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ABSTRACT

In today’s world, sending a chip design to a third party foundry
for fabrication poses a serious threat to one’s intellectual prop-
erty. To keep designs safe from adversaries, design obfuscation
techniques have been developed to protect the IP details of the
design. This paper explains how the previously considered secure
algorithm, TimingCamouflage+, can be thwarted and the original
circuit can be recovered [15]. By removing wave-pipelining false
paths, the TimingCamouflage+ algorithm is reduced to the insecure
TimingCamouflage algorithm [16]. Since the TimingCamouflage
algorithm is vulnerable to the TimingSAT attack, this reduction
proves that TimingCamouflage+ is also vulnerable to TimingSAT
and not a secure camouflaging technique [7]. This paper describes
how wave-pipelining paths can be removed, and this method of
handling false paths is tested on various benchmarks and shown to
be both functionally correct and feasible in complexity.
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1 INTRODUCTION

Security has become a major concern in today’s production of inte-
grated circuits (ICs). The vast majority of IC designers do not own
or have access to their own foundries, so they have to send their
designs to untrusted third-party foundries for fabrication, which in-
troduces security risks. A third-party foundry may have adversaries
who attempt to steal design information, overproduce chips to sell
for a profit on the side, or introduce malicious hardware that would
allow one to read secret data from a chip obtained legitimately.
In order to prevent an adversary’s malicious intentions and pro-
tect one’s intellectual property (IP), a designer will obfuscate their
design before sending it to an untrusted third party for fabrication.

This paper will provide an overview of previously proposed ob-
fuscation algorithms and the attacks that have been developed to
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overcome them, as well as a detailed examination of TimingCam-
ouflage+, a camouflaging algorithm that is previously considered
secure . The paper will describe an attack that shows TimingCam-
ouflage+ is not a secure camouflaging algorithm, and present ex-
perimental results to support this conclusion [15].

2 BACKGROUND
2.1 Obfuscation Techniques

Most camouflaging techniques use various circuitry characteristics,
such as threshold voltage or contacts between metal layers, to
obscure gate functionality [2—4, 8]. One proposed locking scheme
inserts logic barriers into a circuit such that every path from an
input to an output passes through a logic barrier [1]. There are also
many metering schemes that have been proposed [6, 10]. Metering
schemes are locking techniques that insert key-gates (gates that
take a key bit as input) in such a way that different chips will require
different keys.

These logic obfuscation techniques above are vulnerable to SAT
(boolean satisfiability) attacks [11]. The SAT attack identifies special
input patterns that allow groups of key values to be ruled out.
Input patterns are selected iteratively until a correct key value has
been found. There are also SAT attack formulations specifically for
camouflaging as opposed to locking [5].

Researchers have proposed SAT attack resilient camouflaging
techniques, including AND-Tree based camouflaging and CamoPer-
turb [8, 13]. These techniques force the SAT attack to take exponen-
tial time to finish, similar to SAT resilient logic locking approaches
such as Anti-SAT and Stripped Functionality Logic Locking (SFLL)
[12, 14]. However, as long as SAT attacks can be formulated, it has
been proved that camouflaging or logic locking approaches must
have very low error impact if they want to achieve SAT resiliency
[9].

Timing based camouflaging is superior to the above mentioned
logic based camouflaging in that it obfuscates the timing, rather
than the logic, of the circuit. Therefore, the logic based SAT at-
tack cannot be formulated against timing based camouflaging. This
paper focuses on the evolution of timing based camouflaging tech-
niques and formulates an attack methodology against TimingCam-
ouflage+, the state of the art timing based camouflaging technique
[15].

2.2 TimingCamouflage

The TimingCamouflage algorithm creates wave-pipelining true
paths in a circuit by removing specific flip flops [16]. These paths
are created in such a way that they are topologically indistinguish-
able from conventional true paths. Details on how these paths are
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created are the same as those described in Section 3. By not know-
ing whether a path is conventional or wave-pipelining, the correct
functionality of the circuit is unknown by inspecting the netlist. A
SAT based attack could be used to identify which paths are wave-
pipelining (e.g. wave-pipelining paths were represented by a key
bit of 1 and conventional paths were represented by a key bit of 0),
but would not be able to identify where the flip flop was removed
from. This is important as different locations of the flip flop can
produce different functionalities. In this way, TimingCamouflage is
secure from standard SAT based attacks.

2.3 TiminigSAT Attack

To identify the flip flop removal locations from wave-pipelining true
paths, a new SAT-based attack that focuses on timing, TimingSAT,
was proposed [7]. TimingSAT relies on inserting transformation
units (TUs), made of a flip flop and a multiplexer, into the cam-
ouflaged circuit to convert wave-pipelining paths to conventional
paths. The TUs are inserted into each potential flip flop location and
introduce key bits into the circuit. Depending on the value of the
TU’s key, the flip flop in the TU will either be functional or not. At
this point, a regular SAT based attack can be applied to determine a
correct key. The TUs that have a key value of 1 mark the locations
of where flip flops should be reinserted to regain original func-
tionality. In this way, TimingSAT renders the TimingCamouflage
algorithm unsecure. In an attempt to make the TimingCamouflage
algorithm secure, wave-pipelining false paths were introduced, and
the TimingCamouflage+ algorithm was proposed and claimed to
be secure against any known attack [15].

3 TIMINGCAMOUFLAGE+: AN
IMPROVEMENT ON TIMINGCAMOUFLAGE

3.1 Types of Combinational Paths

The TimingCamouflage+ algorithm is built on creating different
kinds of paths, specifically various combinations of true/false paths
and conventional/wave-pipelining paths. Traditionally, a circuit
is made up of only conventional paths, meaning all paths have
a delay less than one clock cycle. A wave-pipelining path has a
delay greater than one clock cycle, and hence multiple data packets
propagate down the path at the same time. In TimingCamouflage+,
wave-pipelining paths will have a delay time greater than one clock
cycle and less than or equal to two clock cycles. Figure 1a shows an
example of a wave-pipelining path. If at time 0 the signal B changes
from 0 to 1, the signal will not propagate to location C in time to
be reflected in the output D at time T, where T represents the time
of one clock cycle (this will be the case throughout this paper). The
propagation of the signal can be seen in Figure 1b. The transition of
signal B from 0 to 1 at time 0 is reflected in the output D at time 2T.
If signal B changes at time T, then there will be two signal changes
being propagated in the path between time T and 2T in a pipelined
fashion.

In the scope of this paper along with the TimingCamouflage+
paper, a false path is defined as a combinational path that cannot be
sensitized because of controlling signals from other paths. Figure
2a shows a false path highlighted in blue. Notice that signal A does
not affect the result at signal C. When signal B is 1, it controls the
OR gate causing C to get a value of 1. When signal B is 0, it controls
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Figure 2: False path example.

the AND gate which causes C to get a value of 0. Regardless of
what value it is, signal B controls the result at C. In this case, B is
the controlling signal. A path that is not false is called true.

Conventional true and false paths follow directly from the defi-
nitions above. However, wave-pipelining false paths are defined as
wave-pipelining paths that are false when viewed as conventional
paths. If figure 2a was a wave-pipelining false path, signal A could
affect the result at C. Consider the signal propagation in figure 2b.
When signal B is 1 in the first clock cycle, C gets a value of 1. At
time T, B becomes 0 and the value of C, once stabilized, depends on
the value of A from the previous clock cycle. If the value of A was
0, C will be 0, and if the value of A was 1, C will be 1. In this way,
signal A is able to affect the resulting signal at C. The definition of
a wave-pipelining true path is synonymous with the definition of a
wave-pipelining false path.

3.2 Algorithm

To obfuscate a circuit using TimingCamouflage+, wave-pipelining
paths must be created by removing specific flip flops. Note that it
is possible to remove a flip flop and have the resulting path still be
conventional. However, these flip flops would not be considered
eligible to be removed. Additionally, removing a single flip flop
can affect many paths as it can have many fanin and fanout paths.
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Because many circuits may not have candidate flip flops only be-
longing to one path, instead of simply removing the candidate flip
flop, the circuit surrounding the flip flop is duplicated so that some
paths may use the flip flop and others may have it removed. Du-
plicating the surrounding circuit also prevents creating too many
wave-pipelining paths all in one place.

Creating wave-pipelining paths is not enough on its own to
obfuscate a circuit. An attacker could simply perform a static timing
analysis to find the wave-pipelining paths and regain the original
circuit. However, the TimingCamouflage+ algorithm uses the notion
of a “grey region” to help prevent this attack. Taking into account an
error value &, the grey region is defined as the values between T-8§
and T+6, where T is the period of one clock cycle. After performing
static timing analysis, the paths that fall within the grey region
cannot be confidently categorized as either conventional or wave-
pipelining. Then, the attacker must use input vectors to test whether
a certain path truly is wave-pipelining by comparing results to an
oracle. When removing flip flops, the goal is to have the newly
created wave-pipelining paths, in addition to some conventional
paths, fall in the grey region. This is to prevent an attacker from
assuming that all grey region paths are wave-pipelining.

Finally, in order for the camouflaging to be secure, both true and
false wave-pipelining paths need to be created. As noted above, true
wave-pipelining paths are not fully secure as they can be sensitized
by certain input vectors. However, false wave-pipelining paths
cannot be sensitized by an input vector. Notice that when using
input vectors to try to sensitize a path, the paths are viewed as
conventional because scan chain access is used for sensitization.
When scan chain access is being used, only one input vector can
be used (i.e. an input vector is given, and after a specified amount
of time, the content of the scan chain is read). While a false wave-
pipelining path may be sensitizable in reality, it is not sensitizable
by an input vector using scan chain access. To be sensitized, a
false wave-pipelining path requires 2 consecutive input vectors
which is not supported by scan chain access. The authors of the
TimgingCamouflage+ paper claim that in order for these paths
to be found, major changes would need to be made to the scan
chain allowing for multiple clock periods to be observed [15]. By
including the 4 types of paths, the TimingCamouflage+ paper claims
its camouflaging algorithm is secure.

4 HANDLING WAVE-PIPELINING FALSE
PATHS

4.1 Overview

As acknowledged above, there is already a known method to dis-
cover true wave-pipelining paths, so this paper will only discuss the
false wave-pipelining path case. Once this case is handled, Timing-
Camouflage+ will no longer be considered a secure camouflaging
scheme.

4.2 Controlling Signals

False paths are dependent on the types of gates they are made up
of and the orientation of the gates. A controlling signal of a gate is
an input that determines the output of that gate regardless of what
the other input values are. For example, the controlling signal of
an AND gate is 0, because whether the other inputs are 0s or 1s,
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the output will always be 0. Likewise, the controlling signal of an
OR gate is 1. There isn’t the notion of a controlling signal in a NOT
gate, because there is only 1 input signal.

Similar to a gate’s controlling signal, a controlling signal of a
path is a signal that always determines the output of that path
regardless of what the other input values are. In figure 2a, B is
the controlling signal as it always controls the output. Notice that
the controlling signal in this case is connected to two gates with
opposite controlling values. This allows signal B to be the path’s
controlling signal as it will always control one of the two gates.
This setup of two gates with opposite controlling values on the
same path with the same input signal is needed for the path to have
a controlling signal (namely the shared signal).

Controlling signals cause adjacent signals to become expendable
and unsensitizable, as the adjacent signals have no impact on the
output. This leads them to become false paths. In figure 2a, signal
A is adjacent to the controlling signal B and produces the false path
highlighted in blue as it can never be sensitized.

The first step in handling false wave-pipelining paths is to iden-
tify controlling signals. This is done by doing a reverse topological
search on all the paths in the given camouflaged circuit. Starting at
either a flip flop input or an output of the circuit, paths are traced
backwards until a flip flop output or circuit input is reached. While
paths are being traced, the types of gates are recorded along with
their input signals. Once Two gates with opposing controlling val-
ues that share an input are found on the same path, that shared
signal is returned as a controlling signal. Figure 3 shows an example
circuit along with its tracing. Tracing begins at the last flip flop’s
input and works towards each of the previous flip flops’ output. At
each gate encountered, the gate along with both its input signals
are added to the set of things seen. Note that the set of things seen
is path specific, so it is duplicated at a fork. For example, at the
AND gate, the set of things seen is copied for both input signals,
leading to locations two and six, and then modified accordingly. At
any point in the circuit, the set of things seen only includes things
topologically in front of the current point. Also note that the NOT
gate at location six is visited twice. This is because its output, signal
H, drives two separate gate inputs. In other words, it is on two
paths and must be handled twice. Once location four is reached,
two gates with opposing controlling values that share an input are
found. This can be seen highlighted in green in figure 3b, and at
this point, signal H would be returned as a controlling signal.

4.3 Identifying Wave-Pipelining False Paths

Once controlling signals have been identified, the corresponding
false paths are also found. The next step is to classify these false
paths as either conventional or wave-pipelining. This can be chal-
lenging, because conventional false paths can appear longer than a
single clock cycle. Consider the false path in Figure 4. If the path
highlighted in blue is wave-pipelining, but the path highlighted
in green is conventional, then the blue path is still considered a
conventional false path. This is because the output at C stabilizes
within one clock cycle, and any change in signal A will not ever be
reflected in the output at C. In this case, the timing (and functional-
ity) of the path highlighted in blue is irrelevant.
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Figure 3: Control signal tracing example.

Figure 4: An example of a conventional false path that has
more than 1 clock cycle of delay

However, if the path highlighted in green is wave-pipelining,
then the path in blue becomes a wave-pipelining false path. In order
for a false path to be wave-pipelining, the path of the controlling
signal must be wave-pipelining. This provides the opportunity for
the controlling signal to become non-controlling in certain cases.
This is similar to the example in figure 2.

To identify these wave-pipelining false paths, all paths contain-
ing controlling signals need to be analyzed for timing. This can
be done by setting all side inputs to non-controlling values and
performing a static timing analysis to see how long it takes the con-
trolling signal to propagate to the output. If one of the controlling
paths is multi-cycled, then the corresponding wave-pipelining false

path is found.

4.4 Reducing Wave-Pipelining False Paths to
Wave-Pipelining True Paths

Once wave-pipelining false paths have been found, flip flops should
be reinserted to uncamouflage the circuit. However, flip flop rein-
sertion creates another challenge as the exact location of flip flop

578

Priya Mittu, Yuntao Liu, and Ankur Srivastava

insertion can be difficult to identify, but necessary for correct func-
tionality as different flip flop locations can produce different func-
tionalities.

However, this challenge of finding flip flop reinsertion locations
is not unique to false wave-pipelining paths. In fact, the same dif-
ficulty is also present in true wave-pipelining paths which have
already been acknowledged as not secure. Therefore, to handle
false wave-pipelining paths, they need only be converted to true
wave-pipelining paths. To do this, the controlling path of the wave-
pipelining false path will be duplicated and replaced to explicitly
show the hidden wave-pipelining true paths. Consider the false
wave-pipelining path in figure 5a. This circuit’s functionality can
be broken down into four cases depending on two recent values of
the controlling signal. These cases are categorized in a truth table
in figure 5b. The first two cases, when b[t=0]=1, have the same
result, so they can be generalized to one case — leaving three cases
in total. The controlling path of the original wave-pipelining false
path can be replaced with a 3x1 multiplexer with the three out
cases as inputs and two recent values of the controlling signal as
the select lines. The two values of the controlling signal used are
taken at time t=0 and t=-x, where x is the time it takes the con-
trolling signal to arrive at the last controlling gate in the original
camouflaged circuit. This new circuit can be seen in figure 5c. Here
the original circuit has been converted into an equivalent circuit
with new true paths (one of which is highlighted in blue). The blue
path is guaranteed to be a true wave-pipelining path, because it was
the original false wave-pipelining path. The green path may or may
not be wave-pipelining depending on the location of the removed
flip flop in the original circuit, but this information is not needed.
Since they yield the same truth table, this conversion is guaranteed
to have the same functionality as the original circuit. This process
can be generalized to work for all wave-pipelining false paths. At
this point, the wave-pipelining true paths can be converted back to
conventional paths using the TimingSat algorithm as described in
Section 2 [7].

5 EXPERIMENTAL RESULTS

5.1 Overview

In order to evaluate the algorithm presented above, it was first
implemented, then functionality was confirmed, and finally runtime
was measured. For camouflaged circuits, the TimingCamouflage+
algorithm was simulated and ISCAS89 benchmarks were made
to be consistent with that of the output of TimingCamouflage+.
Next, controlling signals, along with their gates, were identified by
tracing. Using the controlling signals and gates, controlling paths
were also identified by tracing. A timing analysis was done on these
controlling paths in order to classify them as conventional or wave-
pipelining. Grey paths are treated as wave-pipelining, because if
they are conventional, TimingSAT will find no flip flop locations
resulting in no issues. On the other hand, if a grey path was treated
as a conventional path but was wave-pipelining, the path would
not be uncamouflaged. Once controlling paths have been identified,
they can be replaced with their equivalent true paths rendering the
circuit unsecure.



TimingCamouflage+ Decamouflaged

b[t=0] = blt=-1] out
1 1 1
1 0 1
0 1 10((a || c) && d))
0 0 I((c && d))

N
P

Figure 5: Wave-pipelining false path removal example.

b[t=0]

5.2 Functionality

Functionality checking is provided here for the smallest bench-
mark, s27. As seen in figure 6a, signal DFF_0.Q was identified as a
controlling signal of a wave-pipelining path, and the controlling
path associated with this controlling signal was found: _17_, _07_,
_18_. At this point, the last gate of the controlling path, _18_, was
replaced with a 3x1 multiplexer and the rest of the gates were dupli-
cated. Since the controlling signal took 0.7T to propagate to the last
controlling gate in the original circuit, the select lines to the 3x1
mux are the current controlling signal and the controlling signal
delayed by 0.7T. The resulting circuit is shown in figure 6b. The
waveforms for the camouflaged and uncamoflagued circuits are de-
picted in figure 7. As shown, the two inputs to DFF_1._2_, DFF_1.D
and DFF_1.D2, are consistent with each other. As we have exam-
ined all four possibilities of control signal values within two cycles,
the circuits before and after the conversion of wave-pipelining
false paths to wave-pipelining true paths are equivalent, and the
conversion is valid.

5.3 Runtime

This process was performed on five benchmarks of varying size. De-
tails of these benchmarks can be found in figure 8. This table shows
that the algorithm’s execution time increases with the number of
false paths and not with the total size of the circuit as can be seen
by benchmarks s1196 and s1423. Additionally, the time needed to
handle false wave-pipelining paths is relatively small which means
this is a feasible attack algorithm.
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Figure 6: Removal of wave-pipelinig false paths from bench-
mark s27.
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Figure 7: Functional verification of benchmark s27; wave-
forms of 6(a) and (b).

Benchmark #Flip Flops | # Gates | # Conventional | # Wave-Pipelining | Execution Time
False Paths False Paths (ms)

s27 3 10 1 1 0.05536

s382 21 158 1 2 0.22442

$526 21 193 3 2 0.26674

s1196 179 2779 7 5 0.71388

s1423 74 657 27 17 12.43602

Figure 8: The results of handling wave-pipelining false paths
in five ISCAS89 benchmarks.
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6 CONCLUSION

In this paper, the security of the TimingCamouflage+ algorithm is
examined. While it is argued to be secure because of its unidentifi-
able wave-pipelining false paths, a method is proposed that allows
these paths to be converted back to their original conventional
form. In order to do this, controlling signals are first found, con-
trolling paths are then identified, and finally controlling paths are
duplicated in a way that converts wave-pipelining false paths to
wave-pipelining true paths. At this point, the TimingSAT algorithm
can be used to convert wave-pipelining true paths back to con-
ventional paths. By performing these path conversions, this paper
has demonstrated that the TimingCamouflage+ algorithm is not a
secure camouflaging technique as it is vulnerable to the TimingSAT
algorithm after manipulation.
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