Elastic Windows: Improved Spatial Layout and
Rapid Multiple Window Operations

Eser Kandogan

Department of Computer Science &
Human-Computer Interaction Laboratory
University of Maryland
College Park, MD 20742
Tel: (301) 405-2725
kandogan@cs.umd.edu

ABSTRACT

Most windowing systems follow the independent overlap-
ping windows approach, which emerged as an answer to the
needs of the 80s applications and technology. Advances
in computers, display technology, and the applications de-
mand more functionality from window management systems.
Based on these changes and the problemsof current window-
ing approaches, we have updated the requirements for multi-
window systems to guide new methods of window manage-
ment. We propose elastic windows with improved spatial
layout and rapid multi-window operations. Multi-window
operations are achieved by issuing operations on window
groups hierarchically organized in a space-filling tiled lay-
out. Sophisticated multi-window operations and spatial lay-
out dynamics helps users to handle fast task-switching and
to structure their work environment to their rapidly chang-
ing needs. We claim that these multi-window operations and
the improved spatial layout decrease the cognitive load on
users. Users found our prototype system to be comprehensi-
bleand enjoyableasthey playfully explored theway multiple
windows are reshaped.

KEYWORDS: Window Manager, CAD, Task Switching,
Multi-window operations, Persona Role Manager, Program-
ming Environment, Elastic Windows

INTRODUCTION

It is widely believed that windowed environments are su-
perior to non-windowed ones. However, an early study by
Bury et al. [5] (1985) comparing users performance in win-
dowed systemsto non-windowed systems reveal ed that task-
completion time in windowed systems can be longer due to
window arrangement time. A detailed analysis, however,
showed that actual times spent on solving atask were lower
inwindowed environments compared to non-windowed envi-

to appear in ACM AVI’' 96 Advanced Vi sual
Interfaces, Gubbio, Italy, May 27-29.

Ben Shneiderman
Department of Computer Science,

Human-Computer Interaction Laboratory &

Institute for Systems Research
University of Maryland
College Park, MD 20742
Tel: (301) 405-2680
ben@cs.umd.edu

ronments. Their experiments also showed that the error rates
in windowed environments were significantly lower. Al-
though systems compared in these experiments were rather
old, the results clearly indicate that benefits of windowing
can be overshadowed by the extra time spent on window
housekeeping activities.

Card et a. [6] analyzed window usage according to tasksand
identified seven functiona usesof multiplewindows. Among
these, independent control of multiple programs, referred to
here as multitasking, is the most significant. Basically, it
is the ability of users to work on different tasks in separate
windows. Analyses of work flow determined that peopledeal
with many tasks concurrently with frequent switches among
them [2]. For example, aresearcher preparing a paper might
draw the figures in one window while writing the text of the
document using an editor in another window. Multitasking
resultsin improvements on the overall user performance due
to the decreased average task-completion time. Windowing
systems must provide good mechanisms for task-switching
to make multitasking more beneficial.

Windowing allows access to multiple sources of informa-
tion. It is possible to reduce the cognitive load on users by
allowing them to examine other windowsfor supplementary
information, or multiple representations for the task at hand
or usetask-aids like cut-and-paste.

As stated by Card et al. [6], the computer display is used
not only as a communication medium but also as an externa
memory for users. Thus having all the necessary informa-
tion on the screen and filtering out unnecessary windows is
arequired property of windowing systems. Malone[16] ob-
served that theway peopl e organi ze papersontheir desk helps
them to structure their work and reminds them of unfinished
tasks. As Funke et a. [11] suggested, windowing systems
should support users to integrate, organize, compare, distill,
summarize, and apply the information.

MOTIVATION

Today’swindowing systems do not differ much intheir basic
principles of window management. Almost al systems fol-
low the independent overlapping windows approach, where
windows are alowed to overlap each other, operations on

windows are performed one a atime, and size and location
of each window isindependent.

With the typica early 80's display resolution (640 x 480)
it was not possible to display two page-sized documents on
the screen simultaneoudly. Overlapping windows came as
a solution to the small-screen problem by allowing more
windowsto be open simultaneoudly.

Resolutionslike 1280 x 1024 are quite common these days,
which is roughly four times the 80's resolution. Besides
the resolution, graphics processing speed increased as well,
which made sophisticated animations feasible. Animations
in windowing systems help users to understand the result of
operations and decrease the cognitive load.

With advances in computer technol ogy, more demanding ap-
plications come into existence. The amount and variety of
information that users have to deal with increased alot with
advances in networks and the Internet. The information that
is facing the users is usually unorganized and dynamically
changing, thus users themsel ves need to do the organization.
Typicaly when exploring information users want to keep
both detail and overview.

Computer-Aided Design (CAD), Computer-Aided Engineer-
ing, Object-Oriented Devel opment Environments, and Geo-
graphic Information Systems (GI S) are typical multi-window
applications. In these applications, it is typically necessary
to open many windows displaying simultaneously different
parts or representations. Also opening separate windowsfor
toolboxes, commands, and options is becoming the practice
in complex applications.

With the increase in the number of windows, visualizing si-
multaneoudly all the necessary information for atask became
difficult. Asthe number of windowsper task increases, task-
switching becomes more time-consuming since more win-
dows need to be opened/closed or moved/resized under the
independent overlapping windows approach. Dueto thein-
dependence of windows, each window must be handled sep-
arately. Longer delays due to housekeeping further increase
task-compl etion time because of theloss of users' mental task
context, kept in short-term memory. Increase in the number
of windows also prevents users to see the overview of their
desktop dueto overlapping windows. Thismight delay users
to switch to unfinished tasks.

Contents of short-term memory are not only affected by the
time that passes, but also by the type of work carried out
during that time period. Since window housekeeping is an
activity related to the computer domain and not to the users
task [21], the time spent on window management substan-
tially increases the disruptive effect on the short-term mem-
ory, thus implies a non-linear cost curve as the number of
windows per task increases.

Gaylin [12] observed that the number of window operations
that are used to switch the active window set constitutes 63%
of al the operationsin an independent overlapped window
manager. This result supports the findings by Bannon et
al. [2] that people switch among tasks frequently forcing
them to change the visible set of windows on the screen.

Bederson and Hollan [3] observed that in traditional window-
based systemsthereisno graphical depiction of the relation-
ship among windows even when there is a strong semantic
relationship. This problem is most apparent in hyper-text
browsersand CAD systems, where each subwindow iseither
alink followed or part of the system under design. In current
approaches, users have to deal with each window separately
when organizing their desktop.

Kahnetal.[14] observed asimilar phenomenon and called the
presence of too many open windows“Windowitis’. They ob-
served that in Windowiti ssituati onsthe usersbecome quickly
disoriented, losetherel ationshi psthat exist between windows
duetolossof spatial cues, and become unproductivein com-
pleting their tasks.

Bly and Rosenberg [4] characterized the requirements of
multi-window systems as the ability of the windowsto con-
form to their contents and the ability of the system torelieve
the user of window management.

On the basis of the problems discussed, we have updated
these requirements:

e support users to promote organization and coordination of
windows according to tasks.

o alow fast task-switching and resumption.

o freeusers’ cognitive resourcesto work on task related op-
erations rather than to window management operations.

o use screen space efficiently and productively for the tasks.
e provide a spatial layout that indicates the relationship be-
tween windows.

Earlier research that addresses some of these is described in
the Related Work section at the end of the paper.

PROPOSED SOLUTION: ELASTIC WINDOWS

Our methodisbased onthreeprinciples: hierarchical window
organization, space-filling tiled layout, and multi-window
operations.

Hierarchical Window Organization:

Hierarchical window organization supports users structuring
their work environment according to tasks. The hierarchi-
ca organization of windows alows users to map their task
hierarchy onto the nested rectangle tree structure.

Figure 1 displays the mail-tool application written using
elastic windows principles. The new messages are shown
iconized in the left window. Old messages are displayed
as icons, grouped hierarchically in separate windows on the
right. The hierarchical layout clearly indicates the semantic
rel ationship between the contents of the windows by the spa-
tial cuesinthe organization of windows. Thelayout provides
the user with an overview of al correspondence, where users
can pick any category and work on it.

Multi-window operations:

Typicaly, people organize papers on their desk as piles, and
move al of them simultaneoudly. Malone[16] found out that
users like to group items spatially. We claim that providing
multi-window operationson groupsof windowscan decrease
the cognitive load on users by decreasing the number of
window operations.

7 HewMail (Bl 7 olamail E]
7 UMD [=]] 7 pilkent ET
ﬁ " CMSC 1| T 2] * Administrative =[] 7 professors]
FE— L Shff e
north
1
a3 ko isler 1
E steve haris staff
hen
ﬂ i gmfaﬁﬁice. i 3 T
&2 0
= lindle: clare
ﬂ cronnell 7 ¢ Other =]
: o
Beh ! Other [=]
1
ﬂ ben : hismail cumit
hen P jodie
ﬂ qas.an:h faloutsos mm
hen f_Friends (]| ¢ associations [g]
7 Turkey = El||f 7 Fra 5]
E ; g ; g ; Sl 7 Members 5l ” monmembers 9]
yucel yesim Q Q Q Q Q Q
Q Q Q v-srada sl ocean Zugunay yahoo
tuncerd tayfun tanin Q Q Q Q Q Q
npearsonaime_yaramanogiu kemal selman pinar
i | Faaalial Falala

Figure 1: Mail-tool application: Organization of correspondence in a hierarchical layout gives the user an overview.

In elastic windows multiple operations are achieved by ap-
plying the operation to a group of windows at any level of
the hierarchy. The results of the operations are propagated
to windows inside that group recursively. This way groups
of windows can be packed, resized, or closed with a single
operation.

Another way to achieve multi-window operations is to se-
lect an operation and apply it to windows rapidly in a serial
manner.

Operations like multi-window open, close, resize, pack, and
unpack enabl eusersto changethewindow organization quickly
to compare, filter, and apply the information. Pack and un-
pack operations on groups of windows help users to filter-
out unnecessary information as well as enable fast task-
switching. Packed windows still appear in the same location
preserving thespatial cues. Thishelpsuserstorecall thewin-
dow contents and reminds them of unfinished tasks. When a
packed window is unpacked al thewindowsin the group are
restored to their previous sizes, so that users can reconstruct
their previous working environments easily.

Hierarchical organization and applicability of window oper-
ationsat any level allow rapid task-switching, even when the
number of windowsislarge.

Space-filling Tiled Layout:

We have taken a space-filling tiled approach in order to use
screen space productively, avoiding the wasted background
of the overlapped windows approach. Groups of windows
stretch like an elastic material as they are being resized, and
other windows shrink to make space. Figure 2 shows an ex-
ample resizing of the HCIL window under the UMD group
window in the former exampl e pushing the surrounding win-
dows to the sides proportional to their sizes.

i

{

Figure 2: Elastic resizing of the HCIL window in the
space-filling tiled layout of elastic windows.

We have chosen thetiled window | ayout as our window orga
nization stylein order to maximize the visibility of windows
for atask. Peopletypically try to organizewindowsto benon-
overlapping whileworking on atask, even when overlapping
windows are allowed. Other windows are left beneath the
working set of windows.

As Cohen et a. [8] stated, overlapping window layouts are
difficult to handle when large numbers of windows must all
be visible at once, and they come and go rapidly.

In tiled layouts, hierarchies of windows can be easily repre-
sented by the borders surrounding the subwindows. Users
are quiteflexiblein the placement of subwindowsin agroup
window. Thereisno strict horizontal or vertical placement
rule. This feature alows some flexibility in the placement
of windows under the same hierarchy and allows windows
to conform to their content. The content of windows is an
important constraint on which users determine the shape and
size of windows.

THE ELASTIC WINDOW DECORATION

In elastic windows window contents area is surrounded by
borders on four sides. The top border is thicker than others,
containingthetitle, agadget to theleft of thetitle, and apump
gadget at the rightmost position.

The left gadget is used to invoke a menu for some of the
window operations, whereas the borders are mainly used for
resize operations. Basically, the border is dragged using the
mouse, until theappropriatesizeisreached. Immediatevisual
feedback is provided during the operation using animations
that slowly stretch the border. The corners of the border are
used for diagonal resizing, whiletherest of the border isused
for one-dimensional resizing.

Borders are aso used to indicate hierarchical groupings of
windows. Border coloring gradually changes as shown in
Figure 1 according to the level of the window in the hierar-
chy to make groupings recognizable. Border thickness may
result in more space being used for bordersinstead of useful
information. During our design, we have found that borders
asthin as 4-5 pixelsare easily operable.

Pressing the left (right) button on the pump gadget causes
the window size to be enlarged (reduced) in al directions
according to the direction of the press.

Only windowsat theleaf level containinformation. Windows
at higher levels are group windows contai ning subwindows.

LAYOUT DYNAMICS

Due to the space-filling tiled nature of the layout, window
size changes affect size of other windows as well. In elastic
windows the proximity of effect islimited only to windows
under the same group and their subwindows.

Effect of the changes in the window size under the same
group is split proportionally according to the window sizes.
Depending on the border dragged and the direction of drag,
it resultsin either apush or pull as showninFigure3.aand b.
In both of these cases, window sizes are updated proportional
to the sizes, but the set of windows affected changes.

L w]
o o
o } Er :
0 o | - e :
== -) L]
(o
< < < <
P uw w w i-gmm
| 3 Fo
0 p o a
—|[* 30
1 0
o P sl ° | g
I < a ' <
: av |
: D ‘
£ < > < < <

Figure 3: Effect of resize operations on other windows:
a) Pull effect b) Push effect c) Recovering proportions
on resize with minimum size windows.

Referring to Figure 3.a, Window C pullswindows A and B,
since the left border of Window C is dragged to theright. In
Figure3.b, Window B pusheswindowsC, D, and E, sincethe
right border of Window B is dragged to the right. Windows
not affected are grayed in the figure. New window sizes are
calculated as follows:

Pull Push
r=1/(w. + wq + wq)

wh = we % (14+Ax*r) wh = Wy
wy=wp* (L+Ax*r) wy = wy + A
w,=w, — A wl = wex (L—Axr)
wh = wg wh=wg*(1—Axr)
wh = we. w, =w,x(1—ADAx*r)

Changesinthe upper level sare propagated down to their sub-
windows recursively. For example, subwindows of Window
A, B, and Cin 3.aadjust their width accordingly.

Each elastic window has a default minimum window size,
but users can set adifferent valuefor each window. Thisway
users can protect a window from unwanted size updates.

When windows are being resized some of the windows may
reach their minimum window size. For example, in Fig-
ure 3.b, when pushing windows C, D, and E, window D may
reach its minimum size, while others don’t. In that case the
resize operation is alowed until al of the affected windows
arefully compacted i.e. al reach their minimum sizes. Since
window D iskept at itsminimum size, proportionsdo change.
However, in elastic windowsthe old proportionsare kept, so
that the resize operation is reversible. Figure 3.c shows an
example.

Even when the window is so small that its contents are not
fully visible, it till gives users some information about its
content because of the spatial placement and reminds users
of unfinished tasks; and it can be enlarged rapidly and easily
if needed.

The effect of changes in window size on the content depends
ontheapplication. For exampl e, upon down-sizingawindow
used for viewing adocument, it might be preferableto seethe
same content but with smaller font sizes; but when designing
asystem ina CAD system, keeping the same zooming factor
and clipping might be preferable. When clipping is used,
facilitieslike scrollbars are needed to move the viewing area.
Similar arguments can be made for other content types like
images and icons. The choice is made by the application
program, based on users' preference initiated by the window
manager upon a window size update.

ELASTIC WINDOW OPERATIONS

In elastic windows, all window operations can be applied to
individual windows as well as group of windows. Window
operations supported are:

e Group
o Multiple Resize
o Multiple Slide/Rel ocate

o Multiple Open/Close
o Multiple Pack/Unpack
o Multiple Maximize

Creating Window Groups and Hierarchies:

Window groups can be created by opening an empty win-
dow by double-clicking on the border of an existing window.
Dragging and dropping selected itemsin this empty window
will open as many windows as the cardinality of the selec-
tion al grouped inside the empty window. Figure 4 shows
the result of creating awindow group for visualizing al new
incoming mailsfrom aperson. Users can add more windows
into agroup later aswell. A window can be removed from a
group by simply closing that window.

Hierarchies of windows can be created similarly by opening
an empty window insideanother empty window. Thisisdone
by selecting the operation from the menu on the | eft gadget.

7 Newntail 5] ¢ intemship Maits &)
/_0Gl intemship]

/_ Quamail
7 ymp.

Figure 4: Creation of a window grouping visualizing
new incoming mails from a person.

Multiple Open/Close Operations:

In elastic windows items selected are associated with win-
dows. These windows generally contain some information
related totheselected iteme.g. adetailed view or another rep-
resentation. The current system only supports iconic items
and textual list items.

Onceanitem or group of items have been selected al of them
can be opened with a single open operation by dragging and
dropping on the border of an existing window. The existing
window is pushed according to the position of the border
to open space for the newly created window or windows.
Double-clicking on the border achieves the same effect.

Selecting and opening a group of objectsis primarily doneto
add a number of windowsto an existing window group. This
way multiplewindowscan be opened withasingleoperation.

A window is closed by selecting the Close operation from
the menu. When a window is closed, the freed space is
partitioned to other windows at the same level proportional
to their previous sizes. The Close operation can also be
applied to windows at any level of the hierarchy. Closing a
higher level window will close all its subwindows as well.

Multiple Resize Operations:

Windows at any level of the hierarchy can be resized by
dragging on the border. All four borders of a window can
be used inresizing. The drag direction and the border being
dragged determines the effect as explained in the Layout
Dynamics section.

The corners of awindow isused for diagona resizing. The
sides are used for either horizontal or vertica resizing de-
pending on the border.

Inside a group window with many windows open, typically
users need to focus on one of these windows for a certain
time. Bidirectiona resizing becomes handy in such situa
tions. This operation resizes awindow in both directions by
pushing/pulling the opposing borders by the same amount.
Figure5 showstheresult of bidirectional resizing to see more
of the contents of the middle window inside the group win-
dow.

 Nowniai] ¢ internship was
/ol

.........

e Tl 1o e Tl 1a

i

£

Figure 5: Bidirectional resizing is used to enlarge a
window belonging to a group easily.

A window can be resized in all directions simultaneously by
the pump operation. Pumping a window resizes the window
pushing al the surroundingwindowstothe sides. The opera-
tion can be invoked by pressing either theleft or right button
of the mouse on the pump gadget. Pressing the left (right)
button causes window size to be enlarged (reduced) in al
directions according to the duration of press.

Multiple Pack/Unpack Operations:

Windows at any level of the hierarchy can be packed by
sel ecting from the menu. Windows packed appear inthe same
location, but withonly their title shown as abar appropriately
placed in the layout. This avoids the spatia disorientation
which is typicaly the case in the iconify operation in most
of the windowing system. In Figure 6, the group window
used to view incoming mail messages is packed verticaly,
whereas the Administrative Window under UMD window is
packed horizontally. The placement of the packed windows
in the same position of the layout keeps the same spatial cues
formed by the user when these windows are al open. This
helps users to locate these windows easily.

e e il T i im g}

i

£

Figure 6: The Group window used to view incoming
e-mails and the Administrative Window under UMD
window are packed.

The Pack/Unpack operations are primarily used to abandon
atask for a while and open up space for other tasks. Packed
windows can be restored to their previous sizeswithasingle
Unpack operation. It isinvoked by double-clicking on the
packed window. Hence, Pack/Unpack operations alow fast
task-switching and resumption.

Multiple Slide/Relocate Operations:

The Slide operation changes the position of awindow or hier-
archy of windowswithout changing the size. This operation
can be visualized as shifting a window without changing its
position relativeto its siblings. It operation is accomplished
by dragging with the middle button pressed.

The Relocate operationisused to relocate awindow or group
of windows to any position in the hierarchy. The Relocate
operation is accomplished by first selecting from the menu
and then doubl e-clickingon aborder asinthe Open operation
(Figure 7).

/_intemship at 1BM

Figure 7: NewMail window is relocated to the top of
the OldMail window.

Multiple Maximize Operation:

Users can focus on a set of windows and maximize them
to cover the whole screen. Thisiis particularly useful when
users are expecting to work on a set of windows for a long
time. With the maximize operation, users can use more of
the screen estate, avoiding the loss of screen space due to
nesting.

In Figure 8, the user maximizes the UMD window under
OldMail group window.

@E!

=)

Figure 8: UMD window is maximized to work more
easily.

Other operations:

Users can fix the width or height of a window in order to
protect the window from unwanted resizing. This constraint
on the window width or height can be removed by the appro-
priate release operation.

The layout can be saved and retrieved any timelater to allow
users to switch back and forth among different work layouts
easily.

Users can undo or redo operations at any time. This makes
the window operations reversible. Not all operations are
undo-ablee.g. close operation.

! CourseWork Housework
_SoftuwareEngineerin f HomeDuties
/ Project

Il

Homework#s

ToDolist

Il

Homework#4 =

GiftList

[N

k#3 ||

7 BirtdayParty

davecarr

&

GuestList

E

: — 7 Job [9]
dclipper herbert = 7 MultimediaProject [5]] 7 visualizationProject 5]
= Works: B Bl # works [8]] 7 Boss B
Homework2 N a1
[B (o]
#_ComputerNetworks] - - A
? Project (5] 7 Homeworks =] 7 People _@_ MediaGiant Output rich Penetrator Code hjs
 works (] =] 5
3 . Homework#4 Code Reports Reports
X- Connector ATM
= ¥ Farthers [a]
E| =
Homework#3 e e e
’ Partners _ _ [g] b -~ }
QEE(Y L:’ é g faloutsos reggia kanal
Horework#2 ? i, o
gasarch porter samir
1 rnhit. nntter

Figure 9: Hierarchical organization of different roles of a student: CourseWork window on the left holds all the information
related to the two courses Software Engineering and Computer Networks that the student is enrolled in. Housework
window contains windows related to the responsibilities at home, and Job window contains the two projects that the

student is responsible at work.

Multiple window operations can also be achieved by seria
application of awindow operation to a number of windows.
Once the users selects the operation, it can be applied to
any window by clicking on the window. This operation
is particularly useful when removing a number of windows
from a group.

SCENARIOS

Personal Role Manager:

The Persona Role Manager (PRM) provides users with a
role-centered environment, where people can structure the
screen layout and the interface toolsto match their roles[22,
19]. The goal isto simplify and speed the coordination of
tasks. Thus, fast access to partners, schedules, tools, and
documents regarding each role, and fast switching between
rolesisarequirement of PRM.

Figure 9 shows an example mapping of different roles of a
student onto a hierarchical window organization. This stu-
dent takes two courses this semester: Software Engineering
and Computer Networks. Project materials and partners,
homeworks, and correspondence with the professor, TA'S,
and classmates are organized in a hierarchical fashion for
each course. This student has a number of other roles like
the organization of a birthday party, home duties, and job

=
E’_Er

=

VisualizationProject

Figure 10: Layout customized to reference the code
for Networks project at school, while working on the
code for the Multimedia project at work.

responsibilities. Partners, schedules, tools, and documents
regarding each of these roles are mapped hierarchically into
different windows. The layout clearly indicates the seman-
tic relationship between the contents of the windows by the
spatial cues in the organization of windows.

i TIJEanSBS IE‘ i elasticwindow declaration @ f windowcontent IE‘
class Elasticwindou{ Alll 7 textwindowcontent [E]
= public: class TextWindowContent : public WindowContent, public vtextview { A
ElasticWindow(Desktop =, int); N
void CreateDecoration(yoid); pubTic: R

windowcontent ¥oid Updatebecoration(void); /# the standard versions of the necessary constructors/destructor
void setvalves(windowItem *WI,vcolor =C, vcoler *FC); v1oadableINLINE_CONSTRUCTORS(TextWindowContent, vtextyiew); .
void Hide(int i); . _
void shou(void); /¢ overrides from vkindTyped }
void PutWindow(int direction); vkindTYFED_FULL_DECLARATION(Tex tWindowContent);
void FPaintRed(void); - - -
void PaintDegree(void); xv\!"l:(“?] m@:hgz fungynn(werr;des o 6 5

" irtual voi serveView(vevent *event, int message);

LI LefwindouEorder “LWE; {4
FightWindowEorder “FWE;] =
upwindowEorder “LWE;

DownWindovEorder *DWE; A A
VindowContent *Contant; i iconwindowcontent (o]
i © public i T vicom =
. i char “ObjectrileNane; class IcowWindowContent : public WindewContent, public wicomview {
windowitem DT .
Desktop *OT; pubTic:
int AssociatedwindeIn = -1; /¢ nacro for overrides from vkindTyped
int in, YWin, vkindTYFED_FULL_DECLARATIONC IcomindowContent); -
width, height, . /7 nacre for the standard versions of the
ﬂnag";z:ﬂ;gﬁ'&ug?tm""“ght; F{ mecessary constructors and destrmctors) R
windowcollection : vloadableINLINE_CONSTRUCTORSCIConindowContent, vicomview);
nt degree; //void observeselect{viconviewIcon =icon, vevent “event, vbool selected); i
char *WindowName = MULL;
voolor *EBordercolor; = =
B veoler *Titlecolor;
- 'd ;nt LY ¢ listwindowcontent [5]
CEBTEHIE MY ’ class ListWindowContent : public WindowContent, public ylistview { 5
pubTic:
By /7 macro for overrides from vkindTyped
VKindTYFED_FULL_DE CLARATIONCIComdindowContent); -
T = /¢ macro for the standard versions of the
elasticobject /4 necessary constructors and destructors
o v1oadabTeINLINE_CONSTRUCTORS(IconindowContent, viconview);
=
- @ F#void observeselect(vicomviewIcon =~icon, vevent ~event, vbool selected);
E‘éfé i windowcontent:subclasses ¥
J Ll
deskto)
J = ?_imagewindowcontent (5]
E class ImagewindowContent @ public windowcCentent, public vdonaimview { A
Ic listwindowscontent public:
/7 macro for overrides from vkindTyped
¥kindTYFED_FULL_DECLARATIONCIComindowContent); -
=] /¢ macro for the standard versions of the
%l' /7 necessary constructors and destructors
il v1oadableINLINE_CONSTRUCTORS(IcomyindowContent, viconview);
LEXT | 1/ t H il 1 +
teli) Zvoid observeSelect(yicomviewIcon =icon, vevent “event, vbool selected); il
o -

Figure 11: Programming Environment for object oriented programming: Class and subclass declarations organized in

multiple windows

| Approach [Resize | Open | Pack | Move |
Independent 6 2 16 >6
Elastic 2 2 4 0

Table 1: Comparison of the number of window opera-
tions in the PRM example

The layout provides users with an overview of the roles, in
which they can pick any task regarding aroleeasily and cus-
tomize the layout for that task. Figure 10 shows an example
customization of thelayout to enable the student to reference
the code of the Network project at school while working on
the code for the Multimedia project a work. While work-
ing on the code, the user till has an overview of the roles
since the packed windows keep the same spatial rel ationship.
Thislayout can be considered as an example of detail within
overview technique, where usersarerelieved fromtheburden
of merging the overview and detail mentally. Comparison of
the elastic windows approach with the independent overlap-
ping windows approach shows the substantial reduction in
the number of operations (Table 1).

With the use of multiple window operations, as well as re-
size, pack, and unpack operations, users can focus on their
roles rather than arranging windows. Fast switching among

roles enables usersto work at their own pace, with minimum
distraction due to window housekeeping.

Object Oriented Programing Environment:

Devel oping and maintaining large complex software systems
is a difficult task. Generally many programmers work to-
gether on different pieces of the software and then integrate
these pieces to build the system. In large software develop-
ment projects where the applications, tools, code, and data
are distributed across the network, programmers typically
loose track of where the application code lies. Productivity
will certainly increase when access to individual parts of the
software components becomes easier and faster.

Most of the software devel opment environmentsin use today
are file-based. In these environments, programmers orga
nize code as separate windows for each file. Programmers
typically need to reference different parts of the code, such
as data declarations, procedure declarations, bodies, and in-
vocations, as well as related documentation like execution
charts, and reports. It is beneficial to provide programmers
with environmentsthat enable them to group informationand
manage multiplewindows easily on the desktop.

Object oriented technology iswidely used inindustry to over-
come problems of large complex software devel opment. Be-
low we will describe possible benefits of an object oriented

software development environment using elastic windows
principles.

Figure 11 displaysaview of alarge project as seen by a pro-
grammer. On the left, top-level object classes are displayed
as icons, where programmers can pick any of them to see
their declarations, related documentation, or subclasses de-
rived from them. The top middle window displays a class
declaration, whereas the bottom middl e window displaysthe
subclasses derived from a base class. Icons representing
these subclasses can further be selected to view declarations
grouped in a single window as shown in the rightmost win-
dow.

As shown in Figure 12 documentation regarding a class can
be viewed easily while updating the declarations for that
class. To use more of the screen estate, windowsor groups of
windows can be packed as in Figure 12. Managing multiple
windows at a time saves time when organizing windows to
meet new screen space requirements of the current task.

Providing programmers capabilities to organize information
and easy access to rel ated information increases manageabil -
ity of acomplex system. Thisexample also demonstratesthe
use of multi-window operationsto reduce the burden of win-
dow management and the use of the Pack/Unpack operations
to meet changing screen space needs.

. - 5
o

windowcontent

T leftwindowborder

upwindowborder

iconwindowcontent listwindowcontent downwindowborder

Figure 12: Window organization quickly changed to
view documentation regarding a component of the sys-
tem.

RELATED WORK

The Rooms system [13] uses multiple virtual workspaces,
where the overlapping window strategy is used in each of
these single-screen workspaces. Each task is devoted to a
workspace, where users can switch to other tasks using ei-
ther the overview or the doors between workspaces for rapid
transitions. Basicaly, the Rooms system tries to overcome
the problems due to the increase in the number of windows
by increasing the total screen space, by introducing multi-
ple virtua workspaces, and by techniques which allow fast
switching between workspaces. Also, it allows users to or-
gani ze tasks into workspaces, where al windows belonging
to a singletask exist. Windows belonging to a task are re-
dtricted to fit in a single screen. Although it is possible to

partition tasks into subtasks and place each subtask in dif-
ferent workspaces and utilize doors for efficient transitions
between these workspaces, users can easily lose task context
sinceinformationfor atask isdistributed to multiple screens.
There is no mechanism which allows multi-window opera
tions. Tasks are restricted to fit in atwo-level hierarchy: the
overview level, and the workspace level.

The Cedar [24] system also uses tiling, where windows are
organized intwo columns of arbitrary number of windows. It
also uses space-filling tiled layout, but proportional resizing
isnot provided. Windows can not be grouped hierarchically
and multiplewindow operations are not provided. Windows
minimized areiconized a the bottom of the desktop, possibly
causing disorientation if the number of windowsis high.

TheDylan programming environment uses apane-based win-
dow system [10Q], which allows both horizontal and vertical
panes, with a mechanism to create links between panes. The
Dylan programming environment does not support multiple
window operationsand hierarchical organization of windows.

Xerox/Star [23], RTL/CRTL [8, 9], and Windows 1.0 aso
used tiling, but hierarchical organization and multiple opera-
tionswerenot provided. CIWM [11] usesautomated window
management. Althoughautomatic strategiesinwindow man-
agement relieve the burden of window management, direct
user control is preferable as in most HCI artifacts. Myers
has an excellent taxonomy of these early windowing sys-
tems[17].

CONCLUSION

We haveattempted to determinethe extended requirements of
multi-window systems adjusted for today’s applications and
technology. Characteristics of modern applications demand
more functionality than what is availablein today’ s window-
ing environments. Multi-window operations, organization
of windows by tasks, and capability to handle frequent task-
switching without demanding extensive cognitive abilities
are some of the requirements of future windowing systems.

Elastic windowsis a space-filling hierarchical tiled approach
that we believe satisfies the requirements. We believe it
is particularly useful for complex systems like CAD/CAM
systems, and Object Oriented Software Development sys-
tems. Application of eastic window ideasin WWW Brows-
ing seems promising by the introduction of textual objects
which can be associated with windows or hierarchies of win-
dows. Coordination of windows by task, like synchronized
scrolling, hierarchical browsing, and direct selection, will be
studied. Both the usability of the window management op-
erations and their comprehensibility need experimentation,
but users are attracted to the graceful animations of dastic
window interactions.

The possibility of using overlapping windows to provide
multi-window operations and providing a layout that enable
users to group windows and apply operations on them is on
our agenda of future research directions.

A video demo on eastic windowsis available as part of the
HCIL Open House' 96 video report.

Contact hcil-info@cs.umd.edu for ordering information.
Refer to http://mww.cs.umd.edu/projects/hcil/ for further in-
formation on the project.

ACKNOWLEDGEMENT

We appreciate comments from Catherine Plaisant during

the project. We are grateful to Kent L. Norman, Charles

Goodrich, Gary Marchionini, KhoaDoan, Brett Milash, Kasim
S. Candan, and Egemen Tanin for their comments on thedraft

of this paper. Thisresearch is supported by a grant from the

National Science Foundation under Grant No. NSF EEC

94-02384.

REFERENCES

1. Asahi, T., Turo, D., Shneiderman, B., Using treemaps
to visualize the analytic hierarchy process, to appear in
Information Systems Research, (Dec 1995).

2. Bannon, L., Cypher, A., Greenspan, S., Monty, M. L.,
Evaluation and analysis of users activity organization,
Proc. of the CHI’83, Human Factors in Computing Sys-
temsConference, ACM, New York, NY, (1983), pp. 54-57.

3. Bederson, B., B., Hollan, J., D., Pad++: A zooming graph-
ica interface for exploring alternate interface physics,
Proc. of the UIST' 94, User Interface Software and Tech-
nology Conference, pp. 17-26.

4. Bly, S., Rosenberg, J., A comparison of tiled and over-
lapping windows, Proc. CHI '86 Conference - Human
Factors in Computing Systems, ACM, New York, NY,
(1986), pp. 101-106.

5. Bury, K. F, Davies, S. E., and Darnell, M. J., Window
management: A review of issues and some results from
user testing, IBM Human Factors Center Report HFC-53,
San Jose, CA, (June 1985), 36 pages.

6. Card, S. K., Pavel, M., and Farrell, J. E., Window-based
computer dialogues, INTERACT '84, First IFIP Con-
ference on Human-Computer Interaction, London, UK,
(1984), pp. 355-359.

7. Card, S. K.,Henderson, A., A multiplevirtua -workspace
interface to support task switching, Proc. CHI ' 87 Confer-
ence - Human Factorsin Computing Systems, ACM, New
York, NY, (1987), pp. 53-59.

8. Cohen, E. S, Smith, E. T., Iverson, L. A., Constraint-
based tiled windows, |EEE Computer Graphics and Ap-
plications 6, 5, (May 1986).

9. Cohen, E. S, Berman, A. M., Biggers, M. R., Camaratta,
J. C., Kdly, K. M., Automatic strategies in the Siemens
RTL tiled window manager, Proc. |[EEE 2nd International
Conference on Computer Workstations, | EEE, Piscataway,
NJ, (1988), pp. 111-119.

10. Dumeas, J., Parsons, P, Discovering the way program-
mers think about new programming environments, Com-
muni cations of the ACM, (June 1995), 38, 6, pp. 45-56.

11. Funke, D. J, Ned, J. G., Paul, R. D., An approach to
intelligent automated window management, | nter national
Journal of Man-Machine Studies 38, (1993), pp. 949-983.

12. Gaylin, K., B., How are windows used ? Some notes
on creating empirically-based windowing benchmark task,
Proc. CHI ' 86 Conference - Human Factorsin Computing
Systems, ACM, New York, NY, (1986), pp. 96-100.

13. Henderson, A., Card, S. K., Rooms. The use of mul-
tiple virtual workspaces to reduce space contention in
a window-based graphical user interface, ACM Transac-
tionson Graphics 5, 3, (1986), pp. 211-243.

14. Kahn, M., J., Charnock, E., How to prevent “Window-
its” inyour Graphical Interface ?, Proc. Slicon Valley Er-
gonomics Conference & Exposition, ErgoCon’ 95, (1995),
pp. 18-25.

15. Lifshitz, J., Shneiderman, B., Multi-window browsing
strategiesfor hypertext traversal, Proc. 30th Annual Tech-
nical Symposium of the Washington, DC Chapter of the
ACM, (1991), pp. 121-131.

16. Maone, T. W., How do people organize their desks?
Implications for the design of office automation systems,
ACM Transactions on Office Information Systems, 1, pp.
99-112.

17. Myers, B., Window interfaces: A taxonomy of window
manager user interfaces, IEEE Computer Graphics and
Applications8, 5, (September 1988), pp. 65-84.

18. Norman, K. L., Weldon, L. J., Shneiderman, B., Cog-
nitive layouts of windows and multiple screens for user
interfaces, International Journal of Man-Machine Studies
25, (1986), pp. 229-248.

19. Plaisant, C., Shneiderman, B., Organization overviews
and role management: Inspiration for future desktop en-
vironments, Proc. |EEE 4th Workshop on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises,
(April 1995), pp. 14-22.

20. Plaisant, C., Carr, D., Shneiderman, B., Image browsers
taxonomy and design guidelines, |IEEE Software 12, 2,
(March 1995), pp. 21-32.

21. Shneiderman, B., Designing the User Interface: Strate-
gies for Effective Human-Computer Interaction: Second
Edition, AddisonWesley Publ. Co., Reading, MA, (1992),
Ch.9.

22. Shneiderman, B., Plaisant, C., The future of graphic user
interfaces: Persona role managers, People and Comput-
ers X, Cambridge University Press, (Aug 1994), pp. 3-8.

23. Smith, D. C. et d., The Star user interface: An overview,
Proc. National Computer Conf., AFIPS Press, Arlington,
VA, (1982), pp. 515-528.

24. Teitelman, W., A tour through CEDAR, |EEE Software,
1, 2, (Apr 1984), pp. 44-73.

