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ABSTRACT OF THE DISSERTATION
Controllable Nonlinear Systems
Driven by White Noise
by
David LeRoy LElliott
Doctor of Philosophy in Engineering

University of California, Los Angeles, 1969

Professor A. V. Balakrishnan, Chairman

Given a time-invariant dynamic system S: dx/dt = ao(x) + al(x)u(t)
(t >0, x in euclidean n-space, u a square-integrable scalar control)
with known properties, we wish to obtain analogous properties of the
related Markov process [ obtained (via an 1t6 equation) whea u is re-
placed by a gaussian white noise process. The differential generator of
Y is D = ao(x}-v + (1/2)(al(x)‘V)2 , which is degenerate-elliptic in
form; the classical existence, uniqueness, and smoothness theorems do not
apply to the Cauchy problem 3g/3t = Dg, g{(x,0) = £(x) (the backward
Kolmogorov equation for I ).

The chief property of S considered here is controllability; another
is (zero-input) stability. S is said to be T-controllable if there exists
a control u connecting any given initial state y and terminal state X
in any time greater than f(y,x) > 0, some finite function of x and y.

If S is real-analytic and globally Lipschitzian, it is shown that
the controls can be taken to be real-analytic in t without changing the
reachable sets. Differential geometry techniques can then be used to
show that T-controllability implies that the Lie algebra,generated by

-3/3t + aO-V and a.+V and their commutators, has rank n + 1.

1
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Therefore, by a theorem of Hormander, the operator -3/3t + D 1is
hypoelliptic; solutions of the Cauchy problem are smooth for t > 0. It
can then be shown (using probabilistic arguments) that if £ is a bound-
ed Borel function, the unique bounded solution of the Cauchy problem is
g(x,t) = Exf(§t)’ where Xps t > 0, is a sample path of I and EX is the
expectation conditioned on X, = X%

It is shown that if § is %—controllable, P( ) is the transition
function of I, and G is an open set, then P(x, @i, G) > 0 for a sequence
of times @i(x,G)Tm , inf] f(y,x): x in G] = @1.

The analogy to stability in question is the existence of an invari-
ant probability measure for I; we obtain this result if ay is bounded
and V is a Lyapunov function of gquadratic growth such that

ao(x)'VV(x) < - eV(x).

ix



CHAPTER 1. INTRODUCTION
(1.1) The problem.

Consider a dynamic system S given by the differential equation

B &, o+ a e, 20,

where x belongs to the n-dimensional euclidean state space R" and the
input u belongs to a suitable class { of control functions. Under suit-
able hypotheses, Eq.(a) has a unique solution X, called the response

of S to u. A great deal is known about such systems; very little is

known about their stochastic analogs when (i is taken to be a stochastic
process.

Our studies have had the goal of predicting from properties of §
some analogous properties of the stochastic system I obtained when the
input u is taken to be a '"gaussian white noise' process (Chapter 3) and
Eq.(a) is replaced with an appropriate Ito equation (Eq. 3.2a). [ turns
out to be a Markov process with differential generator

D=aV+ (1/2)(a,-V)*.

If S is linear, ao(x) = Ax ( A a constant matrix) and al(x) =)
is constant. It is well-known that S is controllable if and only if the
set of vectors (b, Ab,...,An’lb) is linearly independent (see 2.12d). An
equivalent criterion is that the matrix

u(e) = f° PSpbret Sas
is positive definite. If u is replaced by a gaussian white noise, the
response X is a gaussian Markov proces; with mean eAtxo and variance
matrix M(t). Controllability of S then implies that [ is non-degenerate

and has a smooth transition density. If A is stable, as tox the mean

approaches zero and M(t) + M(») (unique and finite), the variance of an



invariant probability measure for Z (which characterizes a stationary
ergodic process on RY).

We have been able to extend portions of that theory to real-analyt-
ic, globally Lipschizian, nonlinear systems, obtaining a necessary
criterion for controllability and applying it to stochastic systems.
Since the differential generator D is not elliptic, classical methods of
studying diffusion processes do not apply; our chief tool in applying
controllability is a remarkable new theorem of ﬁérmander, analogous to
Weyl's Lemma, Its hypothesis is our criterion. Finally, we obtain a
new sufficient condition for the existence of an invariant probability
measure for ¥, as well as a proof that open sets have positive hit
probability at a sequence of times approaching infinity.

(1.2) Comparison with previous work.

The linear gaussian system discussed above has a history going
back to some work of Kolmogorov about 1935. Since n-th order time-invar-
jant linear differential equations (with u on the RHS) are controllable
systems of a rather general type, the thesis of [Dym] will serve to
present the known results (references to works in our Bibliography are
given in square brackets []).

In the case that ¥ has n independent white noise inputs, the non-
linear problem has been attacked with much success by [Wonham], using
the results of [Khasminskii] on invariant measures and the theory of

elliptic operators. Our original intent was to give a parallel treat-

ment [Elliott] for r« n inputs, but the present work is independent of
[Wonham]. For general material on diffusions, see [Dynkin] and [McKean].

If there are r< n inputs, the operator D is formally degenerate,



Such systems arise in the study of communication [Viterbi] and control
[Kushner 1967] problems. [Wonham] suggested that controllability,
rather than ellipticity, might be enough to yield the strong Feller
property; [Kushner 1969] is the first attack on the invariant-measure
problem using this idea. Kushner's systems are of the form ( r inputs)
dx/dt = Ax + Bg{(x) + Bu(t), g(+) bounded, B an n X r matrix,
the system with g = 0 being assumed controllable. Our results on the
Kolmogorov equations improve on his in the case that g 1is real-analyt-
ic. (Real-analytic, Cw , functions have at every point a Taylor
series convergent in a neighborhood of that point. Ck means ''having k
continuous derivatives' and ¢” means all derivatives are continuous, but
neither of these implies that the function or its derivatives are bound-
ed on R". Ci means Ck with compact support and does imply boundedness.)

We have stated our results for the case r = 1 for notational reasons
—-- but they carry over to r > 2 except for Theorem 3.6; see Note 2 of
Section 3.6, for an illuminating example due to Mortensen.

Our results on invariant probability measures in Chapter 4 are not
as complete as Kushner's, but avoid using the results of [Khasminskii],
and do not require that we first prove positivity of the process L,

We know of no precursor of Theorem 3.6, an application of our notion
of f-controllability to establish positive hit probabilities for open
sets. (It also "embeds" S in Z.) We have not yet been able to show
the relation of f—controllability to strong connectedness [Balakrishnan]
but the examples of Section 2.12 may serve to motivate it. The fact that
f—contrcllability implies H-controllability and the proof (2.8 and 2.10)

are new; B-controllability as a definition is due to [Hermann 1963].



H-controllability is a rank condition on a Lie algebra associated with

and has also been discussed by [Haynes] and [Hermes] (it is the cri-

Q
-y

teriaon mentioned at the end of Section 1.1).



{2.1) Definitions.

The dynamic system & 1s given on the n-dimensional euclidean

n

state-space R by the differential equation
a) dx

== = a (%) + a, (x)ult

dt o A

where the vector functions ao(') and (+) are (% (real-aralvtic) on

a4

R , and for all x and vy in RY they are globally Lipschitzian, 1.e.
b) }iai(X)}‘z < K2(1 +§$x‘i2)s !} ai(x) - ai(y)tg < Kllxny!i§ i= 0,1,

The scalar u{') is a reel control function to he chosen from the
A
function-space E? = {u: Tiu(t)lzdt < b
o

Given any initial state y and control u(+), defined for t > 0,

A
Eq.(a) has a unigue absclutely continuous solution x_ = Y(y,t;u), t > O

t
guch that X=7Y it is called the respouse of S to u starting at y.

Yote that § ig time-dinvariant.

In Sections 2.4 and 2.8 we shall be concerned with the notion of

accessibility. For T >0, let
A

y Foss & . . -~ ~ T 2 <r Y 1
AT (7Y = {x: there exists t & [0,T] and u & L7t Ay, tu) = % s

y ° v

13

s = b m.

v T >0

AY 1s called the set of states accessible from y. If for every

5 ¥ . B R
v € R the set A7 contains an open set, we say § has the accessibility

property. The next Proposition shows that in the definition of Ay(T) we
can replace the class é? with the classnof controls that are real-ana-
lytic on finite intervals (the Taylor series converge at the endpoints).
(2.2) Propositiom.
If for u € g? we have X(y,T; u) = z, then there exists v € Cm[O,T]

such that X(y,T; v) = z and Z(y, *: v) is real~analytic on [0,T].



>

fl[u(t}lzdt, and denote © = J()+ 1. Ve pose the
o]

“Lagrange problem” of minimizing the functional J(*) under the con-

Proof: Let J{(u)

straints J{u) < p, X(y,T:; u) = z . The condition (2.1b) guarantees
(via the Gronwall-Bellman inequality) that if J(u) < p, then the

response of & to u satisfies the a priori bound
I a8 prioris

T . , > 2 frn e B "
Jol zztiiét §-2§iyl}z( e3h L(L+p)~1) + ZKZT(T+p)eJL L(*+p).

Then we mav apply Theorem 6 of [Cesari] to show the existence of an
optimal contrel v and response %X that minimize J under the civen
constraints. However, anv such ortimal control and response must satis-
fy the Pontryagin necessary conditions [Lee and Markus]:

there exists an n-component vector ¢ of ‘multiplier functions’

defined on [0,T] such that (* dindicates inner product)
v(t) = - (l/é)q(t)‘al(xt)
98 L L2 gra (B) -(1/4) (qra, (D) 2]
dt 9% 0 191
d;ﬁ -~ PN A o
e ao(x) - (1/2)<( q.al(h) )al(h).

These differential equations are C in (X,q) and (Theorem 3.2 of Ch. 1,
[Coddington and Levinson]) the Imown solution is real—analvtic on [0,T];
- . . wyf-. v 1 o . . 1
from the first equation, v € C [0.T]. Also, the response X, lies in the
Yim
set AT{T).
In the next sections we will examine accessibility from the stand-

point of differential geometry, guided Dy the presentation in [Hermann],

especially his Chapters & and 18.

(2.3) Vector fields.
w
o = ao(x).(g/ax), oy = al(x).&BﬁBX), a and ay being the C

coefficients of Eq.(2.la), are scalar first-order partial differential

operators; but they have another useful interpretation, as examples



3 3 n T x w o - P
of vector fields on R°. The class V of C vector fields is thus the

set of all first-order partial differential operators B = b(x)*(3/9x)
W, T, . . . . . w,. n
which map C (R) into itself (the derivations of the ring C (R)); note
- n . . w,.n
a)  B(0:102) = 1842 + ¢28¢;, for ¢ and ¢z in C ®).
. . . w
The evaluation Bx = b(x) is a column-vector, with C  components.
V is closed under the operations of addition and multiplication by
w,. n . w . . .
scalars from C (R), so Visa C -module, of dimension n. V is also

closed under the commutator or Jacobi bracket operation: if «,B €V,

b) [a,B] aB - Ba € V.
Therefore V 1is a real (infinite-dimensional) Lie algebra.
Ifas VvV, ay-= a(y), and if for each y &€ Rn there exists a (nec-—
essarily unique) trajectory in R™ of the differential equation
dy. .
dtt

- a(yt)’ yO =V

w . .
then for any C function ¢ it makes sense to define the function

d ,. . ‘

= , i

dt(@(}t));t=o o (y),

the Lie derivative of ¢ along the vector field o. If also B € V, its
Lie derivative is the vector field [a,8] ( [Hermann 19681); that this

is consistent with our other definitions can be seen from (ef. Eg.(a))

) d (Bo(y))| = [0,B10(y) + Bad(y).
dt t=0

The derivative of a function or vector field along a response of

. w . -
S, given a state x and a CV control u(-), will be called the system

derivative; the operation is denoted by Sp/dt. Thus let y(x,t) denote

a function that is c? on Rnx{O,T], and remembering o= ai(x)~(3/3x),
d)  sDylx,, t) = 1im(1/8) (P(x , >t+s) - Y(x,, ) ) =
dt s-»0

it

%Ew(xt,t) + aow(xt,t) + u(t)alw(xt;t);



& s

IU

= {ao,;fs] + u(ﬂ)[ml,ﬁl Ly .

‘ti =
The second derivative is

rT

[aM

C "y 2 - ] : od 4
S{D = [g +u(Qa,, 7] + du,  la,,8], and so forth.
{dt} B[t=0 © 1 A

(2.4) Vector field systems.,

Given the two vector fielas ao, al, defined for svstem £, we

define the vector field system H as their span in V, that is,

o W,onn
H = + : CU(R
{woao Yoy 39 and wle (R},
The evaluation of E at x is tne two-dimensional vector space
H = {Bx = b(x), BE€ H} = {vao(x) + ual(x): v and u realj],

attached to the point x. Other, similar, evaluations will occur later.

Given an interval [0,T], an integral curve of & is defined as

n s . . ; -
a " map 2z, from [0,T] to R such that dz_ € H o, 0<t<T,
" dt t
that is there exist CF real functions u{+) and v{+) such that
s

dz, = vit)a (&) + u(tia, ().

at

. 5 . . . : W
An integral path of H 1s a continuous curve, plecewvise C7, each of

whose pieces is an integral curve. The set of points x lying on the

ot - . . . . T e . LY
integral paths of H that originate at point y 1s called the leaf L~

of H through v, in the terminology of [Hermann 12C¢8}. By an argument

parallel to Prop. 2.2, it can be shovn that for system §, the leaf 7

is exactly the set of points 2z _ that lie on integral curves with z = V-
15
. Wrn m .

If we are giver a control u € C [0,T], the response of § to u is
an integral curve of H; hovever, an integral curve z 1s a response of
S only if v(t) = 1 in Eq.(a) of this Section, or (re-parametrizing time)
if v is always positive, at least. See the example in 2.12¢c, below. Ve

can conclude that e Ly, and the inclusion mav be strict.



E(ao,al) or © for short will denote the smallest vector field sys-
tem containing H and closed under the bracket operation; £ is a Lie
sub-algebra of V (see 2.12 ¢, for an example). I contains, and is
spanned by, the commutators [ao,al], [ao,[ao,al]], [al,[ao,al}], cen o
The evaluation of £ at x is the vector space Ex ={Bx: Be E}.

If the dimension of Ex is r for all x, we say Rank(Z) = r; 1if
Rank(Z) = n, then £ = V.

(2.5) Proposition.

If Rank(Z) = r, then for each y & R" the leaf L’ is an r-dimension-
al connected Cw manifold; the space Li of tangent vectors to Y at a
point x is just EX.

This paraphrase of the Frobenius "complete integrability" theorem
is from Chapter 8 of [Hermann 1968] (he does the Coo case; see p.92 of
[Chevalley] for a c proof). The functions ¢ that are constant on LY sat-
isfy B¢= 0 for all B6 Z; these p.d.e.'s have n-r independent local solu-
tions, which define little r-patches ( Cw images of r-dimensional euclid-
ean neighborhoods) which can be pieced together to form a smooth manifold.
The important point for us is that 1Y cannot contain any n-dimensional
neighborhood if r < n.

(2.6) Multi-vector fields.

An r-vector field 51A82A*'°A8r takes r-tuples of c® functions into

c®®™), and is given by Bih+=A8 (61,02,%*,¢ ) =Det(B;$,). Thus for

r =2, BiABa(d1,02) = (B161)(B202) - (8;¢2)(52¢1). We will write
81A°"A8r(x) = 0 if at x the function B;A----ABr(¢1,"',¢r) = 0 for any
r-tuple of c” functions. This is equivalent to the linear dependence of

the vectors Bix, BaX,**°, Brx .



(2.7) Lemmas for Theorem (2.8).

t1}

a) From (2.6), Dim(Ex) = v if and only if there exist 81,...,Br €

).

X

tn

such that BIA"'ASr(x) # 0 ( r linearly independent vectors bi(x) in

b) From the multilinearity of the A-product, along a response x, of §
SD SD SD, .
S2(B1A82) = (FB1)A82 + BihTiBe;

S2B1AB2) g [x,,B11A82 + Bblog,Be] + u(0)[ay,BalhBe + u()Brklay, 62
from (2.3e). If B; and R, belong to Z, each term on the RHS is of the

form BiABj s Bi and B, 6 Z. The second and higher system derivatives

h|
inherit this property (with coefficients G(0), etc.) and similar state-

ments are true for r-vectors of any order with factors 81,...,Br € =,

c) If 61,...,8r 6 2, if X, is a state such that Dim(EX ) <r, and if
o

u(+) is real-analytic, then from lemmas (a) and (b), the system deriv-

atives of B;A"'ABr of all orders vanish at t = 0: SD (BIA."Br?t=O= 0.
4) F(r) 4 {x: Dim(EX) < r} is an invariant set for the system S.
That is, if x_€ F(r), then for any u € c®ro,11, x, € F(r), 0 <t < T.
Proof: X, is real-analytic in t. If ¢i€ Cw(Rn), i=1,...,r, then
BlA"'ABr(¢1,'°‘,¢r)(xt) £ ¢(Xt) is real-analytic in t, and its Taylor
series vanishes at t = 0 by lemma (c), so ¢(xt) = 0 for t in a neigh-
borhood of 0, and the result holds by analytic continuation. Since any
point in A0 is accessible by a c¥ control, Ao = F(r).
Discussion. The above lemma (d) and Theorem(2.5) are all we need
to prove the next Theorem (2.8) and, by an easy extension, Theorem(2.10).
These results are similar in some respects to those of [Hermann 1963],
extending the Frobenius theorem to "foliations with singularities" in

the c¥ case, but the statements and proofs we give are new (Hermann was

not concerned with necessary consequences of accessibility).

10



(2.8) Theorem.

If S has the accessibility property, then Rank(E(uo,al)) = n.
Proof: F(n) = {x: Dim(Ex) < n}. If F(n) is empty, Rank(Z) = n and we
are through; so suppose there exists a point y € F(n). By lemma (2.7d),
AYC: F(n). By the accessibility property, AY contains an open set G,
so Byle-- ASn(x) =0 on G if 81,...,8n ¢ 2. c” functions that vanish on
an open set vanish on Rn, so F(n) = R".

From the definition of F(n) we see that either Rank(Z) = n-1 or
F(n~i) is non-empty. First suppose Rank(Z) = n-1. Then by Prop.(2.5),
LY is, for each y, an n-l-dimensional manifold; but Ao Ly, and the
accessibility property gives us a contradiction. Thus we must suppose
that F(n~1) is non-empty.

We can now repeat the above argument, substituting for n the num-
bers n-1l, n-2,..., 1, 0. F(0) is empty, but our argument would contra-
dict that, completing the proof (only the possibility Rank(Z) = n was
uncontradicted).

(2.9) Controllabillity definitions.

S is called T-controllable if there exists a finite non-negative

function %(y,x) defined on RUXR® that satisfies the conditionms
1) %(x,x) = 0; [T is read "T- hat'']
2) for any vy, {(x,t): t > f(y,x)}is open in R™%[0, %) ;

3) for every t, > T(y,x) there exists u EZLFsuch that X(y,tl;u)=x.

1
(The special case T = 0 is called "differentially controllable" in the
system theory literature.) From Condition (3), chontrollability implies
that S has "state-to-state controllability in finite time'"; using (2) we

can show (see 2.10) that S has an extended accessibility property ( in

11



(x,t)-space), that is all we need for the remaining results of this
chapter (in Section 3.6 the notion of controllability-- every point of
R® can be reached from every other point-- will be important). See
Section 2.12 for examples (e - h) of T-controllable systems. It should
be noted that Condition(2) is implied by

2') for all y, the function T(y,*) is bounded on compact sets.

We now give an algebraic definition of controllability, essentially
the same as those given by [Hermann 1963], [Baynes], and [Hermes] but
in a form suitable for application to HEormander's Theorem (Sec. 2.11).
If we lift our vector fields from R" to the (x,t)-space Rn+l, we can gd-

join the vector field 3/3t to V and use the ring Cw(Rn+l). The

Lie algebra generated by aO—B/Bt and o4 will be denoted by E'(ao~a/3t,a1)
or ©' for short. Since S is time-invariant, we can use Cw(Rn) for our
ring of coefficients without affecting considerations of rank or dimen-

sion. Thus we say

S is H-controllable if %' has rank n+l.

(2.10) Proposition.

If S is %-controllable it 4is H-controllable.

Proof: we copy the time-axis with an extra state-variable r, thus

s o+l
setting up a new system S' om R

dlxl _fa (x) a, (x)
?ﬁiC} = (10 }+ 1 }u(t)

0
and satisfying the hypotheses of Sectionm 2.1. The open set

, given by the differential equation

{(x,7): £ > T(y,x)} is accessible from y, so S' has the accessibility
property. Corresponding to Z we have E'(ao+ 3/9z, al), with rank n+l by
Theorem 2.8. Since o and o, are independent of [, we can replace 3/3zC

with -3/9t to obtain the desired conclusion.

12



Discussion. It is easy to see that if Rank(E') = n + 1 then
Rank(Z) = n. It is not true (without controllability hypotheses) that

n + 1; consider the example on Rz

Rank(Z) = n implies Rank(E')
dg/dt = u(t), dn/dt = 1; E is spanned by 8/on and 3/3f; Z' is spanned
by 9/8n-~23/3t, 9/3f, so each has rank 2. Another example:

GEJdt = -n + fu(t), dn/at = £ +nu(t), on B° - {(0,00};
Rank(Z') = 2 = Rank(Z) on the punctured plane; the system has an invar-

jant manifold in (£,n, t)-space: %%{ t - arctan(n/E)] = 0 for all u.

Such examples suggest the

Conjecture: If for every x and y in R" there exists a time t
and a C® control u(+) such that X(y,t; u) = x, then S is H-contreoll-
able.

(2.11) Theorem (Hormander):

If Rank(E') = n + 1, then the operators Q = -3/5t + o, + (l/2)(al)2

and D = o + (l/2)(al)2 are hypoelliptic on Rn+l, Rn, respectively.

(That is, if f and g are Schwartz distributioms on Rn+1and

. ®© . n+l . @
Qg = £, then g is C on any open set in R where f is C , after
a modification of g on a set of measure zero to remove any "removable
discontinuities”; the same 1is true for D and R".)
[~ -]
This has been proved [Hormander] for C operators of the form
V., 2 ® . w
Bo + z Bi , where 8°""’Bv generate a C Lie algebra. If the C rank
i
-t . © . . . w
of ¥' is n+l, so is the C rank, since a non-vanishing C (n+l)-vector
[+2]
is a C_ (n+l)-vector and the rank of Z' can be no greater than nt+l.
Since = must have rank n, that will hold for £ as well as Z',

substituting n for n+l.
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(2.12) Remarks and Examples.

(a) The preceding results will be used in Chapter 3 in the following
form: given that S 1is H-controllable, if the initial value problem
Qg = -dg/dt + Dg = fF(x)6(), £t >0
has a weak solution g [with respect to C:(RHX(O,w))] for some initial
function £ €& B(Rn), it has a Ceo classical soclution é on the t > 0
half-space, obtained by modifying g on a set of measure zero.
(b) A generalization: consider systems of the form
dx/dt = a_(x) + VZ‘I‘ u, (B, (x).
If this system is C and k-controllable, Theorem 2.8 and Hormander's
Theorem hold, so the operator -3/3t + oy + (1/2)\2_m ui
is nypoelliptic. The o, do not have to be linearly ;ndependent.
(¢) Chow's Theorem [Hermann 1]:

Y is the leaf of

P co . S -
If H is a C vector field system on K , if L
H through y, and Z(H) is the Lie algebra generated by H, then if
— ey s ; y . n
Z(E) has rank n , L’ is all of R .
§) 3 s 1w L (22
Theorem 2.8 is a C converse of Chow's Theorem.
; S0 .
It is not generally true that AY = ®" for an E-controllable sys-

: . z .
tem. The following example on R~ is from [Haynes]:

dx/dt = u, dy/dt = x? ;= BT(-3/at + x%8/3y, 8/9%);

o, = x28/%y, o, = 5/9x%, [cxo,al] = 2x3/93y, [oco,[oao,ul]} = 23/%y, so

Z' has basis 3/8t, 8/9x, 9/9y and its rank is 3, but from any point
(x,y) in the plane only the region above y is accessible.
(d) TFor the special case of a linear system with constant coefficients

SO: dx/dt = Ax + bv(t),

H-controllability is equivalent to complete controllability in the sense

14



of "state-to-state controllability on any time interval,' due to Kalman.

It is easily seen that the Lie algebra S'(x'A'V'-3/3t, b'V") has rank

An-—l

n+l only if the vectors D, Ab,..., b are linearly independent, in

which case (A, b) is called a controllable pair. For any T > 0, let

o il A 1
v(t) = eA(rI t)c , 0 <t <T. The matrix M(I) = fl eﬁsbb'eA Sds is then
0
non-singular. For a given X and the given  family of controls v(t;c)
X = eAtxO + M(T)e, which can be solved for ¢ given any desired

endpoint Xy That is complete controllability. On the other hand,
given complete controllability we have %-controllability with the
function f(x,y) identically zero. H-controllability follows by our
Theorem 2.8.

. . R ; L W A
In this work we are postulating that 5 1s ( and T-controllable

P uonulusduduniutuho -3
(and not necessarily linear). The two examples that follow are to show
that there are non-trivial systems of this sort.

(e) Let (A, b) be a controllable pair; consider the nonlinear system

S : dx/dt = Ax + bo(x) + b (x)ult)

1
where ¢, ¥ are ¢¥ real functions and Y(x) > 0. Then Sl is T-con-
trollable with T(x,y) = 0.
. A(T-t)
Proof: Given states y and z, let v(t) = e c, where

e = i@z - ). Let u(e) = [v(e) - 0(F)1/U(x,), where X_is
the response of system S0 to v(+), starting at y. From (d), we see

iT = z. We then have, for the Sl~ response X, starting at y with

control u(e+), the differential equation

%E[Xt - xt] = Ath - xt] + bl @(xt) - ¢(xt)], 0<t<T;

but this has the unique solutiom X - §t = 0 on [0,T]. Therefore Xp= Z.

15



(f) Let (A, b) be a controllable pair, and consider tne system

SZ: dx/dt = Ax + bu(t) + g(x),

where g is a bounded Lipschitzian vector function on R . Then 82 is

. LA - . w
f-controllable with T(x,y) = 0. We can require g to be C .

The proof is easily obtained from that of [tiermes], Th. 1.2 by

. AT e 1 ; . .
writing x; = € "X + M(T)c + h(c), where h turns out to be bounded

and continuous in c; then one solves for c¢ and applies the Brouwer
fixed-point theorem, as shown by [Hermes], to obtain a control to any
desired XT’ for any positive T.
. . e AW Sl

(g) Theorem 2.8 does not remain true if C is replaced by C  in the

. . . 2
hypothesis. Consider this example in R :
53: dx/dt = u(t), dy/dt = £(x),

where £(x) vanishes for |x| > 1, £(x) = x exp(l/(x* -1 )] for | =

<1.
To obtain a trajectory connecting two given points, one makes use of
the strips where y increases or decreases, as needed, and then moves
in the x direction. Outside these strips the rank of z'is two, vet

the system is T -controllable ( with positive f(',')l

(h) Finally we give aT-controllable o example with T > 0. Again n=2.

54: dx/dt = -x + u(t), dy/dt = 2 tanh(x) - tanh(y).

~
¢

It is easily seen that T is greater than 1/3 of the difference of

the initial and final values of the y-coordinate.
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CHAPTER 3. TEE STOCHASTIC SYSTEM L

If the set of controls or inputs to the system S is given a probab-
ility measure P, S becomes a stochastic process. In some applications it
is desirable to have an extension of S that makes sense when the input
process is a white noise; the chief benefit is that S becomes a Markov
process I on R". Such an extension is given by the Itd stochastic differ-
ential equation (see the following sections for precise definitions)
d§t = m(§t)dt + al(gt)dwt, x =y
where m(x) = ao(x) + (l/2)a1al(x), and v, is a scalar Brownian motion.

This equation was first used by Stratonovich; if x 1is scalar (n=1)
[Wong and Zakai] derives it from Eq.(2.la) by requiring that {tu(s)ds

approach w_ in an appropriate topology. (The proof does not work for

t
larger values of n.) As a mathematical model, it has engineering and
physical justifications; see [Stratonovich] and [Mortensen 1968] for dis-
cussions of this point. We believe that the results of this chapter will
also justify the use of this equation, and Chapter 4 gives a sample of
its application to the problem of the existence of invariant measures.

In Theorem 3.5 we show that the transition probabilities of Z, our
Markov process,satisfy the backward Kolmogorov p.d.e., and have densities
satisfying the forward Kolmogorov p.d.e.-- without a priori assumptions
about the existence or differentiability of the density and without the
use of classical existence-uniqueness theorems, which would require that
the differential generator be an elliptic operator (here it is not). In

Theorem 3.¢ we show that T-controllability implies that for each initial

vy and each open set G in R" there exists a sequence of times @i(y,G)

approaching infinity such that P(y.0,, G) > 0: and we "embed" S in Z.

iﬂ
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(3.1) Brownian motion and stochastic integrals.

By the Brownian motion, or Wiener process, we mean the trio

W 4 ( Cb’ F_, P), where C,_ is the space of continuous real (scalar)

b

functions w,_ , t 3_0, with v 0, equipped with the topology of uniform
convergence on compact time-intervals; F_ is the smallest g-algebra of
subsets of Cb that includes all events of the form {X <w < ul, A <n,
t 3_0 (the open sets in the uniform topology are Fw—measurable); and
P is the completely additive probability measure induced on Cb by

P{) <w < ul vl fhs} 4 {u{zn(t«s)]-l/zexp[-(ws— v)2/2(t-s)]dy,
which gives positive measure to the open sets of Cb’ f the Brownian
motion is restricted to some interval [0,T], the space Cb[O,t] with the
uniform (“sup') norm is a Banach space.

Ft will denote the smallest g-subalgebra of F_ that includes all
events of the form {w: A <wg < u}l, A < up, 0 <s <t. Note that
LA t 2.0, is a Brownian motion independent of FS [McKean].

t+s

A vector random function g{ = ht(w) (we indicate dependence on w

by the underline) is a function defined on Cb [{0,») with range Rn, Ft~
measurable (for each t) and t-measurable (for almost every w).
E denotes the expectation operator (integral with respect to P).
In order to discuss It6 integrals of random functions it is conven-
ient to introduce the family of Hilbert spaces

«|] is the norm in " ,

H = {h, : Egt!lgsllzds < «}, where |

adopting the convention that h = 0 in q.m. (quadratic mean) if
Eftlih ||2ds = 0 and that elements of H_ are to be regarded as q.m. equi-
2g 2
e]
valence classes. Now the It stochastic integral can be defined [McKean]

as a linear map from E{ to 5{ (indefinite integral) with the properties

18



(1) Ejt hdw =0
0-s S
(i1) éthdw = hw, if h is a constant
s t
(iii) fths dws is Ft~ measurable and almost surely continuous in t.
0
(3.2) Definition of I
© : . w n n
Let a_ and a; be C* mappings (not necessarily C° ) from R* to R
that satisfy the global Lipschitz conditions (2.1b). Let
m(x) = a (x) + (1/2)oqya,x) oy = a, (x)+(3/8x) as usual)

and note that since

su (yo3/3x)a, () || < K,
TSI

m(+) is Lipschitzian with constant K2 instead of XK. If we are given a
random function X tzﬁO, that satisfies the eguation

a) X =y + £tm(§s)ds + ftal(gs)dws, t >0,

almost surely, and x_ € Et? then we say that x_ 1is an It6 solution of
Eq.(a), which is also commonly written

a') dgt = m(§{)dt + al(zt)dwt.

For proof of the following facts the reader is referred to Chapter
11 of [Dynkin] or Chapter 3 of [Skorokhod].

Eq.(a) has an Itd solution X, = Y(y,t;w) which is almost surely
unique and continuous’on any interval [0,T]; from continuity of the
sample paths we see that X, is bounded on [0,T] almost surely. The col-
Jection of trajectories Y(y,t;w), ¥y & Rn, t>0,weW, the o-algebras
Ft, and the conditional probabilities

n
Py' PY{E{G g} = P{w: X, € Gl -y vy}, G a Borel set of R

constitute a Markov process I which is our stochastic system.
(3.3) Properties of Y.

n R .
Let B denote the class of R Borel sets. The transition function
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P(x,t,G) = PX{EtG G} is for each (x,t) a probability measure on the sets

G € B, and satisfies the Chapman-Kolmogorov equation

a) P(x, t+s, G) = [ P(y,s,0)P(x,t,dy) , s and t > O,

where dy signifies the volume element in Rn, the domain of integration.
Let F(Rn) denote the class of Borel functions on Rn, B(Rn) the

Banach space of bounded Borel functions on R" with the uniform norm

THI sgp[f(x)] . If f 6 F(R") and the right hand side (RES) exists,
TE SEEG) = [ £ty

is called the conditional expectation of f(§t) given x = x. The ome

parameter family T, t > 0, of linear bounded operators mapping B(R™)

into B(®") is a strongly continuous contraction semigroup [Dynkin].
Theorems 11.4 and 11.5 of [Dynkin] establish that Tt maps the Banach

. n o, .
space C of bounded continuous functions on R into itself (the Feller

property) and that if f is C2 with compact support ( f & Ci(Rn)) then

b) T f(x) - £(x)

kel

-0
= 2 o :
DE Gof + (l/Z)Qlf € CO(R )

- Df(x)‘l = 0, where

D is called the differential generator of L, which is thus a diffusion
process in the terminology of [Dynkin].
Ito's Lemma: If V(t,x) is ¢! in t and C2 in x and if x, is a tra-

jectory of I, the random (scalar) function &(t) = V(t, x ) satisfies

ot
The proof can be found in [McKean] or [Dynkin].

c)  de(t) = {8®(t, x,) + DV(t, _}Et)]dt +a,v(t, x )dv, .

By establishing the q.m. differentiability of Y(y,t;w) with respect
to t and (twice) w.r.t. y, [Skorokhod] establishes the following
Proposition: If m(*) and al(') have continuous bounded second deriv-

atives and £ € Cg(Rn), then the function g = th satisfies the backward
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Kolmogorov p.d.e. 9g/dt = Dg, g(x,0) = £(x).

The proof occupies the latter half of Chapter 3 of [Skorokhod]. It
should be noted that this proposition cannot be obtained by semigroup
methods because th does not necessarily have compact support.

(3.4) Proposition.

Let T satisfy the conditions
() ='(-3/3t +a, a,) has rank n + 1
() m(-) and al(‘) have continuous bounded second derivatives;
if f € B(Rn), then the function g = th is equal a.e. to a function
g € Cw(Rnx(O,w)} that satisfies
a) Qg = - 3g/ot +Dg = 0.

Discussion. Condition (B) will be removed in Theorem 3.5. Note that
if the system S is T-controllable and v, (4) is satisfied.

Proof: We only need to show that g is a weak solution of Eq.(a),
that is, (denoting the adjoint of Q by Q*)

b) f g(x,t)Q¥*¢(x,t) dxdt = 0 for all ¢ € C:(RnX(O,m));

R™X (0,%)

Q* = D* + 3/3t = _ 8 1 a2
ot o Bx (x)a t3 2 1 + X

O
X(x) = [ } sdo Ba ) - a0,

and our conclusion will follow from the hypoellipticity of Q (Th.2.11).
Definition: if the numerical sequence {fv(x)} converges for all x
as v+ and if ][fvilm < M (some positive number independent of V),
we say {fv} is w-convergent and fvﬂ f, Qhere f(x) = %32 fv(x).
Lemma: if a family ¥ of real functions on R" is closed under the
operations of addition, multiplication by real numbers, and w-convergence,

and if Ci(Rn)<:‘¥, then B(Rn) C ¥. (Proved in [Dynkin] as Lemma 5.12)
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To apply this, the family Y is defined by

¥ = {fe B(Rn): g = th satisfies Eq.(b)}.
By the Skorokhod Proposition of the preceding Section, Ci(Rn)CI Y. Tt
is linear, so ¥ is closed under addition and multiplication by reals.
Now consider any w-convergent sequence {fGEW}, !fv(x)! < M, say, for all
V. Then {fv} has a w-limit f € B(R"). By the dominated-convergence
theorem of Lebesgue,

%;g Eva(§t) = Ex%(Et) for all x and all t > 0,
and the sequence g," thv is uniformly bounded by M; so the sequence

. n . I ~
g, is w-convergent on R X(0,®), with some w-limit g.

© . n . ‘ . ~y
if ¢e CO(R x(0,*)), so is Q*@. Since g, - &7 0,
lim nf(gv - g)0*¢ dxdt = 0.
W Rx (0, 00) R
By hypothesis each gy satisfies Eq.(b), so g satisfies it for all ¢.
Therefore £ € V¥ ; applying the lemma, Y = B(Rn).
(3.5) Theorem.

If I satisfies (A) and if féfB(Rn), then g = th is dw and

3g/dt = Dg. If also feC then g is the unique bounded solution of

L]

Dg satisfying lim g(x,t) = £(x). Furthermore, I has a trans-
t40
ition density p(x,t,*) such that 9Jp/9t = D*p, for each x.

dg/at

Proof: Step 1.

Consider the sequence of spheres Uv = {x: llxl! <v}l,vs=1,2,....
Choose a sequence of ¢" functions ev >0 on R" such that ev(x) =1 on Uv
and, as llx!] + o, Gv(x) -+ 0 so fast that the coefficients

a’=06a, al =8 a n’ = a + (1/2)(aY .3 )a
o l"g—' 1
X

have bounded second derivatives as required by condition (B) of Sec(3.4).
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v
Let the sequence of Markov processes L  be given on R" by

dgy = mv(§Y)dt + ai(gy)dwt,

with Dv, Pz, E:, Tz, defined appropriately for v = 1,2,.... Since 6v> o,

Rank(E'(uz-B/at, az) ) = n+l, so Prop. 3.4 can be applied to V. 1f

£ 6 B(RY), g = T'f satisfies Eq.(3.4b),v = 1,2,... .

t
By the part of a Markov process on Uv we mean (see [Dynkin], [Khas-
minskii]) the process obtained by cutting off the trajectories at the

stopping time T of first exit from Uv[%v is a random functional such

Y

that the event {W:Tv< t} 6 Ft for each t > 0; for ti:v we assign

x = A, A a "cemetery" state outside R" on which functions of x, are
all defined to be zero.

The parts of I and Zv on Uv have the same transition function
PY(x,t,G), G € B restricted to U, x € U_ . LimP {x €U, 0 <s < t}= 1

Y v X =s Vv -7 -
so P(x,t,G) = limP_{x_ € G| x €U, 0 < s < t} = lim P’ (x,t,G).
X =t =s v =7 =
Vo Voo

The sequence of numbers on the right-hand side is monotone non-decreas-
ing for fixed (x,t,G), so the limit exists. }lgv]lw §V{{f1|m, so
g, - g on RnX(O,w). By the same argument we used in Prop. 3.4, we
conclude that g satisfies Eq.(3.4b) and is equal a.e. to a C function
g that satisfies Eg. (3.4a). In Step 3 we will show that g = g.

If G is any compact set in R" and for any €> 0 Ne(x) is an
g-neighborhood of x, then I has the property that [Dynkin] calls
l . 5 - =
N'(G): %%8 (l/t)s&p[ 1 P(x,t,NE(x)) ] 0.

2

To prove this construct a function h € CO(Rn) which equals 1 on g,z(x),
vanishes outside Ns(x), and nowhere exceeds 1. h is in the domain of D,

and Theorem 3.9' of [Dynkin] completes the proof. From this property,

lim g(x,t) = lim Sf(y)P(x,t,dy) = f(x) uniformly on compact sets.
t40 t+0
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Step 2. Now let us use test functions Y(x,s) € C:(Rnx(o,w)) as
initial functions (considering s as a parameter for the time being).
Since Ttw(x,s) is bounded, corresponding to P(x,t,dy) there is a formal
density p(x,t,y)dy in the sense of a Schwartz distribution on our test
functions Y. Let us use the notation Dy to mean "D acting in the vy

coordinates, x fixed"; since Ttw(x,s) is differentiable in t,

9 9 - .
8tTt+sq;(x,s)!t=0 Btf Ttw(y,s)P(x,s,dy) o J Dyw(y,s)P(x,s,dy),
but, integrating the left-hand side,
3 3
21 yix,s)| ds = - [ 5=0(y,s)]P(x,s,dy)ds;
fat t+s £=0 Rnx(O?i)

a)  [IDguly,s) + 2 47,912 (x,5,dy)ds = 0 for all y.
We see from Eq.(a) that p(x,t,y) is a Schwartz-distribution solution of
the partial differential equation 3p/dt = D;p, for fixed x. (Since D*
is of the form g + (l/2)8?+ ¥, where 80 and 8,€Z and ¥ is a c®
function, D* -~ 3/9t 1is hypoelliptic.) Since p is a derivative of a
probability distribution on Rn, p can have no removable discontinuities,
and therefore p is actually ¢ without modification (compare the use
of Weyl's Lemma, and a similar argument, in [McKean]). It is easy to
see that for given x and t p(x,t,*) is a probability demsity, and that
as t+0 it converges in the Schwartz sense to the Dirac §-function §(x-y).
Step 3. If f € B(Rn), from Step 1 g(x,t) = g(x,t) a.e., where
g is C*. From Step 2, for s > 0
g(x, t+s) = [g(y,t)p(x,s,y)dy = [g(y,t)p(x,s,y)dy € C.
Treating g itself as an initial function, as s+¥0 g(x, t+s)~ g(x,t)

uniformly on compact sets, so g &€ C. Therefore g = g, and dg/3t = Dg
from Prop. 3.4. It is easy to see that 3p/dt = D_p.
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m

Step 4. Let the initial function f 8 C; then to show that g = Ltf is
the unique bounded solution of dg/ot = Dg satisfying g(x,0) = £(x),
we need only show that the problem

c) du/at = Du, u(x,0) 0, u bounded and c”

has the unique solution u = O.
Let u be a non-zero solution of problem (c) with the bound M.
fee)

~ . ~-At ,

For any A > O there exists the Laplace transform v(x,\)= fe A u(x,t)dt,
0]
and the integral is uniformly convergent; so v 1is continuous in X and
bounded by M/A . By the uniqueness theorem for the Laplace transform,
v(x,A) is non-zero for some A, which we fix. We may then suppose that
. . b \ )
for x in some neighborhood, v(x) = v(x,A) > 0. Integrating by parts
oo
. ~At
and using (c), we have Avix) = f e "Thu(x,t)dt;
0

from this we can show that v is a weak (Schwartz) solutiom of DV = Av.
dowever, U -\ 1is hypoelliptic; knowing v & C we can conclude that v
. < 2 »
is C without any modification.
Step 5. Definition: we say that a function h 1is in the domain of the

~

s eaos . . . N =
weak infinitesimal generator A if as t ¥+ 0O (l/t)(ltn - n)¥ in € BO

where Eo = {f 6 B: w-lim th = f}.
td0
This definition ([Dynkin] v. 1, p. 53) obviously requires that
} R L n . ~
h and Ah be bounded on K . For our system L, C - BO.
Lemma: If h € C MC? (bounded and twice differentiable) and Dh(x)
is bounded on Rn, then h is in the domain of A and Ah = Dh.

Proof: Tor any fixed & and any neighborhood U = {x:] |x-&|| < 6}

(l/t)(Tth(ﬁ) - h(®) ) = Il(t) + Iz(t) + 13(t), where

L]

I,() = (/[ f) - tRIRE&,t, dy),

1/ f@E@,t, dy), I,(8) = -£(R)(1/t)[1 - P(&,t, D)].
R

I,(t)
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Let k = sgp‘h(x)( . Given ¢ > 0, from the property ¥'(G) there exists
t, such that ﬁIB(t)] < ke and }Iz(t)l < ke, 0<t< tys if § is suf-
ficiently small, from h 6 C° we have |I (t) - DE(x)|<e ,0< t< .

W -
Df 1is continuous and bounded by hypothesis, so Il(t) + Df(x) = Af(x),

proving the lemma.

v is then in the domain of A and Av - Av = 0; by Theorem 1.7

L]

of [Dynkin], the resolvent ( A~ 2)_1 exists and v 0, contradicting
the original supposition that u # 0. (End of Proof)
(3.6) Theorem.

Tf a_and a, are ¢, globally Lipschitzian (2.1b) and if the

1
system S 1is T-controllable, then
(I) T is strongly Feller (i.e., T f& C for all f € BRR™ )
(1I1) if G is an open set, for x € R” there exists a sequence of

times Gi(x,G)fw such that P(x, @i’ Gy >0, i=1, 2,
Proof of (I): Theercu 2.10 and Theorem 3.3,
Proof of (II): Step 1. Suppose there exist a time r 2 0, a point zp
and an open set Gp such that for all t > r, P(zp, t, Gp) = 0. We
shall obtain a contradiction as follows.

Step 2. By Property (I), for t >0 P(x,t,G) is continuous in (x,t).

Let us define, for G € B and x € Rn,
A ® -t
Tr(x,G) = [e P(x,t,G)dt;
this function is continuous in x and non-negative. lLet

z & {z6 R":T (z, G )}=0; note z_6€ Z ;
r P P

BreeT (x s .
G& —{X.Fr(x, Gp) > 6}, § > 0;
A ;
Go ~6gOG8. The sets Gé, GO are open.

In Steps 4 and 5, below, we shall show there exist 266 Z and a time
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T > 0 such that P(ZO,T, Go) > 0; then there exists $> 0 such that

P(zo, T, GS ) > 0. From Eq.(3.2d), for all s > 0

P(z_, T+s, cp) > IGP(y,s,GP)P(zO,T, dy) ;

1)
o0 - —
[e P(z,, Tts, G )ds 2 JGgr(yst)P(zo,t,dy%
T —_—
e TT+r(zo’ Gp) > §?(zo, T, Gé )y > 0.

Therefore there exists tz >T+rx such that P(zo, Tz’ Gp) > 0, contra-

-

dicting the supposition of Step 1 and proving Property (II).

Step 3. 1If zp g Go’ P(zp, 0, GO) = 1 and there is nothing to prove.

So take =z & R™- G . [It may be that z_ & G_, since G need not be a
P o P P P

subset of GO.]

~
Choose any point z. € GO and any TO> T(z_, z.); construct a

1 1

and let

control u € L? for system S such that Y(z , T ; u)= 2z,
o} p’ o o 1

3 1 b . . n .
us denote the corresponding trajectory in R, parametrized by T, by
, n
h={x=%(z,05, u): 0<o<TI}CR.
p o = = "0
If ¢ is sufficiently near To’ XO € GO; there exists GO > 0 such that

4 = ko) bd > < < v
Fr(ygo, Gp) 0 and Fr( o’ Gp) 0, 0,<0Z2 10

Now (without loss of zenerality) we shall take the point X to
O

be the origin O of the x-coordinates of RY. It is necessary that we
treat the cases al(O) # 0, al(O) = 0 separately.

Step 4. Suppose al(O} # 0; then al(x) # 0 on some neighborhood U(0).We
can construct a C homeomorphism & taking U(0) into a neighborhood{U(0)
in a copy of R" (x = E(x), x = § 1(x)) in such a way that the image al

of al( ) is a constant vector; Xt —&(x ) satisfies (x a response of S)

_(.3.'3;..- PLE.’-. ) 1 - ~ ~
Frialiew (E () + u(t)gg a, (& (h ) O(Xt) + u(r)a;
(see [Hermann 1], Ch.6, for details). The xl—coordinate curves

£ =% + A4,t are E-images of solution curves of

t o 1
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the differential equation  dx/dt = al(x) (with initial state on some
suitable hypersurface through the origin); the n-1 other coordinate
functions Ei(x) are solutions of the partial differential equation
alEi= 0, i=2,...,n
that are functionally independent on U(O).
Using It6's Lemma (Section 3.3) for the n functions §i= ii(§t),
we obtain a stochastic differential equation for trajectories om U(O):
@gt= D€(§t)dt + ufz§t)dwt; on T [U(0)] this is written
a) dgt = go(gt)dt + aldwt
and we cut off the trajectories at the stopping time T, of first exit
from £[U(0)]. Now extend the vector function ﬁo(ﬁ) to the rest of R©
in a C: way; then we can construct a new Markov process, no longer cut
off, which we denote by £, Since 31 is
constant in the defining Eq.(a), we can construct the trajectories of
7 in a new way, which makes it possible to interpret trajectories of
S as trajectories of the stochastic process; the construction is due ¢,
[Lamperti] (cf. [Mortensen 1966]) and is given in Ch.3 of [McKean]:

For each w € C,, the (ordinary!) integral equation

b’
a') % =% +/Y3 (2 )ds + aw
~t o ©° o —s 1t

has a unique continuous solution (in the usual sense) ﬁt(w), t>0
obtained by successive approximation in the uniform norm (not q.m.).

Given two samples w', w" from C_, if x; x" are correspondimg solutions,

b

b) ‘[xé - Xg‘! ;:eKt[{all[sup |wl - w

o, e20.

2
That is, the map w +§t(w) is continuous on the Banach space Cb[O,t].
%t(w) is also an Ito solution in H, but each equivalence-class of solu-

tions now has one member (this subclass of H is not complete in q.m.).

28



Now, once again cut off the trajectories of L at the time Ty of first
exit from £&[U(0)]. The random function g—l(ﬁt(w)) , 02t < T, is a
representative of the equivalence-class X, (of L trajectories) and is

also a continuous functional, for given t, on the space Cb[O,t].

. . w -1 /0 P
We will write X, = £ 1(xt(w)) to denote these representatives; by
uniqueness,for any given X € U(0), our new solution and the I1t6 solu-
. w o, . .
tion are related by X=X in q.m., if the process is cut off at Tu.

Now let wz = ét uo(s)ds, where u is the control constructed in
[

Step 3. Then the arc of the trajectory A from O to zy is given by x:,

0<t é=To— Oy given that O is the initial state. Choose T in that inter-

W

val. In C, the set {w: XTE GO/)U(O)} contains w° and is open

b
and thus has positive probability. To put it another way, Eq.(b) shows
that (while the trajectories are in U(0) ) trajectories of L starting
at 0 stay near the trajectory A with positive probability. Then we
may choose the origin O to be the required point 2z ; PO{ETG GO} > 0.
Step 5. Assume now that al(O) = 0. There are two possibilities. If
there are points x on the boundary BGO C Z such that al(x) # 0,
then we modify the control u so that A passes into G0 at such a
point , and we are back in the Step 3 situation, taking this point x

as the origin. On the other hand, if al(x) vanishes everywhere on BGO,

then the boundary is part of a real-amalytic variety of dimension less

i [2 .
than n. That is, 9G is a bvpersurface on which “al(x)!i =0, and is

piecewise % (implicit function theorem) and we can assume that the
origin is a good point. Now construct a little truncated cone with

vertex at O, axis in the ao(O) direction, lying completely inside Go'
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That is, for small enough A and p , {x: aO(O)'x > Xiixi},lix{§< p}CIGO.
As in Remark 3 to Th. 11.4 of [Dynkin], for the trajectory starting at
the origin at time 0 we have, for small ¢,
- 2 . 2 .
- < "
%, t ao(O) + Nes where Lol‘nt[i < ct sup tollésli . Since
' ?

(1/t)sup (EOltg_l‘z - = |1® = pl|x ||? + o(t) at x_ =0, the

[0,t] t o o o
Chebyshchev inequality gives us Po{ilntliz > tz/kz}f_ckzo(t), where
o(t) means a quantity that vanishes with t. For any sufficiently small
t the probability that X, lies in the cone is therefore positive.
Thus we again conclude that Po{zt & Go} > 0.

That concludes the proof of property (II).

Note 1: Since any T > OO will suffice, it is evident that
Qfo, Gp) f_%(O, zp). Then Qfx, G) = inf ?(x,y), as one might expect.

y&G

Note 2: The results in Sections (3.1-3.6) can all be generalized to

ax_ = a_(x)dt + (1/2) Ji(a, 8/8ma, (x)dt + ] Ta (x Y,

—t o —t vel v v —t =1"V'—t t
where wl, ey W are independent brownian motions, and r < n.(Compare
Remark 2.12b.) In Theorem 3.6, this generalization must be restricted:

either r = 1, as in the above proof, or if r > 2 there must exist a

coordinate system in which 21sees By are all constant.

The reason for this restriction is that x may not be a continuous
functional on the r-fold Cartesian product c[0,t)x++-xC[0,t]. R. E. Mor-
tensen [private communication] has provided this example for n=3, r=2:

1 2 1 2
dgt = dwt, dzt = dwt ’ dEt th“t §tdwt.

. 5 .
To see the failure of continuity at wl = 0, w = 0, consider the (sure)

-1/2
null sequence of ''sample functions" wl(k) = k /

sin(27kt),
2 -1/2 . _ _
w (k) = k cos(2mkt), k=1, 2, ... . At time t = 1, z, = 27 + Z s

for all k; but the appropriate norm liwl(k)l]m +l§w2(k)\lm -+ 0.
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CHAPTFR 4. IKVARIANT PROBABILITY MEASUKRES

{(4.1) Remarks.

Suppose that the initial state x of ¥ is given a probability
distribution on Rn, denoted by the measure py ; that is, P{x € G} = u(G).
If at every time t > 0O we have P{xt € G} =p(G), we say y is an invar-
iant probability measure for I. In the following sections we will
give formal definitions and prove a new existence theorem.

It would be possible at this point to extend to our slow diffusions
the work of [Khasminskii] on invariant measures, except that the criter-
ion he gives (involving a Dirichlet problem for the differential gen-
erator D) depends on the assumption that there exist arbitrarily large
compact sets with regular boundaries. (If an open set G has a smooth
boundary G and T is the time of first exit from G, a point x € G
will be regular if the limit as y~> x, v € G, of Eir is zero.)

Tt can be seen from the problem in [Franklin and Rodemich] that
for slow diffusions (even if %(',-) = (0, when ¥Yhasminskii's conditions
1°_ 3° are satisfied) this regularity assumption needs checking. Con-

2
sider their problem: I is described on 27 by d§t= dwt, dz{= x dt;

-t
G is some open set lying above the x-axis with the segment (0,1) of
the x-axis as part of G. Points on this segment are not regular. For
the relevant Dirichlet problem Du = (1/2)uXX +xuy = -1, boundary
values cannot be prescribed on the segment. (Compare [Fichera].)

A construction has been announced by [Bony] that gives small sets

with regular boundaries (corners are regular, curiously!). Such a

result will permit the construction of invariant measures by the

method of [Khasminskii], which also requires a regularity condition.
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(4.2) Set functions.

If the domain of an integral is not stated, it is R".

Let M denote the space of O-finite countably additive set funct-
jons ("signed measures') defined on B, the Borel sets, and taking
values on (-*,*]. Given a sequence {pk}, we say ukfﬁ u if for all
£6C [£Gou, (@x) —[£0u(dx) as k>
this is called weak convergence. Giving M the topology of weak conver-
gence, it is a linear topological vector space [Dunford and Schwartz].

We define a family of linear operators {Lt, t Z_O} on M into M, by
a) Ly (G) = [P(x,t, Gp(dx), G € B.

Lemma 1. Each operator Lt is continuous on M; the family { Lt} is a

semigroup, weakly continuous at t = o.

&1

Proof: Suppose we are given HP‘K 0 as k > « . is a Feller pro-

cess ( TtC T C ), so for all f € C

ff(x)Ltuk(dx) thf(x)uk(dx) - 0.

From Eq. (a), LtLS L = LSLt. Tor all f 6 C and all u & I

t+s

[ Ly Ex) - ud)] = [I1,£G) - £G)Iu(dx) > 0 as € 4 0.

Definition: Let M+ = {ue Mot H{*) 2_0} denote the measures on B;

F—4

I=1ue M:u() >0, U(Rn) = 1} denote the probability measures.

1f there exists M6 Il such that Ltﬁ= i for all t> 0, 1 is called

an invariant probability measure for z.

To establish the existence of an invariant probability measure
(under additional "stability" hypotheses), we must now develop a

suitable criterion for compactness of sets inIl.
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(4.3) Compactness and gauge functionms.

We will say that a sequence My €¢I is u.s.b., or uniformly sto~
chastically bounded, if for every € > O there exists n(g) > 0 such that
for k = 1, 2, ... , uk{x: Px[]?2 >0l <e .

Lemma 1.(Helly's selection theorem): Given a u.s.b. sequence M. €Il
there exists p € I and a sub-sequence uk. such that uk. ¥ H.

i i

The proof is in [Feiler], pages 243, 247, 261. Also compare
[7], Theorem 0.208 (there w-convergence is with respect to ¢; if the
measures are u.s.b. then C can be used).

Definition. A gauge function V(<) is a non-negative twice contin-
uously differentiable function on R" such that V(x)+® as ||x|| >

and V(x) < K, + Kzllx§§2 for some positive constants Kl and K, .

1 2

From that last requirement we see that for any finite x and t,
EXV(§C) is finite. This is important in what follows.

Given a gauge function V{*) and some U & I , suppose
/v(x)u(dx) = vy. From Chebyshchev's inequality, for any positive A
pix: V(x) > A} < y/A . Then uix: =2 > G- Rl)/Kz} < y/A ; but
that is the condition used in defining wu.s.b. .

Given V(<) and any number Y > iﬁf V{x), the set of measures

o(7; v) = {ue It /v(xu(dx) < v}
is non-empty. Construct a sequence of bounaed functions {vi & C} which
converges monotonely to V from below. O(vys Y) is the intersection of a
closed convex cone, a hyperplane, and anhalf—space in M, all defined by
functionals continuous on M. Therefore @(vi; v) is weakly closed. Then
(V3 v) = {\Q(vi; y) is weakly closed. Using Lemma 1 we conclude that

®(v; v) is weakly compact.
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Lemma 2. (The “arkov-hakutani fixed point theorem):

Let ® be a compact convex subset of a linear topological space. Let {Lt}
be a commuting t-indexed family of continuous linear mappings wnich map
® into itself. Then there exists W € @ such that Ltu = u for all t.
(This is given as Theorem V.10.0 in [ Dunford and Schwartz].

It is now clear that if we can find a gauge function V() and a
number y such that ®(V; y) is mapped into itself by each L then we
will be assured of the existence of an invariant probability measure.

Following [Vonham] and [Kushner 1967,1969] we use gauge functions
in a way analogous to the Lyapunov functions of control theory: v(§t>
will not decrease along trajectories, but we can require its expectation
to decrease with time when X, is sufficiently far from the origin. If

DV (x) dis negative ( D is the differential generator of T ) for large

|

x||, then the following lemma will be useful.
. i : 112
Lemma 3: If V is a gauge function and {DV(x)< KOl L],
L V(x ) = V(x) +jta DV (x_)ds.
x —t o 'x s

Proof: (Similar results are given by lushner.)

{G,} is a sequence of nested open sets with compact closures, increas-—

i

. o n . . . . . .
ing to fill up R. Let T. be the time of first exit from the interior
K

19

of Gk' Let V?(x) = V(x) wvhen x 8 G, , but outside G, let VP be bounded
& A~ |8 o

and twice continuously differentiable. Then V, is in the domain of A
Y 1

.

-

(see Step 5 of Th. 3.5). Denote N Ty = min(t, Tk); it is a stopping
time with expectation less than t, s0 we can apply the Corollary to
Theorem 5.1 of [Dynkin]:

th,
Y = T - ot B -
EV, (x ATP) v, G) + EJ TRV (x))ds.

©_ is bounded or [C,t and TP+ © as k - o, almost surely. Then tn1k+ t
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almost surelv. Then V(z{ . ) V(Et) a.s.. For any fixed x, the LHS of

2R
K

£q.(a) is bounded in magnitude by sup V{(x )}, which has a finite expec-
[0,t]
tation; so by Lebesgue's dominated-convergence theorem, for all x

the LIS converges to RVV(Et).
e

Tor all s in the interval [0, e 1.1, V. (x) = V(x_ ) and using the
k K™=—s -]
lemma of Step 5, Theorem 3.5, we see JV(ES) = DV(gS). Therefore the
. - - < t_ .
RuS of Lq.(a) converges to the limit v {x) +£ LxDv(zs)ds'
(4.4) Theorem. If there exist a gauge function V(+) and positive

constants KB s €1 Gy such that |DV(x)|< KS(Itxiiz + 1) and

u{x) < ¢, - c9Y(x) for &ll x,

1

then there exists an invariant probability measure y for I.
Proof: Let vy be any number greater than cl/c2 . Denote
cl(x,t) = L"v(ét)’ then we have the integral inequality
. t
elx,t) < V(x) + f ¢y - c,glx,s)ds
O .

< ¢ fe. + (V(x)=- ¢

1/ey l/cz)exp( —czt).

With our choice of vy, if p € @(V; v)
fV(x)Ltu(dx) = fg(x,t)u(dx) <y

The conclusion follows from the results of the preceding Section.
Discussion: An example in I may pe userud.

dz/dt = v - X, dv/dt = -y - tanh(x) + u(t)exp(-x );

let V(%) = logcosh(x) + yZ/Z; then DV(x) = —yz— xtanh(x) +(1/2)exp(-2x )

2

and a simple calculation shows wix) < 1/2 - V(x),

W) < 1/2 + x*+ y
= s - iy w ., .

and the K-controllability follows from example (2.12e). C is obvious,

so the corresponding process L satisfies the Theorem, as well as the

ProBosition: If 3 satisfies the hypotheses of Theorem 3.6, then the

support of any invariant measure is all of RT.
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(4.5) Proposition. If W is an invariant probability measure for 3

and Rank(Z') = n+l, then U has a demsity g satisfying D#*q = O.
© 1
Proof: Given that Ltu = U, f¢(X)Ltu(dx) = fe(x)u(dx) for all ¢ & CO(R )

-- that is, JT _¢(x)u(dx) = So(x)u(dx), and differentiating w.r.t. time,

fD(Tt¢(x))u(dx) = 0. U as a Schwartz distribution has a formal
density q(*) (compare Th. 3.5) such that th¢(x)D*q(x)dx =0, t >0,
Since the class of functions Tt¢, t >0 is dense in C:(Rn),

D#g(x) = O (the "steady-state Fokker-Planck equation): by hypo-ellip-
ticity, q is a ¢” function.

(4.6) Remarks.

For the hypothesis of Theorem 4.4 to be satisfied, it is suffici-
ent that the system S, with zero input, possess a quadratic Lyapunov
function V such that SDV(x) < - CZV(X) and that llal(x){|< cye This
implies that S must be exponentially stable, with exponent =Cy>s and

have the BIBO ( bounded input gives bounded output) property. We conjecture
(a) the BIBO property (with a few restrictions) is enough g0 estab-
lish the conclusion of Theorem 4.4 given that Rank(Z') = ntl; and

(b) to establish the existence of a unique invariant measure with
support = R" , it should suffice to require §~controllability, real-
analyticitv, and the existence of a gauge function V such that DV < 0

for sufficiently large f{x{{ .
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