compile time tolerance). 

We then set up an experimental framework for comparing the performance of the two-step

CFA (the best of the three clustering algorithms CFA, RDSC and RSIA [19]) and CRLA against

one-step CGL and the one-step RRL algorithm. We also compared DSC and CRLA against the

RL algorithm (step 3 in Figure 6).

In the second part of these experiments, we study the effect of each step in overall sched-

uling performance. To find out if an efficient merging can make up for an average performing

blevel vx( )
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clustering, we applied CRLA to several clustering heuristics: first we compared the performance

of the two well-known clustering algorithms (DSC and SIA) against the randomized versions of

these algorithms (RDSC and RSIA) with CRLA as the merging algorithm. Next, we compared the

performance of CFA and CRLA against RDSC and RSIA. By keeping the merging algorithm

unchanged in these sets of experiments we are able to study the effect of a good merging algo-

rithm when employed with clustering techniques that exhibit a range of performance levels. 

To find out the effect of a good clustering while combined with an average-performing

merging algorithm we modified CRLA to use different metrics such as topological ordering and

static level to prioritize the tasks and compared the performance of CFA and CRLA against CFA

and the modified-CRLA. We repeated this comparison for RDSC and RSIA. In each set of these

experiments we kept the clustering algorithm fixed so we can study the effect of a good clustering

when used with different merging algorithms. The outline of this experimental set up is presented

in Figure 6. 

Figure 6. Experimental setup for comparing the effectiveness of a one-step scheduling
approach versus the two-step scheduling method.

Step1. Select a well-known efficient single-phase scheduling algorithm.
(insertion-based Ready-List Scheduling  (RL) with blevel metric)

Step2. Modify the scheduling algorithm to get
a) An algorithm that accepts clusters of nodes as input
(Clustered Ready-List Scheduling (CRLA)),
b) An algorithm that can exploit the increased compile time.
(Randomized Ready-List Scheduling (RRL))

Step 3.
Compare the performance of a one-phase scheduling algorithm vs.
 a two phase scheduling algorithm

a) CFA + CRLA vs. RRL
b) CFA + CRLA vs. CGL
c) DSC + CRLA vs RL

Step 4.
Compare the importance of clustering phase vs. merging phase

a) CFA + CRLA vs. RDSC + CRLA
b) CFA + CRLA vs. RSIA + CRLA
c) DSC + CRLA vs. RDSC + CRLA
d) SIA + CRLA vs. RSIA + CRLA
e) CFA + CRLA vs. CFA + CRLA (using different metrics)
f) RDSC + CRLA vs. RDSC + CRLA (using different metrics)
g) RSIA + CRLA vs. RSIA + CRLA (using different metrics)
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4.  Input Benchmark Graphs

In this study, all the heuristics have been tested with three sets of input graphs. Descrip-

tions of these sets are given in the following sections.

4.1 Reference Graphs

The Reference Graphs (RG) are task graphs that have been previously used by different

researchers and addressed in the literature. This set consists of about 30 graphs (7 to 41 task

nodes). These graphs are relatively small graphs but do not have trivial solutions and expose the

complexity of scheduling very adequately. Graphs included in the RG set are given in Table 1.

4.2 Application Graphs

This set (AG) is a large set consisting of 300 application graphs involving numerical com-

putations (Cholesky factorization, Laplace Transform, Gaussian Elimination, Mean value analy-

sis, etc., where the number of tasks varies from 10 to 1000 tasks), and digital signal processing

Table 1: Referenced Graphs (RG) Set

No. Source of Task Graphs No. Source of Task Graphs

1 Ahmad & Kwok [2] (13 nodes) 16 McCreary et al. [34] (20 nodes)

2 Al-Maasarani [3] (16 nodes) 17 McCreary et al. [34] (28 nodes)

3 Al-Mouhamed [4] (17 nodes) 18 McCreary et al. [34] (28 nodes)

4 Bhattacharyya (12 nodes) 19 McCreary et al. [34] (28 nodes)

5 Bhattacharyya (14 nodes) 20 McCreary et al. [34] (32 nodes)

6 Chung & Ranka [6] (11 nodes) 21 McCreary et al. [34] (41 nodes)

7 Colin & Chretienne [7] (9 nodes) 22 Mccreary & Gill [33] (9 nodes)

8 Gerasoulis & Yang [14] (7 nodes) 23 Shirazi et al. [39] (11 nodes)

9 Gerasoulis & Yang [14] (7 nodes) 24 Teich et al. [44] (9 nodes)

10 Karplus & Strong [18] (21 nodes) 25 Teich et al. [44] (14 nodes)

11 Kruatrachue & Lewis [22] (15 nodes) 26 Wu & Gajski [50] (16 nodes)

12 Kwok & Ahmad [24] (18 nodes) 27 Wu & Gajski [50] (18 nodes)

13 Liou & Palis [30] (10 nodes) 28 Yang & Gerasoulis [47] (7 nodes)

14 McCreary et al. [34] (15 nodes) 29 Yang & Gerasoulis [48] (7 nodes)

15 McCreary et al. [34] (15 nodes)
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(DSP). The DSP-related task graphs include -point Fast Fourier Transforms (FFTs), where 

varies between 2 and 128; a collection of uniform and non-uniform multirate filter banks with

varying structures and numbers of channels; and a compact disc to digital audio tape (cd2dat)

sample-rate conversion application. 

Here, for each application, we have varied the communication to computation cost ratio

(CCR), which is defined by

. (5)

Specifically, we have varied the CCR between 0.1 to 10 when experimenting with each task graph.

Due to limited space, in this paper we only present the FFT results.

4.3 Random Graphs 

This set (RANG) was generated using Sih’s random benchmark graph generator [40]. Sih’s

generator attempts to construct synthetic benchmarks that are similar in structure to task graphs of

real applications. The RANG set consists of two subsets: the first subset (ssI) contains graphs with

50 to 500 task nodes and CCRs of 0.1, 0.2, 0.5, and 1 to 10. The second subset (ssII) contains

graphs with an average of 50 nodes and 100 edges and different CCRs (0.1, 0.5, 1.0, 2.0 and 10). 

5.  Performance Evaluation and Comparison

In this section, first we present the performance results and comparisons of clustering and

merging algorithms described in section 3. All algorithms were implemented on an Intel Pentium

III processor with a 1.1 GHz CPU speed. To make a more accurate comparison we have used the

Normalized Parallel Time (NPT) that is defined as:

, (6)

where  is the parallel time. The sum of the execution times on the  (Critical Path) represents
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a lower bound on the parallel time. 

Running times of the algorithms are not useful measures in our case, because we run all

the algorithms under an equal time-budget.

5.1 Results for the Referenced Graphs (RG) Set

The results of applying CFA and randomized clustering algorithms (RDSC and RSIA) to a

subset of the RG set is given in Figure 7. The x-axis shows the graph number (as given in Table

1). It was observed that in the clustering step CFA constantly performed better than or as good as

the randomized algorithms. On average CFA outperformed RDSC by 4.25%, and RSIA by 4.3%. 

The results of the performance comparisons of one-step scheduling algorithms versus

two-step scheduling algorithms for a subset of the RG set are given in Figure 8. The first four

graphs show the performance of the CFA and CRLA against randomized ready list scheduling

and a one step genetic-list scheduling (CGL) algorithm [8] for 2 and 4 processor architectures. For

the RG set CFA’s results were better than RRL’s results 78% of the time, equal 15% of the time

and worse 7% of the time. CFA outperformed CGL 84.5% of the time (on the average by 17.6%)

and tied CGL 11.5% of the time. Two-step DSC tied with RL 11% of the time. DSC’s results

Figure 7. Normalized Parallel Time (NPT) generated by RDSC, RSIA and CFA for the RG set.
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were better than RL’s results 70.9% of the time and worse 18.1% of the time. It can be seen that

given two equally good one-step and two-step scheduling algorithms, the two-step algorithm can

actually gain better performance compared to the single-step algorithms. DSC is a relatively good

clustering algorithm but not as efficient as CFA or its randomized version (RDSC). However, it

can be observed that when used against a one-step scheduling algorithm, it still can offer better

solutions over 70% of the time. 

To study the effect of clustering we ran our next set of experiments. The comparison

between results of merging CFA, RDSC and RSIA using CRLA onto 2 and 4-processor architec-

tures are given in Figure 9. Results of merging of DSC, RDSC, SIA and RSIA onto 2 and 4-pro-
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cessor architectures using CRLA are given in Figure 10.

CFA outperformed RDSC and RSIA 52%, 84% of the time on mapping onto a 2-processor

architecture and 84% and 84% of the time on mapping onto a 4-processor architecture, respec-

tively. It can be seen that the better the quality of the clustering algorithms the better the overall

performance of the scheduling algorithms. In this case CFA clustering is better than RDSC and

RSIA and RDSC are RSIA and better than their deterministic versions.

5.2 Results for the Application Graphs (AG) Set

The result of applying the clustering and merging algorithms to a subset of application
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Figure 9. Mapping of a subset of RG graphs onto (a) 2-processor, and (b) 4-processor architectures applying
CRLA to the clusters produced by the RDSC, RSIA and CFA algorithms.
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graphs (AG) representing parallel DSP (FFT set) are given in this section. The number of nodes

for the FFT set varies between 100 to 2500 nodes depending on the matrix size . 

The results of the performance comparisons of one-step scheduling algorithms versus

two-step scheduling algorithms for a subset of the FFT set are given in Figure 11, Figure 12 and

Figure 13.

The first 2 figures show the performance of the CFA and CRLA against randomized ready

list scheduling and a one step genetic-list scheduling (CGL) algorithm [8] for 2, 4 and 8 processor

architectures. For the AG set CFA’s results were better than RRL’s results 46% of the time (on

N

Figure 11. One Phase Randomized Ready-List scheduling (RRL) vs. Two Phase CFA + CRLA for a subset of
AG set graphs mapped to (a) 2-processor, (b) 4-processor, (c) 8-processor architectures.
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average by 10.45%), equal 27% of the time and worse 27% of the time. CFA outperformed CGL

64% of the time (on average by 11.1%) and tied CGL 28% of the time. Two-step DSC tied with

RL 36% of the time. DSC’s results were better than RL’s results 47% of the time (on average by

4.0%) and worse 17% of the time.

The experimental results of studying the effect of clustering on the AG set are given in

Figure 14 and Figure 15. CFA outperformed RDSC and RSIA 44% (by 11.4%) and 50% (by 3%)

of the time respectively. We observed that CFA performs its best in the presence of heavy inter-

processor communication (e.g. CCR = 10) while there is little parallelism in the graph and most

other algorithm perform very inefficiently (over 97% of the time CFA outperformed other algo-

rithms under such a scenario). This observation suggests that clustering can indeed be useful

Figure 13. One Phase Ready-list Scheduling (RL) vs. Two Phase DSC for a subset of AG set graphs mapped to
(a) 2-processor, (b) 4-processor, (c) 8-processor architectures.
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while used in advance of the scheduling process when the IPC cost is considerably high.

Figure 16 shows the clustering and merging results for an FFT application by CFA, and

Figure 14.  Average Normalized Parallel Time from applying RDSC, RSIA and CFA to a subset of AG set (for
CCR = 10), (a) results of clustering algorithms, (b) results of mapping the clustered graphs onto a 2-processor
architecture, (c) results of mapping the clustered graphs onto a 4-processor architecture, (d) results of mapping
the clustered graphs onto an 8-processor architecture.
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the two randomized algorithms RDSC and RSIA onto the final 2-processor architecture. Our pre-

liminary studies on some of the DSP application graphs, including a wide range of filter banks,

showed that while the final configurations resulting from different clustering algorithms achieve

similar load-balancing and interprocessor communication traffic, the clustering solutions built on

CFA results are able to outperform clusterings derived by the other two algorithms. 

5.3 Results for the Random Graphs (RANG) Set

In this section we have shown the experimental results (in terms of average NPT or

ANPT) for setI of the RANG task graphs. Figure 17 shows the results of comparing the one-step

randomized ready-list scheduling (RRL) against the two step CFA and CRLA. Figure 18 shows

the results of comparing the one-step probabilistic scheduling algorithm CGL [8] against the two-

step guided search scheduling algorithm CFA and CRLA. Figure 19 shows the results of compar-

ing the one-step ready-list (RL) scheduling against the two-step DSC algorithm and CRLA. The

experimental results of studying the effect of clustering are given in Figure 20 and Figure 21. For

the RANG set, CFA’s results were better than RRL’s results 82% of the time (9% improvement),

worse 10% of the time and equal 8% of the time. CFA always outperformed CGL (by 18%). Two-

Figure 17. One Phase Randomized Ready-List scheduling (RRL) vs. Two Phase CFA + CRLA for RANG setI
graphs mapped to (a) 2-processor, (b) 4-processor, (c) 8-processor architectures.
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step DSC tied with RL 10% of the time. RL’s results were better than DSC’s 10% of the time and

worse 80% of the time (by 14%). CFA outperformed RDSC 82.3% of the time (by 5%) and tied

12.7% of the time. CFA outperformed RSIA 92.7% (by 6%) and tied otherwise.

We have not presented the results of applying different metrics graphically, however, a

summary of the results is as follows: for both test graph sets when tested with different merging

algorithms (we used CRLA with three different priority metrics: topological sort ordering, static

level and a randomly sorted priority list) each clustering algorithm did best with the original

CRLA (using  metric), moderately worse with static level and worst with random level. As

shown in the literature the performance of the list scheduling algorithm highly depends on the pri-

Figure 18. One Phase CGL vs. Two Phase CFA + CRLA for RANG setI graphs mapped to (a) 2-processor, (b) 4-
processor, (c) 8-processor architectures.
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Figure 19. One Phase Ready-list Scheduling (RL) vs. Two Phase DSC for RANG setI graphs mapped to (a) 2-pro-
cessor, (b) 4-processor, (c) 8-processor architectures.
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ority metrics used and we observed that this was also the case for the original CRLA. Employing

the information provided in clustering in original CRLA was also another strength for the algo-

rithm. We also implemented an evolutionary based merging algorithm, however, we did not get

significant improvement in the results. We conclude that as long as the merging algorithm utilizes

the clustering information and does not restrict the processor selection to the idle processors at the

time of assignment (local decision or greedy choice), it can efficiently schedule the clusters with-

out further need for complex assignment schemes or evolutionary algorithms.

We also observed that in several cases where the results of clustering (parallel time) were

equal, CFA could outperform RDSC and RSIA after merging (this trend was not observed for

RDSC vs. DSC and RSIA vs. SIA). We also noted that there are occasional cases that two cluster-

ing results with different parallel times provide similar answers in the final mapping. There are

also cases where a worse clustering algorithm (worse parallel time) finds better final results.

Figure 20.  Average Normalized Parallel Time from applying RDSC, RSIA and CFA to RANG setI, (a) results of
clustering algorithms, (b) results of mapping the clustered graphs onto a 2-processor architecture, (c) results of
mapping the clustered graphs onto a 4-processor architecture, (d) results of mapping the clustered graphs onto
an 8-processor architecture.
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To find the reason for the first behavior, we studied the clustering results of each algorithm sep-

arately. CFA tends to use the most number of clusters when clustering tasks: there are several cases

where two clusters could be merged with no effect on the parallel time. CFA keeps them as separate

clusters. However, both RSIA and RDSC accept such clustering, i.e., when the result of clustering

doesn’t change the parallel time, and they tend to cluster as much as possible in the clustering step.

Providing more clusters and clustering only those tasks with high data dependency gives more flex-

ibility to the merging algorithm for mapping the results of CFA. This characteristic of CFA is the

main reason that even in case of similar parallel time for clustering results, CFA is still capable of

getting better overall performance. 

For the second behavior we believe that the reason is behind the scheduling scheme (or task
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Figure 21. Effect of Clustering: Performance comparison of DSC, RDSC, SIA and RSIA on RANG setI graphs
mapped to (a,d) 2-processor, (b,e) 4-processor, (c,f) 8-processor architecture using CRLA algorithm.



38

ordering) used in the clustering step. CFA uses an insertion based task scheduling and ordering,

which is not the case for the other clustering algorithms. Hence, there are cases where similar clus-

terings of tasks end up providing different parallel times. This behavior was only observed for 2

cases. For a worse algorithm performing better at the end (only observed in the case of RSIA and

SIA) the explanation is similar to that for the first behavior. A clustering algorithm should be

designed to adjust the communication and computation time by changing the granularity of the pro-

gram. Hence when a clustering algorithm ignores this fact and groups tasks together as much as pos-

sible, many tasks with little data dependencies end up together, and while this approach may give

a better parallel time for clustering, it will fail in the merging step due to its decreased flexibility.

Observing these behaviors, we believe that the performance of clustering algorithms

should only be evaluated in conjunction with the cluster-scheduling step as the clustering results

do not determine the final performance accurately.

6.  Summary and Conclusions

In this paper we presented an experimental setup for comparing one-step scheduling algo-

rithms against two-step scheduling (clustering and cluster-scheduling or merging) algorithms. We

have taken advantage of the increased compile-time tolerance of embedded systems and have

employed more thorough algorithms for this experimental setup. We have developed a novel and

natural genetic algorithm formulation, called CFA, for multiprocessor clustering, as well as ran-

domized versions, called RDSC and RSIA, of two well-known deterministic algorithms, DSC

[47] and SIA [38], respectively. The experimental results suggest that a pre-processing or cluster-

ing step that minimizes communication overhead can be very advantageous to multiprocessor

scheduling and two-step algorithms provide better quality schedules. We also studied the effect of

each step of the two-step scheduling algorithm in the overall performance and learned that the

quality of clusters does have a significant effect on the overall mapping performance. We also

showed that the performance of a poor-performing clustering algorithm cannot be improved with

an efficient merging algorithm. A clustering is not efficient when it either combines tasks inap-
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propriately or puts tasks that should be clustered together in different clusters. In the former case

(combining inappropriately), merging cannot help much because merging does not change the ini-

tial clustering. In the latter case, merging can sometimes help by combining the associated clus-

ters on the same processor. However, in this case the results may not be as efficient as when the

right tasks are mapped together initially.

Hence, we conclude that the overall performance is directly dependent on the clustering

step and this step should be as efficient as possible. 

The merging step is important as well and should be implemented carefully to utilize

information provided in clustering. A modified version of ready-list scheduling was shown to per-

form very well on the set of input clusters. We observed that in several cases the final perfor-

mance is different than the performance of the clustering step (e.g., a worse clustering algorithm

provided a better merging answer). This suggests that the clustering algorithm should be evalu-

ated in conjunction with a merging algorithm as their performance may not determine the perfor-

mance of the final answer. One better approach to compare the performance of the clustering

algorithms may be to look at the number of clusters produced or cluster utilization in conjunction

with parallel time. In most cases the clustering algorithm with a smaller parallel time and more

clusters resulted in better results in merging as well. A good clustering algorithm only clusters

tasks with heavy data dependencies together and maps many end nodes (sinks) or tasks off the

critical paths onto separate clusters giving the merging algorithms more flexibility to place the

not-so-critically located tasks onto physical processors. As future and on-going work we are cur-

rently working to generalize the merging step to be used for heterogeneous processors and inter-

connection constrained networks.
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