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Rigid body simulation is an integral part of Virtual Environments (VE) for

autonomous planning, training, and design tasks. The underlying physics-based

simulation of VE must be accurate and computationally fast enough for the in-

tended application, which unfortunately are conflicting requirements. Two ways to

perform fast and high fidelity physics-based simulation are: (1) model simplification,

and (2) parallel computation. Model simplification can be used to allow simulation

at an interactive rate while introducing an acceptable level of error. Currently, man-

ual model simplification is the most common way of performing simulation speedup

but it is time consuming. Hence, in order to reduce the development time of VEs,

automated model simplification is needed. The dissertation presents an automated

model simplification approach based on geometric reasoning, spatial decomposition,

and temporal coherence. Geometric reasoning is used to develop an accessibility

based algorithm for removing portions of geometric models that do not play any

role in rigid body to rigid body interaction simulation. Removing such inaccessible



portions of the interacting rigid body models has no influence on the simulation ac-

curacy but reduces computation time significantly. Spatial decomposition is used to

develop a clustering algorithm that reduces the number of fluid pressure computa-

tions resulting in significant speedup of rigid body and fluid interaction simulation.

Temporal coherence algorithm reuses the computed force values from rigid body to

fluid interaction based on the coherence of fluid surrounding the rigid body. The

simulations are further sped up by performing computing on graphics processing

unit (GPU). The dissertation also presents the issues pertaining to the development

of parallel algorithms for rigid body simulations both on multi-core processors and

GPU. The developed algorithms have enabled real-time, high fidelity, six degrees

of freedom, and time domain simulation of unmanned sea surface vehicles (USSV)

and can be used for autonomous motion planning, tele-operation, and learning from

demonstration applications.
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Chapter 1

Introduction

1.1 Background

The role of virtual environments (VE) is crucial in efficient design and oper-

ation of robotics systems. VEs are extensively used in operator training for tele-

operation [PPB10]. Another application of VEs in autonomous robotics is planning

using programming by demonstration (PBD) also known as imitation learning, and

hardware and software design [ACVB09, SK08]. VEs are also used in non-robotics

applications such as operator training for hazardous operations [YJJ+10], virtual

surgery [GNU+09], etc. In all of the applications, VE is supposed to meet two main

requirements for immersive realism namely, the accuracy of the results and real-

time interactivity. VE for complex systems, such as robots interacting with diverse

environments or humans interacting with environments using some virtual reality

(VR) tools, require high fidelity physics-based simulations (e.g., rigid body dynam-

ics simulation, computational fluid dynamics, finite element simulation, etc.). Also,

in order to be interactive, the VE requires real-time performance of the underlying

physics simulation. Physics-based simulation enables the VE to render the realis-

tic motion, forces, visualization and other sensory feedback into various interaction

channels for enhanced immersivity [HM07, MH08]. Few examples of VEs are shown

in Figure 1.1.

1



(a) Vortex crane simulator [vor10].

(b) USSV VE simulator [SSTG09].

(c) Battelle’s VE simulator for explosive ordnance disposal (EOD) application [bat10].

Figure 1.1: Examples of VE based simulators.
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In Figure 1.1(a), VE is used for simulating crane and hoist training system.

In order to be realistic training environment, the interaction forces on the crane and

hoists must be estimated with sufficient accuracy for the human interacting with

the VE. In this system, Vortex rigid body dynamics simulation engine is used for

computing the forces that are further displayed on the haptic device to give realistic

tactile feedback to the user of the VE. Figure 1.1(b) shows a VE for simulating

6 degrees of freedom (DOF) USSV motion. The USSV simulation environment is

used for operator training and PBD. Accurate computation of the forces acting

on the USSV is very important for the realistic behavior of the simulated vehicle.

Figure 1.1(c) shows an explosive ordnance disposal (EOD) simulation system used

for training hazardous EOD tasks. Again the force computation is required for the

realistic feedback to the user of the system.

In addition to the VE simulators (see Figure 1.1) used directly by human users

for training and imitation learning [ACVB09], they can even be used for autonomous

robot motion planning [TG11, SSTG11, WBK+10, PKV10, LL06b]. One of the

current research issues in robot motion planning is to perform efficient physics-

aware trajectory planning. Let us consider the case of USSV trajectory planning

in Figure 1.2. In order to generate dynamically feasible and optimal trajectory

plans, the USSV simulation must be accurate and computationally fast [LaV06]. For

the lower sea-state (see Figure 1.2(a)), the system generated trajectory is shorter

but leading through the riskier narrow passage whereas for the higher sea-state

(Figure 1.2(b)) the generated trajectory is longer but safer [TG11].

In both types of the described systems (see Figures 1.1 and 1.2), the environ-
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Figure 1.2: Trajectory plan generated using high fidelity simulation for higher sea-

state 4 is much more conservative compared to that for the lower sea-state 3 as

there is a higher chance of getting deviated and hitting an obstacle in case of the

high sea-state environment than calmer low sea-state environment [TG11].

ment consists primarily of rigid (such as robot arm, USSV hull, etc.) and compliant

(such as cable, etc.) bodies. The most widely used simulation technique used for

design, called finite element analysis (FEA) [RG01] is seldom directly applied in

VEs. The reason is that although FEA is highly accurate in predicting structural

deformations and movements, it is computationally very slow, especially for detailed

geometries. In other words, the simulations performed must be fast enough to sat-

isfy the refresh rate requirement for VEs [MH08]. Relatively faster performance

of rigid body simulation often makes it a practical choice for VEs. Even compli-

ant parts are simulated using the rigid body simulation by using the concept of

pseudo-rigid bodies in which compliant parts are modeled as rigid bodies connected

4



by springs [YHL+05]. In order to use rigid body simulations in VEs effectively, an

optimal tradeoff must be established between two conflicting constraints namely,

the available computing time and the level of accuracy desired from the simulation.

The available computing time depends upon the application in which the rigid body

simulation will be used, e.g., in the case of visualization applications the required

frame rate is more than 20 Hz whereas in the case of haptic display applications the

desired frame rate is more than 1000 Hz. In the case of autonomous planning oper-

ations, much faster simulation might be needed based upon whether the system is

real-time. If the models used for the simulation are more detailed, the results will be

more accurate but with higher computation time. On the other hand, models can-

not be simplified arbitrarily to reduce the computation time as that will hamper the

accuracy of the simulation in an unpredictable way. This gives rise to an important

question of how to simplify the models for rigid body simulations in order to sat-

isfy the computational and accuracy requirement. In order to address this problem,

manual model simplification is usually performed in most of the VE’s so that the

computational time is reduced without jeopardizing the simulation fidelity. Man-

ual simplification is expensive and time consuming. Automatic physics-preserving

model simplification for rigid body simulation can significantly reduce the cost of

development and enhancement (to cater to the wider range of simulation scenarios)

of the VEs.
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1.2 Motivation

In Section 1.1, we saw that automatic physics-preserving model simplification

is required for the rigid body simulations used in VEs. In order to develop tech-

niques for performing automatic model simplification for rigid body simulations, it

is useful to understand two aspects namely, the major computational performance

bottleneck operations, and the operations that influence the fidelity or the accuracy

of the simulations the most. Often, in a rigid body simulation the major amount of

computational time is spent in the following two operations:

(i.) computation of forces, and

(ii.) solution of the equations of the motion.

The time taken for the computation of the forces acting on the rigid bodies is

considerably high as compared to the time taken solving the equations of motion.

The forces acting on any rigid body in the context of rigid body simulation can be

classified into two general categories as follows:

(i.) force due to interaction when the rigid bodies come into contact with each

other during collision, and

(ii.) force due to the environment and the rigid body interaction such as force due

to fluid pressure acting on a rigid body surface moving in a fluid medium.

In order to demonstrate the requirements of the computation time for the case

of rigid body to rigid body interaction in a simulation, consider an example of robot

motion planning for close contact combat situation on a treacherous terrain of three
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unmanned vehicles as shown in Figure 1.3. The vehicle and the terrain model can

be geometrically very complex. Numerous simulations need to be performed for the

motion planning task, which require fast and accurate estimation of reaction and

collision forces acting on the unmanned vehicles due to interaction with the terrain

and the interaction among the vehicles. The simulation is performed in OpenDy-

namics Physics Engine [ode08] on a computer with an Intel Quad Core processor.

The Hummer model has 7699 facets while the Humvee model has 5381 facets. It

is found that on an average (taken over 1000 simulation time steps under close

proximity situation), the average computation time taken per simulation time step

for contact point determination using in-built collision detection engine inside the

OpenDynamics (dSpaceCollide function) is about 2.6 ms, whereas the time taken

for solving the motion equations (dWorldStep function) is about 0.3 ms. Thus, the

time taken for contact point determination (and hence contact force determination)

is more than the time taken for solving the dynamics motion equations by a fac-

tor of about 9. The numbers vary with the size and the complexity of the part

models; however, it is evident that the computation time taken for contact point

determination is much higher compared to the dynamics equation solution. Another

aspect of the simulation is the fidelity which depends directly on the accuracy of

the determined contact points (used for computing collision reaction forces).

Let us consider another example, where a rigid body interacts with fluid envi-

ronment, such as a USSV interacting with ocean waves (see Figure 1.4). Based on

the simulation technique described by Krishnamurthy et al. [KKF05], we developed

an ocean wave to boat simulation software and performed a test on a boat model
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(a) Hummer model with 7699

facets.

(b) Humvee model with 5381

facets.

(c) Rigid body simulation using OpenDynamics simulation library.

Figure 1.3: Simulation of close proximity combat situation using OpenDynamics

simulation library (average time spent on contact point determination is 2.6 ms

whereas average time spent on solving motion equation is 0.3 ms).

with 1793 facets as shown in Figure 1.4(a) [TG10]. The results of the tests showed

that the time taken for the computation of the interaction (between the ocean wave

and the boat) force per simulation time step is about 995 ms and dynamics equation

solution is about 4 ms. Again we see that the computation time for force compu-

tation is significantly higher compared to the time taken for solving the dynamics
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(a) Boat model with 1793 facets. (b) USSV simulation environment [TG10].

Figure 1.4: USSV Simulation environment and computational performance (com-

putational time required for determining force due to ocean waves is 995 ms and

dynamics equation solution is about 4 ms).

equations. Also, the fidelity of the simulation is directly influenced by the accu-

racy of the estimated forces as the forces are integrated to get the position and the

velocity of the boats in each simulation time step.

It thus follows that, in order to reduce the rigid body simulation time with

known effect on simulation fidelity, it is very important to reduce the time taken for

the computation of forces and analyze the influence of simplification on the accu-

racy of forces obtained by the simplified model. One of the main reasons behind the

significantly high amount of time taken for the computation of forces in a rigid body

simulation is the dependence of the force computation process on the complexity of

the geometry of the parts involved in the computations. Nowadays, highly detailed

geometric models are available for simulations due to the advances in shape digitiza-

tion and data acquisition techniques [Dig11]. Using a faster computer can speedup
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the computations to some extent, however, the model complexity can always be

increased which might require much faster computer. This means using faster com-

puters alone may not be enough or optimal to address the issue of achieving faster

simulation speed. One way to address this issue is to simplify the geometry of the

parts involved in the simulation in such a way that the simplified models behave

similar to the original models in the simulation environment, thereby improving

computational performance. A large body of literature exists on the level of de-

tail (LOD) based automatic geometric model simplification for graphics rendering

[Lue01, LWCR02]. Unfortunately, the LOD based techniques for graphics rendering

cannot be directly applied to the physics-based simulations because the effects of

those simplifications on the accuracy of the results of the simulation are unknown.

There is a lot of work done in the area of model simplification for the finite ele-

ment analysis (FEA) [TBG09]. As discussed in Section 1.1, model simplification

techniques for FEA cannot be used directly, as FEA is not used in VEs for the re-

quirement of faster simulation. Thus, model simplification techniques for rigid body

simulations are needed to improve the refresh rates obtainable in VEs. Another way

to improve the computational performance is to use parallelization using multi-core

and GPU based hardware for those parts of the simulation program that are highly

data parallel. Even in that case, overall simulation speedup will be tremendously

improved by using model simplification techniques in conjunction with computing

parallelization.
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1.3 Goal and Scope

This work identifies the problem of automatic model simplification for rigid

body simulations. Development of model simplification algorithms and the tech-

niques for analyzing the relationship between the accuracy of the rigid body simula-

tion results and the computation time with the simplified models forms the central

theme of the dissertation. The main research issues this work addresses are as

follows:

(i.) Development of automatic model simplification technique for interaction among

rigid bodies. Most of the model simplification for rigid body simulation per-

formed manually uses the strategy of simplifying parts with respect to each

other such that the resulting simplified geometries preserve the contact forces

acting on them due to their interaction. The accuracy of the contact force es-

timation in rigid body simulation is dictated by the accuracy of the estimated

contact points caused by the interaction of rigid bodies. In order to compute

the contact points between the geometries representing the rigid bodies, col-

lision detection needs to be performed in each simulation time step, which

is a computationally expensive operation. There has been a lot of research

done in the area of efficient collision detection [KHI+07, JTT01, LG98]. Most

of the collision detection algorithms are based on hierarchical data-structures

such as oriented bounding box (OBB), axis-aligned bounding box (AABB),

etc. Hierarchical data-structure works best when the part models are at larger

distances, as the deeper tree nodes are pruned. But when the parts come
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in close proximity, as it happens frequently in a rigid body simulation sce-

nario, much deeper nodes of the hierarchical data-structure are explored by

the collision detection engine leading to slower performance. The regions on

the geometric model of a rigid body that are not accessible by the other rigid

body because of the geometrical constraints (such as in an unmanned vehicle,

the engine, steering mechanism, and other mechanisms which are obscured by

the vehicle frame are inaccessible by the terrain and the other vehicles) needs

to be removed. This kind of simplification will significantly prune the hierar-

chical tree data-structure leading to significant speedup in worst case collision

computation time. Technique for automating and optimizing the process of

simplification, such that the part model can be simplified before the simula-

tion (i.e., off-line) is developed in this dissertation [TG09]. The simplification

framework should be such that the forces due to the interaction between the

parts are not altered when the simplified geometries are used for the simulation

as compared to when the unsimplified geometries are used.

(ii.) Development of model simplification technique for fluid to rigid body interac-

tion scenarios in rigid body simulation. The environment influences the motion

of rigid bodies in the form of temporally and spatially varying vector fields.

Unlike the rigid body interaction case, for a spatio-temporally varying vector

field to rigid body interaction scenario, it is almost impossible to come up

with a simplified geometry which exactly preserves the computed force. How-

ever, part models can be simplified in such a way that the error in computed
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force with the simplified model is small and predictable. The dissertation will

present model simplification techniques to simulate the effect of ocean waves

on motion of the boats represented as rigid bodies in six degrees of freedom,

in real-time [TG10]. For the convenience of analysis, we will assume that the

ocean is completely deterministic.

(iii.) Model simplification for motion planning in nondeterministic environment.

In practice, environments may be dynamic and nondeterministic, e.g. ocean

represented using superposition of wave components [TG11, KKF05, TG10,

FS04b], where each wave component is specified by wave amplitude, frequency,

direction, and uniformly random phase lag depending upon the sea-state of the

ocean. The ocean waves once initialized with a given set of wave components

evolves deterministically. However, a sea-state is represented by randomly

varying similar (but not identical) ocean components. This means that the

USSV simulation needs to be performed many times in Monte-Carlo fashion

to statistically estimate the USSV motion in a given sea-state. In order to

simulate many instances of the simulation simultaneously, GPU computing

can be used. Development of model simplification techniques suitable for such

simulation is is addressed in this dissertation. The sampled influence of the

ocean on the USSV motion is used for generating state transition probability in

MDP based framework. The application of the developed model simplification

approach for generating state transition probability is demonstrated on USSV

trajectory planning problem in nondeterministic ocean [TG11].
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Chapter 2

Literature Review

As pointed out in Chapter 1, significant simulation speedup is needed many

applications. There are two main lines of research to reduce computational burden

of simulations, namely, meta-modeling and physics-aware simplification approaches.

Meta-modeling is a general process of abstracting a phenomenon creating model of

a model as defined by Blanning and Kleijnen [Bla74, Kle75]. In general, the phe-

nomenon can be a real experiment or a computer simulation. The main advantage of

meta-model resides in the fact that a limited number of experimental or simulation

runs can be used to construct a meta-model. Intermediate responses can then be

estimated very quickly by using the constructed meta-model. Meta-modeling, today

is a mature research area with many advances made in last few years and several sur-

veys have been published in [Bar94, SPKA01, BM06, WS07, SW10a, ZX10]. Few of

the common meta-modeling techniques used nowadays are splines [TC09], Kriging

[Kle08], polynomials or response surfaces [RC10], radial basis functions [SW10b],

neural networks [Yan10], proper orthogonal decomposition (POD) [AAP11], etc.

Meta-models are function approximation or surrogate models constructed using ex-

perimental or simulation results. The main advantage of meta-models is that they

can represent expensive simulations with computationally inexpensive approxima-

tion functions. Meta-models are commonly used in problems related to multidis-
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ciplinary and multiobjective optimization [LLA08, LAFMD06]. However, meta-

modeling approaches start exhibiting significant computational challenges when the

number of parameters in simulations is very large and simulations are based on

highly nonlinear physics.

The current dissertation deals with physics-aware model simplification for rigid

body simulations in VEs. It was outlined in Chapter 1 that commonly occurring

rigid body simulation scenarios in the areas of robotics and VR belongs to three

categories, namely, (1) interaction among rigid bodies, (2) interaction between rigid

bodies and deterministic fluid flow, and (3) interaction between rigid bodies and

nondeterministic fluid flow. In order to understand the issues related to physics-

aware model simplification for the above mentioned rigid body simulation scenarios,

literature related to following three areas are reviewed in this chapter.

(i.) CAD Model simplification techniques for physics based simulations (discussed

in Section 2.1).

(ii.) Fluid-rigid body interaction simulation (discussed in Section 2.2).

(iii.) Applications of dynamics simulation in robot motion planning (discussed in

Section 2.3).

15



2.1 CAD model Simplification Techniques for Physics based Simula-

tions

In this section1 we present a review of existing techniques for physics-based

model simplification. Physics-based simulations play an important role during the

product realization process. Let us consider few representative examples. Multi-

body dynamics simulations are used to determine the sizes of actuators during the

design of robots. Finite element simulations are used in structural and thermal

analysis of components in the automotive and aerospace industries. Computational

fluid dynamics simulation is used in automotive engine cooling system design. These

simulations help in reducing the need for expensive physical prototyping and hence

shorten the product development time and reduce the product development cost.

Apart from these design examples, physics-based simulation is also used in assembly

planning, ergonomics analysis, and testing applications. Physics-based simulations

are primarily driven by 3D CAD data. The computational performance of simula-

tions depends on the number and complexity of the geometric features present in

the CAD model. Features are an integral part of modern CAD model and they are

used in virtually all the domains of product life cycle, namely design, manufacturing,

analysis and maintenance. Even the presence of a single, relatively small geometric

feature can increase the size of the underlying discrete physical simulation problem

by as much as 10-fold [WSO03, LAPL05].

1 The contents of this section was published in the journal Computer-Aided Design in 2009

[TBG09].
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Extremely large computational times limit the usefulness of simulations during

the design cycles. Complex models may often lead to ill-conditioned matrices and

hence working with non-simplified complex models may produce inaccurate results

[Saa03]. Hence, simply utilizing more powerful computers will not solve the problem

associated with highly complex models. In order to get accurate results in a timely

manner, one must utilize simplified models that retain the important details and

eliminate the irrelevant ones.

To illustrate the above mentioned point, let us consider a simple example of

a part (see Figure 2.1) subjected to different kinds of simplifications. Figure 2.1(a)

shows the solid model of an axis-symmetric part with several grooves and holes.

Figure 2.1(b) shows the simplified part model with the tiny grooves and holes re-

moved, which can be used for an application like rigid body simulation where small

holes and grooves play a negligible role in determining the inertia tensor and the

collision contact points. Figure 2.1(c) shows a simplified 2D model exploiting the

symmetry of the part, which can be used for an application such as thermal analysis.

Figure 2.1(d) shows the simplified part composed of a beam and a plate element

which can be used in structural analysis. All these simplification instances reduce

the computational time significantly while affecting the respective simulation re-

sults negligibly as compared to the full blown solid model. Currently, such kinds

of feature simplifications and idealizations are mostly performed manually. Manual

feature simplification, however, requires human expertise and is time-consuming.

Several efforts have been made over the last few years to automate the model

simplification process. It is studied in various contexts such as finite element anal-
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(a) 3D model. (b) Simplified model after removing

notches and tiny holes.

(c) Simplified model after dimension

reduction and exploiting symmetry.

(d) Simplified model after dimensional

reduction to combination of beam and

plate elements.

Figure 2.1: Model simplification based on target simulation application leads to

different simplified models by removing irrelevant details from the point of view of

the simulation application.
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ysis and collision detection within the overall category of physics-based simulation

[Arm94]. In the collision detection field, some of the reported work relates to dy-

namic simplification [YSLM04] and construction of bounding volume hierarchies

[TCL99]. These primarily relate to multi-resolution representation for performing

collision detection at various levels and do not address the problem of model sim-

plification explicitly and, thus, will not be covered in this chapter for the sake of

brevity. Polygonal mesh simplification has been extensively studied by the graphics

community [Lue01, LWCR02, CMS98]. We will not focus on the model simplifi-

cation methods for graphic rendering [ESV98] in this chapter. We have, however,

covered some techniques that address model simplification in the context of net-

work model transmission from rendering and occlusion analysis perspective and can

also be applied to collision detection [ABA02, HHK+95]. Techniques developed for

different contexts have different simplification objectives and hence different sim-

plification outcomes. The purpose of this chapter is to compile a list of existing

techniques that are relevant for physics-based simulation problems and to charac-

terize them based on their attributes. The remainder of the chapter is organized in

the following manner. In Section 2.1.1, the basic terminology used in model sim-

plification area is explained in details. Sections 2.1.2 through 2.1.13 describe the

model simplification techniques. It is difficult to discuss all the reported papers in

details and thus for the sake of brevity, we have described only few representative

techniques in each category in detail. We have included references to the remaining

techniques in each category. Section 2.1.16 discusses a systematic taxonomy of the

covered techniques and presents several criteria to aid the readers for selecting a
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model simplification technique suiting their requirements. Finally, Section 2.1.17

summarizes this chapter by highlighting areas of open research.

2.1.1 Terminology

Many different schemes are used to represent 3D geometric information. The

first scheme stores the boundary information for a solid (i.e., vertices, edges and

faces together with the connectivity information) and is popularly known as the

boundary representation (B-Rep). Another scheme stores the history of applying

Boolean operations on a solid and is called a constructive solid geometry (CSG) rep-

resentation [Lee99, SM95, Hof89]. The third scheme stores solids as an aggregate

of simple solids such as cubes (voxels). Solid models described in this manner are

known as decomposition models. The fourth scheme explicitly stores feature infor-

mation in addition to the information about the elementary shape entities (vertices,

edges, faces etc.) and is referred to as feature based modeling. Features can be

classified into two main types - primary, volumetric features such as holes, pockets,

slots etc., and secondary, surface features like blends, fillets and rounds. Secondary

features are usually introduced in industrial parts to smoothen the sharp edges of

the part to enhance strength, aesthetic appeal, handling safety and ease of manufac-

turability. The model simplification operators operate on the model representation

and perform simplification. Based on the type of simplification operators, the tech-

niques for model simplification are categorized into surface entity based, volumetric

entity based, explicit feature based and dimension reduction based type in this chap-
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ter. In case of surface entity based techniques, features are simplified by operating

on surface entities such as faces, edges and vertices. Under this category, reported

techniques are edge collapse technique [LLP02], face clustering [SBB97, She01] and

low pass filtering approach such as Fourier Transforms [LL98]. In case of volumetric

entity based techniques, the features are simplified by operating on volumetric enti-

ties from the model. The major techniques reported under this category are effective

volume [LAPL05, CKL02], cellular representation [LLKK04, LMC+04], and voxel

[ABA02, HHK+95] based approaches. In the explicit feature representation based

techniques, the feature information and semantics is explicitly extracted from CAD

model or is present in the model in addition to geometric and topological data. The

features are user defined and depend on the context of application (e.g., in case of

mechanical analysis holes, slots, steps, pockets, fillets, rounds, etc. are the sought

features). The feature information is used and operated upon unlike implicit model

representation schemes where only geometric and topological data is directly used for

model simplification. Feature based modeling and feature recognition techniques are

described in details in [SM95]. The reported methods are explained in Section 2.1.9.

The dimension reduction scheme deals with expressing models by idealizing the fea-

tures into reduced dimensional shapes [LPA03, DMB+96, DAP00, Rez96]. The

reduced dimensional shapes are application dependent. For finite element analy-

sis, the model features are idealized into one-dimensional beams, point masses, etc.

Thus, the dimensional reduction operators convert a model into a reduced dimen-

sion model or mixed dimension model based on the level of abstraction desired

[RAM+06]. In a mixed dimension model, the model is constituted of higher as well
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Figure 2.2: Some examples of non-manifold cell complexes [Mas93].

as lower dimension features. The remainder of this section introduces underlying

foundations for describing CAD model simplifications approaches.

Non-manifold Topology (NMT): NMT is a model representation scheme intro-

duced to address the problems such as absence of multiple representations for con-

current engineering and expensive Boolean operations faced by conventional model

representation schemes. It is a representation of wireframe, surface and solid models

in a single architecture [Mas93]. Conventional CAD data structures (e.g., B-Rep)

can represent only 2-manifold objects. For 2-manifold objects, neighborhood of any

point on its boundary is homeomorphic to an open disc in (two dimensional Eu-

clidean space). An object for which the above condition is not satisfied is called

non-2-manifold topology or simply NMT [CGP93]. NMT is useful to represent

mixed dimensional models (obtained after dimension reduction as explained in Sec-

tion 2.1.13), stand-alone faces, wireframe edges etc. which cannot be represented

using conventional CAD data-structures. Several data structures have been reported

that implement NMT, out of which cellular complex and partial entity structure are
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important from model simplification point of view. Figure 2.2 shows some non-

manifold cell complexes.

Cellular Representation: Cellular representations have been used for identi-

fying model simplification opportunities [BT93, BdB98, BMNB05, GBT93]. Cellu-

lar representations capture both positive and negative spatial regions, and may be

viewed as curved voxelized spaces where the exact boundary representation is em-

bedded in the cell boundaries. They are non-manifold geometric representations of

the feature model of a product and consist of cell complexes [CCM97]. A cell com-

plex can represent geometric shape relevant to engineering domain effectively, as it

includes wireframe, surface and solid models or a combination of them. Mathemat-

ically, a cell complex (C) is defined as a set of n-cells, where an n-cells is a bounded

subset of 3 − D Euclidean space that is homeomorphic to an n-dimensional open

sphere. It satisfies the following properties [Mas93]:

(i.) 3D cell complex can be represented by a collection of 0-cell (vertex), 1-cell

(edge), 2-cell (face) and 3-cell (volume).

(ii.) The whole boundary of each element consists of lower dimensional elements.

(iii.) No two topological elements intersect each other.

Thus, a cell complex represents parts as a connected set of volumetric disjoint cells

of arbitrary shape, and represents each feature as a connected subset of these cells

[BdB98]. The cells defined above represent the part shape exactly. In existing

approaches for converting features to cellular representations, the subdivision is

determined by the property that two cells may never overlap volumetrically. So,
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(a) A part created by removing five sub-
tractive feature from a block.

(b) Cellular model consisting of 35 cells
created by feature volume splitting and
controlled half space partitioning.

Figure 2.3: An example of cellular decomposition .

whenever two features overlap, their cells are subdivided such that one or more cells

are shared by the two features and the remaining cells belong to either one of them.

In a cellular representation, a part is represented as a cellular decomposition of the

space, where each cell in the space is either void or filled. Filled cells represent the

material that belongs to the part. The void cells represent the surrounding space.

An example of a cellular decomposition is shown in Figure 2.1.

The transformation operations on cells are represented using the concept of

cell maps [LAPL05, RS98]. In one of the earlier approaches, Bidarra et al. discussed

application of the concept of cellular complex for developing feature addition and

removal operators from the cellular representation of a model [BdB98]. A feature

model is partitioned into nonintersecting cells. Each cell stores the list of features

to which it belongs to, referred to as the cells owner list. The two modification

operators defined on the cellular model in this work are insertion and removal of

feature shape. The two main effects of any of these operators on the cellular model

are topological modification and owner list modification. In case of insertion of a

feature, either the cells just touch each other (no new cell is created in this case)
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or overlap volumetrically (a new cell is created). The new cell thus created inherits

the owner list from its originating cells. In case of feature removal, the cells and

their references are removed from the owner lists of other cells. The resulting cells

are checked for their owner lists. If the owner list for a cell is found to be empty,

that cell is also removed. The cellular representation scheme and the operators

developed are useful in handling feature interactions in various applications such as

multi-view modeling and feature visualization. This is a general approach for feature

addition and removal in a cellular model that can be used for model simplification in

addition to multi-view modeling related applications. Effective Volume Operators:

Feature rearrangement based on given criteria for Level of Detail (LOD) and Level

of Abstraction (LOA) is required for detail removal, leading to a resulting shape

different from the original feature shape owing to the non-commutative nature of

the union and subtraction Boolean operations. The operators involving combination

of Boolean operations giving geometrically and topologically valid resulting features

after rearrangement are called effective volume operators. Let Vi denote the volume

of the solid primitive of a feature Fi, denote a Boolean operation, and Mn denote

the resulting model obtained by applying n Boolean operations between n+1 solid

models: [Lee05, H.05, LL05, LL06a, LLK06].

Mn =
n
∏

i=0

⊗

i

Vi,where,
⊗

0

V0 = φ
⊗

V0 (2.1)

where, φ is an empty set. If the jth Boolean operation
⊗

j Vj is moved to mth
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position, Mn can be represented as follows:

Mn =

[

m
∏

i=0,i 6=j

⊗

i

Vi

][

⊗

j

(

Vj − Σm−j
l=1 ϕ

(

⊗

j

,
⊗

j+l

)

Vj+l

)][

n
∏

i=m+1

⊗

i

Vi

]

(2.2)

where,

ϕ (a, b) =















0, if a = b

1, otherwise

(2.3)

Equations 2.1 to 2.3 can be explained by the following example [Lee05]. Fig-

ure 2.4 shows a sample NMT model created by applying five form features. If the

order of features is changed to F0 → F2 → F3 → F4 → F1 by moving F1 to the last

location, the Boolean operation sequence corresponding to the new feature order

will be P0 ∪ P2 − P3 ∪ P4 − P1. However, if Equations 2.1 to 2.3 are applied, the

effective zones of F0, F1, F2, F3, F4 are P0, P1 − P2 − P4, P2, P3 and P4 respectively.

The Boolean sequence becomes P0 ∪P2 −P3 ∪P4 − (P1 − P2 − P4), and its result is

the same as the original part shape as shown in Figure 2.5. Note that the dashed

line in the figures represents a hole generated by subtracting a wireframe from a

solid.

Voxels: A voxel is a volume element, representing a value on a regular grid

in three dimensional space. Voxels can be understood as the three dimensional

equivalent of a pixel, which represents two dimensional image data. They are fre-

quently used for visualization and analysis of volumetric data commonly occurring

in CAD/CAM, bio-medical, scientific data visualization, etc.

Partial Entity Structure (PES): PES is a compact and fast model representa-

tion scheme. It is developed as a non-manifold B-Rep data structure. The topo-
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Figure 2.4: An example of NMT Modeling [Lee05].

logical entities in PES are of two type namely, primary and secondary entities.

The primary topological entities contain 0-cells (vertices), 1-cells (edges), 2-cells

(faces) and 3-cells (regions) and their bounding elements (i.e., loops and shells).

The secondary topological entities consist of partial vertices, partial edges and par-

tial faces. The partial vertex represents the non-manifold case where more than

one two-manifold surfaces are connected to the vertex. A partial edge represents

the non-manifold condition where more than two faces are connected to an edge. A

partial face is used to represent the non-manifold condition where a face is adjacent

to two regions [LL01]. The secondary entities are called partial topological entities

or partial entities. Geometrically, partial entities represent adjacency relationships
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Figure 2.5: Feature rearrangement based on “effective zone of feature” [Lee05].

among the primary entities. Figure 2.6 illustrates the different partial entities.

Medial Axis Transform (MAT): The MAT was initially proposed by Blum as

a technique for biological shape measurement [Blu67]. It provides a skeleton-like

representation of the shape of a model, based on the geometric proximity of its

boundary elements. MAT can be described as the locus of the center of a maximal

inscribed disk as it rolls around the object interior, where a disk is maximal if it

is contained within the object but not within any other disk [DAP00]. Concept of

Medial Axis can be easily translated into 3-D domain to Medial Surface by replacing

circle with sphere in the former definition. Concept of MAT is very useful in gen-

erating FEA idealization models as it provides geometric and topological proximity
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Figure 2.6: Partial entities.

information enabling appropriate idealizations to be identified. A 2-D model can be

dimensionally reduced to a 1-D beam and a 3D solid can be replaced with a 2D sur-

face, which is comparatively computationally less expensive to analyze. Figure 2.7

shows a channel section and its medial axis transform. One of the modifications to

MAT is θ-MAT which is a subset of MAT. For a θ-MAT, separation angle for each

point on the MAT is greater than the specified angle θ. Separation angle for a point

on an MAT is defined as the angle subtended on it by its nearest neighbors on the

polyhederal model. Thus, a θ-MAT for a model approaches the MAT for the model

as θ approaches zero. The θ-MAT of a model is computationally more stable than

its MAT as it is not affected by fineness of tessellation of the model.

Surface Simplification by Decimation: Decimation is a class of technique to
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(a) A channel section. (b) Medial axis transform of the chan-
nel section [RG05].

Figure 2.7: An example of medial axis transform.

simplify the surface geometry of a mesh model by removing or simplifying topological

entities (vertex, edge or a face) and making changes in the model to retain the

topology of the overall model. In case of vertex decimation, a vertex along with its

associated triangles is removed and the hole created is retriangulated to maintain

the topology. In case of edge decimation (or edge collapse), edges are collapsed

into vertices. In case of face decimation (or face collapse), faces are collapsed into

vertices. The entities are selected for removal based on predefined error metrics

that evaluate the geometric impact of their removal. One of the reported error

metrics used is quadric error [LLKK04, GH97]. Using the fact, that each vertex is

an intersection of several planes, the quadric matrix Q (a 4×4 symmetric matrix) is

defined for very vertex by aggregating the coefficients of equation of the planes in a

way such that the quadric error (e) associated with the given vertex v = [vx, vy, vz, 1]

is given by a quadratic form as shown in Equation 2.4.

e = vTQv (2.4)

The quadric error (e) can be used for ranking the vertices for consideration of dec-
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imation. In the particular instance of edge collapse (v1, v2 → v), the quadric cor-

responding to v is calculated as sum of quadrics associated with v1 and v2. The

approach is quite general and can be applied to face decimation as well, by deter-

mining quadric matrix for face using summation of quadrics associated with vertices

defining the face. The decimation approaches were originally introduced for obtain-

ing multi-resolution models by simplifying the entire model at a time. Recent tech-

niques involve selective simplification of surface artifacts using the same approach

but limiting the simplification process in the region of interest [LLKK04].

2.1.2 Techniques Based on Surface Entities

Boundary representations describe objects in terms of surface entities. Hence,

many researchers have developed techniques to perform simplification using surface

entities. The techniques where surface artifacts of the given geometric model are

simplified are referred to as techniques based on surface entities in this chapter.

These reported techniques fall into the following three subcategories low pass filter-

ing, face cluster based simplification and size based entity decimation. We discuss

reported work in each category in the following subsections.

2.1.3 Low Pass Filtering

The low pass filtering using Discrete Fourier Transform (DFT) is a technique

based on operators acting on surface entities [LL98]. This model simplification

technique is applied mainly to Finite Element Analysis (FEA) mesh generation. A

shape needs to be digitized before performing discrete Fourier Transform on it. The

input model is in the form of a 2-D grayscale digital image of resolution 512 x 512.
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The black pixels represent the locus of points satisfying Equation 2.5 and the white

pixels represent the surrounding space.

h (x, y, z)















≥ T0, if (x, y, z) ∈ V

< T0, if (x, y, z) /∈ V

(2.5)

where h represents the surface of the model, V represents the volume occupied by

the model and T0 is the threshold representing model boundary. The black pixels

are assigned a value of 1.0, whereas the white pixels are assigned a value of −1.0.

The transition pixels where the value switches from −1.0 to 1.0 are assigned a value

of 0.0 to represent the model boundary. Using these values as the height, a surface

can be plotted. After this, Fourier transform is applied to the surface function of

the part model. The surface is thus, expressed in the frequency domain, after ap-

plication of Fourier transform. Authors have stated that the low frequency terms

constitute the overall shape while the high frequency terms represent the detailed

features in the transform of the surface function of the part model. When the high

frequency components are removed from a model, it is called as low pass filtered

(LPF) model. In the LPF model thus generated, the sharp edges are converted into

smoothed edges. The smoothed edges are not desirable in analysis model as they

suppress the important effect of stress concentration. To get the feature suppressed

models with sharp edges retained, the original unsimplified model is compared with

the LPF model. The average distance between the edges and faces of the original

model and LPF model is evaluated as a metric to denote the complexity or detail-

ness of the respective entity. If the metric is below a specified value, the entity is

considered detailed and if the metric is greater than the specified value the entity is
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considered to belong to the overall shape. Authors have also explored the possibility

of using wavelets instead of Fourier basis function in this method of low pass filter-

ing. Wavelets have narrow support and, thus, are not suitable for removing detailed

features. All the small features influence the overall shape of the model. Thus, the

basis function describing a small local feature influences the entire domain rather

than a region lying in its vicinity. Use of the metric ranks the features according to

size and acts as a measure for determining the order of features to be suppressed,

as it represents the deviation between the original model and the filtered model.

The computational time for mesh generation is significantly reduced by using this

method. It is also considered as a potential technique for feature recognition and

is reported to be robust in suppressing details even for complex geometries. The

method is not fully automated and some human intervention is required to select

the features to be removed. The method is currently developed only for 2D surfaces

and not extended to 3D volumes. The methodology is also limited in terms of filling

the gaps (the removed faces) if the method is extended to 3D models.

2.1.4 Face Cluster Based Simplification

The face clustering algorithm reported by Sheffer is a technique to cluster the

faces in the input model [She01]. The clusters thus formed represent regions of

interest that may be considered for simplification. The method is mainly developed

for simplifying the models for FEA mesh generation application. There are three

main steps followed in this approach: face clustering, finding the collapsible faces

and simplification. The model is represented as an adjacency graph with all the
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faces represented as initial cluster nodes and connecting edges as arcs. The arcs are

then contracted to cluster the faces. The face node pairs to be clustered are selected

based on the weights assigned to the arcs joining them. The weight depends upon

the geometry indices denoting the compatibility criteria (determined heuristically)

of non-manifold input. Once the face clusters are made, a collapsibility check is done

for all the face clusters. The collapsibility check depends upon criteria like boundary

preservation, region size, region smoothness and simplicity of region boundary shape.

The metrics for each criterion are defined mathematically in this paper. These

metrics are the error measures for evaluating the effects of removing the clusters on

the overall model geometry. Finally, decision is taken by the algorithm about which

clusters need to be collapsed based upon the metrics evaluated for each cluster.

Collapse operators are defined based on virtual topology, where a face is split into

different faces equal to the number of adjacent neighboring faces sharing a boundary

with the original face (the neighboring faces) [SBB97]. After this, the newly created

faces are merged with the respective neighboring faces with which they share the

boundary. It can be seen that only the connectivity between the faces changes;

however, the geometry is preserved and hence it is called a virtual topology based

collapse. The advantages of the above described approach are its applicability to

faceted, free form geometries as well as non-manifold models. A curvature-based

index is introduced in this paper which can be used for handling curved regions. The

curvature-based index is used in the cases where the geometry of clusters is non-

planar and planer index cannot be used. The method is applied on several example

parts and it is found that the simplified models have significantly fewer elements
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without loss of accuracy. This is because the simplification process only changes the

connectivity but the original geometry is maintained. However, the ranking method

for clustering the faces is not systematic and is based on heuristic criteria. Also,

since the face clustering algorithm is of the greedy type, the resulting clusters are not

necessarily optimal. Inouea et al. reported a face clustering technique for FEM mesh

generation application similar to virtual topology [IIYF01]. The approach iteratively

merged the model faces to obtain face cluster regions having sufficiently large area

compared to the mesh element size, smooth enough face boundary and flat surface.

Authors defined metrics for mesh area, boundary smoothness and surface flatness

and used them for ranking the faces for merging purpose. Dey et al. reported local

modification of automatically generated meshes [DSG97, SBO98]. They defined a

priori error metrics based on aspect ratio and dihederal angle measure and suggested

model simplification by iteratively removing elements with poor aspect ratio and

small angle metric and remeshing. In their approach, the validity of locally modified

mesh is ensured by imposing topology based constraints.

2.1.5 Size Based Entity Decimation

Lee et al. present a method to generate progressive solid models (PSM) from

feature based models using a cellular topology-based approach [LLKK04]. Here

cellular topology is used for generating the PSM and then surface entity based op-

erators are developed to simplify the model. The main concept in this paper is to

start with a feature based model as input and generate a sequence of solid models

representing the underlying object with various level of details. The intended pur-
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pose of PSM is to stream models over a network efficiently. A PSM is defined as

an overall shape and a set of details. Authors argue that the problems with tradi-

tional approaches in generating such progressive model is the high computational

cost associated with applying Boolean operations for transitioning between levels

of detail and the cost of storing the various shapes. The authors have come up

with cellular topology representation of part model to overcome these difficulties in

PSM. Feature shapes have an explicit volumetric representation in terms of cells.

PSMs can thus be derived from the face based composition and decomposition of

cells that eliminate expensive Boolean computations and storage space. In contrast

to the spatial representation schemes (voxel based), cell-based representations are

exact in nature. The delta volumes are represented using progressive features in

case of cell based technique. The features are simplified or suppressed to produce

PSMs. The simplification of features is done using edge contraction techniques.

The edges in a feature are ranked based on the geometric error introduced by re-

moving them. The edges are then contracted one by one starting from the lowest

cost edge. The positive features are suppressed only using the criteria of feature

volume. If the volume of feature is below a certain threshold value, the feature cells

are attributed to be dummy cell initially. Later, they are considered as positive cells

when the model resolution is increased. The approach described above can handle

the exact NURBS representation of the underlying models. The Boolean operations

for progressive modeling are replaced by simpler topological entity manipulation at

cell level, which is computationally much better. The cell and feature simplification

criterion is mainly designed for solid model transmission. Complexity of features or
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the importance of features with respect to a particular application is not considered

in this technique as model simplification criteria. The cell based transformations are

used for transforming higher dimensional cells to same or lower dimensional cells e.g.,

from face to edge. The techniques where operators defined using such cellular trans-

formation acts on surface entities like faces, edges and points for simplification, are

studied under the surface entity based category in this chapter. This technique uses

cell to cell transformation functions for simplifying models by suppressing features

for Finite Element Analysis model preparation [LAPL05]. Authors have presented a

general methodology to suppress or reinstate features from a B-Rep model by using

invertible cell to cell mapping. The cell to cell mapping functions are implemented

in the CADFix software in terms of three surface based operator pairs namely col-

lapse/explode, split/join and insert/remove [CAD05]. In case of collapse operation,

the transformation of a cell to a lower dimension takes place. For example, a two-

dimensional face is collapsed into a one-dimensional edge. The explode operation is

defined as inverse of collapse operator based on collapsing history i.e., the informa-

tion about collapsed face is used to reinstate the same face when the collapsed edge

is exploded. In case of a split operation, a cell within a model having dimension

greater than zero (i.e., a point), can be split into two or more cells of similar dimen-

sion by introducing one or more cells of lower dimension. For example, a face (2D

cell) can be split into two faces by introducing an edge (1D cell). The splitting cell

is constrained to lie within the parent cell, so that an edge partitioning a face lies

on the face. The same logic applies to splitting an edge by introducing a vertex and

a region by introducing a face. Joining two faces again uses splitting history and
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combines the faces split earlier. In case of an insert operation, lower-dimensional

cells are added in the interior of a cell. For example, a vertex can be inserted on

an edge. The insert operator is useful in CAE when cellular partitioning is required

to represent loading and boundary conditions. In the remove operation, a lower

dimensional cell is deleted from the higher dimensional cell. For example, a loop

representing hole on a face can be removed using this operator. To suppress features

from a B-Rep model, it is first expressed in cellular representation and then the cells

are mapped into simplified model by using the operators described above. One of

the important requirements in analysis models is to suppress the narrow regions. A

narrow region is defined as part of surface where two of the boundary edges come

in close contact [LPA03]. The narrow regions pose problems in mesh generation be-

cause of huge size differences within the region leading to poor element quality. To

suppress the narrow regions, the edges in proximity are identified and then the face

is split at each end of the region. The resulting long narrow face is then suppressed

by collapsing the short edges to vertices and merging the two long bounding edges.

No error measure or threshold has been defined to select the features to be removed.

Instead, they are selected interactively by the user for simplification purposes. The

main advantage of this methodology is the generality of its implementation. The

method can be implemented by explicit cellular representation or direct geometry

based operators. An audit trail or analysis history is generated that is useful for

analysis to compare various simplification strategies thus obtained by the system.

Narrow regions can be suppressed using this approach, which is important for mesh

generation. A possible limitation is that the faces are repartitioned in this approach
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which requires some post processing for generation of meshes of desired density.

Focault et al. reported a topology simplification technique for finite element mesh

generation [FCF+08]. The model for FEA should be prepared in such a way that

the mesh generated for it represents the model as closely as possible and at the

same time minimizes the computation time for analysis. Another requirement of

the simplified model is that the mesh should represent the boundary condition do-

mains, e.g., a point on the part where forces or displacements are applied should

be represented by a coinciding node. Also, the mesh edges generated from the sim-

plified model must exactly match the sharp corners of the geometry to minimize

the discretization error. The authors have developed a Mesh Constraints Topology

(MCT) based model simplification scheme to address the sharp corner matching

requirements. MCT entities are defined as composite topological entities created to

suit mesh generation requirements stated before. The MC face is a poly-surface,

defined as the union of Riemannian surfaces constituting the reference model. The

MC edge is a poly-curve, defined as union of Riemannian curves constituting the

reference model. The MC entities are used to represent the model because they pre-

serve the exact geometries as they are a higher level representation of the low level

B-Rep entities that define the reference model. The MCT models are internally rep-

resented using hypergraphs. Hypergraphs are graphs with arcs that connect two or

more nodes. MCT is defined using three topological adjacency hypergraphs namely,

face-edge adjacency, face-vertex and edge-vertex. The authors have implemented

graph based operators for deleting MC edge and vertex, inserting MC vertex in MC

edge, collapsing MC edge to MC vertex and merging MC vertices for simplification.
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The mesh quality constraint for MC entities is decided by their size and curvature.

The size for an MC face is defined as distance between face boundaries while for an

MC edge as length of the edge. The size of MC entities must be greater than a set

size threshold while curvature (leading to deviation angle) less than a set curvature

threshold to satisfy the mesh quality constraint. The deviation angle is the angle

between the normals of adjacent mesh segments for a given discretization error. For

enlargement of thin MC faces, MC edge deletion operator is used. Redundant edges

situated in planar regions need to be deleted using MC delete operator. MC vertex

deletion and MC edge collapse operators are used to get rid of small MC edges.

Constricted sections in MC faces are suppressed by using MC vertex insertion and

vertex merging operators. Thus, the MCT operators and criteria along with the

mesh quality constraints are used together to simplify the models. The mesh qual-

ity constraints used by the authors are mesh element size and discretization error.

The mesh element size is represented using over density ratio which is the ratio of

the size map to the effective element size. The discretization error is a measure of

the gap between the mesh and the geometry. The simplification method described

here, retains the topology of the model and thus no defeaturing errors are intro-

duced after simplification. However, FE numerical errors because of changes in the

geometry are introduced and that is controlled by refinement schemes. The method

described above retains the topology and creates new geometry adapted to mesh

quality constraints such as size-map, maximum over-density, maximum deviation

angle, and boundary condition zones. Fine et al. introduced idealization operators

for Finite Element Analysis [FRL00]. The operators are based on vertex removal
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and spherical error zone concept. Mobley et al. reported an object oriented ap-

proach to develop surface based defeaturing operators to suppress small features for

FEA model preparation [MCC98]. Date et al. reported vertex and edge collapse

based technique for mesh model simplification and refinement [DKK+05]. They de-

fined three metrics based on overall geometry error, face size and face shape. The

metrics are evaluated for edges to determine their priority index for simplification.

Veron and Leon reported shape preserving simplification for a polyhederal model

using vertex decimation [VL98]. A metric based on discrete Gaussian curvature and

angle subtended by incident edges is evaluated for each vertex in the model. The

vertices are then removed based on their rank priority based on above metric. For

example, the vertices with curvatures near zero denote that they lie on plane and

are removed first. The vertices with curvatures farther from zero (both in positive

and negative directions) are considered later for removal. All of the techniques listed

in this section are summarized in Table 2.1.

Table 2.1: Summary of techniques based on surface entity based operators for model
simplification

Method
Input
format

Features
simplified

Simplification
criterion

Advantages Limitations Application
domain

Fourier
Trans-
form
based
low pass
filtering
[LL98]

2D im-
age

Small
boundary
edges and
island type
features

Based on er-
ror measure
computed as
average dis-
tance between
original and
LPF models

Error metric
based LOD se-
lection reduces
computation
time; can be
used in feature
recognition

Lack of automa-
tion; applicable
to 2D surfaces;
performance
issues in 3D
extension

FEM
model
preparation

continued on next page . . .
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Method Input
format

Features
simplified

Simplification
criterion

Advantages Limitations Application
domain

Face
clustering
[She01]

Gambit
pre-
processor

Chamfers,
fillets,
rounds and
spherical
surface
based
features

Metric based
on boundary
preservation,
region size,
region smooth-
ness and
simplicity of re-
gion boundary
shape

Applicable to
both faceted and
free form ge-
ometries; curved
regions can be
handled; geom-
etry is retained;
only topology
changes

face clustering
may not be
optimal

FEM
model
preparation

Face
Clus-
tering
[IIYF01]

Polygonal
Mesh

Protrusions
and de-
pressions

Error mea-
sure based on
cluster area,
cluster bound-
ary smoothness
and flatness

Mesh quality
based metrics are
used

Faces with large
variation in nor-
mal vectors not
handled; face
clustering may
not be optimal

Mesh gen-
eration for
FEM anal-
ysis

Face
Clus-
tering
[DSG97,
SBO98]

Polygonal
mesh

Protrusions
and de-
pression

Aspect ratio
and dihed-
eral angle of
elements

Approach is sim-
ple to implement

Through hole re-
moval may not be
possible

FEM mesh
generation

Decimation
-Cellular
topology
pro-
gressive
modeling
[LLKK04]

Feature
based
model

Freeform
features

Based on as-
cending order
of progressive
volumes

Applicable for
NURBS surfaces;
computationally
efficient

Application spe-
cific feature com-
plexity not con-
sidered

Network
transmis-
sion; FEM
model
preparation

Decimation-
Cell
transfor-
mation
based
technique
[LAPL05]

B-Rep Holes, fil-
lets and
narrow
regions

The features
are selected
manually by
the user for
simplification

Analysis history
useful for simpli-
fication strategy
comparison; Han-
dles narrow re-
gions

Post process-
ing needed for
mesh genera-
tion of desired
density; Lack of
automation

FEM
model
preparation

Decimation-
MCT
based
technique
[FCF+08]

B-Rep Freeform Interactive Preserves topol-
ogy and creates
new geometry
adapted to vari-
ous mesh quality
constraints

Lack of automa-
tion

FEM
model
preparation

Decimation-
Idealization
operators
based on
vertex
removal
and
spherical
error
zone
[FRL00]

Polygonal
Mesh

Holes Error mea-
sure based on
a posteriori
analysis using
tetrahedral
finite elements
and Interactive

Takes care of
large transfor-
mations and
simplification of
complex areas of
polyhedron such
as saddle points

Only for polyhe-
dral models; error
estimator for hex-
ahedral elements
not developed

FEM
model
preparation

continued on next page . . .
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Method Input
format

Features
simplified

Simplification
criterion

Advantages Limitations Application
domain

Decimation-
OOP
approach
for de-
featuring
[MCC98]

Polygonal
Mesh

Loops,
coincident
edges, near
tangencies

Error mea-
sure related to
global defeatur-
ing tolerance

Scalable object
oriented software
design

Protuberances
are not handled

FEM
Model
preparation

Edge dec-
imation
based
approach
[DKK+05]

Polygonal
Mesh

Protrusions
and de-
pressions

Error measure
based on over-
all geometry er-
ror, mesh size
and mesh shape

Mesh quality
based error met-
rics are used

Not applicable
for assembly
models

Mesh gen-
eration for
FEM anal-
ysis

Decimation-
Shape
pre-
serving
poly-
hederal
simpli-
fication
[VL98]

Polygonal
mesh

Protrusions
and de-
pression

Shape based
error zone and
discrete form
of Gaussian
curvature

Object shape pre-
served

May not handle
large geometric
transformation
in complex area
(such as saddle
points)

Mesh gen-
eration for
FEM anal-
ysis

2.1.6 Techniques Based on Volumetric Entities

The techniques where volume based artifacts are removed for model simplifica-

tion are called volume entity based techniques. Such techniques are further classified

into two subcategories voxel based and effective volume based techniques.

2.1.7 Voxel Based Simplification

Andujar et al. proposed Trihederal Discretized Polyhedra Simplification (TDPS)

based topology reducing surface simplification technique [ABA02]. The aim of this

work is finding a reduced valid polyhedral approximation of a solid model such that

the maximum solid Hausdorff distance is below an error value. There are three

steps followed in this approach: discretization, reconstruction and face reduction.

The model is discretized using Maximal Division Classical Octree (MDCO). It sub-

divides the cubic universe into eight octants and arranges it into an 8-ary tree, the

leaves of which are labeled black or white based on whether they fall completely

43



in or out of the model volume respectively. Nodes that fall partially in the model

volume and partially out of it are labeled as gray. The black and white nodes are not

subdivided further, whereas the gray nodes are subdivided till their parts become

white or black or the depth of the tree reaches a set level. In the reconstruction step,

the MDCO is compared with the original model and polyhedral surface (S) based on

the solid Hausdorff distance as error measure is extracted. The surface (S) satisfies

the conditions that all the black nodes are completely within S and all the white

nodes are completely outside R and all the border nodes (defined as nodes whose at

least one of the twenty six neighbors is white) intersect with S. Finally, in the face

reduction step, the surface obtained from the previous step representing the origi-

nal model is further simplified using edge collapse technique. Although it appears

that the simplification operator used is surface entity based, the error measures

and topology preserving simplification strategy are based on volumetric operators.

Hence we have chosen to list this method under volumetric entity based model sim-

plification category. The major advantage of this method is its applicability on

individual parts as well as assemblies. Also non-manifold inputs can be effectively

handled by this approach to produce 2-manifold solids. One of the limitations in

the methodology described above is the performance issue. Small error thresholds

require larger subdivision levels for the MDCO. The cost of TDPS largely depends

on the subdivision level of MDCO and thus volume based technique is computation-

ally intensive for small error thresholds. Another limitation is the requirement for

preprocessing of input model before simplification to align it with the axes so that

octree represents the part more accurately. This is because of the isothetic nature
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of the octree. TDPS method is applicable to collision detection, occlusion analysis,

multi-resolution robust Boolean operations, indirect illumination, acoustic modeling

and query acceleration. One of the earliest approaches based on operators acting

on volumetric entities is reported by He et al. [HHK+95]. They developed a voxel

based object simplification technique using marching cubes algorithm to generate

multi-resolution triangle mesh hierarchy.

2.1.8 Effective Volume Based Simplification

A feature based non-manifold modeling system is developed by Lee et al.

to address the needs of both CAD and CAE applications simultaneously from a

single model [Lee05, H.05, LL06a, LLK06]. This system supports feature based

multi-resolution and multi-abstraction modeling capabilities. The main advantage

of non-manifold model is its capability to represent any combination of wireframe,

surface, solid and cellular models in a unified data structure. Partial entity structure

is used to store the model information [LL01]. The detail removal and dimensional

reduction at various levels of detail and abstraction requires features to be rear-

ranged. This rearrangement of features may result in different final shapes owing to

the non-commutative nature of the union and difference operators. Authors have

developed the concept of effective volume (explained in Section 2.1.1) of features

and presented theorems for exchange and rearrangement of features. The detail

removal process involves three steps that are briefly stated as follows. Firstly, all

the idealization features having application domain as design are extracted from the

master model. Secondly, the extracted idealization features are rearranged accord-
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ing to LOD criteria. The LOD criterion selected by authors is based on decreasing

volumes. If the volume is below a threshold, the corresponding feature is considered

for simplification. Thus, the error measure for selection of features for simplification

is the volume of the feature. Finally, the LOD is set interactively to remove the

features below the specified level. The multi-abstraction of the model on the other

hand is performed by applying LOA criteria to abstract the features. LOA criteria

are application dependent. In case of structural analysis applications, aspect ra-

tio of the feature is used to set the abstraction level. In case of injection molding

simulation application, the mesh size is used to set the abstraction level. The ap-

proach described above is particularly advantageous for multi-resolution modeling

and capable of LOD simplification of features. The model representation scheme

using partial entity structure enables use of the same model in extracting CAD and

CAE information leading to CAD-CAE integration. The model editing operations

consisting of a given sequence of Boolean operations is carried out for a CSG tree

containing only a subset of the primitives in the merged set, and selectively filters

out these primitives from the final result without actually removing them from the

merged set. The feature based modeling capabilities for both feature deletion and

feature interaction detection are thus computationally efficient and simple. Some of

the limitations of the approach described above are explained as follows. When the

shape or semantics of a feature are altered due to feature interactions, the predefined

abstract model of the feature may become invalid. Authors have pointed out that

this problem can be solved by adopting automated medial axis/surface transforma-

tion method. The physical constraints and properties such as boundary conditions
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and mass properties applied to CAD models have also not been transferred to CAE

models. All of the techniques discussed in this section are summarized in Table 2.2.

2.1.9 Techniques Based on Explicit Features

Many reported model simplification techniques are based on recognizing ex-

plicit application features before simplification. These techniques define class of ex-

plicit features related to a particular application such as manufacturing, FEM etc.

and evaluating some metric based on which simplification decision can be taken.

The techniques fall into the following subcategories prismatic feature simplifica-

tion, blend simplification, and arbitrary shaped feature simplification based on the

type of features covered.

2.1.10 Prismatic Feature Simplification

The three steps followed in the model simplification from polygonal mesh by

Date and Nishigaki includes feature recognition from the input mesh, mesh simpli-

fication and feature recovery [DKKN06]. The steps are explained as follows. In the

feature recognition step, mesh segmentation technique is used. The features con-

sidered in this work are blind holes, through holes and bosses. The dihedral angle

between two faces shared by the common edge is used for extracting the feature

edges. These sets of edges are used to extract regions of interest and segment the

mesh into regions. The regions with area larger than the threshold set by a user

are classified as base surfaces. After this, the triangles that are not coincident with

base surfaces are extracted as Feature Construction Triangles (FCT). The feature

type identification and feature parameter extraction is then done using three rules:
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Table 2.2: Summary of techniques based on volumetric entity based operators for
model simplification

Method
Input
format

Features
simplified

Simplification
criterion

Advantages Limitations Application
domain

Voxel
based-
Discretized
Polyhe-
dra
Simpli-
fication
based
topology
reducing
surface
simpli-
fication
[ABA02]

Polygonal
Mesh

Holes,
protuber-
ances and
edge fea-
tures

Hausdorff dis-
tance between
MDCO and
original model

Handles as-
sembly models;
non-manifold
inputs can be
handled

Pre-processing
required

Collision
detection,
occlusion
analysis,
multi-
resolution
robust
Boolean
operations,
indirect il-
lumination
acoustic
modeling
and query
accelera-
tion

Voxel
based
object
simpli-
fication
[HHK+95]

Polygonal
Mesh

Small pro-
tuberances
and cavities

Frequency
threshold
for low pass
filtering

Handles individ-
ual as well as col-
lection of objects

Large number of
redundant trian-
gles generated for
low surface curva-
ture regions

Efficient
antialiased
Rendering;
can be used
for collision
detection

Effective
volume
based
technique
[Lee05,
H.05,
LL06a,
LLK06]

Polygonal
Mesh

Freeform
features

Volume thresh-
old

Capable of multi-
resolution model-
ing

Depends on
feature volume,
not complex-
ity; when
shape/semantics
of feature are al-
tered, predefined
abstract model
may become
invalid; physi-
cal constraints
and properties
applied to CAD
models not trans-
ferred to CAE
models

CAD-CAE
integration
and net-
work model
transmis-
sion
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the FCTs with two loops are identified as through holes, the FCTs with one convex

loop are identified as blind holes and the FCTs with one concave loop are identi-

fied as bosses. The feature parameters are extracted by fitting a least square plane

on the feature boundary and finding the depth, width and height for each kind of

feature. The location of each feature is determined using the centroid of feature

boundary on the least squares plane. In the mesh simplification step, edge collapse

is used to eliminate the vertices that are redundant. The main consideration during

edge collapse is to keep correspondence between the feature boundary edges (FBE)

and the boundary of feature meshes so that features are recoverable. This is done

by creating a metric to evaluate the approximation error of FBEs and using it to

decide whether the edge needs to be collapsed. In the last step of feature recovery,

the feature removing triangles (FRT) are replaced with feature FCTs to reinstate

the suppressed features. The condition that has to be satisfied in order to recover a

feature is that the feature boundary vertices (FBV) should match with the bound-

ary vertices of the removed feature mesh. If this condition is not met, then the

local LOD method is used. In the local LOD method, the mesh is represented as

a binary tree containing a set of parent nodes representing the collapsed nodes and

corresponding children nodes consisting of the vertices that are collapsed to make

the parent node. This binary tree is traversed to recover neighborhoods iteratively

by vertex split. The features suppressed can be recovered based on the Level of

Detail tree. The approach described above is capable of simplifying simple features

(with one base surface) like blind and though holes and bosses. However, nested fea-

tures such as hole in a pocket cannot be simplified. Another reported technique to
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recognize and suppress features for finite element model preparation is given by Ri-

belles et al. that utilizes face clustering technique for feature recognition [RHG+01].

Feature based methodology for finite element model idealization has been discussed

by Dabke et al. by extracting axis-symmetric, plane and solid features from input

B-Rep model [DPS94].

2.1.11 Blend Simplification

The approach by Zhu et al. deals with simplification of fillets and round fea-

tures in a B-Rep model [ZM02]. The main application of model simplification in this

work is to prepare the model for further feature recognition purposes by removing

fillets and rounds. From the input B-Rep model, convexity of all the topological

entities namely faces, edges and vertices are characterized, which in turn is used

to identify the trace faces. Trace faces are the smooth faces obtained by blending

sharp edges while modeling. The trace faces are then used to identify the fillets and

rounds in the model. After identifying them, the topological entities pertaining to

these features are cleaned and the gaps thus produced are filled up by a method

developed by the authors named as incremental knitting process. The authors have

underlined three main considerations while suppressing the fillets and round fea-

tures, namely topological consistency, geometric consistency and reversibility. By

preserving the topological consistency, it is meant that the resulting model should

be a manifold model. When the fillet faces are removed from a model, gaps are

created. These gaps may make the model topologically invalid. The gaps should

be filled by topological entities to keep the model topologically valid. By geometric
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consistency, it is meant that the edge replacing the fillet surface should lie on the

planes of supporting faces of the suppressed fillet. Reversibility means that the at-

tributes of the suppressed fillet should be preserved to roll back the model if needed.

The trace faces are classified by the authors into three types as toroidal, cylindrical

and spherical. The toroidal faces are generated by blending circular edges. The

cylindrical faces are generated by blending straight edges. The spherical faces are

generated by blending a convex vertex. Several trace faces are connected together

to form face chains. Face chains forming closed loops are called closed face chains;

otherwise, they are known as open face chains. Homeomorphic equivalence is used

to map the face chains to a disc or a ring. The disc or ring representation is used to

test the occurrence of gaps when fillet faces are removed. The gaps are then knitted

using KR (knitting on ring) or KD (knitting on discs) algorithms developed by the

authors. KR and KD algorithms are used to introduce new topological entities after

removing fillets to maintain topological and geometrical consistency. To ensure the

reversibility of the model simplification operation, the properties of the fillet such

as radius is added as an attribute to the topological entity which is introduced in

place of that fillet. In this approach, the recognized fillets are selected interactively

by the user for further application of simplification operations. The approach de-

scribed above is general enough to handle various topological configurations (ring

and disc type) of fillets and rounds. Also, the suppressed fillets and rounds can be

reinstated. The approach, however, only deals with the constant radius blends and

needs to be extended to handle variable radius fillets which are not uncommon in

mechanical parts. The trace faces are identified by rule based approaches by ex-
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haustively characterizing all the topological entities (convexity checks), which can

be computationally challenging when the model size is large. Venkataraman and So-

honi discussed simplification of blend type of features by recognizing the topological

entities representing the blends and then removing the entities [VSR02]. Tautges

discussed model simplification for finite element mesh generation using hydraulic

diameter based feature size metric and recognized blends and bridge features for

removal from input B-Rep model [Tau01].

2.1.12 Arbitrary Shaped Feature Simplification

Venkatraman and Sohoni implemented the delete face operation to remove a

set of faces corresponding to a particular feature [VS02]. Once the feature is removed

by deleting the faces, the gaps produced are filled up by extending or contracting the

neighboring faces of the removed feature. In this case, both the additive and sub-

tractive features (in terms of volume) are considered as sets of faces. It is assumed

by the authors that once the faces corresponding to the feature are removed from

the model, it is possible to patch up the gaps by just contracting or extracting the

neighboring faces without adding new faces. The faces that constitute a particular

feature are called feature faces. The faces that are neighboring to the feature faces

i.e., which share at least one edge or one vertex with the feature faces are called ex-

ternal faces. The edges that are along the boundary of the feature faces are termed

as boundary edges, and vertices along the boundary are termed as boundary ver-

tices. The edges that are not along the boundary but touch the boundary vertices

are called external edges. Each external edge has two faces sharing it, termed as the
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left and the right face. When a feature is suppressed, the feature faces are removed

and external edges are extended to a face known as opposite face. The opposite

face is detected by finding the minimum Euclidean distance between the external

edge and each external face. The vertex sense is another important attribute that is

required to be determined for deleting the face set. The vertex sense is related to the

sense of Gaussian curvature as positive or negative on the edge. The point where

the external edge intersects the opposite face is called opposite vertex. The vertex

sense of opposite vertex is determined by finding the sign of Gaussian curvature.

The features suppressed using the above approach are pockets and slots. There is

no error measure defined to select the features for simplification and the features

are selected interactively by the user. The technique described above is useful in

suppressing both protrusion and depression types of features. The algorithm was

tested on a large number of cases such as multiple boundary loops and degeneracies

and found to be successful. Operations like extension, contraction and merging of

neighboring faces to suppress a feature are handled effectively. The assumption that

operations on neighboring faces suffice to construct the feature volume without re-

quiring additional faces may not cater to cases where new faces need to be created

for constructing feature volumes. Such problems are usually under-constrained with

multiple solutions. Authors mention that additional heuristics would be required

to deal with such cases. Another limitation is lack of model simplification history

storage and processing and, thus, in this system, the simplified features cannot be

reinstated. The features suppressed in the approach used by Joshi are holes, fillets

and bosses from a B-Rep surface model representing sheet metal components [JD03].
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The two steps followed in this paper are recognizing the feature faces and replacing

them with new surface(s) to suppress the feature. The hole is recognized by deter-

mining the closed loops formed by free edges. The free edges are those which are not

encountered more than once when each surface patch is traversed along their respec-

tive edges. The loop with the largest perimeter is identified as the outer boundary,

while other loops as regarded as holes. Once the holes are recognized, they are sup-

pressed by introducing a surface patch between the recognized holes boundary or

just by removing the boundary edge constraints from the NURBS representation of

the surface containing the hole. The fillets are identified by determining the curva-

ture of iso-parameter curves at various points on the surface patch. If the curvature

of all such iso-parameter curves is same, then the surface is identified as a constant

radius fillet; else it is characterized as a variable radius fillet. Spring and cross edges

are then identified by comparing the curvatures along the edge and perpendicular

to the edge for the face under consideration and its adjacent face sharing the same

edge. If the curvature along the edge is equal on both faces and corresponds to the

radius of the fillet, then the edge is identified as a cross edge. If the curvature in a

direction normal to the edge is greater than a threshold and also greater than the

curvature of the adjacent face in the perpendicular direction, the edge is classified

as a spring edge. The threshold is determined based on the bounding box of the

object. After this, the edges of the fillet are chained and sequenced. Once the fillets

are recognized and sequenced, they are suppressed as follows. The edges of the fillet

surface that are common with the support surface are extended in tangential direc-

tion of the fillet and the intersection curve is determined. Thus, the fillet surface

54



is replaced with two new planar surfaces sharing edges with the support surface

and the newly generated intersection curve. The boss is recognized after the fil-

lets are already recognized and fillet chains and rings are identified. The algorithm

assigns an attribute to each face specifying the fillet chains and rings contained in

it. For all planar faces the adjacent faces on its outermost loop are checked and

if they belong to the same fillet ring, the planar face is marked as boss top and

the fillet ring is marked as top ring face. After this, adjacent faces of the top ring

are checked to identify the bottom ring. All these surface patches are recognized

as parts of the boss. To suppress the boss all the components of the boss like the

top face, the top ring and the bottom ring are removed and replaced by a smooth

continuous flat surface patch. To do this, the edges between the bottom ring and

base surface are chained to form a closed loop and a flat surface patch is created

for this loop in the same way as it is done for a hole. The generated edge may not

be the one that existed before the blend generation. The reason for this is that the

effect of curvature of freeform base surface is not accounted for while calculating

the intersection curve. This approach can sometimes recognize a surface as a blend

even if the surface is not intended to be so. The concept described above is applied

for mesh generation for Finite Element Analysis, particularly for design of forming

dies and molds where small holes and bosses are not very important in the early

stages of analysis. The quality of mesh is analyzed with respect to the number of

elements, aspect ratio, warping and the mean value of element included angle. It is

shown that for several test cases, the mesh quality for the given criterion improves

after feature simplification. The approach is particularly advantageous in handling

55



freeform surfaces. The method can tackle arbitrary shaped holes and variable radius

fillets and rounds. Compound features such as darts and beads are reportedly han-

dled by this approach which is useful for a completely new family of parts having

such features. The features cannot be recovered once they are removed from the

model database as no simplification history is maintained. Moreover, maintaining

a history of operation and reinstatement of feature may be difficult to incorporate

in this architecture. Kim et al. reported a system for multi-resolution feature sim-

plification using three operators, namely wrap-around, smooth out and thinning

[KLH+05]. The method is applied to finite element model preparation and network

transmission multi-resolution modeling. The features are first recognized using rule

based techniques and then various operators are applied to suppress them. In case

of wraparound operator, the model is considered to be wrapped by a thin plastic

cover. The parts of model hidden by the cover are considered for simplification or

removal. The wraparound operators are explained in the earlier papers by Koo and

Lee [LL02] and Seo et al. [SSK+05]. This operator is especially suitable for handling

concave features. The operator is applied to features that are detected as blends,

chamfers and concave features. Authors have applied certain rules to recognize fea-

ture. For example, the existence of cylindrical surface on concave edge is recognized

as a fillet and the existence of inner loops of convex edges connected to more than

one face is recognized as a concave feature. The recognized features are then sim-

plified using wrap-around operator. The limitation of wrap-around operator is its

volume-additive nature in case of a protrusion type of feature. If the protrusion

feature is very small, a volume removal approach is more useful. To address convex
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features such as bosses and ribs, authors propose smooth out operator, which can

be considered as smoothing operation carried out by a sand paper or chisel. The

bosses are identified by finding concave inner loops connected to more than one face.

The ribs are identified by finding face pairs which are much smaller in size than the

other faces and contain two concave edges. If two faces are connected by a convex

edge, then the pair is identified as a rib face set. Once the features are identified,

the smooth-out operator removes the faces corresponding to each boss and rib and

the neighboring faces are extended and stitched to fill the gaps produced by removal

of feature. Smooth out operator cannot be applied to the concave features. Finally,

thinning operator is applied to model already simplified by wrap-around and smooth

out operators. In the thinning process, the dimension of features is reduced to 2D

or 1D using mid-surface representation. The model is searched for face pairs having

same geometry (the geometries supported are plane, cylinder, sphere, cone, torus,

and offset face). If the distances between pairs of faces are found to be very less as

compared to the face dimensions, the pairs are identified as candidate for dimension

reduction using thinning operators. The thinning operator introduces an additional

face between the faces in the pairs recognized for thinning and the introduced face

is trimmed to the shape of bounding box of the face pair. After this, the thickness

information is attached to the introduced face and it is stitched to the model. In

each of the operators explained, the history of simplification is stored and the rein-

statement of the simplified features in each case can be obtained using the history

information. The major advantages of the method described above are its appli-

cability to assembly models and interoperability. The implementation is developed
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in Parasolid kernel (used in many commercial CAD systems) and hence the algo-

rithm is portable. The rule based feature recognition is one of the computational

overheads and authors propose that feature based models can be used to overcome

this limitation. In case of simplification of assembly models, the interface between

mating parts is not considered and hence the mating information is not preserved.

All the techniques mentioned in this section are summarized in Table 2.3.

Table 2.3: Summary of techniques based on explicit feature simplification operators

Method
Input
format

Features
simplified

Simplification
criterion

Advantages Limitations Application
domain

Feature
simpli-
fication
from tri-
angular
meshes
[DKKN06]

Polygonal
Mesh

Regular
shaped
blind holes,
through
holes and
bosses

Quadric error
based metric

Suppressed fea-
tures can be
recovered based
on the LOD tree

Nested features
not addressed

FEM
model
preparation

Feature
removal
from
poly-
hedral
model
[RHG+01]

Polygonal
Mesh

Cavity and
protrusion
types of
features

Quadric error
based metric

Uses general defi-
nition of feature

Implemented
only for poly-
hedral models

FEM
model
preparation

Finite
element
based
feature
removal
[DPS94]

B-Rep Axis-
symmetric,
plane, solid

Interactive FE based features
used

FE features like
beam, pipe, shell,
etc. not defined

FEM
model
preparation

Automatic
fil-
let/round
simpli-
fication
[ZM02]

B-Rep Constant
radii fillets
and rounds

Interactive Handles both
ring and disc
type topology;
reinstatement of
features possible

Variable radii fil-
lets not covered;
computationally
intensive feature
recognition step

Feature
recognition

Blend
removal
from
B-Rep
[VSR02]

B-Rep Blends Automatic Complex blend
networks with in-
teracting features
are handled

Variable radii
blends not cov-
ered

Feature
recognition

continued on next page . . .
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continued from previous page . . .

Method Input
format

Features
simplified

Simplification
criterion

Advantages Limitations Application
domain

Detail
Reduc-
tion for
mesh
gener-
ation
[Tau01]

B-Rep Blends Hydraulic
diameter of
surface and
volume

Size based met-
ric; Portable
across modeling
systems

Roll-on and face
edge blend not
covered; bridge
removal not cov-
ered

FE model
preparation

Feature
simpli-
fication
using face

delete op-
eration
[VS02]

B-Rep Arbitrary
shaped pro-
trusion and
depression

Interactive Simplifies both
protrusion and
depression types
of features

Could not han-
dle cases where
extension and
contraction of
adjacent faces
can’t patch
the gap pro-
duced; under-
constrained
problems with
multiple solutions
not considered

Feature
recognition

Feature
simplifi-
cation for
freeform
surface
models
[JD03]

B-Rep Arbitrary
shaped
holes, fillets
(constant
and vari-
able radii),
free form
surface
features

Interactive Handles freeform
surfaces; ar-
bitrary shaped
holes and vari-
able radius fillets
and rounds

Suppressed fea-
tures cannot
be recovered;
cannot simplify
features such as
notches, lances,
etc.

FEM
model
preparation

Feature
simpli-
fication
using
wrap-
around,
thin-
ning and
smooth-
ing
operators
[KLH+05,
LL02,
SSK+05]

B-Rep Blends,
cham-
fers, pas-
sages and
concave
regions

Based on sum-
mation of area
of faces con-
tained by fea-
tures

Applicable to
assembly models;
interoperability
and portability
to commercial
system

Rule based fea-
ture recognition
results in over-
head; mating
information not
preserved while
simplifying as-
sembly models

FEM
model
prepa-
ration,
network
model
transmis-
sion and
multi-
resolution
viewing

2.1.13 Techniques based on Dimension Reduction

In many applications, reducing the dimensions of CAD models is beneficial.

For example, consider a long round slender bar of uniform diameter. If we model

this long slender round bar as a 1D beam, there will be negligible effect on the

accuracy of the analysis applied to the beam but the computational time will re-

duce dramatically. Hence, dimensional reduction is studied by the physics-based

simulation community (especially finite element analysts) for model simplification
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purposes.

2.1.14 Medial Axis Transform based Dimension Reduction

One of the well established techniques for dimension reduction is medial axis

transform (MAT). There is a large body of literature on MAT and it is difficult to

include all of them here. We, thus, suggest the interested readers to refer to the sur-

vey paper by Attali et al. for details about medial axis transform based techniques

[ABE09]. In this section, we will discuss few representative papers that use MAT

based model simplification. In addition we will also discuss techniques based on θ-

MAT which is a modified approach for MAT and mid-surface abstraction. Donaghy

et al. used Geometry Idealization pertaining to dimension reduction to simplify a

model for analysis and other downstream operations [DAP00]. The technique used

for dimension reduction used by authors is Medial Axis Transform (MAT). The

process of development of MAT follows three steps. In the first step, Delaunay tri-

angulation of the object is performed. In the second step, the circum-circles for each

triangle generated are determined. In the last step, the circum-centers are fitted on

a curve. The fitted curve is called the medial axis. To determine whether the di-

mension of the object is to be reduced, aspect ratio and taper criteria are used. The

lower bound for aspect ratio is determined as the ratio of the length of the shortest

edge bounding the region and the maximum disk diameter in the local region. The

taper is determined as the maximum rate of change of diameter with respect to

medial edge length. The high aspect ratio or low threshold indicates variation in

slenderness property of the object. If an object region has an aspect ratio greater
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than the threshold or a taper value lower than the taper threshold, then the region

is suitable for modeling with 1D element. If not, then the region is either kept in

its original dimension for meshing with 2D elements, or dimensionally reduced to

an equivalent 0D-point element. After dimensional reduction has been performed,

physical properties are imparted to the reduced dimension model. The main param-

eters related to physical properties discussed by the authors in the context of FEA

are the moment of inertia tensor and the position of the neutral axis. This approach

is used for dimension reduction of 2D planar or 3D shell model. The technique is

not applicable for simplification of other types of 3D solids. Sud et al. presented an

algorithm for homotopy preserving medial axis simplification of polyhederal models

with a linear computational complexity and proposed applications to mesh genera-

tion and shape analysis [SFM05]. Foskey et al. utilized the concept of θ-MAT for

dimension reduction and model simplification of polyhederal mesh models [FLM03].

θ-MAT is more stable algorithm compared to MAT computationally. The potential

applications of the approach suggested by Foskey et al. are in the area of mesh

generation and shape analysis [FLM03].

2.1.15 Mid-surface Abstraction

Rezayet presents a technique to abstract the part model in terms of mid-surface

[Rez96]. The main applications of this approach are in FEA model preparation

and feature recognition. Authors have pointed out several benefits of mid-surface

abstraction in comparison with medial axis transform such as volume preservation,

non-creation of MAT branches, effective simplification of features and detail removal,
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reflection of part form and use of geometric reasoning to define the shape. There

are four steps involved in the generation of mid-surface, namely pairing surfaces,

topology based adjacency graph creation, mid-surface patch generation and sewing

the patches based on adjacency information. In the surface pairing step, all the faces

excepting the end-caps (faces on the edges of solid model) and orphans (faces not on

the thin wall sections) are paired. The pairing process involves arbitrary selection

of a face as the seed face and casting of a ray in the material direction from the

seed face. If the ray hits another face, the faces are paired and all the related

faces i.e., the faces sharing common edges with the paired faces are tagged and

processed. From the remaining faces, again a seed face is selected and the process

is repeated till all the faces are processed. The processed faces are then used to

create adjacency graph. The nodes of the graph are the faces and the arcs are the

relationships between the faces. The two types of relationships defined are pairing

relationship and the common edge relationship. The patterns in the graph indicate

particular types of features. The paired faces are then interpolated to create mid-

surface patches, which may be intersecting. The topological adjacency information

is used to trim the patches. In case of plane faces, a 2 × 2 grid is used, while in

case of non-plane faces, a 15 × 15 grid is used to create the interpolated points.

The thickness distribution is then assigned to the mid-surface thus generated. The

thickness of the part at an arbitrary point P , on the mid-surface between two parent

surfaces S1, and S2 is T , where,

T = dist(P, S2) + dist(P, S1) (2.6)
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The mid-surface abstraction is applied to the entire model simultaneously and no

error threshold is defined to select the parts of the model to which abstraction is to be

applied. In this approach, small features such as holes are simplified automatically

when the mid-surface is generated. Material distribution is effectively represented

in this approach by introducing thickening in the direction of the draft and by

introducing thinning in the direction of the undercut. In the area of dimension

reduction, other reported work is by Chong et al., who presented a technique to

decompose the solid model into parts and then applied mid-surface abstraction for

simplification for finite element model preparation application [CKL04]. All the

techniques listed in this section are summarized in Table 2.4.

Most of the model simplification techniques described above are developed for

finite element applications. Another class of model simplification techniques used in

collision detection (inspired by model simplification techniques in graphics domain)

are described next.

• Level of Detail (LOD) based simplification approach: Level of details based ap-

proach are very popular in the graphics community [Lue01, LWCR02, ESV98].

Several approaches use bounding volumes hierarchies or spatial decomposi-

tions to simplify the models. These approaches approximate the objects with

simplified bounding volumes or decompose the occupied space, to reduce the

number of pairs of objects that need to be checked for collision. In the area

of bounding volume techniques, the reported choices for bounding volume

are spheres, oriented bounding boxes, axis aligned bounding boxes and k-
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Table 2.4: Summary of techniques based on dimension reduction operators

Method
Input
format

Features
simplified

Simplification
criterion

Advantages Limitations Application
domain

Medial
axis
trans-
form
[DAP00]

B-Rep Shell based
features

Automatic High aspect ratio
regions can be
identified; sim-
plified models
computationally
efficient and
comparable with
original model
w.r.t. FEA
results

Only applicable
for shells

FEM
model
preparation

Homotopy
preserv-
ing me-
dial axis
simpli-
fication
[SFM05]

Polygonal
Mesh

Freeform
features

Automatic Results into
homotopically
equivalent medial
axis

Pruning of unsta-
ble parts of me-
dial axis may not
be optimal

Mesh gen-
eration and
shape anal-
ysis

θ MAT
based
technique
[FLM03]

Polygonal
Mesh

Protrusions
and de-
pressions

Based on sepa-
ration angle

Computationally
stable

Homotopy is not
preserved

Mesh gen-
eration;
shape
analysis

Mid-
surface
abstrac-
tion
[Rez96]

B-Rep Prismatic
features

Automatic Material distri-
bution effectively
represented; vol-
ume preserved
even in reduced
model

Complex ge-
ometries like
freeform bumps
and depressions
not handled

FEM, fluid
flow sim-
ulation
and feature
recognition

Feature
decom-
position
and se-
lective
mid-
surface
abstrac-
tion
[CKL04]

B-Rep Freeform
features

Interactive Model decom-
position also
performed for
efficient mixed
dimension mod-
eling

Mid-surface
extension and
stitching opera-
tions may lead to
errors in gener-
ated mid-surface

FEM
model
preparation
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DOPs [TCL99, Hub96, GLM96, Ber97, PG95, KHM+98]. Popular spatial de-

composition techniques include: octrees, k-d trees, BSP-trees and Shell trees

[JG97, KGL+98]. A general treatment of all the LOD based techniques as well

as details on GPU based acceleration can be found in [Eri04].

• Occlusion culling based approach: The occlusion based approaches are based

on the premise that there are some parts of objects never contacted by other

objects in the process of physical interaction. For example, in case of visu-

alization, back faces are occluded by the front face of the objects and thus

could be removed while rendering. Similar approach is employed in real-time

simulation scenario such as collision. Since, the faces having normals away

from the relative velocity of colliding parts never takes part in collision, they

can be culled. Vanecek adapted the concept of back-face culling, used widely

in graphics, to the collision detection domain as back-motion culling and de-

veloped an algorithm that runs in linear (with respect to the number of facets)

time [Van94]. Kumar presented a sub-linear algorithm for back-motion culling

by using hierarchy and coherence [KMGL99]. Redon improved the back mo-

tion culling technique by employing hierarchical decomposition [RKC02].

2.1.16 Discussion

We studied existing model simplification techniques that are useful from physics-

based simulation point of view and classified them broadly into four main categories

based upon the type of simplification operators used in the respective techniques,

i.e., surface entity, volumetric entity, explicit feature and dimensional reduction.
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Figure 2.8: Taxonomy of model simplification techniques.

Figure 2.8 shows the taxonomy of different model simplification techniques in the

form of a tree containing four hierarchical levels. The solid lines denote direct in-

heritances of different techniques from parent classes.

Analysis of the four tables (Table 2.1 to Table 2.4) presented in the preceding

sections clearly reveals that there is no single technique that can solve all the model

simplification problems. For example, a majority of the techniques are applicable

for FEA model preparation, whereas others are suitable for fluid flow problems,

collision detection or even as pre-processing steps in recognizing complex features.

Again, some of the techniques can effectively handle prismatic features, while others

are useful in dealing with shell-based, freeform, cavity or protrusion type of features.

The level of automation, input model format and the type of operators used vary

quite a bit as well. All these factors, namely, application domain, types of features
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Table 2.5: Model simplification technique selection criteria

Input for-
mat

Application Domain Features
present in
the model

Level of
automa-
tion/flexibility
desired

Suitable simplification techniques

B-Rep FEA model simplifica-
tion, fluid flow prob-
lems

Prismatic Automatic Mid-surface [Rez96],
Wraparound/thinning/smoothing oper-
ators [KLH+05], Detail Reduction for
mesh generation [Tau01]

B-Rep FEA model simplifica-
tion, fluid flow prob-
lems

Prismatic Interactive Cell transformation based [LAPL05],
Finite element based feature removal
[DPS94]

B-Rep Feature recognition
preprocessing

Freeform fea-
tures

Interactive Face delete operators [VS02], Blend re-
moval [VSR02], Fillet/Round simplifica-
tion [ZM02]

B-Rep FEA model simplifica-
tion

Shell based
features

Automatic Medial-axis transform [DAP00, FLM03]

B-Rep FEA model simplifica-
tion

Free-form
features

Interactive Selective mid-surface abstraction
[CKL04], Feature simplification [JD03],
MCT based [FCF+08], Homotopy Pre-
serving medial axis technique [SFM05]

Mesh FEA model simplifica-
tion

Cavity and
protrusion
type

Automatic Feature removal [RHG+01], Feature sim-
plification [DKKN06] Surface entity
based operators [SBB97, She01, IIYF01,
VL98, DKK+05] Local modification in
a mesh [DSG97, SBO98]

Mesh Collision detection Protuberances
and cavities

Automatic Voxel based object simplification
[HHK+95], TDPS [ABA02]

Mesh FEM model simplifica-
tion

Freeform fea-
tures

Automatic Effective volume [Lee05, H.05, LL06a,
LLK06]

2D Image FEM model simplifica-
tion

Boundary
edges and
island type
features

Automatic Fourier transform based [LL98]

Native
feature

FEM model simplifica-
tion

Freeform Automatic Cellular topology based PSM [LLKK04]

handled, input format, level of automation and type of operators used, need to be

taken into consideration before selecting a particular technique. Table 2.5 has been

drawn to summarize our findings. We believe that this will aid potential users in

choosing the appropriate technique quickly based upon the characteristics of their

problem.
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2.1.17 Summary

This chapter summarizes various model simplification techniques available in

the open literature that are applicable for physics-based simulation applications. To

the best of our knowledge, this is the first attempt towards classifying and organizing

the various techniques into well-defined categories. Comparative study of all the

techniques in each of the categories has been performed in order to delineate the

types of features handled, relative merits, weaknesses, and potential applications

clearly. Based on this classification and comparative study, we have also presented

a broad selection criterion for different classes of engineering problems commonly

encountered in practice. This literature survey clearly reveals that there are many

open research issues that merit serious attention in the future. They are listed as

follows:

• Lack of formal analysis of computational complexity: It is possible to identify

certain methods to be computationally less intensive than others based on

computational experiments on test data. However, very few of them have

formally enumerated the complexity in terms of input parameters. In this case,

the overall complexity can be decomposed into two categories: one pertaining

to the recognition or identification of features and the other pertaining to

the actual simplification. The former will be associated with the number

of vertices or faces based on the type of solid model used (e.g., mesh-based

methods will relate it to vertices, whereas B-Rep-based methods will link it

to the number of faces or surface patches). The latter on the other hand will
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deal directly with the number of features implicitly or explicitly represented

in a particular method. Thus, formal derivation of asymptotic computational

complexity is often a complex task. However, to really understand the nature

of the underlying algorithms and make further progress, it will be very useful

to know the asymptotic time complexity of the algorithms.

• Lack of application-specific (physics-dependent) error measures: A vast major-

ity of methods utilizes indirect, geometry based error metrics to characterize

their performance. These errors are used as thresholds to arrive at various

decisions regarding classification and consequent simplification of individual

features. However, these metrics usually cannot directly address the error

that will be introduced in terms of the physical behavior and properties of

the system under various possible external loading conditions. Hence, such

metrics need to be developed using a mathematically rigorous framework to

estimate the errors accurately and efficiently.

• Lack of standardized set of test parts: Graphics community has developed

several standard test cases to assess the performance of any newly developed

simplification technique for rendering (e.g., Stanford bunny, sculpture of David

by Michelangelo [Sta]). However, current the physics-based simulation com-

munity lacks a standard set of test parts to test simplification algorithm per-

formance. So the research community needs to come up with a basic, test set

of solid models that is acceptable to everyone working in this field.

• Lack of formal investigation of robustness: Robustness is an important issue
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in geometry computing applications. Discrepancies in floating point repre-

sentation of geometric entities may result in erroneous results. Hence, often

significant effort is devoted to ensuring robustness of the proposed algorithms.

The problem of robustness has not yet received significant attention in model

simplification applications.

2.2 Fluid-Rigid Body Interaction Simulation

Fluid-rigid body interaction simulations are computationally expensive be-

cause of the coupling between the fluid flow and the rigid body motion. There are

two types of coupling, namely, (1) influence of rigid body on the fluid in which

it moves, and (2) the influence of the fluid on the rigid body motion. Simulation

approach in which both the couplings are solved explicitly in each time step are

called two-way coupling solution; whereas, if one of the couplings is replaced with

some faster model then it is called one-way coupling solution. In this section we

shall review some common techniques for fluid-rigid body interaction simulation and

existing approaches for simulating unmanned boat motion.

2.2.1 Techniques

Some of the common techniques, wherein the two-way coupling problem be-

tween a fluid and a floating rigid body simulation are: Euler’s momentum equation,

Navier-Stokes law, Smoothed Particle Hydrodynamics (SPH) technique, and Lattice

Boltzmann Method (LBM).

• Euler’s Momentum Equation Based Approach : In Euler’s momentum equa-

70



tion based techniques, the momentum equation in continuum mechanics is

solved for fluids numerically. Batty et al. reported a computation time of 25

s per frame using a grid size of 60× 90 [BBB07].

• Navier-Stokes law based Approaches : In this class of techniques, interaction

between a viscous fluid and rigid bodies are simulated by numerically solving

the Navier-Stokes equations. Carlson et al. reported a computation time of

27.5 s per frame for a domain of size 64× 64 [CMT04].

• Smoothed Particle Hydrodynamics Based Approach : In SPH technique, the

fluid is assumed as a collection of particles and the motion of fluid particles

and their effects on a floating rigid body is modeled based on a kernel function

weighted by the distance of the particle from the floating rigid body. Becker

et al. reported a computation time of 3.47 s per simulation step for simulating

fluid with 850000 particles [BTT09].

• Lattice Boltzmann Method: In LBM, the fluid flow is represented as motion of

fluid particles where each particle follows a velocity distribution function and

moves in discrete time steps and can collide with other particles (which behave

in the same way). The collision rules are such that the statistical particle mo-

tion (or fluid flow) obtained is consistent with the continuity conditions. Gar-

cia et al. developed LBM based fluid-structure interaction approach [GGR11].

Geist et al. developed a real-time approach for wave surface generation and

attained 25 frames/s for grid of size 10242 [GCTW10]. Geveler et al. devel-

oped LBM based approach for simulating laminar flow with free fluid surface
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on multi-core CPU and many-core GPU processors and reported a factor of 8

speedup on GPU code with respect to multi-threaded CPU code [GRGT11].

It was discussed in Chapter 1, that one of the main application of rigid body

simulation is in VEs for robot simulations. VE for USSV is one of the systems that

require fluid-rigid body interaction. A survey on boat simulation was reported by

Beck and Reed [BR01]. Craighead et al. reported another recent survey on open

source boat simulators [CMBG07]. Some of the key USSV simulation techniques

are RANS based techniques, strip theory based techniques, kinematic model based

techniques, and potential flow theory based techniques.

• Reynold Averaged Navier Stokes Equation Based Approach: In recent years,

RANS based techniques for fluid flow around boats for simulating boat motion

are becoming popular because of their accuracy in the problems involving

boundary layer effects, turbulence, wake etc., [Gor02]. The limitation of RANS

code based techniques is the slow computation. In one of the implementations

of RANS code by Kim, the reported computation time for 360 time steps is

about 24 hours using 84 processors on Mauis IBM-SP3 computer [Kim02].

Some of the other implementations of RANS code can be found in [KGM+03,

WWS05, CWNS07].

• 3-DOF Model Based Approach: There are host of research papers reported

in the area of the underactuated controller design for the USSVs that uti-

lize 3-DOF simplified models which neglect the rolling, pitching, and heaving

motions [AMM10, KGZ97, LFP00, MPN02, DJP02, LPN03].
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• Strip Theory Based Approach: The Strip theory is mainly used for slowly

moving slender geometries [FS04b, BB08, HD06].

• Potential Flow Theory based Approach: In potential flow theory, fluid flow is

assumed to be irrotational and inviscid [New77]. Potential flow theory based

techniques are used by several researchers to perform the motion simulation

of USSVs [KKF05, TG10, SS07].

2.2.2 Summary

In this section we reviewed some common fluid-rigid body interaction simula-

tion techniques and also some boat simulation techniques. In nutshell:

• Euler’s equation, Navier-Stokes, and RANS equation based techniques yield

highly accurate results but one limitation is the dependence of computation

time on the domain size and the slow speed of computation.

• SPH technique results into good quality animations but the problem with the

SPH is requirement of large number of particles to simulate the fluid which in

turn increases the computational time.

• The 3-DOF simulations are computationally very fast for the obvious reasons

of neglecting the effect of fluid flow on the roll, pitch, and yaw and as a result

of the same fact are not accurate enough.

• Strip theory based techniques are not suitable for taking non-linear effects due

to the hull geometry and wave interactions. This is because, in strip theory, the

hull geometry is approximated to the nearest ideal shape (such as ellipsoids,
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spheres, etc.). This idealization might yield significant errors in hydrodynamic

and hydrostatic force estimations.

• The accuracy obtained by the potential flow based technique are not as good

as the RANS but are computationally faster and much easily amenable to the

6-DOF computations and hence much accurate compared to the simplified

3-DOF models.

2.3 Physics-aware Robot Motion Planning

One of the main applications of rigid body simulation is found in robot simu-

lation, which is used in robot motion planning. There is a large body of literature in

robot motion planning and we do not make an attempt to summarize that [LaV06].

We shall mainly focus on research related to robot trajectory planning considering

robot dynamics or in other words physics-aware robot trajectory planning.

2.3.1 Techniques

The literature for trajectory planning under differential constraints falls into

five main categories [GKM10] namely, (1) state space sampling based trajectory

planning, (2) decoupled trajectory planning with minimum distance path, (3) finite-

state motion model or the maneuver automaton (MA), and (4) mathematical pro-

gramming, and (5) Model Predictive Control (MPC).

• State Space Sampling: In this technique the robot state space is discretized

and searched for the low cost collision free trajectory. Several schemes for

state space discretization have been reported. In simple grid based approach,
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the state space is discretized into regular cells and trajectory is searched in the

discretized state space [DXCR93]. In navigation function based approach, a

navigation function is defined over the discretized state space and determined

using using algorithms such as value iteration and then trajectory plan is deter-

mined based upon that. Interpolation is used [LK01a] to make the planning

domain continuous. In rapidly exploring random trees (RRT) a stochastic

search is performed in robot’s body centered frame tree is expanded through

random sampling in configuration [FDF01, LK01b, HKLR02].

• Decoupled Approach : In decoupled approach, planning takes place in two

phases. In first phase, a discrete path or set of way points is determined

using graph search technique on grid such as A*, Voronoi approach, proba-

bilistic road map, etc. by considering only kinematic constraints of the robot.

In the second phase, dynamically feasible trajectory is determined by solv-

ing two-point boundary value problem between consecutive way-points using

optimization approaches. Suzuki et al. used A* approach for way-point gen-

eration and RTABU search based optimization approach for trajectory gener-

ation [Suz05]. Scherer et al. reported an evidence grid with a Laplacian-based

potential method for path planning, an obstacle avoidance based on reactive

planning, and velocity controller for trajectory generation [SSCS07].

• Maneuver Automaton Approach : In MA, the action space is discretized into

action automatons to reduce the search from infinite dimensional space to finite

dimensional. Frazzoli et al. presents rigorous definition of MA in [FDF99].
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Some other related works can be found in Refs. [PKK09, KSA+06, BLOY01].

• Mathematical Programming Approach : In this, trajectory planning prob-

lem is posed a numerical optimization problem with robot dynamics as con-

straints and solved using techniques such as mixed integer linear program-

ming, nonlinear programming, and other constrained optimization techniques

[RH02, BSRB06, ED05].

• Model Predictive Control : In this, the trajectory planning problem is posed

again as optimization problem, but optimized over finite horizon. This way

the solution obtained is suboptimal but takes lesser computation time than

optimizing over infinite horizon [CVR09, HK07].

In presence of motion uncertainty, optimal trajectory planning can be done by

solving a Markov Decision Process (MDP) using the dynamic programming (DP)

algorithms [RN09]. However, since the state space of a planning problem under

motion uncertainty is usually very large, most of the practical algorithms that have

been developed [LGT04, FS04a, SGDS09] to compute an optimal or close-to-optimal

solution to the problem by running the value iteration over a carefully chosen subset

of the state space.

In the USSV trajectory planning domain a three layered architecture for Di-

jkstra algorithm based global planning and A* based local planning is presented

by Casalino et al. [CTS09]. They used a simple kinematic model with no environ-

mental disturbances. Benjamin et al. developed a technique for collision avoidance

and navigation of the marine vehicles respecting the rules of the roads [BCN06].
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Soltan et al. developed nonlinear sliding mode control based trajectory planner for

a 3-DOF dynamics model [SAM09]. Xu et al. reported a receding horizon control

based trajectory replanning approach where the global plan is determined using

predetermined level sets from experimental runs [XKS09].

2.3.2 Summary

Most of the trajectory planning algorithms described above assumes determin-

istic environmental conditions or conservatively approximate uncertainties. A con-

servative approximation of motion uncertainty due to environmental disturbances

interacting with vehicle dynamics might lead to sub-optimal plans. In order to

incorporate motion uncertainty into the trajectory planning problem, MDP based

framework is often used. State transition probability encodes the vehicle dynamics

and environmental disturbance information into MDP formulation. In order to do

physics-aware trajectory planning, one way to incorporate the physics information

into the problem formulation is to use Maneuver Automatons and employ simu-

lations to estimate state transition probabilities. Major challenge experienced in

incorporating simulation based state transition map estimation is slower simulation

speed due to the fluid-rigid body interaction computation requirements, which can

be alleviated using model simplification techniques.

77



Chapter 3

Contact Preserving Model Simplification for Rigid Body Dynamics
Simulations

Accuracy of contact locations among bodies during rigid body dynamics simu-

lation influences the accuracy of the simulation directly. Often collision detection al-

gorithms are used for determining the contact points between moving bodies. Many

mechanical parts have a large number of features and hence collision detection with

the detailed part models slows down the rigid body dynamics simulations. Hier-

archical decomposition based techniques are used for accelerating collision queries.

These techniques require polygonal models as input generated from the part models.

A preprocessing step can be used to simplify the original part geometry by removing

irrelevant detail. We refer to such preprocessing as model simplification in this chap-

ter2. Model simplification techniques developed for efficient graphical rendering may

change the part geometry in such a manner that the contact points between parts

may change as a result of the simplification. Hence, such simplifications may alter

the results of simulation. In many simulation scenarios, all the parts participating in

the simulation are known in advance. In such cases, the simulation context (i.e., a

priori knowledge of parts) can be exploited to simplify the part geometries such that

the contact points among parts do not change. For example, parts with significant

concavities may have regions on their boundaries that will be inaccessible to other

2 The contents of this section was published in ASME 2009 International Design Engineer-
ing Technical Conferences(IDETC) & Computers and Information in Engineering Conference
(CIE)[TG09].
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parts in the simulation and hence contact points cannot lie on such inaccessible

regions. Removing such regions from the parts can simplify the model and hence

speed up the simulation for interactive applications. In this chapter, we present an

algorithm to simplify pair of interacting rigid body part models. We present a case

study involving interactive simulation of unmanned boats to illustrate the benefits

of the proposed approach.

3.1 Introduction

Rigid body dynamics simulations are nowadays used in a wide variety of in-

teractive virtual environment based applications such as computer games, ground

vehicle simulations, surgical simulation, and assembly process simulation. Many of

the applications also need simulation of compliant parts in addition to rigid body

simulations especially in health-care and manufacturing. Such compliance is often

modeled using rigid bodies connected by springs (i.e., pseudo-rigid bodies). Pseudo-

rigid bodies are also simulated using the rigid body simulations. Thus, the rigid body

dynamics simulation can be applied to a variety of applications involving both rigid

as well as compliant parts. In a rigid body simulator, the majority of computational

effort is spent on computing the contact points among colliding rigid bodies at each

simulation time step. Contact points play an important role in the computation of

reaction forces due to the collision among rigid bodies. The reaction forces due to

collision are then integrated to update the velocities and positions of the rigid bod-

ies. Often collision detection algorithms are used for computing the contact points.

Since the mechanical parts have large number of features, the collision detection
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using the detailed part models slows down the rigid body dynamics simulation. In

order to reduce the computation time for collision detection, part model geometry

needs to be simplified. Geometric model simplification involves elimination of fea-

tures from the geometry that are redundant from the point of view of application.

Simplification of geometric models without affecting the potential contact points

can improve the performance of rigid body dynamics simulation without adversely

influencing the accuracy of the simulation.

To simplify a geometric model, many techniques involving vertex, edge and

facet decimation have been reported [TBG09, CMS98, LLP02, SBB97, She01, FCF+08].

Decimation based techniques have proved to be very useful for the applications like

graphics rendering, finite element analysis model preparation, fast transmission of

models over network, etc. One of the main limitations of these techniques from

the point of view of rigid body dynamics simulation is that the contact points ob-

tained using the simplified models is drastically different than that from the original

models. This is undesirable in case of rigid body dynamics simulation as its fi-

delity depends upon the accuracy of the contact points returned by the collision

detection engine. Hierarchical bounding volume decomposition is a highly success-

ful model simplification technique that is used for accelerating collision queries to

determine contact points accurately. We performed a test on a collision detection

engine RAPID [GLM96], which is based on oriented bounding box (OBB) decom-

position scheme, as shown in the Figure 3.1. The figure shows variation of collision

computation time T versus the distance D between part model A and B. In the fig-

ure, model A is successively brought close to another part model B having the same
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geometry and for each relative separation distance D the collision computation time

T is determined and plotted. A point to be noted about the the geometry of the

parts A and B shown in Figure 3.1(b) is that there are small features just behind

the surface of collision as shown in cut-through view in Figure 3.1(b). Figure 3.1(c)

shows that the collision detection time is about 0.001s when the parts are far apart

(D ≥ 7mm). However, in close proximity (D < 7mm) the collision detection time

increases rapidly. Henceforth, we’ll refer to the case of part separation distance when

the collision detection takes largest amount of time as the worst case. Figure 3.1(c)

shows that the worst case collision computation time for the detailed geometry is

about 0.038s. The reason behind this dramatic increase in collision computation

time is shown in Figure 3.1d, which shows that at farther distances the number of

collision tests is smaller whereas in close proximity the number of collision tests in-

creases. Some details of the part model are inaccessible in all possible relative pose

of the parts and thus unnecessary from the point of view of rigid body collision.

The inaccessible features can thus be removed without altering the potential con-

tact points to simplify the part model. The worst case collision computation time

obtained using such a simplified part model is 0.002s as shown in Figure 3.1(c).

The drastic reduction in collision computation time by removing the inaccessible

features can be explained as follows. Since the inaccessible details are spatially near

to the point of collision, the hierarchical decomposition cannot take care of pruning

the unnecessary facets during the lowest level collision query when the parts are in

the close proximity. In other words, during the lowest level collision computations

in the hierarchy, the inaccessible facets which are spatially very near to the point of
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collisions need to be tested for collision and increase the collision computation time.

This causes increase in the collision computation time when the parts come very

close to each other (as D reduces to zero) as shown in Figure 3.1(c). In many parts

similar to the one shown in Figure 3.1, there are many details which are inaccessible

but spatially very close to the point of collision. The inaccessible facets if removed

off-line (i.e., before the simulation), can reduce the computation time significantly

without affecting the accuracy of the results.

The potential contact points depend upon the collision context (i.e., which

parts are colliding). In many problems the collision context is known in advance

or can be easily determined as the parts are known beforehand. This opens up a

possibility of storing and retrieving multiple representations of parts based on the

collision contexts, where each representation can be simplified for the given collision

context. This scheme is promising as the memory is relatively inexpensive compared

to the real-time computation of contact points for fully featured part models. We

plan to utilize the collision context to generate physics-preserving simplified mod-

els. Our idea is to simplify models with respect to each other in an off-line manner,

i.e., before the simulation is performed, in such a way that possible contact points

are preserved using part accessibility considerations. In the Figure 3.2, the simpli-

fication process of part model A with respect to part model B is shown. Firstly,

the inaccessible facets of part A with respect to part B are determined and then

removed from A to generate simplified model As. We assume that the input models

A and B are completely closed watertight shells, however, it should be noted that

the resulting simplified model As is not necessarily a completely closed watertight
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(a) Part model. (b) Cut-through
view.
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Figure 3.1: Collision computation time drastically increases when parts are in close
proximity (Test case for hierarchical decomposition performed on RAPID collision
detection engine).
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Figure 3.2: Context dependent contact preserving model simplification process.

shell. Such models are acceptable for the simulation purposes; as such simulations

need only polygon soup data to perform collision queries. In Section 3.2, we present
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the problem statement and overview of the model simplification approach to solve

the problem. Section 3.3 to 3.5 discusses various steps in the model simplification

algorithm. In Section 3.6 we discuss the implementation details and the results and

finally conclusions are presented in Section 3.7.

3.2 Problem Statement and Solution Approach

3.2.1 Problem Statement

We present some definitions before we formally describe the problem state-

ment.

Definition 1 Let A, B be polyhedral representation of a pair of parts. We

define a non-penetrative touch transforms denoted by T , such that,

(i.) T is a rigid body transformation

(ii.) touch(A, TB) = true and penetration(A, TB) = false

where,

touch(X, Y ) =















true, int(X) ∩ int(Y ) = φ and bnd(X) ∩ bnd(Y ) 6= φ

false, otherwise

(3.1)

and,

penetration(X, Y ) =















true, int(X) ∩ int(Y ) 6= φ

false, otherwise

(3.2)

int(.) is the interior of the point set, bnd(.) is the boundary of the point set

and φ is the null set. Henceforth we will refer to the polyhedral representation of a
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part as the model of the part. It should be noted that we do not directly compute

the touch and penetration based on the definitions presented here. These terms are

introduced in order to explain the inaccessibility of facets, which is computed in the

following sections.

Definition 2 For a given pair of models A and B, the set of inaccessible facets

of A with respect to B is denoted by Ain,B and defined as a set of facets for which

touch(Ain,B, TB) = false, for all possible non-penetrative touch transforms T .

In the Figure 3.2, the inaccessible facets of the model A with respect to model

B are highlighted.

Problem Statement: Given a pair of part models A and B, generate sim-

plified models As and Bs such that, the set of contact points obtained under every

non-penetrative touch transform of A relative to B and As relative to Bs is the

same. This can be mathematically expressed as following. Let CA,B = A ∩ TB

and CAs,Bs
= As ∩ TBs. Where T be a non-penetrative touch transformation. We

want to generate simplified models As and Bs such that CA,B = CAs,Bs
. Here,

As = A− Ain,B and Bs = B −Bin,A.

3.2.2 Overview of the Approach

In order to make contact with any facet f on the concave portion of part A,

part B will need to access facet f via some passage or opening on part A (please

refer to Figure 3.2). These passages and openings impose restrictions on the size

of B that can reach f (e.g., if B is very big compared to the available passage

and opening, then it cannot reach f). Section 3.3 presents a formal approach to
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automatically identify and represent the concave regions, openings, and passages.

We are interested in knowing how deep B can enter into the passage of A.

Usually parts with large cross-sections with respect to the passage can only enter

the passage up to a certain distance before the cross-section becomes the bottleneck.

Parts have different cross-sections in different directions. Hence, in order to figure

out if a part can enter an opening or passage, we need pose independent measure of

its size along its length. Computing this information exactly is not practical. So we

have developed method to compute a conservative estimate of this key information.

We call this measure, part section signature. Section 3.4 describes algorithms for

computing the part section signature.

Finally, given a passage on A and part section signature of B, we analyze if

B is small enough to enter the passage of A and reach f or not. Facets on the

concave portion of A that cannot be reached by B due to the large size of B with

respect to available passages and openings on A can be removed during the contact

determination step. Section 3.5 describes the algorithm to determine and remove

the list of inaccessible regions of the part models to obtain simplified models.

3.3 Determining Passages

We first define the notion of the passage set and passage, deep facets and

openings and then present our approach to determine them for a given model.

Definition 3 We define a passage set P for a given model A as the set of

3-cell complexes pA,i, such that, pA,i belongs to the interior of the convex hull of A
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(a) 3D model for part A. (b) Passages of part A.

Figure 3.3: Part model and passage set (passages of A are obtained by subtracting
the A from from the convex hull of A).

but does not belong to the interior of A.

P (A) = Ac − A (3.3)

where, P (A) is the passage set of model A and Ac is the convex hull of model A.

Also, P (A) = ∪pA,i and pA,m ∩ pA,n = φ for all m 6= n, where, each pA,m

represents a mutually exclusive passage of A.

The passage set of the model shown in Figure 3.3 are illustrated in Fig-

ure 3.3(b).

Definition 4 A deep facet FD of a model is defined as a facet that completely

lies in the interior of the convex hull of the model.

The deep facets of the model shown in Figure 3.3(a) are illustrated in Fig-

ure 3.4(a).

Definition 5 An opening Ω of model A is a set of points satisfying the

following:

(i.) Ω is a connected set, and
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(a) Deep facets of part A corresponding to each
passage shown in Figure 3.3.

(b) Openings of part A corre-
sponding to each passage shown
in Figure 3.3.

Figure 3.4: Deep facets and openings of part A.

(ii.) pi ∈ bnd(Ac) and pi /∈ bnd(A), ∀pi ∈ Ω.

In other words, an opening of a model A is a connected virtual face that

bounds a passage and strictly lies on the boundary of convex hull of A but does not

lie on the boundary of A. The openings are actually computed by determining the

triangulation of the virtual face which lies on the convex hull of the model but not

on the part and procedure for the same is explained in this section in step 2.

The openings of model A is shown in Figure 3.4(b).

Definition 6 An opening Ω and a deep facet FD belonging to a passage pA,i

are said to be connected if there exists at least one pair of points pm ∈ Ω and

pn ∈ FD, such that the line segment L connecting pm and pn satisfies following,

(i.) All the points on L connecting pi and pj strictly lies inside the volume of the

cell pA,i,

and,
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(ii.) L does not intersect any deep facet belonging to pA,i.

The shortest distance between a deep facet and connected opening, i.e., the length

of the segment L is called as the opening distance.

The largest sphere that can be inscribed inside the volume of pA,i such that it

contains at least one point lying on segment L, is called as opening sphere and the

radius of the opening sphere is called as opening radius.

Some of the deep facets of A lying on pA,i may not be connected to any opening.

In case of such an orphan deep facet, the opening distance is set as infinity (a very

large number in computer program). Opening sphere is determined for such orphan

facet by finding out the largest non-intersecting inscribed sphere inside the passage

pA,i and tangential to the deep facet.

Thus, each deep facet can have multiple (at least one) opening distances and

corresponding to each connected opening there is an associated opening sphere.

Another interpretation of opening sphere is that for a given opening of a deep facet,

any sphere with radius larger than the opening sphere cannot touch the deep facet.

The following steps are used to determine the passage set, deep facets, and

openings of given model and represent the model as a graph.
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Algorithm 3.1 - Connectivity Graph

Input Polyhedral representation of part A.

Output Connectivity graph representation of part A.

Steps

(i.) Find the passage set A: Determine the convex hull Ac of model A and perform

the Boolean subtraction of Ac and A. This results into a non-manifold passage

set P (A). The passage set of the part shown in Figure 3.3(a) is shown in the

Figure 3.3(b). We express A and Ac as Nef-polyhedron as implemented in

CGAL [cga, HK05].

(ii.) Find the openings of A: Iterate through each bounding facet of passages pA,i

of P (A). Label every facet in pA,i, that do not lie on the bounding facets of

A but do lie on the bounding facets of Ac as opening facets. Group all the

contiguous facets marked as opening facets and store as the sets of openings

corresponding to the passage pA,i. We used CGAL’s AABB spatial search

structure to accelerate this process [cga]. The openings of part shown in

Figure 3.3(a) is depicted in Figure 3.4(b).

(iii.) Find the deep facets of A: Iterate through the bounding facets of model A

and find all the facets of A that are coincident with the bounding facets (that

are not openings) of the passage pA,i, and mark them as the deep facets. The

deep facets of part shown in Figure 3.3(a) are shown in Figure 3.4.

(iv.) Construct a connectivity graph for each passage pA,i: Construct a connectivity

graph for pA,i and mark each node either as opening or deep as determined

91



in the previous steps. Determine the connected opening nodes for each deep

node and add to the connectivity graph. The nodes represent the deep facets

or the openings while the arc shows the connectivity. Iterate through the

nodes representing the deep facets and determine the bounding sphere for

each connected opening and store it as the opening sphere of the connected

deep facets. In order to simplify the computations we used the fact that the

bounding sphere of the opening is always larger than or equal to the opening

sphere and we need an upper bound on the opening sphere radius. Compute

the minimum distance between the deep facet and connected opening and store

as opening distance for the deep facet. If some deep facet is not connected to

any opening then use the opening (with the largest bounding sphere) belonging

to pA,i for computing the opening sphere. For a deep facet not connected to

any opening, we set the opening distance to a large value (we used 1010).

(v.) Return connectivity graph obtained in step (iv.).

3.4 Construction of Part Section Signature

A deep facet on part A is said to be accessible by another part B, if there exists

at least one relative orientation of A and B such that B touches the deep facet on

A and does not penetrate into A. In order to answer the question that whether a

given deep facet on A is accessible by the given part B, we need to represent part

B as a function of minimum opening distance of the deep facets of A returning a

lower bound on the size of B. If we have such a function, a comparison of the lower

bound on the size of B with the bounding sphere of the connected opening of the
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deep facet of A can answer the question about accessibility of the deep facet of A

by B. We call such a function of minimum opening distances of deep facets of A

returning lower bound on the size of B as part section signature or PSS of B.

Definition 7 For a given modelM and a direction vector ~d, we define a plane

PF as the first supporting plane, if it satisfies the following conditions:

(i.) PF is normal to ~d.

(ii.) M lies entirely in the closed half-space of PF in the direction of ~d and at least

one point on M lies on PF .

Definition 8 For a given modelM and a direction vector ~d, we define a plane

PL as the last supporting plane, if it satisfies the following conditions:

(i.) PL is normal to ~d.

(ii.) M lies entirely in the closed half-space of PL in the opposite direction of ~d and

at least one point on M lies on PL.

Definition 9 For a given model M and a direction vector ~d, we define range

(R) as the distance between PF and PL.

Definition 10 For a given modelM , direction vector ~d and a distance D, (0 ≤

D ≤ R), we define a plane PS as the slicing plane, if it satisfies following conditions:

(i.) PS is normal to ~d.

(ii.) Distance between PF and PS is equal to D.

Definition 11 For a given modelM , a direction vector ~d and a depth D, (0 ≤

D), we define minimum cylinder (CM) as the minimum possible diameter cylinder
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(with the axis parallel to ~d) that contains all the points on M lying between the PF

and PS of M .

The minimum cylinder radius (MCR) is thus defined as the radius of CM ,

which is a function of model geometry M , direction vector ~d and depth D.

Definition 12 For a given model M , we define part section signature (PSS)

of the part as,

PSS(M,D) = min
~d

MCR(M, ~d,D) (3.4)

where, ~d is the direction of approach and D is distance between the first plane

and the slicing plane for direction ~d.

In other words, PSS is a 2D representation of part model M that gives the

relationship between a given depth D of the blind hole (with minimum possible

radius) into which M can enter and reach the blind end of the hole, and the radius

of that blind hole. It can be noted, that PSS is a monotonically non-decreasing

function.

To determine whether a part B can enter a passage opening Ω on A to a

given depth δ without penetrating into A, conceptually it means to try out all the

possible directions of approach ~dj for B and find corresponding set of cross-sections

CSj obtained by intersecting B with the slicing plane for the direction ~vj and depths

0 ≤ D ≤ δ. If at least one cross-sections CSj is such that it can be contained in

maximum inscribed polygon of Ω, we can claim that part B enters the cavity opening

Ω to a distance of δ. However the above approach is not practical because of the

following reasons:
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(a) Comparison of approximate and theoretical
PSS.

(b) Error estimation.

Figure 3.5: PSS error estimation.

(i.) There are infinitely many possible orientations and considering all of them is

not feasible.

(ii.) The cross-section CSj is in general non-convex and so are the cavity openings

Ω. A containment test of non-convex polygons in other non-convex polygons

is computationally expensive operation.

We addressed the above problems by computing a conservative estimate of the

theoretical PSS by considering a discrete set of directions of approach. The PSS

information is used for determining whether the part can enter an opening to a

specified depth. If it is found that the part cannot enter the opening to the given

depth, the connected deep facets are removed to simplify the model, details of which

are given in the next section. We are interested in conservative simplification (i.e.,
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we do not want to change contact points due to approximations in PSS). Hence,

we computed an estimated lower bound on the theoretical PSS and used it as the

conservative estimate of the theoretical PSS. The approximate, theoretical and the

estimated lower bound on the PSS is shown schematically in the Figure 3.5(a). The

estimated lower bound on PSS of a part guarantees that the part cannot enter a

given hole if the theoretical PSS of the part does not do so. This approach ensures

that when we delete a facet, the facet is truly inaccessible, however, sometimes a

facet may be inaccessible but our approach will not be able to eliminate them due

to the use of the estimated lower bound on the PSS.

In our approach, we determine a discrete set of directions along (θ, φ) in spher-

ical coordinate system with θ = α, 2α, ...., 2π radians and φ = α, 2α, ...., 2π radians,

where α is the angular increment. For the set of directions we determine the MCR

at various depths and then find out the approximate PSS. To estimate how much

the actual PSS can be lesser than the computed approximate PSS, consider Fig-

ure 3.5(b). The ideal cylinder (with diameter d) enveloping the part to a depth of

l is shown by the rectangle drawn in solid line. The estimated minimum cylinder

(with diameter D) enveloping the part is shown by broken line, whose axis is at an

angle of ψ ≤ α with the axis of ideal minimum cylinder. Now, using the geometry,

dcos(ψ) + lsin(ψ) = D

⇒ d
D
= sec(ψ)− l

D
tan(ψ),

∵ ψ is very small and expressed in radians, sec(ψ) ≈ 1 and tan(ψ) ≈ sin(ψ) ≈

ψ,
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⇒ d
D
≈ 1− l

D
ψ,

⇒ d
D
= 1− l

D
ψ ≥ 1− l

D
α, ∵ ψ ≤ α,

thus,

d ≥ D{1− l

D
α} (3.5)

We use equation 3.5 to estimate the lower bound on the PSS by multiplying the

approximate PSS by factor ef = 1 − l
D
α. A few points to note about the error

estimation parameter ef are as follows:

(i.) When D
l
≤ α, the error estimation parameter ef becomes negative. Physically,

this means that the angle increment α is not small enough. We set ef to zero

under the above stated condition, which makes the lower bound on theoretical

diameter to be zero and thus no simplification (as a cylinder with zero diameter

can enter hole of any diameter) occurs.

(ii.) Smaller the value of α, ef is closer to unity. This means that estimated cylinder

diameter D is close to actual cylinder diameter d. However, computation time

of PSS increases at inverse square rate of decreasing α and thus a choice of

tradeoff between better estimation and computation time can be made by

selecting appropriate α.

The following algorithm is used to compute the lower bound on the PSS of

part B.
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Figure 3.6: Part section signature.

Algorithm 3.2 - Determine Part Section Signature

Input

(a.) Polyhedral representation of part B, and

(b.) angular sampling increment α.

Output PSS of part B

Steps

(i.) Find the list of direction vectors: Determine the candidate directions along

(θ, φ) in spherical coordinate system with θ = α, 2α, ...., 2π and φ = α, 2α, ...., 2π,

where α is the angular increment. In our experiments, we selected the value

of α as 0.26 radians.

98



(ii.) Find the slicing plane set along each direction vector: Find the first supporting

plane, last supporting plane and range along each candidate direction. After

this, using the list of depths of deep facets on the other part (i.e., model A)

generate the slicing planes normal to the direction vector and add to the slicing

plane set. If the depth for a direction is larger than the range in that direction,

the depth is set as equal to range.

(iii.) Compute the cross-sections along each direction vector: Intersect the model

with each plane in the slicing plane set to obtain the point sets lying in the

negative half spaces of each of the slicing planes. After this, determine the

MCR of each of the point sets. In order to eliminate redundant computations,

only compute the cross-sections for the range of depths of deep facets obtained

in the previous section. For each candidate direction store the MCR variation

along the respective directions. Figure 3.6 shows variation of MCR along three

directions (~d1, ~d2, and ~d3) for the part model shown in the figure.

(iv.) Compute the approximate PSS: Determine MCR for each direction determined

in step (i.). After this, for each direction, find out the minimum among all

MCRs corresponding to each interval and generate a lookup table for each

direction storing the depth and the minimum MCR. This lookup table is called

the approximate PSS. For the part shown in Figure 3.6, variation of MCR along

three directions of approach and the approximate PSS of the part are shown

in Figure 3.6. We have shown only three representative directions ~d1, ~d2 and

~d3, in Figure 3.6, for the sake of brevity.
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(v.) Apply conservative bound on the approximate PSS: Multiply factor ef given

in Equation 3.5 to approximate PSS and determine the lower bound on the

PSS. The estimated lower bound on the PSS is shown by broken lines in the

Figure 3.6.

3.5 Model Simplification

In this step, each deep facet of the connectivity graph of passages of model A

is traversed to find out which of them are inaccessible through their corresponding

connected openings by the PSS of the model B. The inaccessible deep facets of A

by B and are subsequently deleted to generate the simplified model As. The steps

followed are listed below.
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Figure 3.7: Model simplification procedure (inaccessible facets are detected and
then removed).

Algorithm 3.3 - Model Simplification

Input

(a.) Connectivity graph representation of parts A and B, and

(b.) PSS of parts A and B.

Output Simplified models As and Bs.

Steps

(i.) Find the inaccessible facets of A with respect to B: Iterate through the open-

ings corresponding to every deep facet of A and determine the smallest opening
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distance and the largest opening sphere. The smallest opening distance D is

used to determine the PSS (r) of B at depth equal to D and the r is com-

pared with the largest opening sphere radius (R). If radius (R) of the largest

opening sphere of a deep facet is smaller than the PSS (r) of B at depth D

for the smallest opening distance, the deep facet is considered inaccessible (see

Theorem 1).

The procedure for determining accessibility of a facet f of A with respect to

B is shown in Figure 3.7. The PSS of the part B at depth D is shown in

the Figure 3.7 as r and the minimum distance from the highlighted facet f

to corresponding opening is shown as D. The largest sphere inscribed in the

passage of model A corresponding to the facet f has the radius R. To find

whether facet f in A is accessible by the part B or not, R is compared with r.

If r is larger than the R, then it can be concluded that B cannot touch facet

f of A and hence f can be labeled as inaccessible by B.

(ii.) Remove the inaccessible facets of A with respect to B: The list of inaccessible

facets of A are then removed from A and a simplified model As is generated

in this step.

(iii.) Swap A and B and repeat step (i.) and (ii.) to obtain simplified model Bs.

(iv.) Return As and Bs.

Theorem 1. Let, FD be a deep facet of model A. Let the minimum opening distance
for FD be lpmin and maximum opening radii is rmax.

If PSS(B, lpmin) > rmax, where B is a part model, then B can never touch
FD.
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Proof. We can prove this by contradiction.
Let us suppose that the part B can touch FD for a non-penetrative touch

transform T through an opening Ωj with of opening distance lpj .
Let the opening radius corresponding to opening Ωj is rj.

Let, transform T orient the part B along vector ~d for the given coordinate
system.

⇒MCR(B, ~d, lpj) ≤ rj,
We know, rj ≤ rmax,

⇒MCR(B, ~d, lpj) ≤ rmax,
Also, lpj ≥ lpmin and using the fact that minimum cylinder for depth lpj is

larger or same as minimum cylinder for depth lpmin for model B,
⇒MCR(B, ~d, lpj) ≥MCR(B, ~d, lpmin),

⇒MCR(B, ~d, lpmin) ≤ rmax (3.6)

Now, from the given conditions in lemma,
PSS(B, lpmin) > rmax

and Equation 3.4,
PSS(B, lpmin) ≤MCR(B, ~d, lpmin), for any arbitrary direction ~d,
we have,

MCR(B, ~d, lpmin) > rmax (3.7)

Inequalities 3.6 and 3.7 contradict each other and hence under the given
conditions, part B can never touch the deep facet FD.

Hence the proof follows.

3.6 Implementation, Testing and Results

We developed a prototype software implementation of the contact preserving

model simplification algorithm discussed in this chapter. The programming plat-

form was chosen as VC++ (version 8) using CGAL 3.6 on Windows Vista operating

system [cga]. Our implementation takes STL files as input and after simplification,

generates output in the same format. As a platform to test the simplified models

obtained by using our approach, we used a framework that we have been devel-

oping for simulating surveillance operation for unmanned surface vehicles (USSV)

[SSTG09]. The virtual environment simulates a maritime mission where a remote
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controlled boat tries to protect a valuable target from an intruding boat.

Figure 3.8: Screen-shot of the virtual environment.

Figure 3.9 shows the schematic view of the mission where, the intruder boat

attempts to reach the protected object by crossing the buffer zone and the danger

zone. The USSV’s job is to block the intruder. The level of aggression with which,

USSV blocks the intruder depends upon the position of the intruder (i.e., whether

the intruder lies in buffer zone or the danger zone). The USSV should block the in-

truder and at the same time should avoid collision with the other dynamic obstacles,

which represent the harmless artifacts such as fishing boats. An important maneu-

ver in this operation is the active blocking of the intruder boat by the remotely

controlled USSV by steering towards to the front of the intruder boat in the danger

zone. This application requires interactive rigid body dynamics simulation to train

operators driving the boats using tele-operation. A meta-model is used to determine
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Figure 3.9: Representative simplification results.

the forces (such as ocean wave, gravity, buoyancy, etc.) acting on the boats due to

the water. A screen-shot of the virtual environment is shown in Figure 3.8. We

chose RAPID collision detection engine for collision queries [GLM96]. In our test,

we imported a boat model (with 60030 facets) to represent both the USSV and the

intruder and used this detailed model for the purpose of visualization as well as the

collision detection. The boats were slowly moved towards each other and the time

taken for collision query in each time step was recorded. The maximum collision

detection time obtained with the detailed model (with 60030 facets) used as both

the visualization and collision model was found to be 0.240 s. Using our model sim-

plification approach, the simplified boat model obtained had 1120 facets (as shown

in Figure 3.10). The features such as ribs, inner parts such as motors, batteries,
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(a) USSV model with 60030
facets.

(b) Cut-through view (about
plane XX) of unsimplified
USSV model with 60030
facets.

(c) Cut-through view (about
plane XX) of simplified
USSV model with 1120
facets.

Figure 3.10: Boat model used in the virtual environment.

etc. are removed automatically using the model simplification approach as shown in

Figure 3.10(c). It should be noted that only the ribs lying just behind the collision

surface contribute significantly to collision detection time. Other features that are

very far from the point of collision have negligible effect on the collision detection

time.

Using the simplified model (with 1120 facets) as collision model and the de-

tailed model (with 60030 facets) as visualization model we repeated the simulation.

The maximum collision detection time obtained with the simplified model as the

collision model was found to be 0.003 s. The contact points obtained in both the

cases (with unsimplified and simplified collision models) were exactly same. The

variation of collision detection time with respect to distance between the boats is

shown in Figure 3.11. The speedup in the worst case collision detection time by

using simplified models was thus by a factor of 80.0.

We also tested our implementation on several different pairs of parts that have

features close to the inside of the wall. The parts are shown in Figure 3.12.

Representative results of model simplification are shown in Table 3.1. The
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Figure 3.11: Variation of collision detection time with the proximity of USSVs.
When the USSVs are far apart (D¿6mm) collision computation time is very small
because of the efficient hierarchical data-structure used by the existing collision de-
tection approaches but in close proximity (D < 6mm) model simplification technique
developed in this paper in conjunction with hierarchical data-structure reduces colli-
sion computation time by a factor of 80.0.

Table 3.1: Representative simplification results

Model
A

Model
B

Unsimplified facet
count

Simplified facet
count

Facets simplified
by factor of

Worst case collision de-
tection time (s)

Model
A

Model
B

Model
A

Model
B

Model
A

Model
B

Unsimp.
pair

Simp.
pair

Speedup

Part 1 Part 2 34692 8448 667 228 52.00 37.10 0.080 0.001 80.00
Part 1 Part 3 34692 13156 667 2687 52.00 4.90 0.209 0.001 209.00
Part 3 Part 2 13156 8448 504 228 26.10 37.10 0.012 0.001 12.00
Part 5 Part 4 30768 12836 1356 752 22.70 17.10 0.005 0.004 1.20
Part 5 Part 3 30768 13156 1356 2687 22.70 4.90 0.048 0.005 9.60

figure shows the reduction in the facet count of the models without changing their

potential collision contact points. For the reported test models we found that the

reduction in the number of facet count ranges from factor of 4.9 to 52.0 depending
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Figure 3.12: Example part models.

on the part complexity and the collision context. We repeated the test described

in Figure 3.1 for each of the part pairs in Table 3.1. The reduction in worst case

collision detection time by using the simplified models is shown in Table 3.1. The

collision detection time reduced by factors in the range of 1.25 to 209 by utilizing

simplified models over the unsimplified models. We ran our model simplification

implementation on a computer with Quad-core processor and 8 Gigabytes of RAM

and it took 456.2 s to simplify the five pairs of example models simultaneously. So,

on an average, for the parts of the complexity level in the figures, one model took

about 45.6s for the simplification.
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3.7 Summary

We introduced the concept of context dependent contact preserving model

simplification by using part accessibility considerations for accelerating the collision

queries in the rigid body dynamics simulation. The accuracy of rigid body simulation

depends upon the accuracy of contact points generated by the underlying collision

detection engine. Our off-line approach gets rid of the facets not playing any role

in collision while retaining all the facets which might possibly affect the results of

collision query. Our main contributions are as follows:

(i.) We developed a conservative simplification approach, which guarantees that

the contact points are not altered after simplification under all possible colli-

sion configurations.

(ii.) We introduced the concept of accessibility based on the part section signature

and openings.

(iii.) We developed and implemented a new off-line algorithm for contact preserving

model simplification for rigid body dynamics simulation.

(iv.) We demonstrated reduction in the collision detection time obtained by using

simplified models using our approach in the USSV simulation environment

and several example part pairs.

Since the approach helps to reduce collision detection time without altering the

potential contact points, the possible applications besides the rigid body simulation

includes robot motion planning, assembly simulation, etc.
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One limitation of this work is the conservative approximation of approaching

parts with bounding cylinders that sets a lower bound on the part cross-section,

which can simplify the other parts relative to the approaching part but might leave

some facets which should be removed. This way, however, we guarantee that the part

is never over-simplified. If applied in a purely combinatorial manner, the proposed

approach will require n − 1 simplified models generated for every part in a scene

consisting of n parts. In order to tackle with this problem we have developed a

greedy approach to combine simplification opportunities from all relevant part pair

interactions and generate a limited number of simplified models to meet the memory

constraints and exploit the simplification opportunities.
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Chapter 4

A Computational Framework for Real-time Unmanned Sea Surface
Vehicle Motion Simulation

VE for unmanned sea surface vehicles (USSV) requires a six degree of free-

dom dynamics simulation in the time domain. In order to be interactive, the VE

requires real-time performance of the underlying dynamics simulator. In general,

the dynamics simulation of USSVs involves the following four main operations: (1)

computation of dynamic pressure head due to fluid flow around the hull under the

ocean wave, (2) computation of wet surface, (3) computing the surface integral of the

dynamic pressure head over the wet surface, and (4) solving the rigid body dynam-

ics equation. The first three operations depend upon the boat geometry complexity

and need to be performed at each time step, making the simulation run very slow.

In this chapter3, we address the problem of physics-preserving model simplification

for real-time potential flow based simulator for a USSV in the time domain, with an

arbitrary hull geometry. The chapter reports model simplification algorithms based

on clustering, temporal coherence and hardware acceleration using parallel comput-

ing on multiple cores to obtain real-time simulation performance for the developed

VE. The average computation time was reduced by a factor of about 28.50 intro-

ducing an average error of about 5.8% with respect to the baseline computations,

using the simplification techniques described in this chapter.

3 The contents of this chapter was published in ASME 2010 International Design Engineer-
ing Technical Conferences(IDETC) & Computers and Information in Engineering Conference
(CIE) in [TG10].
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4.1 Introduction

Unmanned vehicles have emerged as an important tool in search, rescue, re-

covery, and surveillance operations. VE play a significant role in the effective design

and operation of unmanned vehicles. First, VEs are useful for training operators

that tele-operate unmanned vehicles. Virtual environment-based training signifi-

cantly reduces the training cost [GAB+08] and enables training of a large number

of operators without requiring significant time on the physical platforms. Second,

programming by demonstration has emerged as an important paradigm for acquir-

ing autonomous behavior [ACVB09]. Virtual environments are expected to play a

very important role in the deployment of programming by demonstration paradigm.

Third, VEs can be a very valuable tool for hardware and software design of un-

manned vehicles. For example, new designs can be first prototyped in the virtual

environment.

In the chapter we are focusing on the development of a VE for simulating

USSVs. This environment will be used for simulating the motion of USSVs under

different sea states to facilitate operator training, design, planning, and control

of the USSVs [SSTG09]. Figure 4.1 shows a snap-shot of the VE developed by

[SSTG09, GAT+10]. The VE simulates a typical maritime mission where the USSV’s

goal is to protect the oil tanker from the approaching intruder with malicious intent.

For example, in the Figure 4.1, the operator can drive the USSV and demonstrate

the strategies to block the intruder from reaching the protected object. The efficacy

of the planning and control strategy obtained from any of the algorithms significantly
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depends upon the accuracy and computational speed with which the motion of the

boats moving in the ocean can be predicted by the simulation. The problem of

motion simulation of boats under the influence of the ocean waves is known as sea-

keeping. Sea-keeping is inherently a computationally intensive operation, as it is an

instance of the rigid-fluid two-way coupling problem.

One way to solve the sea-keeping problem is to solve it as a two-way coupling

problem. The two-way coupling can be understood as the simultaneous effect of

fluid flow on the motion of a floating USSV and the effect of the moving USSV on

the surrounding fluid flow. Computational fluid dynamics (CFD) based approaches

are very accurate in solving such problems. Unfortunately, the speed of computation

using CFD approaches is extremely slow and there is hardly any hope to perform

CFD simulation in real-time using the current computing technology.

Another approach used for sea-keeping simulation is the strip-theory based

computations, wherein the boat geometry is idealized as the nearest regular ge-

ometry such as ellipsoid, cylinder, etc. The approximated formulas for computing

the hydrostatic and hydrodynamic forces using the idealized geometries are then

used. The strip theory based approaches are very fast but introduce significant er-

rors. Moreover the technique is insensitive to variations in hull geometries. In other

words, various hull geometries can be idealized into the same regular geometry lead-

ing to same force acting on them.

Potential flow theory based approaches imposes assumptions of irrotational,

inviscid, and incompressible flow. Due to the assumptions, the Laplacian of the

velocity potential becomes zero. The kinematic boundary condition involving the
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movement of fluid on the free surface and the dynamic boundary condition involv-

ing the pressure acting on the free surface is used to solve the partial differential

equation. The solution yields velocity potential, which in conjunction with the

Bernoullis law is used to compute the pressure due to the fluid flow. The pressure

is then used to compute the force acting on the floating boat. The effects of boat

on fluid flow are modeled as the added mass. The turbulence and viscosity related

effects are modeled by the damping matrix. This leads to a much faster although

a less accurate approach compared to CFD based approaches. The potential flow

based approach is much more accurate compared to the classical strip theory based

approaches. In most of the applications where a moderate accuracy is desired at a

higher computational speed, the potential flow theory based approaches prove to be

the acceptable choice for the sea-keeping simulation.

Although, potential flow based approach is faster than the CFD based ap-

proach, it is far from real-time. The reason for slow computation of USSV motion

simulation can be explained as follows. The motion simulation using potential flow

theory involves the following four main operations: (1) computation of the dynamic

pressure head due to the fluid flow around the hull under the influence of the ocean

wave, (2) computation of the instantaneous wet surface, (3) computation of the sur-

face integral of the dynamic pressure head over the wet surface, and (4) solving the

rigid body dynamics equation. First three operations depend upon the boat geom-

etry complexity and need to be performed at each time step, making the simulation

run very slow. To obtain the real-time performance, in this chapter we describe sim-

plification algorithms based on clustering, parallelization, and temporal coherence.
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Figure 4.1: USSV Virtual Environment developed by [SSTG09, GAT+10].

These algorithms have been incorporated into the USSV virtual simulation system

as shown in Figure 4.1.

The chapter is organized as follows. In Section 5.3 we present the governing

equations of the fluid flow and rigid body dynamics model. Section 5.2 presents

the problem of model simplification in the context of the seakeeping simulation.

Sections 4.4 to 4.7 present our algorithms to reduce the computation time for the

seakeeping simulation.
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4.2 USSV Dynamics Simulation for Single Wave Component

In this section we present the governing equations of the model we imple-

mented followed by a brief description of the developed simulator and time profile

for computationally intensive steps in the simulation. The governing equations of

fluid flow and boat motion discussed in this section are adapted from Newman

[New77], Fossen [Fos94], and Krishnamurthy et al. [KKF05].

4.2.1 Governing Equation

For determining the dynamic pressure due to wave boat interaction we used

the well known potential flow theory as given in Newman’s textbook [New77]. We

assume the flow to be irrotational (∇× ~V = ~0), where, ~V is the fluid velocity. This

means that there exists a velocity potential φ, such that,

∇φ = ~V (4.1)

Now, let us assume that the fluid is incompressible (∇.~V ), which gives us Laplace’s

equation.

∇2φ = 0 (4.2)

The boundary conditions are:

(i.) Kinematic boundary condition: A fluid particle on the free surface of fluid

will remain on the free surface. Let the free surface of the fluid be defined by

the function z = ζ(x, y, t). Let us define a function F (x, y, z, t) = z − ζ = 0,

which is identically zero. From the condition stated in the kinematic boundary

condition, the substantial derivative D
Dt

of F will vanish as the particles of fluid
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on free surface will remain on the free surface always. This can be expressed

as follows.

D

Dt
(z − ζ) = 0 (4.3)

(ii.) Dynamic boundary condition: Pressure experienced by a particle on the free

surface is same as the atmospheric pressure (p0). We know, from the conser-

vation of momentum, that a fluid particle moving with velocity V experiences

a pressure pdyn, given as follows:

ρ
DV

Dt
+∇pdyn = 0,

⇒ ρ

[

∂V

∂t
+ V.∇V

]

+∇pdyn = 0,

⇒ +∇pdyn = −ρ
[

∂V

∂t
+ V.∇V

]

,

⇒ pdyn = −ρ
[

∂φ

∂t
+

1

2
∇φ.∇φ

]

where, ρ is the density of water in kg/m3.

phstat = p0−ρgz, the negative sign appears because the Z - axis points upwards.

The total pressure is thus given as sum of dynamic and hydrostatic pressure

and the dynamic boundary condition is expressed as follows:

[

−ρ(∂φ
∂t

+ 0.5∇φ.∇φ) + p0 − ρgz

]

z=ζ

= p0 (4.4)

Equation 4.4 can be rewritten by canceling the term p0 as follows:

ζ = −1

g

[

∂φ

∂z
+

1

2
∇φ.∇φ

]

z=ζ

(4.5)
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Substituting ζ in Equation 4.5 in Equation 4.3 gives us the combined equation

representing both kinematic and boundary conditions as follows [New77]:

{

D

Dt

(

z +
1

g

[

∂φ

t
+

1

2
∇φ.∇φ

])}

z=ζ

= 0 (4.6)

The boundary condition given in Equation 4.6 is nonlinear, as the free surface

height function is not known in advance. In order to simplify, Newman proposed to

linearize the velocity potential about the nominal height z = 0 as follows [New77]:

φ(x, y, ζ, t) = φ(x, y, 0, t) + ζ

(

∂φ

∂z

)

z=0

+ ... (4.7)

Now, using the linearized values of φ of various order, sequence of boundary

conditions, representing Equation 4.6 can be written, which are valid on known

plane z = 0. We reproduce the boundary conditions for first and second order

approximation of φ (after ignoring higher order terms) from Newman’s book in

Equation 4.8 and Equation 4.9 [New77].

∂2φ

∂t2
+ g

∂φ

∂z
= 0 (4.8)

The above boundary conditions are reduced to Equation 4.9 as given by New-

man [New77].

g
∂φ

∂z
+
∂2φ

∂t2
+ 2∇φ.∇(

∂φ

∂t
)− 1

g

∂φ

∂t

∂

∂z

(

∂2φ

∂t2
+ g

∂φ

∂z

)

= 0 (4.9)

The solution of Equation 4.2 satisfying the boundary condition (Equation 4.9)

yields the expression for the velocity field φ and an ocean wave free surface ζ for
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the ocean bed with infinite depth as shown below [New77].

φ =
gA

ω
exp(kz) sin(kx cos θw + ky sin θw − ωt) (4.10)

where,

g: acceleration due to gravity in m/s2,

θw: wave direction in radian,

ω: wave frequency in radian/s, and

A: wave amplitude in m.

ζ(x, y, t) = A cos(kx cos θw + ky sin θw − ωt)+

0.5A2k cos(2kx cos θw + 2ky sin θw − 2ωt)

(4.11)

The wave number k is related to the wave frequency ω for the infinite depth

by the dispersion relationship given in Equation 4.12.

k =
ω2

g
(4.12)

The velocity potential φ and the wave elevation ζ thus obtained is the starting

point for determining the dynamic pressure head due to the wave boat interaction.

Using Bernoulli’s equation, the dynamic pressure Φ can be expressed in terms of

the velocity potential φ as follows:

Φ(x, y, z, t) = −ρ
[

∂φ

∂t
+

1

2
∇φ.∇φ

]

(4.13)
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Figure 4.2: Description of coordinate systems used in the presented model: Inertial
and body coordinate systems are shown.

The dynamic pressure head Φ can be integrated over the instantaneous wet

surface of the boat SB to obtain the force due to the wave boat interaction.

FW =









ρ
∮

SB

[

∂φ

∂t
+ 0.5∇φ.∇φ

]

d~S

ρ
∮

SB

[

∂φ

∂t
+ 0.5∇φ.∇φ

]

(

~r × d~S
)









(4.14)

where,

SB: instantaneous wet surface of the USSV.

We implemented the 6-DOF dynamics model for USSVs given by Fossen

[Fos94]. In this model, the USSV is assumed to be a rigid body. The origin of

the inertial frame of reference is set at the nominal water level with Z axis vertical

and pointing upwards. The body coordinate system is attached to the boat’s center

of gravity. The coordinate systems used are shown in Figure 4.2.
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The governing dynamics equation is given in Equation 4.15.

MH v̇ + CH(v)v +DH(v)v + g(p) = FE + FP

ṗ = Jp(v)

(4.15)

where,

p = [x, y, z, θx, θy, θz]
T is pose vector expressed in the inertial frame, (x, y, z)

is the Cartesian coordinate in m and θ’s are Euler angles about subscript axes in

radians,

v = [vx, vy, vz, αx, αy, αz]
T is velocity vector expressed in the body frame

relative to the inertial frame, (vt = [vx, vy, vz]
T ) is linear velocity in m/s and

vr = [αx, αy, αz]
T ’s is angular velocity in radian/s,

R =

















cycz sxsycz − cxsz cxsycz + sxsz

cysz sxsysz + cxcz cxsysz − sxcz

−sy sxcy cxcy

















is rotation matrix rotat-

ing a vector expressed in the body frame to the inertial frame, cx means cos θx,

J =









R 03×3

03×3 Jr









is Jacobian matrix,

Jr =

















1 sxty cxty

0 cx −sx

0 sx
cy

cx
cy

















,

~x× ≡ S(~x) =

















0 −x3 x2

x3 0 −x1

−x2 x1 0

















is matrix dual (for cross product) of vector

~x = [x1, x2, x3]
T ,
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pG,B is vector representing the position of center of gravity in the body frame

of reference,

m is mass of the USSV in kg,

Ib is 3× 3 matrix representing the inertia tensor of the USSV in kgm2,

MRB =









mI3×3 −mS(pG,B)

mS(pG,B) Ib









is matrix representing inertia tensor of

the USSV,

MA is (6× 6) diagonal matrix representing the added mass of the USSV,

MA,11 = 0.1m

MA,22 = 4.75ρa2

MA,33 = 4.75ρa2

MA,44 = 4.75ρa2

MA,55 = 0.396ρa2L2
x + 0.0833

0.1m

LX

L3
z

MA,66 = 0.0833
0.1m

LX

L3
y + 0.396ρa2L3

x

,

where Lx, Ly, and Lz are length, width and height of the bounding box of the

hull respectively,

MH =MRB +MS is (6 times6) matrix representing the the total inertia,

CRB =









mS(vr)3×3 −mS(vr)S(pG,B)

mS(vr)S(pG,B) −S(Ibvr)









is Coriolis and centripetal ma-

trix,

CA =









03×3 −S(MA,11vt +MA,12vr)

−S(MA,11vt +MA,12vr) −S(MA,21vt +MA,22vr)









is matrix rep-

resenting the effect of added mass,
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MA,ij represents (i, j) sub-matrix of MA of size 3× 3,

CH = CRB + CA is 6 × 6 matrix representing the total effect of Coriolis and

added mass term,

DH is 6× 6 damping matrix,

g(p) is 6×1 vector representing the restoring force expressed in the body frame

in N ,

FE is 6× 1 vector representing the environment force vector expressed in the

body frame in N ,

FW is 6× 1 vector representing the ocean wave and the boat interaction force

expressed in the body frame in N , and

FP is 6× 1 actuation force vector expressed in the body frame in N .

In the right hand side of Equation 4.15, term FE means environmental force.

The environmental force consists of effects due to ocean current, wind, and ocean

wave. We ignore the effects of ocean current and wind and only consider the force

due to ocean wave FW in the implementation. However, given a suitable model

of the force due to ocean current and wind, it can be easily incorporated into the

simulation framework. We thus replace FE by FW in Equation 4.15. The force

due to ocean wave is computed by using Equation 4.14, which is obtained by the

potential flow theory in the implementation.

4.2.2 Implementation of Simulator

We implemented the model given in Section 4.2.1 to simulate the motion of

a USSV under given initial state and wave conditions. We assume that the USSV
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geometry is provided in polygonal form. We chose .STL as the input file format

for the USSV model. To compute the wave force we discretized Equation 4.14 as

follows:

FW =









ρ
∑n

j=1Φjd ~Sj

ρ
∑n

j=1Φj

(

~rj × d ~Sj

)









(4.16)

where,

Φj =

[

∂φ

∂t
+ 0.5∇φ.∇φ

]

pj

(4.17)

and n is the number of instantaneous wet facets. So, the steps of simulation are

enumerated below.

(i.) Determine the instantaneous wet surface (SB) of the USSV by finding out the

facets lying below and on the wave surface given by Equation 4.11.

(ii.) Use Equation 4.10, 4.13, 4.16, and SB determined in the previous step to

compute the wave force FW .

(iii.) Determine the displaced volume of water by the surface SB and compute the

buoyancy force g(p).

(iv.) Determine the inertia matrix (MH), Coriolis matrix (C(v)) and damping ma-

trix (D(v)). We estimated the added mass matrix MA using strip theory as

explained by Fossen [Fos94]. The added mass can, in practice, be computed

by performing system identification for a given USSV model under various

sea-states. For the simulation purpose, we utilized strip theory to estimate

the added mass matrix MA. It should be noted that strip theory is only used

here to estimate the added mass, and not the forces due to ocean wave.
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Table 4.1: Typical time profile for the simulation process for 1500 time steps of
size 0.07 s.

Computation Item Computation Time (s) Percentage

Force due to ocean Wave 740.70 62.5
List of wet facets 444.65 37.49
Differential Equation solution 0.67 0.06

(v.) Solve Equation 4.15 numerically using Runge-Kutta fourth order (RK4) inte-

gration technique by substituting FE = FW .

4.2.3 Time Profile of Simulator

The simulator explained in Section 4.2.2 has three main operations being re-

peated in each time step as listed below:

(i.) Computation of the list of wet facets.

(ii.) Computation of the surface integral for determining the wave force and the

buoyancy force.

(iii.) Solving the differential equation given in Equation 4.15.

We ran the simulation for five different wave directions (θw = 0, 0.63, 1.25, 1.88, 2.51

radians). The boat model for the simulation had 960 triangular facets. We computed

the average time taken for the boat model for 1500 simulation time steps (with each

time step of length 0.07 sec) for each operation over all five wave directions, and

the result is shown in Table 4.1. We performed the simulation on a computer with

Intel(R) Core(TM)2 Quad 2.83 GHz CPU and 8GB RAM. All the computations

reported in this chapter are performed on the same computer and for the same boat

model, so that the comparisons between computation times are fair.
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It is evident from the Table 4.1 that most of the time (about 99.94%) is spent

in computing the force due to ocean waves and wet surface determination. Also,

Table 4.1 suggests that the time taken for computing one time step of length 0.07 s

is about 1186.02
1500

≈ 0.8 s, which is far from the real-time performance.

4.3 Problem Statement and Solution Approach

As discussed in the Section 4.2.3, the computation time for the USSV simula-

tion is too high for attaining real-time refresh rate, which motivates us to find ways

to simplify the computations to reduce the computation time. In this section we

shall present the problem statement formally and give an overview of approach to

solve the problem.

4.3.1 Problem Statement

Given a polygonal representation of the USSV hull geometry and its dynamics

properties like mass, moment of inertia tensor, damping matrix, etc. and fluid and

ocean wave characteristics such as density, wave direction, amplitude, frequency,

etc., perform model simplification to do dynamics simulation of the USSV in real-

time.

4.3.2 Approach

Based on the observations in the Section 4.2.3, the computations can be made

faster by:
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(i.) Determining the list of facets in the USSV model, which will never come in

contact with the water under normal operating conditions (without USSV

sinking completely or getting turned over) and removing them to get the wet-

table region of the boat model.

(ii.) Performing clustering of the USSV model facets to club all the facets with

similar dynamic pressure value, in order to reduce the time taken to compute

the wet facets and force due to ocean wave and hull interaction.

(iii.) Exploiting the parallel nature of the computation and reducing the computa-

tion time by utilizing multi-core computers.

(iv.) Estimating the force due to ocean wave acting on the USSV in a time step

using force in the previous time step instead of explicitly computing forces in

each time step. We call this approach as temporal coherence, as the forces do

not change significantly in short period of time and depend on the force in the

previous time step.

In the following sections we discuss the above simplification strategies in detail.

4.4 Preprocessing of Boat Model to Determine Wettable Region

A USSV model can be very complex geometrically and can have many unnec-

essary details from the point of view of computing hydrostatic and hydrodynamic

forces. If the features that are covered by the hull are retained during the force

computations then the following problems might arise:
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(i.) The facets of the features covered by the hull would be determined as the wet

facets and would introduce error into the force computation. This is because

those facets never come in contact with the water as they are occluded by the

facets of the boat hull.

(ii.) Testing of such facets during the simulation for whether they touch water,

would be an additional computational overhead during the simulation runtime

leading to performance deterioration.

For computation of hydrodynamics and hydrostatic forces, we are only interested

in facets that might come in contact with the water (without the USSV sinking

completely or getting turned over). This is a simple problem to solve but a crucial

step for preprocessing the USSV model. We assume that the USSV model is oriented

in such a way that the axis of yaw is aligned to inertial Z axis. Also, we assume

that the undercut features on the boat hull are negligible. The steps we follow to

automate this process are enumerated below:

(i.) For all facets, if the normal makes an angle larger than 120o, with the negative

Z direction, remove them.

(ii.) For all the remaining facets, shoot ray from the center of gravity of the facets

in the negative Z direction. If the rays intersect at least one facet other than

itself, remove the facet.

By following the above two steps the wettable region of the boat model as shown in

Figure 4.3 is obtained.
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(a) 3D model for USSV. (b) Simplified USSV model.

Figure 4.3: USSV model simplification by removing facets that never come in

contact with water.

4.5 Simplification Using Clustering

The preprocessed wettable model obtained by the technique described in the

Section 4.4 is used for determining the hydrodynamic and hydrostatic forces by

computing the surface integral of the dynamic pressure head acting over the USSV’s

instantaneous wet surface. The computational effort spent on the surface integral

computation using Equation 4.16 can be enumerated as follows:

(i.) Computing the value of Φ at each facet center in the list of wet facets SB in

each time step using Equation 4.18.

Φ(x, y, z) =
gAk

ω
exp(kz)(cos θw cos fẋ+

sin θw cos f ẏ + sin f ż − ω

k
cos f) + 0.5(

g2k2A2

ω2
exp(2kz))

(4.18)

where,

f = kx cos θw + ky sin θw − ωt (4.19)

Equation 4.18 is obtained by using Equation 4.10 and 4.17, in terms of wave

amplitude, wave number, wave frequency and wave direction.
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(ii.) Evaluating the sum in Equation 4.16.

A look at Equation 4.18 shows that we need to perform at least four trigonometric

evaluations and one exponential function evaluation. Now, even if there are on an

average 500 wet facets in each time step of the differential equation solver, we need

to perform 2000 evaluations of trigonometric and exponential functions. Trigono-

metric and exponential function calls are computationally expensive and must be

minimized. In order to minimize such function calls we can make use of the fact

that the dynamic pressure values at the facets close to each other are similar. Such

contiguous facets can be clustered to reduce the number of trigonometric and expo-

nential function calls by introducing some small error. It should be noted that the

clustering is performed before the simulation (i.e., off-line) and thus the computa-

tional complexity of clustering does not affect the simulation speed.

In this section, we introduce the concept of clustering the hull facets to reduce

the time taken to compute the force due to the ocean waves and to compute the

wet facets. We also theoretically analyze the effect of clustering the facets on the

computation time and error introduced and provides numerical validation of the

theoretical results.

4.5.1 Clustering Algorithm

Let us represent the USSV’s center of gravity (or the origin of the body frame

of reference attached to the USSV) by ~xc, and position of jth wet triangular facet

by ~xj in the inertial frame of reference. Also, let us represent, the position of the
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jth wet triangular facet by ~rj with respect to ~xc. Now, from Equation 4.17 and

using Taylor series expansion, Φ at a given wet triangular facet can be expressed as

follows:

Φ(~xj) = Φ(~xc + ~rj) ≈ Φ(~xc) + ~rj
T∇Φ(~xc) + 0.5~rj

T∇2Φ(~xc)~rj (4.20)

We can ignore higher order terms because the rth term contains ∇r−1Φ, which

is proportional to kr, and for ocean waves usually 0.0 < k < 1.0. Thus, the terms

r > 3 are negligible. Equation 4.20 suggests that the value of Φ depends only on

~rj for a given position ~xc of the USSV. This implies that the value of Φ for facets

which are sufficiently close to each other geometrically can be assumed to be the

same. This observation establishes the basis of the decomposition of the facet set

to form clusters.

Definition 13 A cluster κ of size γ ∈ R is defined as the set of triangular

facets tj such that the diagonal of the bounding box of κ is smaller than or equal to

γ.

Definition 14 Cluster center of a cluster κ is defined as a point Pc ∈ R, such

that,

Pc =

∑M

i=1 aiPi
∑M

i=1 ai
(4.21)

where, M is the cardinality of κ and Pi is the centroid of the ith facet belonging to

κ.

The problem of clustering can be viewed as a set partitioning problem. The

set of facets representing the hull of the USSV is partitioned into subsets (clusters).

The partitioning is done in such a way that the average distance of all the facets
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belonging to a cluster from the cluster center is minimized. We utilized K-means

algorithm to accomplish the clustering. The steps of clustering algorithm we used

are listed as follows:

Algorithm 4.1 - K -means Clustering

Input

(a.) List of n triangular facets Θ,

(b.) cluster count C, and

(c.) subdivision threshold ε ∈ R.

Output List of C clusters Υ such that C < n

Steps

(i.) Determine the bounding box B of Θ.

(ii.) Recursively subdivide each triangle inside Θ using Loop subdivision until tri-

angle area is less than εDiagonal(B).

(iii.) Determine q = d
√

width(B)
length(B)

Ce and p = dC
q
e. It can be seen that pq ≥ C.

Divide the XY plane of B into p × q rectangular grids. If pq > C, merge

pq −C rectangles. Use the exactly C regions on the XY plane, thus obtained

to partition the set of facets obtained in step (ii) into C subsets. For each

region, project vertices of each facet on the XY plane. If at least two of the

projected vertices lie inside the region add facet into the subset and mark the

facet as visited. Repeat the process for each region and unvisited facets. This
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step returns C clusters of facets. This heuristic step is performed to generate

an initial clustering.

(iv.) Determine the cluster center of each of the C clusters obtained in step (iii),

using Equation 4.21.

(v.) For each cluster center, determine the facets nearest to the cluster center,

than any other center. This will yield a new partition and hence new set of C

clusters.

(vi.) Determine cluster centers for each of the C new clusters and determine the

mean squared distance from the respective old centers.

(vii.) If the mean squared distance is less than a small value (we chose 10−5), return

the C clusters, else go to step (v).

We used the clustering approach (with C = 45, ε = 10−3) for simulation

of the USSV model shown in Figure 4.3(b) with 960 facets, for 1500 time steps

(representing time step of size 0.07 s) and for five different wave directions. The

results are shown in Table 4.2. We used Equation 4.22 to compute the force error

introduced due to the clustering simplification.

eF =
‖〈FW − g(p)〉baseline‖ − ‖〈FW − g(p)〉simplified‖

‖〈FW − g(p)〉baseline‖
(4.22)

where, subscript baseline signifies the computation performed without using the

clustering approximation approach, whereas subscript simplified signifies the com-

putation performed using clustering approximation approach. Table 4.2 shows that
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Table 4.2: Results of simplification using clustering approach for (1500 time steps,
C = 45, and ε = 10−3).

θw (radi-
ans)

Baseline computation time
(s)

Clustering computation
time (s)

Average force error introduced due
to clustering based computation over
baseline (%)

0.000 1189.52 219.10 4.30
0.628 1178.90 218.70 3.30
1.256 1185.43 217.60 1.59
1.884 1220.49 216.40 1.71
2.512 1182.54 217.40 3.45

Average 1191.40 216.80 2.88

the average computation time reduced by a factor of 1191.40
216.80

= 5.50 with an average

force error of 2.88% using the clustering approach.

4.5.2 Effect of Cluster Count on Error and Computation Time

Intuitively speaking, increasing the number of clusters should increase the

time taken to compute and should reduce the error. In this section, we derive the

dependence of computation time and error introduced on the chosen cluster count

and present numerical validation of the derived relationship. Let us assume that the

boat hull has n facets and we partition the facets into C clusters using the K -means

algorithm discussed before. Let the jth cluster contain Nj facets. Let us denote the

total area vector of the facets contained by the jth cluster as ~sj . We can express ~sj

as follows:

~sj =

Nj
∑

p=1

~dSp,j (4.23)

where, ~dSp,j is the area of the pth facet of the jth cluster. Based on Table 4.1 and

the discussion in Section 4.4, we know that the major amount of time taken in

computations can be divided into three main operations:

(i.) computation of the dynamic pressure,
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(ii.) computation of the list of wet facets, and

(iii.) computation of the instantaneous volume of the wet region.

Let, the time taken for computing dynamic pressure at a given point be Tp, the

time taken for doing a test on one cluster for wet facets be Tw, and the average time

taken for the computation of total volume of the wet region be Tv. The time taken

for computing the volume of the wet region (Tv) depends only on the number of wet

facets which for a boat hull does not vary much and thus, we can assume it to be

independent of the cluster count.

Firstly, let us estimate the variation of the average time for computation with

the cluster count (C). In the case of C clusters, we compute the dynamic pressure

C number of times in one time step, and thus, the total time taken for computing

the dynamic pressure is CTp. Similarly, for determining wet facets we perform C

tests which takes CTw time. Thus, the total time (T ) taken for computing the force

for one simulation time step is given in Equation 4.24.

T = Tv + C(Tw + Tp) (4.24)

The simulation time, thus, varies as O(C) based on Equation 4.24.

In order to compute the force using clustering, we only compute the dynamic

pressures at the cluster centers and use them to compute the total force as follows:

~Fcluster =

C
∑

j=1

Φ(~xj)~sj (4.25)

where, ~xj is the cluster center of jth cluster.
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The exact total force (computed by considering all facets instead of just the

clusters) can be given as follows:

~Fexact =
C
∑

j=1

Nj
∑

k=1

Φ(~xj + ~rk,j) ~dSk,j =

C
∑

j=1



Φ(~xj)(

Nj
∑

k=1

~dSk,j) +

Nj
∑

k=1

(~rk,j.∇Φ(~xj)) ~dSk,j)



+ ~HOT =

C
∑

j=1

Φ(~xj)~sj +
C
∑

j=1

Nj
∑

k=1

(~rk,j.∇Φ(~xj)) ~dSk,j + ~HOT =

~Fcluster +

C
∑

j=1





Nj
∑

k=1

(~rk,j.∇Φ(~xj)) ~dSk,j



+ ~HOT

(4.26)

where ~rk,j is the position vector of centroid of the kth facet of the jth cluster, Nj is

the number of facets in the jth cluster, and HOT represent the higher order terms.

Now, we can compute error in the force estimation ~eforce due to the use of the

clustering approach as follows:

~eforce = ~Fexact − ~Fcluster =

C
∑

j=1





Nj
∑

k=1

(~rk,j.∇Φ(~xj)) ~dSk,j



+ ~HOT ≈

C
∑

j=1





Nj
∑

k=1

(~rk,j.∇Φ(~xj)) ~dSk,j



 ignoring higher order term ~HOT

(4.27)

The magnitude of error in the force estimation can be expressed and approxi-

mated by the following equation.

‖~eforce‖ = ‖
C
∑

j=1





Nj
∑

k=1

(~rk,j.∇Φ(~xj)) ~dSk,j



 ‖ ≤ RαS (4.28)
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where, α is the maximum value attained by the function ‖∇Φ‖ defined in the in-

stantaneous region bounded by the hull geometry. We know that α must be a scalar

and finite value as the hull region is a finite region. S is the absolute value of the

surface area of the wet surface, given as follows:

S = ‖
C
∑

j=1

Nj
∑

k=1

~dSk,j‖ (4.29)

R is an upper bound on the bounding radius of cluster. Since, the total surface area

of the hull is S and the hull is divided into C almost equal area regions, the total

surface area Acluster of facets in a cluster can be approximated as follows:

Acluster ≈
S

C
(4.30)

Since the boat geometry is smooth (without many undercuts), the surface area of

the bounding sphere of a cluster is always more than the surface area of the facets

contained in the cluster We can thus, estimate R as follows:

R <

√

Acluster

4π
<

√

S

4πC
(4.31)

Using, Inequality 4.31 and Equality 4.28, we get:

‖~eforce‖ <
αS1.5

2
√
πC

(4.32)

Thus the error in the force computation introduced due to the cluster approx-

imation varies as O(C−0.5).

We conducted numerical tests to validate the derived results. In these tests, the

USSV is hit by waves from five different directions for 1500 time steps (with each time

step of length 0.07s) and the computations are performed using cluster sizes ranging
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Figure 4.4: Variation of average force error and computation time with cluster
count C.

from 15 to 75 in the increments of 10. The variation of the average error and average

time taken for 1500 time steps (averaged over 5 different wave directions) is plotted

against the cluster sizes and presented in Figure 4.4. It can be observed in Figure 4.4
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that the average computation time increases almost linearly while the error reduces

non-linearly with the increasing cluster count agreeing well with Equations 4.24

and 4.32. It can be noticed in Figure 4.4 that the error percentage gets stalled at

the value of about 2.85% and does not reduce significantly after C = 65. This is

because the triangles defining the boat model are subdivided into smaller triangles

before clustering. The clusters are then formed on the basis of geometric nearness

of constituent triangles and not the similarity from the original face set. This causes

a small error from the baseline computation and causes the stalling phenomenon in

Figure 4.4(a). To summarize, cluster count C is a parameter that can be used as

an approximation handle to control the time taken for computation and the error

introduced due to the clustering approximation.

4.6 Parallelization

The problem of computing the wet facets and performing vector operations is

amenable to parallelization as results of computation taking place at each cluster

are independent of each other. After performing the clustering, computation time

can further be reduced by using parallelization by changing the sequential code to

parallel, without changing the error introduced. In Figure 4.5, block A is used for

computing the wet facets and B for computing the forces. Computations performed

on each facet are not dependent on the results from other facets. Thus, we can spawn

a multiple number of threads based on available computing resources to balance the

computation over each processor.

We performed the tests on Intel’s Quad processors and employed four threads
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Figure 4.5: Simulation computation process flow.

with dynamic scheduling. It should be noted that the computer we used for testing

the parallel version of the code is the same as explained in the earlier section. We

chose four threads with dynamic scheduling because the performance was best with

four threads working in a numerical experiment we performed. We ran a simulation

of 1500 time steps with consecutively 2 to 16 threads and the result is shown in

Figure 4.6, which shows that the dynamic scheduling performs better than static
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Figure 4.6: Variation of computation time with number of threads.

scheduling. In dynamic scheduling jobs are dynamically allocated to free threads

whereas in static scheduling the jobs are preallocated to the threads and even if a

thread finishes first, it waits for others to finish. The performance was best when

four threads were chosen. We used OpenMP to perform parallelization [CJP08]. In

the OpenMP based approach, preprocessor directives are placed before each looping

statement and the OpenMP optimizes the assignment and scheduling of the tasks

to the threads internally.

Table 4.3 shows the results for the same example from the Section 4.5. The

average computation time was reduced by a factor of 1191.40
67.00

= 17.78 with an average

force error of 2.88% using the parallelization and clustering based approach. It

can be noted that the computation time reduced by a factor of 216.80
67.00

= 3.24 with
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Table 4.3: Improvement due to parallelization on top of clustering approach for
(1500 time steps, C = 45, and ε = 10−3) with four threads on Quad processor.

θw (radi-
ans)

Baseline com-
putation time
(s)

Clustering with paral-
lelization computation
time (s)

Average force error introduced due
to clustering and parallelization based
computation over baseline (%)

0.000 1189.52 68.90 4.30
0.628 1178.90 72.30 3.30
1.256 1185.43 68.50 1.59
1.884 1220.49 61.50 1.71
2.512 1182.54 63.80 3.45

Average 1191.40 67.00 2.88

respect to that of clustering and there is no change in the average force error after

parallelization. The average time taken for one time step, by using parallelization

along with clustering approach is about 67.00
1500

= 0.045 s, which can be used to

simulate the USSV motion in real-time for time step of length 0.07 s.

4.7 Temporal Coherence

In the clustering based approach, we utilized the fact that the dynamic pres-

sure values do not change significantly in the close spatial vicinity to simplify the

computations. Another fact that can be used to further simplify the computations

is that the force due to the ocean waves on the USSV does not change significantly

in a short period of time. This simple but useful fact enables us to skip the com-

putation of the list of the wet facets and ocean wave force in some time steps and

reuse the list of the wet facets and force due to the ocean wave obtained in the

previous time step. This leads to a significant reduction of the computation time

with the introduction of some error. The basis of skipping the computation of the

list of the wet facets and ocean wave force is the similarity of the instantaneous

ocean wave height-field acting on the USSV in the consecutive time step. In other

words, if the ocean wave in the proximity of the USSV does not change significantly
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in a given period of time, we can safely assume that the force acting on the USSV

due to the ocean wave also does not change significantly and the force computed in

the previous time step can be reused.

4.7.1 Temporal Coherence Algorithm

In this section, we present the algorithm implementing the idea of tempo-

ral coherence explained before. In order to explain the algorithm, we present the

following two definitions first.

Definition 15 Let, B be the bounding box of the USSV and a rectangle RB

be the projection of B on the XY plane. Let Λ denote uniform grid of size m × n

on RB.

We define the instantaneous ocean wave height-field for a moving USSV as a

vector ~G ∈ R
mn, such that the elements of ~G are the ordered elevations of the ocean

wave at the mn grid points on Λ.

Definition 16 For a pair of ocean wave height-fields ~G1 and ~G2, we define

the distance dhf between ~G1 and ~G2 as the following second order norm.

dhf = ‖ ~G1 − ~G2‖ (4.33)
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Algorithm 4.2 - Temporal Coherence

Input

(a.) USSV model,

(b.) initial conditions, and

(c.) tolerance τ .

Output Velocity and pose of the USSV at all time steps

Steps

(i.) In the first time step, i.e., when the time is zero, determine the list of wet facets

SB,P and the force due to the ocean wave FW,P on the USSV as described in

the Section 4.2.2. Also determine the instantaneous ocean wave height-field

~Gi. Solve Equation 4.15, by setting FW = FW,P and SB = SB,P and advance

the time step.

(ii.) Determine the instantaneous height-field ~G. Determine the distance dhf be-

tween ~Gi and ~G using Equation 5.9. If dhf ≥ τ then compute the instantaneous

list of wet facets and ocean wave force and store (by overwriting) in SB,P and

FW,P respectively. Set FW = FW,P and SB = SB,P and solve Equation 4.15

and advance the time step.

(iii.) Repeat step (ii) until the simulation is terminated.

We applied the above algorithm on top of the clustering and parallel version

of the code as described in the Sections 4.5 and 4.6. We chose m = 3, n = 5 and
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Table 4.4: Results of simplification using temporal coherence approach for (1500
time steps, C = 45, ε = 10−3, four threads on quad processor, and τ = 0.10).

θw (radi-
ans)

Baseline computation time
(s)

Temporal coherence (on
top of clustering and par-
allelization) computation
time (s)

Average force error introduced due to
clustering, parallelization, and tempo-
ral coherence based computation over
baseline (%)

0.000 1189.52 43.46 9.30
0.628 1178.90 42.90 8.20
1.256 1185.43 40.20 3.40
1.884 1220.49 39.80 3.40
2.512 1182.54 42.70 4.20

Average 1191.40 41.80 5.80

τ = 0.10 and performed a simulation of the USSV model shown in Figure 4.3(b)

under the action of 5 different wave directions as described in the Sections 4.5. The

average computation time for 1500 time steps (of length 0.07 s) for the test case is

about 41.80 s.

The average computation time reduced by 1191.40
41.80

= 28.50 with an introduction

of an average force error of 5.8% with respect to the baseline computation using the

approaches based on clustering, parallelization, and temporal coherence together.

The average time for computing one time step (of length 0.07 s) is about 0.028 s

after performing the simplification based on the temporal coherence on top of the

clustering and parallelization based simplification.

4.7.2 Effect of Wave Tolerance on Error and Computation Time

In this section, we derive the dependence of the computation time and error

introduced on the chosen wave tolerance and present numerical validation of the

derived relationship. Let us suppose that the component of ocean wave with highest

amplitude (say Am has the frequency of ωm. The component of the ocean wave with

the highest amplitude has the largest affect on the variation of the force on the
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USSV. A wave component with amplitude Am and the frequency ωm takes 2τπ
Amωm

time for a variation of τ in water level at a given point. Also the wave has a time

period given by 2π
ωm

. This implies that if we ignore the computation of the list of

the wet facets (Tw) and ocean wave force (Tp) for the time when the variation of the

wave is less than τ , the amount of computing time is given by Equation 4.34.

T = Tv + C(1− τ

Am

)(Tw + Tp) (4.34)

The terms C and Tv are explained in Equation 4.24.

In order to estimate the error in the force calculation due to the approximation

introduced in this section, let us consider the variation of τ in the wave height at

each point on the boundary of the USSV wet surface. If the perimeter of the curve

obtained by the intersection of wave surface and the USSV surface is denoted by

P , the maximum variation in force is given as ΦmPτ , where Φm is the maximum

possible dynamic pressure head. Thus the error in the force computation can be

bounded by using Equation 4.35.

‖~eforce‖ < ΦmPτ (4.35)

Equation 4.35 gives us the variation of the error in the force estimation due to the

approximation introduced in this section as linear in terms of the tolerance.

In order to verify the above derived relationships, we performed numerical

simulations for five different values of τ for the cluster size C = 45 and ε = 10−3

for five different wave directions. The variation of the average value of the force
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magnitude and computation time over five different wave directions with the toler-

ance τ is shown in Figure 4.7. The choice of tolerance dictates the reduction in the

computation time and an increase in the average error in the force computation.

This is because the tolerance τ is the magnitude of the difference between the wave

surface experienced by the USSV at a time step and the previous time step which

can be ignored to avoid the computation of the ocean wave force without introducing

significant error.

In summary, the tolerance can be used as an approximation parameter sim-

ilarly as the cluster count explained in the Section 4.5 to control the desired gain

in the computation time and the error introduced due to the temporal coherence

based simplification.

4.8 Summary

We developed a virtual environment for six degrees of freedom simulation of

unmanned sea surface vehicles. We obtained real-time performance of the simulator

using a simplification approach based on the clustering, temporal coherence, and

parallelization approach to perform physics-preserving model simplification for the

potential flow based six degrees of freedom, time domain simulation of USSVs.

The average computation time was reduced by a factor of about 28.50 introducing

an average error of about 5.8% with respect to the baseline computations, using

the simplification techniques described in this chapter. The approach can take

care of any arbitrary hull geometry as long as it can be expressed as a polygonal

model. We established theoretically that the time taken for computing the forces
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Figure 4.7: Variation of average error and average computation time with toler-
ance. (1500 time steps, C = 45, and ε = 10−3).

increases linearly with the increasing cluster count and reduces linearly with the

increasing tolerance, whereas the error introduced reduces with the cluster count
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in inverse square root fashion and increases with the tolerance in a linear fashion.

The numerical simulation results holds well with these theoretical results. Cluster

count and tolerance can thus be used as a high level approximation parameter in

the simplification scheme to control the computation time to achieve a desired level

of accuracy.

The potential flow assumption about inviscid fluid flow holds well as the

boundary layer phenomenon is only observed in the close vicinity of the hull surface.

Nevertheless, the phenomenon related to wave breaking, wake and turbulence can-

not be taken into account using the potential flow theory alone. We accounted for

these terms by introducing the damping and the added mass matrix in the dynamics

model. The damping and added mass matrices can be determined by performing

parameter identification for a given USSV model under a given sea state by experi-

ments and field trials. A more general modeling however is required to cover wide

range of sea states. Also, potential flow theory is based on displacement physics.

The hydroplaning phenomenon observed in the boats moving at very high speeds

cannot be modeled using the potential flow theory and requires use of a fluid flow

model based on planing physics. The simplification approach based on clustering

and temporal coherence is however, independent of any fluid flow model used and

can be employed in any kind of fluid flow to improve the speed of computation.
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Chapter 5

Generation of State Transition Models Using Simulations for
Unmanned Sea Surface Vehicle Trajectory Planning

Trajectory planning for unmanned sea surface vehicles (USSVs) in high sea-

states is a challenging problem. Large and somewhat stochastic ocean forces can

cause significant deviations in the motion of the USSV. Controllers are employed

to reject disturbances and get back on the desired trajectory. However, the motion

uncertainty can be still high and needs to be accounted for during the trajectory

planning to circumvent collisions with the obstacles. We model the trajectory plan-

ning problem of the USSVs as Markov decision process (MDP). A crucial element

in MDP is the state transition probability, which in the case of USSV missions need

to be evaluated on board as the environment may change significantly during the

mission. Accurate and fast estimation of state transition probabilities is indispens-

able for generating effective trajectory plans. A key component of our approach is

the simulation based estimation of transition probabilities from one state to another

when executing an action. In this chapter1, we present algorithms to generate state

transition model using Monte-Carlo simulation of USSV motion. Our simulations

are based on potential flow based 6-DOF dynamics. We also present model sim-

plification based algorithm based on temporal coherence and its implementation on

GPU to accelerate simulation computation performance. The computing speedup

1 The contents of this chapter was published in ASME 2011 International Design Engineer-
ing Technical Conferences(IDETC) & Computers and Information in Engineering Conference
(CIE)[TG11].
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obtained by GPU parallelization and temporal coherence based model simplification

enables fast computation of transition probabilities which is subsequently used in

a stochastic dynamic programming based approach to solve the MDP. Using this

approach, we are able to generate dynamically feasible trajectories for USSVs that

exhibit safe behaviors in high sea-states in the vicinity of static obstacles. We tested

the algorithms in simulation environment.

5.1 Introduction

Recently, USSVs began to be increasingly utilized as a promising tool in search,

rescue, recovery, and surveillance operations. In most of the applications, the un-

manned vehicles need autonomous motion planning capability to efficiently move

between way points without colliding with the surrounding obstacles. The USSVs

operate in the ocean environment with the disturbances caused by the ocean waves,

currents, wake of other ships, etc. The ocean waves interact with the USSVs im-

parting uncertainty to their motion. Due to the high motion uncertainty, an action

taken by the USSV may not lead to the exact desired motion despite of using a

feedback controller. In addition to the dynamics based constraints, the motion un-

certainty makes the task of the trajectory planning challenging particularly in highly

cluttered environments.

In order to explain the influence of the vehicle’s dynamics and the nondeter-

ministic effect of the ocean on the planned trajectories, consider Figure 5.1, which

shows an example of a marine environment. The circles M , P , and Q denotes three

consecutive mission way points. When USSV reaches to the way point P , it needs to
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Figure 5.1: Trajectories obtained with and without considering ocean wave distur-
bances (trajectory A is shorter but riskier and may lead to collision in the event of
high sea-state whereas B is longer but more conservative to minimize the risk of
collision).

find the shortest possible trajectory between the way points P and Q with the min-

imum risk of collision with the static obstacles on the way. A rather naive approach

to solve this problem would be to find the shortest possible collision free trajectory

without explicitly considering the ocean disturbances (shown as trajectory A). This

can be determined using gradient based optimization approach that minimizes the

path length respecting the collision and dynamics constraints. With this approach,

the high ocean disturbances may not allow the vehicle to closely follow the intended

trajectory as the interaction of the USSV with the ocean waves might lead to a colli-

sion with an obstacle in the narrow region. On the other hand, the trajectory which
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is safe with respect to the ocean disturbances is shown in Figure 5.1 as trajectory

B. Change in sea-state is usually determined using sensors and based upon that

data during the mission execution suitable trajectory among A or B can be chosen.

In this chapter, we tackle the above outlined physics aware trajectory planning

problem in highly uncertain ocean environments by combining the MDP [LaV06,

Put94, TBF05] framework and a dynamically feasible motion primitive based state

space representation [SMFH03, PKK09]. The MDP framework allows to natu-

rally consider the motion uncertainties in the trajectory planning process [LaV06,

TBF05]. In addition, we search for the trajectory in the space of dynamically feasible

motion primitives that are discretized actions with a predefined trajectory length, in

terms of MDP. The motion primitives were considered, for example, by Pivtoraiko

et al. who developed lattice based representation for unmanned ground vehicles

trajectory planning to obtain dynamically feasible trajectories in deterministic en-

vironments [PKK09]. The use of motion primitives in the MDP based framework,

thus, allows generating trajectories that explicitly consider the constraints imposed

by vehicle dynamics. This is unlike planning on a rectangular grid that might yield

a dynamically infeasible trajectory.

The developed MDP based framework represents the uncertainty in the motion

primitives by the use of state transition map. The state transition map maps each

state of the vehicle and a given motion primitive to all possible resulting states with

the respective probabilities of transitions. The state transition map can be obtained

by either running field experiments or by using computer simulations. Field exper-

iments, although, the most accurate method of determining state transition map
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are expensive and might be infeasible in some cases, when multiple sea-states and

vehicle dynamics parameters need to be taken into account. Computer simulations

are inexpensive and can be improved by incorporating experimental knowledge. The

complexity of various USSV missions and the environments requires generating the

state transition map on line, based on the information gathered by the sensors dur-

ing the vehicle’s operations. It may be infeasible to run all the possible simulations

off line (before the mission) to generate the state transition map. This is because the

sea-state is decided by several factors namely, amplitude, frequency, wave directions,

and wave number of the wave components forming the waves. Each of these factors

is continuous and has non-linear influence on the sea-state. In addition to this, the

ocean interacts with the USSV in a non-linear fashion. The initial conditions for the

simulations can thus become combinatorially prohibiting for an off line estimation

of the state transition map for all possible sea-states. A potential flow theory based

high fidelity 6 degree of freedom (DOF) dynamics simulator can generate fairly ac-

curate state transition map and aid in generating both safe and low cost trajectories

[KKF05, TG10, SS07]. The major problem with using such a high fidelity simulator

is the computational performance of the simulation. This is mainly because of the

fluid to rigid body interaction computation. One way to accelerate the simulation

computations is by using computing parallelization. Performing parallel computa-

tions require computing clusters to be communicating over a network, which might

be generally unreliable. Moreover, loading computing clusters on board might add

to the weight of the payload and may not be desired. Another way for on board

computing is GPU which is very powerful and lightweight.
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In addition to improving the performance of state transition map computation

by the use of GPU hardware, we employ model simplification techniques [TG10].

This allows even faster computation of the state transition map as may be required

for some parts of the mission where computing gains available by using GPU may not

be sufficient. By simplifying the physics of the simulated interactions, the simula-

tions will get faster but less accurate. The accuracy of the computed state transition

map depends on the available time for computation, and thus allows anytime trajec-

tory planning capability. In Ref. [TG10], we developed a computational framework

for real-time computation of 6-DOF motion of USSV under the influence of ocean

waves. We were able to reduce the computation time by a factor of 28.5 with a

mean square force computation error of 5.8% over the baseline computations. The

reported model simplification techniques are modified to enable use of much accu-

rate 6-DOF simulation model for the state transition map estimation instead of the

less accurate 3-DOF simulation models.

The motion primitives and the dynamics simulations can be used to establish

connectivity among the vehicle’s states to develop a state transition map. Once the

dynamically feasible state transition map of the USSV is generated, the vehicle’s

state space can be represented as a graph due to the connectivity information con-

tained in the map. The trajectory planning problem can then be solved using the

value iteration of the stochastic dynamic programming (SDP) [LaV06]. Posing a

trajectory planning problem as MDP and using the value iteration to solve it, is

by no means a new technique. Our main contribution in this chapter is threefold

namely, (1) incorporation of the 6-DOF dynamics simulation in the formulation of
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the trajectory planning problem so that the computed trajectory plan satisfies the

dynamics constraints as well as handles uncertainties, (2) use of GPU based paral-

lelization schemes to make the simulation faster leading to on-line computation of

state transition map, and (3) incorporation of model simplification techniques with

GPU acceleration for computing state transition map even faster and thus allowing

the anytime trajectory planning capability.

5.2 Problem Statement and Solution Approach

5.2.1 Problem Statement

Given,

(i.) a finite non-empty state space S,

(ii.) for each state s ∈ S a finite non-empty action space u(s),

(iii.) a dynamics motion model (based on potential flow theory) ẋ = f(x, u, w) of

the USSV where w is nondeterministic noise term,

(iv.) set of goal states SG, and

(v.) obstacle map Ω such that,

Ω(s) = 1, if s lies on obstacle

= 0, if s is on free space,

Compute following:
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(i.) State transition map over S: The state transition map should represent the

motion uncertainty exhibited by the given motion model under each given ac-

tion in u in the form of associated probability of transition for the correspond-

ing state transition (probabilities of transition represented as p(sk|si, ui), ∀sk, si ∈

S, and ui ∈ u). Perform GPU based computing acceleration and develop

model simplification techniques for on-line estimation of the state transition

map.

(ii.) Trajectory plan: Using the state transition map computed in step [i] determine

trajectory plan to generate dynamically feasible trajectory in each planning

cycle to reach the target locations inXG from any given starting location of the

USSV. The computed trajectory plan ensures that the generated trajectory

is updated in every planning cycle to recover from the pose errors introduced

due to the influence of the ocean environment. This kind of trajectory plan is

also referred to as feedback plan in Chapter 8 of [LaV06]. We assume perfect

state information is available at all times.

5.2.2 Approach

The approach is enumerated in the following steps.

(i.) Enhance the given USSV motion model to suit the requirements for GPU

implementation. Implement the motion model on GPU and develop simplifi-

cation algorithms to enable faster simulation.

(ii.) Model the trajectory planning problem as MDP by representing state-action
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space in a lattice data structure and compute the state transition map for the

discretized action space.

(iii.) Apply value iteration of stochastic dynamic programming to determine the

trajectory plan. The generated trajectory plan enables the USSV to find the

optimal trajectory from each discretized state x ∈ X .

In the following sections we discuss the above steps in detail.

5.3 USSV Dynamics Simulation for Multiple Wave Components

In this section we present the governing equations of the implemented dynam-

ics model which is used in the later sections dealing with the trajectory planning

[TG10]. We extend the equations to handle the arbitrary number of wave compo-

nents and to incorporate uncertainty into the system.

5.3.1 USSV Motion Equations Due to USSV and Ocean Wave Inter-
action

We implemented the 6-DOF dynamics model for the USSVs given by Fossen

[Fos94]. In this model, the USSV is assumed to be a rigid body. The coordinate

system used in the model is shown in Figure 4.2. The origin of the inertial frame of

reference is set at the nominal water level with the Z-axis being vertical and pointing

upwards. The body coordinate system for representing the hull geometry and the

velocity directions of the USSV is attached to the USSV’s center of gravity (CG).

We enhance the model presented in Chapter 4 for multiple wave components

and nondeterministic noise in the ocean in this chapter. In the Equation 4.14,
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the term SB is the instantaneous wet surface of USSV when hit by ocean wave

represented by height field η composed of Q wave components given by the following

equation.

η(x, y, t) =

Q
∑

j=1

Aj cos(kjx cos θw,j + kjy sin θw,j − ωjt+ ψj)+

0.5A2
jkj cos(2kjx cos θw,j + 2kjy sin θw,j − 2ωjt+ 2ψj)

(5.1)

where,

Aj , ωj, kj, θw,j are the amplitude, frequency, wave number, and wave direction

respectively for jth wave component, and

ψj ∈ [0, 2π) uniformly random phase lag term.

The velocity field φ is computed using following equation.

φ =

Q
∑

j=1

gAj

ωj

exp(kjz) sin(kjx cos θw,j + ky sin θw,j − ωjt + ψj) (5.2)

The term FP on the right hand side of Equation 4.15 is the force due to

the actuation (the thrust and the rudder angle). There are many actuator models

available for the USSVs and can be plugged in to Equation 4.15 [Fos94, KKF05].

We used a model given in Equation 5.3.

FP = [K1 ‖ nprop ‖ nprop, 0, 0, 0, 0, K2 ∗K1 ‖ nprop ‖ npropθrud]
T (5.3)

where K1 is a constant and we chose it to be 1000, nprop is the propeller’s rpm, K2

is a constant and we chose it to be 10, and θrud is the rudder angle.

We can express the parametric form [LaV06] of the 6-DOF model as follows:

ẋ = f(x, u) (5.4)
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where x =
[

pT vT
]T

is the state of the USSV, u = [vf Θ]T is the commanded

control action to go with forward velocity of vf at a heading angle of Θ, and f =

[

(M−1
H (−CH(v)v −DH(v)v − g(p) + FE + FP )

T Jp(v)
T
]T
.

We specify the desired control action using the desired forward velocity and

the heading angle. Any other kind of desired control actions such as the desired

angular velocity can also be chosen based on the available actuation models. For

the purpose of this chapter we assume that the USSVs are controllable using the

control actions specified by vf and Θ.

The thrust nprop and the rudder angle θrud can be computed using the PID

controller given in Equation 5.5.

nprop = Kp,nen +Ki,n

∫

endt+Kd,n

den
dt

(5.5)

θrud = Kp,θeθ +Ki,θ

∫

eθdt+Kd,θ

deθ
dt

(5.6)

where en is the difference between the desired forward velocity vf and the actual

instantaneous forward velocity, eθ is the difference between the desired heading angle

Θ and the actual heading angle, and K’s are the respective PID gains.

We chose the PID controller because of its widespread use, however, in order

to execute the commanded control actions any other controller such as the back-

stepping, sliding mode, etc. can be used [AMM10].

5.3.2 Uncertainty in the USSV Motion Model

In Section 5.3.1 the ocean wave (the ocean wave height and the velocity field)

was initialized with given ocean wave parameters. An ocean wave, once initialized
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evolves deterministically over the time and can be predicted exactly using the so-

lution of Laplace equation (see Equation 5.1) [New77]. However, the ocean waves

initialized with the same parameters might look different due to the presence of the

phase lag (between each wave component) parameters (ψj)’s which are uniform vari-

ates. This leads to the prediction of slightly different trajectories in each simulation

run of the USSV operating under the ocean waves with exactly identical ocean wave

parameters (initialized with uniform random phase lags) and an action. This effect

is shown in Figure 5.2, in which the USSV is acted upon by a PID controller to move

along a straight line for 256 different simulation runs (ocean wave component phase

lags for each simulation run is randomly initialized). The variation in the trajectories

of the USSV in each simulation run is due to the uncertainty introduced by random

phase lags in the ocean wave components despite of the other ocean parameters and

the PID control objective being exactly identical. Figure 5.2(b) shows the histogram

of final positions reached by the USSV when commanded to reach at (30, 0) with an

orientation of 00 due to the disturbance caused by the ocean waves. Figure 5.2(c)

shows the variation in the final orientation while the commanded action was 00. It

should be noted that the variation in the ending pose is one of the main cause of

randomness in the motion model which accumulates over the trajectory.

Formally, we can express the parametric form of the dynamics model (with

uniformly random initial phase lag parameters) as follows:

ẋ = f(x, u, w) (5.7)

where w is the noise introduced due to the uniform random phase lags ψj .
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Figure 5.2: Uncertainty in USSV motion model for action along X axis generated
using sample size of 256 (computed for sea-state 4 with average ocean wave height
of 1.8 m).
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5.3.3 Simulator Implementation on GPU

As described in Section 5.3.2 and shown in Figure 5.2, the USSV ends up in

different poses for exactly identical action objective and initial states for different

phase lag initializations. This means that for sufficiently large number of simulation

runs with uniform phase lag initializations for a given set of initial conditions and

action goal, the distribution of final states will represent the influence of the ocean on

USSV motion. In this section, we describe Monte-Carlo simulation based approach

to estimate the influence of nondeterministic effects of ocean on USSV motion for

a given set of action goals. The Monte-Carlo sampling based approach requires

running numerous dynamics simulations with uniformly random initial phase lags

among wave components and hence real-time performance of the simulator may not

be enough. We describe the modifications made in the simulation model [TG10,

SS07, KKF05] for suitability of implementation on GPU.

We define state vector tuple X = (x1, x2, .., xM), where xk = [vTk x
T
k ]

T is state

vector of kth simulation run and M is the number of Monte-Carlo simulation runs.

Let U = (u1, u2, ..., uM) be the action vector tuple with each element as a

vector specifying action for corresponding simulation run. We denote action set for

the entire sample using the tuple Υ = (U1, U2, ..., UP ) where Uj ’s are action vector

tuples and P is the number of action goals.

Also, let W = (w1, w2, ..., wM) be the phase lag vector tuple where wk =

[ψ1,k, ψ2,k, ..., ψQ,k]
T is the phase lag vector for kth simulation run and ψq,k is phase

lag of qth wave component of kth simulation run.
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Thus, the augmented dynamics equation can be written by generalizing Equa-

tion 5.7 for M Monte-Carlo simulation runs as follows:

Ẋ = F (X,U,W ) (5.8)

where, F is the modified dynamics function representing simultaneous simu-

lation runs. Let FWT = (F T
W,1, F

T
W,2, ..., F

T
W,M) be the ocean wave force tuple where

FW,k is ocean wave force vector for kth simulation run.

The computation steps of the simulation are enumerated below [TG10].

Algorithm 5.1 - GPU based Monte-Carlo Simulation of USSV dynamics

Input

(a.) Initial state vector tuple of USSV X0,

(b.) number of Monte-Carlo runs M ,

(c.) desired target state vector tuple Xt,

(d.) desired trajectory length l,

(e.) radius of acceptance r,

(f.) number of ocean wave components Q,

(g.) time step size ∆t,

(h.) action set Υ,

(i.) polygonal geometry of USSV, and
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(j.) sets of amplitudes Ap, frequencies ωp, directions θp corresponding to each wave

component where index p varies from 0 to Q− 1,

Output Set of M trajectories

Steps

(i.) Initialize the state vector tuple of USSV X = X0, phase lag tuple W , time

t = 0, and trajectory length vector L = [0, 0, ..., 0]T .

(ii.) Transform the USSV geometry to M states represented by X . Each transfor-

mation is performed by separate GPU thread. In this case, same instruction

of transformation needs to operate onMN similar data, where N is number of

polygonal facets representing the USSV geometry. We perform computations

of this step on GPU.

(iii.) Determine the instantaneous wet surfaces (SB,j) of the USSV by finding out

the facets lying beneath and on the wave surface (computed by superimposing

given Q ocean wave components using Equation 5.1) corresponding to jth

phase lag vector wj and use Equation 4.14 to compute the wave force tuple

FWT . In this case computation of intersection of each polygonal facet with

instantaneous ocean wave and force computation is performed by separate

GPU threads. The number of independent operations required is again MN .

We perform computations of this step on GPU.

(iv.) Determine the required control force vector tuple corresponding to the action

set Υ using Equations 5.3, 5.5, and 5.6.
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(v.) Determine the Coriolis matrix (Ck(v)) and the damping matrix (Dk(v)) cor-

responding to each Monte-Carlo simulation run. The number of independent

operations required in this step is M . We perform computations of this step

on GPU.

(vi.) Use Euler integration to solve Equation 5.8 by using the wave force tuple,

Coriolis matrix, and damping matrix. Update time t to t + ∆t. The number

of operations needed in this step is M . We perform computations of this step

on GPU.

(vii.) Find Euclidean distance ∆X between state tuple obtained from step (vi) and

X and update trajectory length vector L with L + ∆X . Compare each el-

ement of L with the desired trajectory length l. The Monte-Carlo runs for

which trajectory length exceeds the set trajectory length l, do not update cor-

responding elements of X whereas for other runs update the elements in X

with the solution found in step (vi). Since this is a step with logical branching

we perform it on CPU.

(viii.) If trajectory lengths for all the runs exceeds l or all USSVs are within the

radius of acceptance r from the respective target positions then return M

trajectories else go to step (ii).

The computations performed on CPU and GPU are illutrated in Figure 5.3.

We used NVIDIA’s CUDA software development kit version 3.2 with Microsoft

Visual Studio 2008 software development platform on Microsoft Windows 7 oper-

ating system for the implementation of Algorithm 1. The graphics hardware used
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Figure 5.3: Implementation of USSV Simulator on GPU.

was NVIDIA GeForce GT 540M mounted on Dell XPS with Intel(R) Core(TM)

i7-2620M CPU with 2.7GHz speed and 4GB RAM. We chose the number of CUDA

threads per block to be 256 for each kernel function. For the CUDA kernel function

needed to work on J data members, we chose the number of computing blocks to

be MN+T−1
T

. The number of triangular facets in the USSV model used in the simu-

lations was 11158 and the bounding box dimensions of the model was 12× 4× 4 m.

We chose ocean wave composed of Q = 20 components with six components having

amplitude of 0.2 m while rest fourteen with amplitude of 0.1 m. sixteen of the ocean

wave component had frequency of 1 Hz while four of them had frequency of 2 Hz,

and the direction θw’s were evenly distributed in the range 0 to 2π radians. We

chose simulation time step of size 0.05 s and ran the simulation for 200 time steps

for 256 random phase lag initializations. Table 5.1 shows the comparison of the

computational performance on GPU as compared to the CPU based computation.

The OpenMP based multi-threading enabled 85% average CPU usage while running
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Table 5.1: Comparison of the computation gain due to GPU over the baseline
computations performed on CPU

M Baseline computation time on
CPU (s)

GPU Computation time (s) Speedup

1 13.71 3.60 3.81
2 27.08 5.25 5.16
4 54.16 8.00 6.77
8 107.35 13.00 8.26
16 214.4 22.01 9.75
32 425.61 36.91 11.53
64 846.56 65.40 12.94
128 1691.18 123.80 13.66
256 3386.32 241.90 14.00

the baseline simulations. The GPU based approach resulted into speedup by factor

ranging from 3.81 to 14.00 for the presented test case. Table 5.1 also shows that the

speedup factor increases with increase in the number of Monte-Carlo runs because

of the highly data parallel nature of the computations. All the results under the

same conditions were identical to the CPU based baseline computations.

5.3.4 Model Simplification on GPU

Almost more than 99% of the computation time in the USSV simulation is

spent in computing the forces acting on the USSV due to the ocean waves [TG10].

The ocean is represented as a spatio-temporally varying heightfield in the simulation

model we are using in this chapter. One of the major factors that influences the

forces due to the ocean waves is the variation in the ocean wave heightfield besides

the fluid velocity around the USSV. The ocean wave heightfield does not change

significantly with each simulation time step. For example, for a simulation time step

of length 0.05 s, the possibility of ocean wave heightfield around the USSV changing

significantly is very low. In such a situation one can utilize the force computed

in the previous time step in the current time step of the simulation to save some
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computational effort. This is the underlying idea behind temporal coherence. In

order to explain the temporal coherence idea in a more concrete way, we introduce

and define instantaneous ocean heightfield as follows.

Definition 17 Let the ocean wave be specified by Q components consisting

of amplitudes, frequencies, and directions. Let state vector tuple X denote the

instantaneous states of the USSV for each Monte-Carlo simulation run, Bj be the

bounding boxes of the USSV located at positions given by X and rectangles RB,j

be the projections of Bj on the XY plane. Let Λj denote uniform grid of size m×n

on RB,j .

We define the instantaneous ocean wave height-field G as a (Q × mn) sized

matrix G, such that the rows of G are the vectors made up of ordered elevations of

the ocean wave at the mn grid points on Λj.

Definition 18 For a pair of ocean wave height-fields G1 and G2, we define the

heightfield distance vector ~hd between G1 and G2 as the following row-wise second

order norm.

~hd = ‖G1,j −G2,j‖ (5.9)

where G1,j is the j
th row of G1, and index j denotes Monte-Carlo run from 1 to M .

The force need not be computed in a simulation time step if the ocean wave

heightfield distance around the USSV from the previous simulation time step is not

significant. The temporal coherence test is performed as an additional operation in

step (ii) of Algorithm 1 (described in Section 5.3.3). If it is found that the ocean
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wave heightfield distance corresponding to at least one Monte-Carlo run has changed

significantly then step (iii) of the Algorithm 1 is performed else step (iii) is skipped

and step (iv) is directly executed. By this, the execution of step (iii) in Algorithm 1

is avoided which introduces some simplification error but reduces computation time.

The steps for performing temporal coherence based model simplification on

the GPU are described below.
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Algorithm 5.2 - Temporal coherence based Model Simplification

Input

(a.) State vector tuple X ,

(b.) number of Monte-Carlo runs M ,

(c.) number of rows (m) and columns (n) of grid,

(d.) simulation time t and time step size ∆t,

(e.) threshold τ for heightfield, and

(f.) threshold dτ for differential of heightfield.

Output Decision about whether to perform force computation in the next

time step or reuse force computed in the earlier time step

Steps

(i.) If t = 0 return decision to perform force computation.

(ii.) If t = ∆t then initialize heightfield Gp and differential heightfield dGp to a

null matrix of size M ×mn and store in global memory.

(ii.) Compute ocean wave heightfield G at time t and then compute differential

heightfield dG = G−Gp.

(iii.) Compute heightfield distance ~hd vector between G and Gp.

(iv.) Compute differential heightfield distance d~hd between dG and dGp.
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(v.) If all the elements of ~hd are less than τ and if all the elements of d~hd are less

than dτ return the decision to reuse previous value of force else update Gp = G

and dGp = dG and return the decision to recompute force.

We chosem = 2, n = 5,M = 256, and dτ = 0.1 and performed the simulations

under the identical ocean and USSV parameter settings and varied τ from 0.00 to

0.10 in the increments of 0.025. The computation speedup factor over the GPU

baseline computation time (when τ = 0.00) varies from 1.04 to 3.61 depending

on the set threshold τ as shown in Figure 5.4(a). The temporal coherence based

simplification introduces errors in the computation of the final pose of the USSV in

Monte-Carlo runs. Figure 5.5 shows the variation in the Euclidean distance of final

positions of USSV from the nominal point and the difference of each final USSV

orientations from the nominal orientation obtained by the Monte-Carlo simulation

runs. The nominal pose is the commanded pose to which USSV should reach if

there are no disturbances. In the test case, the nominal point is (30, 0) and the

nominal orientation is 0 radians. The variation in distance and orientation difference

increases with the increasing threshold. Also, the number of outliers in each case

increases with the increasing threshold. This is because, more the threshold lesser

the number of times forces are computed and hence more will be the inaccuracy

and lesser will be the computation time. We chose fixed randomization of the ocean

wave for evaluating the plots in order to prevent the influence of randomization on

the computing time and the variation of the pose errors.

It should be noted in Figure 5.4, that the computing gains increase slower
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in the range 0 < τ < 0.025 because for smaller threshold algorithm is unable to

reuse force values computed in the previous steps and owing to the same reason the

variation in the final pose and nominal pose is also comparatively less pronounced.

At larger values of threshold τ > 0.075, the variation in the distance and orientation

increases rapidly. It can thus be concluded that τ can be varied in the window of

0.025 < τ < 0.075 for obtaining computational gain at the expense of acceptable

errors.

Figure 5.5 compares the computational gains obtained using temporal coher-

ence on the GPU and CPU based simplification approaches (see Chapter 4) with the

baseline computed on CPU (see Table 5.1. The main observations and respective

analysis from the Figure 5.5 are explained below.

(i.) The computational speedup factor obtained using temporal coherence on GPU

is in the range of 4.7 to 43.1 and increases with the number of Monte-Carlo

runs. The increase in the speedup can be attributed to the fact that the main

computational cost of GPU operations is the data transfer between GPU and

CPU. In the USSV simulation, the data of state variables and the system

matrices need to be transferred from GPU to CPU which is a constant time

operation. When the number of runs is less, the appropriated compute time

is larger whereas for large number of Monte-Carlo runs the cost of memory

transfer reduces and hence the speedup factor increases.

(ii.) The computational speedup factor due to temporal coherence over GPU base-

line ranges from 1.2 to 3.1.
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Figure 5.4: Model simplification results of GPU based temporal coherence.
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Figure 5.5: Results of GPU acceleration.

(iii.) The error associated with the model simplification performed on GPU and

CPU is computed by taking the mean squared percentage error between the

time series of the computed forces using the simplified method and the base-

line method (see Equation 4.27 [TG11, TG10]. The model simplification based

on temporal coherence implemented on GPU led to an error of 1.04% for the

threshold τ = 0.075 and dτ = 0.1. Also, the figure shows variation of com-

putational speedup using model simplification algorithms based on clustering

and temporal coherence on CPU (see Chapter 4) for simplification parame-

ters C = 60, τ = 0.07, and dτ = 0.1. Model simplification performed on

CPU leads to an average factor of speedup of 6.4 and average force error of

1.25% over the CPU baseline. It can be seen in Figure 5.5 that for single run
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the CPU based simplification approach outperforms the purely GPU based

approach by a factor of 1.8 and for two runs the CPU based simplification

approach is better than purely GPU based approach by a factor of 1.3. Again

the reason is the appropriation of computing time spent on the constant time

data transfer operations over larger number of runs. It is thus evident that

using purely GPU based approach may not be enough in applications in which

a single USSV needs to be run in a VE as model can become more complex

stretching the GPU to its limits. In applications where some error is tolerable,

model simplification can significantly speedup the application at the cost of

small errors.

(iv.) For larger number of runs, which are pertinent to applications such as tran-

sition probability estimation, GPU based approach gives very high speedup

factor (in case of Figure 5.5 about 43.1 with average mean square force error

of 1.04%.

(v.) Figure 5.5 also shows that the computing speedup due to temporal coherence

gradually saturates as the number of simultaneous runs increases. The rea-

son is that the possibility of many heighfields being less than the threshold

simultaneously reduces as the number of heightfields increase.

5.4 Application of Generated State Transition Map in USSV Trajec-

tory Planning

In this section we present the application of state transition probabilities ob-

tained from model simplification techniques developed in Section 5.3 in the area of
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USSV trajectory planning.

5.4.1 MDP Formulation

In this section we present the MDP formulation for the USSV planning problem

and the algorithms to compute the various components of the MDP.

5.4.1.1 State-Action Space Representation

For the dynamics computations, the state of the USSV is defined as an aug-

mented vector of the pose and the velocity according to Equation 5.7. The sizes of

the vectors representing the pose and the velocity are six each, making the size of

the state vector as twelve. In addition, the USSV state-action space is continuous

and it is very difficult to search an optimal policy in such a high dimensional and

continuous space. Some of the properties of the problem at hand make it possible to

simplify the state-action space representation. In this section we present the state-

action space dimension reduction and a suitable discretization to pose the problem

of the USSV trajectory planning as a MDP.

The motion goals for the USSV are usually specified in terms of the target

pose [x, y, θ]T ) and the target velocity [vx, vy, ωz]
T of the USSV on the ocean’s

nominal water plane. This means that the state space for the MDP can be reduced

to the size six as [x, y, θ, vx, vy ωz]
T . This is because the motion is computed using

the 6-DOF simulator and the influence of the motions in all the degrees of freedom

is taken into account for the purposes of determining the instantaneous location

and the orientation on the nominal water plane of the ocean. The motion of the

boat computed by the 6-DOF simulator is used to determine the transition model
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for the MDP. The state transition map is then used by the stochastic dynamic

programming (SDP) solver to determine an optimal trajectory. We can thus ignore

the heave, roll, and the pitch in the description of the state space for the MDP to

simplify the planning problem. Further, the desired velocity of the boat is assumed

to be constant for the purposes of this chapter. In most of the tasks to which the

USSVs are subject to, the velocities do not change significantly during the operations

and that justifies the choice of the constant desired velocity of the boat. During

the simulations we found that the velocity remains within about 8% limits with a

hand tuned PID controller for the chosen set of control actions under the sea-state

3 (wave height varying between 0.5 to 1.25 m). Also we tuned the PID controller

such that the angular velocity is kept within a set bound. We chose the circle of

acceptance to be 1.0 m, which can be varied based on the vehicle dynamics [Fos94].

This makes it possible to ignore the angular velocity ωz of the boat from the MDP

state representation. The velocity in the sway direction and the angular velocities

in the roll and the pitch directions are generally very small and can be ignored in

the MDP state space. Nevertheless, the transition model computation is performed

using all the twelve degrees of freedom. The state space for the planning purposes

in this chapter is thus reduced to a 3-tuple given by Equation 5.10.

s = [x y θ]T (5.10)

where x, y are the coordinates of the USSV’s center of gravity in the XY plane,

and θ is the orientation of the boat in the XY plane measured counterclockwise
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about the Z axis.

The bounding box dimensions for a typical USSV is around 12× 4× 4 m. In

order to have sufficient granularity in the state space, the grid’s resolution overlaid

on the XY plane should be equivalent to the USSV length (nearly equal to 12 m).

We chose the grid dimension to be 15.0 m. The orientation discretization is chosen

to be 0.524 radians. The state space is depicted in Figure 5.6, in which theXY plane

contains the location of the center of gravity and the θ axis denotes the orientation

of the boat. Pose of the boat in the XY plane is shown in Figure 5.6(a) and the

corresponding location in the 3-D state space is shown in Figure 5.6(b).

The action space is discretized as a set of relative pose commands from an

initial state. We chose the set of relative final pose as seven radial pose vectors

having radial distance of 30.0 m (in terms of the trajectory length of the boat) with

final desired steering angles varying from −2.142 radians to 2.142 radians in the

increments of 0.428 radians. We chose the desired path lengths and the steering

angles by first running the boat for 10 s along the polar directions so that the boat

can cover as many surrounding grids as possible. Using this technique we generated

a set of seven way points which sufficiently cover the space around the boat and are

dynamically reachable in about 10 s. We then tuned the PID controller so that the

boat can reach those locations. An important implementation detail is that during

the event of a high sea-state making the USSV’s angular velocity uncontrollably

high, the PID controller is switched to stabilize the USSV and once its angular

velocity comes within set bounds, the PID is switched to position tracking again.

The discretized set of actions are shown in Figure 5.6(c) and are also known as the
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(a) Typical pose of USSV in XY
plane.

(b) Location of USSV in state
space.
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(c) Action discretization.

Figure 5.6: State-action space of MDP.

control set [PKK09].
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5.4.1.2 Determination of State Transition Map

The state transition map for the continuous space was expressed in the form of

Equation 5.7. In this section we shall describe the computation scheme to determine

the state transition map for the given USSV in the discrete state space. We first

present the definition of the state transition probability.

Definition 19 Given an initial state xt and an action ut at time t, the prob-

ability p(xt+∆t|xt, ut) of ending up in the state xt+∆t is called the state transition

probability. We assume that the time taken to execute the action ut is ∆t.

Figure 5.2 shows a USSV situated initially in the state xt. When an action ut

is applied to it for 256 sample runs, the trajectories traced by the USSV are shown

by the blue lines. The USSV traces a slightly different trajectory for each sample

run due to the ocean wave and USSV interaction force as explained in the previous

section (see Equation 4.14). The variation in the resulting states for a given initial

state and an action yields a probability distribution over the resulting states. The

probability of reaching to an arbitrary resulting state xt+∆t is shown in Figure 5.2.

For the deterministic dynamics, the researchers have suggested the use of the

state lattice [PKK09]. A state lattice is a graph where nodes represent the states and

the arcs represent the connectivity between the states that respects the deterministic

dynamics constraints. This kind of graph representation makes use of the well

known graph search algorithms like A*, Dijkstra, D*, etc. to solve the robot motion

planning problems. We use a similar data structure to consider the dynamics by

embedding the information of the state transition probabilities in the arcs of the
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state lattice and then make use of the stochastic dynamic programming to solve the

problem of trajectory planning under the environmental uncertainties.

The steps to compute the state transition map are described below.

Algorithm 5.3 - State transition map computation

Input

(a.) Set of trajectories T = (T1, T2, ..., TP ) for a given action set Υ = (U1, U2, ..., UP )

using Algorithm 1 and 2,

(b.) List of discretized states S = [s1, s2, ..., sL]
T representing the region of USSV

operation.

Output State transition map.

Steps

(i.) Perform geometric transformation of each trajectory in T to the poses rep-

resented by each states in S. Figure 5.7 shows a portion of the state space

with the rectangular grids representing region on the nominal water plane,

while the layers representing the orientation of the boat varying from 0 to 2π

radians. The USSV when begins from state si and takes action uj can end up

in multiple states shown by the blue crosses based on the trajectories T . State

se represents the nominal ending state under the action uj when there is no

environmental disturbance.

(ii.) Construct graph by connecting the states (nodes) reachable from another

states (nodes) using the sample actions (arcs) in T .
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Figure 5.7: State transition map computation.

(iii.) Determine the transition probabilities by finding out the ratio of the number

of connections between the two connected states and the total sample count of

the actions taken. In Figure 5.7, let the state sj be connected to the state si

for n(sj times out of N sample runs. Compute the probability pij of transition

from state si to state sj using pij =
n(sj)

N
.

(iv.) Return the state transition map.

In this way the state transition map is obtained, whose nodes are the states

and the arcs are the connectivity that satisfies the dynamics constraints. Each

connection has a probability associated with it due to the system dynamics and the

presence of the uncertainty due to ocean waves in the system as described before. It
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should be noted that the maximum number of children nodes of a given parent node

for a state space with L nodes can be up to L based on the variations in the samples

of the action and level of uncertainty in the environment. This makes the suggested

data structure very flexible in the sense of capturing the dynamics constraints and

the environmental uncertainty for extreme situations such as rough sea-state.

5.4.1.3 Reward or Cost Function

The final element of MDP is the immediate reward for transitioning from a

given state to another state by taking an action. The time spent by the USSV to

perform an action can be determined by the length of the trajectory traversed by it.

This entails that larger the length of the trajectory, smaller should be the reward

for the action generating the trajectory, and thus we should consider the negative

value of the trajectory length as the reward. We chose the negative of the average

length of the S trajectories traversed by the USSV for each action in the control set

to determine the reward.

5.4.2 Results and Discussion

For the given action set Υ described in Section 5.4.1.1 we determine the set of

trajectories T using Algorithm 1 and 2 for the sea-states 3 and 4. The average wave

height for the sea-state 3 ranges from 0.5 m to 1.25 m whereas for the sea-state

4 the average wave height ranges from 1.25 m to 2.5 m [Fos94]. The resulting set

of trajectories for 256 Monte Carlo simulation runs are shown in Figure 5.8. The

variations in the trajectories for the sea-state 4 is larger compared to that for the

sea-state 3 due to the higher average ocean wave height. We chose sample size of
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Figure 5.8: Control set computed for different sea-states.

256 because the variability of the pose data can be captured using a sample size of

around 256. This is illustrated in Figure 5.9.
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We used τ = 0.075 and dτ = 0.1 to obtain Figure 5.8. The time taken to

compute the set of trajectories for each sea-state was about 8.8 minutes.

The MDP formulated in the Section 5.4.1 can be solved using the numerous

algorithms including the value iteration, policy iteration, hierarchical techniques,

approximate techniques, etc. [Pow07]. We chose the basic value iteration for com-

putation of the solution. The details of the value iteration algorithm could be found

in many references including [LaV06, TBF05]. The policies for each sea-state are

computed using value iteration over the obtained respective state transition maps.

The optimal policies are then used for determining the trajectory to the target. The

obtained trajectory is optimal given the uncertainties due to the ocean waves and

USSV interaction and the unmodeled effects such as the variations in the angular

velocities and the linear velocity due to the implemented PID controller limita-

tions. The dynamics based motion model developed in this chapter includes these

variations in the transition probability. The transition probability is then used to

compute the optimal policy in the MDP framework, which has been proved by the

researchers to yield global optima. It should be noted that the optimality is achieved

in the resolution sense meaning that the chosen resolution of the state-action space

influences the achieved optimality. Finer the resolution better will be the optimal

solution but greater will be the computational complexity.

The resulting trajectories for sea-states 3 and 4 are shown in Figure 5.10. In

case of sea-state 3 a shorter and riskier trajectory (through a narrow passage in the

midst of obstacles) is computed by the algorithm as shown in Figure 5.10(a), whereas

in case of sea-state 4 a longer but safer path is computed as shown in Figure 5.10(b).
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Figure 5.10: Executed trajectories obtained by using feedback plan for sea-states 3
and 4. Feedback plans are computed using the algorithms developed in this chapter
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The disturbances due to the ocean waves are computed during the simulation which

causes unpredictable deviations in the trajectory. The computed policy makes it

possible for the USSV to take best action to safely reach the target even after it

gets deviated due to the unpredictable ocean waves. The data structure and the

algorithms presented in this chapter enables incorporating the effects of dynamics

and uncertainty in ocean waves in the computation of state transition map, helping

in performing physics aware trajectory planning.

The time taken to perform Monte Carlo simulations of the USSV dynamics to

compute state transition map using the algorithm developed in this chapter was 9

minutes. The number of states were chosen as 4800 (20× 20× 12) and the number

of actions as 7. The value iteration took 28 s to converge when computed on the

computed state transition map.

5.5 Summary

In this chapter we extended the USSV dynamics model presented in Chap-

ter 4 to incorporate ocean waves with multiple wave components and random phase

lags. We developed GPU based algorithm to perform fast Monte-Carlo simulations

to estimate state transition probability of USSV operating in high sea-states us-

ing dynamics simulations. We further improved the computational performance

by developing model simplification algorithm based on temporal coherence. The

overall computational speedup obtained is by a factor of 43.1 by introducing an

error of 1.04% over the CPU baseline. We used the developed simulator to estimate

state transition map and used it in traditional simulation based trajectory planning
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framework [LaV06].

The chapter presents a trajectory planning case study to demonstrate the

physics-aware trajectory generated in an ocean environment with the sea-state 3

and 4, using the developed state transition data structure. The planning system is

flexible and is capable of generating dynamically feasible trajectory plans for any

given sea-state and USSV geometry.

The current framework is capable of handling the dynamic environmental dis-

turbances due to the ocean waves with static obstacles such as islands and shorelines.

The trajectory planner cannot handle dynamic obstacles optimally and a faster re-

planning approach can be used to tackle with this issue.

190



Chapter 6

Conclusions

This chapter presents the intellectual contributions and anticipated benefits

from the work reported in this dissertation.

6.1 Intellectual Contributions

This dissertation aims toward building theoretical framework and development

of algorithms to perform context dependent physics preserving automatic model

simplification. The developed algorithms can be applied to rigid body dynamics

simulation which is widely used in VEs. The VEs are very useful tools for design,

planning, and training. Hence, the developed algorithms can prove to be useful

tools in design, planning, and training applications. Some of the key intellectual

contributions are listed below.

6.1.1 Contact Preserving Model Simplification Technique for Rigid
Body Dynamics Simulations

This dissertation introduces a context dependent contact preserving model

simplification technique for interactive rigid body simulation. The technique is based

on the accessibility based approach. An important requirement for model simplifi-

cation algorithms (in rigid body simulation application) is that the contact points

between unsimplified and simplified models must remain exactly identical. By pre-

serving the contact points, the reaction forces occurring due to collision among parts

are also preserved. This in turn will preserve the physics. The accessibility based
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simplification technique developed in this dissertation will determine and remove

the regions in the part models, which cannot come in contact during rigid body mo-

tion. The inaccessible regions do not contribute to the generation of contact points

and thus their off-line removal does not influence simulation accuracy. This however

improves the computational performance of contact point determination algorithms

as the size of the hierarchical tree representing the collision shape of the part gets

pruned. Our technique thus complements the existing hierarchical data-structure

based approaches for collision detection by pruning the inaccessible nodes of hier-

archical trees before the simulation, thereby reducing worst case collision detection

time which occurs when parts are in close proximity.

6.1.2 Clustering and Temporal Coherence Based Model Simplifica-
tion for Rigid Body to Fluid Interaction Simulation

This dissertation introduces model simplification algorithms based on spatial

and temporal coherence properties of fluid pressure acting on the floating rigid bodies

to simplify the computations. We obtained real-time performance of the simulator

using a simplification approach based on the clustering, temporal coherence, and

parallelization approach to perform a physics-preserving model simplification for

the potential flow based 6-DOF, time domain simulation of USSVs. The average

computation time was reduced by a factor of about 28.50 introducing an average

error in force magnitude of about 5.8% with respect to the baseline computations,

using the simplification techniques described in this dissertation. The approach can

take care of any arbitrary hull geometry as long as it can be expressed as a polygonal
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model. We established theoretically that the time taken for computing the forces

increases linearly with an increasing cluster count and reduces linearly with an

increasing tolerance, whereas the error introduced reduces with cluster count in an

inverse square root fashion and increases with an increasing tolerance in a linear

fashion. The numerical simulation results are in agreement to these theoretical

results. Cluster count and tolerance can thus be used as high level approximation

parameters in the simplification scheme to control computation time to achieve a

desired level of accuracy.

6.1.3 GPU Based Parallelization and Temporal Coherence Based
Simplification to Accelerate USSV Simulator Performance

Fluid to rigid body interaction computation is highly data parallel operation.

This dissertation presents a GPU implementation of the simulator to exploit the

data parallelism of the operations involved in simulation computation. In addi-

tion to that, temporal coherence based model simplification is incorporated into the

GPU implementation framework to further improve the simulation performance.

The combination of GPU parallelization and temporal coherence based model sim-

plification led to an overall computational speedup improvements by a factor of 43.1

over CPU baseline (optimized with OpenMP based parallelization).

6.1.4 Monte-Carlo Simulation Based State Transition Map Genera-
tion for USSV Trajectory Planning Under Motion Uncertainty

Nondeterministic ocean wave forces cause deviations from the intended trajec-

tory of USSVs leading to motion uncertainty. Estimating the motion uncertainty
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using experimental approach is most reliable, however very expensive and sometimes

infeasible due to the presence of diverse operating conditions. Computer simulations

are inexpensive and can be made accurate enough by incorporating experimental

knowledge. During a long mission, USSV might be required to pass through many

sea-states and undergo environmental changes such as currents, wakes of other ves-

sels, mass changes due to fuel loss, etc. Enumerating all the cases beforehand to

perform off-line simulations may be infeasible particularly due to continuous nature

of the sea-state variables and their nonlinear interactions. This necessitates on-line

simulation of USSVs to generate state transition map for a given sea condition. The

information about the state transition map is very crucial for reliable trajectory

planning of USSVs. In this dissertation we present a Monte-Carlo simulation based

approach for estimating state transition map from dynamics simulations. The use

of GPU has two advantages, namely, it provides immense computing power and it

is lightweight unlike computing clusters.

6.2 Anticipated Benefits

This dissertation addresses the issue of physics preserving model simplification

for attaining real-time refresh rates for rigid body simulation based on general model

simplification principles, namely, clustering, temporal coherence, and parallelization.

The developed techniques can be used in robot motion planning applications. Since

the developed model simplification approaches are general enough, they can be used

for many robotics applications which have interactions similar to rigid body to rigid

body or rigid body to fluid flow. Turnaround time for generating simulation scenar-
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ios can be significantly reduced for virtual environment using the work done in this

dissertation. The virtual environments can be useful for training purposes, which

can isolate human beings from the dangerous situations at a very low cost. The

faster refresh rates obtained by using model simplification strategies developed in

this dissertation will be helpful to improve the immersivity of the virtual environ-

ments leading to their enhanced effectiveness. The faster virtual environments thus

developed can be used in the area of defense (e.g., simulation of USSVs), health-

care (surgical simulations, drug delivery simulations, etc.), entertainment (realistic

games), etc. The USSV simulation frame work developed in this dissertation can

be useful for many applications like physics-aware robot motion planning, USSV

training using tele-operation, controller design, hull design, capsizing probability

determination, etc.

6.3 Future Directions

The principles of physics-preserving model simplification namely clustering,

temporal coherence, accessibility based pruning of hierarchical trees, and simulation

context dependent model simplification developed in this dissertation are general

and can be applied to wide variety of physics based simulations. Some of the possible

future research directions are described below:

(i.) This dissertation focused on displacement physics based fluid-rigid body inter-

action model, which does not take into account the hydroplaning phenomenon.

One of the possible research directions can be to extend and enhance the model

simplification techniques for high speed USSVs undergoing hydroplaning phe-
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nomenon.

(ii.) This dissertation focused on simulation of USSVs as a rigid body. There have

been a surge in research and development of bio-inspired robots that operate in

water such as amphibots in recent years [CBGI05, CI08, MMG10, SCS10]. A

possible research direction can be to perform simulation of amphibots in real-

time. Model simplification techniques can be applied to such a simulator for

faster simulation, which may prove to be a useful tool for designing and testing

the geometry and mechanism of such robots. Gait synthesis is another major

research thrust in bio-inspired robotics. Often machine learning techniques

are used for performing gait synthesis [GJ09, SML10]. Most machine learning

techniques require a high fidelity dynamics simulation for solving gait synthesis

problem. Since, the simulation needs to be run many times by the machine

learning algorithms for synthesis, the simulations need to be computationally

fast [Mit97, SB98]. Model simplification techniques can hence be used in

solving robot gait synthesis problems.

(iii.) Lately, robot motion planning research focus is shifting towards physics-aware

model predictive robot motion planning as opposed to motion planning purely

based on geometric or kinematic constraints of robots. A dynamics based

simulation can provide much more realistic constraints as compared to the

purely geometric constraints. Dynamics constraints become crucial in case

of fluid rigid body interaction problems, robots moving at very high speeds,

robots moving on treacherous terrains, etc. One major roadblock in using
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dynamics simulation in robot motion planning is the computational expense

associated with the dynamics simulations. Model simplification techniques can

be suitably applied to the robotics problems to incorporate physical constraints

into motion planning algorithms to generate physics-aware robot motion plans.
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