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The increasing demand for electronic devices capable of operating at temperatures 

above the traditional 125°C limit is driving major efforts in research and 

development.  Devices based on wide band gap semiconductors have been 

demonstrated to operate at temperatures up to 500°C, but packaging still remains a 

major hurdle for product development.  Recent regulations, such as RoHS and 

WEEE, increase the complexity of the packaging task as they prohibit the use of 

certain materials in electronic products such as lead (Pb), which has traditionally been 

used in high temperature solder attach.  The successful development of new attach 

materials and manufacturing processes will enable the realization of next generation 

products capable of operating reliably at elevated temperatures.  In this investigation 

a shifting melting point silver (Ag) - indium (In) solder paste that uses a Transient 

Liquid Phase Sintering (TLPS) process was developed.  This novel material and 



  

manufacturing process constitutes a major advancement over the conventional 

soldering process temperature hierarchy, in which the maximum allowable 

application temperature is limited by the melting point of the attach material.  By 

virtue of a shifting melting temperature, which results from isothermal solidification 

during the TLPS process, this attach material can be processed at a relatively low 

temperature while being capable of sustaining much higher temperatures in use, 

limited only by its new melting point.  In order to develop an empirical kinetics 

model of the Ag-In TLPS process, a design of experiments (DOE) was used to study 

the effect of multiple factors on the solidification reaction.  These factors include 

particle size, weight fraction of solute, heating rate, holding time, and processing 

temperature.  The physical implications of the empirical model were confirmed by 

constructing a diffusion based mechanistic model.  Pivotal microstructural 

information was obtained from metallographic analysis where a transition from an In-

rich matrix to an Ag-rich solid solution was observed.  The metallographic 

characteristics, mechanical strength, and electrical conductivity of the resulting Ag-In 

TLPS material were assessed.  This study has resulted in the creation of a novel attach 

material and method that will enable future development of electronic packaging for 

high temperature environments.  The quantitative description of the reaction kinetics 

during the TLPS process provided a valuable tool for future development and an 

optimization of this system.  
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Chapter 1: Introduction 

The development of electronics and microsystems that can operate at temperatures in 

excess of the traditional maximum [1]  of 125°C is a critical enabling technology for 

the creation of next generation systems.  These next generation systems will be used 

for a wide range of military and commercial applications, including avionics, hybrid-

electric automotive electronics, deep well drilling, chemical processing systems, and 

space/earth explorations.  Critical elements of these systems are the sub-assemblies 

for power control, distribution, and management.  The last several years have resulted 

in the advent of silicon carbide (SiC) power devices operating at temperatures well 

above 125°C [2].  These devices provide higher switching speed and lower on-state 

losses with higher thermal conductivity.  However, the lack of reliable device 

packaging materials and methods for these operating conditions is a major reason for 

the slower acceptance of these devices [3].  

1.1 Background 

This work will focus on the first-level interconnection process known as die attach.  

The primary function of die attach is to secure the semiconductor chip to a lead frame 

or substrate, and to ensure that it does not detach or fracture over an operational 

lifetime that may include power and temperature cycle excursions.  From a design 

point of view, an ideal die attach material should have good adhesion to both the die 

and the substrate to avoid delamination, be compliant to provide strain energy 

absorption, possess a high thermal conductivity so that the heat can be rapidly 

dissipated from the chip, have an appropriate processing temperature, and maintain 
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good thermal stability to fit into the soldering process hierarchy.  Meeting this last 

requirement is hindered by a design rule [Tm > Ta] that has been identified as a major 

constraint for the development of high temperature electronic packaging.   This 

constraint results from the fact that the maximum application temperature (Ta) must 

be less than the melting temperature (Tm) of the selected die attach material.  In 

addition, the utility and reliability of die attach materials may be compromised at 

temperatures below the solidus, melting, or decomposition temperature, as a result of 

failure mechanisms related to the thermal stresses induced by temperature cycling and 

initial die bond cool down [1].  Die fracture and fatigue mechanisms depend primarily 

on the modulus of the die attach, which determines the fraction of the stress imparted 

to the die, and on the difference in the coefficient of thermal expansion of the die and 

substrate, which determines the total thermo-mechanical stress. 

  

Bonding materials can be classified as hard solders, soft solders, glasses, and 

polymers, which include epoxies and polyimide [4] .  Epoxies are the most widely 

used in commercial applications due to their low cost and their ability to absorb stress 

by plastic deformation, thus preventing damage to the die.  However they cannot 

withstand high temperature environments without decomposing.  Glass materials are 

stable at high temperature and can tolerate harsh environments, but processing 

temperatures (Tp) ranging from 400 - 600°C are required.  These high temperatures 

induce which induces residual stresses during cool down.  This limits glass material 

usage to packages completely built from high temperature resistant materials.  Soft 

solders are generally inexpensive, have acceptable thermal conductivity, but are 
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mechanically weak.  Though stiff at low temperatures, they become more compliant 

and lose strength above 100°C.  When these solders are used to bond the die, most of 

the stress occurs in the bonding layer because they are more compliant than the die 

and the substrate.  However, this propensity for plastic deformation makes them 

prone to thermal fatigue and creep rupture causing long term reliability problems.  

Packages intended for elevated temperature applications tend to contain stiffer (hard 

solder) die attach materials with higher melting temperatures such as gold eutectics 

(Au-Sn, Au-Ge, Au-Si).  These systems have higher moduli, thus higher flow stresses 

can be tolerated before fatigue and creep damage occurs at elevated temperatures.  

However, they transfer more stress to the die, often causing failure to occur by die 

fracture. 

1.2 Problem Statement and Motivation 

When metallic solders are used as die attach, the application temperature (Ta) dictates 

the material selection as well as the assembly process.  This limitation arises due to 

the nature of the bonding mechanism, in which the attach material has to melt in order 

to form a reliable metallurgical interconnection as it solidifies.  This implies a design 

rule in which the melting temperature (Tm) needs to be higher than the Ta, and the 

processing temperature (Tp) above Tm; [Tp > Tm > Ta].  For example, based on this 

rule, a device intended for a 350°C application will require an attach material with a 

melting point of ~ 400°C ( to avoid re-melting during operation) and a processing 

temperature close to 450°C.  These extreme processing temperatures will result in 

built-in residual stresses during the cool down stage, which may accelerate thermally 

activated failure mechanisms yielding reliability problems [5].  Typically, these 
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temperatures are above the maximum allowable limits for most of the materials used 

in electronic packaging, causing an economic impact when customized materials are 

required for such products. 

 

An alternative for the above temperature hierarchy rule is needed for the advancement 

of high temperature die attach processes, where increasing application temperature is 

dictating the development of new technologies.  Solid state sintering of silver 

particles has been identified as an alternative [6] because of its excellent thermal and 

electrical properties.  This low temperature joining technique is based on the principle 

of diffusion welding, where a material is subjected to a temperature below its melting 

point and assisted by an external pressure to consolidate it into a solid.  However, 

pressures of 40 MPa are required to form a reliable die attach joint, frequently 

causing catastrophic damage to the devices.  An alternative that does not require a 

high pressure and is based on silver nano-particles has been studied by several 

researchers [7][8][9].  This technique utilizes the reduction of total free energy as the 

driving force for the sintering reaction.  Nano particles possess a high surface-to-

volume ratio and thus a high surface energy due to their size, making them reactive 

by nature.  Therefore, thermodynamics dictates that agglomeration and further growth 

will occur without the need for external pressure.  Actual experimental data have 

demonstrated partial coagulation of the material in which the continuous metallic film 

was interrupted by physical ridges that yielded isolated regions.  The presence of the 

organic binder, required for the colloidal suspension, has been suggested as the root 

cause for reliability problems [9][10]. 
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A transient liquid phase sintering process (TLPS) will be presented in this work as an 

alternative for high temperature solder attach.  Powder mixtures consisting primarily 

of a high melting point base metal powder (constituent B) can be more easily sintered 

when in the presence of a low melting point additive powder (constituent A).  The 

TLPS of powder mixtures depends on the formation of a liquid phase at the 

processing temperature (Tp) that is set to be below the melting point of the base metal 

powder (TmB) yet above that of the additive phase (TmA).  The presence of the liquid 

enhances mass transport rates and densification (compared to the solid-solid 

sintering) by exerting a capillary pull to rearrange powder particles [11][12].   This 

liquid isothermally solidifies over time (transient process) by solute diffusion into the 

base metal particles as Tp is held above TmA.  The advantages offered by TLPS over 

conventional solid state sintering include rapid densification during sintering because 

of the capillary action and enhanced mass transport created by the liquid phase, lower 

sintering temperatures, and reduced microstructural coarsening attributed to shorter 

and lower temperature sintering. The most significant advantage of TLPS is that the 

liquid solidifies isothermally, resulting in an in-situ alloying process that yields an 

alloy having an equilibrium bulk composition that corresponds to the initial mixing 

ratio of its elemental constituents.  This new alloy exhibits a higher melting point 

(TmC) that permits application temperatures well above the processing temperature.  

This material also overcomes the traditional temperature hierarchy paradigm by 

permitting solder attachment at temperatures below the final melting point of the 

newly formed alloy.  This enhanced temperature rule is given by:  Tp > TmA which 
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shifts to TmC > Ta, where Ta is, in the end, constrained by TmC.  The result is that TmC 

can then be much higher than TmA.  The processing temperature (Tp) is defined by the 

lower TmA, resulting in Tm / Tp > 1.  Figure 1 shows a graphical representation of the 

concept. 

 
Figure 1.  Graphical representation of the conventional process vs. the proposed TLPS 
technique. 
 

This research will use the fundamental knowledge of TLPS to develop a lead-free 

silver (Ag) � indium (In) shifting melting point solder paste suitable for high 

temperature applications.  Throughout the investigation, both experimental and 

analytical methods will be used to study the reaction kinetics so that an appropriate 

model can be provided as an optimization tool of the completion time for the 

isothermal solidification process.  Understanding the process kinetics as function of 
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controllable parameters will enable the successful deployment of this process without 

the uncertainty associated with current trial and error approaches.  A microstructural 

evaluation of the system will assist the interpretation of the experimental observations 

and shall provide the necessary morphological information as it progresses towards 

equilibrium.  The structure of the sintered material, along with its effect on 

mechanical, electrical, and thermal properties will be studied.   
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Chapter 2: Literature Review 

The need for high temperature die attach materials and manufacturing processes for 

packaging devices based on SiC and III � V compound semiconductors where the 

operating temperature has been raised to 400°C and above, has been acknowledged 

by several researchers [3][4][6][7][13][14][15][16].  These high temperature devices 

provide performance advantages in numerous applications in military, commercial, 

automotive, and avionics.  However, to support these devices in packages, high 

temperature joints are needed.  Such joints conventionally require a processing 

temperature exceeding the melting point of the chosen alloy.  The elevated 

temperatures encountered during the assembly process tend to induce high stresses as 

the system is cooled down to room temperature.  This stress is primarily due to 

thermal expansion mismatch between the different materials.  Novel attach 

technologies (both materials and processes) that can be used to produce high 

temperature joints at relative low process temperature for stress reduction and 

package reliability are desired.  Lee [4] presented a synopsis of available attach 

technologies and their classification, along with some critical properties.  From his 

work, it is evident (based on melting point data) that a new technology is required for 

high temperature applications such as those discuss above.  Table 1 summarizes the 

physical properties of widely used hard and soft solder alloys. 
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Table 1.  Properties of some commonly used hard and soft solder alloys [4] 
Alloy Melting 

Point (°C) 
Thermal 

Conductivity 
(W / m-°C) 

CTE 
(10-6 / °C) 

Yield Strength (MPa) @: 
 
    23°C           100°C           150°C 

Hard Solders 
Au - 20Sn 280 57.3 15.9 275 217 165 
Au � 12Ge 356 44.4 13.3 185 177 170 

Au-3Si 363 27.2 12.3 220 207 195 
Soft Solders 

Pb-60Sn 183-188 50.6 24.7 1.5 - - 
Pb-5Sn 308-312 23 29.8 14.8 10.4 5.0 

 

2.1 Sintering as die attach alternative: 

A novel low temperature joining technique based on the principles of diffusion 

welding was proposed by Schwarzbauer [6][17].  Silver was used in this technique as 

an attach material because it is a comparatively cheap noble metal with excellent 

thermal and electrical properties, and a melting point of 962°C.  In addition, it is 

readily available in powder form and is soft and malleable facilitating cold welding.  

High shear and tensile strength values of diffusion-welded thin silver layers have 

been reported by Crane [18] and O�Brien [19] confirming it as a suitable joining 

material.  The process consists of the deposition of a flake-shaped silver powder paste 

followed by a drying step at 250°C.  Once the organic solvent is removed from the 

bonding layer, the final sintering step is executed.  In this process, the die is 

compressed at a temperature ranging from 200 - 250°C to ensure that full 

densification occurs.  Pressures of 40 MPa were required to obtain the desired final 

properties of the die attach.  Even though the objective of creating high temperature 

resistant joints using a low temperature process was attained, the extreme pressure 

requirements make it a risky operation for the fragile dice.  Therefore, a pressureless 



 

 10 
 

approach has been investigated [7].  In this approach, silver nano-particles were 

introduced as an alternative to the µ-sized flakes to reduce the external pressures 

required for the solid-solid diffusion mechanism governing the sintering process.  In 

this work [7], the driving force for sintering was provided by the reduction in the total 

free energy of a system through reduction of the surface energy by particle 

coalescence.  The driving force (DF) is a function of the applied pressure and a 

geometrical factor (K), which is proportional to the inverse of the particle size (K α 

1/r).  An expression for this driving force was provided by GQ Lu et al. [7]: 

 DF = Paφ + γsvK 

where Pa is the applied pressure, φ is the stress intensification factor, γsv is the surface 

energy, and K is 1/r where r is the particle radius.  Increasing the densification rate is 

crucial in a sintering process, where the time-to-full compaction must be minimized.  

Higher processing temperatures will result in faster densification, but the desired low 

temperature for the die attach process inhibits the usage of this approach.  With 

temperature restricted to a relatively low level, the densification rate is dependant on 

the driving force.  This term can be maximized either by applying a large external 

pressure or by reducing the particle size (r), the latter being more desirable due to dice 

cracking problems attributed to large pressures. 

 

The strategy of using nanosilver paste has been discussed previously 

[7][10][13][20][21], where agglomeration was identified as a critical factor affecting 

both manufacturability and reliability.  The powder has a tendency to absorb a large 

amount of the fugitive binding solvent required to obtain satisfactory viscosity for 
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dispersion, so an ultrasonic bath was used to assist in dispersion of the paste.  The 

material consisted of silver nano-particles ranging in size from 10nm to 30 nm and 

specimens were assembled using a pressure-less sintering process at 280°C.  Despite 

the theoretical advantages of this approach, particle agglomeration combined with the 

formation of a discontinuous film at the die-substrate interface are still an impediment 

to reliable implementation.  Efforts to improve the assembly process and colloidal 

formulation are underway by several researchers [10][20][21] who are investigating 

parameters such as pressure, sintering time, and processing temperature.  

Metallographic characterization of these specimens have shown a partial coagulation 

of the material at the joint interface, but the formation of isolated �grain like� 

structures has been a major concern [9].  Incomplete densification of the attach 

material, in addition to the lack of a repeatable manufacturing process, has been a 

driver for further investigation in this area.  Nevertheless, the usage of a silver rich 

material is still desirable due to its excellent thermal and electrical properties. 

2.2 Transient liquid phase sintering (TLPS): 

Packed powders bond together when heated to temperatures above half of the 

absolute melting temperature, in a phenomenon known as sintering.  A common 

characteristic of all forms of sintering is a reduction in surface area with 

accompanying compact-strengthening effect, driven by the formation of inter-particle 

bonds due to atomic motion at the sintering temperature [11].  During liquid phase 

sintering, a liquid coexists with a particulate solid at the sintering temperature, 

enhancing the rate of inter-particle bonding.  Liquid phase sintering creates sufficient 

internal force through liquid capillary action on the particulate solid, thus external 
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forces are not required.  This enhancement in process kinetics, along with the 

theoretical elimination of external pressure, make this technology a preferred 

alternative to pure silver sintering for die attach.  There are two common ways for 

obtaining the liquid phase: the use of mixed elemental powders in which the liquid is 

formed by either melting one of the constituents or by the formation of a eutectic 

composition, or the use of pre-alloyed powders.  The use of elemental powders is 

often preferred due to its lower cost and availability.  The formation of a liquid phase 

may be transient or persistent during the process depending on the solubility 

relationship between the main constituents.  For the case of high temperature 

applications, the formation of a persistent low melting temperature phase is 

detrimental due to the inherent low melting point limitation.  Formation of a transient 

low melting phase is desired since it provides the advantage of low temperature 

processing, while the elimination of the liquid with time results in a melting point 

shift that yields a high temperature resistant material.  Despite the importance and 

wide industrial utilization of TLPS as an advanced powder processing method, a 

fundamental understanding of the process and the critical variables controlling it has 

not been achieved [11][22][23].  The following section will discuss the fundamental 

theoretical steps and critical variables that govern the process.  The overall intent, 

however, is to develop a quantitative description of this phenomenon as it pertains to 

its application in the development of a lead free high temperature die attachment. 

2.2.1. Theoretical description of TLPS: 

Transient liquid phase joints are formed when a melting point depressant (MPD) in 

the interlayer diffuses into the surrounding bulk and isothermal solidification results 



 

 13 
 

[24].  A phenomenological description of the TLPS has been presented by Tuah-Poku 

et al. [25] in which the process has been divided into three stages: dissolution, 

isothermal solidification, and homogenization as described in Figure 2. 

 

Figure 2.  Schematic representation of the TLPS stages as defined by W.D. MacDonald [24].  The 
width of the regions can be interpreted as the phase volume fraction, whereas the dark indicator 
(vertical) corresponds to the MPD composition in terms of solute. 
 
 
The rationale for this theoretical description is based on the evaluation of a binary 

eutectic phase diagram as shown in Figure 3.  In this instance, the parent metal was 

identified as constituent B, whereas the MPD additive (solute) was referred to as A; 

this is in accordance with the convention previously used in an earlier section. 

Stage 1a:  Widening (Dominated by DL) 

  Interlayer 

Parent metal

W0 = Initial Interlayer Width 

Stage 1:  Dissolution (Dominated by DL)

Liquid layer widens to maximum at the end of stage 1

Stage 2:  Isothermal Solidification (Dominated by DS) 

Stage 3:  Homogenization of bond region (Dominated by DS) 

 WMAX 

Solid solution of A in B 
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Figure 3.  Schematic binary eutectic phase diagram showing the stages in TLPS bonding. 

 
Pure metal A (MPD) is placed between structures of dominant base metal B.  Note 

that the interlayer can be provided in a variety of forms including foil, electroplate 

film, sputter coat, powder, paste, or any other method that produces a film at the 

facing surfaces.  Upon heating to the processing temperature (Tp) there is an initial 

solid state reaction that is dominated by interdiffusion resulting in the formation of a 

eutectic composition (CEU).  The formation of a liquid phase comes from the melting 

of the formed eutectic, as the temperature keeps rising the composition of the liquid 

phase changes along the liquidus line as presented in the above diagram.  During this 

stage (S1 and S1a) the diffusion mechanism is dominated by the material transport of 

solid (B) into the liquid. This has been referenced as an erosion phenomenon [11].  

As the dissolution progresses, the liquid phase becomes richer in base metal atoms 
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and widens (due to mass balance) to a maximum value at Tp.  The time required for 

this step has been estimated to be on the order of seconds [25] since it is dominated 

by the diffusion of a solid into a liquid, i.e. the dominant parameter is diffusivity DL, 

which is orders of magnitudes larger [26] than DS due to the atomic structure 

differences.  The presence of this liquid is the key enabler for this technology.  The 

liquid spreads by capillary action through the powder compact (in the case of powder 

paste) causing particle rearrangement, enhanced mass transport, and densification.  

Once the sintering enhancement is accomplished by the spreading liquid and 

equilibrium is reached, the second stage starts.  The isothermal solidification (S2) is 

the most critical aspect of the process as it requires the greatest amount of time, 

mainly due to the rate of diffusion into the bulk (DS).  From Figure 3, it is observed 

that this stage occurs at a constant temperature (Tp) at which the composition of the 

liquid is constant at CL and MPD (A) atoms diffuse into the base metal (B).  The 

kinetics of these reactions are controlled by various transport mechanisms, but the 

bulk diffusion has been demonstrated to be the dominant one [27].  During this stage, 

the average composition of the system shifts along the arrow identified as S2 in 

Figure 3.  Continuous calculation of liquid weight fraction along this line will result 

in a fraction that approaches zero, meaning that the liquid would have completely 

solidified into a solid with composition Cs.  Since the isothermal solidification stage 

depends on the diffusion of the solute in the solid base metal, it is orders of 

magnitude longer than the dissolution and widening steps.  Due to the criticality of 

this step as it pertains to obtaining the desired results in a reasonable time, the focus 

of research in this area is on understanding the effects of processing variables such as 
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solid solubility, particle size, sintering temperature, and composition on the 

transformation kinetics. Both analytical and experimental methods will be discussed 

in the following sections.  The last stage of the process is homogenization as given by 

the horizontal representation in Figure 3 (S3).  Through solid state diffusion at Tp, the 

whole system homogenizes to a final bulk composition (Cbulk), eliminating 

compositional gradients and providing the desired physical properties of the resulting 

solid solution of A in a B matrix. 

2.2.2. Analytical approach to the TLPS process: 

Figure 2 shows the different stages that have been identified in the TLPS process 

[24][25] in which each step is dominated by specific critical parameters that, when 

combined as a whole, dictate the kinetics of the process.  Base metal particle size, 

solute diffusivity, processing temperature, heating rate, and bulk solute content of the 

mixture have been found to influence the amount of liquid formed as well as the 

length of time required for it to isothermally solidify [23][24][25][27][28].  Being a 

diffusion bonding problem, TLPS has been examined by analytical models where 

mass transport at the interlayer, governed by compositional gradients and 

interdiffusion coefficients, has been used to describe the phenomenon.  In the 

proposed models [23][24][25][27], the condition of local equilibrium at the interface 

is assumed between the liquid and the solid such that the composition of each phase 

at the interface can be directly calculated from the phase diagram.  It has also been 

assumed that due to the small thickness of the interlayer, the effect of convection in 

the liquid is negligible so the problem can be considered as one of pure diffusion.  

Table 2 provides a summary of the work performed by Tuah-Poku [25]. 
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Table 2.  Stages of the TLPS bonding process and its controlling parameters. 
Stage Controlling 

Parameters 
Rapidity Feature Controlled 

during the Stage 
Dissolution of 
Interlayer (S1) 

DL Very fast 

Homogenization of 
the Liquid (S1a) 

DL  Fast 

Maximum width of the 
transient interlayer 

Isothermal 
Solidification 

DS Slow 

Homogenization of 
the Bond 

DS Slow 

Total time needed for 
TLPS bonding 

 

The derivation of analytical models assumed �sandwiched� structures in which the 

base metal and additive materials were mated in a planar fashion. A planar interlayer 

growth was also assumed.  Analytical models are useful because they develop an 

understanding of the effects of various parameters in the process and can be used to 

validate experimental observations.  In this investigation, emphasis will be on the 

isothermal solidification stage which is the rate controlling step of the process. 

2.2.2.1.  Mathematics of diffusion: 

Transient liquid phase sintering is a diffusion driven process in which the 

mathematics of diffusion can be used to develop analytical models to describe the 

governing reactions.  Fick�s unidirectional first law gives the mass flux (J) of the 

diffusing solute [29]:  

Equation 1 
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where D is the diffusion coefficient (assumed to be independent of composition), C is 

the concentration of the diffusing material (solute), and x is the direction of the mass 

transfer assuming uni-dimensional diffusion.  Fick�s second law describes the case of 

non-steady diffusion in which the concentration changes with position and time.  For 

the one-dimensional case and constant D, it is given by: 

  
Equation 2 

)/(/ 22 xCDtC ∂∂⋅=∂∂         
       
 
Fick�s first and second laws provide the basis for all of the analytical work in this 

area. A comprehensive summary of the modeling efforts on TLPS was given by Zhou 

et al.[30].  For all analytical methods, a series of assumptions are necessary for the 

mathematical solution of the resulting partial differential equations.  Of critical 

importance is the assumption of a semi-infinite media which implies that all of the 

available solute can be absorbed by the solid, and that the process obeys a general 

square root law, i.e. the reaction rate is proportional to √t for the entire process.  A 

condition of local equilibrium at the solid/liquid interface is also assumed; the 

position of the interface [X(t)] is defined by a solute mass balance (conservation of 

solute).  The mass balance at the solid/liquid interface as shown in Figure 4 is given 

by Equation 3 [23][25][27][30][31], where CL and Cs are the liquid and solid 

compositions at the solid/liquid interface for a particular processing temperature as 

given schematically in Figure 3.  DL and Ds are the solute diffusivities in the liquid 

and solid, respectively. 

Equation 3 
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Figure 4.  Solid/liquid moving interface schematic showing the migration of the interface by a 
distance ∆X [31]. 
 
Figure 4 shows a schematic of the moving solid/liquid interface, in which the solid 

line represents the position of the boundary at time, t.  After an isothermal 

solidification interval, dt, the new interface has shifted a distance ∆X as shown by the 

dotted line.  From the above diagram, it can be observed that with increased holding 

time the liquid can is consumed by the diffusional solidification of the moving 

boundary.  The direction of the interface motion is driven by the concentration 

gradient as expressed in Equation 3. 

2.2.2.2.  Dissolution stage (S1): 

Zhou et al. [31] have shown that there are no suitable analytical solutions for the 

heating portion, i.e. heating from the melting point to the processing temperature.  

The reason for this lack of models stems from the difficulty of this task, where both 

the concentration of solute at the interface (Cs and CL) and the diffusivity values 

varies as temperature rises.  This can be observed by inspection of Figure 3.  
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However, if a fast heating rate is assumed, the time to reach Tp becomes negligible; 

thus an instantaneous Tp can be considered for the model.  There then exists a period 

of time required to reach a homogeneous liquid state with an equilibrium composition 

of CL at Tp.  Tuah-Poku et al. [25] used a method proposed by Lesoult [32] to predict 

this time.  In his work, he assumed that the dissolution stops when the interlayer 

width reaches its maximum (Wmax) in Figure 2.  This dissolution is controlled by the 

diffusion of the base metal into the liquid (DL).  From this approach it was estimated 

that the time to complete dissolution of the interlayer is on the order of seconds (less 

than 2 minutes) [25].  Nakagawa [30][33] used a numerical finite difference model in 

which both the heating and dissolution were combined.  In his work, he concluded 

that the time for completion of this stage is dependent upon the diffusivity of the base 

metal into the liquid (CL), as well as on the heating rate used to reach Tp.  Although 

none of these modeling attempts can be applied with confidence during the 

dissolution stage, there is a general agreement on the fact that the time for dissolution 

can be considered negligible when compared to the duration of the subsequent stages.  

This is provided that the process takes place at a high enough heating rate (above 

~20°C/min.) [28][30]. 

2.2.2.3.  Isothermal solidification stage (S2): 

The isothermal solidification stage is the most critical step of the TLPS process.  It is 

during this stage that the in-situ alloying takes place, which results in the desired shift 

in melting point.  The solidification reaction, or transformation into the final solid 

solution, occurs by diffusion of solute atoms into the solid matrix.  This can be a 

lengthy process.  Thus, estimation or modeling of this stage is a critical enabler for 
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the successful practical development of this technique.  From reviewing the relevant 

literature in this topic, it was found that all analytical models are based on solutions to 

Fick�s diffusion laws for semi-infinite media with constant surface composition.  

There have been two basic approaches, a simplistic formulation in which a stationary 

interface is assumed and a more rigorous solution that considers a moving interface as 

a result of the atomic flux.  Both approaches used a similar method for the 

mathematical formulation of the problem; a description of this method follows. 

 

If local equilibrium is assumed to be established at the solid/liquid interface, the 

composition of the solid phase at the interface (Cs) during the isothermal (Tp) 

solidification stage is fixed by the tie line on the equilibrium phase diagram 

(horizontal S2 line at Tp in Figure 3).  In this case, diffusion of solute (A) into the 

base material (B) may be modeled as a semi-infinite medium with constant surface 

composition.  Solution to this problem requires the definition of initial and boundary 

conditions, which are given below: 

Initial Condition:  

Equation 4 

oCxC =)0,(   

Boundary Conditions: 

Equation 5 

SCtC =),0(  

Equation 6 

oCtC =∞ ),(  
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Where Co is the initial composition of solute in the base metal and CS is the solidus 

composition at the processing temperature, Tp.  Initial condition t = 0 refers to the 

start of the isothermal stage, i.e. it assumes that the time for S1 is negligible.  The 

boundary condition at the interface, x = 0, is valid under the assumption that local 

equilibrium is maintained, thus the composition CS is given by the tie line from the 

phase diagram.  The second boundary condition, x = ∞, is valid for the semi-infinitely 

large media, which implies that there is no net effect on the composition of the base 

material far from the interface.  The solution of Fick�s second law (Equation 2) for 

the above initial and boundary conditions, assuming constant D and semi-infinite 

media, was derived by Crank [29]: 

Equation 7 








⋅−+=
Dt
xerfCCCtxC SoS 2

)(),(  

A general form of Equation 7 can be used to develop a common solution for the 

isothermal solidification stage for the different initial and boundary conditions that 

may be encountered; this will be explained in greater detail in section 2.2.2.5. 

2.2.2.4.  Analytical solution for the stationary interface: 

The simplest treatment of the isothermal solidification process assumes that the 

solid/liquid interface is fixed.  For this scenario, Tuah-Poku [25] developed a method 

to find the time required for completion of the solidification stage based on the 

fundamental work presented by Lesoult [32].  Differentiating Equation 7 with respect 

to position (x) results in the following expression: 
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Equation 8 
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Solution to Equation 8 is given by [29]: 

Equation 9 
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By substituting the solution of Equation 9 into Fick�s first law (Equation 1) at x = 0 

(stationary interface), the solute mass flux through the boundary is given by: 

Equation 10 

t
DCCJ oS ⋅

⋅−=
π

)(  

Considering that the isothermal solidification stage is complete when all of the initial 

solute in the liquid has diffused across the interface, a time to solidification can be 

calculated by knowing the total mass transferred during this stage. The mass across 

the interface is given by integrating the flux over time: 

Equation 11 

dt
t

DCCdtJM oS ⋅
⋅

⋅−=⋅= ∫ ∫ π
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The solution to Equation 11 is given by: 

Equation 12 

π
tDCCM oS

⋅⋅−⋅= )(2
 

From a conservation of mass argument, the total initial mass of solute in the system, 

i.e. (CLi·Wi), must equal the total mass of solute transferred through the interface, i.e. 

M from Equation 12.  By making these substitutions and considering the symmetry 
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plane at the center line of Figure 2, the total time for isothermal solidification 

assuming a stationary interface is given by: 

Equation 13 
2

16 
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There exists a significant error associated with this solution [23][24][28][31] due to 

the fact that the moving solid/liquid interface was neglected.  This stationary interface 

resulted in a systematic overestimation of the time required for the isothermal 

solidification, yielding disappointing results for practical applications.  A more 

rigorous and accurate treatment is required for more useful predictions of the TLPS 

system. 

2.2.2.5.  Analytical formulation for the moving boundary problem: 

When a solid and a liquid are brought together in a planar fashion, as shown in Figure 

2, and held isothermally for a period of time, there will be an atomic potential 

gradient at the interface that will induce a net atomic flux.  If local equilibrium at the 

interface is assumed, the solute concentration of each phase is given by the phase 

diagram.  Figure 4 shows the general schematic representation of this condition in 

which both concentration profiles within the solid and liquid phases are given by a 

penetration curve from the error function solution of Fick�s second law.  It has been 

demonstrated [34] that the concentration gradient within the liquid can be assumed 

constant due to the openness of its structure in which complete mixing is possible.  

With that condition, an updated schematic of the �sandwiched� structure is given in 

Figure 5.  
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Figure 5.  Schematic representation of the moving interface.  The large arrow indicates the 
direction of the interface movement with time while the vertical scale represents the composition 
percent in terms of additive material (solute A). 
 
A zero concentration gradient within the solid implies a ∂CL / ∂x equals to zero, 

which, when substituted in Equation 3, results in an interface motion always in the 

direction of the liquid as given by the arrows in the above schematic.  This interface 

motion can be explained by the equilibrium assumption together with the 

conservation of solute principle.  Initially, at t = 0, the liquid has a composition CL 

whereas the solid�s composition is Co.  This condition is represented by the dotted 

line in Figure 5, where the position of the interface is given by x(0) = 0.  At some 

later time increment dt, the boundary moves into the liquid through a distance dx to a 

new position x(t).  Note that at this instant, the concentration of the liquid is constant 

with no gradient within the liquid and the concentration at the new interface position 

(solid vertical line) is constant at Cs.  The vertical magnitude of this line represents 

Solute diffusion from CL to Cs

Wt.% A 

Moving
Interface

Cs 

Co 
x(t) x(0) x 

CL 

Liquid Solid

Solid (CS)Liquid (CL) 



 

 26 
 

the solute compositional gradient across the interface, i.e. CL � Cs.  Away from the 

interface, at increasing distance into the solid, the solute content decreases towards Co 

following the penetration curve from the solution of Fick�s second law.  For this 

investigation, the solution of the penetration curve [C(x,t)] is not critical since it deals 

with a solid solution of A in B, which has already attained the desired effect of a shift 

in its melting point.  What is desired is to obtain the rate at which the liquid solidifies 

isothermally, a parameter that is related to the movement of the boundary.  The 

movement of the interface has the effect of converting a volume of material, 

equivalent to A·dx, from a composition CL to a composition Cs.  In order for this to 

occur, a total of (CL � Cs)·A·dx atoms of solute must diffuse across the interface 

(conservation of solute).  From Fick�s first law (Equation 1), this number of atoms for 

an incremental time step (dt) should be equal to: 

Equation 14 

dt
x
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Equating these two quantities and assuming unit area (A =1) gives us: 

Equation 15 
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Rewriting the above equation gives an expression for the interface velocity; this is the 

derivation of the expression given in Equation 3. 

Equation 16 
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As mentioned above, the real interest of the analytical model is to obtain an 

estimation of the interface rate parameter, i.e. estimate the reaction rate for the 

transformation or consumption of the liquid.  The derivation for the method is as 

follows, based on the work of several researchers in this area [27][31][32].  From 

Figure 5, the position of the interface can be defined as x = x(t), where x(0) = 0 is the 

initial position at the start of the isothermal solidification stage, i.e. end of the 

dissolution stage.  For this system the boundary conditions now becomes: 

Equation 17 

SCttxC =)),((  

Equation 18 

oCtC =∞ ),(  

The solute concentration profile in the base metal is given by the solution of Fick�s 

second law, which can be assumed to take a general form of Equation 7 [29][32]. 

This results in: 

Equation 19 
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Where A and B are constants that depend on the particular boundary conditions.  The 

boundary condition given by Equation 17 implies that at any time during the 

isothermal solidification stage, the composition of the solid at the interface is a 

constant (Cs), which when substituted in Equation 19 yields the following expression: 

Equation 20 
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Equation 20 can only be true if the argument of the error function is constant; thus, an 

expression for this constant (K), which is the interface rate parameter, has been 

defined as [34]: 

Equation 21 

Dt
txK

2
)(=  

Equation 21 shows the origin of the relationship between the reaction rate and the 

square root of time, a condition typically assumed for all diffusion driven 

mechanisms.  As was demonstrated here, it comes from the assumption of local 

equilibrium at the interface and from the application of an error function solution to 

Fick�s second law.  This solution is valid for the time period governed by the 

isothermal solidification process, as given by the initial and boundary conditions 

assumed for the mathematical formulation of the problem.  With the above boundary 

conditions and the definition of the rate parameter (K), the values for constants A and 

B are given [31][32]: 

Equation 22 
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With A and B defined, the solution to Fick�s second law for a semi-infinite media 

with a constant surface composition and a moving interface is: 
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Equation 24 
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Solving Equation 21 for x(t) and taking its derivative with time gave an expression 

for dx(t)/dt, whereas a partial derivative of Equation 24 with respect to position (x) 

yielded an expression for ∂C/∂x.  Substituting these results into the mass balance 

function (Equation 16) resulted in an equation for the interface rate parameter (K).  

This function requires a numerical solution for the evaluation of K [23][27][35][36]. 

Equation 25 
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From inspecting Equation 25, it can be observed that the rate parameter (K) can be 

evaluated for any system during the isothermal solidification stage in which the local 

equilibrium condition permits the usage of the phase diagram to obtain all the 

necessary constant compositions (left hand side term).  Note that from this analytical 

approach, the solidification rate (K) depends only on the dimensionless concentration 

potential term; no geometrical effects are considered.  This is an artifact of the semi-

infinite media assumption for the Crank solution.  Illingworth et al.[36] defined the 

compositional potential as a dimensionless thermodynamic parameter, Ω: 

Equation 26 
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In their work [36] a graphical solution for Equation 25 was given.  This solution 

allows the K value to be found for any particular Ω.  Lesoult [32] also provided 

tabulated results for K for given compositional gradients.  From this work it could be 
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possible to obtain an estimate of the solidification rate during the isothermal 

solidification process provided that Cs, CL, and Co are known.  Tuah-Poku [25] used 

this analytical approach to calculate the time for the completion of isothermal 

solidification for a planar Ag/Cu/Ag structure.  In his work, he estimated the K value 

from the tabulated data given by Lesoult.  The estimated time obtained from this 

method was on the order of hours, which led to some interesting conclusions.  First, it 

was confirmed that the isothermal solidification stage is in fact the rate controlling 

step of the process so emphasis should be on its optimization.  Second, it is evident 

that a planar system is not an efficient set up since the interface area available for 

diffusion is constrained, resulting in a major delaying effect.  Sandwiched structures 

are typically used for their ability to closely control composition and surface 

roughness.  Furthermore they are modeled with relative ease.  However, from a 

processing stand point, the effective surface area available for diffusion is greatly 

increased by using fine powders.  For the current investigation, a powder method will 

be introduced.  In this method the particles not only provide the solute material but 

also the base metal matrix into which diffusion occurs.  This allows for solidification 

time to be reduced by over two orders of magnitude when compared to planar 

surfaces [37].  Controlling and modeling powder systems is major challenge due to 

the nature of particles, in which the assumption of mono-sized and perfectly shaped 

particles is far from reality. 

2.2.3. Experimental approach for studying TLPS kinetics: 

One of the major drawbacks of TLPS is its sensitivity to processing conditions, 

making it a complex problem in terms of process control and optimization.  These 
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complexities explain the current lack of quantitative scientific description of its 

stages.  Savitskii [38] summarized the experimental work that has been performed in 

the investigation of TLPS where the dominant experimental technique is dilatometry.  

In this approach, the formation of a liquid phase can only be inferred by measuring 

the dimensional changes of the samples as function of time and temperature, but no 

emphasis has been placed on the duration of the liquid phase remaining in the 

specimen [28].  This lack of emphasis in previous work has been attributed [28] to (a) 

the difficulties in experimentally measuring of the quantity of liquid present at a 

given time, and (b) for most current commercial applications, the fact that the amount 

of liquid does not represents an important variable [11].  However, for our intended 

application it has been explained that the amount of liquid is important for the 

enhancement of the sintering process in terms of wetting forces and mass transport; 

its remaining fraction during the isothermal solidification process dictates the rate 

constant as well as the ability to form a variable melting point alloy.  Therefore, 

understanding liquid formation and duration is fundamental in our effort to develop 

the proposed solution for the high temperature applications attach system.   

 

An experimental technique to measure liquid phase formation directly and 

quantitatively using differential scanning calorimetry (DSC) has been developed by 

Corbin and Kuntz [22][31][39][40].  This method allows the determination of initial 

liquid formation as well as its duration, i.e. the kinetics of the isothermal 

solidification step.  This technique has enabled characterization of the process 
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kinetics, resulting in advancement of the understanding of the progression of TLPS 

process [40]. 

 

Initial attempts to study the process kinetics of TLPS used metallographic techniques 

[24][25] where evolution of the phases was analyzed on quenched specimens at 

particular elapsed times during the process.  This method was subject to large errors 

of measurement since the solid-liquid interface is not planar but scalloped instead. 

This fact, along with being a tedious time consuming technique, provides incentive to 

further investigate feasible experimental methods.  The use of the DSC technique 

provides a more accurate and relatively simple method that can be used to optimize 

parameters, such as temperature and time, in lieu of its capacity to describe the 

process kinetics [39]. 
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Chapter 3: Objectives and Statement of Work 

In this research, a silver-indium (Ag-In) paste is proposed as an alternative attach 

material for high temperature applications.  Developing a material in the form of a 

paste provides some advantages over the traditional planar systems.  From a reaction 

kinetics perspective, it should decrease the time to solidification, thus making it a 

feasible alternative for volume manufacturing.  From an assembly process 

perspective, a paste can be handled and processed using standard techniques and 

equipment such as stencil printing and reflow furnaces.  This represents a key 

advantage over the thin film techniques required for the deposition of materials, both 

in economical terms and throughput.  This proposed system is to be processed at a 

relatively low temperature via a Transient Liquid Phase Sintering (TLPS) technique.  

The in-situ alloying process that takes place during the isothermal hold results in a 

variable melting point material with a shift on its initial melting temperature 

(TmA→TmC).  Powder equilibrium composition, particle shape and size, along with 

the processing temperature and time profile, are the critical factors in the formation of 

a solid compact that can be used for attachment of electronic devices for high 

temperature applications.  The fact that the melting point of the material changes 

dramatically during the process explains the novel feature of this proposed research.  

In this instance, the processing temperature is well below the new melting 

temperature that defines the operating limit of the system.  Experimental observations 

with different techniques will provide the required data for the scientific study in the 

evolution of the proposed system.  A theoretical diffusion based model, considering 

the physics of the process, will serve as a reference for the experimental results.  The 
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combination of empirical data and the results from theoretical models, will provide 

the necessary information to quantitatively describe the phenomenological aspects of 

the proposed attach system, so it can be controlled for the particular application 

conditions.  The statement of work for this investigation is as follows: 

• Use a TLPS technique to develop a shifting melting point Ag-In die attach in 

the form of a solder paste suitable for high temperature environment. 

• Study the interface kinetics of this binary system using a DSC experimental 

technique to estimate the reaction rate (k) of the solidification process.   

• Use metallurgical techniques to complement and assist the analysis of the 

obtained data in an effort to provide physical evidence of the theoretical stages 

of the TLPS process. 

• Develop an empirical model of the process as a function of controllable 

parameters using a response surface methodology.  This model will provide 

the scientific community with a parameter optimization tool for a more 

efficient implementation on practical applications.  Metallurgical and 

analytical methods will be used to verify the adequacy and physical 

significance of the proposed model. 

• Characterize the resulting sintered material in terms of structural morphology 

and its corresponding electrical, thermal, and mechanical properties. 

• Utilize the kinetics model in combination with measured physical properties 

to recommend an optimal system in terms of minimization or processing time 

while providing acceptable properties. 
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• Assess the reliability of the Ag-In sintered material by passive thermal cycling 

of die attach specimens.    



 

 36 
 

Chapter 4: TLPS of the Ag-In Binary System 

Transient liquid phase sintered joints are formed when a melting point depressant 

(MPD) diffuses into the surrounding base metal and isothermal solidification results; 

the kinetics of the process are thus controlled by diffusion of the MPD into the base 

material.  This technology can be applied to any system where the driving force 

inherently leads to solid state equilibrium [24].  One of the first uses of liquid phase 

sintering for metals is attributed to the Incas, who converted platinum grains into 

consolidated form by the use of gold bonds.  Artifacts from this process indicate its 

use over 500 years ago [11].  The first attempt to use this technology as a semi-

conductor attach is attributed to Bernstein [41].  In his work, solid-liquid 

interdiffusion (SLID) was used, however, persistent liquid was documented as a 

drawback for this application.  When appropriate constituents are selected, TLPS 

produces �invisible� joints that have strengths and other properties similar to the base 

material [24].  In fact, the interlayer must meet the following criteria: 

1) At least one element, (MPD), must have solid solubility in the base metal. 

2) The MPD must have a significant diffusivity at the bonding temperature to 

ensure reasonable processing time.  MacDonald and Eagar [24] reported that 

to achieve an acceptable time, the solute diffusivity into the base metal 

(isothermal solidification stage) must be in the order of 10-14 m2/s. 

3) The elements in the interlayer must not be detrimental to the physical and 

mechanical properties of the base material. 

4) The interface between the two metals must be clean and free of oxides. 
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5) Bulk composition of the metallurgical system should be selected to minimize 

bonding time (dominated by the isothermal solidification stage) and to provide 

adequate wetting forces. 

In their fundamental work regarding TLPS, MacDonald et al. [24] presented a 

synopsis of key conditions that have proven to be critical: (a) for fast processing 

times, an interstitial diffuser is helpful during the initial alloying stage; (b) selection 

criteria for the applicability of TLPS bonding to a particular system should include 

the assessment of the system�s stability at Tp as well as the solubility of the MPD into 

the base; (c) intermetallic formation can be tolerated in binary systems with peritectic 

reactions, but may require extended homogenization; (d) base metal mechanical 

properties can be achieved, but the joint always remains susceptible to reduced 

toughness. 

 

Based on the literature review, previous work in the area of high temperature 

attachment, and its favorable properties, the Ag-In binary system has been selected as 

a suitable alternative to develop an attach material by means of transient liquid phase 

sintering.  In the following sections, the electrical, mechanical, and physical 

properties of both silver and indium will be presented along with the analysis of the 

equilibrium phase diagram.  This metallurgical system will be further analyzed 

according to the critical conditions required for a successful application of TLPS; the 

formulation of a solder paste will also be discussed.  Finally the phase evolution 

along the stages of the process will be presented based on the study of the equilibrium 



 

 38 
 

phase diagram as well as a qualitative description of the progression of the system 

towards the equilibrium composition. 

4.1 Properties of silver (Ag) and indium (In): 

A successful development of a TLPS attach requires both a high melting point base 

material with a substantial solid solubility of the melting point depressant, and 

properties for specific design applications.  The MPD constituent must posses a 

relatively low melting point, should diffuse easily through the base metal matrix, and 

must form a stable solid-solution with the main constituent.  For the case of a semi-

conductor power device attach, the metallic joint must not only provide the 

mechanical integrity, but also a good thermal and electrical conduction path.  These 

requirements, along with the lead free constraints of the Restriction of Hazardous 

Substance (RoHS) and WEEE regulations, are all reasons for the selection of the Ag-

In binary system for our TLPS die attach.  This is a result of the excellent properties 

of the pure elements individually, and for the system�s capacity to form the intended 

structure based on the study of its binary phase diagram.  Table 3 provides the critical 

properties of the two main constituents of the proposed metallurgical system. 

Table 3.  Properties of the main elemental constituents of the attach system [42][43][44]. 
Properties 

Physical Properties 
Indium (In) Silver (Ag) 

Atomic Number 49 47 
Atomic Mass 114.82 107.87 
Density (g/cc) 7.31 10.49 
Crystal Structure (25°C) FCT (a = b = 0.325nm, c = 

0.495nm) 
FCC (a = b = c = 0.409nm) 

Mechanical Properties 
Hardness (Vickers) 10 25 
UTS (Annealed) 4.5 MPa 140 MPa 
Modulus of Elasticity (E) 12.7 GPa 76 GPa 
Poisson�s Ratio 0.45 0.37 
Shear Modulus (G) 4.4 GPa 27.8 GPa 



 

 39 
 

Properties Indium (In) Silver (Ag) 
Electrical Properties 
Electrical Resistivity (25°C) 9 X 10-6 ohm-cm 1.55 X 10-6 ohm-cm 
Thermal Properties 
Heat of Fusion 28.5 J/g 105 J/g 
CTE (25°C) 33 µm/m-°C 19.6 µm/m-°C 
Specific Heat 0.239 J/g-°C 0.234 J/g-°C 
Thermal Conductivity (25°C) 83.7 W/m-K 419 W/m-K 
Melting Point 156.6 °C 962 °C 
 

4.2 Ag-In  binary system: 

In order to study the kinetics and evolution of the process, it is critical to understand 

the phases present in the binary system and their transformations as a function of 

composition and temperature.  Equilibrium phase diagrams represent the relationship 

between the temperature and composition, as well as the quantities of phases present 

at equilibrium.  Phase diagrams also are helpful in predicting phase transformation 

and the resulting microstructures, which may have equilibrium or non-equilibrium 

character [45].  Figure 6 depicts the equilibrium phase diagram of the Ag-In binary 

system [46], which will be a crucial instrument throughout this investigation.  This 

diagram will provide the basis for the selection of possible compositions based on the 

solubility limits, will suggest possible processing temperatures based on the phase 

transformations, will provide compositional data necessary for theoretical 

calculations of amount of phases present, and will serve as reference for the 

experimental findings from the DSC testing. 
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Figure 6.  Equilibrium phase diagram of the Ag-In binary system [46]. 
 

From the above figure, it is evident that silver has a relatively high melting 

temperature (961.9°C) while that of indium (156.6°C) is relatively low.  This is a 

good indication of a possible TLPS process in which the base material will be silver 

and the melting point depressant will be indium.  By inspection, it can be seen that the 

maximum solid solubility of indium into the ζ phase is given at 37 Wt. % In, although 

Baren [47] reported it at 40 Wt.% In, where silver is present as a Ag-rich solid 

solution.  At 300°C the ζ phase, which has an HCP structure, undergoes an allotropic 

transformation into γ phase (rhombohedral) that is stable to room temperature.  It can 

be observed that the solvus lines of the Ag-rich phases are not sensitive to 

temperature, as suggested by their steep slope which is almost vertical along the 

α

φ- [sic] 
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temperature scale.  For a successful TLPS system, it has been demonstrated that the 

solubility of the MPD into the base material is very important since it provides the 

capacity of having a stable final solid solution with no low melting point material 

precipitating out as a second phase.  In this case, a solid solubility limit larger than 25 

Wt. % In is a favorable characteristic.  The formation of a eutectic at 97 Wt. % In 

with a melting point of 147°C [47] (erroneously reported in Figure 6 as 141°C) is a 

key factor in the proposed system.  This eutectic has a composition very close to 100 

Wt. % In, which will only require minimal solid state interdiffusion for its formation, 

a critical factor in the proposed system since it means that negligible time will be 

required for this transformation.  Based on the initial inspection of the phase diagram 

and considering the requirements for a successful development of a TLPS process, it 

can be inferred that the proposed system should be considered for further 

investigation. 

4.3 Diffusion and interactions of the Ag-In couples: 

Most material reactions and processes rely on the transfer of mass either within a 

specific solid or from a liquid, a gas, or another solid phase.  This mechanism is 

known as diffusion, the phenomenon of material transport by atomic motion.  This 

physical mechanism can be demonstrated with the use of a diffusion couple, which is 

formed by the joining of two different materials to make an interface contact.  

Concentrations of both metals vary with position, suggesting that atoms of one 

material have migrated into the other and vice versa.  This process, whereby atoms of 

one metal diffuse into another, is termed interdiffusion.  From an atomic perspective, 

diffusion is the stepwise migration of atoms from lattice site to lattice site.  For an 
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atom to make this move, two conditions must be met: (1) there must be an empty 

adjacent site, and (2) the atom must have sufficient energy to break bonds with its 

neighbor atoms and then cause some lattice distortion during the displacement [45].  

Several different models for this atomic motion have been proposed, of these 

possibilities, two dominate for metallic diffusion.  In vacancy diffusion there is an 

interchange of an atom from a normal lattice position to an adjacent vacant lattice 

site.  The likelihood or probability of having a vacant site present at a particular time 

and location is a constraint for this mechanism.  A second type of diffusion involves 

atoms that migrate from an interstitial site to a neighboring one that is empty.  In most 

metal alloys, interstitial diffusion occurs more rapidly than vacancy diffusion, since 

the interstitial atoms are smaller and thus more mobile.  Furthermore, there are more 

empty interstitial positions than vacancies; hence the probability of interstitial atomic 

movement is greater.  A third type of atomic migration may also occur along 

dislocations and grain boundaries; this is called �short circuit� diffusion paths 

because the diffusion rates are much faster than in the above mechanisms mentioned 

previously.  A phenomenon explained by the open structure at these defects which 

provide empty sites and minimizes lattice distortion during displacement. 

 

Diffusion is a time-dependant process, i.e. the quantity of an element that is 

transported within another is a function of time.  In studying the kinetics of the 

proposed binary system, it is necessary to know how fast the diffusion occurs.  This is 

important because diffusion is the dominant mechanism in the progression of the 

TLPS.  This rate of mass transfer is known as diffusion flux (J), which is the number 
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of atoms (M) diffusing through a perpendicular cross sectional area (A) per unit time 

(t).  Mathematically it is expressed as: J = M / (A·t).  If the diffusion flux (J) does not 

change with time, a steady state condition exists.  When the concentration of solute 

(diffusing species) versus position within the base material is plotted, the resulting 

curve is termed the concentration profile; the slope at a particular point on this curve 

is the concentration gradient.  The mathematics of uni-dimensional steady-state 

diffusion is given by Equation 1, where the flux is proportional to the concentration 

gradient and the constant of proportionality D is called the diffusion coefficient.  This 

expression is known as Fick�s first law of diffusion.  The concentration gradient of 

solute is the driving force of this reaction; thus it will be the basis for the theoretical 

approach in developing a model for the TLPS process for the Ag-In system.  

However, in most practical diffusion situations, the diffusion flux and the 

concentration gradient vary with time, resulting in a net accumulation or depletion of 

the diffusing species.  This non-steady state situation can not be described by 

Equation 1.  Instead the partial differential Equation 2, known as Fick�s second law, 

is used.  The magnitude of the diffusion coefficient is indicative of the rate at which 

atoms diffuse, which is sensitive to both the diffusing species and the base material.  

Temperature has the most profound influence on the coefficients and diffusion rates; 

the temperature dependency of the diffusion coefficient is given by the Arrhenius 

expression: 

Equation 27 
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Where Do is a temperature independent pre-exponential (m2/s), Q is the activation 

energy for diffusion (eV/atom), R is the gas constant, and T is absolute temperature.  

Activation energy for this relation may be thought of as the energy required to 

produce the diffusive motion of one mole of atoms.  Large activation energy results in 

a relatively small diffusion coefficient.  The proposed alternative of TLPS for high 

temperature attachment relies on the fundamentals of a diffusion couple, where a non-

steady state situation is observed at the interface of a MPD and a base material.  The 

kinetics of this process have to be studied in terms of a series of stages that are 

dominated initially by solid state interdiffusion.  This is followed by a dissolution 

stage that is characterized by the diffusion of the base material into the liquid.  Once 

this system reaches equilibrium at a particular processing temperature, the diffusion 

mechanism shifts back to a movement of atoms from the MPD (liquid) into the solid 

base metal until all of the solute is consumed by the isothermal solidification process.  

From the above description it is evident that this is a complex, multi-stage process 

with a reaction rate that is driven by the ability of the materials to diffuse.  Several 

researchers have investigated the kinetics of formation for silver-indium couples and 

have provided experimental results of their findings in terms of diffusion coefficients, 

activation energies, and preferred diffusion mechanisms. 

 

It has been shown [48] that group Ib (copper, silver, and gold) impurity metals can 

diffuse rapidly into group IIIa (indium) and IVa (tin and lead) base metals via an 

interstitial mechanism.  This interdiffusion has shown to be even faster in thin films 

than in bulk due to the high densities of defects such as grain boundaries and 
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dislocations.  Previous work [49] on the Ag/In couple suggested a silver-indium 

reaction at room temperature which was proven to be a diffusion-controlled growth 

mechanism.  From their experimental work on diffusion couples, Rita et al. [48] 

reported that the activation energy of lattice diffusion of silver into bulk indium is 

about 0.55 eV.  Although the lattice diffusion of silver in bulk indium is favorable (Q 

= 0.55 eV) with a pre-exponential factor (Do) of 0.52 X 10-4 m2/s, the solubility of 

silver in indium is negligible, therefore resulting in a limited solid state reaction 

during the first stage (S1a) of the TLPS process.  Indium diffuses through the silver 

grain boundaries [48][50] at higher temperatures with a reported pre exponential 

factor (Do) of 2.79 X 10-14 m2/s and an activation energy of 0.34 eV.  This grain 

boundary activation energy is smaller than the 1.77 eV reported [48] for the bulk, 

meaning that with a rise in temperature, the diffusion is predominantly indium into 

silver through a grain boundary path.  Table 4 summarizes the dominant diffusion 

mechanisms along with the critical parameters for the Ag/In couples. 

Table 4.  Summary of diffusion data on the Ag/In system. 
Couple Diffusion 

Mechanism 
Do (m2/s) Q (eV) Rate 

Ag into In Interstitial 0.52 X 10-4 0.55 Slower 
In into Ag Grain 

Boundary 
2.79 X 10-14 0.34 Faster 

 

4.4 Phase transformations in the Ag-In binary system: 

A review of the Ag-In binary system, along with its intermediate phases is introduced 

in this section before presenting the proposed solder paste alternative.  As previously 

discussed, Ag-rich solid solution ( ζ or γ at temperatures below 300°C) can take up to 

37 - 40 Wt. % In over a wide temperature range, whereas the indium (In) solid 
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solution has negligible solubility of silver.  At temperatures between the melting 

points of indium (156.7°C) and silver (961.9°C), silver atoms are dissolved by the 

molten indium in a dissolution process (erosion) that is highly temperature dependent.  

The interaction between the solid silver and the molten indium results in the 

formation of a fraction of material with an eutectic composition as well as an In-rich 

intermediate phase (φ).  The melting point of these phases increases with silver 

content [46][47][51], i.e. eutectic (147°C) < φ [BCT] (166°C) < ζ [HCP] (670°C) < β 

(693°C).  When this information is compared to common soldering alloys such as Sn-

Pb or the lead-free SAC replacement, the Ag-In systems provides a lower eutectic 

point (147°C < 183°C < 217°C), which gives the possibility of lower processing 

temperatures.  The sequentially increasing melting point phases provide the basis for 

the realization of the shifting melting point alloy at the end of the diffusional 

solidification process when a final equilibrium composition is achieved.  The 

advantages of such a system can be summarized as follows: (1) the joint is obtained at 

a lower temperature; (2) the soldered bond becomes stronger [51][52][53][54] and is 

able to withstand higher temperatures if more silver diffuses into the bond; (3) it is a 

lead-free solution. 

 

For the formulation of an effective solder paste using the Ag-In binary system, it is 

important to understand the evolution of phases as a function of temperature and 

solute concentration.  The precipitation and decomposition of these phases will 

determine the final microstructure of the equilibrated system, which indeed controls 

the strength of the joint and determines the resulting melting point of the alloy.  The 
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following description goes through the transformations of a hypothetical Ag-In planar 

couple with an initial equilibrium bulk composition of 75 Wt. % Ag � 25 Wt. % In, as 

temperature is raised from room temperature to some processing temperature between 

the indium and the silver melting point.  In this qualitative description, the effect of 

holding time will be assessed in terms of the inspection of the phase diagram.  From 

this phase diagram, the composition and mass fraction of each phase can be 

calculated by the lever rule at a particular equilibrium state.  Figure 7 provides a 

schematic representation of the microstructural progression of an Ag-In couple 

processed at a particular Tp after isothermal holds of varying length and subsequently 

cooled to room temperature.  The descriptive evolution is based on both the phase 

diagram in Figure 6 and previous research [36][48][51][53]. 

 
Figure 7.  Schematic microstructure of the Ag-In couple (25 Wt. % In) after isothermal holds of 
varying length (ti) at Tp.  (a) initial conditions, the interface between silver and indium will 
contain φ from the solid sate reaction; (b) after heating for some time t1; (c) after heating for a 

γ 

Pure Ag 

Pure Ag 

  Pure In 

(a)  before heating (b)  heating for t1 

φ + eutectic solid 

γ 

(c)  heating for t2 > t1 

φ

(d)  heating for t3 > t2 

(Ag) solid solution

(Ag) solid solution

γ 

(Ag) solid solution 

(Ag) solid solution 
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longer period, not in equilibrium, (d) heating for long enough time so that complete 
transformation of the In-rich phase is achieved. 
 

When the elemental materials are mixed in the solid state, there is some initial 

interdiffusion, resulting in the formation of the stable φ-phase.  Initial heating to Tp 

results in the formation of an indium rich liquid from a eutectic reaction at 147 °C,    

φ (66 at.% In) + In (100 at.% In) → L (97 at.% In) [55].  The amount of liquid 

formed during this melting event is proportional to the fraction of material having the 

eutectic composition.  As the temperature is raised past 166°C, a peritectic reaction 

occurs in which φ transforms as follows: φ (66 at.% In) → γ (33.5 at.% In) + L (96.2 

at.% In).  The initial liquid formed from the eutectic reaction combines with the 

peritectic liquid to fill up the gap between the solid base material, enhancing the 

sintering and densification of the compact.  These two melting reactions constitute the 

transformation of the totality of the indium material that was initially added to the 

mixture. The γ phase, which is Ag-rich, nucleates at the solid-liquid interface as a 

result of indium diffusion into the silver, this is depicted in Figure 7 (b).  The extent 

of Ag-In interdiffusion in such an isothermal system is determined by the holding 

time, processing temperature, initial solute composition, and particle size, which will 

dictate the progression of the TLPS in any practical application.  Studying this 

progression (reaction kinetics) is one of objectives of this investigation.  When the 

extent of the isothermal holding time is not enough, solute diffusion (In → Ag) is 

limited; thus, the result is a persistent mass fraction of liquid within the structure.  

Upon cooling from Tp, a primary φ will precipitate from the In-rich liquid as 

temperature gets below 166°C.  For short isothermal holding times, the surplus liquid 

undergoes a eutectic reaction at 147°C as it cools down, leading to a mixture of low 
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melting point solid phases (φ + eutectic solid) that is stable at room temperature.  This 

is illustrated in the interlayer in Figure 7 (b), the resulting persistent material is 

detrimental for the proposed high temperature application environments due to its low 

melting point.  For longer periods of times at Tp (condition (c) in Figure 7), the 

indium diffusion into silver results in the consumption of more liquid, therefore less 

amount of indium is available for the solidification reaction upon cooling.  This 

smaller remaining amount of indium material will result in precipitation of φ-phase 

with no eutectic solid.  The presence of the low melting point φ still represents a 

hurdle for the proposed attachment technology.  Condition (d) on Figure 7 represents 

the condition of a sufficiently long isothermal hold at Tp.  In this case, all of the 

indium diffused into the base metal and the isothermal solidification process is 

complete, leaving no In-rich liquid for further transformations upon cooling.  When 

the system is treated for a long enough time, equilibrium of the diffusion species is 

attained, i.e. there is no further concentration gradient driving the movement of 

atoms.  This equilibrium state is defined by the initial bulk composition of the 

mixture that will exhibit a new melting point given by the phase diagram.  It is 

important to recognize that the complete isothermal solidification is not only a 

function of holding time, but is also dependent on the initial amount of solute present.  

If the initial indium addition exceeds the solubility limit in the Ag-rich phases (ζ or 

γ), there will be some fraction of persistent liquid that upon cooling, will transform 

into a persistent In-rich φ phase.  Formation of this phase not only limits the 

maximum application temperature of the system, but as reported by Lin et al. [51], it 

also weakens the interface.   From this qualitative description of the evolution of 
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phases, it is evident that for the successful development of a high temperature attach 

material, the fraction of remaining low melting point In-rich phases must be 

minimized.  Minimization of these phases requires a full understanding of their 

kinetics of formation and decomposition, along with the study of how they are 

affected by other critical parameters throughout this transient process. 

 

Previous researchers [48][51] have attempted to describe the phase evolution of this 

system.  In their investigations, samples were heat treated and quenched from varying 

time intervals at the holding temperature.  Microstructural evaluation was used to 

describe the phases present, but no quantitative data was presented as function of 

time, temperature, or initial bulk composition.  The transient nature of this liquid 

phase sintering method does not allows the usage of the equilibrium phase diagram 

for the calculation of the dynamic fractions of the phases during the process.  This 

explains the necessity for an alternative method to study the kinetics of this transient 

diffusional solidification process.  This investigation will use the DSC as the 

experimental tool to measure the low melting point mass fraction and its variation as 

function of input parameters. 

4.5 Solder paste development: 

The reliable attachment of electronic devices to a substrate that is capable of 

withstanding elevated application temperatures has been identified as a key enabler 

for future electronic system developments.  In previous sections, it was shown that a  

TLPS technique provides a relatively low processing temperature that results in a 

melting point shift.  This new higher melting point material can resist application 
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temperatures well above the initial processing temperature.  Initial work on this 

technique [48][51][52][53][54] used thin films deposited on both the device (die) and 

substrate, with the primary joining mechanism being the interdiffusion at the facing 

surfaces.  This approach provided information about the diffusion mechanism and 

kinetics, but proved to be an inefficient technique for the microelectronic industry.  

When exotic materials, such as gold, silver, and titanium are deposited on a substrate 

and die, there is an initial investment (money and time) that will not necessarily pay 

back in an acceptable time frame.  This is a result of aging from the time of 

metallization to the time of its final usage in the assembly process.  At that time, the 

quality of the metallized layer may be affected by oxides or foreign materials, ruining 

the high initial investment.  A second disadvantage of this approach results from the 

limited surface area for diffusion on a planar contact.  This limitation results in a 

slower process that may not fulfill industry throughput and cycle time requirements. 

 

A well known technique that is widely accepted in the electronic industry is the usage 

of solder paste for device attachment.  In a solder paste, the effective surface area 

available for diffusion is greatly increased by using a powder.  This way, 

solidification time may be reduced by over two orders of magnitude when compared 

to planar surfaces [37].  Another advantage of a solder paste is that the main 

constituent powders are mixed in a flux medium that enhances its shelf life.  The 

paste is strictly deposited as required (controllable size, shape, volume, and method) 

at the time of manufacturing, making it a more efficient mechanism to protect the 

investment when compared to the thin film planar method discusses earlier.   
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Instead of assuming the planar sandwiched structure depicted in Figure 2, consider a 

mixture of elemental powders in which particles of the base metal (B) and additive 

(A) are combined.  A key advantage over the thin film approach is that the average 

composition of the mixture can be easily controlled by weighing each constituent 

during the mixing process, whereas in the planar method, the composition of the 

system is defined by the thicknesses of the deposited interlayer.  This is costly and 

difficult to control when physical vapor deposition techniques are used.  Figure 8 

depicts a schematic representation of the proposed paste along with its progression 

during the TLPS process. 

     
 

Figure 8.  Schematic representation of the powder mixture alternative for the TLPS technique.  
The direction of the arrows indicate the progression of the process with increasing temperature 
and time, the diagram in the center is during heating and early period at Tp, whereas the right 
most cartoon indicates the culmination of the in-situ alloying process. 
 

From the above figure, it can be observed that as temperature (direction of the 

arrows) rises to Tp, the additive material, A, melts and by capillary flow it wets and 

pulls the solid B particles together.  The result is a rearranged denser structure.  

During the isothermal solidification stage, the diffusion of A atoms into B results in 

an in-situ alloying process that culminates with the complete solidification 

(disappearance of the A-rich material) and the formation of the final solid solution.  

This newly formed alloy will exhibit a bulk composition corresponding to the initial 

Initial arrangement Melting of constituent A In-situ alloying & solidification 
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mixing ratio (equilibrium) and a new melting temperature.  This is the fundamental 

concept behind the proposed approach, in which the A and B will be given by indium 

and silver, respectively.  Upcoming chapters will discuss the details of the particular 

Ag-In powder mixture in terms of reaction kinetics and physical properties. 

4.5.1 Fundamentals of solder paste: 

 
A conventional solder paste comprises a powder, made of pre-alloyed particles of 

certain shape and size, which are suspended in a viscous flux vehicle [56].  This flux 

vehicle is a complex system whose main composition consists of a resin, solvents, 

rheological agents, and activators.  The flux provides a matrix to hold the metallic 

powder, provides the necessary viscous characteristics required for the application 

method, and protects the metallic surfaces from oxidation during the process.  

Solvents from the flux evaporate as the paste is heated to the processing temperature 

while the remaining constituents flow out by capillary action as the metallic powder 

consolidates.  This effect was confirmed by EDS analysis from which the carbon 

based resin was detected in the periphery of the joint.  This paste can be applied to a 

substrate by either stencil printing or dispensing.  The metal-to-flux ratio is an 

important parameter that needs to be considered depending on the deposition 

technique.  When devices are placed on the paste and the whole assembly is heated 

above the melting point of the pre-alloyed particles, a dense metallic liquid wets the 

surfaces.  Upon cooling, the molten solder solidifies and a solid joint is formed.  It is 

important to point out that each of the particles forming the powder has an identical 

composition defined by the alloy being used, meaning that they all have a single 
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reproducible melting point.  This description of the conventional solder paste and its 

behavior upon processing explains the conventional processing rule depicted in 

Figure 1.  The following section presents a novel approach in which a solder paste 

composed of silver and indium elemental powders is proposed as a high temperature 

attach material. 

4.5.2 Ag-In transient liquid high temperature solder paste attach: 

 
In this alternative, a powder mixture of elemental indium particles having a pre-

selected maximum particle size and elemental silver particles, having a pre-selected 

particle size are mixed together to a specific (controllable) mass ratio together with a 

flux medium.  The mass fraction of elemental constituents is selected based on the 

theory presented in the previous chapters, where the metal load is defined by the 

consistency of the mixture and its ability to be stencil printed.  Previous attempts to 

form this type of material have been published [14][57][58], being Pb-Sn, Sn-Bi, Cu-

Ni, Sn-Sb, and Cu-Sn the tested binary systems. 

 

The key aspect of the proposed system is that upon heating above the melting point of 

the In-rich phases (both the eutectic and φ-phase), the newly formed liquid spreads 

throughout the paste consolidating the powder mixture and joining the components 

together (Figure 8).  With further heating, the In-rich liquid and the high temperature 

silver solid undergo in-situ alloying.  This alloying process transforms the liquid to a 

solid phase and thus the solder solidifies isothermally.  This process occurs to the 

extent that no (or negligible) liquid remains to solidify during the cool down step.  
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The absence of any remaining In-rich phase during cool down avoids the formation of 

low temperature phases that can segregate resulting in detriment of physical and 

mechanical properties.  This explains the usage of remaining In-rich phase as the 

response variable in the experimental approach (section 5.2.2).  Upon reheating, the 

attach material will not re-melt until a temperature greater than the new melting point 

is exceeded.  This can be proven with the DSC test. 

 

During the process, enough In-rich liquid must initially form to consolidate the paste 

and spread over the base silver particles to form the joint.  However, there is a limit to 

the amount of liquid present because it will affect the time to solidification as well as 

the structure of the resulting material.  A fraction of persistent In-rich liquid, which 

cannot solidify by the diffusion reaction, will result when the indium addition exceeds 

the maximum solubility of the Ag-rich matrix.  When the maximum solid solubility is 

not exceeded, an indium addition below certain level may not provide the necessary 

consolidation.  Conversely, over loading the system with indium may result in a time-

to-solidification beyond an acceptable or practical period.  Therefore, understanding 

the kinetics of this problem is a critical aspect of the development of a suitable 

technology.  The effects of input variables in the time to completion of the 

solidification process, as measured by the fractional In-rich remaining, will provide 

the tools to develop a response model to predict the behavior of this system. 

 

Particle size has been identified as a dominant variable in the diffusion process [23] 

[25][27].  In this case, powder size of the main constituent should be chosen such that 
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the maximum amount of initial melting occurs (enhance densification) and the 

solidification rate (k) is maximized (minimize the time to completion). 
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Chapter 5: Solidification Kinetics of the TLPS Process for an 

Ag-In Paste 

 
 

5.1 Introduction: 

In recent years, there has been an increasing demand for high temperature resistant 

systems.  Smart point-of-use micro electromechanical systems (MEMS), high 

temperature / high power electronics such as those used in hybrid vehicles, control 

systems for deep well drilling, and high temperature fuel cells are examples of the 

wide field of applications.  The vast majority of these engineering systems are 

complex structures composed of a myriad of materials joined together.  In the 

presence of temperature gradients, thermomechanical stresses are induced in these 

systems due to the mismatch in the coefficients of thermal expansion (CTE) of their 

main constituents.  The first, and possibly the most damaging of these excursions 

usually happens during fabrication.  Joining of the main components of these systems 

is typically accomplished by means of a soldering process, during which a filler (in 

the form of a thin film layer, paste, or foil) is sandwiched between the solid materials 

to be joined.  It is assumed that the melting temperature of the filler is lower than that 

of the components, such that a reflow process can be used for the joining operation.  

The processing temperature is thus defined by the melting point of the solder, which 

also limits the maximum allowable application temperature of the system.  This 

traditional joining process, which was described in Figure 1, is given by Tm / Tp < 1, 

where Tp is the processing temperature and Tm is the melting point of the solder.  
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Inspection of the above rule suggests that, for increasing application temperatures, 

higher melting point materials that require even higher processing temperatures will 

be needed.  Cooling an assembly from such elevated processing temperatures results 

in built-in residual stresses that might be above the tolerable limits of the materials.  

Thus, an alternative to the above paradigm was presented as the motivation for this 

research. 

 

Transient liquid phase sintering is a powder metallurgy technique that has a relatively 

limited commercial exploitation mainly due to its incomplete fundamental 

understanding [11][22][23][36].  However, a phenomenological description of the 

process has been given [24][25].  This description of the process includes a series of 

discrete stages, each dominated by a diffusion controlled mechanism [25]. 

 

In this chapter, the Ag-In binary system is introduced as an alternative for high 

temperature applications using a TLPS solder paste approach.  The low melting point 

of indium (156°C), together with its good wettability, make it a suitable candidate as 

a melting point depressant (MPD), whereas the high melting temperature of silver 

(962°C), its thermal conductivity (419 W/m-K), and electrical resistivity (1.55 X 10-6 

Ω-cm) [59] make it a promising prospect as a base metal.  Although sintering is not 

an equilibrium process, it does approach equilibrium; thus, the phase diagram can aid 

in defining critical process variables.  In order to study the kinetics and the evolution 

of the process, it is critical to understand the phases present in the binary system 

along with their transformations as function of composition and temperature.  Phase 
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diagrams are helpful in predicting phase transformation and the resulting 

microstructures, which may have equilibrium or non-equilibrium character [45].  

Figure 6 depicts the equilibrium phase diagram of the Ag-In binary system.   This 

diagram served as a tool for the selection of possible compositions (based on the 

solubility limits), processing temperatures (based on the phase transformations), 

compositional data necessary for theoretical calculations, and also as reference for the 

experimental findings from the DSC test.  

 

 In this stage of the investigation, the kinetics of the TLPS reaction will be 

experimentally studied using a differential scanning calorimetry (DSC) technique as 

function of base metal particle size and isothermal holding time.  A reaction rate for 

the process will be estimated experimentally, whereas a diffusion based analytical 

rate will be calculated for comparison purposes.  A microstructural evaluation of the 

system will assist the interpretation of the experimental data and shall provide the 

necessary morphological information about the system as it progresses towards 

equilibrium.  The thermal stability of the newly formed alloy and the achievement of 

the melting point shift will be studied by thermal analysis from the DSC. 

5.2 Experimental methods: 

5.2.1. Solder paste formulation and characterization: 

Previous work on TLPS of the Ag-In binary system was presented by Chuang and 

Lee [54] with the materials deposited as thin films in facing surfaces.  They provided 

a theoretical evolution of the system towards its equilibrium state based on the phase 
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diagram and reported a time for completion in the order of 26 to 30 hours.  The 

duration of the process to reach the final composition has been identified as a major 

drawback to commercial feasibility.  The planar nature of the interface contributed to 

its rapid saturation.  In addition, it limited the surface area available for diffusion, 

delaying the overall process.  In a paste, the main constituents are given in the form of 

nearly spherical particles, indicating that the effective surface area available for 

diffusion is greatly increased by using a powder.  This way, the solidification time 

can be significantly reduced when compared to that of planar surfaces [37].  During 

this phase of the investigation, three solder pastes mixed to a composition of 75 Wt.% 

Ag � 25 Wt. % In (68 Vol. % Ag � 32 Vol. % In) and variable silver particle sizes 

were fabricated.  Powders were characterized by the supplier (Alfa-Aesar) using the 

standard ASTM-B214.  For this study they were conventionally identified by their 

maximum particle diameter, but the existence of a distribution was also recognized.  

Characterization of the powders was confirmed by scanning electron microscopy on 

the as-received material, in which particle size and shape were validated.  The indium 

powder size was fixed to 50 µm (Mesh -325 or Type III).  Elemental powders were 

dry mixed to the above mass ratio (~ 25 Wt. % In); a no clean rosin mildly activated 

flux (RMA) [Indium Corp. TAC Flux 007] was later added to the mixture to form a 

paste.  The metal content of this paste was set to 91% by weight with the remaining 

portion being the flux.  TLPS is a complex metallurgical process governed by 

multiple variables such as heating rate, composition, processing temperature, holding 

time, and particle size [11]; for this stage of the investigation, the heating rate, 

composition, and processing temperature were deliberately set as constants.  These 
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parameters were set to typical values used for the standard reflow process.  The 

composition was chosen such that an (Ag) solid solution plus γ is obtained at the end 

of the transient process.  Details of the three solder pastes formulated for this 

investigation are given in Table 5 in which the amounts of the main components were 

measured using a Mettler AE100 analytical balance with a precision of 0.1mg. 

 
Table 5.  Solder paste formulations for experimental testing. 
Solder 
Paste 

Wt.% 
In  

Wt.% 
Ag  

In 
Powder  
Mesh 
(Shape*) 

In 
Particle 
Dia.* 
(µm) 

In 
Purity 
(%) 

Ag 
Powder  
Mesh 
(Shape*) 

Ag 
Particle 
Dia.* 
(µm) 

Ag 
Purity 

Wt. 
% 
Flux 

Metal 
Load 
(by 
Wt.) 

A 25 75 -325 
(rounded 
and 
ligamental) 

50* 99.99 -1250 
(Agglomera
ted 
aggregates) 

5 99.95 9 91% 

B 25 75 -325 50* 99.99 -325 
(Spherical) 

50 99.9 9 91% 

C 25 75 -325 50* 99.99 -500 
(Spherical) 

25 99.9 9 91% 

* Particle maximum diameter is based on ASTM-B214, there is a distribution attributed to this value 
which is tabulated as �Less than 1% particles bigger than xx�, �Maximum Particle Size�, and �80% 
Minimum Between�.  Due to agglomeration and screening problems attributed to particle shapes the 
exact measurement of powder particles is beyond the scope of this work.  Maximum values will be 
used for theoretical calculations, whereas shape description was based on the work of RM German in 
Powder Metallurgy [60]. 
 
 
The main difference among the pastes was the maximum particle size of the base 

material (silver).  Paste A was specified by an aggregate of silver particles with a 

maximum diameter of 5 µm.  Pastes B and C, both contained spherical silver particles 

with a maximum diameter of 50 µm and 25 µm, respectively.  All of the pastes 

contained the same indium material, a rounded and ligamentally shaped powder with 

a maximum particle size of 50 µm.  The following scanning electron images illustrate 

the as-received powders used for paste formulation.  This qualitative information was 

used to validate the specifications given by the supplier. 
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Figure 9.  SEM image of the elemental indium powder used for all three solder pastes.  This 
material was specified as -325 mesh (50 µm maximum diameter) by the supplier with a rounded 
ligamental shape [60]. 
 

 

Figure 10.  SEM image of the silver powder used on Paste A, in this instance the powder was 
specified as -1250 mesh (5 µm maximum diameter) with an agglomerated aggregate shape [60]. 
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Figure 11.  SEM image of the silver powder used on Paste B, in this instance the powder was 
specified as -325 mesh (50 µm maximum diameter) with a spherical shape [60].  Note the 
problem of agglomeration of smaller particles that affects the screening process and indeed the 
mesh sizing. 
 

 
 
Figure 12.  SEM image of the silver powder used on Paste C, in this instance the powder was 
specified as -500 mesh (25 µm maximum diameter) with a spherical shape [60]. 
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Solid powders were initially mixed to a 75%Ag - 25%In mass ratio (the true final 

composition of each batch was then measured form the DSC for further calculations). 

The addition of a no-clean rosin mildly activated (RMA) flux (Indium Corp. TAC-

007) completed the formulation of the paste.  The selection of the flux medium was 

based on the properties of the activators and their ability to resist elevated processing 

temperatures for prolonged periods of time without burning off.  In this case, 

processing temperatures ranging from 250°C to 300°C and holding times of over 60 

minutes were used for flux selection.  Indium Corporation TAC flux 007 was chosen 

based on company�s recommendations and the fact this flux is used in their 

commercial die attach solder paste products. 

 

A sample of solder paste A was analyzed using the ESEM; energy dispersive 

spectroscopy (EDS) was used for elemental composition of the mixture.  A dot map 

over the region of interest confirmed the presence and distribution of the main 

constituents.  Figure 13 and Figure 14 depict the ESEM micrographs over the region 

of interest and the dot maps.  



 

 65 
 

 

Figure 13.  SEM image of Paste A sample, as can be observed there is a larger amount of the fine 
silver powder surrounding the larger near spherical indium particles. 
 
 

 
(a) 
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(b) 

 
Figure 14.  EDS dot map over the region depicted in Figure 13.  (a) Dots denote the presence of 
silver as given by the EDS analysis; (b) Dots represents the presence of indium given by the 
larger particles in the mixture. 
 

As seen from these figures, it is evident that the shape and size of the particles are in 

accordance with Table 5, where the near spherical indium particles (~ 50µm) are seen 

in Figure 14 (b) and the agglomerated smaller silver particles are depicted by the dots 

in Figure 14 (a).  An important factor in solder paste blending is the homogeneity of 

the mixture, i.e. each sample taken from the batch should have approximately the 

same of 75%Ag - 25%In by weight.  Using the densities of both elements and the rule 

of mixtures based on the pre-defined weight ratio, a volume fraction calculation was 

performed.  Theoretical volume fractions were found to be 67.7% Ag and 32.3% In.  

Mixing for sufficient time has been proposed by powder metallurgists [60] as a 

solution for the homogeneity of the system; for this investigation all powders were 

dry mixed for 30 minutes.  To validate the effectiveness of the mixing and to 
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calculate the true final composition of the mixture, DSC tests were used to obtain 

empirical amounts of indium present in randomly taken samples from all three 

batches.  A description of this test and the results will be presented in section 5.3.2. 

5.2.2. Design of experiment (DOE): 

Transient liquid phase sintering has been presented as a suitable alternative for solder 

attachment; however, complications exist in the ability to predict the progression of 

the system by analytical means.  One such factor is the effect of particle size and 

shape distribution, which in most theoretical models is assumed as a monosized 

spherical powder.  In practical applications, however, it involves a range of sizes that 

are often far from spherical in shape.  Therefore, an empirical approach is presented 

in this section from which an estimation of the process kinetics will be obtained 

following a systematic design of experiments methodology.  To develop an empirical 

kinetics model using the DSC data, as discussed in section 2.2.3, a response variable 

must be defined.  The amount (mass) of indium diffused into silver during the 

isothermal solidification indicates the progression towards the completion of the in-

situ alloying process.  A remaining fraction of In-rich material (untransformed) will 

solidify as a persistent phase if the solidification time is not long enough, jeopardizing 

the ability of the newly formed system to survive high temperature environments.  

Thus, the kinetics of the system is to be modeled based on a response defined by the 

remaining In-rich phase(s) as function of isothermal holding time and base metal 

particle size.  These two factors were selected as the main variables because the 

underlying diffusion mechanism is known to be sensitive to these parameters [12].  

The processing temperature (Tp) was held constant at 250°C, the additive weight 
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percent was set to 25 Wt.% In, and the heating rate was held constant at 60°C/min, 

i.e. 1°C/s.  The test was conducted using a full factorial experiment with two 

replicates for each time level.  The input variable was the particle size (PS) in 

micrometers with three levels; this resulted in three treatment combinations (31) per 

holding time with a replicate at each time interval.  The isothermal holding times 

(minutes) were defined as follows: to = 0, t1 = 0.5, t2 = 1.0, t3 = 2, t4 = 5, t5 = 10, t6 = 

15, t7 = 25, t8 = 40, t9 = 60, t10 = 90; for each of the three developed solder pastes (A, 

B, and C).  A flow chart of the DOE is given in the figure below. 

 

 Ag

PSMAX 
(5 µm) 

PSMAX 
(50 µm) 

PSMAX 
(25 µm) 

  In 

 Paste C  Paste B Paste A 

25 Wt. % In
75 Wt. % Ag 

Heating Rate:
60 °C/min 

Holding Temp:
250 ° 

 tn-1   t2   t1   to   tn 
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Figure 15.  Experimental matrix for DOE. 

5.2.3. Differential scanning calorimetry (DSC) thermal characterization: 

In this investigation, we are interested in studying the transformation of the Ag-In 

mixture.  This process is driven by the diffusion of the low melting In-rich phases into 

the high melting Ag-rich solid solution, for which a net mass flux exists from the high 

indium concentration in the liquid to the lower concentration in the solid as given by 

the liquid and solid compositions.  The amount of solute mass (indium) that has 

diffused over time into the base metal (silver) defines the progression of this process.  

The problem of inaccurate measurement techniques for quantifying the kinetics of 

this isothermal solidification reaction during the transient process has been addressed 

by the development of a new technique using differential scanning calorimetry (DSC) 

[31][40].  This method has enabled the characterization of the process kinetics 

resulting in the advancement of the fundamental theoretical understanding of the 

mechanics of isothermal solidification, as is the case of the current investigation in 

which kinetics of the binary Ag-In system are analyzed by this technique.  This 

method allows the determination of the amount of initial liquid formation as well as 

its duration, i.e. the kinetics of the isothermal solidification step.  The DSC measures 

heat flow (mW) of a sample relative to a reference cell throughout a specified profile 

in which the temperature, heating/cooling rate, and isothermal holds can be 

controlled.  Heat flow is measured using thermocouples that compare the temperature 

of the reference with the sample cell while keeping them balanced. The differential 

heat flow during the process is recorded as either an endotherm (energy input is 

required for balance) or an exothermic peak, the later being a release of energy by the 

sample under test.  Based on this convention, the melting of a material consumes a 
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discrete amount of energy per unit mass (heat of fusion) that is plotted as an 

endotherm.  The opposite happens during solidification, where the material releases 

energy to become more stable.  Therefore, it is perceived as an exotherm during the 

DSC test.  Information regarding the energy required for phase transformations in a 

particular material, as well as melting temperature and specific heat, can be directly 

obtained from this test.  The progression of the TLPS process along its stages can be 

accurately calculated using this technique [40].   

 

For this investigation, a Perkins Elmer DSC Pyris 1 was used in conjunction with the 

aluminum sample holder pan kit (PE Kit: 219-1073).  Samples consisted of 30 � 80 

mg of the solder paste deposited in the aluminum pan according to the standard 

operating procedure of the equipment; the exact weight of each sample was measured 

and recorded for further calculations.  A baseline test using empty reference samples 

was conducted prior to the testing and subtracted from the final data.  This accounted 

for any artifacts induced by the equipment itself.  The equipment was calibrated using 

a standard indium sample as specified by the supplier.  A nitrogen purge was used to 

avoid oxidation during the test. 

 

5.2.4. Remaining fraction calculation by DSC: 

 
In section 5.2.2, an experiment was designed to study the kinetics of the isothermal 

solidification process based on a response defined by the remaining In-rich phase as 

function of isothermal holding time and base metal particle size.  In the previous 
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section, the fundamentals of the DSC were presented in which the formations of 

endothermic and exothermic peaks were defined as being proportional to a melting or 

solidification reaction, respectively.  The ratio between the exotherm and the 

endotherm gives the fraction of liquid remaining [40].  A more comprehensive 

description of this method will follow.   

 

Calculation of the remaining amount (mass fraction) of a phase requires the following 

ratio:  

Equation 28 

100
Amount Initial

Amount Remaining(%) Phase a of Remaining ⋅





=  

 

where both, remaining and initial amounts of material are calculated as follows: 

Equation 29 

[J/g]Fusion  ofHeat 
[J]Energy  Exoor  Endo(grams) Material ofAmount =  

 

The heat of fusion is available in literature; whereas the endothermic or exothermic 

energy is given by the area under the peak from the DSC trace, i.e. the integral of the 

heat flow (mW) over time.  Since the heat of fusion is a constant property of the 

material, Equation 28 can be re-written as: 

Equation 30 

100
Energy cEndothermi

Energy Exothemic (%) Phase a of Remaining ⋅







=  
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where the endothermic energy corresponds to the initial amount of liquid material 

located in the system and the exothermic energy to that left after the heating cycle.  

From a conservation of mass argument for a reversible transformation, the amount of 

material melting (endothermic energy) should equal the amount solidifying 

(exothermic energy) when no diffusional reaction occurs during the process (heating 

to Tp, hold, and cool down).  In that case, the ratio of exothermic energy to 

endothermic energy would be close to unity (some small deviation might be observed 

due to errors in calculating the area under the curve), whereas ratios significantly less 

than one imply that a fraction of the material, originally present during the melting, is 

no longer solidifying (i.e. it has transformed into a new phase with a different melting 

point, Figure 20).  This technique for calculating the remaining fraction of a material 

using Equation 30 was validated during this investigation.  Figure 16 depicts the DSC 

trace of a pure indium sample that was heated to 170°C, held isothermally for five 

minutes, and cooled down to room temperature.   
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Figure 16.  DSC trace of a pure indium sample heated to 170°C and cooled down, melting 
endotherm (upward) and solidification exotherm (downward) are shown. 
 

An endothermic peak (upward) was recorded at 156°C.  This corresponds to pure 

indium�s melting temperature after the isothermal hold; an exothermic (downward) 

peak was recorded during the cool down.  Note that the exotherm was recorded at 

around 154°C, which corresponds to a small undercooling effect during solidification.  

The area under both peaks was calculated by integration in the time scale using the 

equipment software as given in Figure 17.   

Heating is the 
first step 

Melting event 

Cooling is the 
second step 

Solidification 
event
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Figure 17.  DSC trace in the time domain showing the calculation of the endothermic and 
exothermic energies by integrating the area under the peaks. 
 

Substitution of these energies into Equation 30 confirmed that the DSC technique is 

an accurate and valuable tool for studying the transformation kinetics of the process.  

This concept provided the empirical approach in our calculation of remaining low 

melting point In-rich phase. 

5.2.5. Metallography: 

 
To assist in the interpretation of the results from the DSC, samples treated under the 

specified experimental conditions were cross-sectioned, etched (1 HNO3 : 7 HCl : 8 

Ethanol), and analyzed using scanning electron microscopy (SEM) and energy 

dispersive spectroscopy (EDS).  A FEI Quanta 200 ESEM was used throughout this 

investigation.  The metallographic techniques provided qualitative information in 

terms of the extent of liquid spreading through the compact, as well as morphological 
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information.  This descriptive data assisted in defining the phenomenological aspects 

of the TLPS through the different stages of the process, by documenting the 

microstructural evolution of samples.  Quantitative information on the extent of the 

diffusion at different stages was provided by spectral analysis in terms of atomic 

percent of the constituents.  An example of this qualitative description of the TLPS by 

metallographic methods is given in Figure 18.  In this figure, a sample of Paste A is 

depicted after processing for 60 minutes at 250°C.  When compared to the dot maps 

in Figure 14, it is evident that the interdiffusion process has yielded the intended 

result.  From this analysis, it can be seen that the system is now a well dispersed 

system of indium in silver, as opposed to the initial segregated paste depicted in 

Figure 13 and Figure 14. 

 
(a) 

 



 

 76 
 

 
(b) 

 

 

(c) 
Figure 18.  EDS dot map showing the elemental composition and distribution of a sample 
processed by TLPS.  (a) SEM image of the region of interest, (b) Dot mapping showing the 
presence and distribution of silver,  (c) Dot mapping showing the indium presence. 
 

5.3 Results: 

5.3.1. Interpretation of melting and solidification data from DSC 

A typical DSC trace for the heating of a paste sample is given in Figure 19, which 

indicates the general melting behavior of the system:   
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Figure 19.  Typical DSC trace for a Ag-In paste sample heated to 250°C, endotherms are shown 
as upwards peaks. 
 
 
During this heating cycle, two endothermic peaks that corresponded to phase changes 

were observed (these reactions were confirmed with the phase diagram).  The 

polymerization of the flux vehicle was detected and labeled in the figure.  The first 

endothermic peak corresponded to the eutectic reaction at 147°C [55], φ (66 at.% In) 

+ In (100 at.% In) → L (97 at.% In); whereas the second endotherm occurred at ~ 

170°C where a peritectic  reaction [55] [φ (66 at.% In) → γ (33.5 at.% In) + L (96.2 

at.% In)] takes place.  The formation of the In-rich liquid via the eutectic reaction 

depends on the initial extent of material with the eutectic composition.  It has been 

reported [54] that this eutectic could be formed at room temperature as silver and 

indium are mixed together; its formation is accelerated even further with temperature.  

The initial mass fraction of this phase is minimal and it its strongly dependent on the 
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heating rate used to reach the processing temperature [28].  Immediately after 

formation, the In-rich liquid infiltrates the silver powder compact by capillary action 

inducing an erosion effect as it comes into contact with the silver solid.  At a 

temperature between ~147°C and ~170°C the newly formed liquid co-exists with φ, 

this φ phase is an In-rich material that is stable from room temperature up to ~170°C 

(Figure 6).  This L + φ is a stable system in the temperature range between 147°C and 

170°C, evidence of this stability can be seen in Figure 19 where energy was released 

(exotherm) following the eutectic reaction.  Continuous heating towards the 

processing temperature results in the peritectic reaction at ~170°C, where φ melts 

resulting in more In-rich liquid.  As can be observed, both of these reactions 

contributed to the formation of In-rich liquid during the heating stage.  Upon cooling, 

after insufficient isothermal holding time at Tp, the fraction of material with the In-

rich composition(s) underwent solidification reactions shown in Figure 20.   
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Figure 20.  DSC traces for the cooling stage of samples treated at 250°C for various holding 
times.  Exotherms are given by the downward peaks, it was observed that at 40 minutes the 
eutectic reaction at 147°C was not longer detected; whereas at 60 minutes no exotherms were 
recorded. 
 
 
For short holding times, an exothermic reaction at ~ 170°C (Note: undercooling was 

observed on all samples) resulted in the precipitation of primary φ while the 

remaining fraction of eutectic liquid transformed into eutectic solid (φ + In).  As the 

holding time increased, more diffusion of indium into silver occurred, resulting in the 

isothermal solidification of the In-rich liquid.  From the DSC traces in Figure 20 it 

was observed that the magnitude of the eutectic exotherms decreased with holding 

time up to 40 minutes.  At holding times larger than 40 minutes, the In-rich liquid 

solidified as φ with no eutectic transformation.  When the holding time was even 

longer (≥ 60 minutes permitting complete isothermal solidification), all of the In-rich 

liquid transformed into the Ag-rich solid solution.  No exotherms were observed 
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during the cool down.  At this point, a newly formed in-situ alloying process had been 

accomplished with a resulting high melting temperature Ag-rich material, which 

based on the phase diagram, should exhibit a melting point above 650°C.  To validate 

the thermal stability of this newly formed alloy, a sample was subjected to a second 

heating excursion that simulated an application condition of 400°C.  In Figure 21, a 

DSC curve of a sample initially heated to a Tp of 250°C and then held for 60 minutes 

is given.   
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Figure 21.  DSC trace for the heating � cooling � re-heat cycle used to demonstrate the thermal 
stability of the newly formed material. 
 
 
During this first heating stage, the endotherm associated with the melting of the In-

rich phases was observed.  Upon cooling to 125°C, after a 60 minutes hold, no 
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exotherms were observed.  This suggested that the diffusion controlled transformation 

had been successfully achieved.  Heating the sample to 400°C resulted in no new 

endotherm, confirming that the material was stable up to such temperature.  From the 

DSC trace, a small endotherm was observed at ~300°C corresponding to an allotropic 

transformation of the Ag-rich phase γ to the HCP ζ phase (this is a solid to solid 

transformation). 

 

Two In-rich low melting phases were identified (Figure 19); thus, both need to be 

considered in order to provide an accurate description of the overall transformation.  

Based on the known reactions of the Ag � In system, Equation 30 takes the following 

form, where the response for this specific binary system is defined as: 

Equation 31 
( )

( ) InMixtureWt.%
Endo   Endo
Exo  Exo

(%) PhaseRich -In Remaining
eutectic

 eutectic ⋅












+
+

=
ϕ

ϕ  

where Mixture Wt.% In is the actual indium weight fraction in the as-built paste as 

measured from sampling the batch of paste prior to the test (section 5.3.2).  This is 

necessary to compensate for mixing errors induced during fabrication of the pastes in 

which the exact 75 Wt.% Ag � 25 Wt.% In may have not being obtained.  Equation 

31 provides a measurement of the response that can be later compared to 

metallographic observations as well as to results obtained from analytical solutions 

without being misleading since it considers the fact that the rest of the system is 

comprised of silver rich phase. 
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5.3.2. Empirical validation of paste composition: 

In order to accurately obtain the remaining fraction of In-rich phase (Equation 31) for 

each paste, the indium mass fraction within the mixture was needed; a perfect 75 Ag : 

25 In mass ratio should not be assumed.  In order to obtain this initial as-built 

composition, empirical measurements of indium content on paste batches were 

required.  A set of samples from each paste (A through C) was taken and individually 

weighed to record their bulk mass (mg).  Each sample was subsequently tested on the 

DSC, from which the endothermic energy was obtained.  This calculated energy 

(Joules) was divided by the heat of fusion, resulting in the empirical mass of indium 

present in the sample.  Dividing this mass value of indium by the effective overall 

mass of the sample provided the empirical In Wt. %.  A mean value of 23 Wt. % In 

was obtained for Paste A, 32 Wt.% In for Paste B, and 27 Wt.% In for Paste C 

[Appendix 1].  These values were incorporated in the calculations given in Appendix 

1 and in Figure 22 and Figure 23.   

5.3.3. Results from the design of experiment (DOE): 
 
The remaining In-rich material was calculated using Equation 31 for all sixty six 

samples from the DOE [Appendix 1].  For each specimen, a particular heating / 

cooling DSC trace was obtained from which the exothermic and endothermic 

energies were calculated by the integration method using the Perkin Elmer software.  

Results from the whole experiment are presented in Figure 22 where the response 

variable was plotted as function of isothermal holding time for all three solder pastes.  

Note that the response variable has been normalized to the measured initial weight 

fraction of indium effectively present on each of the solder pastes undergoing testing. 
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Figure 22.  Experimental data showing the Remaining In-rich material as function of isothermal 
holding time.   The chart shows the data obtained from the DOE for all three solders pastes. 
 
 

The effect of particle size in the response is more clear from Figure 23, in which the 

mean value of the Remaining In-rich phase was used instead of all the experimental 

data as given above. 
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Figure 23.  Experimental data showing the Remaining In-rich material (mean), as function of 
isothermal holding time and silver particle size. 
 

From the above chart it is evident that silver particle size has an effect on the 

solidification rate.  From inspection, it can be inferred that the smallest particle size 

(Paste A) exhibited the fastest transformation, in which the fraction of remaining In-

rich material showed a steep decline in the first ten minutes, whereas the largest 

particle size (Paste B) required a much longer holding time to achieve an equivalent 

response (~60 minutes).  Details of the effect of particle size on the kinetics of this 

reaction will be given in the following sections. 
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5.3.4. Empirical estimation of the reaction rate (k): 

The effect of holding time on the isothermal solidification process was evidenced in 

the cooling traces in Figure 20.  To obtain a kinetics model of this dynamic 

phenomenon, a reaction rate must be estimated.  Silver particle size was chosen as the 

controllable variable for this first stage of the investigation whereas the remaining 

fraction of the low melting In-rich phases (i.e. φ with a Tm of 170°C and the eutectic 

solid with a Tm of 147°C) was defined as the response or dependent variable as 

expressed in Equation 31.  The persistent presence of any of these two phases will 

result in a partial re-melt of the system when its melting temperature is exceeded 

during a future high temperature thermal excursion.   

 

The rate constant (k) is an indicator of the solidification rate of the system.  

Increasing k results in a faster solid-liquid interface motion and a shorter duration of 

the isothermal solidification stage.  The isothermal solidification stage is over when 

the remaining In-rich phase approaches zero; this suggests that all of the initial low 

melting point indium has diffused into the silver base metal.  Experimental 

calculations of this rate constant were performed by fitting a modified Avrami [61] 

model to the DSC data.  This exponential decaying model was used to fit the 

Remaining In-Rich Phase given in Figure 23 for each of the three particle sizes.  The 

generalized model is given by Equation 32, in which �y� represents the fraction of 

untransformed material (%).  In this investigation the progression of the process was 

analyzed from the unreacted material perspective, i.e. the remaining fraction as 

previously defined: 
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Equation 32 

oytAy +





 −⋅=

τ
exp1  

where A1, yo, and τ (time constant) are empirical constants, and t is the isothermal 

holding time in minutes. The rate constant, k (1/min.), is defined as: 

Equation 33 

τ
1(k)Constant  Rate =  

Results from model fitting are given in Table 6.  

Table 6.  Empirical constants from model fitting. 
Solder 
Paste 

A1 95% CI yo 95% CI τ 
(min.) 

95% CI R2 

A 
(PSmax: 5 µm) 

16.34 14.88 
17.80 

2.66 2.04 
3.28 

1.38 1.08 
1.68 

0.95 

C 
(PSmax: 25 µm) 

23.6 22.67 
24.53 

0.64 0.04 
1.24 

4.5 3.95 
5.05 

0.99 

B 
(PSmax: 50 µm) 

18.28 15.26 
21.3 

3.14 0.88 
5.4 

9.31 4.7 
13.93 

0.82 

 

Figure 24 illustrates both the predicted Remaining In-Rich Phase for a particle size of 

25 µm (Paste C) and the data obtained from the DSC tests.  Similar plots were 

obtained for the other two pastes using the data from Table 6 and DSC [Appendix 2].  

It is evident that particle size (PS) was isolated for each case, resulting in discrete 

prediction models with parameters specifically estimated for each particle size value.  

To obtain a generalized kinetics model, with particle size as one of the independent 

variables along with holding time, a correlation analysis was required.  Dependency 

among the obtained constants (A1, yo, and τ) and PS (µm) was determined by 

inspecting of their scatter plots and their corresponding regression coefficients (R2) 

[Appendix 3].  As evidenced by a R2 value of 0.059, the yo was demonstrated to be 

uncorrelated with particle size.  A similar inspection and analysis of A1 resulted in a 
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similar conclusion, where only 3.8% (R2 = 0.038) of its variability was described by 

PS.  A strong correlation between τ and particle size (µm) was obtained; their linear 

relationship is given by the following expression (R2 = 0.996):   

Equation 34 
3458.0)(1769.0)( +⋅= PSPSτ  
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Figure 24.  Prediction of the Remaining In-rich material by model fitting the experimental data 
from Paste C (25 µm silver particle size).  Markers denote complete Paste C DSC data from the 
experiment, the solid line is the prediction from the model. 
 
 
The rate constant (k) was previously defined as 1 / τ.  Using this definition, the 

empirical rate constant for the Ag-In system as function of particle size was obtained 

for each paste.  Measured rate constant values are given in Figure 25 together with 

predicted values from the model given in Equation 34.  Fro the chart the highest 
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measured value of 0.73 corresponded to the smallest particle size.  Data from this 

figure agreed with the theoretical principle of the governing diffusion mechanism, 

where as particle size decreases, the effective surface area increases, resulting in 

faster rates.  
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Figure 25.  Correlation of the experimental reaction rate, k (1/min.) with the silver particle size 
(µm).  Error bars denote the 95% confidence interval of the estimated value. 
 
  
The independency of both A1 and yo with PS was used as the basis to obtain its best 

approximation by means of the arithmetic average.  Nominal values for the three 

cases were taken from Table 6, and their averages were calculated.   A generalized 

kinetics model for Remaining In-Rich Phase (%) as function of isothermal holding 

time and particle size was obtained: 
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Equation 35 

15.2t-exp19.41(%) PhaseRich -In Remaining +





⋅=

τ
 

where τ (PS) = 0.1769·(PS) + 0.3458, A1avg = (16.34+18.28+23.6)/3, and yoavg = 

(2.66+3.14+0.64)/3.  This model provides a good approximation for the progression 

of the Ag-In TLPS process, where the effect of particle size on reaction rate was 

established.  Nevertheless, an inspection of Equation 35 suggests that at holding times 

approaching zero the prediction is independent of PS, therefore resulting in a constant 

value of 21.56% In-Rich Phase.  This value results from an initial condition that 

depends on the as-built composition of the paste mixture, a variable that was set 

constant during this experiment.  In chapter 6, a response surface methodology 

(RSM) will be used to study the progression of the Ag-In TLPS process.  This RSM 

technique will consider the combined effects of the independent variables, some of 

which were fixed during this initial stage of the investigation. 

5.3.5. Microstructural evolution and phase transformations: 

To further elucidate the metallurgical reactions taking place during TLPS, samples of 

the 75 Wt.% Ag � 25 Wt.% In formulation treated for varying holding times (i.e. 0 

min., 10 min., 40 min., and 60 min.) were epoxy mounted, polished, and etched.  The 

microstructure developed in these samples was observed using backscattered electron 

(BSE) imaging in the ESEM.  An EDS analysis was also performed to identify the 

phases present by their elemental composition.  It should be noted that the 

microstructures in the following images represent the morphology of the phases as 

they solidified after cooling from 250°C to room temperature at 1°C/s.  Figure 26 
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shows a BSE of the microstructure of a sample heated to 250°C at 60°C/min. with no 

isothermal holding time.   

 

Figure 26.  BSE image of a 75 Wt.% Ag � 25 Wt.% In specimen heated to 250°C and cooled to 
room temperature with no isothermal holding.   
 

The presence of the low melting lamellar structure of the eutectic solid is evident.  It 

is observed that this phase constitutes the continuous matrix where the silver particles 

are embedded.  A DSC trace for such a holding period is given in Figure 20, where a 

considerable amount of In-rich phase is evident from the magnitude of the two 

exothermic peaks.  Figure 27 shows a higher magnification of the sample in Figure 

26.  EDS analysis revealed that the matrix is composed of eutectic material and φ 

(~67 at.% In). 

Ag  

In-rich 
matrix
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Figure 27.  Zoom of the BSE image of a 75 Wt.% Ag � 25 Wt.% In specimen heated to 250°C 
and cooled to room temperature with no isothermal holding.   
 
 
Figure 28 depicts the microstructure of a sample treated to 250°C and held for 10 

minutes.  From this micrograph, the growth and coagulation of the Ag-rich particles 

is evident.  Necking formation between adjacent particles was observed as evidence 

of the sintering mechanism.  After 10 minutes at 250°C, the In-rich phase is no longer 

a continuous matrix, suggesting its consumption by the isothermal solidification 

process.  This observation agrees well with the corresponding DSC trace in Figure 20 

(10 minutes), where a significant shrinkage in magnitude of the exothermic peaks was 

recorded.  The In-rich liquid is now confined to discontinuous areas within the system 

and is no longer able to completely surround the silver particles. 

Ag  

Eutectic solid (~97 at.% In)
+ φ (~66 at. % In) 
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Figure 28.  BSE image of a 75 Wt.% Ag � 25 Wt.% In specimen heated to 250°C, held 
isothermally for 10 minutes, and cooled to room temperature. 
 
 
Figure 28 illustrates the precipitation of the Ag-rich γ (34 at.% In) phase at the solid / 

liquid interfaces and the forming of rings along the borders of the silver particles.  

Figure 29 illustrates that, after holding for 40 minutes at 250°C, the microstructure is 

now dominated by an Ag solid solution (α) matrix as measured by the EDS analysis.  

A network of γ decorates the silver (α) matrix.  At this point, the remaining In-rich 

material is minimal and limited to isolated sites within the Ag-rich matrix.  The 

composition of this fraction of remaining In-rich material was confirmed by EDS as 

having ~ 66 - 70 at.% In, i.e. φ.  This data correlates with the DSC trace for a 40 

minutes hold (Figure 20), where the eutectic peak was no longer detected and only a 

small exotherm was recorded at ~ 170° C, corresponding to the solidification of φ. 

γ (~34 at.% In) 
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Figure 29.  BSE image of a 75 Wt.% Ag � 25 Wt.% In specimen heated to 250°C, held 
isothermally for 40 minutes, and cooled to room temperature. 
  

Figure 30 depicts the microstructure of a sample treated at 250°C for 60 minutes. In 

this case, the γ phase is evenly dispersed through the matrix.  This represents the 

homogenization stage that tends to the final equilibrium composition.   At this stage 

of the process, all the indium is present in the form of a high melting α + γ structure.  

This was confirmed (Figure 20) by the absence of exothermic peaks during the cool 

down. 

γ (~34 at.% In) 

φ (~66 at.% In) 

Ag (α)
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Figure 30.  BSE image of a 75 Wt.% Ag � 25 Wt.% In specimen heated to 250°C, held 
isothermally for 60 minutes, and cooled to room temperature. 
 
 

5.4 Discussion: 

The achievement of a variable melting point material is the key enabler for a breakout 

from in the processing temperature hierarchy.  This shift in melting temperature 

results from the in-situ alloying reaction between the silver base metal and the In-rich 

liquid at the processing temperature provided there is a sufficiently long isothermal 

hold.  Determination of this time is crucial for any future development of this 

technology because it limits the economical viability of the process.  In the previous 

section, the rate constant for the isothermal solidification stage was calculated as a 

function of silver particle size, a variable that can be controlled by the practitioner.  

The estimation of the solidification rate was accomplished by fitting the experimental 

Ag (α) 

γ (~34 at.% In)

Pore 
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data obtained from the DSC analysis to an Avrami model.  This information provided 

the remaining fraction of In-rich material as a function of the isothermal holding time 

for all three particle sizes.  Results confirmed the existence of an inverse relationship 

between base metal particle size and the reaction rate; the highest rate (0.72) being 

obtained for the smallest particle size (5 µm).  These results agreed with the expected 

theoretical outcome.  It is well known [24][25][27] that TLPS is a diffusion driven 

process, and as particle size decreases, the effective surface area-to- volume ratio 

increases, resulting in faster mass transport rates. 

 

The isothermal solidification process is the rate controlling stage in which the amount 

of indium that diffuses into the silver is the critical variable.  From the DSC analysis 

it was possible to calculate the remaining fraction of indium using the ratio of the 

solidification and melting energies resulting from varying isothermal holds.  From a 

mass conservation argument, the difference between the initial amount of indium in 

the system and the remaining quantity of indium represents the amount of indium that 

had been diffused into the silver.  Thus, when remaining In-rich material approaches 

zero (as given by the absence of exothermic peaks in the DSC trace after 60 minutes) 

the completion of the solidification process and the subsequent accomplishment of 

the variable melting point can be suggested.  This was confirmed in Figure 21, where 

no re-melts were detected during the re-heat to 400°C after a 60 minutes hold at 

250°C. 
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In this investigation, the microstructural evolution of the process provided valuable 

information on the morphology and dispersion of the phases.  Previous attempts to 

describe the progression of the TLPS process had focused on a phenomenological 

description, but physical evidence to correlate the modeling of its stages was missing 

[36].  DSC data provided quantitative information about phase changes and their 

corresponding temperatures, but qualitative information about these features is crucial 

for a better understanding of the TLPS underlying mechanism.  Confirmed by the 

micrographs, there exists a transition from an In-rich continuous matrix where the 

silver particles are present as a discrete phase to an Ag-rich matrix where the 

remaining In-rich areas are isolated and disconnected.  The growth of the Ag-rich 

matrix, driven by the increasing diffusion of indium atoms into the silver particles, 

resulted in the formation of a new microstructure where the intersection of the 

growing particles is evident by the ridges of the γ network (Figure 29).  Upon 

completion of this transformation, a new alloy has been formed with the 

microstructure shown in Figure 30.  Longer heat treatments should result in full 

dispersion of γ leading to a homogeneous structure with an equilibrium composition 

of 75 Wt.% Ag � 25Wt.% In and a solidus temperature of 693°C.  This final stage 

(homogenization) is not critical in achieving high temperature stability because it 

involves a solid state reaction; at this stage, all of the low melting In-rich material had 

already been completely transformed into a Ag(α) + γ structure that is stable at high 

temperatures.  Homogenization results as part of the TLPS process when enough time 

is provided, but it can be completed with additional heat treatment or during the high 

temperature operation. 
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To provide physical insight into the DSC results and the estimated solidification rates, 

a physics based approach was used.  The physical description of TLPS as a diffusion 

controlled phase change is well established [11][24][25][27][30] and there is general 

agreement on the nature of the underlying physical phenomenon.  The process may be 

understood by breaking it down into a succession of discrete steps [25][30], where it 

progresses into two distinct regimes.  At short times (~ 2 minutes or less), rapid solute 

transport in the liquid means that atomic fluxes in that phase dominate the rate at 

which dissolution of the base metal occurs, i.e. an erosion process in which silver 

atoms are dissolved into the liquid indium.  Once the liquid has become homogeneous 

(equilibrium composition at Tp), solidification takes place at a rate determined by the 

rate of solute diffusion within the solid phase.  This step takes much longer to 

complete than the initial dissolution stage since it is dominated by diffusion of indium 

into the solid silver.  For this reason, the attention has been restricted to the kinetics of 

the isothermal solidification stage.  Fick�s second law for the one dimensional case 

was given by Equation 2.  When D (diffusion coefficient) is assumed constant and 

appropriate initial and boundary conditions are established, an analytical solution can 

be obtained [27].  Assuming local equilibrium at the interface, the concentrations of 

both phases are therefore constant and equal to the values of the liquidus (CL) and 

solidus (Cs) compositions at Tp.  To maintain equilibrium while conserving solute, 

any atomic fluxes present will lead to the movement of the interface (moving 

boundary problem).  It has been shown [36] that the governing equations for this 

process can be written as function of only two dimensionless parameters: a geometric 
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factor �P� and a thermodynamic factor (saturation parameter) Ω that has been defined 

as (Cs � Co) / (CL � Cs), where Co is the initial solute concentration in the base metal.  

A complete derivation of the method was presented in section 2.2.2.5.  Exact 

solutions to moving boundary problems are very limited; Crank provided an 

analytical solution for the semi-infinite solid case.  Using this approach, an expression 

for the rate at which the interface moves (K) was derived in section 2.2.2.5 and given 

in Equation 25.  This expression is independent of the geometric factor �P�, implying 

that the solidification rate depends only on the saturation parameter Ω (which can be 

interpreted as the driving force for the movement of the interface, i.e. solidification).  

A graphical solution to Equation 25 has been given by Illingworth et al. [36].  In 

order to obtain a reaction rate for our system, Ω must be calculated first.  From the 

phase diagram [46] at a processing temperature of 250°C, CL = 90 Wt.% In, and Cs = 

34 Wt.% In, Co is zero in our case, assuming that at t = 0 the silver particles contain 

no indium.  With these values the saturation parameter Ω was calculated to be 0.6, 

which corresponds to a solidification rate constant (K) of 0.25, obtained from the 

graphical solution [36] and confirmed with the tabulated data by Lesoult [32].  This 

value, obtained from a theoretical approach, agreed well with the 0.22 value obtained 

experimentally for the 25 µm particle size, but not with smallest particle size.  This 

discrepancy, for very small particle size, has been attributed to the assumption of a 

semi-infinite media.  Nevertheless, this exercise provided insights into the 

progression of the transformation process as described by a diffusion mechanism.  

The rate constant calculated from the theoretical solution of a moving boundary 

problem agreed with the value obtained from the DSC technique, therefore supporting 



 

 99 
 

the capability of the experimental method to measure the kinetics of the underlying 

reaction. 

5.5 Conclusion: 

The development of a shifting melting point Ag-In paste via a transient liquid phase 

sintering process has been demonstrated during this stage of the investigation.  Its 

formulation as a paste provided two critical advantages over previous planar thin film 

approaches.  First, when powders are used, shorter processing times are required due 

to their enhanced surface area available for diffusion. Second, the assembly process 

requires standard stencil printing and reflow techniques, making it a less expensive 

and more flexible method.  The kinetics of the isothermal solidification reaction were 

experimentally studied by means of DSC analysis and correlated with the 

microstructural evolution of the system.  The solidification rate was estimated from 

empirical data and its dependency on base metal particle size was established.  An 

analytical diffusion based model was used to evaluate the physical significance 

experimentally obtained solidification rate.  Results from this approach agreed well 

with the medium particle size, thus confirming the DSC as a tool for studying 

reaction kinetics.  The analytical model could not be used for comparison for the 

small particle sizes where it is not appropriate. The metallographic analysis revealed 

the morphology of the transient system and provided microstructural evidence to 

support the reactions detected by the DSC traces.  Results from this initial stage of the 

investigation, in which critical parameters were deliberately fixed to set values, 

provided the basis for the next phase of this research.  A more rigorous study of the 

transformation kinetics of this system is still needed.  In this study, the effect of other 



 

 100 
 

controllable processing variables must be evaluated so that a full response model can 

be built.  The following chapter will deal with the development of an empirical model 

using a response surface methodology approach.  
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Chapter 6: Kinetics Model for Ag-In TLPS Process by Response 

Surface Methodology  

 

6.1 Introduction: 

When two different phases in a binary alloy system are brought in contact and held 

isothermally, a compositional gradient across the interface is produced.  This gradient 

is associated with a difference in the chemical potential of the individual atoms, 

which is known to be the driving force for atomic flux.  The fluxes on either side of 

the interface are not necessarily equal, thus to prevent accumulation or depletion of 

matter (conservation of mass principle), the interface must move [34].  An application 

of the above phenomenon that deals with the case in which one of the phases is a 

liquid is known as liquid phase sintering [11].  When there is a transient growth and 

subsequent solidification of the liquid, caused by isothermal diffusion of the melting 

point depressant (MPD), the process is referred as transient liquid phase sintering 

(TLPS) [11][24][36].  Numerous advantages have been given [11] for the usage of 

this technique, of which the most critical for the microelectronic industry comes from 

the ability to form a joint at a relatively low temperature which then yields a higher 

melting point alloy.  This in-situ reaction occurs isothermally at the processing 

temperature and is driven by the solute (MPD) concentration gradient at the solid / 

liquid interface.  Knowledge of the kinetics of this transformation is crucial for a 

better understanding of the phenomenon as well as for its control and optimization.  

The ability to predict the progression of this transient process will enable the 
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dissemination of this technique as a viable alternative to the industrial community.  

Currently, there is a lack of quantitative knowledge of the governing underlying 

physical mechanisms [11] [22][23][36].  However, its phenomenological physical 

description [25][30], defined by a diffusion mechanism that occurs through a series of 

stages, has been established.   The complexity of the modeling task resides in the fact 

that the stages often occur simultaneously rather than the serialized discrete steps 

assumed for the analytical solutions.  In addition, the sensitivity to multiple 

processing variables, such as mixture composition, base metal particle size, heating 

rate, isothermal holding time, and processing temperature; increases complexity as 

well. 

 

During the TLPS process a layer of liquid forms, wets the contacting base metal, and 

then solidifies isothermally [25].  Liquid film formation during the process depends 

on the availability of a low melting point material within the mixture, which flows by 

capillary action resulting in particle re-arrangement and densification.  This liquid 

film then solidifies at the processing temperature by reacting with the base metal, 

leading to the formation of a new alloy with an equilibrium composition given by the 

initial mixing ratio of its main constituents.  This newly formed material is then 

homogenized during the process or by a later heat treatment.  All three stages of 

TLPS (liquid formation and dissolution, isothermal solidification, and 

homogenization) depend on solute (MPD) diffusion from the high concentration 

phase to the lower concentration on the base metal.  The first stage is a dissolution 

step, in which the base metal dissolves into the liquid as the temperature is raised 
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from the melting point of the MPD to the processing temperature (Tp).  The 

composition of the liquid follows the liquidus line up until the equilibrium 

composition (CL) is reached at Tp.  The formation of the liquid and its subsequent 

capillary flow through the solid skeleton has been accounted for the densification of 

the compact.  The duration of this stage has been reported to be very short (can be 

assumed to be instantaneous) [25][27], in which only a small fraction of solute is 

consumed by diffusion into the base metal [27].  The heating rate is critical during 

this stage since it controls the amount of liquid formed during the process.  Values of 

20 °C/min or less had resulted in the formation of no liquid due to the consumption of 

the MPD by solid state diffusion during heating [28][30].  During the second stage, 

isothermal solidification, there exists a local equilibrium condition at the solid / liquid 

interface in which CL (solute composition of the liquid phase at Tp) and Cs (solute 

composition of the solid at Tp) are unchanged.  Driven by diffusion of solute atoms 

from the liquid to the solid the liquid zone decreases continuously (moving boundary) 

until the liquid completely solidifies.  This stage is considered to be the most 

important since the completion time required for the entire TLPS is largely 

determined by the time required for the completion of the isothermal solidification 

[30].  The last stage, homogenization, is where solid state solute redistribution occurs.  

This is not a critical step in achieving high temperature stability, because the 

formation of an Ag-rich solid has already been accomplished, yielding the desired 

shift in melting point of the alloy.  However, it may affect the solidification rate 

during the late period of the previous stage.  The homogenization process is finished 
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when an equilibrium condition is attained at a composition corresponding to the pre-

selected value from the initial mixing.   

 

Most modeling efforts to date have focused on analytical methods [25][27][30] to 

describe the progression of the TLPS process.  However, this approach treats the 

process as a number of independent steps which is not what actually occurs during 

TLPS.  Analytical solutions for each stage depend on error function, parabolic law 

assumptions, and semi-infinite media; which are all approximations.  Attempts to 

provide an analytical solution to the first stage (heating and dissolution) have failed.  

This failure has been attributed to the fact that during this period, the solute 

concentrations of the solid and liquid phases, as well as the diffusion coefficient (D) 

are changing with increasing temperature [30].  Limited effort has been devoted to 

this problem since it has been demonstrated to be a near instantaneous reaction in 

which solute diffusion into the base metal is negligible [27].  The isothermal 

solidification has been successfully modeled using analytical solutions derived for 

moving boundary diffusion problems [25][27].  In their treatment, the problem was 

simplified to a planar semi-infinite base metal with a constant solute surface 

concentration Cs, as given by Figure 5 in section 2.2.2.5.  Based on this assumption, 

an error function solution was obtained for the solute concentration profile within the 

base metal as function of position and time.  An expression for the solute amount that 

has diffused into the base metal as function of time was also analytically derived [29].  

Using this mathematical formulation, the time to complete the isothermal 

solidification can be estimated for the particular binary system.  It needs to be 
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mentioned that this approach assumes a parabolic relation, i.e. the process is 

proportional to √t for its duration, which may not be real for finite base metal 

samples.  This analytical solution provides a tool to predict the response of the system 

during the time regime governed by the isothermal solidification mechanism, but fails 

to describe the true response of the system during the initial dissolution stage, and 

does not account for the delaying effects of the slower homogenization stage.  As a 

result of these inadequacies, a more comprehensive approach for modeling the TLPS 

is needed.  The new model should address the base metal dissolution, isothermal 

solidification, and solute homogenization as interdependent sequential processes.  In 

addition, this model should be a function of controllable parameters so that the 

practitioner can use it in real engineering applications.  

 

In this chapter, an approach for modeling the TLPS process using response surface 

methodology (RSM) will be presented.  This technique has been developed for an Ag 

� In binary system in which elemental particles were mixed to form a paste.  The 

prediction model will use data from all the stages, and should provide an estimate of 

the response as function of critical controllable process variables.  This experimental 

approach can be used for process control as well as tailoring for specific application 

or fabrication conditions.  The kinetics of this system will be studied by analyzing the 

response (remaining In-rich phase) as function of holding time, processing 

temperature, base metal particle size, indium weight fraction in the mixture (Wt.% 

In), and heating rate.  Results will be provided in three dimensional charts and 

contour plots for ease of interpretation.  An analytical solution of the transformation 
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will be presented for comparison to the empirical results.  A microstructural analysis 

will provide further information useful for the discussion and explanation of the Ag-

In system. 

 

6.2 Methodology: 

6.2.1. Response surface methodology (RSM): 

 
The exploration of the response of a process is a common problem faced by the 

scientific community.  In general, there is a response variable of interest �y�; and a 

set of predictor or independent variables x1, x2,�., xk.  For some systems the nature 

of the relationship between the �y� and the �x�s� might be known exactly based on 

the underlying physical mechanism.  For these cases a mechanistic model may be 

developed, but often requiring a series of assumptions that can deviate from the true 

response.  Response surface methodology (RSM) consists of the experimental 

strategy for exploring the space of the independent variables and statistical modeling 

to develop an appropriate approximating relationship between the response and the 

regressors. 

 

In general, the response variable �y� may be related to �k� regressor variables by a 

first order polynomial of the form 

 y = βo + β1·ζ1 + β2·ζ2 + �. + βk·ζk + ε 

where ε is a term that represents other sources of variability not accounted for in the 

function.  This statistical error is assumed to have a normal distribution with zero 
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mean and unit variance.  The variables ζ1, ζ2, �, ζk are referred to as the natural 

variables because they are expressed in the natural units of measurement.  In RSM it 

is common to transform these to coded variables x1, x2, �, xk, which are defined to 

be dimensionless.  Making the substitution to the coded variables and assuming a zero 

mean ε, yielded the model in the following form: 

Equation 36 

kko xxxy ⋅++⋅+⋅+= ββββ K2211  

This is called a multiple linear regression model with �k� regressor variables.  The 

term linear is used because Equation 36 is a linear function of the unknown 

parameters βo, β1, �, βk regardless of the shape of the response surface that it 

generates.  The parameters βj , j = 0, 1, 2, �, k are known as the regression 

coefficients.  The above model (Equation 36) describes a hyperplane in the k-

dimensional space of the regressor variables {xj}.  The parameter βj represents the 

expected change in the response per unit change in xj when all the remaining 

independent variables xi (i ≠ j) are held constant.  The addition of an interaction term, 

β12·x1·x2, can still be analyzed by multiple linear regression techniques by introducing 

a simple substitution.  Letting x3 = x1·x2 and β3 = β12, Equation 36 will still be a linear 

function of  β�s.  Adding interaction terms to the model introduces curvature into the 

response function.  A RSM would be incomplete without discussing the method for 

estimating the regression coefficients, checking for their significance on the response, 

and lastly checking the adequacy of the model fit. 

 

The method of least squares will be used to estimate the regression coefficients for 

the multiple linear regression model.  Suppose that from an experiment n > k 
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observations of the response variable are available, say y1, y2, �, yn.  Along with 

each observed response yi, there will be an observation on each regressor variable. 

Letting xij denote the ith observation (setting) of variable xj; we may write the model 

(Equation 36) in matrix notation: 

Equation 37 
εβ +⋅= Xy  

where: 
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The method of least squares chooses the β�s so that the sum of squares of the residual 

errors, εi, are minimized.  The fitted model in scalar notation is given by: 

Equation 38 

ikikiioi xxxy εββββ +⋅++⋅+⋅+= K2211  

or: 

Equation 39 

i

k

j
ijjoi xy εββ +⋅+= ∑

=1

 i = 1, 2, 3,�, n 

where the β�s are obtained from [63]: 

Equation 40 
yXXX ')'( 1−=β  

A test for significance of regression is needed to determine the contribution of the 

independent variables on the response.  This task is done by using hypothesis testing, 

in which: 

 Ho (null hypothesis): β1 = β2 = �= βk = 0 
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 H1 (alternative): βj ≠ 0 for at least one j 

Rejection of Ho implies that at least one of the regressor variables (x1, x2, �, xk) 

contributes significantly to the model.  The approach of hypothesis testing is called 

analysis of variance (ANOVA) because it is based on a decomposition of the total 

variability of the response variable �y�.  When using this method, Ho is rejected 

(which means that there is statistical evidence showing that the particular effect is 

significant) if the p-value for the Fo statistic is less than α.  The p-value is the 

probability value for the given test, whereas α is a predetermined level of 

significance.  Fo is given by: 

Equation 41 

)1/(
)/(
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=
knSS
kSSF
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R
o  

SSR is the sum of squares of errors attributed to the regression model and SSE is the 

sum of squares of the residual errors [62].  The α value has been fixed as 0.05.  All 

these values are calculated and tabulated for the experimental data in the form of an 

ANOVA table by the statistical software Minitab TM.  After the elimination of non-

significant parameters, a reduced model can be obtained in terms of critical 

parameters.  A good indicator of the ability of the proposed model to predict the 

response of the system for future conditions is given by the R2
pred.  This statistic gives 

an indication of the predictive capability of the regression model.  Therefore, 

maximizing this parameter will lead to the best fit. 

The mathematical definition of the R2
pred is given by [62]: 

Equation 42 
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where PRESS (prediction error sum of squares) is defined as: 

Equation 43 

∑
=
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n

i
ii yyPRESS

1

2
)( )(  

yi is the experimental observation and y(i) is the predicted response from a model in 

which the corresponding observation yi was not considered during the fitting.   The 

SST value is the total sum of squares of the error, i.e. SSE + SSR.  Model adequacy 

checking is always necessary to ensure an appropriate approximation of the true 

system and to verify that none of the least squares regression assumption are violated.  

Statistical checking can be accomplished by verifying the normality assumption, 

which requires that the normal probability plot of the residuals fits a line.  To verify 

the ability of the approximated function to describe the true response it is important to 

compare the RSM model to a mechanistic model of the underlying mechanism. 

6.2.2. Design of experiment (DOE): 

It has been hypothesized that the progression of the TLPS process depends on 

multiple variables such as isothermal holding time, processing temperature, heating 

rate, base metal size, and solute composition of the mixture [11][30].  In this second 

phase of the investigation all of the above parameters have been identified as the 

independent variables whereas the remaining In-rich phase has been defined as the 

response.  The response will be measured experimentally using the thermal analysis 

from the DSC as defined by Equation 31 in section 5.3.1.  A DOE was designed to 

investigate the joint effects of these factors on the solidification kinetics of the Ag � 

In system.  Joint factor effects refer to main effects and all possible interactions.  In 

this case, a two level full factorial experiment will be used to develop the prediction 
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model in terms of four input variables at each holding time.  The design of the 

experiment is summarized in Table 7 below. 

Table 7.  Experimental factors and their levels for second phase DOE. 
Factor  High Level  Low Level  

Particle Size (PS) 50 µm (spherical) [Max] 25 µm (spherical) [Max] 
Heating Rate (HR) 60 °C/min 30 °C/min 
Processing Temperature (Tp) 300 °C 250°C 
Additive Weight Fraction (Wt. %) 30 Wt. % In 15 Wt. % In 
 

All of the factors but holding time have two levels.  Therefore, a 2k random 

experiment with a replicate will be performed at each holding time.  Considering that 

k = 4 (for each holding time setting), the complete model will contain as many as 15 

possible effects (2k-1).  The isothermal holding time is the fifth input variable, which 

requires multiple levels in order to obtain an accurate estimation of the true response.  

This is necessary because in studying the kinetics of a diffusion controlled process 

time is critical, so a finer resolution of this variable is required.  When the holding 

time variable is introduced to the model, a complete description of the kinetics can be 

obtained in which up to 31 possible effects (5 main effects, 10 two-way, 10 three-

way, 5 four-way, and 1 five-way interactions) will have to be considered.  Diffusion 

controlled mechanisms are known to have a parabolic correlation with time [34], i.e. 

the process is proportional to the √t.  Based on this assumption, the holding time 

variable will be transformed accordingly.  The natural values of the isothermal 

holding times (in minutes) are as follows: 0, 0.5, 1, 5, 10, 25, 40, and 60; resulting in 

eight levels.  To summarize, the entire DOE for this second phase will require 24 runs 

per replicate, i.e. 32 trials per holding time which will result in 256 test runs.   
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Figure 31.  Experimental Matrix for Phase II DOE 
A flow chart of this experimental matrix is given in Figure 31.  During this 

investigation the natural variables were coded for the development of a regression 

model. 

 

Experimental data from all runs was analyzed using commercial statistical analysis 

software (Minitab) which provided the ANOVA and goodness of fit statistics for all 

of the models.  Estimation of all parameters was done using coded variables, which 

allows to directly compare the various effects based on their absolute magnitudes. 

6.2.3. Metallography: 

To assist in the interpretation of the results from the DSC, samples treated under the 

specified experimental conditions were cross-sectioned and analyzed by scanning 

electron microscopy (SEM) and energy dispersive spectroscopy (EDS).  A FEI 

Quanta 200 ESEM was used throughout this investigation.  Elemental, as-received 

powders were characterized in terms of particle shape and size using the SEM 

equipment.  These metallographic techniques provided qualitative information in 

terms of the extent of liquid spreading through the compact, as well as morphological 

information.  This information assisted in describing the phenomenological aspects of 

TLPS at the different stages of the process.  The atomic percents of the main 

constituents were also determined by spectral analysis to demonstrate the extent of 

the diffusion. 

 

The DOE presented in the previous section suggested the formulation of four pastes: 

Paste I with an 85 Wt. % Ag � 15 Wt. % In composition and Ag maximum particle size of 25 µm. 



 

 114 
 

Paste II with an 85 Wt. % Ag � 15 Wt. % In composition and Ag maximum particle size of 50 µm. 

Paste III with an 70 Wt. % Ag � 30 Wt. % In composition and Ag maximum particle size of 25 µm. 

Paste IV with an 70 Wt. % Ag � 30 Wt. % In composition and Ag maximum particle size of 50 µm. 

 

These four pastes were fabricated according to the above specifications and analyzed 

using the ESEM and EDS.  From the morphological analysis it was evident that these 

powders were far from been mono-sized, but for standardization purposes, the 

maximum particle diameter for the specific mesh designation (per ASTM-B214) will 

be used during this investigation.  This information will be used for the analytical 

model, whereas the true effect of the particle distribution will be recorded during the 

experimental tests.  Figure 32 through Figure 35 show the morphology of the mixed 

powders (silver and indium), whereas the EDS dot maps provide the elemental 

analysis together with a qualitative impression of the elemental distribution. 
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(a) 
 

 
  (b) 
 

 
  (c) 
Figure 32.  Micrographs for Paste I analysis, (a) SEM image of powder mixture showing the 
ligamental shape of the indium particles and the spherical nature of silver (25 µm).  (b) EDS dot 
map showing the dispersion of silver within the mixture (c) EDS dot map showing the presence 
of indium. 
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(a) 

 
  (b) 
 

 
  (c) 
Figure 33.  Micrographs for Paste II analysis, (a) SEM image of powder mixture showing the 
ligamental shape of the indium particles and the spherical nature of silver (50 µm).  (b) EDS dot 
map showing the dispersion of silver within the mixture (c) EDS dot map showing the presence 
of indium. 
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  (a) 
 

 
  (b) 

 
  (c) 
Figure 34.  Micrographs for Paste III analysis, (a) SEM image of powder mixture showing the 
ligamental shape of the indium particles and the spherical nature of silver (25 µm).  (b) EDS dot 
map showing the dispersion of silver within the mixture (c) EDS dot map showing the presence 
of indium. 
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  (a) 

 
  (b) 
 

 
  (c) 
Figure 35.  Micrographs for Paste IV analysis, (a) SEM image of powder mixture showing the 
ligamental shape of the indium particles and the spherical nature of silver (50 µm).  (b) EDS dot 
map showing the dispersion of silver within the mixture (70% by Wt.)  (c) EDS dot map showing 
the presence of indium (30% by Wt.) 
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6.3 Results: 

6.3.1. Empirical kinetics model for the TLPS process of an Ag-In paste 

mixture: 

A full factorial, randomized experiment, with five independent variables and one 

replicate was defined in section 6.2.2.  The levels of all variables were pre-defined 

based on previous knowledge of the system and specific processing requirements 

and/or limitations.  The development of an empirical model consisted of fitting the 

experimental observations [Appendix 4] from the DOE into a multiple linear 

regression function of the form given by Equation 36.  The estimation of the 

regression coefficients (β�s) was obtained by the least squares method as defined 

previously.  A response model for this experiment could have up to 31 possible 

effects, so the estimation of the parameters becomes a mathematically intensive 

operation.   A commercially available software (Minitab) was used for all of the 

analysis.  Model simplification was accomplished through hypothesis testing using 

ANOVA (p-value approach), by which statistically significant effects were identified 

and a new reduced model was obtained.  The goodness of fit of the proposed model 

was assessed by maximizing the predictive R2
pred value and by residual analysis [62]. 

 

The first fit attempted to obtain a global model for the Ag � In TLPS process for the 

entire time regime.  From this initial exercise it was obtained that the best fitted 

model resulted in an R2
pred of 70.07%.  This result suggested that a global model is 

not appropriate because it may be trying to accommodate distinct mechanisms driven 

by different parameters.  During this first assessment, a main effects model was also 
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tried with a resulting R2
pred of 51.43%.  This result confirmed the fact that TLPS is a 

complex process which is controlled by interactions of its independent variables, 

therefore a main effect approximation yields a poor prediction of the response.  A 

new approach was designed using the rationale from the phenomenological 

description of the TLPS process [30] in which its progression is explained as a series 

of steps along the time regime.  With this knowledge about the expected response of 

the system with time, the time scale of the model needed to be divided into a series of 

steps as well.  Defining the number of time divisions and their boundaries is a critical 

task that was performed by statistical analysis of the possible combinations.  This 

exercise was performed with the assistance of the software, in which the success 

indicator was based on statistics from the model fitting.  In this instance, the 

maximization of the R2
pred statistic along with the residual analysis was used to define 

the best fit.  After performing this analysis, it was obtained that the best strategy was 

to use a piecewise empirical model in which the time domain was divided into three 

regimes.  For each time step, a model was obtained, each dominated by distinct 

effects as given by the ANOVA analysis [Appendix 5].  The results with the 

regression coefficients reported to one decimal place (for coded variables) are 

summarized in Table 8 below: 
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Table 8.  Estimated regression coefficients for the empirical piecewise model for the Ag-In TLPS 
Term 0 ≤  t < 1 (minutes) 1 ≤  t < 10 (minutes) 10 ≤  t ≤ 60 (minutes) 

Constant 11.9 4.5 1.0 
Wt. % In 8.6 3.8 1.0 
Ag PS 3.3 1.6 0.4 
Tp -2.4 -1.4 -1.0 
HR 2.1 0.5 ------- 
t (holding time) -3.0 -3.7 -0.5 
Wt. % In· Ag PS 2.3 1.2 0.3 
Wt. % In· HR 1.7 ------- ------- 
Wt. % In· t -1.4 -3.0 -0.4 
Wt. % In· Tp ------- -0.7 -1.0 
Ag PS· Tp -2.0 -0.7 -0.4 
Ag PS· HR 0.8 ------- ------- 
Ag PS· t ------- -1.5 ------- 
t· Tp 1.7 ------- 0.5 
HR·t -1.0 ------- ------- 
Wt. % In· Ag PS· t ------- -1.1 ------- 
Wt. % In· Ag PS· Tp -1.6 ------- -0.3 
Wt. % In· Ag PS· HR 0.6 ------- ------- 
Wt. % In· Tp· t 0.8 -0.9 0.4 
Wt. % In· HR· t -0.7 ------- ------- 
Wt. % In· AgPS· Tp · t 0.6 ------- ------- 
Wt. % In· AgPS· HR · t -0.8 ------- ------- 
AgPS·Tp·t ------- 0.7 ------- 
R2 96.04% 91.40% 93.47% 
R2

pred 93.54% 88.40% 91.92% 
Key:  Wt.% In = mass fraction of indium in the mixture, Ag PS = silver particle size, 
t = isothermal holding time, HR = heating rate, Tp = processing temperature  
 

From the tabulated results, it can be seen that for all three models, a significant 

reduction in the number of regression coefficients was achieved when compared to 

the possible 31 effects.  For the first regime of times, two four-way interactions are 

necessary for the model; whereas for the remaining two regimes of time none of these 

higher order interactions were significant.  This information is encouraging from a 

practical perspective because control of the system is a more feasible when higher 

order interactions are not dominant effects.  From these results it is clear that heating 

rate is a significant parameter during the initial dissolution stage, as suggested by the 

theoretical work.  It is during later stages that its effect begins to be less definitive, as 
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given by its decrease in regression coefficient from 2.1 to 0.5.  During the last stage 

of the process, the heating rate becomes a negligible parameter altogether.  This 

information demonstrated that the suggested empirical approach is capable of 

describing the true physical response of the system in a quantitative fashion. 

 

The definition of the three time regimes, along with their boundaries, was based 

purely on statistical analysis from the experimental observations.  The response as a 

function of holding time, averaged over all other parameters, is depicted in Figure 36.  

This main effect plot of holding time on remaining In-rich phase shows a �knee� at 

approximately 10 minutes, which suggests a possible shift in the dominant 

mechanism after this point. This observation was successfully captured by the 

statistical analysis used for the selection of the models, as evidenced by the 

information in Table 8. 
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Figure 36.  Boxplot showing the main effect of Holding Time on the Remaining In-Rich Phase 
(%). 
  

The piecewise model provided a better description of the kinetics of transformation 

for the Ag � In system as function of practical controllable variables across the entire 

time range.  The complexity of this model is evidenced by the data in Table 8, in 

which the response is given by a function of multiple effects including up to four-way 

interactions.  To visualize the usefulness of this type of model, a graphical 

representation can be used.  For instance may one take the case where the solute 

composition was set to 15 Wt.% In, the heating rate to 30 °C/min, and the silver 

particle size to 25 µm (-500 Mesh or Type V ASTM-B214).  These parameters were 

fixed to the above values based on the fact that they will likely be chosen prior to the 

processing and thus, be constant during TLPS.  Then, processing temperature and 

holding time, which compose the thermal profile, are what the practitioner will be 
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able to change during the actual process.  Because these parameters can be changed, 

they will be treated as variable vectors for the graphical solution.  Values for these 

two parameters are typically defined by the materials to be joined, the available time, 

and the equipment limitations.  A response of the system in terms of these two 

variables yield prediction graphs than can be used to define the process.  Solutions 

from the prediction piecewise model, for the above conditions, are given as 3-D 

surfaces and contour plots in Figure 37, Figure 38, Figure 40, Figure 41, Figure 42, 

and Figure 43. 
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Figure 37.  Response surface of the predicted Remaining In-rich Phase Remaining as function of 
Isothermal Holding Time and Processing Temperature for the first time step (0 ≤t <1). 
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Figure 38.  Contour plot for the predicted response (0 ≤t <1) as function of Processing 
Temperature and Isothermal Holding Time.  The plot shows line of constant Remaining In-rich 
Phase (%). 
 
 
During the first time step (0 ≤ t < 1 min.), which corresponds to the dissolution stage 

of the TLPS process, it was observed that at very short holding times (less than 0.3 

min.), the amount of Remaining In-rich Phase decreased with increasing processing 

temperature.  This behavior was expected based on the fact that it takes longer to 

achieve a higher processing temperature at a constant heating rate, thus providing 

more time for interdiffusion to occur; resulting in a lost of solute (In) into the silver 

base metal.  An interesting reversal was observed in Figure 38 as the isothermal 

holding time approached 1 minute.  In this case, the Remaining In-rich Phase was 
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larger at higher processing temperatures.  This behavior can be explained by 

inspection of the Ag � In equilibrium phase diagram given in Figure 39. 

 

Figure 39.  Equilibrium phase diagram for the Ag-In binary system.  The horizontal line shows a 
particular condition of a processing temperature of 250°C, the equilibrium composition of both 
the solid (Cs) and the liquid (CL) for that Tp are given by the vertical downward arrows.  The 
bulk composition of the mixture is given by CB, which is set constant by design.  Initially, at t = 
0, the solute composition of the solid is given by Co which is zero, i.e. pure base metal. 
 
 

At a lower processing temperature (250°C) the equilibrium composition of the liquid 

is ~90 Wt. % In, which means that 10 Wt.% Ag needs to be dissolved by the In-rich 

liquid before the isothermal solidification (stage 2) can begin.  A similar analysis at a 

processing temperature of 300°C will yield a liquid equilibrium composition of ~82 

Wt. % In, which is equivalent to a dissolution of 18 Wt.% Ag into the In-rich liquid to 

Tp = 250°C 

CL 

CsCBCo= 
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reach equilibrium.  Based on the fact that the isothermal solidification process starts 

after equilibrium had been reached, the extra 8 Wt.% Ag at 300°C imposed a delaying 

effect for the initiation of this second stage.  The consumption of the In-rich liquid 

happens by an isothermal solidification mechanism driven by the atomic flux from 

the liquid to the solid phase.  Therefore, it is not until this stage is underway that a 

reduction in the response can be observed.  Based on this analysis, at a processing 

temperature of 250°C, a one minute hold seemed to be enough for achieving the 

equilibrium composition and the start of the In-rich phase consumption, thus resulting 

in a reduction of the response variable.  For a processing temperature of 300°C, a one 

minute hold may not have provided sufficient time to get to the equilibrium 

composition, and initiate isothermal solidification.  The delay of the initiation of the 

isothermal solidification resulted in no consumption of the In-rich phase, thus 

explaining the observation that for short holding times a higher processing 

temperature may result in a larger fraction of the In-rich phase.  The achievement of 

the equilibrium condition for any particular processing temperature has been 

suggested to be instantaneous for modeling purposes [25] [27] [30], so the 

aforementioned phenomenon has not been considered in earlier investigations.  When 

higher heating rates were used, such as 60°C/min., the loss of solute before melting 

was not observed; suggesting that the assumption of minimal solute lost during the 

initial stages of the process may be valid.  A similar conclusion about the sensitivity 

of the response to heating rate was reported by Turriff [28] for a Ni � Cu binary 

system.  Based on these results from the empirical model, it has been shown that the 

analytical approaches may be accurate only for fast heating rates, whereas the 
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consumption of MPD during the dissolution stage at low heating rates may be critical 

for the TLPS kinetics.  Simulation results with a 60 °C/min. heating rate showed 

negligible consumption of MPD, further discussion about this simulation will be 

presented later. 

 

For the second time step (1 ≤ t < 10 min.), the prediction model showed that the 

equilibrium condition was reached for all the processing temperature range studied 

(250°C - 300°C), at  ~2 minutes or less.  This can be observed in Figure 40 in which 

the response was predicted to be approximately constant over the entire temperature 

range during the initial holding times of 1 � 2 minutes.   
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Figure 40.  Response surface of the predicted Remaining In-rich Phase Remaining as function of 
Isothermal Holding Time and Processing Temperature for the second time step (1 ≤t <10).  
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Figure 41.  Contour plot for the predicted response (1 ≤t <10) as function of Processing 
Temperature and Isothermal Holding Time.  The plot shows line of constant Remaining In-rich 
Phase (%). 
 
 
After no more than two minutes, the TLPS process is governed by the isothermal 

solidification stage in which both temperature and time become critical parameters.  

This effect is shown graphically in Figure 40 and Figure 41.  The contour plot in 

Figure 41 can be used as a prediction map to define a custom process for any 

particular desired response.  From this chart it is shown that the solution can be 

tailored depending on specific limitations, i.e. when the temperature stability of a 

material is a critical factor, the isothermal holding time becomes the variable to 

control.  The opposite is true for a process that is limited by throughput or cycle time, 

in which minimizing the time requires an increase in processing temperature.  In fact, 
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the formation of these maps becomes a key contribution from this study.  Through 

which the transformation kinetics of the Ag-In TLPS process is given as a function of 

controllable parameters.  

  

The third time step (10 ≤ t ≤ 60 min.), is illustrated in Figure 42 and Figure 43.   
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Figure 42.  Response surface of the predicted Remaining In-rich Phase Remaining as function of 
Isothermal Holding Time and Processing Temperature for the third time step (10 ≤t ≤ 60). 
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Figure 43.  Contour plot for the predicted response (10 ≤t ≤ 60) as function of Processing 
Temperature and Isothermal Holding Time.  The plot shows line of constant Remaining In-rich 
Phase (%). 
 
 
From these maps, it is evident that the response is sensitive to both processing 

temperature and holding time, with the temperature effect being dominant during this 

stage as suggested from the steep descent of the response at temperatures close to 

300°C.  In fact, from this prediction, it is possible to obtain zero Remaining In-rich 

material in 10 minutes when a 300°C processing temperature is employed, whereas at 

250°C a minimal fraction In-rich phase was still present after 60 minutes. 

6.4 Mechanistic diffusion based model for the Ag-In paste mixture: 

Up to this point the model adequacy analysis had been based completely on statistical 

techniques of model fitting.  Based on that statistical information it was demonstrated 

that the piecewise model effectively predicts the response of the system, as given by 
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the R2
pred index.  To validate the adequacy of this proposed model in predicting the 

true response in terms of transformation kinetics, some information on the underlying 

physical mechanisms is needed.  It is known that the TLPS reaction is driven by a 

diffusion mechanism, so an analytical approach may be derived.  What follows is the 

development of a mechanistic diffusion based kinetics model for a powder mixture.  

This model provides an analytical tool for describing the solidification kinetics of the 

In-rich liquid towards its transformation to a final Ag-rich solid solution.  The 

progression of this transformation with time will be compared to the predicted 

response from the piecewise empirical model as well as to the direct measurements 

from the DSC.  Metallographic information will assist in the physical description of 

the governing mechanism.  This exercise will serve as a model adequacy check in 

terms of RSM model ability to predict a true response of this system, and depending 

upon the results, it may provide some insights into the caveats of the analytical 

approach.   

 

The proposed model has been restricted to a TLPS mixture consisting of an array of 

powders from an Ag � In binary system with a phase diagram depicted in Figure 39.  

The TLPS system has been defined as a mixture of silver powder and indium powder, 

such that a particular bulk composition (CB) is achieved by design (C refers to the 

compositional weight fraction of solute, indium, for the current case, in a phase).  The 

processing temperature (Tp) has been defined as Tp > Tm, such that all low melting In-

rich phases are melted during the process.  This model assumes [11][28][63] that 

solid-state interdiffusion prior to melting is negligible, and that the melting, particle 
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rearrangement, and capillary flow instantaneously produces the structure depicted in 

Figure 44, in which an array of solid silver particles are covered by a layer of In-rich 

liquid of constant thickness (dr).   

 

 

Figure 44.  Schematic representation of the system showing the conditions considered for the 
model.  Lower image represents the unit cell for the isothermal solidification model, in which the 
initial particle size is given along with the solute compositions of each phase. 
 
 
The effect of the dissolution stage, in which the liquid dissolves some amount of base 

metal, will be indirectly considered in this model.  Assuming that the re-arranged 

structure in Figure 44 repeats throughout the volume of the mixture, a representative 
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unit cell for the model is given in the lower schematic in Figure 44.  A set of 

parameters together with initial and boundary conditions were defined for the 

development of the model.  It is worthwhile noting that the initial conditions, i.e. t =0, 

refers to the start of the isothermal solidification process, thus base metal uptake by 

the liquid during the dissolution stage was considered within the initial conditions.  

Isothermal solidification starts once the equilibrium composition of the liquid reaches 

CL, a composition that will reflect the absorption of some base metal, in other words 

at t = 0 the composition of the liquid will be less than one.   At t =0 it was assumed 

that the silver particles were pure, i.e. Co = CAg-i = 0 %In (�i� denotes initial 

conditions at t = 0); and an initial particle size (radius) given by rAg-i, which is 

specified as a distribution for the mesh size or powder type according to the standard 

ASTM-B214.  Assuming that the distribution is represented by the maximum 

diameter may result in an overestimation of the time to solidification, which will lead 

to a conservative prediction, whereas a more realistic representation of the system can 

be obtained using the lower bound of the 80% confidence interval as given by the 

specification.  Particle distributions are not normally distributed; therefore the 

standard specifies a maximum size and a lower bound, which groups 80% of the 

population with the remaining 20% being smaller than the lower bound.   This 

information was confirmed by stereological techniques in which a sample of the 

powder was measured.  The distribution was affected by the effect of small particles 

that tend to agglomerate with larger particles, a phenomenon known as satellite effect 

[60].  The diffusivity within the liquid was assumed to be fast enough so that no 

concentration gradient exists in this phase [34][63], thus its composition remains 
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constant at CL (Figure 39) provided the process temperature is held constant.  A set of 

boundary conditions were required for the complete description of the system.  

Assuming local equilibrium at the solid/liquid interface during the isothermal hold, 

the solute composition at the solid surface, i.e. r = rAg(t) for t >0, is given by Cs at Tp 

(Figure 39).  Analytical solutions to diffusion problems are only valid for semi-

infinite media, which requires a boundary condition at the center of the silver particle 

given by ∂C/∂r = 0 or that CAg at r = 0 is zero.  This boundary condition implies that 

the silver particle is large enough that at a distance far from the interface the diffusing 

solute has no effect on the composition of the base metal.  This assumption is 

acceptable for processes used in forming large scale bulk materials, but it may induce 

considerable errors when dealing with a smaller scale, as in the case of the proposed 

paste for microelectronic attachment in which the formation of µ-joints is desired.   

 

With the unit cell from Figure 44 and initial and boundary conditions defined, a 

model has been defined [28][63] based on mass balance arguments and Crank�s [29] 

solutions to Fick�s second law of diffusion.  The process starts (t = 0) once the 

equilibrium conditions are reached, i.e. formation of a liquid layer with constant 

composition CL at Tp.  Under this condition, diffusion of indium into the silver 

particles causes a reduction in the amount of In-rich liquid remaining (isothermal 

solidification), and due to mass conservation, a concomitant growth of the silver alloy 

particles must occur. 
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6.4.1. Derivation of the mechanistic model: 

The derivation of this model was based on a mass balance of solute (In) between the 

amount in the mixture as a whole, and its sum in the two separate phases (liquid and 

solid) [42][63].  By definition [42] the solute content or mass of indium (MIn) present 

in any phase (x) is given by: 

Equation 44 

xxxIn WCM ⋅=)(  

where �x� can be the liquid (L) phase, the solid (s), or the mixture as a unit.  In 

Equation 44, �C� is the composition of the phase in terms of solute content, i.e. Wt. 

% In from the phase diagram, whereas �W� is the weight or mass fraction of the 

particular phase in the mixture.  The amount of indium in the mixture is selected by 

design, so that the bulk or average indium composition in the paste mixture (CB) is 

fixed.  This known composition (CB) is equivalent to the total mass of indium added 

to the mix, which means that MIn(mix) = CB since the mixture represents the whole 

(Wmix = 1).  From a mass balance perspective, at any time during the process: 

Equation 45 

)()()( LInSInmixIn MMM +=  

or, from Equation 44: 

Equation 46 

LLSSB CWCWC ⋅+⋅=  

Rearranging Equation 46, the mass fraction of liquid in the system at any time (t) is 

given by: 

Equation 47 

L
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The expression in Equation 47 provides an equation to calculate the remaining 

fraction of In-rich material present in the mixture at any time, which in fact is the 

response variable measured by the DSC experimental technique.   Therefore, a 

solution to the above expression will allow a comparison between the RSM and the 

analytical model.  Inspection of Equation 47 suggests that a solution to (WS(t) · CS(t)) 

is needed as this term represents the indium content in the solid at any time.  It is 

known that the solidification of the liquid takes place isothermally due to a diffusion 

controlled mechanism of indium atoms going into the silver solid.  By definition the 

indium content in the solid is MIn(s),t = WS(t) · CS(t).  For the kinetics model it is 

necessary to calculate the fractional uptake of solute (In) into the solid (Ag) which is 

given by: 

Equation 48 
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where MIn(s),f is the final solute content in the solid phase at the end of the isothermal 

solidification stage.  At the end of the solidification process and in-situ alloying, the 

mixture should be completely solid, thus Ws(f) = 1 and Cs(f) should correspond to the 

final equilibrium composition (Cs) at Tp.  Making these substitutions into Equation 

48, an expression for the indium fractional uptake into silver was obtained: 

Equation 49 
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Rearrangement of Equation 49 yields a formula for obtaining the desired WS(t) · CS(t), 

so that WL(t) can be calculated: 
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Equation 50 
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In his work on the mathematics of diffusion, Crank [29] developed a solution for the 

fractional solute uptake [Mt/Mf] entering a spherical particle.  His solution is valid for 

semi-infinite large particles and constant diffusivity.  In this analytical solution, t = ∞ 

corresponds to the time when the spherical particle is completely saturated with solute 

so that the composition of the solid is given by the maximum solid solubility at Tp, 

i.e. Cs(f) = Cs. This condition is a result of the mathematical formulation of the 

problem, which is known to be an approximation since it does not consider the impact 

of later stages.   The homogenization stage, not considered by the analytical model, is 

responsible for the final equilibrium transformation from Cs to CB; these 

discrepancies will be discussed in a later section.   The solution provided by Crank is 

given by: 

Equation 51 
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Where t is the isothermal holding time, D is the diffusivity of indium into silver 

which is given by D=Doexp(-Q/RT), and rt is the silver particle radius at any 

particular time.  Diffusivity calculation requires knowledge of the Do and the 

activation energy (Q) for the diffusion of indium atoms into silver.  These values are 

available in literature from diffusion couple experiments [48].  Substitution of 
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Equation 51 into Equation 50 and then into Equation 47 resulted in the final 

expression for WL(t): 

Equation 52 
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For a selected constant processing temperature, and known values for Do and Q; 

parameters D, CB, Cs and CL can be obtained.  An expression for the incremental 

growth of the silver particle with time (rt) is still needed before a final stepwise 

solution algorithm can be employed.  One of the critical consequences of TLPS is that 

the solid/liquid boundary moves into the liquid (solidification) over time, decreasing 

the liquid layer and increasing the size of the alloyed particle.  At a particular point in 

time (t), the ratio between the current volume and initial (i) volume of the sphere is 

given by [63]: 

Equation 53 
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where W refers to the mass fraction and ρ to the density of the solid.  If the density is 

assumed constant [63] during the process, using the volume of a sphere, it can be 

stated that: 

Equation 54 
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WL(i) is the initial mass fraction of In-rich liquid at the beginning of the isothermal 

solidification stage.  This value was obtained from Equation 47 after consideration of 

the initial conditions.  WL(t) is the fraction of In-rich liquid present at the previous 

time step, a value that is given by the solution of Equation 52.  From this analytical 

formulation of the TLPS process during the isothermal solidification stage, a stepwise 

algorithm was programmed and the results from a particular example will be 

presented.  The algorithm works as follows:  {1} At t = 0, rs(t) = initial particle size 

from mesh designation , {2}Obtain (Mt / Mf) from Equation 51 with the initial 

conditions from step {1},  {3} Calculate WL(t) from Equation 52 using the result from 

step {2}, {4} Obtain the new value of the solid particle from Equation 54 by 

substituting the WL(t) from step {3} and the corresponding initial conditions, {5} Get 

back to step {1} and increment the time by one step and use the new particle size 

from step {4}.  This solution is repeated for the entire time range up until complete 

solidification is achieved, i.e. WL(t) reaches zero. 

6.4.2. Simulation results: 

The derivation of the mechanistic kinetics model for the isothermal solidification 

stage of the TLPS process was introduced as a tool for evaluating RSM model 

adequacy.  The physical meaning of the experimental data is to be assessed by 

comparing simulation results from both models and analyzing their predictions based 

on the expected phenomenological response.  In order to obtain the desired 

predictions from both the empirical (RSM) and the mechanistic models, a set of 

conditions were defined as follows: 

Mechanistic model parameters: 
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Tp = 250°C = 524.15 K, Do = 2.79 X 10-14 m2/s [48], Q = 41, 489 J/mol [48], R = 

8.314 J/mol·K, CS @ 250°C = 33 Wt.% In [46] (Figure 39), CL @ 250°C = 90 Wt.% 

In [46] (Figure 39), CB = 25 Wt.% In, silver particle size for -500 Mesh = 25 µm 

(maximum) and 15µm, D=Doexp(-Q/RT) = 2.05 X 10-18 m2/s. 

Response surface model input variables: 

Bulk composition of the paste (CB) = 25 Wt.% In, silver particle size for -500 Mesh 

(Type V), Heating rate = 60°C/min., Tp = 250°C 

  

The RSM considers the effect of the heating rate, which has been demonstrated to be 

critical in defining the initial consumption of solute during the early stages of the 

process, as evidenced by the contour plot in Figure 41 and previous work by Turriff 

[28].  That is not the case for the mechanistic model, which is independent of heating 

rate and assumes no solute consumption prior to the isothermal solidification stage.  

In order to get a valid comparison of both models the heating rate for the empirical 

simulation was set to 60°C/min.  This would result in an acceptable approximation of 

the assumption of no solute loss during the initial heating.  After the necessary 

substitutions and solution of the stepwise algorithm, the results from the mechanistic 

model together with the empirical model (RSM) are given in Figure 45.  

Experimental observations from DSC at different holding times were plotted as well. 
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Figure 45.  Simulation results from both the mechanistic and the RSM model, for a paste 
mixture containing 25 Wt. %In, -500 Mesh silver particle size, processed at 250°C with a heating 
rate of 60°C/min, and isothermally held for different times.   
 

6.5 Discussion: 

From Figure 45 it was observed that the solution from the mechanistic model 

exhibited a constant progression towards complete solidification.  This behavior in 

which the consumption of the In-rich liquid phase follows a parabolic relation with 

time (linearly proportional to √t) is the result of the mathematical formulation given 

by the analytical solution by Crank.  The model assumes that the entire initial mass 

fraction of indium is transformed into liquid, which means that no solute is lost prior 

to the start of the isothermal solidification stage.  This assumption is valid for fast 

heating rates only [28].  Although the analytical formulation considers only the 
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isothermal solidification step, it indirectly treats the dissolution stage (Stage 1).  

Initial conditions for this model assumed that the system was instantaneously brought 

to the processing temperature, therefore no interdiffusion during heating was 

considered.  However, the composition of the liquid at the processing temperature 

was taken at equilibrium (CL), which is no longer pure indium but a value less than 

one (Figure 39).  Calculation of the initial mass fraction of In-rich liquid (WL(i)) was 

performed from the mass balance given by Equation 46.  At t = 0, the amount of 

indium in the solid is zero (assumption of no prior interdiffusion) therefore the CS 

term in Equation 46 has to be equal to zero.  Solving this equation for the initial mass 

fraction of In-rich liquid, considering CS = 0 and CL < 1, resulted in a value slightly 

larger than 25% as seen in Figure 45.  This is an artifact of the assumptions required 

for obtaining an analytical solution to the problem.  During the time frame governed 

by the isothermal solidification mechanism, i.e. up to ~10 minutes, it was observed 

that both the RSM and the mechanistic model behaved similarly.  In both models 

during this time period it is clear that the solidification kinetics follows a linear 

relationship with the √t.  As Figure 45 shows, the analytical model provided an 

overestimation of the time to solidification when the maximum particle size of 25 µm 

was used, as demonstrated by the curve location to the right of the DSC data.  Several 

factors will be discussed to explain this behavior.  For this analytical solution, the 

silver particle shape and size were assumed to be perfectly spherical and monosized 

as given by the maximum diameter from the mesh designation.  This resulted in a 

conservative estimation since these powders are far from being perfectly shaped and 

sized.  In fact, the size randomness is evident in Figure 32 through Figure 35.  A 
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better representation of the particle size should consider the distribution associated 

with the population, in this way the model will be able to predict a behavior that is in 

accordance with the real condition in the paste.  From the specification (ASTM-

B214), a Type V powder will have particles ranging from 5 µm to 25 µm, with 20% 

of the population below 15 µm.  A mean particle size is not typically given due to 

agglomeration and �satellite� effects that result in a bi-modal distribution.  For this 

simulation, a 15 µm particle size was used based on the standard as well as on 

stereological quantitative analysis of samples taken from the silver powder.  Smaller 

particles, represented by the case in which the model was solved for 15 µm, have a 

larger surface area- to- volume ratio that increases the diffusion rate.  This effect was 

observed by the predicted response given by the 15µm solution, in which a better 

agreement with the experimental data was obtained.  Albeit the errors associated with 

representing the powder by monosized particles, the bounded solution considering the 

particle size distribution provided a good approximation of the response when 

compared to the experimental data. The critical outcome of this analysis was that both 

of the analytical and empirical models agreed on the behavior of the system during 

this stage, the analytical being a more conservative approach when larger particles 

were considered.  Another factor affecting the difference between the models was the 

initial amount of In-rich liquid available.  The mechanistic model assumed that all the 

In-rich phase was transformed into liquid, whereas the RSM accounted for some 

consumption during the heating stage.  The larger the amount of In-rich material, the 

longer it takes for its complete solidification.   
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An interesting behavior was observed after the 10th minute in that the RSM no longer 

exhibited a linear relation of the In-rich remaining with √t.  This change in reaction 

rate is a critical factor in the kinetics of the TLPS process because it defines the true 

response of the system at longer holding times.  The mechanistic model failed to 

predict this behavior due to the nature of its mathematical formulation.  Crank 

solutions are only valid for semi-infinite media, which means that the solid is large 

enough so that its solute distribution in the bulk does not affect the diffusion reaction 

at the interface.  Based on this fact, the diffusion of solute into the solid can continue 

to be linearly proportional to √t until the completion of the solidification process.  

This can be observed by the mechanistic simulation in Figure 45.  The solution 

provided by Crank also assumed that at the end of the process (t→∞) the solid would 

have absorbed all the solute until the maximum solid solubility at Tp is reached, i.e. at 

t→∞ CB = Cmax = Cs.  All of these conditions are necessary for the derivation of the 

analytical solution, but they may not form an accurate representation of the real 

system because they do not account for the interdependency of later stages.  Another 

factor affecting the mechanistic model at longer holding times is related to 

geometrical considerations.  The cell given in Figure 44 depicts the fundamental unit 

for model development.  This system assumed that with time the liquid ring (dr) 

shrinks as the silver particle grows, this being a perfect radial movement of the 

boundary.  This assumption estimates that at any time, the surface area available for 

diffusion is given by that of the sphere at any instant.  From the metallographic 

analysis it was observed that before 10 minutes the silver particles were surrounded 

by the In-rich matrix (Figure 46) validating the assumption from Figure 44.  This 
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explains the similarity in the kinetics of transformation from both models during this 

initial time frame.   

 

 

Figure 46.  SEM micrograph (BSE) of a 30 Wt.% In sample heated to 250°C and cooled down 
after an isothermal hold of 1 minute.  Silver particles are embedded into the In-rich matrix. 
 
 
At longer holding times, (Figure 47 depicts the case of 10 minutes) it was observed 

from the micrographs that the coagulation and growth of the silver rich particles had 

started to result in a structure that was no longer characterized by a continuous In-rich 

matrix.  The condition of an In-rich matrix is not longer valid for the entire area, save 

for a few specific sites.  In general, the system is starting to show a shift to a more 

Ag-rich dominated microstructure. 

Ag 

In 
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Figure 47.  SEM micrograph (BSE) of a 30 Wt.% In sample heated to 250°C and cooled down 
after an isothermal hold of 10 minutes.  Silver-rich particles are now present as agglomerated 
clusters in which the presence of the In-rich matrix is not longer as evident as for the shorter 
holding time. 

 

After holding for 25 minutes at 250°C, the In-rich liquid appeared to be constrained 

to localized areas with minimal contact to the dominant Ag-rich skeleton (Figure 48). 

This greatly reduces the surface area for diffusion, leading to a decrease in the 

solidification rate.  This physical phenomenon explains the behavior of the prediction 

from the empirical model (solid RSM line in Figure 45) which tended to a slower 

solidification rate after the 10th minute.   The mechanistic model did not account for 

this condition.  An important factor affecting the behavior of the two models at longer 

holding times is the fact that homogenization was not considered for the mechanistic 

approach.  As discussed already, Crank provided a solution up to t→∞ assuming full 

saturation of the solid, i.e. the process stops at CB = Cmax = Cs.  It is known that there 

is a final stage during the TLPS process by which the real equilibrium condition is 

attained.  During this last stage, diffusion occurs at a slower rate dominated by a 

Ag

In 
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solid-solid interdiffusion mechanism driven by a smaller concentration gradient given 

by (CS � CB).  At this point in time indium atoms from the newly formed solid with 

composition CS slowly diffuse into the Ag-rich core until final equilibrium is reached.  

A stable microstructure consisting of Ag(α) + γ will result.  The RSM accounts for 

this step, which imposes a delaying effect during the late isothermal solidification 

stage.  

  

 

Figure 48.  SEM micrograph (BSE) of a 30 Wt.% In sample heated to 250°C and cooled down 
after an isothermal hold of 25 minutes.  Silver solid skeleton is now dominant with the remaining 
In-rich phase constraint to discrete portions of the system. 

 

The interaction between stages in TLPS is a known problem [30] that analytical 

solutions cannot treat due to their sequential approach to the solution.  The truth is 

that the stages are inter-dependent and they do affect the kinetics of one another.  

In 

Ag 
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All of the factors discussed regarding assumptions of the analytical solution and the 

microstructural evolution with time have explained the behavior of the two models 

across the entire time regime.  During the early period (0≤t<10) dominated by the 

isothermal solidification mechanism, both models were able to predict a similar 

response whereby the solidification rate exhibited a linear correlation with √t.  At 

longer holding times, the mechanistic model projected a constant reaction rate up 

until the completion of the solidification process, a prediction that was showed to be 

inaccurate.  The RSM was capable of predicting a shift in the solidification 

mechanism that was driven by the slower homogenization stage and microstructural 

changes.  This prediction from the RSM at longer holding times was crucial for 

process definition.  Without this consideration, the model would have failed in the 

prediction of the final constitution of the system as well as in the estimate of the time 

to completion.  The assumption of a continuous solidification rate by the mechanistic 

model would have yielded a premature prediction of the time to complete 

solidification.  This miscalculation could have resulted in failure if the application 

temperature was to exceed the melting point of the remaining fraction of the In-rich 

phase.  The RSM model provided a more accurate tool for the prediction of the time 

needed to complete solidification since it considered all stages of the TLPS process.  

As a result, tailoring of the proposed Ag-In paste process should be based on 

simulations from the more comprehensive RSM. 
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6.6 Conclusion: 

A piecewise empirical kinetics model for TLPS of an Ag � In paste mixture was 

developed using response surface methodology (RSM).  This model estimates the 

solidification of the low melting In-rich phase as a function of controllable variables 

available to the practitioner.  The experimental outcome of this investigation 

demonstrated the existence of three stages during the process as previously suggested 

by theorists in this field.  This piecewise technique provided specific response 

functions for each time regime which proved to be sensitive to specific critical 

parameters and interactions, as defined by the analysis of variance.  The physical 

significance of the obtained experimental data was accomplished via a metallographic 

study in conjunction with a comparative analysis of the results obtained from a 

diffusion based mechanistic model.  Results from both prediction models were 

compared, and the adequacy of the experimental technique was confirmed.  The 

mechanistic model, when compared to the empirical approach, provided a similar 

behavior of the response during the period governed by isothermal solidification.  A 

change late in the solidification process, during which the reaction rate decreased, 

was observed from the RSM prediction.  This phenomenon was explained by the 

microstructural changes observed in the samples in which a transition from an In-rich 

matrix to a Ag-rich solid solution skeleton occurred.  This new morphology imposed 

limitations to the governing diffusion mechanism, thus delaying the solidification 

reaction.  The effect of the last stage of the TLPS process, solid sate homogenization, 

was also identified as a delaying agent in which the slower diffusion of indium into 

the solid (Ag) α phase imposed a bottleneck effect to the solidification process.  This 
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interdependency among the different stages of the TLPS process had been suggested 

in previous investigations as a critical aspect for this powder metallurgy technique.  

The conditions established for the derivation of the mechanistic model (semi-infinite 

medium and parabolic law) made it unresponsive to these effects, thus limiting its 

ability to predict the true behavior at longer holding times.  Contour maps from the 

RSM simulation provided an accurate estimation of the kinetics of transformation for 

the Ag-In paste as function of critical variables, making it possible to tailor the 

process to specific applications or limitations so that the desired results can be 

accomplished.     
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Chapter 7: Characterization of the Ag-In Transient Liquid 

Sintered Material 

 

7.1 Introduction: 

A common characteristic of all forms of sintering is a reduction in surface area with 

an accompanying compact strengthening.  This occurs by the formation of 

interparticle bonds facilitated by atomic motion at the sintering temperature.  During 

TLPS, liquid coexists with the solid particles at the processing temperature (Tp).  This 

liquid phase enhances interparticle bonding, which results in significant changes in 

the pore structure and compact properties.  From a processing standpoint, the major 

advantage of liquid phase sintering is a faster process without the need for external 

pressures.  The liquid phase provides sufficient internal force on the particulate solid 

through capillary action that external forces are not required.  The magnitude of these 

capillary (wetting) forces are equivalent to external pressures [11].  The liquid also 

reduces the interparticle friction, thereby aiding rapid rearrangement of the solid 

particles.  The liquid wetting present at Tp acts on the solid particles to eliminate 

porosity and reduce interfacial energy.  With liquid formation there is a rapid (almost 

instantaneous) densification due to the capillary force exerted by the wetting liquid on 

the solid particles.  The elimination of porosity occurs as the system minimizes its 

surface energy.  The amount of densification attained by rearrangement is dependent 

on the amount of liquid and the particle size [11], (i.e. finer additive particles tend to 

give better densification).  Maximization of the density (reduction of porosity to a 

minimum) is possible when an estimated 35 volume percent liquid is available [11] a 
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phenomenon that occurs during the early stages of TLPS.  During the later stages of 

TLPS, densification is slower due to the existence of a solid skeleton.  The rigidity of 

this solid structure inhibits further rearrangement. 

   

When a liquid forms during liquid phase sintering the microstructure consists of three 

phases: solid, liquid, and vapor.  Wetting describes the equilibrium between these 

three phases.  For a liquid to wet a solid, the total free energy must be decreased.  The 

wetting is characterized by the contact angle, the magnitude of which depends on the 

balance of the surface energies.  In typical powder systems, there is a range of particle 

sizes, pore sizes, pore shapes, and particle shapes which result in a range of capillary 

conditions.  A wetting liquid will attempt to occupy the lower free energy position, 

therefore it preferentially flows to the smaller capillaries which have the highest 

energy per unit volume.  When there is insufficient liquid to fill all the pores, the 

liquid will attempt to pull the particles together to minimize the total free energy of 

the system.  This effect explains the rearrangement and rapid initial densification 

during the beginning of the TLPS process. 

 

Pores are an inherent part of liquid phase sintering.  Pores are present in powder 

compacts as interparticle voids (packing), and can also result from uneven liquid 

distribution, unbalanced diffusion events (Kirkendall effect), reactions with gases, 

and capillary spreading.  Porosity is characterized by its amount, size, shape, and 

distribution of pores throughout the compact.  By definition, the fractional density 

plus the fractional porosity must equal unity.  Generally the objective during TLPS is 
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for the fractional porosity to approach zero.  In this way the mechanical, electrical, 

and thermal properties of the resulting material are optimized.  Pores are typically 

detrimental to the properties of liquid phase sintered materials.  Microstructural 

analysis can be used for analyzing the fractional porosity of a material processed by 

TLPS.  The most typical technique for measuring the volume fraction of pores in the 

structure is to apply point-count analysis to the specimen [11][12][64].  Densification 

to near zero porosity is energetically favorable, but trapped gas in the pores inhibits 

final densification.  The formation of the rigid solid skeleton in the final stages of 

TLPS will also hinder pore elimination.  It has been demonstrated [65] that capillary 

attraction for a liquid resulting from the surrounding pore structure generates a pore at 

the particle site where the liquid forms.  Since the subsequent pore size is roughly the 

same as the additive particle, it is desirable to have small additive particle sizes.  The 

amount of additive directly influences the volume fraction of liquid, which, in fact, 

dictates the densification of the structure leading to the final compact properties.  As a 

consequence, the amount of additive is a critical processing parameter which 

influences the final microstructure and sintered properties. 

 

In this chapter the densification of the Ag-In paste will be analyzed in terms of 

controlling parameters.  The effect of fractional density on the mechanical strength 

and the thermal and electrical conductivities will be studied.  An optimal formulation, 

based on the obtained results, will be used for the fabrication of test specimens for a 

reliability assessment of the proposed Ag-In attach material. 
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7.2 Porous nature of TLPS material: 

Transient liquid phase sintering is a special powder metallurgy technique in which the 

presence of a liquid phase results in densification of the compact.  The properties of 

these sintered materials depend on pore morphology (size, shape, interconnectivity) 

and total porosity [66].  The concept of microstructure has to be defined with care for 

this type of material, since it not only refers to the grain scale within the solid phases 

but to the size, volume fraction, and distribution of the pores as well [11][66].  TLPS 

is a complex processing technique sensitive to a myriad of variables in which the 

amount of liquid has been suggested as a dominant parameter for the densification 

mechanism [11].  Bulk physical properties of these porous materials are a function of 

not only the intrinsic properties of its main constituents but of its porosity 

characteristics as well.  There have been a series of expressions for modeling the 

effective properties of porous structures; a summary has been presented by Montes 

[67].  The most widely used model was presented by Schulz [68] in which the 

effective property of the porous material (gE) is given by: 

Equation 55 
x

oE gg )1( Θ−⋅=  

where go is the property of the solid material (theoretical), Θ is the fractional porosity 

(i.e. the ratio of void volume to the total volume of the specimen), and x is the pore 

scaling exponent.  This scaling exponent has been reported to range from 1.6 � 5.0 

[67][68] depending on pore geometry and interconnectivity.  Special interest in 

transport properties such as thermal and electrical conductivity has lead to recent 

research efforts [20][67].  This investigation will focus on the effect of fractional 

density on mechanical, electrical, and thermal properties of the transient liquid phase 
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sintered material.  Particular attention will go into studying the effect of solute 

addition (volume fraction of indium) on the densification of the compact and its 

subsequent effect on the above properties. 

 

7.2.1. Densification analysis: 

 
In previous sections it was discussed that the physical properties of porous materials 

depend upon their fractional density.  Attaining full densification of a sintered 

compact requires large amounts of energy in the form of heat and hydrostatic 

pressure.  The suggested method during this investigation is a TLPS process in which 

the external pressure is substituted by an internal capillary force that shall result in the 

required densification.  The fractional porosity (Θ) has been defined as the ratio of 

void volume to the total volume of the specimen, a ratio that can be measured by 

stereological techniques [64][70].  Stereology deals with a body of methods for the 

exploration of three dimensional space when only two dimensional sections through 

solid bodies are available.  Therefore, stereology can be viewed as an extrapolation 

from two - to - three dimensional spaces.  Quantitative stereology attempts to 

numerically characterize specific features in the microstructure.  For the present 

investigation, pores obtained in the samples fabricated via the TLPS process will be 

the feature of interest.  Calculation of volume fraction of these pores will result in a 

quantitative estimation of the fractional porosity or fractional density (1 � Θ). 
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Determination of the volume fraction of a particular feature (pores in this case) is one 

of the most important and most common stereological measurements.  The point-

count method detailed in ASTM Specification E562 is the most accurate procedure to 

estimate volume fraction from two-dimensional section planes [64].  In this method a 

test grid is overlaid on a micrograph.  The magnification should be high enough so 

that the location of the test points (crosses of the grid) with respect to the structural 

features can be clearly discerned.  Magnification should always be the lowest 

possible, where in general, no more than one grid point falls on any given feature of 

interest.  Calculation of the volume fraction of voids (Vv) results from counting the 

number of pores (voids) �hit� by the intersection of the grid when applied to a field 

selected at random.  The number of hits in the pores (Pv) are counted as unity, 

whereas tangential hits are counted as 0.5.  Generally 10 or more fields are measured, 

and the point fraction (Pp) is calculated as follows: 

Equation 56 

ovTvp PnPPPP ⋅== ∑∑  

where n is the number of fields and Po is the number of grid points.  Alternatively, the 

value of Pp can be determined for each field and then averaged for n fields as an 

estimate of the volume fraction.  This method produces data ready for statistical 

analysis while providing the exact same value as the one obtained from Equation 56.  

In the current investigation this alternative method will be followed.  It has been 

demonstrated [70] that Vv = Pp, so the volume fraction of voids (fractional porosity) 

can be estimated with this stereological technique. 
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All stereological measurements are estimates rather than absolute measurements, so a 

basic statistical analysis for uncertainty is required if microstructural parameters are 

to be estimated from this approach.  In the current case, a 20 point grid (Po = 20) was 

used with a total of 20 fields per condition (n = 20).  The mean value of Pp (Pp,avg) is 

given by ∑Pv / nPo, whereas the standard deviation (s) of the data is given by: 

Equation 57 
5.02

,, )]1/()([ −−= ∑ nPPs avgpip  

The 95% confidence limit of the calculated fractional porosity (i.e. Vv,avg = Pp,avg) is 

given by: 

Equation 58 
5.0)1(%95 −⋅= nstCL  

where t varies with the number of measurements n and is tabulated; a t value of 2.086 

was used for n = 20 [64].  An estimated fractional density was obtained using these 

statistics for all measurements performed during this investigation. 

7.2.2. Specimen fabrication: 

All samples used for the point-count analysis were fabricated into �pill� shaped 

specimens as depicted in Figure 49.  Dimensions of the test specimens were as 

follows: diameter (D) = 6.7 mm, thickness (t) = 0.7 mm, yielding a D/t ratio of 9.6.  
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Figure 49.  Typical �Pill� shaped specimen for point count analysis.  Diameter of the sample is 
6.7 mm with a thickness (t) of 0.7 mm. 
 

Morphological details of a typical sample are given in Figure 50 which shows a 

typical scanning electron micrograph of a sample fabricated by TLPS of the Ag-In 

paste.  

 
     (a) 

1.65 mm 

1.0 mm
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     (b) 
 
Figure 50.  Typical SEM image of the sintered Ag-In �pill� sample showing a uniform 
distribution of micro-pores.  (a) SEM at a low magnification (50X) showing the obtained 
porosity, (b) higher magnification (160X) showing the morphological details of the solid portion 
and a few pores of ~ 30-50 µm diameter. 
 
 
From these images the pores appeared to be dispersed through the matrix with an 

average measured diameter of 52 µm, which correlates to the additive (indium) 

particle size used for the mixture.  Based on this pore size and the morphological 

details revealed during this initial characterization, a magnification of 40X was 

selected for the stereological analysis. 

7.2.3. DOE for densification study: 

TLPS is a complex processing technique that depends on multiple input variables as 

presented in previous chapters.  Densification is primarily driven by the spreading of 

a wetting liquid through a solid skeleton, but the effect of other variables such as 

heating rate, particle size, and processing temperature need to be determined.  In 

200 µm 
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theory-based works [11] it has been suggested that the volume fraction of liquid 

formed during the process, which is proportional to the mass fraction of MPD 

additive in the mixture, drives the densification of the system.  In this investigation a 

screening 2-level factorial experiment was designed to study the effects of input 

variables on fractional density.  Table 9 illustrates the input variables and their pre-

defined levels. 

Table 9.  Input variables and their levels used for the densification DOE. 
Factor  High Level  Low Level  

Silver Particle Size (PS) 50 µm (spherical) [Max] 25 µm (spherical) [Max] 
Heating Rate (HR) 60 °C/min 30 °C/min 
Processing Temperature (Tp) 300 °C 250°C 
Additive Weight Fraction (Wt. %) 30 Wt. % In 15 Wt. % In 
 

The response variable for this experiment is the fractional density (1 - Θ) which was 

measured by the point-count technique previously defined.  During this DOE the 

holding time was deliberately fixed because liquid induced densification is an 

instantaneous phenomenon [11].  Samples for the randomized DOE were fabricated 

into �pill� shaped specimens, and analyzed using an optical stereo microscope.  A 20 

point grid overlay was used for the point-count analysis.  A hypothesis test (ANOVA) 

was used for studying the statistical significance of the data from which a reduced 

multiple linear regression model for coded variables was developed [Appendix 7].  

From the statistical analysis it was determined that the most significant effect on the 

response was the additive weight fraction (Wt.% In).  This significance is evidenced 

by the magnitude of the estimated regression coefficient when compared to the other 

main effects.  Results for the empirical model with coded variables are given in Table 

10. 
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Table 10.  Estimated regression coefficients for the fractional density model (coded variables). 
Term Regression Coefficient 

Constant 63.6 
Additive Weight Fraction (Wt. % In) 10.2 
Silver Particle Size -1.7 
Processing Temperature 3.4 
Heating Rate 0.6 
 

An empirical estimation for the fractional density of the Ag-In sintered material is 

given by the following model (R2
pred = 91.5%): 

Equation 59 
)(6.0)(4.3)(7.1).%(2.106.63 HRTAgPSInWtDensityFractional p ⋅+⋅+⋅−⋅+=  

 

From the analysis of variance it was obtained that the interactions had no statistical 

effect on the response, as given by their p-values.  The model given by Equation 59 is 

only valid for coded input variables [Appendix 7]. 

  

From these results it was confirmed that the densification of this system is dictated by 

the volume of liquid present, given by the solute composition of the mixture, i.e. 

Wt.% In.  From a practical standpoint, the formulation of a paste mixture is controlled 

by the weight fraction of its constituents which has been the input variable throughout 

this investigation.  Physically, it is the volume fraction of the main constituents of the 

mixture that is critical for the densification mechanism and other transport properties; 

this volume fraction is proportional to the weight fraction.  By knowing the densities 

of the constituents in the mixture, the volume can be calculated.  In this instance all 

volume calculations were obtained using the density of silver: 10.49 g/cm3 and 
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indium: 7.31 g/cm3 [45].  To obtain a more accurate estimation of the effect of 

volume fraction of indium on the fractional density, a refined experiment was needed.  

The initial two level experiment provided a good screening tool from which the main 

effect of indium weight fraction was revealed, but a higher resolution of this variable 

is required for a better understanding of its effect on the response.  For this refined 

experiment, the remaining input variables were set to fixed values obtained by the 

optimization of the time to zero percent remaining In-rich phase.  From this 

optimization exercise the values were set as follows: HR = 60 °C/min., Tp = 300°C, 

silver PS (Type V or -500 Mesh) = 25 µm, and Holding Time = 60 minutes.  A total 

of five new pastes were formulated in which the solute weight fraction was the only 

changing variable, details of these pastes are given in Table 11 below. 

Table 11.  Specifications for the pastes used for the refined densification experiment. 
Paste Wt. % In Vol. % In Ag PSmax (µm) In PSmax (µm) Solid content (%) 

1 10 13.8 25 50 91 
2 20 26.4 25 50 91 
3 30 38.1 25 50 91 
4 40 48.8 25 50 91 
5 70 77.0 25 50 91 

 

Two samples from the each of the above solder pastes were fabricated into the pill 

shaped specimens described in Figure 49.  The specimens were analyzed using the 

point-count technique; results from all fields are given in Appendix 6.  Figure 51 

shows a typical optical micrograph used for the quantification of the fractional 

density, in which a 20-point grid was used per inspection field; a total of twenty fields 

per sample were measured. 
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Figure 51.  Typical optical micrograph with the 20-point grid overlay used for the point-count 
analysis.  Fractional density, 1 � Θ, was estimated from the calculation of the pore volume 
fraction (Θ) given by Pv / Po.  In this example a Pv = 5 was counted, a given Po = 20, resulting in a 
porosity of 0.25 or a fractional density of 75%. 
 

The correlation between the indium weight fraction and the measured fractional 

density is given in Figure 52, in which the effect of increasing indium fraction on the 

densification of the system is evident.   

50 µm
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Figure 52.  Measured fractional density as function of indium weight fraction, error bars 
represent the 95% confidence interval. 
 
 
In this figure the data from the 70 Wt. % In paste showed that a liquid volume 

fraction of 77% produced a near-fully dense solid, but the presence of such a high 

amount of indium would have resulted in a persistent low melting In-rich phase.  The 

presence of this phase would have limited the maximum application temperature of 

the system, thus defeating the objective of this investigation.  Data from this In-rich 

paste was only used for fundamental studies on the physical properties of this 

material.  

  

Within the compositional range valid for the transient solidification and subsequent 

achievement of a variable melting point alloy, which is limited by the maximum solid 
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solubility of indium in the Ag-rich phase (i.e. ~ 40 Wt.% In), the fractional density 

went from 60% to 94%.  The upper bound for indium composition is given by the 

solubility limit, but a lower bound has yet to be defined.  Defining a feasible indium 

compositional range depends not only on the achievement of the highest density 

(which was given by the upper bound), but on the optimization of the resulting 

mechanical, electrical, and thermal properties as well.  From a practical standpoint, 

minimizing the time required for complete diffusional solidification is also desired.  

Such a goal is achievable by simply minimizing the indium addition in the mixture.  

However, minimal indium content could result in a highly porous structure that may 

not provide acceptable properties; thus, a method to assess this lower limit will be 

presented.  In the following sections, the optimal compositional range of indium will 

be assessed in terms of resulting fractional density, electrical conductivity, and 

mechanical strength.  

7.3 Characterization of the TLPS Ag-In system: 

 

7.3.1. Electrical and thermal properties: 

The motivation behind the development of this Ag-In paste using a TLPS process was 

to provide a high temperature resistant attachment using a low temperature process.  

Electronic packaging deals with providing a mechanical, electrical, and thermal 

connection of an integrated circuit with subsequent packaging levels.  In such a quest, 

the mechanical, electrical, and thermal properties of interconnect materials become 

critical factors.  Signal processing is critical for the operation of electronic systems in 

which the materials involved play an important role in the propagation of these 



 

 167 
 

signals.  One of the most important electrical properties of materials is volumetric 

resistivity.  Resistivity is the characteristic of a material that resists the passage of 

electric current.  In this case, volumetric resistivity is the electrical resistance between 

opposite faces of a given volume when a current flow is confined to the specimen 

[71].  Volumetric resistivity (ρv) is a bulk material property and is given by: 

Equation 60 

L
AR

v
)( ⋅=ρ  

where R is the measured electrical resistance, A is the cross sectional area, and L is 

the length of the test pattern.  The inverse of volumetric resistivity is known as 

electrical conductivity (σ). 

 

It has been demonstrated that the porosity of the proposed Ag-In material is related to 

the solute composition of the mixture (Figure 52).  The effect of porosity on the 

electrical conductivity of the material is an important factor in determining the best 

level of solute addition.  This optimal quantity should ensure the maximum electrical 

conductivity possible.  It is well known that the bulk transport properties of porous 

materials are not only a function of their main constituents, but of their fractional 

porosity (or density) as well.  A number of expressions for modeling thermal and 

electrical conductivities have been reported [67].  An expression developed by Schulz 

[68] provides the effective electrical conductivity (σe) of a porous material: 

Equation 61 
x

oe )1( Θ−⋅= σσ  

in which σo is the theoretical conductivity of the solid material that can be obtained 

for most pure metals in the literature, Θ is the fractional porosity, and �x� is the pore 
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scaling exponent.  In this instance, the electrical resistivities of the materials of 

interest are as follows [44]: ρAg = 1.55 X 10-6 Ω � cm, ρIn = 9.0 X 10-6 Ω � cm.  Note 

that σo = 1 / ρo.  The conductivity of an alloy, however, is often lower than the pure 

metals of which it is comprised, owing to impurity scattering in solid solutions, and to 

the lower conductivity of some intermediate phases.  This effect must also be 

considered in determining the optimum indium addition in the paste mixture. 

7.3.1.1.  Experimental set-up: 

 
In order to measure the effective electrical resistivity of the sintered material, a 

standard test is required.  For this experiment, solder pastes described in Table 11 

(except 5) were used for the fabrication of test traces.  The trace pattern was obtained 

by printing the paste through a custom laser cut stencil onto a bare alumina (Al2O3) 

substrate.  Figure 53 depicts the artwork of the stencil used for trace fabrication; a foil 

thickness of 0.008� (8 mil) was used.   

 

Figure 53.  Laser cut stencil with the electrical test trace pattern. 
 

1.27 cm
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The deposited patterns from each paste were processed by the TLPS technique using 

the optimized profile from the kinetics study, i.e. HR = 60 °C/min., Tp = 300°C, and a 

Holding Time of 60 minutes.  These same conditions were used for the fabrication of 

pills during the fractional density experiment.  Fractional densities (1 - Θ) for each of 

these pastes are given in Figure 52.  After sintering, traces were measured to obtain 

the length (L) and cross-sectional area (A), values that were required for electrical 

resistivity calculations.  Figure 54 depicts a typical as-built trace pattern after the 

TLPS process. 

 

Figure 54.  Typical as-built image of the test trace obtained by stencil printing and subsequent 
TLPS processing of the Ag-In paste. 
 
 
 

The electrical resistance (R) of the test patterns was measured by a four-point probe 

test using an Agilent milliohm meter 4338B with a 1mA test current at room 

temperature.  Four point testing eliminates the error induced by the added resistance 

of the probing tips.  This is accomplished by supplying the test current independently 

of the probes used to measure the voltage drop across the specimen.  The contact 

resistance inherent in the probing action is accounted for by the short correction that 

is performed before each test.  The resulting resistance value from this type of test is 

then an accurate measurement of the material under test.  A total of 20 readings per 

1.27 cm
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test condition were used during this investigation; the mean values along with the 

measurement errors were documented.  Mean resistance values for each of the five 

pastes were used for the calculation of the effective resistivity of the material, in 

which the length and cross-sectional area were measured to be 5.08 cm and 0.001 

cm2, respectively.  Volumetric resistivity was then obtained by substitution of these 

values into Equation 60, from which the measured effective electrical conductivity 

was calculated (σe = 1/ρe).   

7.3.1.2.  Results: 

Figure 55 shows the measured electrical conductivity obtained from the four-point 

testing on the fabricated traces.   
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Figure 55.  Measured electrical conductivity of sintered Ag-In pastes with various indium 
compositions.  Markers represent the mean whereas the error bars depict the +/- 5.4% 
measurement error from the equipment. 
 
Results from pastes up to 40 Wt.% In were used for this plot because this is the upper 

bound for the achievement of a variable melting point alloy without the precipitation 

of any persistent phases.  From this chart, it was observed that the electrical 

conductivity reached its maximum value at around 20 Wt.% In and then began to 

decrease with further addition of indium.  A more comprehensive analysis is obtained 

by inspection of Figure 56, in which the effect of indium addition on both the 

fractional density and electrical conductivity is given.   
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Figure 56.  Combined plot showing the relationship between indium weight fraction with both 
the electrical conductivity and fractional density. 
 
 
From this chart it can be seen that the maximum electrical conductivity was obtained 

at a fractional density of approximately 71%, or an indium weight fraction 20%.  

Using this information a lower bound may be apparent at 20 Wt.% In in which 

maximum electrical performance is possible with an acceptable fractional density.  

Nevertheless, there is concern that such fractional density values may affect other 

physical properties of the system.  In terms of bounding, however, the composition of 

20 Wt.% In still seems to be reasonable.  The mechanical strength of this material is 

another important factor that has must be considered in order to make a final 

recommendation of a lower bound.  It is evident that a decision based on fractional 

density alone would have yielded an erroneous conclusion, as evidenced by a 
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noticeable degradation of the electrical conductivity even though the densification 

showed an excellent response.  Results from the electrical characterization are 

summarized in Table 12.   

Table 12.  Electrical conductivity characterization for the TLPS Ag-In material* 
Paste Wt. % 

In 
Vol. % 

In 
Vol. % 

Ag 
Fractional 

Density 
[1-Θ] 

σAg  
[Porous Ag] 
(1 / µΩ·m) 

σe (1 / µΩ·m) 
[measured] 

1 10 13.8 86.2 0.60 5.0 3.33 
2 20 26.4 73.6 0.71 11.6 3.45 
3 30 38.1 61.9 0.88 34.0 2.51 
4 40 48.8 51.2 0.94 47.3 1.45 

* All properties and measurements were taken at room temperature (25°C) 
 

7.3.1.3.  Analysis: 

 

The effective measured electrical conductivity of the Ag-In sintered material 

exhibited a peak value at 20 Wt.% In and then started to degrade with further indium 

addition, the reason for this behavior can be explain as follows.  If the material were a 

pure silver compact then the effect of fractional density on electrical conductivity 

would be given by Equation 61, where σo would be the electrical conductivity of pure 

silver [64.5 (µΩ-m)-1] [44] and x would be 5 [68] for the maximum porosity effect.  In 

such a situation; the compact would have the theoretical conductivities shown in the 

sixth column of Table 12.  For this case a compact with a fractional density of 60% 

would have a conductivity of 5.0 (µΩ-m)-1 whereas a 71% dense compact would have 

a conductivity of 11.6 (µΩ-m)-1.  This is a significant increase in electrical 

conductivity with increase in fractional density.  However, the measured conductivity 

shows a much smaller increase from the 60% dense compact to the 71% dense 

compact owing to the fact that the increased indium concentration will also create 
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increased scattering in the silver solution.  Nevertheless for this range of indium the 

densification effect is larger than the indium impurity effect so the conductivity 

shows a slight increase.  Above 20% In the γ-phase is created and, while there is no 

published value for the conductivity of γ in the literature, it can be assumed that it is 

quite poor because as the amounts of this γ phase increases, with increasing indium 

concentration, the conductivity decreases even further.  This impurity effect is much 

stronger than the enhanced densification resulting from the increasing indium in the 

mixture; this can be observed in Figure 56 from the behavior of the curves at values 

above 20% In.  To summarize, increased density (positive effect of indium addition) 

means reduced porosity, but the presence of a larger volume fraction of indium, as an 

impurity, was demonstrated to produce an adverse effect in the electrical conductivity 

(negative effect of indium addition).  This situation becomes critical because a 

compromise between these competing effects will be required. 

 

Based on this analysis, the indium composition of the mixture should be high enough 

to produce an acceptable densification but without causing a significant degradation 

of the electrical conductivity.  From Figure 56 it can be suggested that for optimal 

electrical conductivity the composition of the Ag-In material should be kept around 

20 Wt.% In.  A compositional range of 20 to 25 Wt.% In can be suggested from this 

analysis over which the improvement in the density from 70% to 80% comes with a 

slight decrease in electrical conductivity from 3.45 to 3.0 (µΩ·m)-1. 
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7.3.1.4.  Thermal conductivity: 

In electronic packaging, thermal management is crucial, especially in high power 

and/or high temperature applications.  Increasing internal temperatures in 

semiconductor devices have been related to reliability problems induced by thermally 

activated failure mechanisms.  It is also known that as temperature rises, the semi-

conducting capability of the materials starts to degrade, which may result in poor 

performance or malfunctions.  Removing heat is, therefore, an essential task of the 

electronic packaging.  In addition to providing a mechanical bond to the substrate and 

an electrical path for the signal (in vertical channel devices), metallic attaches must 

also aid in the removal of heat from the chip.  Heat transfer through a metal obeys the 

same physical laws as electrical conductance when only conduction through the solid 

is considered; thus, thermal conductivity parallels the electrical conductivity [11].  

The relationship between these two transport phenomena is given by the Wiedemann-

Franz law [20][72] in which the electrical conductivity (σ) of a metal and its thermal 

conductivity (K) are proportional: 

Equation 62 
TLK ⋅=σ  

where L is known as the Lorenz number and represents the proportionality constant 

between the two conductivities provided that both are measured at the same 

temperature.  The value of this parameter is constant for metals and is equal to 2.44 X 

10-8 (W·Ω / K2), and T is the temperature in Kelvin.  For each case in Table 12 a 

thermal conductivity value (K) was estimated from Equation 62.  The measured 

electrical conductivity (σe) and a temperature of 300 K were used for the calculations.  

Results are given in Table 13 below. 
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Table 13.  Thermal conductivity  for the TLPS Ag-In material* 
Paste Wt. % In Vol. % In Vol. % Ag Fractional 

Density 
[1-Θ] 

Thermal 
Conductivity 

(W /m·K) 
1 10 13.8 86.2 0.60 24.1 
2 20 26.4 73.6 0.71 25.1 
3 30 38.1 61.9 0.88 18.2 
4 40 48.8 51.2 0.94 10.5 

* All properties and measurements were taken at room temperature (27°C) 
 

As evidenced by Equation 62, estimation of the thermal conductivity of the Ag-In 

sintered material depends on the electrical conductivity.  Based on the direct 

relationship between these two properties, the compositional range established from 

the optimization of the electrical conductivity is still valid. 

7.3.1.5.  Discussion: 

So far the kinetics of the TLPS process for the Ag-In paste have been presented in 

terms of the remaining In-rich phase.  This analysis of the system provided a 

prediction model for the solidification reaction as function of controllable parameters.  

By virtue of this diffusional solidification process, a shift in the melting point of the 

system was achieved, providing the basis for the high temperature tolerance of this 

material.  The feasibility of this material as an attach alternative required further 

characterization beyond the modeling of the in-situ alloying reaction kinetics.  The 

electrical and thermal conductivity of the resulting porous structure yielded 

interesting results in which the effect of fractional density, controlled by the 

composition of the mixture, proved to be critical.  A summary of the results from the 

characterization of the optimal Ag-In material are given in Table 14 together with a 

series of alternative materials commonly used in the electronic industry for similar 

applications. 
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Table 14.  Properties for the Ag-In TLPS material compared to commonly used alternatives 
[59][73]. 
Metallurgical 
System 
(by weight) 

Melting 
Temp.,  
Tm (°C) 

Processing 
Temp., 
Tp (°C) 

Maximum 
Application 
Temperature, 
Ta (°C) 

Tm / Tp Electrical 
Conductivity 
(µΩ·m)-1 

Thermal 
Conductivity 
(W / m·K) 

63Sn / 37Pb 183 > 213 < 183 0.86 6.7 50 
96.5Sn / 3.0Ag 
/ 0.5Cu 

217 > 247 < 217 0.88 9.3 33 

81Pb / 19In 260 > 290 < 260 0.90 2.61 17 
80Au / 20Sn 280 > 320 < 280 0.90 6.3 57 
92.5Pb / 5.0 Sn 
/ 2.5 Ag 

287 > 317 < 287 0.91 5.0 25 

90 Pb / 10 Sn 275 > 305 < 275 0.90 5.2 25 
96.8Au / 3.2Si 363 > 393 < 363 0.92 - 27 
94.5Pb / 5.5Ag 304 > 334 < 304 0.91 3.5 23 
80Ag / 20In 
(TLPS) 

690 > 200 < 690 3.45 3.5 25 

 

Data from the above table shows that the material developed during this investigation 

exhibited electrical and thermal conductivity comparable to other available alloys.  

Even though these are encouraging findings, the measured electrical conductivity 

exhibited a decrease of about one order of magnitude below the theoretical value for 

silver.  A similar behavior has been reported for thick film conductors which 

normally exhibit an order of magnitude reduction in their electrical conductivity as 

compared to the pure metal [59].  Much of the measured drop in conductivity has 

been linked to the inherent porosity of sintered materials.  From the tabulated data it 

can be observed that if an application temperature above 300°C is desired, only a few 

alternatives are available.  These alternatives include 94.5Pb / 5.5Ag and 96.8Au / 

3.2Si, both of which will require extreme processing temperatures.  In the case of the 

Ag-In material processed by the TLPS technique, a maximum application 

temperature of 690°C is achievable while utilizing processing temperatures as low as 

200°C.  The breakthrough of this proposed technology is evident from the Tm / Tp 
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column.  Note that for all of the traditional technologies this ratio is, by definition of 

reflow, less than 1, whereas for the Ag-In TLPS system it is as high as 3.45.  This 

proposed material and manufacturing process required lengthy holding times, as long 

as 90 minutes in some instances, whereas standard reflow is usually accomplished in 

less than 7 minutes.  This difference in processing time is a tradeoff that needs to be 

considered for high volume production.  The advantage provided by this technology 

in terms of maximum application temperatures (Tm / Tp > 1) in conjunction with 

competitive electrical and thermal conductivities makes it a promising alternative for 

high temperature attach applications. 

7.3.2. Mechanical assessment: 

In order to define a suitable process for fabricating mechanical samples of the Ag-In 

material, the kinetics model developed earlier in this investigation will be used.  This 

model is capable of predicting the time for complete transformation of the material 

into a high melting point system for any specific set of controllable parameters.  In 

addition to this fundamental study, a characterization of the material in terms of its 

feasibility as an attach for electronic packaging was presented.  In previous sections 

the electrical and thermal properties of the sintered material were analyzed and the 

results were discussed.  From that assessment it was demonstrated that the optimal 

compositional range for the proposed system is from 20 � 25 Wt.% In, based on 

maximization of the fractional density and its electrical conductivity.  In electronic 

packaging securing the semiconductor chip to the substrate is also crucial; thus, the 

mechanical integrity of the attachment becomes critical.  For the complete 

characterization of the proposed Ag-In TLPS technology a mechanical assessment is 
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required.  In this section the effect of porosity (fractional density) on the attach 

strength will be studied by means of die shear.  These results will be used to 

complement the information from the kinetics model (time-to-solidification) and 

electrical/thermal characterization, so that a final recommendation can be made. 

 

Sintered materials are porous structures by the nature of their fabrication process, 

featuring microstructures dominated by solid phases and a network of pores 

throughout their volumes (Figure 50).  Mechanical behavior of these materials is 

affected by their fractional density and the morphology of their internal structure 

(pore size, interconnectivity, distribution) [11].  In previous sections it was 

demonstrated that the fractional density of this material is controlled by the amount of 

indium in the mixture, which is limited by its solid solubility in the silver-rich phases.  

Obeying this solid solubility limit is critical to achieving a shift in melting 

temperature.  Therefore, an addition of more than ~40 Wt.% In is not tolerable by the 

system because the precipitation of a persistent In-rich phase will limit the maximum 

allowable application temperature.  In order to assess the effect of solute loading on 

mechanical strength, fractional density will be controlled by varying the indium 

addition, the subsequent effect of varying fractional density on the mechanical 

strength (provided that failure occurs through the bulk) will be assessed by die shear 

of specimens fabricated with each of the pastes.  Results from this analysis should 

provide quantitative information to establish the best indium compositional range for 

mechanical properties.  This information in conjunction with the already obtained 
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optimal composition from the transport properties should give an overall optimal 

space for the composition of an Ag-In TLPS attach alternative. 

7.3.2.1.  Experimental set-up: 

During this stage of the investigation the mechanical integrity of the material will be 

assessed by means of die shear as per MIL-STD-883G Method 2019.7 [74].  In order 

to perform this test, a set of test specimens was fabricated as described in the 

following section. 

7.3.2.2.  Fabrication sequence for mechanical samples: 

Test samples consisted of back side metallized Si chips that were diced to specific 

dimensions.  Electron beam evaporation was used to deposit a thin film layer of 

chromium that served as an adhesion layer, followed by a nickel barrier layer, on top 

of which a final silver layer was deposited.  Die were to be attached to alumina 

(Al2O3) DBC substrates metallized by the same technique in which silver was 

deposited over nickel.  A schematic diagram of both the die and substrate 

metallization sequence is given in Figure 57.   

 

Figure 57.  Schematic diagram of typical test specimen, back side metallization of Si die was 
performed by electron beam evaporation as well as the silver thin film on the ceramic substrate. 
 
 

Si Cr 
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Prior to the attachment process, both the substrates and die were cleaned using 

acetone, methanol, and IPA. 

 

Solder pastes from Table 11, except for paste #3 (30 Wt.% In), were used for 

fabrication of the test samples.  The paste was deposited onto the substrate by a 

printing process using a laser cut stencil.  Figure 58 depicts the stencil used for 

sample fabrication.  After paste deposition, die were placed over the solder block and 

transferred to the furnace for the subsequent transient liquid phase sintering process. 

 

 

Figure 58.  Laser cut stencil used for paste deposition.  Apertures for the three die sizes, 8mm, 
5mm, and 3mm, are evident. 
 
 
The TLPS profile used for the fabrication of mechanical samples was similar to the 

one used during the densification study and for fabrication of the electrical test 

patterns.  This profile was defined using the kinetics study to set the processing 

parameters so that no remaining In-rich phase condition was achieved.  In this way, 

the final microstructure of all samples was similar, (i.e. dominated by an Ag-rich 

solid solution matrix with dispersed γ).  The only expected difference between 

8 mm
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samples should be their fractional density, which was already characterized in 

samples built under similar conditions.  The profile used during the fabrication 

consists of processing temperature of 300°C, heating rate of 60°C/min., and an 

isothermal holding time of 60 minutes.  A representative as-built sample is shown in 

Figure 59.  

 
(a) 

 

 
(b) 

 

Figure 59.  Typical fully populated DBC substrate fabricated with the TLPS process.  (a) The 
three die sizes are illustrated. (b) Detail of a 5mm square die attached with the Ag-In paste using 
the TLPS process. 
 
 

5 mm

1.25 mm 
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7.3.2.3.  Die shear test: 

The mechanical strength of the attach system was assessed by means of a 

standardized die shear test.  This destructive method measures the maximum shear 

load to failure.  The fractographic analysis of the surfaces provided insights into the 

fracture mode and possible failure mechanisms.  The die shear test was performed 

according to the MIL-STD883G Method 2019.7 [74].  For this investigation, the 

equipment and test parameters were as follows:  a Dage 2400 shear tester was used 

with a DS 20 Kg-F load cell, the test was set as destructive at a test velocity of 200 

µm/s, and a test height of 200 µm.  A total of eight (8) 3mm square dice per solder 

paste were tested.  Failure was based on the measured force required to cause 

complete separation in conjunction with a qualitative description of the fracture 

surface.  The shear strength of an attachment material is reported as the force required 

to shear the die from the substrate; values below the specified 2.5 Kg-F (Fig. 2019-4 

in Ref. [74]) constitutes a failure.  Results from this test must include force data 

together with the separation category, i.e. a description of the physical appearance of 

the specimen.  

 

Shear strength data for revealed that the proposed attach material fulfilled the 

minimum requirements of the standard, with all samples testing above 4 Kg-F.  

Figure 60 shows a plot of the shear strength (MPa) as function of weight percent 

indium.  From this chart it was observed that the strength of the material initially went 

up with increasing indium content, but reached a plateau at approximately 8 MPa.  It 

is worthwhile noting that even though the strength did not show a considerable 



 

 184 
 

improvement at higher indium compositions, less scattering occurred in the response 

as given by the 95% confidence interval (error bars).  Experimental data proved that 

in fact, the improved fractional density had a positive influence on the mechanical 

strength.  
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Figure 60 .  Measured shear strength for Ag-In sintered material as function of indium 
composition in the mixture.  Markers represent the mean value whereas the error bars depict the 
95% confidence interval of the experimental data. 
 
 
Figure 61 shows a combined plot from which the effect of indium addition on 

fractional density and strength is evident.  From this chart it can be inferred that 8 

MPa might be a limit to the shear strength of the material.  The effect of fractional 

density on shear strength is dominant for indium concentrations below 25%, this is 

evident from the intersection of this two properties as shown in Figure 61.  Further 
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indium addition has a very limited impact on shear strength although its effect on 

fractional density is evident.  The TLPS Ag-In material reached stable shear strength 

of 8 � 8.2 MPa above 25 Wt. In, suggesting it as a mechanical property of the formed 

alloy.     
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Figure 61.  Shear strength of Ag-In TLPS material and fractional density as function of weight 
percent indium in the mixture. 
 
 
In this section, the data from the die shear test has been attributed to the material�s 

ability to withstand a shear load, and has been discussed as a bulk material property.  

This assumption was made valid based on the fractographic analysis performed on 

shear-tested samples.  As given by the standard, die shearing not only provides 

mechanical strength information, but evidence of the dominant failure mechanism 

during fracture too.  From the fractographic analysis it was revealed that all samples 
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failed cohesively through the attach material, suggesting acceptable adhesion to both 

the die and substrate. Evidence of this can be observed in Figure 62, in which the 

DBC substrate and matching die are illustrated. 

 
     (a) 
 

 
     (b) 
   

Figure 62.  Fractograph of sample after die shear test. (a) Attach material on the DBC substrate 
showing evidence of good adhesion. (b) Matching die showing adhesion of the attach material on 
its surface confirming that failure occurred through the bulk. 
 
 
The fracture surfaces revealed that the morphology of this material is quite unique.  

The Ag-solid solution matrix together with the γ precipitates may contribute to its 

0.75 mm

0.75 mm
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mechanical properties, but the ligament features of the cellular structure are also 

critical.  Sintered materials consist of a network of pores interconnected by a solid; 

such a structure is naturally weaker than a continuous solid counterpart due to the 

reduction in material capable of withstanding the applied load.  Figure 63 depicts a 

backscattered scanning electron image of the fracture surface after the die shear test.   

 

Figure 63.  Backscattered image of the fracture surface after die shearing.  Characteristic 
features of plastic fracture through the solid were observed.  The arrow on the right indicates the 
shear direction during test. 
 
 
In this image the porosity can be observed and the shearing effect on the solid portion 

is apparent, suggesting some plastic deformation occurred prior to rupture as 

evidenced by the tearing effect.  This behavior is expected based on the known 

ductility of silver.  Although this cellular structure constitutes a weaker system 

(reflowed metallic attachments typically exhibit shear strength values ranging from 

15 � 35 MPa [20]), it provides a compliant morphology that might be capable of 

50 µm 

Shear
Direction
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absorbing higher strain energies.  Materials such as this one have been used for 

impact absorption applications in what are known as metallic foams [66].  The ability 

of this material to absorb strain energy will be tested during the reliability assessment. 

7.4 Analysis and Discussion: 

In the mechanical testing, it was demonstrated that for all cases the fracture occurred 

cohesively through the material, an indication of good adhesion to both the substrate 

and die.  The fractographic analysis revealed that the material failed in a ductile 

manner through the solid portions of the cellular structure, as evidenced by the 

plastically deformed regions in Figure 63.  The porous nature of the material makes it 

a relatively weaker attach when compared to other metallic technologies, a reduction 

to about 1/3 of the shear strength (taking 25 MPa as the average [73]) of common 

metallic alloys was observed during this investigation.  This might be a considerable 

difference, but in terms of acceptability, it surpasses the minimum requirements [74] 

in all cases.  For higher fractional densities, i.e. higher indium additions, the material 

exhibited a more stable mechanical response, as given by a smaller scattering from 

the error bars (95%CI); but not a significant improvement in strength.  

 

Among the objectives of this investigation, the development of a variable melting 

point Ag-In system by TLPS was the most important.  The fundamental study of the 

in-situ alloying reaction and its kinetics modeling was the foundation for further 

exploration regarding a practical material/method for high temperature die 

attachment.  The densification study proved that particle rearrangement and 

compaction were driven primarily by the amount of liquid formed during the process.  



 

 189 
 

As expected from any porous structure, its physical properties were a function of not 

only the main elemental constituents but also of the morphology of its microstructure.  

Guided by this knowledge, an electrical, thermal, and mechanical characterization of 

the Ag-In material was performed with acceptable results presented in the previous 

sections.  From a processing perspective, TLPS of pastes limited to ~ 40 Wt.% In and 

below provided a breakthrough in the soldering paradigm due to a shift to Tm / Tp > 1.  

It was also demonstrated, by the kinetics model, that higher processing temperatures 

resulted in faster times to the zero remaining In-rich phase condition, i.e. complete 

removal of the low melting point material and subsequent achievement of the shift in 

melting point.  It was evident from this study that smaller amounts of indium 

corresponded to shorter the times to full solidification, so minimization of processing 

time would have resulted in a reduction of indium to zero; but obviously that would 

have defeated the entire purpose of the study.  The indium is the MPD constituent that 

forms the liquid during the process, a phase necessary for the pressure-less 

densification during the sintering operation.  Thus, the minimization of time proved to 

be part of the desired solution, but a method for calculating the necessary minimal 

addition of indium was needed.  By using the trend in electrical conductivity, an 

optimal compositional range (indium Wt. fraction) was obtained.  In this case, 

addition of 20 � 25 Wt.% In resulted in maximum conductivities and optimal 

fractional densities (~ 70 � 80%).  Additional complementary information was 

obtained from the mechanical assessment, from which the best results were observed 

for indium additions above 20 Wt.% where the shear strength exhibited a more stable 

(less scattering) behavior.  The shear strength of this material tended to stabilize at 
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around 8 MPa with a small improvement with incremental indium as shown in Figure 

60.  In order to provide an overall recommendation, an analysis of the combined 

properties was performed.  Figure 64 shows a combined plot in which the measured 

shear strength and the electrical conductivity of the sintered Ag-In system are given 

as function of indium content (Wt. % In).  In Figure 65 the same data is plotted as a 

function of the fractional density of the sintered structure. 
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Figure 64.  Combined plot showing the measured electrical conductivity and shear strength of 
the TLPS Ag-In system as function of indium content. 
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Figure 65.  Combined plot showing the measured electrical conductivity and shear strength of 
the TLPS Ag-In system as function of fractional density. 
 
 
From these two figures it can be observed that even though the mechanical strength 

shows a slight tendency to improve with increasing indium content, such an addition 

adversely affects the electrical (and thermal) conductivity.  In order to have an 

optimal overall performance from this material, the indium addition should be 

controlled to values ranging from 20 to 26 Wt.%.   

 

This compositional range provided encouraging results in terms of the feasibility of 

the proposed TLPS process for creating a suitable electronic packaging attach.  From 

the kinetics model and the microstructural analysis, a paste with the suggested indium 

content can be processed at temperatures below 300°C and reach full transformation 
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in 60 minutes or less.  Specific time-temperature responses can be obtained from the 

model developed as part of this investigation. 

7.5 Reliability assessment: 

Reliability refers to the probability that a system can perform its intended function 

under the specified life cycle operating environmental conditions for a specific period 

of time.  During this investigation, a reliability test was performed on die-attached 

specimens using the Ag-In TLPS paste fabricated with the best known method.  This 

best embodiment was defined by several characteristics, including composition, 

heating rate, processing temperature, and isothermal holding time.  A mixture was 

considered first.  A mixture consisting of 75 Wt. %Ag � 25 Wt. %In was selected 

based on a trade-off of its resulting fractional density, electrical/thermal conductivity, 

and mechanical strength.  The processing profile was tailored using the kinetics 

model so that complete transformation of the In-rich phase together with its 

accompanying microstructural evolution was obtained.  The settings for the sintering 

process were as follows: heating rate = 60°C/min., processing temperature = 300°C, 

and isothermal holding time = 60 minutes.  Details of the test specimen fabrication 

using the solder paste together with the TLPS profile are described in the following 

section. 

7.5.1. Fabrication: 

Test samples were fabricated using the technique described in the fabrication 

sequence for mechanical samples in section 7.3.2.2.  A laser cut stencil with apertures 

for three die sizes was used for printing the paste onto the metallized alumina DBC 
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substrates (Figure 58).  Back side metallized Si chips were placed in position and the 

entire assembly was processed in the sintering furnace.  A representative as-built 

sample is depicted in Figure 59.  Table 15 summarizes the fabrication matrix and 

specifications for the reliability test. 

Table 15.  Specifications for test specimens used during the reliability test. 
Die 

Material Size Thickness Metallization Deposition 
Si 3.3mm X 3.3mm 

5mm X 5mm 
7.5mm X 7.5mm 

500 µm Cr � Adhesion 
Ni � Barrier 

Ag - Bonding 

PVD 
(electron-beam 

evaporation) 
Substrate 

Material Metallization Deposition 
Al2O3 DBC (Direct Bond Copper) 

Ni � Barrier Layer 
Ag � Bonding Layer 

Ni:  Electroless Plating 
Ag:  e-beam evaporation 

 

7.5.2. Reliability test: 

The ability of this material to render its intended function throughout its expected life 

cycle was studied by means of passive thermal cycling.  When test specimens are 

subjected to thermal cycling, the global mismatch in coefficient of thermal expansion 

between the substrate and die will cause stresses to be placed on the attach material.  

By subjecting a statistically significant number of samples to different temperature 

cycles (given by ∆T), distinct strain values are developed.  Two different accelerated 

thermal profiles were generated for this investigation (HT and LT), which were 

carried out in a SUN EC12 environmental chamber.  The high temperature profile 

(HT) was designed to subject the samples to temperature cycling from -55°C to 

185°C with a 5 minute dwell at -55°C and a 10 minute dwell at 185°C for a ∆T of 

240°C at a Tmean of 65°C.  The low temperature profile (LT) was designed to subject 

the samples to temperature cycling from -55°C to 150°C with a 5 minute dwell at       
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-55°C and a 10 minute dwell at 150°C for a ∆T of 205°C at a Tmean of 47.5°C.  

Specifications of the LT profile correspond to the test condition H and soak modes 2 

and 3 as given by the JEDEC standard temperature cycling specification [75].   A 

schematic of both profiles is given in Figure 66.  The combination of the three die 

sizes (Table 15) with the two thermal profiles (HT and LT) provided a total of six 

strain levels.  Samples were removed from the temperature cycling chamber after 

every 50 cycles for inspection using X-ray imaging. Failure of the die attach was to 

be defined based on crack propagation through the bond area, as observed by X-ray.  

Joints were to be deemed as failures when the crack/delamination exceeded 20% of 

the bonding area.  Initial characterization of the as-built samples was used as the base 

line for failure definition. 

 

Figure 66.  Schematic diagram of the two thermal cycling profiles used during the reliability 
assessment. 
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7.5.3. Results and Discussion: 

A total of 2,200 LT cycles were completed for all three die sizes without observing 

discernible degradation of the attach material as revealed by X-ray and physical 

inspection.  For the HT profile, no failures were observed after 1,000 cycles for all 

sizes, though extensive damage to the DBC substrates was observed.  Separation of 

the copper from the ceramic material began at the corners of the substrate and fracture 

progressed as a crack through the ceramic.  From these observations it was revealed 

that the proposed Ag-In TLPS attach material outperformed the DBC substrates 

during the thermal cycling test.  Results obtained from life cycle data (cycles) were 

comparable to the observed performance of the Pb-rich solder; the most widely used 

material for high temperature electronic applications [9][10].  When compared to 

lead-free alternatives, it outperformed technologies such as sintered Ag-nano colloids 

as well sintered silver nano-particle pastes [9][10].  Both of these technologies 

resulted in complete separation of the die from the substrate.  For the case of the LT 

test all samples, of the aforementioned two technologies, failed at or before 700 

cycles, whereas for the HT condition all samples failed at or before 400 cycles.  To 

avoid the uncertainties associated with the subjective characterization of damage from 

an X-ray image (from which no discernable change was observed after 2,200 cycles), 

the failure criterion for the relative reliability study was changed to cycles for 

complete separation [10].  For all attach materials tested under similar conditions, the 

data was recorded using this new failure definition.  At the conclusion of the 

investigation, the Ag-In TLPS material had significantly outperformed all of the 
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tested lead-free alternatives, and proven that its reliability was competitive with Pb-

rich attaches for high temperature applications. 

7.6 Conclusion: 

The resulting liquid phase sintered material exhibited a porous structure as expected 

from the TLPS powder metallurgy technique.  The densification of this material was 

studied in terms of the fractional density, which was demonstrated to be influenced 

heavily by the indium fraction in the mixture.  Transport and mechanical properties of 

porous materials are known to be sensitive to their fractional density (packing).  From 

this investigation an order of magnitude (1/10) reduction of electrical conductivity 

was obtained when compared to a fully dense solid.  The addition of indium proved to 

increase the densification of the system, but it also introduced an impurity effect on 

the final overall electrical performance.  Optimization of the electrical conductivity of 

this material, while yielding an acceptable fractional density and not affecting its 

shifting melting point capability, resulted in a recommended indium addition of 20-25 

% by weight. 

 

The mechanical integrity of the system is a critical aspect of its feasibility as a die 

attach.  During this investigation the mechanical strength was assessed by die shear.  

Indium additions had a dominant effect on fractional density, which indeed affected 

the mechanical response of the system.  Increasing fractional density resulted in a 

stable shear strength of 8 � 8.2 MPa with failure by cohesive fracture through the 

bulk.  Results suggested that a minimum indium addition of approximately 20 Wt.% 

should be used to optimize the strength of the Ag-In TLPS system.  A combined 
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analysis, from which transport properties, mechanical strength, and fractional density 

were optimized, resulted in a final recommendation of 20 � 26 weight percent indium 

to provide the best embodiment.  In this case, �best embodiment� is defined as an 

attach with competitive properties as compared to other metallic alternatives for high 

temperature environments, in addition to the superior advantage of a Tm / Tp >1.  

From the kinetics model, achievement of a full transformation into a new melting 

point could be accomplished in a processing time of 60 minutes or less, depending on 

the processing temperature. 

 

From the reliability assessment it was concluded that this material is capable of 

withstanding high temperature environments, outperforming other alternatives such 

as silver nano-colloids as well as silver nano-pastes.  The cellular nature of this 

structure together with its new higher melting point, which inhibits creep damage, 

was theorized as the cause for the obtained reliability.      
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Chapter 8: Conclusions 

Transient liquid phase sintering was presented as a method to obtain the desired shift 

in melting point of the Ag-In system.  The successful accomplishment of this melting 

temperature transformation provided a breakout from the conventional soldering 

process temperature hierarchy in which a novel Tm / Tp > 1 ratio was demonstrated.  

The transient nature of this in-situ alloying process required a fundamental 

understanding of its reaction kinetics.  A differential scanning calorimetry technique 

(DSC) was employed from which the progression of the process, in terms of the 

remaining fraction of In-rich phase, was studied.  This experimental method provided 

an accurate tool for understanding the reaction kinetics, and served as the basis for the 

estimation of a reaction rate as a function of silver particle size.  A diffusion based 

analytical model was used to provide the physical significance of the DSC method.  

Phase transformations from DSC traces were confirmed from the microstructural 

analysis where phase evolution, as a function of isothermal holding time, was 

revealed together with morphological aspects of the Ag-In system�s internal structure. 

 

A comprehensive kinetics model for the entire time regime during the TLPS process 

was developed using response surface methodology (RSM).  This prediction model 

provided a tool for tailoring the process as function of controllable parameters such as 

heating rate, processing temperature, isothermal holding time, silver particle size, as 

well as mixture composition.  Contour maps from this empirical prediction model 

proved useful in tailoring the process for particular application conditions.  Model 

adequacy was confirmed using a mechanistic diffusion based model for powder 
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mixtures, which provided an estimation of the response for the isothermal 

solidification stage, but not for the later stages.  The mechanistic model concurred 

with the empirical method during the time frame governed by the isothermal 

solidification stage, in which the fraction of remaining In-rich phase obeyed the 

square root law.  Overestimation of solidification time from the mechanistic model 

was mainly attributed to geometrical factors, primarily to the assumption of mono-

sized and perfectly shaped particles considered for the mathematical solution.  The 

RSM proved to be a more accurate tool, and more importantly, it was capable of 

modeling the three stages of the TLPS process as inter-dependant steps.  The 

metallographic analysis yielded crucial information about the progression of the 

TLPS process in terms of microstructural evolution as a function of holding time.  It 

was confirmed that a transition exists, detected by the statistical analysis from the 

DSC experiment as well, at which the low melting In-rich phase matrix is overtaken 

by the growing Ag-rich solid solution network.  After this point, the remaining In-rich 

phase was present as the discontinuous phase which subsequently delayed the 

diffusional solidification process; a condition that was not recognized by the 

mechanistic model.  The combination of the experimental DSC method together with 

the mechanistic approach for studying the reaction kinetics, assisted by 

metallographic observations, resulted in a comprehensive fundamental 

characterization of the TLPS process kinetics for the Ag-In paste. 

 

Fabrication of samples for the mechanical and electrical characterization was done 

following the best method as defined by the kinetics model.  In all cases, specimens 
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were fabricated so that complete transformation of the In-rich phase was attained, 

which resulted in the desired final melting point shift.  By standardizing the silver 

particle size (-500 Mesh - 25µm), heating rate (60°C/min.), processing temperature 

(300°C), and isothermal holding time (60 min.), a stable microstructure was obtained.  

The fractional density of the resulting porous material proved to be governed by the 

fraction of indium addition in the mixture.  Excellent consolidation was observed 

with increasing indium content, but achievement of a transient low melting phase was 

limited to an upper bound defined by the maximum solid solubility of indium into a 

silver-rich phase.  The effect of fractional density on the electrical conductivity of the 

sintered material was analyzed, from which an interesting competing effect was 

established between increasing density and declining conductivity as function of 

indium addition.  The mechanical integrity of the material was assessed and its 

correlation with fractional density was established.  A combined analysis, for which 

maximization of electrical conductivity together with improved mechanical strength 

was the goal, yielded a recommended indium addition range between 20 � 26 weight 

percent.  This mixing ratio of (74 � 80)Wt.% Ag � (20 � 26)Wt.% In resulted in a 

shifting melting point system achievable in holding times of 60 minutes or less that 

exhibited competitive electrical, thermal, and mechanical properties. 

 

The reliability of this material was assessed for a specific set of conditions by means 

of passive thermal cycling.  Within the test conditions it was concluded that this 

material is capable of withstanding high temperature environments, outperforming 

other alternatives such as silver nano-colloids as well as silver nano-pastes.  The 
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cellular nature of this structure together with its new higher melting point, which 

inhibits creep damage, was theorized as the cause for the obtained reliability.     
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Chapter 9: Contributions 

The main objective of this investigation was to develop a shifting melting temperature 

solder paste by means of a TLPS method which could serve as an enabler for high 

temperature electronic packaging.  The fundamental understanding of the underlying 

in-situ alloying reaction at the processing temperature was identified as critical for 

this investigation.  A microstructural characterization of this novel material as well as 

an electrical and mechanical assessment was performed as part of the feasibility 

study.  From this investigation the following contributions can be listed: 

• Developed a formulation for an Ag-In paste that when processed using a 

TLPS technique, exhibited a shift in its melting temperature. 

• Demonstrated a major advancement over the conventional soldering process 

temperature hierarchy, in which a novel Tm / Tp > 1 was established while 

using traditional, pressure-less assembly methods for a solder paste.  Thermal 

stability of the newly formed alloy was confirmed to 500°C. 

• Developed an empirical model for the reaction kinetics of the system as 

function of controllable parameters, which served as a tool for process 

control. 

• Determined the stages of the Ag-In TLPS progression based on 

microstructural evolution studies. 

• Established the effect of fractional density on shear strength and electrical 

conductivity as a function of indium weight fraction. 
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• Determined an optimal paste formulation in terms of compositional range 

together with optimum processing parameters as suggested from the kinetics 

model. 

• Demonstrated a proof-of-concept using the material as a die attach for a high 

temperature package.  The reliability of the system was confirmed by passive 

thermal cycling.  
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Appendices: 
 
Appendix 1.  DSC data for phase I DOE 
 Paste A: 

Sample
HoldingTi
me (min)

Weight 
(mg)

Eu 
Melt.Temp 

(°C)
Eu Endo 

Start (mW)
Eu Endo 

End (mW)
φ Melt. 

Temp (°C)
φ Endo 

Start (mW)
φ Endo 

End (mW)
φ Exo Start 

(mW)
φ Exo End 

(mW)
Eu Exo 

Start (mW)
Eu Exo 

End (mW)

 % Remaining 
In [(Integration 

ratio)*23]
22 0 45 146 57.4 63.6 174 57.4 89.8 0 -4.8 0.2 -2.9 20.5
23 0 62 147 69.5 77.6 172 70 109.5 -10 -15.2 -12.2 -16.1 19.1
24 0.5 73 147 77.2 84.7 172 74 130 -17.1 -22.1 -18.5 -21.8 13.1
25 0.5 77 147 82 90.8 173 77 135 -18.1 -23.6 -20 -23.6 13.6

5 1 44 146 53 57.3 172 53 87.6 -7.6 -9.1 -6 -7.7 8.2
7 1 69 146 70.7 78.6 173 70.7 129.7 -19.6 -23.2 -18.5 -21.6 10.0
8 2 58 146 64.5 68.7 174 64.5 99 -13 -14.9 -11.8 -13.4 9.0
9 2 80 146 80.9 89.6 174 80.9 139.2 -23.7 -26.7 -22.5 -24.6 7.6

10 5 89 146 64.8 70.7 174 64.8 104.6 -10.5 -11.7 -9.1 -9.9 4.4
11 5 72 147 77.2 84.6 174 77.2 124.3 -20.2 -21.5 -18.8 -19.6 3.9
12 10 73 147 78.7 84 175 78.7 118.4 -19.4 -20 -17.7 -18 2.0
13 10 56 146 65.5 69.6 174 65.5 99.6 -11.2 -11.8 -10.1 -10.5 2.6
14 15 64 148 69.4 73.2 175 69.4 98.6 -11.5 -12.1 -10.5 -10.8 2.7
15 15 57 148 62.9 66.9 174 62.9 92.3 -8.1 -9 -8.5 -8.8 3.6
16 25 48 148 58.5 61.9 174 58.5 84.8 -2.7 -3.4 -3.1 -3.4 3.4
17 25 66 148 75.4 79.1 174 75.4 108.1 -6.7 -7.4 -7 -7.2 2.5
18 40 65 148 71.9 75.3 174 71.9 101.2 -9.4 -10.1 9.8 10.1 3.1
19 40 67 149 79.7 83.3 174 79.7 109.8 -4.2 -5.2 -5.1 -5.4 3.9
20 60 70 149 82 86.1 174 82 116.1 0 0 -4.2 -4.3 0.3
21 60 64 149 79.4 84.3 173 79.4 114 0 0 0 0 0.0  

 
 Paste B: 

Sample

Holding
Time 
(min)

Weight 
(mg)

Eu 
Melt.Temp 

(°C)

Eu Endo 
Start 
(mW)

Eu Endo 
End 

(mW)
φ Melt. 

Temp (°C)

φ Endo 
Start 
(mW)

φ Endo 
End (mW)

φ Exo 
Start 
(mW)

φ Exo 
End 

(mW)
Eu Exo 

Start (mW)
Eu Exo 

End (mW)

 % 
Remaining In 
[(Integration 

ratio)*32]
33 0 72 147 70 92.7 170 70 109.4 -14.5 -25.8 -19.8 -27.3 30.3
34 0 45 147 54.1 69 168 54.1 81.9 0 -7.8 -4 -8 27.6
35 0.5 46 147 56.9 73.6 170 56.9 85.6 6.8 0.1 -0.5 -4.5 23.6
36 0.5 56 147 62.7 82 168 62 99.3 -3.6 -10.1 -9 -12.6 17.8
17 1 60 147 58.4 82.4 168 58.4 95.8 -5 -12 -9.4 -10.6 13.4
25 1 56 146 54.2 72.7 168 54.2 90.5 -13.7 -6.5 -13.7 -12.6 15.1
18 2 53 147 57.8 76 167 57.8 91.5 -4 -10.3 -7.3 -8.4 14.3
26 2 50 145 55.1 70.4 168 55.1 86 -8.3 -2 0 0 13.6
19 5 60 147 60.9 88 168 60.9 104.8 -4 -11.3 -5 -5.4 10.8
27 5 53 147 58.1 75.4 168 58.1 91.3 -7.6 -1.2 -2.8 -2.1 14.1
20 10 65 147 64.4 92.5 168 64.4 111.4 -4.7 -10.5 -6.5 -7.6 9.2
28 10 51 147 58.8 73.9 168 58.8 90.6 -2.3 2 0.2 0.95 10.8
21 15 66 147 67.3 94.4 168 67.3 111 -5.5 -10.3 -6.6 -7.8 8.5
29 15 51 146 60.8 76 168 60.8 91.5 0.4 4 1.12 2.4 10.6
22 25 57 147 59.6 77 168 59.6 96.5 0 -3.2 -1.1 -2.1 7.7
30 25 51 147 60.9 76 168 60.9 92 1.9 3.96 3 3.9 6.4
23 40 53 146 59.6 81.7 168 59.6 96.6 1.7 3.4 1.7 2.1 3.6
31 40 43 146 55.1 70.2 168 55.1 84.3 6.6 8 0 0 3.2
24 60 61 146 64.9 88.5 168 64.9 107.8 0.3 1.7 0 0 2.1
32 60 68 147 68.8 89.3 169 68.8 109.3 -3.7 -2.5 0 0 2.0
37 90 50 147 57.9 76.7 168 57 90 2.3 1.6 0 0 1.4
38 90 41 146 50.7 68.6 168 50.7 79.4 5.5 5.2 0 0 0.6  
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 Paste C: 

Sample

HoldingT
ime 

(min)
Weight 
(mg)

Eu 
Melt.Temp 

(°C)

Eu Endo 
Start 
(mW)

Eu Endo 
End 

(mW)

φ Melt. 
Temp 
(°C)

φ Endo 
Start 
(mW)

φ Endo 
End 

(mW)

φ Exo 
Start 
(mW)

φ Exo 
End 

(mW)

Eu Exo 
Start 
(mW)

Eu Exo 
End 

(mW)

 % 
Remaining In 
[(Integration 

ratio)*27]
S1C 0 56 147 48.7 71.4 170 48.7 66.2 -6.8 -15.7 0 0 22.1
S2C 0 63 148 54.8 78.5 170 54.8 71.1 -7.2 -17 0 0 24.5
S3C 0.5 65 147 56.3 81.6 171 56.3 71 -8.1 -17.8 0 0 24.3
S4C 0.5 61 147 49.9 67 171 49.9 71.9 -8.2 -17.2 0 0 23.0
S5C 1 51 147 48.3 70 171 48.3 65.2 -1 -9.5 0 0 22.0
S6C 1 46 147 47.6 67.3 170 47.6 63 1.1 -5.2 0 0 17.9
S7C 2 67 147 53.7 72.5 172 53.7 76 -10.4 -16.6 0 0 15.1
S8C 2 52 147 50.7 75.2 171 50.7 60.8 -2 -6.5 0 0 13.0
S9C 5 59 147 56.7 84.5 171 56.7 67 -4.4 -7 -3.7 -4.6 9.2
S10C 5 64 147 59.1 93.1 171 59.1 68.2 -6.6 -9.5 -5.1 -6.2 9.3
S11C 10 62 147 57.9 93.8 172 28.7 55.5 -4.6 -6.2 -3.3 -4.2 4.0
S12C 10 64 147 59.8 86.4 171 59.8 74.8 -3 -3.9 0 0 2.2
S13C 15 65 147 62.3 94.8 172 57.4 63.5 -5.7 -6.5 0 0 2.1
S14C 15 53 147 55.2 88.7 171 50.9 56.4 0.6 -0.1 0 0 1.8
S15C 25 46 147 47.9 62.7 170 47.9 71.7 5.7 5.3 0 0 1.0
S16C 25 60 146 48.5 73.9 172 48.5 69.2 -7.5 -8 0 0 1.1
S17C 40 54 147 46.2 72.5 172 46.2 57.7 -2.9 -3.2 0 0 0.8
S18C 40 49 146 43.8 57.9 170 43.8 65.8 -0.7 -0.88 0 0 0.5
S19C 60 69 147 56.8 74.9 170 56.8 85.4 0 0 0 0 0.0
S20C 60 70 147 56.7 91.4 171 40 56.5 0 0 0 0 0.0  
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Appendix 2.  Kinetics model for Pastes A and B: 
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Prediction of the Remaining In-rich material by model fitting the experimental data 
from Paste A (5 µm silver particle size).  Markers denote complete Paste A DSC data 
from the experiment, the solid line is the prediction from the model. 
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Prediction of the Remaining In-rich material by model fitting the experimental data 
from Paste B (50 µm silver particle size).  Markers denote complete Paste B DSC 
data from the experiment, the solid line is the prediction from the model. 
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Appendix 3.  Correlation of empirical constants and Ag particle size: 

Scatter plot of yo and silver particle size (µm): 
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Scatter plot of A1 and silver particle size (µm): 

Scatterplot of A1 vs. PS
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Scatter plot of τ and silver particle size (µm): 

Scatterplot of Tau vs. PS

y = 0.1769x + 0.3458
R2 = 0.9966
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Appendix 4.  DSC data for phase II DOE: 
 
Data for isothermal time = 0 

Sample
HoldingTime 

(min) Weight (mg)

Eu 
Melt.Temp 

(°C)
Eu Endo 

Start (mW)
Eu Endo End 

(mW)
φ Melt. Temp 

(°C)
φ Endo Start 

(mW)
φ Endo End 

(mW)
φ Exo Start 

(mW)
φ Exo End 

(mW)
Eu Exo Start 

(mW)
Eu Exo End 

(mW)

Normalized 
% Remaining 

In 
[(Integration 
ratio)*Initial 

In Wt%]
1 0 30 156 35.21 50.12 170 35.21 38.22 7.16 5.76 6.68 6.5 8.8
2 0 52 146 31.45 53.47 166 31.45 86.6 -8 -16.73 -5.1 -7.6 14.6
3 0 35 146 38.26 45 166 38.26 78.88 1.48 -7.18 0 0 18.3
4 0 43 156 42.35 72.4 170 34.6 37.5 4.16 3.54 0 0 1.9
5 0 35 146 29.5 35.9 166 29.5 80 6.9 -0.12 6.2 5.5 13.6
6 0 50 146 43 60.6 166 43 85.4 0.91 -11.7 -2.2 -23.5 56.5
7 0 46 156 45.17 69.5 170 45.17 52.2 2.45 1.83 0 0 2.0
8 0 57 146 51.2 81.3 168 51.2 104 -5 -13.1 -4.1 -23.6 33.3
9 0 52 146 48.1 50.8 166 48.1 113.1 0.98 -9.8 -1.1 -5.5 22.4

10 0 50 156 35.1 54.4 166 35.1 53.5 2.1 1.8 0 0 0.8
11 0 45 146 33.8 39.8 166 33.8 94.7 2 -7.9 0 0 14.8
12 0 42 156 34.5 57.3 170 27.6 32.1 7.3 5.8 0 0 5.5
13 0 48 146 34.2 40.2 167 34.2 97.6 1.5 -9.9 0 0 16.4
14 0 50 146 47.2 51.82 170 47.2 110.5 0 -14.5 0 0 21.3
15 0 50 146 35.2 60.5 167 35.2 88.2 4.4 -9.9 1.2 -11.6 34.6
16 0 50 156 37.6 57.2 166 37.6 48.1 4.5 4 0 0 1.7
17 0 55 156 37.8 66.6 170 28.3 35.2 0.7 0.07 0 0 1.8
18 0 43 156 48 69.2 170 48 53 7.5 6.9 0 0 2.3
19 0 45 146 46.7 74.2 167 46.7 87.4 9.2 -2.9 4.6 -15.2 46.8
20 0 41 156 46.5 68.4 170 38 43.7 11.4 8.5 0 0 10.5
21 0 35 156 35.6 51.2 170 35.6 45.4 11.8 10.6 0 0 4.7
22 0 41 146 45.7 79.8 169 45.7 86.7 6 0 6.83 -3.5 21.7
23 0 38 156 47.7 70 170 38.7 45.5 15.9 13.8 0 0 7.2
24 0 42 156 48 71.5 170 39.9 46.2 9 7.8 0 0 4.0
25 0 38 146 34.8 40 166 34.8 83 13.96 6.5 9.9 7.6 18.3
26 0 44 156 37.1 60.1 170 30.7 39.1 8.2 7.6 0 0 1.9
27 0 52 156 51.9 80.2 170 40.9 48.1 9 5.6 0 0 9.6
28 0 40 156 38.6 57.9 170 29.6 40 12 9.6 10.6 9.9 10.4
29 0 57 146 40.4 84.9 166 40.4 107.6 8.2 -8.1 3.4 -13.3 29.5
30 0 50 146 40.2 77.7 170 40.2 97.1 4.8 -6.4 4.3 1.1 15.3
31 0 57 146 65.2 81.1 168 65.2 133.5 14 0.7 6.3 0.46 22.7
32 0 45 156 37.6 57.5 170 37.6 45.6 8.1 6.5 0 0 5.7  

 
Data for isothermal time = 0.5 

Sample
HoldingTime 

(min) Weight (mg)

Eu 
Melt.Temp 

(°C)
Eu Endo 

Start (mW)
Eu Endo End 

(mW)
φ Melt. Temp 

(°C)
φ Endo Start 

(mW)
φ Endo End 

(mW)
φ Exo Start 

(mW)
φ Exo End 

(mW)
Eu Exo Start 

(mW)
Eu Exo End 

(mW)

Normalized 
% Remaining 

In 
[(Integration 
ratio)*Initial 

In Wt%]
1 0.5 35 146 38.7 47.7 166 38.7 78.2 5.2 0 2.2 0 15.3
2 0.5 43 146 47.4 57.6 166 47.4 97.3 7.4 -5.2 0 0 21.0
3 0.5 57 146 35.1 74.1 166 35.1 92.5 -1.8 -11.4 -6.6 -18 21.8
4 0.5 53 146 39.8 56.5 166 39.8 102.6 3.7 -7.5 0 0 14.1
5 0.5 57 146 30.7 72.2 166 30.7 98.3 1.4 -15.3 0 0 15.3
6 0.5 47 156 37.1 57.6 170 27.3 38.7 8.01 7 0 0 3.2
7 0.5 63 156 57.7 89.9 170 45.5 52.2 1.4 -0.11 0 0 3.9
8 0.5 50 146 47.9 63 166 47.9 110.7 13.1 3.3 0 0 12.6
9 0.5 37 156 31.6 45.1 170 30 40.5 9 7.7 0 0 5.4

10 0.5 40 156 45.5 65 170 30.8 42.1 9.4 7.6 0 0 5.8
11 0.5 57 146 45.8 95.4 166 45.8 100.2 -8.5 -19.5 -12.1 -41 38.4
12 0.5 40 156 39.7 56.6 170 39.7 52.7 16 14.4 0 0 5.4
13 0.5 48 156 53.1 77.5 170 34 53 11.1 9.8 0 0 3.0
14 0.5 43 156 39.5 55.1 166 39.5 55.8 13.9 13 0 0 2.8
15 0.5 38 156 43.8 63.6 170 20 43.3 6.7 5.8 0 0 2.1
16 0.5 36 146 30.6 59.5 166 30.6 74.8 5.7 -4.6 4.5 4 14.8
17 0.5 40 146 43.2 63 166 43.2 100.3 3.5 -10.2 3.1 2.6 18.5
18 0.5 43 146 32.3 51.5 166 32.3 92.8 1.7 -4.3 1.8 1.4 8.0
19 0.5 42 156 43.7 68.4 170 22.3 41.5 2.9 1.9 0 0 2.3
20 0.5 43 146 45.2 69.8 166 45.2 99 1 -5.1 0.2 -3.3 12.2
21 0.5 30 146 28.4 44.5 166 28.4 74.4 9.2 1.5 0 0 12.4
22 0.5 40 146 44.8 85.6 166 44.8 86.7 5.9 -5.3 4.4 -1.7 20.9
23 0.5 33 146 32.5 60.5 166 32.5 75.9 9.9 4.9 5.4 -4.7 21.1
24 0.5 38 146 43.5 80.4 166 43.5 85.1 7.6 -4 6 0.3 22.0
25 0.5 45 156 46.5 69.5 170 36.1 47.9 5.3 3.3 0 0 5.7
26 0.5 50 146 49.4 94.2 167 49.4 100.1 1.4 -5.2 -4.7 -26.3 29.5
27 0.5 56 156 37.7 60.6 170 37.7 46.1 2 0.9 0 0 3.5
28 0.5 35 156 41.5 60.4 170 32.6 41.4 0 0 0 0 0.0
29 0.5 30 156 29.8 41 166 29.8 37.6 0 0 0 0 0.0
30 0.5 45 156 47.3 74 170 38.9 46.1 0 0 0 0 0.0
31 0.5 30 156 29 42.4 170 29 37.7 11.1 10.2 0 0 4.1
32 0.5 40 156 33.5 50.6 170 33.5 42.5 0 0 0 0 0.0  
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Data for isothermal time = 1 

Sample
HoldingTime 

(min) Weight (mg)

Eu 
Melt.Temp 

(°C)
Eu Endo 

Start (mW)
Eu Endo End 

(mW)
φ Melt. Temp 

(°C)
φ Endo Start 

(mW)
φ Endo End 

(mW)
φ Exo Start 

(mW)
φ Exo End 

(mW)
Eu Exo Start 

(mW)
Eu Exo End 

(mW)

Normalized 
% Remaining 

In 
[(Integration 
ratio)*Initial 

In Wt%]
1 1 36 156 23.4 32.7 166 23.4 41.9 8.2 7.4 0 0 2.9
2 1 53 146 27.5 60.6 166 27.5 81.8 0.11 -6.9 -4.3 -21 27.1
3 1 48 156 28.1 44.1 170 28.1 38.1 0 0 0 0 0.0
4 1 43 146 30 53.6 166 30 86.9 4.7 -3.8 0 0 10.6
5 1 35 146 32.9 52.3 166 32.9 71.7 5.7 -2.7 0 0 14.4
6 1 46 156 40.3 65.2 170 13.1 33.1 2.7 2.2 0 0 1.1
7 1 40 156 36.9 58.5 170 11 32.8 0 0 0 0 0.0
8 1 55 145 39.3 91.9 166 39.3 96.8 -0.2 -21 -1.7 -7.1 23.8
9 1 39 145 37.1 63.8 166 37.1 81 4 -0.9 2.2 0.6 9.2

10 1 37 156 33.4 45.4 170 33.4 39.7 5.9 4.9 6.6 6.5 6.0
11 1 36 156 34.3 53.4 170 10.6 34.8 7.8 7.6 0 0 0.5
12 1 38 146 21.7 44.5 166 21.7 77.6 6.4 -1.4 0 0 9.9
13 1 28 156 23.8 36 170 23.8 31.8 11.7 11.3 0 0 2.0
14 1 31 156 19.6 24.9 166 19.6 43.6 10.7 10.6 0 0 0.3
15 1 34 156 21.6 29.8 166 21.6 44.5 9.5 9.3 0 0 0.6
16 1 52 146 43.5 73.2 166 43.5 111.3 -1.9 -9.3 -7 -10.4 11.1
17 1 41 146 27.2 61.9 167 27.2 78.9 6.7 -6.3 0 0 15.0
18 1 38 146 31.4 73.3 167 31.4 74.5 5.5 0.5 2.4 -13.1 24.1
19 1 32 156 23.8 32.4 170 23.8 40.9 8.6 8.4 0 0 0.8
20 1 25 156 29.3 41.2 170 15 30.5 11.7 11.3 0 0 1.5
21 1 28 146 24.3 49.6 166 24.3 60.2 10.5 6.7 8.6 -2 23.5
22 1 29 156 20.5 25.8 166 20.5 41.8 11.9 11.2 0 0 2.6
23 1 23 145 22.2 36.5 166 22.2 56.8 11.1 8.1 8.7 8.4 6.7
24 1 52 146 26.9 63.9 166 26.9 85.2 0 -15.3 0 0 16.1
25 1 23 146 28.4 47.7 167 28.4 58.3 12.8 6.5 0 0 12.8
26 1 37 146 32.9 69.9 167 32.9 72.2 7.7 -5.2 6.2 3.6 20.3
27 1 43 156 38.5 53.3 170 38.5 45 5.7 4.4 6.1 5.9 7.0
28 1 38 146 35.1 72 166 35.1 72.3 5.5 0.7 1.3 -13.1 25.9
29 1 35 156 33.4 45.6 170 33.4 41 0 0 0 0 0.0
30 1 30 146 23.2 42.4 166 23.2 68.7 10 5.8 10.1 9.9 6.8
31 1 31 156 32.5 45.7 170 32.5 36.3 0 0 0 0 0.0
32 1 34 156 25.2 36.9 166 25.2 36.5 0 0 0 0 0.0  

 
Data for isothermal time = 5 

Sample
HoldingTime 

(min) Weight (mg)

Eu 
Melt.Temp 

(°C)
Eu Endo 

Start (mW)
Eu Endo End 

(mW)
φ Melt. Temp 

(°C)
φ Endo Start 

(mW)
φ Endo End 

(mW)
φ Exo Start 

(mW)
φ Exo End 

(mW)
Eu Exo Start 

(mW)
Eu Exo End 

(mW)

Normalized 
% Remaining 

In 
[(Integration 
ratio)*Initial 

In Wt%]
1 5 50 156 42.4 60.2 170 30.2 45 4 3.8 0 0 0.6
2 5 31 156 23.7 34.3 170 23.7 40.7 11 10.8 0 0 0.7
3 5 32 146 26.3 44.2 166 26.3 70.6 0 0 0 0 0.0
4 5 35 146 28 53.6 166 28 68 9.7 4.1 0 0 8.5
5 5 40 146 38.9 81.8 166 38.9 82.1 7.8 2.1 3.3 1.8 8.4
6 5 40 156 43.2 64.4 170 31.5 42.1 7.7 7.6 0 0 0.3
7 5 31 156 34.3 47.7 170 34.3 40.5 12.2 11.9 11.5 11 4.1
8 5 31 156 28.1 40 170 28.1 34.6 0 0 0 0 0.0
9 5 24 146 35.5 51.4 168 35.5 52.1 22 20.3 20.7 20.5 5.8

10 5 36 156 32.5 45 170 32.5 38.6 11.5 11.4 0 0 0.5
11 5 35 156 33.8 45.5 170 24.6 35.7 0 0 0 0 0.0
12 5 41 156 23.4 32.7 166 23.4 42.5 8 7.7 0 0 1.1
13 5 29 156 31.6 44 170 31.6 37.4 0 0 0 0 0.0
14 5 36 146 29 61.7 166 29 75.8 13.9 11.5 0 0 3.0
15 5 44 146 27 50.2 166 27 90.5 0 0 0 0 0.0
16 5 35 146 27.3 60 166 27.3 73.8 11.7 9.3 0 0 3.0
17 5 48 156 27.1 44.3 170 27.1 42.2 5.4 5.2 0 0 0.6
18 5 30 146 32.7 57.1 167 32.7 78.3 10.9 6.9 9.3 9.2 5.9
19 5 39 146 39 61.9 166 39 85.4 0 0 0 0 0.0
20 5 49 156 23.3 35 166 23.3 54.1 0 0 0 0 0.0
21 5 32 146 27.7 50 166 27.7 78 13 9.3 10.7 10.1 5.9
22 5 30 156 24 38.2 170 24 38.7 13.2 13 0 0 0.7
23 5 45 156 42.8 68.6 170 29.2 42.3 0 0 0 0 0.0
24 5 36 156 37.4 57.2 170 28.8 38.9 0 0 0 0 0.0
25 5 32 146 25.7 56.5 167 25.7 68.9 12.5 8 8.1 7.8 6.5
26 5 37 146 26.8 51.6 166 26.8 85.8 7.6 3 5.2 4.2 6.7
27 5 44 155 24.3 35.5 166 24.3 50.3 0 0 0 0 0.0
28 5 35 146 33.8 60.4 168 33.8 90.3 10.5 5.1 0 0 6.5
29 5 36 146 35.5 57.9 167 35.5 80.7 0 0 0 0 0.0
30 5 36 145 35.5 75.5 168 35.5 76 9.5 4.3 6 2 11.4
31 5 36 156 23.8 30.9 166 23.8 44.2 0 0 0 0 0.0
32 5 34 146 35.5 73.3 166 35.5 67.8 14 11.5 12.7 12.5 3.9  
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Data for isothermal time = 10 

Sample
HoldingTime 

(min) Weight (mg)

Eu 
Melt.Temp 

(°C)
Eu Endo 

Start (mW)
Eu Endo End 

(mW)
φ Melt. Temp 

(°C)
φ Endo Start 

(mW)
φ Endo End 

(mW)
φ Exo Start 

(mW)
φ Exo End 

(mW)
Eu Exo Start 

(mW)
Eu Exo End 

(mW)

Normalized 
% Remaining 

In 
[(Integration 
ratio)*Initial 

In Wt%]
1 10 37 146 35.4 61.8 166 35.4 85.8 7.8 5 9 7.8 5.2
2 10 36 145 35.2 60.7 168 35.2 84.9 0 0 0 0 0.0
3 10 35 156 34.4 48 170 34.4 40.1 0 0 0 0 0.0
4 10 51 146 29.7 52.8 166 29.7 97.7 3 -1 5.2 4.5 5.2
5 10 26 155 26.3 36.8 170 26.3 34.2 0 0 0 0 0.0
6 10 30 146 26.5 54.1 166 26.5 65.2 0 0 0 0 0.0
7 10 30 156 21 25 166 21 47.7 0 0 0 0 0.0
8 10 38 156 38.1 56.7 170 25.8 38.7 0 0 0 0 0.0
9 10 32 156 25 37.1 170 25 38.7 0 0 0 0 0.0

10 10 43 146 27.5 50.9 166 27.5 85.7 0 0 0 0 0.0
11 10 36 146 35 69 168 35 70 10 5.6 8 6.8 8.1
12 10 39 146 37.2 78.9 168 37.2 80 9.1 3 0 0 7.2
13 10 36 146 27.3 58.1 167 27.3 72 9.4 5.2 0 0 5.6
14 10 40 146 39.2 81.2 167 39.2 77.8 0 0 0 0 0.0
15 10 39 146 37.6 61.7 168 37.6 86.2 0 0 0 0 0.0
16 10 32 156 31.4 42.6 170 31.4 41.2 13.3 13.2 0 0 0.5
17 10 50 146 29.3 54.5 166 29.3 94.7 0 0 0 0 0.0
18 10 33 156 23.9 35.1 170 23.9 38.9 11.7 11.6 0 0 0.4
19 10 34 156 24.3 35.3 170 24.3 41.8 0 0 0 0 0.0
20 10 30 146 27.5 55.6 168 27.5 64.6 0 0 0 0 0.0
21 10 30 146 35.5 51.2 168 35.5 67.7 14.9 12.7 0 0 4.6
22 10 31 156 35.4 46.1 171 35.4 41.5 0 0 0 0 0.0
23 10 29 156 24.9 33.8 171 24.9 33.8 0 0 0 0 0.0
24 10 32 156 21.2 29.1 170 21.2 45.1 11.3 11.28 0 0 0.1
25 10 33 156 34.2 46.5 170 34.2 38.9 0 0 0 0 0.0
26 10 29 156 31.8 40.9 170 31.8 39.8 15 14.9 0 0 0.6
27 10 27 156 24.2 32.4 170 24.2 24.3 0 0 0 0 0.0
28 10 35 146 36.2 72.5 170 36.2 72 0 0 0 0 0.0
29 10 37 146 26.6 48.7 166 26.6 80.6 7.9 4.8 7.2 6.9 4.5
30 10 34 156 33.4 47.1 170 33.4 43.5 0 0 0 0 0.0
31 10 28 156 31.4 44.3 170 31.4 40 0 0 0 0 0.0
32 10 47 146 35.4 60.5 167 35.4 75 12 6.1 0 0 9.1  

 
Data for isothermal time = 25 

Sample
HoldingTime 

(min) Weight (mg)

Eu 
Melt.Temp 

(°C)
Eu Endo 

Start (mW)
Eu Endo End 

(mW)
φ Melt. Temp 

(°C)
φ Endo Start 

(mW)
φ Endo End 

(mW)
φ Exo Start 

(mW)
φ Exo End 

(mW)
Eu Exo Start 

(mW)
Eu Exo End 

(mW)

Normalized 
% Remaining 

In 
[(Integration 
ratio)*Initial 

In Wt%]
1 25 34 156 24.5 35.3 168 24.5 42.9 0 0 0 0 0.0
2 25 44 146 40.7 82.5 168 40.7 78.2 0 0 0 0 0.0
3 25 42 146 39.2 64.2 168 39.2 92.1 0 0 0 0 0.0
4 25 31 156 33.2 45.7 171 33.2 40.1 0 0 0 0 0.0
5 25
6 25 30 156 32.9 43.7 170 32.9 40 0 0 0 0 0.0
7 25 44 155 29.4 42.8 170 29.4 40.8 0 0 0 0 0.0
8 25 55 146 33.3 75 168 33.3 91.6 0 0 0 0 0.0
9 25

10 25
11 25
12 25 37 156 33.6 37.9 168 33.6 50.1 0 0 0 0 0.0
13 25 49 146 42.9 64 170 42.9 87.6 3.5 2.1 6.6 5.7 3.5
14 25 36 156 36.3 44.2 170 36.3 46.8 0 0 0 0 0.0
15 25 32 156 24.3 32.6 170 24.3 39.2 0 0 0 0 0.0
16 25
17 25 29 146 34.1 58.5 170 34.1 57.8 12.7 11.1 13.3 12.7 4.6
18 25 36 146 36.5 58.3 170 36.5 82 8 7 10.8 9.5 3.4
19 25 35 146 27.7 45.6 168 27.7 77.6 9.9 8.8 11.8 11.3 2.4
20 25 25 146 33.4 58 168 33.4 56 13.6 12.1 13.9 13.4 4.2
21 25 38 156 20.6 24.5 170 20.6 49.5 0 0 0 0 0.0
22 25 26 146 25.8 40.1 166 25.8 64.6 12.6 11.9 14 13.6 2.1
23 25
24 25
25 25
26 25
27 25
28 25 30 146 28.2 44.1 168 28.2 67.9 0 0 0 0 0.0
29 25 34 146 29.4 55.3 169 29.4 66.6 11.1 9.2 12 10.1 6.0
30 25
31 25
32 25 25 146 25.9 47.6 170 25.9 55.8 13 11.6 13.5 12.9 3.9  
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Data for isothermal time = 40 

Sample
HoldingTime 

(min) Weight (mg)

Eu 
Melt.Temp 

(°C)
Eu Endo 

Start (mW)
Eu Endo End 

(mW)
φ Melt. Temp 

(°C)
φ Endo Start 

(mW)
φ Endo End 

(mW)
φ Exo Start 

(mW)
φ Exo End 

(mW)
Eu Exo Start 

(mW)
Eu Exo End 

(mW)

Normalized 
% Remaining 

In 
[(Integration 
ratio)*Initial 

In Wt%]
1 40 26 156 31.8 40.8 170 31.8 38.9 0 0 0 0 0.0
2 40 28 156 30.2 40.3 170 30.2 39.2 0 0 0 0 0.0
3 40 28 146 25.3 42.1 166 25.3 66.1 0 0 0 0 0.0
4 40 31 146 37.2 54.3 168 37.2 72.3 13 12 0 0 1.9
5 40 36 146 37.5 71.3 169 37.5 71 7.6 6.6 11 9.1 4.3
6 40 50 156 38.3 51.2 170 38.3 52.3 0 0 0 0 0.0
7 40 37 156 23.6 31.2 170 23.6 49.7 0 0 0 0 0.0
8 40 40 146 30.3 57.6 166 30.3 71.7 9.3 7.8 10.6 9.6 3.6
9 40

10 40 35 146 35.5 70.3 168 35.5 70.8 0 0 0 0 0.0
11 40 41 156 38.2 51.8 170 38.2 49.1 0 0 0 0 0.0
12 40
13 40
14 40
15 40 36 146 38.9 59.1 168 38.9 79.7 0 0 0 0 0.0
16 40 43 156 25.2 36.5 168 25.2 48.6 0 0 0 0 0.0
17 40
18 40
19 40 25 156 24.7 32.6 170 24.7 34.8 0 0 0 0 0.0
20 40 42 146 27.7 47.1 170 27.7 84.5 8.8 7.8 0 0 1.3
21 40 36 146 35.8 71.1 170 35.8 69.1 11.8 10.3 13.6 11.3 5.5
22 40
23 40
24 40 43 146 30.5 66.1 168 30.5 80.5 0 0 0 0 0.0
25 40 43 156 26.2 37.3 170 26.2 50.9 0 0 0 0 0.0
26 40
27 40
28 40
29 40 42 146 41.4 70.5 170 41.4 97.5 10 9.3 12 11.3 1.6
30 40
31 40 46 146 30.6 54.6 169 30.6 90.9 7.4 6.3 0 0 1.3
32 40 33 146 28.6 56.1 168 28.6 68 11.9 10.8 13 11.8 3.4  

 
Data for isothermal time = 60 

Sample
HoldingTime 

(min) Weight (mg)

Eu 
Melt.Temp 

(°C)
Eu Endo 

Start (mW)
Eu Endo End 

(mW)
φ Melt. Temp 

(°C)
φ Endo Start 

(mW)
φ Endo End 

(mW)
φ Exo Start 

(mW)
φ Exo End 

(mW)
Eu Exo Start 

(mW)
Eu Exo End 

(mW)

Normalized 
% Remaining 

In 
[(Integration 
ratio)*Initial 

In Wt%]
1 60 48 156 24.5 35.4 170 24.5 50 0 0 0 0 0.0
2 60 42 156 21 25 170 21 55.3 0 0 0 0 0.0
3 60 40 156 38.9 50.9 170 38.9 49.1 0 0 0 0 0.0
4 60 40 146 30.4 53.5 170 30.4 85.3 11.2 10.7 0 0 0.6
5 60 34 146 37.4 63.1 170 37.4 83.7 14 13.3 0 0 1.0
6 60 44 146 31.3 47.2 166 31.3 78.1 9.3 8.8 0 0 0.8
7 60 42 146 30.9 65.8 167 30.9 76.8 8 7.2 9.9 8.6 2.6
8 60 54 156 21.7 26.5 170 21.7 48.4 0 0 0 0 0.0
9 60 44 146 40.2 68.2 170 40.2 67.3 0 0 0 0 0.0

10 60
11 60 43 146 30.5 44.8 166 30.5 77.4 0 0 0 0 0.0
12 60 34 146 36.5 60 170 36.5 61.7 11.3 10.3 13 11.9 4.3
13 60 44 156 26.6 34.5 166 26.6 48.5 0 0 0 0 0.0
14 60
15 60
16 60
17 60 43 146 32.2 56.3 168 32.2 68.3 9.7 8.1 11 9.5 5.1
18 60
19 60 40 146 33 57.1 168 33 67.7 0 0 0 0 0.0
20 60 47 156 39.1 44.6 172 39.1 50.3 0 0 0 0 0.0
21 60 55 146 46.7 80.5 170 46.7 77.3 2.8 0.8 6 4 6.2
22 60 45 146 41.5 58.8 168 41.5 81 0 0 0 0 0.0
23 60
24 60
25 60
26 60
27 60
28 60 39 156 36.3 45.5 170 36.3 41.6 0 0 0 0 0.0
29 60 43 146 40.8 58.9 170 40.8 80.3 8.3 7.7 0 0 1.0
30 60 45 156 36.4 43.2 170 36.4 54.4 0 0 0 0 0.0
31 60
32 60  
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Appendix 5.  ANOVA for second phase DOE: 
 
 
Global Model: 
 
Factorial Fit: % In-Rich Re versus Composition, Ag Particle , ...  
 
Estimated Effects and Coefficients for % In-Rich Remaining (coded units) 
 
Term                                   Effect    Coef  SE Coef       T      
P 
Constant                                        4.142   0.2803   14.77  
0.000 
Composition                             6.362   3.181   0.2803   11.35  
0.000 
Ag Particle Size                        2.502   1.251   0.2803    4.46  
0.000 
Processing Temperature                 -2.721  -1.361   0.2803   -4.85  
0.000 
Heating Rate                            1.278   0.639   0.2803    2.28  
0.024 
Holding Time                          -12.867  -6.434   0.4008  -16.05  
0.000 
Composition*Ag Particle Size            1.895   0.947   0.2803    3.38  
0.001 
Composition*Processing Temperature     -1.517  -0.758   0.2803   -2.70  
0.007 
Composition*Heating Rate                1.011   0.506   0.2803    1.80  
0.073 
Composition*Holding Time               -9.004  -4.502   0.4008  -11.23  
0.000 
Ag Particle Size*                      -1.564  -0.782   0.2803   -2.79  
0.006 
  Processing Temperature 
Ag Particle Size*Heating Rate           0.542   0.271   0.2803    0.97  
0.335 
Ag Particle Size*Holding Time          -3.347  -1.673   0.4008   -4.17  
0.000 
Processing Temperature*Heating Rate    -0.238  -0.119   0.2803   -0.43  
0.671 
Processing Temperature*Holding Time     2.014   1.007   0.4008    2.51  
0.013 
Heating Rate*Holding Time              -2.286  -1.143   0.4008   -2.85  
0.005 
Composition*Ag Particle Size*          -1.207  -0.604   0.2803   -2.15  
0.032 
  Processing Temperature 
Composition*Ag Particle Size*           0.290   0.145   0.2803    0.52  
0.605 
  Heating Rate 
Composition*Processing Temperature*    -0.073  -0.037   0.2803   -0.13  
0.896 
  Heating Rate 
Composition*Ag Particle Size*          -2.298  -1.149   0.4008   -2.87  
0.005 
  Holding Time 
Composition*Processing Temperature*    -0.289  -0.145   0.4008   -0.36  
0.719 
  Holding Time 
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Composition*Heating Rate*              -1.771  -0.886   0.4008   -2.21  
0.028 
  Holding Time 
Ag Particle Size*                      -0.160  -0.080   0.2803   -0.29  
0.775 
  Processing Temperature* 
  Heating Rate 
Ag Particle Size*                       1.859   0.929   0.4008    2.32  
0.021 
  Processing Temperature* 
  Holding Time 
Ag Particle Size*Heating Rate*         -0.972  -0.486   0.4008   -1.21  
0.226 
  Holding Time 
Processing Temperature*Heating Rate*    0.215   0.107   0.4008    0.27  
0.789 
  Holding Time 
Composition*Ag Particle Size*          -0.040  -0.020   0.2803   -0.07  
0.943 
  Processing Temperature* 
  Heating Rate 
Composition*Ag Particle Size*           1.309   0.654   0.4008    1.63  
0.104 
  Processing Temperature* 
  Holding Time 
Composition*Ag Particle Size*          -0.615  -0.307   0.4008   -0.77  
0.444 
  Heating Rate*Holding Time 
Composition*Processing Temperature*    -0.048  -0.024   0.4008   -0.06  
0.952 
  Heating Rate*Holding Time 
Ag Particle Size*                       0.218   0.109   0.4008    0.27  
0.786 
  Processing Temperature* 
  Heating Rate*Holding Time 
Composition*Ag Particle Size*           0.117   0.058   0.4008    0.15  
0.884 
  Processing Temperature* 
  Heating Rate*Holding Time 
 
 
S = 4.37318     PRESS = 5640.41 
R-Sq = 77.27%   R-Sq(pred) = 70.07%   R-Sq(adj) = 74.13% 
 
 
Analysis of Variance for % In-Rich Remaining (coded units) 
 
Source               DF   Seq SS   Adj SS   Adj MS      F      P 
Main Effects          5  10128.6  8319.78  1663.96  87.01  0.000 
2-Way Interactions   10   3846.4  3612.61   361.26  18.89  0.000 
3-Way Interactions   10    524.8   480.90    48.09   2.51  0.007 
4-Way Interactions    5     63.9    63.78    12.76   0.67  0.649 
5-Way Interactions    1      0.4     0.40     0.40   0.02  0.884 
Residual Error      224   4283.9  4283.94    19.12 
  Lack of Fit        96   4001.9  4001.95    41.69   
  Pure Error        128    282.0   281.99     2.20 
Total               255  18848.1 
 

Main Effects Model: 
 
The regression equation is (uncoded units) 
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% In-Rich Remaining = 8.64 + 0.121 Ag Particle Size + 0.518 Composition 
                      - 0.0607 Processing Temperature + 0.0544 Heating Rate 
                      - 1.66 Holding Time 
 
 
Predictor                   Coef  SE Coef       T      P 
Constant                   8.638    4.529    1.91  0.058 
Ag Particle Size         0.12091  0.02953    4.09  0.000 
Composition              0.51753  0.04921   10.52  0.000 
Processing Temperature  -0.06070  0.01476   -4.11  0.000 
Heating Rate             0.05445  0.02461    2.21  0.028 
Holding Time             -1.6603   0.1397  -11.89  0.000 
 
 
S = 5.90577   R-Sq = 53.7%   R-Sq(adj) = 52.8% 
 
PRESS = 9155.17   R-Sq(pred) = 51.43% 
 
 
Analysis of Variance 
 
Source           DF       SS      MS      F      P 
Regression        5  10128.6  2025.7  58.08  0.000 
Residual Error  250   8719.5    34.9 
  Lack of Fit   122   8437.5    69.2  31.39  0.000 
  Pure Error    128    282.0     2.2 
Total           255  18848.1 

 
Model I: (t: 0→1 minutes) 
 

Factorial Fit: % In-Rich Re versus Composition, Ag Particle , ...  
 
All possible effects considered (31) 
 
Estimated Effects and Coefficients for % In-Rich Remaining (coded units) 
 
Term                                  Effect    Coef  SE Coef       T      P 
Constant                                      11.948   0.2417   49.43  0.000 
Composition                           17.144   8.572   0.2417   35.46  0.000 
Ag Particle Size                       6.565   3.283   0.2417   13.58  0.000 
Processing Temperature                -4.834  -2.417   0.2417  -10.00  0.000 
Heating Rate                           4.214   2.107   0.2417    8.72  0.000 
Holding Time                          -6.094  -3.047   0.2841  -10.72  0.000 
Composition*Ag Particle Size           4.772   2.386   0.2417    9.87  0.000 
Composition*Processing Temperature    -0.868  -0.434   0.2417   -1.80  0.077 
Composition*Heating Rate               3.334   1.667   0.2417    6.90  0.000 
Composition*Holding Time              -2.852  -1.426   0.2841   -5.02  0.000 
Ag Particle Size*                     -4.174  -2.087   0.2417   -8.64  0.000 
  Processing Temperature 
Ag Particle Size*Heating Rate          1.710   0.855   0.2417    3.54  0.001 
Ag Particle Size*Holding Time         -0.473  -0.237   0.2841   -0.83  0.408 
Processing Temperature*Heating Rate   -0.582  -0.291   0.2417   -1.20  0.233 
Processing Temperature*Holding Time    3.328   1.664   0.2841    5.86  0.000 
Heating Rate*Holding Time             -2.060  -1.030   0.2841   -3.63  0.001 
Composition*Ag Particle Size*         -3.270  -1.635   0.2417   -6.76  0.000 
  Processing Temperature 
Composition*Ag Particle Size*          1.133   0.566   0.2417    2.34  0.022 
  Heating Rate 
Composition*Processing Temperature*   -0.154  -0.077   0.2417   -0.32  0.751 
  Heating Rate 
Composition*Ag Particle Size*         -0.614  -0.307   0.2841   -1.08  0.284 
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  Holding Time 
Composition*Processing Temperature*    1.729   0.864   0.2841    3.04  0.003 
  Holding Time 
Composition*Heating Rate*             -1.458  -0.729   0.2841   -2.57  0.013 
  Holding Time 
Ag Particle Size*                     -0.421  -0.210   0.2417   -0.87  0.387 
  Processing Temperature* 
  Heating Rate 
Ag Particle Size*                      0.992   0.496   0.2841    1.75  0.086 
  Processing Temperature* 
  Holding Time 
Ag Particle Size*Heating Rate*        -1.039  -0.520   0.2841   -1.83  0.072 
  Holding Time 
Processing Temperature*Heating Rate*   0.957   0.478   0.2841    1.68  0.097 
  Holding Time 
Composition*Ag Particle Size*         -0.300  -0.150   0.2417   -0.62  0.537 
  Processing Temperature* 
  Heating Rate 
Composition*Ag Particle Size*          1.230   0.615   0.2841    2.17  0.034 
  Processing Temperature* 
  Holding Time 
Composition*Ag Particle Size*         -1.597  -0.799   0.2841   -2.81  0.007 
  Heating Rate*Holding Time 
Composition*Processing Temperature*    0.903   0.452   0.2841    1.59  0.117 
  Heating Rate*Holding Time 
Ag Particle Size*                      0.241   0.121   0.2841    0.42  0.672 
  Processing Temperature* 
  Heating Rate*Holding Time 
Composition*Ag Particle Size*          0.784   0.392   0.2841    1.38  0.173 
  Processing Temperature* 
  Heating Rate*Holding Time 
 
 
S = 2.33687     PRESS = 915.843 
R-Sq = 97.01%   R-Sq(pred) = 92.16%   R-Sq(adj) = 95.56% 
 
 
Analysis of Variance for % In-Rich Remaining (coded units) 
 
Source              DF   Seq SS   Adj SS   Adj MS       F      P 
Main Effects         5   9205.5  9464.36  1892.87  346.62  0.000 
2-Way Interactions  10   1627.9  1693.56   169.36   31.01  0.000 
3-Way Interactions  10    397.5   427.79    42.78    7.83  0.000 
4-Way Interactions   5     84.4    85.65    17.13    3.14  0.014 
5-Way Interactions   1     10.4    10.39    10.39    1.90  0.173 
Residual Error      64    349.5   349.50     5.46 
  Lack of Fit       16     98.3    98.34     6.15     
  Pure Error        48    251.2   251.16     5.23 
Total               95  11675.2 

 
  

Factorial Fit: % In-Rich Re versus Composition, Ag Particle , ...  
 
Reduced model after ANOVA, only considering statistically 
significant effects 
 
Estimated Effects and Coefficients for % In-Rich Remaining (coded units) 
 
Term                                 Effect    Coef  SE Coef       T      P 
Constant                                     11.948   0.2534   47.15  0.000 
Composition                          17.144   8.572   0.2534   33.83  0.000 
Ag Particle Size                      6.500   3.250   0.2501   13.00  0.000 
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Processing Temperature               -4.834  -2.417   0.2534   -9.54  0.000 
Heating Rate                          4.214   2.107   0.2534    8.31  0.000 
Holding Time                         -6.094  -3.047   0.2979  -10.23  0.000 
Composition*Ag Particle Size          4.687   2.344   0.2501    9.37  0.000 
Composition*Heating Rate              3.334   1.667   0.2534    6.58  0.000 
Composition*Holding Time             -2.852  -1.426   0.2979   -4.79  0.000 
Ag Particle Size*                    -4.037  -2.019   0.2501   -8.07  0.000 
  Processing Temperature 
Ag Particle Size*Heating Rate         1.567   0.783   0.2501    3.13  0.002 
Processing Temperature*Holding Time   3.328   1.664   0.2979    5.59  0.000 
Heating Rate*Holding Time            -2.060  -1.030   0.2979   -3.46  0.001 
Composition*Ag Particle Size*        -3.270  -1.635   0.2534   -6.45  0.000 
  Processing Temperature 
Composition*Ag Particle Size*         1.133   0.566   0.2534    2.24  0.028 
  Heating Rate 
Composition*Processing Temperature*   1.564   0.782   0.2939    2.66  0.010 
  Holding Time 
Composition*Heating Rate*            -1.458  -0.729   0.2979   -2.45  0.017 
  Holding Time 
Composition*Ag Particle Size*         1.230   0.615   0.2979    2.07  0.042 
  Processing Temperature* 
  Holding Time 
Composition*Ag Particle Size*        -1.597  -0.799   0.2979   -2.68  0.009 
  Heating Rate*Holding Time 
 
 
S = 2.45003     PRESS = 753.820 
R-Sq = 96.04%   R-Sq(pred) = 93.54%   R-Sq(adj) = 95.12% 
 
 
Analysis of Variance for % In-Rich Remaining (coded units) 
 
Source              DF   Seq SS   Adj SS   Adj MS       F      P 
Main Effects         5   9205.5  9471.09  1894.22  315.56  0.000 
2-Way Interactions   7   1609.8  1633.99   233.43   38.89  0.000 
3-Way Interactions   4    329.0   358.24    89.56   14.92  0.000 
4-Way Interactions   2     68.8    68.76    34.38    5.73  0.005 
Residual Error      77    462.2   462.20     6.00 
  Lack of Fit       29    211.0   211.04     7.28    
  Pure Error        48    251.2   251.16     5.23 
Total               95  11675.2 
 
 
 

Model II: (t: 1→10 minutes): 
 
Factorial Fit: % In-Rich Re versus Composition, Ag Particle , ...  
 

All possible effects considered (31) 
 
Estimated Effects and Coefficients for % In-Rich Remaining (coded units) 
 
Term                                  Effect    Coef  SE Coef       T      P 
Constant                                       4.535   0.2094   21.66  0.000 
Composition                            7.518   3.759   0.2094   17.95  0.000 
Ag Particle Size                       3.272   1.636   0.2094    7.81  0.000 
Processing Temperature                -2.840  -1.420   0.2094   -6.78  0.000 
Heating Rate                           0.984   0.492   0.2094    2.35  0.022 
Holding Time                          -7.440  -3.720   0.2550  -14.59  0.000 
Composition*Ag Particle Size           2.430   1.215   0.2094    5.80  0.000 
Composition*Processing Temperature    -1.414  -0.707   0.2094   -3.38  0.001 
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Composition*Heating Rate               0.549   0.274   0.2094    1.31  0.195 
Composition*Holding Time              -5.934  -2.967   0.2550  -11.63  0.000 
Ag Particle Size*                     -1.369  -0.684   0.2094   -3.27  0.002 
  Processing Temperature 
Ag Particle Size*Heating Rate          0.387   0.193   0.2094    0.92  0.359 
Ag Particle Size*Holding Time         -3.061  -1.531   0.2550   -6.00  0.000 
Processing Temperature*Heating Rate    0.033   0.017   0.2094    0.08  0.937 
Processing Temperature*Holding Time   -0.557  -0.279   0.2550   -1.09  0.279 
Heating Rate*Holding Time             -0.993  -0.496   0.2550   -1.95  0.056 
Composition*Ag Particle Size*         -0.562  -0.281   0.2094   -1.34  0.184 
  Processing Temperature 
Composition*Ag Particle Size*         -0.059  -0.030   0.2094   -0.14  0.888 
  Heating Rate 
Composition*Processing Temperature*    0.504   0.252   0.2094    1.20  0.233 
  Heating Rate 
Composition*Ag Particle Size*         -2.297  -1.149   0.2550   -4.50  0.000 
  Holding Time 
Composition*Processing Temperature*   -1.880  -0.940   0.2550   -3.69  0.000 
  Holding Time 
Composition*Heating Rate*             -0.595  -0.297   0.2550   -1.17  0.248 
  Holding Time 
Ag Particle Size*                     -0.016  -0.008   0.2094   -0.04  0.969 
  Processing Temperature* 
  Heating Rate 
Ag Particle Size*                      1.341   0.671   0.2550    2.63  0.011 
  Processing Temperature* 
  Holding Time 
Ag Particle Size*Heating Rate*        -0.100  -0.050   0.2550   -0.20  0.845 
  Holding Time 
Processing Temperature*Heating Rate*  -0.242  -0.121   0.2550   -0.47  0.637 
  Holding Time 
Composition*Ag Particle Size*          0.556   0.278   0.2094    1.33  0.189 
  Processing Temperature* 
  Heating Rate 
Composition*Ag Particle Size*          0.629   0.315   0.2550    1.23  0.222 
  Processing Temperature* 
  Holding Time 
Composition*Ag Particle Size*          0.253   0.127   0.2550    0.50  0.622 
  Heating Rate*Holding Time 
Composition*Processing Temperature*   -0.692  -0.346   0.2550   -1.36  0.180 
  Heating Rate*Holding Time 
Ag Particle Size*                     -0.197  -0.098   0.2550   -0.39  0.701 
  Processing Temperature* 
  Heating Rate*Holding Time 
Composition*Ag Particle Size*         -0.732  -0.366   0.2550   -1.44  0.156 
  Processing Temperature* 
  Heating Rate*Holding Time 
 
 
S = 2.04778     PRESS = 540.709 
R-Sq = 93.39%   R-Sq(pred) = 86.68%   R-Sq(adj) = 90.19% 
 
 
Analysis of Variance for % In-Rich Remaining (coded units) 
 
Source              DF   Seq SS   Adj SS   Adj MS       F      P 
Main Effects         5  2597.03  2715.79  543.157  129.53  0.000 
2-Way Interactions  10   973.36   983.99   98.399   23.47  0.000 
3-Way Interactions  10   189.97   191.56   19.156    4.57  0.000 
4-Way Interactions   5    22.23    23.13    4.627    1.10  0.368 
5-Way Interactions   1     8.64     8.64    8.637    2.06  0.156 
Residual Error      64   268.38   268.38    4.193 
  Lack of Fit       16   226.11   226.11   14.132    
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  Pure Error        48    42.27    42.27    0.881 
Total               95  4059.60 
 
 
Reduced model after ANOVA, only considering statistically 
significant effects 
 
Estimated Effects and Coefficients for % In-Rich Remaining (coded units) 
 
Term                                 Effect    Coef  SE Coef       T      P 
Constant                                      4.535   0.2110   21.50  0.000 
Composition                           7.518   3.759   0.2110   17.82  0.000 
Ag Particle Size                      3.272   1.636   0.2110    7.76  0.000 
Processing Temperature               -2.867  -1.434   0.2106   -6.81  0.000 
Heating Rate                          0.935   0.467   0.2106    2.22  0.029 
Holding Time                         -7.440  -3.720   0.2570  -14.48  0.000 
Composition*Ag Particle Size          2.430   1.215   0.2110    5.76  0.000 
Composition*Processing Temperature   -1.414  -0.707   0.2110   -3.35  0.001 
Composition*Holding Time             -5.934  -2.967   0.2570  -11.55  0.000 
Ag Particle Size*                    -1.369  -0.684   0.2110   -3.24  0.002 
  Processing Temperature 
Ag Particle Size*Holding Time        -3.061  -1.531   0.2570   -5.96  0.000 
Composition*Ag Particle Size*        -2.297  -1.149   0.2570   -4.47  0.000 
  Holding Time 
Composition*Processing Temperature*  -1.880  -0.940   0.2570   -3.66  0.000 
  Holding Time 
Ag Particle Size*                     1.341   0.671   0.2570    2.61  0.011 
  Processing Temperature* 
  Holding Time 
 
 
S = 2.06318     PRESS = 471.293 
R-Sq = 91.40%   R-Sq(pred) = 88.39%   R-Sq(adj) = 90.04% 
 
 
Analysis of Variance for % In-Rich Remaining (coded units) 
 
Source              DF   Seq SS   Adj SS   Adj MS       F      P 
Main Effects         5  2597.03  2718.08  543.616  127.71  0.000 
2-Way Interactions   5   942.49   952.30  190.460   44.74  0.000 
3-Way Interactions   3   171.03   171.03   57.010   13.39  0.000 
Residual Error      82   349.05   349.05    4.257 
  Lack of Fit       34   306.78   306.78    9.023   
  Pure Error        48    42.27    42.27    0.881 
Total               95  4059.60 
 
 
 

Model III: (t: 10→60 minutes): 
 
Factorial Fit: % In-Rich Re versus Composition, Ag Particle , ...  
 
All possible effects considered (31) 
 
Estimated Effects and Coefficients for % In-Rich Remaining (coded units) 
 
Term                                  Effect    Coef  SE Coef       T      P 
Constant                                       1.003  0.04748   21.13  0.000 
Composition                            1.956   0.978  0.04748   20.59  0.000 
Ag Particle Size                       0.699   0.349  0.04748    7.36  0.000 
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Processing Temperature                -2.007  -1.003  0.04748  -21.13  0.000 
Heating Rate                           0.151   0.075  0.04748    1.59  0.116 
Holding Time                          -0.923  -0.462  0.06429   -7.18  0.000 
Composition*Ag Particle Size           0.648   0.324  0.04748    6.82  0.000 
Composition*Processing Temperature    -1.956  -0.978  0.04748  -20.59  0.000 
Composition*Heating Rate               0.130   0.065  0.04748    1.37  0.175 
Composition*Holding Time              -0.833  -0.416  0.06429   -6.48  0.000 
Ag Particle Size*                     -0.699  -0.349  0.04748   -7.36  0.000 
  Processing Temperature 
Ag Particle Size*Heating Rate          0.021   0.010  0.04748    0.22  0.829 
Ag Particle Size*Holding Time          0.095   0.047  0.06429    0.74  0.463 
Processing Temperature*Heating Rate   -0.151  -0.075  0.04748   -1.59  0.116 
Processing Temperature*Holding Time    0.923   0.462  0.06429    7.18  0.000 
Heating Rate*Holding Time              0.074   0.037  0.06429    0.58  0.566 
Composition*Ag Particle Size*         -0.648  -0.324  0.04748   -6.82  0.000 
  Processing Temperature 
Composition*Ag Particle Size*         -0.000  -0.000  0.04748   -0.00  0.997 
  Heating Rate 
Composition*Processing Temperature*   -0.130  -0.065  0.04748   -1.37  0.175 
  Heating Rate 
Composition*Ag Particle Size*          0.185   0.093  0.06429    1.44  0.153 
  Holding Time 
Composition*Processing Temperature*    0.833   0.416  0.06429    6.48  0.000 
  Holding Time 
Composition*Heating Rate*              0.111   0.056  0.06429    0.86  0.390 
  Holding Time 
Ag Particle Size*                     -0.021  -0.010  0.04748   -0.22  0.829 
  Processing Temperature* 
  Heating Rate 
Ag Particle Size*                     -0.095  -0.047  0.06429   -0.74  0.463 
  Processing Temperature* 
  Holding Time 
Ag Particle Size*Heating Rate*         0.070   0.035  0.06429    0.54  0.590 
  Holding Time 
Processing Temperature*Heating Rate*  -0.074  -0.037  0.06429   -0.58  0.566 
  Holding Time 
Composition*Ag Particle Size*          0.000   0.000  0.04748    0.00  0.997 
  Processing Temperature* 
  Heating Rate 
Composition*Ag Particle Size*         -0.185  -0.093  0.06429   -1.44  0.153 
  Processing Temperature* 
  Holding Time 
Composition*Ag Particle Size*          0.107   0.053  0.06429    0.83  0.409 
  Heating Rate*Holding Time 
Composition*Processing Temperature*   -0.111  -0.056  0.06429   -0.86  0.390 
  Heating Rate*Holding Time 
Ag Particle Size*                     -0.070  -0.035  0.06429   -0.54  0.590 
  Processing Temperature* 
  Heating Rate*Holding Time 
Composition*Ag Particle Size*         -0.107  -0.053  0.06429   -0.83  0.409 
  Processing Temperature* 
  Heating Rate*Holding Time 
 
 
S = 0.536176    PRESS = 56.3170 
R-Sq = 94.54%   R-Sq(pred) = 88.85%   R-Sq(adj) = 92.77% 
 
 
Analysis of Variance for % In-Rich Remaining (coded units) 
 
Source               DF   Seq SS   Adj SS   Adj MS       F      P 
Main Effects          5  272.789  281.442  56.2884  195.80  0.000 
2-Way Interactions   10  175.850  179.290  17.9290   62.37  0.000 
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3-Way Interactions   10   27.576   27.132   2.7132    9.44  0.000 
4-Way Interactions    5    1.093    1.092   0.2184    0.76  0.581 
5-Way Interactions    1    0.198    0.198   0.1976    0.69  0.409 
Residual Error       96   27.598   27.598   0.2875 
  Lack of Fit        32   12.147   12.147   0.3796    
  Pure Error         64   15.452   15.452   0.2414 
Total               127  505.102 

 
  

Factorial Fit: % In-Rich Re versus Composition, Ag Particle , ...  
 
Reduced model after ANOVA, only considering statistically 
significant effects 
 
 
Estimated Effects and Coefficients for % In-Rich Remaining (coded units) 
 
Term                                 Effect    Coef  SE Coef       T      P 
Constant                                      1.003  0.04723   21.24  0.000 
Composition                           1.956   0.978  0.04723   20.70  0.000 
Ag Particle Size                      0.703   0.351  0.04715    7.45  0.000 
Processing Temperature               -2.007  -1.003  0.04723  -21.24  0.000 
Holding Time                         -0.923  -0.462  0.06396   -7.22  0.000 
Composition*Ag Particle Size          0.656   0.328  0.04715    6.96  0.000 
Composition*Processing Temperature   -1.956  -0.978  0.04723  -20.70  0.000 
Composition*Holding Time             -0.833  -0.416  0.06396   -6.51  0.000 
Ag Particle Size*                    -0.703  -0.351  0.04715   -7.45  0.000 
  Processing Temperature 
Processing Temperature*Holding Time   0.923   0.462  0.06396    7.22  0.000 
Composition*Ag Particle Size*        -0.656  -0.328  0.04715   -6.96  0.000 
  Processing Temperature 
Composition*Processing Temperature*   0.833   0.416  0.06396    6.51  0.000 
  Holding Time 
 
 
S = 0.533413    PRESS = 40.8106 
R-Sq = 93.47%   R-Sq(pred) = 91.92%   R-Sq(adj) = 92.85% 
 
 
Analysis of Variance for % In-Rich Remaining (coded units) 
 
Source               DF  Seq SS  Adj SS   Adj MS       F      P 
Main Effects          4  272.03  280.96  70.2409  246.87  0.000 
2-Way Interactions    5  174.24  178.40  35.6806  125.40  0.000 
3-Way Interactions    2   25.83   25.83  12.9147   45.39  0.000 
Residual Error      116   33.01   33.01   0.2845 
  Lack of Fit        20   11.41   11.41   0.5707    
  Pure Error         96   21.59   21.59   0.2249 
Total               127  505.10 
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Appendix 6.  Point-count data for Fractional Density Study: 

Data for 10 Wt.% In Paste: 

F ie ld  N o . P  ( p o r e  h i t s ) ( P  /  P o )  X  1 0 0 ( P i  -  P p a v g ) ^ 2
1 7 3 5 2 5 . 0 0
2 8 4 0 0 . 0 0
3 8 4 0 0 . 0 0
4 8 4 0 0 . 0 0
5 7 3 5 2 5 . 0 0
6 9 4 5 2 5 . 0 0
7 7 3 5 2 5 . 0 0
8 9 4 5 2 5 . 0 0
9 1 0 5 0 1 0 0 . 0 0

1 0 7 3 5 2 5 . 0 0
1 1 9 4 5 2 5 . 0 0
1 2 8 4 0 0 . 0 0
1 3 7 3 5 2 5 . 0 0
1 4 1 0 5 0 1 0 0 . 0 0
1 5 7 3 5 2 5 . 0 0
1 6 7 3 5 2 5 . 0 0
1 7 8 4 0 0 . 0 0
1 8 9 4 5 2 5 . 0 0
1 9 8 4 0 0 . 0 0
2 0 7 3 5 2 5 . 0 0

S u m 1 6 0 5 0 0

P o 2 0 .0 0
F r a c t io n a l  P o r o s i t y  ( P p a v g ) 4 0 .0 0 F r a c t io n a l  D e n s i t y 6 0 . 0 0
s ( P p a v g ) 5 .1 3
C V 1 2 .8 2
9 5 %  C o n f id e n c e  In t e r v a l 2 .4 6
%  R e la t iv e  A c c u r a c y 6 .1 6  

Data for 20 Wt.% In Paste: 

F ie ld  N o . P  ( p o r e  h it s ) ( P  /  P o )  X  1 0 0 ( P i -  P p a v g ) ^ 2
1 6 3 0 1 .5 6
2 7 3 5 3 9 .0 6
3 6 3 0 1 .5 6
4 6 3 0 1 .5 6
5 5 2 5 1 4 .0 6
6 6 3 0 1 .5 6
7 6 3 0 1 .5 6
8 5 2 5 1 4 .0 6
9 5 2 5 1 4 .0 6

1 0 5 2 5 1 4 .0 6
1 1 6 3 0 1 .5 6
1 2 7 3 5 3 9 .0 6
1 3 5 2 5 1 4 .0 6
1 4 5 2 5 1 4 .0 6
1 5 6 3 0 1 .5 6
1 6 5 2 5 1 4 .0 6
1 7 5 2 5 1 4 .0 6
1 8 6 3 0 1 .5 6
1 9 7 3 5 3 9 .0 6
2 0 6 3 0 1 .5 6

S u m 1 1 5 2 4 3 .7 5

P o 2 0 .0 0
F r a c t io n a l P o r o s ity  ( P p a v g ) 2 8 .7 5 F r a c t io n a l D e n s it y 7 1 .2 5
s ( P p a v g ) 3 .5 8
C V 1 2 .4 6
9 5 %  C o n f id e n c e  In te r v a l 1 .7 2
%  R e la t iv e  A c c u r a c y 5 .9 8  
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Data for 30 Wt.% In Paste: 

F ie ld  N o . P  ( p o r e  h i t s ) ( P  /  P o )  X  1 0 0 ( P i  -  P p a v g ) ^ 2
1 3 1 5 1 2 . 2 5
2 2 .5 1 2 . 5 1 . 0 0
3 2 1 0 2 . 2 5
4 1 .5 7 .5 1 6 . 0 0
5 2 1 0 2 . 2 5
6 1 .5 7 .5 1 6 . 0 0
7 2 .5 1 2 . 5 1 . 0 0
8 3 1 5 1 2 . 2 5
9 1 .5 7 .5 1 6 . 0 0

1 0 3 1 5 1 2 . 2 5
1 1 3 1 5 1 2 . 2 5
1 2 2 1 0 2 . 2 5
1 3 2 1 0 2 . 2 5
1 4 1 .5 7 .5 1 6 . 0 0
1 5 3 1 5 1 2 . 2 5
1 6 2 1 0 2 . 2 5
1 7 2 1 0 2 . 2 5
1 8 3 1 5 1 2 . 2 5
1 9 2 1 0 2 . 2 5
2 0 3 1 5 1 2 . 2 5

S u m 4 6 1 6 7 . 5

P o 2 0 .0 0
F r a c t io n a l  P o r o s i t y  ( P p a v g ) 1 1 .5 0 F r a c t io n a l  D e n s i t y 8 8 . 5 0
s ( P p a v g ) 2 .9 7
C V 2 5 .8 2
9 5 %  C o n f id e n c e  In t e r v a l 1 .4 3
%  R e la t iv e  A c c u r a c y 1 2 .4 0  

Data for 40 Wt.% In Paste: 

F ie ld  N o . P  ( p o r e  h it s ) ( P  /  P o )  X  1 0 0 ( P i -  P p a v g ) ^ 2
1 2 1 0 2 0 .2 5
2 1 5 0 .2 5
3 0 .5 2 .5 9 .0 0
4 2 1 0 2 0 .2 5
5 1 5 0 .2 5
6 0 .5 2 .5 9 .0 0
7 1 .5 7 .5 4 .0 0
8 1 5 0 .2 5
9 0 .5 2 .5 9 .0 0

1 0 0 0 3 0 .2 5
1 1 1 .5 7 .5 4 .0 0
1 2 2 1 0 2 0 .2 5
1 3 2 1 0 2 0 .2 5
1 4 1 5 0 .2 5
1 5 1 5 0 .2 5
1 6 0 .5 2 .5 9 .0 0
1 7 1 5 0 .2 5
1 8 0 .5 2 .5 9 .0 0
1 9 1 5 0 .2 5
2 0 1 .5 7 .5 4 .0 0

S u m 2 2 1 7 0

P o 2 0 .0 0
F r a c t io n a l P o r o s ity  ( P p a v g ) 5 .5 0 F r a c t io n a l D e n s it y 9 4 .5 0
s ( P p a v g ) 2 .9 9
C V 5 4 .3 9
9 5 %  C o n f id e n c e  In te r v a l 1 .4 4
%  R e la t iv e  A c c u r a c y 2 6 .1 1  
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Appendix 7.  ANOVA for densification screening DOE (Equation 59): 

Factorial Fit: Fractional D versus In-Compositi, Ag Particle , ...  
 
Estimated Effects and Coefficients for Fractional Density (1-Porosity) 
(coded units) considering all possible effects. 
 
Term                                 Effect    Coef 
Constant                                     73.626 
In-Composition                       23.657  11.829 
Ag Particle Size                     -3.908  -1.954 
Processing Temperature                7.783   3.891 
Heating Rate                          1.470   0.735 
In-Composition*Ag Particle Size      -1.688  -0.844 
In-Composition*                      -2.438  -1.219 
  Processing Temperature 
In-Composition*Heating Rate          -1.185  -0.593 
Ag Particle Size*                     1.937   0.969 
  Processing Temperature 
Ag Particle Size*Heating Rate         3.375   1.688 
Processing Temperature*Heating Rate   2.125   1.062 
In-Composition*Ag Particle Size*      1.033   0.516 
  Processing Temperature 
In-Composition*Ag Particle Size*     -1.345  -0.673 
  Heating Rate 
In-Composition*                      -2.405  -1.203 
  Processing Temperature* 
  Heating Rate 
Ag Particle Size*                    -4.405  -2.202 
  Processing Temperature* 
  Heating Rate 
In-Composition*Ag Particle Size*      1.000   0.500 
  Processing Temperature* 
  Heating Rate 
 
 
 
Analysis of Variance for Fractional Density (1-Porosity) (coded units) 
 
Source              DF   Seq SS   Adj SS   Adj MS  F  P 
Main Effects         4  2550.70  2550.70  637.674  *  * 
2-Way Interactions   6   119.41   119.41   19.902  *  * 
3-Way Interactions   4   112.25   112.25   28.063  *  * 
4-Way Interactions   1     4.00     4.00    4.000  *  * 
Residual Error       0        *        *        * 
Total               15  2786.36 
 

 
 
  

Factorial Fit: Fractional D versus In-Compositi, Ag Particle , ...  
Reduced analysis considering statistically significant parameters, note that no 
interactions were identified as significant. 
 
Estimated Effects and Coefficients for Fractional Density (1-Porosity) 
(coded 
     units) 
 
Term                    Effect    Coef  SE Coef      T      P 
Constant                        63.626    1.157  63.63  0.000 
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In-Composition          23.657  10.234    1.157  10.22  0.000 
Ag Particle Size        -3.908  -1.744    1.157  -1.69  0.119 
Processing Temperature   7.783   3.421    1.157   3.36  0.006 
Heating Rate             1.470   0.635    1.157   0.64  0.538 
 
 
S = 4.62863     PRESS = 498.600 
R-Sq = 94.54%   R-Sq(pred) = 91.51%   R-Sq(adj) = 92.47% 
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