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IEEE 1355 is a serial bus standard for Heterogeneous Inter Connect (HIC) de-

veloped for \enabling high-performance, scalable, modular and parallel systems to be

built with low system integration cost". However to date, few systems have been built

around this standard speci�cation. In this thesis, we propose ALAX- an internetwork-

ing switching device based on IEEE 1355.

The aim of the thesis is two-fold. First, we discuss and summarize research works

leading to the architecture, design and simulation development for ALAX; we synthe-

size and analyze relevant data collected from the simulation experiments of the 4-port

model of ALAX (i.e., 4-by-4 with 4 input and output queues)- these activities were

conducted during the 2-year length of the project. Secondly, we expand the original

4-by-4 size of the ALAX simulation model into 8-, 12- and 16-port models and, present



and interpret the outcomes. Thus, overall we establish a performance assessment of

the ALAX switch, and also identify several critical design measurements to support

the ALAX prototype implementation.

We review progresses made in Local Area Networks (LANs) where traditional

software-enabled bridges or routers are being replaced in many instances by hardware-

enabled switches to enhance network performance. Within that context, the ATM

(Asynchronous Transfer Mode) technology emerges as an alternative for the next-

generation of high-speed LANs. Hence, ALAX incarnates our e�ective approach to

build an ATM-LAN interface using a suitable switching platform. ALAX provides

currently the capability to conveniently interconnect legacy Ethernet and ATM-based

networks. Its distributed architecture features a multi-processor environment of T9000

transputers with parallel processing capability, a 32-by-32 way nonblocking crossbar

fabric (C104 chipset) partitioned into Transport (i.e., Data) and Control planes, and

many other modules interlaced with IEEE 1355-based connectors. It also employs

existing and emerging protocols such as LANE (LAN Emulation), IEEE 802.3 and

SNMP (Simple Network Management Protocol). We provide the component break-

down of the ALAX simulation model based on the Optimized Network Engineering

Tools (OPNET)1. The critical parameters for the study are acceptable processor speeds

and queuing sizes of shared memory bu�er at each switch port. The performance met-

ric used is the end-to-end packet delay. Finally, we end the thesis with conclusive

recommendations pertaining to the performance and design measurement, and a brief

summary of other possible areas for further research study.

1Simulation tool developed by MIL3.
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PREFACE

This thesis is intended speci�cally as a \bible" for the ALAX research project,

which focused on the development of an ATM LAN access switch based on the IEEE

1355 serial bus standard for Heterogeneous Interconnect (HIC). Its purpose is to 1)

provide the basic background material 2) lay the groundwork that led to the network-

ing architecture and design embedded in the ALAX switch and 3) compile the di�erent

facets of research studies that spawn o� from this initiative and are briey discussed

in some other technical reports 2. The thesis will hence serve as a working reference

for researchers or any interested parties dealing with the design and simulation of an

internetworking device or aspiring to seek novel application ventures for the IEEE

1355 standard pushed by Inmos SGS-Thomson.

The research project in question lasted 2 years at the University of Maryland

at College Park. It involved several key activities notably, participation in various

standardization seminars, technology workshops, technical discussions, design devel-

opment, building many simulation model components and foremost conducting exten-

sive simulation experiments. An e�ective research team was set up to carry on the

di�erent tasks required. So in essence, the contents of this document do not reect

solely my inputs, but primarily major contributions from this team, followed then by

my complementary research investigations in relation to these preceding works. Thus

credits should be given for :

2These documents are identi�ed as references 22,23,24,25,26, 35 and 36.
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1. the ALAX architecture and design-

(a) to Dr. J. Kim of ETRI and

(b) to Mr. Man-Geun Ryu of Modacom

2. the ALAX simulation modeling and experimentation activities-

(a) to Mr. Tom Christo�li (speci�cally for creating parts of the T9000 compo-

nent),

(b) to Mr. Sandeep Rao (speci�cally for creating parts of the T9000 component

and most of the tra�c model generators),

(c) to Mr. Rajarshi Gupta (speci�cally for creating parts of the T9000 compo-

nent and some of the tra�c model generators),

(d) to Dr. J. Kim of ETRI (speci�cally for creating parts of the C104 and the

T9000 components), and

(e) to the team in general for building the entire simulation model and running

the required simulations.

3. the oversight and leadership of this research interest-

(a) to Drs. A. Makowski and P. Narayan

During these 2 years, I have collaborated in the achievements of the project's goals, �rst

through my early involvement on simulation development for creating the C104 compo-

nent of the ALAX switch, secondly in conducting some of the experiments and then by

participating in the workshops and discussions which took place. I also developed and

created a web page for the project (http://www.isr.umd.edu/Labs/LAST/indexlast.html).

And I prepared a poster for the Research Project Display sponsored by the National

Science Foundation.
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Henceforth, the �rst three chapters of this thesis provide the introductory con-

cepts and also the background material related to the LAN and the ATM networking

worlds, as found throughout the literature. Then, Chapter 43 discusses the architec-

ture and design of the ALAX switch. In the �fth chapter4, I describe the components

of the ALAX simulation model based on OPNET. Chapter 65, reports, synthesizes

and analyzes the large set of data collected for the 4-by-4 model of ALAX (i.e., with

4 input and output queues) during the 2 years of this project. Further in Chapter 76,

I provide more data and interpretations for a second set of data involving other con-

�gurations of ALAX. These con�gurations include 8-port (8-by-8), 12-port (12-by-12)

and 16-port (16-by-16) models developed from expanding the original 4-port model.

Finally in Chapter 8, I conclude the thesis with some recommended parameters for

the implementation of ALAX. I also look into some other possibilities for enhancing

the ALAX architecture, as they surfaced during the course of the project, and later on

when I carried on the expansion and simulation tasks from the original 4-by-4 ALAX

model.

3This chapter describes mainly contributions from Dr. J. Kim and Mr. Man-Geun Ryu.

4This chapter summarizes works of Mrs. Giles Charleston, Tom Christo�li, Rajarshi Gupta and

Sandeep Rao, and also Dr. J. Kim.

5The simulations reported here were ran by Mrs. Giles Charleston, Tom Christo�li, Rajarshi Gupta

and Sandeep Rao.

6The simulations reported here were ran by Giles Charleston.
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Chapter 1

Background and Summary

1.1 Introduction

\A Local Area Network (LAN) as an isolated entity by itself has limited poten-

tial and usefulness"[39]. For instance, the number of stations which can be attached

on the physical infrastructure of the LAN, is generally restricted due to technical or

performance constraints. Likewise, the geographical span of a LAN typically covers

about 1 Km. And furthermore, the resources of a single LAN are often inadequate to

meet all users' needs.

Early though, during the evolution course of LAN technology, scientists and en-

gineers addressed these problems. Henceforth, the concept of LAN internetworking

surfaced. LAN internetworking expands the coverage area of a local area network. It

o�ers to any computer user the ability to share resources beyond that available on

the user's own LAN, but also to have access to devices, services and users on other

networks.

The internetworking terminology alone describes the generic connection or inter-

connection of local and remote communication networks required to create an extended

network. With the availability of many di�erent environments (i.e., standards such as

Token ring, Ethernet, etc.), LAN internetworking thus provides the capability to con-
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Figure 1.1: Conceptual overview of internetworking

veniently interconnect various networks, so that any two stations on any constituent

networks may communicate independently of their underlying network protocols and

architectures. In the end, from a user's point of view, the resulting interconnected

set of networks appears simply as a larger network. The entire con�guration is then

referred to as an internet, while each of the constituent networks is called a subnetwork

[6,19,39,40].

During the past decade, LAN internetworking has been e�ectively and e�-

ciently achieved wherever appropriate, primarily through intermediate systems or de-

vices known as bridges and routers (see Glossary). However today, with increasing

populations of users, the use of new computing paradigms such as the client-server

paradigm, the requirements imposed by emerging high-bandwidth multimedia appli-

cations and the accessibility of computers providing greater processing power at the

desktop, existing routers and bridges have clearly been identi�ed at the roots of the

major bottlenecks across LANs [27]. In other words, the network tra�c congestion

occurs precisely inside routers and bridges. As these intermediate systems were not

speci�cally designed to handle the arising excess of tra�c, they are rapidly reaching

obsolescence.

In order to cope with these di�culties, the current trend in internetworking design
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Figure 1.2: Relationships of repeaters, bridges and routers to the OSI reference model

involves integrating a switch, based on advances in VLSI technology, to steer frames

at wire speed between stations or networks. This is not a total replacement of bridges

and routers, but rather using switches wherever necessary to alleviate slow responses

and delays [8,20,27]. Nonetheless, there is still a need for routers to e�ciently inter-

connect to the upper layers. Depending on the network con�guration, a switch can

allocate dedicated bandwidth to the user's desktop station. Thus, with switches the

network performance can increase tremendously, while the bandwidth available to any

station can be guaranteed more e�ectively.

The functionalities of a switch are very similar to a bridge. But, a switch ex-

ceeds the performance of a bridge, because the switching and forwarding of packets

are done in hardware (i.e., silicon fabric) rather than software [8,20]. Two major types

of switching-based internetworking technologies are presently in use, namely LAN and

ATM switching [20]. The former reects a short-term solution approach extending

the use of existing shared-medium network hardware and software, while the latter

positions itself as a long-term objective consistent with emerging high-speed network
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architectures, speci�cally the Asynchronous Transfer Mode (ATM) technology.

The focus of this thesis is on the combination of ATM and LAN switching, which is

referred to as ATM LAN switching. We shall be concerned with developing a standard-

compliant approach to integrate both technologies onto one common switch platform

to e�ciently interconnect ATM and LAN networks.

1.2 Motivation

ATM LAN switching comes into play in order to set up a clear and simple mi-

gration path towards the use of ATM technology across LANs. This is necessary for

several reasons, foremost among them are strategic network planning and also perfor-

mance needs.

ATM has been touted as the transport technology for the future generation of

high speed communication networks. It is a �xed-size cell switching technique that

can sustain the gigabit ranges and can support any kind of tra�c (data, video and

voice) (Chaps. 2 and 3). The attractive characteristics of ATM include the simplicity

of the technology, the improvement in packet transfer delay that it provides and most

of all, the large variety of applications that it can integrate across both LAN and WAN

seamlessly.

But before the advent of ATM, other technologies have been and are still being

used in LANs. Large LAN hardware and software are either Ethernet or Token ring-

based, and these very popular conventional technologies are expected to remain in use

for the foreseeable future. Consequently, if the ATM deployment is to become a real-

ity, prior hardware and software investments made in these traditional networks must

be protected, while the bene�cial properties of this new technology are fully exploited.

Thus, ATM must coexist with legacy LANs for some time before the widespread use

of fully ATM-based networks can become a reality.
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Hence, an ATM LAN switching platform should be of bene�cial use in current net-

works experiencing for instance, slow server responses. This can be achieved through

intermediate systems called ATM LAN access switches or edge devices.

1.3 Goals

With respect to the context exposed before, this thesis addresses the architec-

tural and performance issues relevant to the modeling of an ATM LAN Access Switch

baptized ALAX. Overall, ALAX is part of a research project undertaken at the Uni-

versity of Maryland, to develop the internetworking interface between legacy LANs

and ATM. The ALAX project comprises two major steps: an extensive simulation

phase and the construction of an experimental prototype; the former allows for an

in-depth study of the switch in order to derive qualitative design parameters, while

the latter leads to the realization of the switch.

ALAX is based on the IEEE 1355 Serial Bus Standard for Heterogeneous In-

terconnect (HIC) (Chap. 4). The use of this recently approved standard as the

communication paths interconnecting interface modules across the ALAX switch is

successfully achieved via the SGS Thomson C104 Packet Routing chipset. With the

C104, ALAX adheres to a cost-e�ective system integration requirement, modularity,

simplicity and a parallel architecture. The ATM LAN internetworking aspects of the

switch are achieved through the integral use of the LAN Emulation (LANE) protocol

suite as speci�ed by the ATM Forum, which allows an ATM network to emulate LAN

services. The LAN type being considered is Ethernet.

ALAX is the result of a joint research venture titled, \ A Standardization and

Research Project on An ATM/B-ISDN Switching Fabric System". The partners in-

volved in this enterprise included the Protocol Engineering Center (PEC) of ETRI

(Electronics and Telecommunications Research Institute), a Korean research organi-
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zation, Modacom, a Korean electronics company, and the Laboratory for Advanced

Switching Technology (LAST), an a�liated research laboratory to the Institute for

Systems Research (ISR) at the University of Maryland at College Park. As part of

this collaboration, LAST has provided the concepts, modeling, analysis and simulation

tools, while the actual hardware implementation is currently being pursued by ETRI

and Modacom. The questions under consideration include:

1. the architecture of the switch (both from the protocol and hardware standpoints);

2. the organization of the switch (several con�gurations);

3. the number of components, e.g., transputers, port interfaces;

4. the optimal size of memory (i.e., bu�er occupancy) for processing and managing

translation of packets;

5. the performance issues, such as packet transmission delay, time for packet trans-

lation; and

6. the future applications that ALAX may support

During the past 2 years, an ALAX simulation model has been created and is

now fully operational for experimenting. Several of the characteristics enumerated

above have been determined for the basic 4-by-4 original model (i.e., with 4 physical

ports where there are 4 input and 4 output queues at the C104). We have been

exploring further some other aspects with the ALAX Simulation Model, including:

implementations of 8-by-8, 12-by-12 and 16-by-16 models of the ALAX switch.

1.4 Plan of Thesis

The work is divided as follows. In chapter 2 and 3, we review the literature

on LANs and ATM. Chapter 2 briey takes a look at the evolution of LANs from
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early shared- to the current switched-access. This leads then into a concise overview

of the ATM technology and, further a summary of the internetworking strategies to

interconnect ATM-based networks and LANs. Emphasis is given to the works of the

ATM Forum and the IETF, namely LANE and Native (or Classical IP). Chapter 3

identi�es several architectures for ATM switching in the context of LANs, and surveys

some of the actual implementations, and their related properties and characteristics.

ALAX is conceptually outlined in great details in Chapter 4. From inception to de-

sign, the purpose of the ALAX switch is de�ned while its architecture is laid out along

with schematic diagrams to illustrate the physical and logical attributes of this switch.

Chapter 5 describes ALAX within the simulation modeling framework. It discusses

simulation tools and packages suitable for modeling. From a tradeo� analysis, OPNET

is selected as our simulation environment for ALAX. Then, the OPNET simulation

model for ALAX is described and explained. The system modules are identi�ed with

their respective function. In Chapter 6, the results of the simulation experiments for

the 4-by-4 ALAX model are reported for qualitative and statistical evaluations, and

some conclusions. Chapter 7 pursues with further simulations in the cases of the 8-

by-8, 12-by-12 and 16-by-16 ALAX model con�gurations. Results are presented and

analyzed. Finally, Chapter 8 of the thesis synthesizes the work done, and discusses

ideas to extend the functionalities of the ALAX switching entity such as ATM with

Token ring, MPEG and ISDN.
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Chapter 2

Evolution of the LAN Infrastructure-

A Technological Assessment

First, we present the di�erent technical and technological innovations that have

inuenced the progress of LANs. One major trend is the move from early shared-

medium access towards switched-access. Switches are looked upon as the underlying

foundations for future LANs. This prospect is put into perspective when envisioning

the emergence of high-speed networks, such as ATM, the appearance of computers

with much faster CPUs, and the growing usage and popularity of bandwidth-intensive

or delay-sensitive applications. Finally, we discuss the ATM networking technology,

the intent behind it, the bene�ts that it o�ers and most importantly the strategies to

deploy ATM into current networks, speci�cally legacy LANs.

2.1 Four Generations in LAN Networking

The LAN market has been one of the fastest growing areas of networking for the

past ten years. Shared-medium access LANs make up the predominant local enterprise

networks around the world. In the United States alone, there were 3.1 million LANs in

1993, up from 0.5 million in 1991. And this trend is likely to continue until the end of

the century [8]. Undoubtedly, the key aspect of LANs that has made this possible, is
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the fact that the underlying LAN technologies have consistently changed in adherence

with the demands of the time. We can clearly distinguish four generations in LAN

deployments.

The �rst generation is dominated by small shared-media LANs such as early

coaxial-bus topology Ethernet. These early LANs supported less than 100 users whom

were for the most part, located in close proximity to one another. These LANs came

into existence primarily to meet the communication needs among various distributed

computers appearing on the desktop. One typical topology of these LANs was cen-

tralized around mini-computers [8]. Then, came Ethernet with a bus-topology archi-

tecture based on carrier sensing access protocol with collision detection (CSMA/CD)

(see Glossary). Most of the drawbacks encountered in these LANs were ad hoc direct-

wiring, and the inexistence of appropriate cabling standards and speci�cations to allow

practical troubleshootings of the network.

Some of these issues were later resolved in the second generation of LANs where

systematic cabling systems were introduced, pioneered by IBM and AT&T. With these

new systems, manufacturers did not need to guess or choose a set of speci�cations

for cable type, length and attenuation crosstalk, thus preventing earlier poor perfor-

mances, �nancial losses, recall of products and customer dissatisfaction. Then, the

EIA (Electronics Industry Association) established the cabling standards. Star-wired

token ring with speeds of 4 and 16 Mbps, and Ethernet on unshielded twisted pair

(UTP) cabling with speed of 10 Mbps symbolize this second generation of LANs.

During the appearance of this second generation of LANs, routers and bridges were

introduced as the alternative intermediate systems to interconnect LANs.

At the third generation of LANs, with the systematic cabling systems, previously

mentioned, the access point of LANs moves into one central place, the wiring closet.

For token ring, this access point is designated as a concentrator and for Ethernet based

on UTP, a repeater. In a con�guration where there is a combination of concentrators,
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Figure 2.1: Bandwidth requirements for current applications

repeaters and possibly other functions (such as bridging) in a single chassis, this is

referred to as a hub. Each card in a hub is called a module, and for each function

performed by the hub there is a module. Intelligence is added in the form of micro-

processors programmed for speci�c management and control functions.

Another important technological development which is having a considerable im-

pact on the evolution of LANs, is switching. Because networks have been stretched to

their limits in recent years, the response times over the LANs have dramatically in-

creased. One novel method to decrease the heavy utilization of a LAN segment requires

reducing the number of stations on the network segment, then further subdividing a

segment into other subnetwork segments and �nally interconnecting the subsequent

segments through switches. This solution approach can provide a signi�cant increase

in available bandwidth to the individual stations. When a switch is used across a LAN

to forward frames, this is referred to as LAN switching. LAN switching is commonly

10



deployed nowadays, and is expected to maintain the expansion and evolution of LAN

technology through the next decade. Since it preserves continued growth of the ex-

isting conventional LAN technologies while enabling a new breed of high-bandwidth

applications like distributed databases, document imaging and video teleconferencing,

to run e�ciently (Fig. 2.1). It is also very exible, because it can interface easily in the

context of the future generation of LANs with high-speed networks in the backbone

(FDDI, Fast Ethernet, 100VG-AnyLAN and ATM).

Throughout the emerging fourth generation which is being shaped today, LANs

will continue to change vis-�a-vis the new technologies being introduced in applications

and network infrastructures. Even though there seems to be a lot of standardization

and development work going on for high-speed LANs based on shared-medium access

(e.g., Gigabit Ethernet), it is worth noting that these technologies do not resolve the

problems of slow response times and long delays, because as the load on these high-

speed LANs increases the performance levels will be very similar to the conventional

LANs. Therefore, the future of LANs is likely to be based on switching technology,

where appropriate with LAN switching or ATM switching implementation.

2.2 The ATM Factor

To get a concise view of the ATM networking technology, two key points will be

made. Primarily, one must clearly understand what is ATM and why it was developed.

This will identify what ATM can o�er with respect to LAN networking especially. And

�nally, the approaches or methods to create internetworking paths between the LAN

and ATM networks must be studied and analyzed.

2.2.1 Rationale and history

ATM was born out of the research initiatives to meet the requirements for the
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Broadband Integrated Services Network (B-ISDN). Earlier communication networks

were generally conceived and designed for one type of service. This explains in large

part why networks in use today, bear the characteristics of specialized networks. In

other words, they can only provide a de�nite service, and their network transport in-

frastructure is usually dedicated to serve the needs of that speci�c service. Seldom, are

there cases where other kind of tra�c can be easily accommodated on these networks.

For example, the wide area telephone network can transport data and voice, while no

voice can actually be routed on the cable television network, nor can television signals

be carried on the telephone system using conventional technologies.

Furthermore, the transport mechanism of these networks is either circuit or packet

switching, which have their limitations in terms of e�cient use of bandwidth. Circuit

switching statically reserves the required bandwidth prior to establishing a connec-

tion, whereas packet switching acquires and releases it as it is needed throughout the

connection. To understand the implication of these schemes, one should realize that

the telephone network is basically a circuit switching system, while the LANs operate

with packet switching methods. With circuit switching any unused bandwidth on an

allocated circuit is wasted (e.g., moments of silence during a telephone conversation).

In contrast, with packet switching this unused bandwidth may be utilized by other

packets from unrelated sources going to unrelated destinations because circuits are not

dedicated.

In sum, the existing communication networks reect service dependency, inex-

ibility and ine�ciency in terms of optimal usage of available resources. And, it is

to resolve most of the anomalies discussed above, that in the late 1970's the major

telecommunications carriers grouped in a common body of the ITU, envisioned and

proposed the concept of B-ISDN which extends the notions of the long awaited ISDN

standard. Broadband here refers to services and networks that can handle interactive

multimedia tra�c.
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The driving force behind this integrated communication architecture was to bring

voice and video in real-time to the end-users, in the form of services like video tele-

phony. Later on, data was also included as another requirement and so a multitude

of services could be delivered on a single network, e.g., interactive multimedia with

bi-directional, real-time video, voice and data tra�c. Consequently, this conceptual

network had to incorporate large bandwidth and long delays. B-ISDN was pushed

by the telephone carriers to replace the old analog phone system worldwide with a

new digital infrastructure featuring the characteristics indicated above. Overall, the

objective was to satisfy the needs and desire of modern communications by devising

a exible, service independent and e�cient network skeleton.

But the major obstacles to B-ISDN were, among many, the fact that this high-

speed network could not be implemented on top of the conventional architectures and

protocols de�ned for lower-speed networks, and by the same token, the inexistence of

a transmission technology to allow inter-operation between already existing network

standards. Thus, to make B-ISDN a reality, a mechanism was needed to move some

functions into lower layers and into hardware implementations.

In 1980, at AT&T's Bell Laboratories and France Telecom's Research Center, a

big step was accomplished towards some actual realization, and the ATM technology

was born. ATM gave at low-layer (hardware), switching, routing and multiplexing of

virtual circuits and point-to-point transmission facilities.

Subsequently, the physical layer of B-ISDN was standardized to be SONET (622

Mbps) while the network protocol layer consisted of ATM. Noteworthy, though, B-

ISDN implied ATM, but ATM did not imply B-ISDN. What this meant in actuality,

was that given its advantages, ATM could be used outside of B-ISDN, running on

non-SONET-based networks with such low speeds as 100 Mbps and 25 Mbps, and

even lower (see Fig. 2.3). Thus, ATM was seen as the glue that would seamlessly

unite both WANs and LANs.
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Figure 2.2: ATM Tra�c Classes

2.2.2 Description

ATM is a connection-oriented protocol. It combines advantages from both packet

and circuit switching transmission techniques. It multiplexes and switches cells from

multiple sources to multiple destinations. It uses cells of a �xed size of 53 bytes, with

48 bytes of payload and 5 bytes of overhead. The \word asynchronous is being used

since an asynchronous operation between a sender clock and and a receiver clock is pos-

sible. The di�erence between both clocks can easily be solved by inserting/removing

empty/unassigned packets in the information stream, i.e. packets which do not con-

tain useful information"[9,pp.61].

ATM cells are carried through logical connections known as virtual circuits. A

virtual circuit looks like a \real" connection to users, but is really made up of a set

of logical links with only local signi�cance. In the ATM cell header, virtual circuits
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Figure 2.3: B-ISDN protocol reference model

Figure 2.4: Protocols and speeds supported by ATM
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Figure 2.5: Pro�le of ATM connections

are identi�ed by a pair of �elds, the virtual path identi�er and the virtual channel

identi�er, VPI and VCI respectively. VPIs and VCIs are not addresses however. They

are temporarily assigned for multiplexing, demultiplexing and switching a cell through

each step of its journey through the network. The virtual path implied by this prin-

ciple, can be visualized as a conduit that can hold many wires, with each wire being

a virtual channel (Fig. 2.5). By de�nition, Virtual channels (VCs) and virtual paths

(VPs) are always unidirectional. When allocating VPI and VCI values to a virtual

connection, the same values are used in both backward and forward directions. A

virtual connection can be said then to consist of two virtual channels (one in each

direction). Connections are either Permanent Virtual Circuits (PVCs) or Switched

Virtual Circuits (SVCs). SVCs use dynamic routing and load balancing, whereas

PVCs are strictly static [6,9,39,40].

In ATM, each connection has a Quality of Service (QoS) which is associated with

it (Table 2.1), and negotiated during the setup of the connection [5,9]. ATM will drop

cells if necessary to meet its connections' QoS requirements, and the higher layers must

recover from dropped cells. Elaborate tra�c management schemes determine which

cells must be dropped in order to maintain QoS to which the network has committed

for all its connections. Congestion control schemes keep tra�c ow smooth to prevent

the emergence of conditions in which cells would be dropped.

In order to convert every type of tra�c into ATM cell formats, the ATM Adapta-
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Figure 2.6: Conceptual operation of ATM virtual paths and channels

QoS Class Tra�c Patterns Service Class Application

0 Unspeci�ed UBR, ABR best e�ort

1 speci�ed CBR voice, circuit emulation

2 speci�ed VBR video, audio

3 speci�ed Conn. Data data transfer

Table 2.1: Quality of service classes in ATM

tion Layer (AAL) is used. A number of di�erent AALs are available for segmentation

and reassembly (SAR) functions, depending on the speci�c needs of a connection.

AAL1 is for Constant Bit Rate (CBR) services (e.g., voice), AAL2 is for Variable Bit

Rate (VBR) service with required timing between source and destination (e.g., audio,

video), AAL3/4 is for VBR connectionless services and AAL5 is a simpler version of

AAL3/4, with less error checking and protocol overhead (appropriate for data com-

munications).

2.2.3 Emergence

ATM was conceived primarily as a communication transport across the Wide
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Figure 2.7: The ATM protocol stack

Advantages Disadvantages

Fixed-size cells allow e�cient High overhead for data transfer
switching in hardware

Multiplexes multirate multimedia Connection-oriented model
tra�c complicates connectionless service

Dynamic bandwidth management Immature technology
and allocation (e.g.,congestion problems)

No shared media: Multiple types of tra�c may not
statistical multiplexing aggregate well

QoS class support, guaranteed service

Speed scaleable

Distance scaleable

Automatic Con�guration:
Topology Discovery, Failure Recovery,
Dynamic re-routing,Load Balancing

Table 2.2: Advantages and disadvantages of using ATM
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Area Network (WAN) to run over SONET carriers with OC-3 (155Mbps) as the

most common transmission rate. However, it was determined applicable also in other

physical-layer signaling, such as TAXI in the LAN and DS-3 in the WAN [5]. A vari-

ety of standards have been developed since then for di�erent speeds (e.g., 25 Mbps).

The signaling between a host station and the ATM network is known as a User-to-

Network Interface (UNI), while the signaling between two networks is called Network-

to-Network Interface (NNI) [2,5].

The ATM Forum was created in order to facilitate the increasing presence of ATM

applications and products in the networking �eld. This body includes over 500 orga-

nizations and companies representing all sectors of the communications and computer

industries, as well as a number of government agencies, research organizations and

user groups. This consortium oversees the drafting of the standards for the develop-

ment and deployment of ATM-related products and services, and the maintenance of

interoperability across the di�erent vendors.

Even though this thesis is focusing solely on an ATM LAN access device, other

ATM products deserve being acknowledged as well. The following are some of the

most common ATM products which we can mention:

1. ATM switches

2. ATM host adapters

3. Routers with ATM interfaces

4. Hubs with ATM interfaces

5. ATM CSU/DSU

2.3 The ATM LAN Internetworking Paradigms

Even though ATM was speci�cally designed for telecommunication transport, it
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Figure 2.8: ATM Network Architecture

has been widely accepted as the ultimate solution, at least in the long-term, for cur-

rent LANs. However, many organizations are not ready to cast aside their signi�cant

installed base of traditional LANs to make room for an end-to-end ATM solution.

Nonetheless they would gladly enjoy taking advantage of the performance increase

that it can incorporate into their existing networks.

Standard bodies, computer vendors and service providers, who favor the ATM

technology, have been working actively to alleviate these constraints. A common ap-

proach is to have ATM networks in the backbone internetworking with the LANs. This

has also introduced a new concept called \virtual" LANs [2,8,29] whereby ATM end-

stations can be logically subdivided into logical LANs for security and administrative

reasons. With these ATM LAN architectures, networks can migrate smoothly from

low speed to high-speed connectivity, and grow from few users to many users without

congestion and disruption. This can help keeping the current legacy LANs operating

at greater throughput, while giving network managers the convenience of slowly mov-

ing towards ATM networks. For example, an ATM LAN edge device like ALAX, with

Ethernet ports o�ers the advantage that each Ethernet port can use Ethernet's full 10

Mbps bandwidth potential, while exploiting ATM's non-shared media.
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2.3.1 LAN Emulation and Classical IP over ATM

Two completely di�erent standards have been de�ned for integrating legacy

LANs with ATM networks. The ATM Forum has published its LAN Emulation ver-

sion in January 1995, but a full year earlier in January 1994, the Internet Engineering

Task Force (IETF) proposed its own method of running IP tra�c over ATM networks

[43,44]. This IETF speci�cation is known as \Classical IP and ARP over ATM" and

labeled RFC 1577. It is intended to make IP run over ATM as e�ciently as possi-

ble. Along with RFC 1577, IETF has also developed RFC 1483, which de�nes the

encapsulation of IP datagrams directly in AAL5. The ATM Forum released its long

awaited LAN Emulation speci�cation, hereafter referred to as LANE 1.0 . Overall,

both approaches enable the use of existing LAN applications over an ATM network

without modi�cation. The key di�erence between the two approaches is that Classical

IP over ATM is focused on IP networks only, while LANE is not limited to a single

protocol. LANE supports both Ethernet and Token Ring networks, as well as the IP

protocol and network operating systems such as Netware1 and Windows NT2[44].

LANE is the migration technology that lets applications requiring features unique

to legacy protocols run on ATM. It is essentially a MAC layer speci�cation that allows

the ATM fabric to emulate logical Ethernet or Token Ring segment. It transparently

interconnects legacy LANs, performing protocol conversion, address resolution and

requiring multicast/broadcast delivery. LANE is an important feature in the LAN-to-

ATM migration phase for two major reasons:

1. It allows an ATM network to be used as a LAN backbone for hubs, bridges,

Ethernet switches, and the bridging feature in routers.

2. It allows end-stations connected to legacy LANs to communicate through an

1Software product developed by Novell.

2Software product developed by Microsoft.
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Figure 2.9: LAN Emulation architecture

ATM LAN hub/bridge/switch without requiring tra�c to pass through a more

complex device such as a router.

LAN Emulation does not replace routers or routing, but rather provides a method of

transparently interconnecting legacy LANs. Since almost all LAN protocols depend on

broadcast or multicast packet delivery, an ATM LAN must provide the same service.

LAN Emulation uses the concept of \virtual" or emulated LANs (ELANs) to allow

devices connected to ATM to �nd and communicate with one another. It coordinates

the set up of SVCs on demand and multiplexes LAN tra�c on existing SVCs with

an ATM end point. LAN addresses must be resolved to a destination address and

an ATM address for the terminating switch, because ATM uses a 20-byte addressing

scheme, while Ethernet and Token ring both use a 48-bit MAC address to identify sta-

tions. Furthermore, since ATM is connection-oriented, packets go only to the stations

to which they are addressed. Ethernet on the other hand, is connectionless with pack-

ets going to all stations on the network but being acknowledged only by the station

to which they are addressed. LANE typically requires four entities in order to run:

LAN Emulation Clients (LECs), a LAN Emulation Server (LES), a LAN Emulation

Con�guration Server (LECS) and the Broadcast and Unknown Server (BUS) [43,44].

LANE follows the client-server model, in which multiple clients connect to the

LANE service (LES) components. LANE clients (LECs) are typically implemented
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Figure 2.10: LAN Emulation Protocol Stack

as software on adapter cards, routers or ATM LAN edge devices/switches. The LEC

maps the MAC addresses of all known LAN stations to known ATM virtual circuits.

If a LAN PDU's (Protocol Data Unit) destination is local, that is, within the LANE's

immediate domain, LANE forwards the packet locally. Otherwise, if the destination is

a subnetwork across the ATM network, the client LANE interface converses with the

LANE server to request an SVC, perform address resolution, then sends the packet

over ATM to the destination address.

A LAN Emulation Server is at the heart of the ELAN and basically controls com-

munication between stations on the ELAN. Every ELAN must have its own LES. LES

builds and manages an address table that matches the MAC address of each device

on the network with the ATM address. LES keeps a connection to every LEC in the

ELAN.

The LECS resolves MAC addresses and ELAN numbers to help a LEC �nd its

proper LAN Emulation Server. If there are several ELANs, there must be a LECS.

Only one LECS is needed for any ATM network, no matter how many ELANs are

contained in that network. LECS identi�es the type of each ELAN and the where-

abouts of its LES.

A BUS is in charge of receiving broadcasts and multicasts, and forwarding them

to the appropriate stations. This is necessary since ATM being point-to-point, does
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Figure 2.11: Control connections in LANE operation

Figure 2.12: Data connections in LANE operation

not know how to handle broadcasts and multicasts. BUS also helps the LES send

messages to stations unknown to the LES.

The LAN service components can be distributed among multiple switches or

routers across the network to support multiple emulated LANs, or centralized in a

central controller.

LANE can run on top of two standards: User-Network Interface (UNI) 3.0 or UNI

3.1 (UNI 3.1 is the updated version of 3.0). The UNI speci�cations basically de�ne

the way in which switched virtual circuits (SVCs) are established. Devices register

their ATM addresses with a switch using UNI speci�cations. This allows the switch to

correlate the device address with a port number. LEC, LECS and LES must register

with UNI before they can �nd each other and participate in LANE.
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RFC 1577 or Classical IP and ARP Over ATM, de�nes the ATM address resolu-

tion protocol to map IP addresses to ATM addresses within a logical IP subnetwork.

A router must be used for communications outside of a subnetwork. For networks

running only IP, as in the case of UNIX-based stations and IP routers, Classical IP is

arguably more e�cient than the ATM Forum's LANE. In a mixed network, with IP

on Ethernet and ATM for example, routers with ATM interfaces can be employed to

translate between protocols, although LANE allows the use of cheaper Ethernet-to-

ATM switches in place of the more expensive routers. Another advantage of LANE is

that the speci�cation supports multicast, while RFC 1577 currently does not. How-

ever both methods need routers when communicating between subnetworks or LAN

segments.

2.3.2 Multi Protocol Over ATM

MPOA (Multi Protocol Over ATM) is the next major internetworking protocol

that is being considered by the ATM Forum. It is up for completion in early 1997.

In many respects, MPOA takes o� where LANE �nished. The goal is not for MPOA

to replace LANE, but for LANE to evolve into MPOA. MPOA can be considered an

evolution of LANE because MPOA operates at both layer 2 for bridging and layer

3 for routing, while LANE operates by bridging at layer 2. Since MPOA is a far

more ambitious and complex proposal than LANE, it is expected to overcome some

of LANE's limitations. For instance, MPOA provides direct connectivity anywhere in

the ATM cloud, while LANE relies on routers to connect subnetworks. LANE was

intended to hide ATM's QoS from the legacy application, while MPOA will partially

expose ATM QoS.

The work on MPOA involves close assimilation with LANE. For example, MPOA

will utilize LECS, which allow hosts to automatically con�gure. Since it was devel-

oped speci�cally for LANE, the ATM Forum has made some changes into the LECS
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speci�cation in order to make the de�nition more general so it can be adapted to

MPOA. MPOA also involves the contributing e�orts of the IETF, since it will pursue

work done by the IETF's Routing Over Large Clouds group, in particular the NHRP

(Next Hop Resolution Protocol) and Multicast Address Resolution (MARS), a means

of doing IP multicast address resolution over ATM.

The guiding concept behind MPOA is the separation of switching and routing

through the use of a route server. Switching based on dedicated silicon is fast and

cheap. The route server is software running on an inexpensive workstation. When a

switch receives the �rst packet, it sends an address query to the route server, which

returns the necessary routing information to a cache in the edge device. Subsequent

packets are forwarded along without any further processing. A router in comparison

examines every packet it receives, and is thus slower despite being more expensive.

2.4 Summary Note

The LAN world has considerably changed from what it was ten years ago. And

most of these changes were forced by the ine�ciencies and aws experienced within the

current legacy LAN architectures combined with the novel improvements introduced

by advances in technology. These LANs were for the most part shared-medium based.

As ATM is projected to be the data transport infrastructure for future LANs,

there is an immediate need to interface ATM with these existing legacy LANs in order

to protect the prior investments in shared-medium LAN technology. Thus, using a

switch to interconnect these networks in question seems the appropriate solution. In

the next chapter we look at some of the switching architectures for ATM in the context

of LANs.
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Chapter 3

ATM Switching for the Network Infrastructure

We survey several architecture designs involved when considering ATM switches.

We outline the key factors that interplay in the optimal organization of these switches.

Finally, we briey address the performance characteristics of an ATM switch.

In the description of ATM switching, attention will be paid in this chapter only

to the \transport" part of the switch, also called the transport network, and not to

the \control" part of the switch, responsible for handling the signaling functions [9].

The transport network is de�ned as all physical means which are responsible for

the correct transportation of the information from an ATM sending device to an ATM

receiving device, within the QoS speci�cations of ATM. This transport network mainly

performs functions located in the user plane of the protocol reference model in Fig. 2.3

. The control part of the switch is that which controls the transport network. It, for

instance, decides which input device to connect to which output one. This decision is

based upon incoming signaling information or set by an operator on a semi-permanent

basis. The control network mainly performs functions located in the control plane of

the protocol reference model in Fig. 2.3 [9,30].

3.1 Switch Categories

ATM switches operate between ATM networks themselves, and also across the
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other popular types of networks used in the corporate, education and research envi-

ronments. They can be classi�ed into the following: Carrier, Enterprise/WAN and

Campus/LAN [2,5,43,44].

Carrier switches provide services similar to a telephone company, in which the

customer has no equipment on site. The switch can be made fully redundant (pro-

cessor and fabric). The internal switching capacity is very high (up to 10 Gbps).

Physically, the switches are kept in a central o�ce within rack-stack con�gurations.

They are large in size and they support WAN and SONET interfaces such as T1/T3

or DS1/DS3, and the OC-family, generally over single mode �ber and copper.

Enterprise networks are wide-area and metropolitan-area oriented, o�er some re-

dundancy and support interfaces to WAN signaling such as T1/E1/DS1, T3/E3/DS3,

TAXI with single mode �ber, coaxial and copper. An Enterprise switch is often used

as a carrier edge node, the point of access to carrier network.

Campus/Local ATM switches are LAN oriented, have less switching capacity,

processing power and ports (4 or more). Furthermore they are physically smaller and

much less expensive than carrier switches. Campus switches interconnect to LANs

such as Ethernet, Token ring and FDDI. They can also provide for example DS3,

TAXI and SONET interfaces over multimode �ber, coaxial, copper and UTP. Fea-

tures such as LAN Emulation and Virtual LANs are included. In sum, there are three

basic types of ATM switches:

1. Carrier (expensive, redundant high switching capacity)

2. Enterprise (WAN/MAN, some redundancy, single mode �ber)

3. Campus/Local (cheaper, legacy LAN interfaces, multimode �ber).
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Figure 3.1: General structure of an ATM switch

3.2 Anatomy of an ATM switch

An ATM switch is essentially a connection-oriented device that functions at the

ATM layer, to send and route ATM cells between sources to destinations. Unlike most

packet switches, ATM switches are not store-and-forward switches, thereby reducing

critical delays in the node. However, many ATM switches still contain input and/or

output bu�ers for tra�c management purposes.

The core of an ATM switch is the switching fabric (silicon). The general structure

of an ATM switch is illustrated in Fig. 3.1 . All of the per cell processing functions are

performed in hardware by the input controllers (ICs), the switch fabric and the out-

put controllers (OCs). The control processor is required only for higher-level functions

such as connection establishment and release, bandwidth allocation, maintenance and

management. The control processor may communicate with the input and output

controllers either by a direct communication path or via cells across the switch fabric.

All cells have their VCI translated by the input controllers before being submitted

to the switch fabric. This operation is performed by table lookup on the incoming

VCI in a connection table. The connection table may also contain a routing �eld to
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specify the output port of the switch through which the virtual connection is routed.

Other information may be included in the table on a per connection basis such as the

priority, class of service and tra�c type of the connection.

In an ATM switch, cell arrivals are unscheduled so that a number of cells from

di�erent input ports may simultaneously request the same output port. This event

is referred to as output contention (or conict). A single output port can transmit

only one cell at a time. Thus, one cell must be accepted for transmission and any

other simultaneously requesting that port must either be bu�ered or discarded. The

location of these bu�ers has a major impact on the switch's overall performance, and

greatly a�ects the complexity of the switch fabric. If bu�ers are not located at every

point where contention occurs, a contention resolution technique is required to detect

contention and to direct cells that can not immediately be handled, into the bu�ers.

The topology of the switch fabric, the location of the cell bu�ers, and the con-

tention resolution technique are the most signi�cant aspects of an ATM switch design.

3.3 Switching Fabric

The switch's fabric structure is an important consideration in any ATM switch

hardware design. It a�ects the cost, performance, capacity, growth, capability and

complexity of the switch design. Many alternative structures of switch fabric have

been recommended in the literature. A simple classi�cation of switch fabric design

that includes most of the proposed approaches is shown in Figure 3.2 .

Most switching fabrics are composed of patterned collections of identical basic

switching components called switching elements or switching building blocks, inter-

connected in a speci�c topology. Thus, a switch fabric is de�ned when its topology

is determined and when the basic switching building blocks are de�ned. A switching

element is frequently implemented within an integrated circuit while a switch fabric
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Figure 3.2: Classi�cation of switch fabrics

requires one or more circuit cards.

3.4 Survey of Switch Fabric Architectures

The fundamental models for switch fabric architectures are: Time Division and

Space Division architecture. Most designs implemented in ATM switches derive from

one of these models or a combination thereof [5,30].

3.4.1 Time Division

Time division switching involves the partitioning of lower-speed data streams

into pieces that share a higher-speed data stream with other data pieces. The individ-

ual pieces or time slots are manipulated by a control logic to route data from input to

output [39].

A switch fabric based upon time division, allows all cells to ow across a single

communication highway shared in common by all input and output ports (network
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interfaces). This communication highway may be either a shared medium such as a

ring or a bus, or a shared memory. The throughput of this single shared highway

de�nes the capacity of the entire switch fabric, and therefore sets an upper bound on

the capacity for any particular implementation beyond which it can not grow.

For the construction of small switches with a capacity up to a few Gbps, time

division can be a exible technique. Access to the bandwidth can be arbitrated dy-

namically among the switch ports on a demand basis. This supports the e�cient

multiplexing of interfaces with widely di�ering access rates. The advantages of a time

division switching architecture are that it is simple and inexpensive for a small to a

medium number of ports, and contentionless given that the aggregate port capacity

does not exceed the switch's capacity. Its chief disadvantage is that it does not scale

well for adding ports. Because more ports will quickly exceed the capacity of the entire

switch, introducing port contention and exceeding bu�ers, thus reducing performance.

Shared memory designs have been reported operating with a total capacity of up

to approximately 5 Gbps. Prelude [11] from the French CNET was one of the �rst

ATM research projects. A number of manufacturers have developed a shared memory

switching element as a single chip or a small chipset including Alcatel , the European

RACE collaborative research program, Hitachi and Toshiba [1,11,30]. These devices

have been built to serve in switch modules within a larger switch design.

Shared medium designs with a total capacity of up to about 10 Gbps have also

been implemented. Several manufacturers have developed a shared medium switching

element as a single chip or a small chipset e.g. Alcatel, the Atmospheric ring switch

from the RACE research program and the ATOM switch from NEC [1,30].

3.4.2 Space Division

Space division switching was originally developed for the analog environment
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Figure 3.3: Switching fabric architectures based on Time division switching

and has been carried over into the digital realm. The fundamental principles are the

same however. As its name implies, a space division switching fabric is one in which

the communication paths that are set up are physically separate from one another (i.e.

divided in space) [5,39].

Hence, contrary to time division where a single communication highway is shared

by all input and output ports, in space division a plurality of paths is provided between

the input and output ports. These paths operate concurrently so that many cells may

be transmitted across the switch fabric at the same time. Thus assuming that each

path has the same bandwidth, the total capacity of the switch fabric is the product of

each path's bandwidth and the number of paths that on average can transmit a cell

concurrently. The upper bound on the total switch capacity is therefore theoretically

unlimited [30]. In practice, nevertheless, it is restricted by physical implementation

constraints such as device pin-out, connector restrictions and synchronization consid-

erations which altogether limit the size of the switch fabric.

The plurality of paths in the switch fabric requires a routing function in order to

select a path to the appropriate output port for each cell. Either a self-routing or a

label-routing technique may be employed.

In the self-routing approach the switch fabric is constructed from a self-routing
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interconnection network of switching elements. Each input controller on the switch

pre�xes a routing tag in the header of every incoming cell using the same table lookup

mechanism it uses for VCI translation. The properties of a self-routing interconnection

network permit each switching element in the switch fabric to make a very fast rout-

ing decision simply by inspecting the routing tag. Each cell will arrive at the required

destination regardless of the switch port at which it enters. The majority of switch

designs based upon a space division switch fabric employ a self-routing scheme.

In label routing, the VCI (label) is used to index routing tables within the switch

elements of the switch fabric. The label-routing approach permits a simple implemen-

tation of multicast operation, but requires a large number of routing and translation

tables to be maintained within the switch fabric. In some switch designs, self-routing

for point-to-point tra�c has been combined with label-routing for multicast tra�c [30].

Because a space division switching architecture allows multiple cells owing through

concurrently, the switch fabric is subject to the possibility of conict between cells re-

questing the same path or output port. This conict is resolved by a contention

resolution scheme, or by introducing cell bu�ers at every potential point of conict.

Blocking refers to contention for a link occurring inside the switch fabric. Contention

for the output ports of the switch fabric may still occur despite the switch fabric itself

being nonblocking.

In general, there are several types of interconnection networks for a space division

fabric. These may divided into two basic classes: single- and multiple-path networks.

A single-path network has a unique path through the interconnection network between

any given input and output pair. A multiple-path network has a number of di�erent

paths available between any input and output. Both classes of space division fabric

types can be implemented within a single- or multi-stage switching con�guration.
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Figure 3.4: Single-path switching architectures based upon Space division (1st illus-
tration)

Single-Path Networks

The single-path interconnection networks most often proposed for use in

ATM switch designs are crossbar, banyan, delta and batcher-banyan [3,9,26,30,31,41,45].

The term \crossbar" derives from a particular design of single-path, nonblocking

fabric developed for analog telephony. It used the topology of Fig. 3.5(a) in which

each active element, or crosspoint, was a single electrical contact. Currently, the term

is used to describe any single path nonblocking network that has a complexity that

grows as a function of N2 (where N is the number of input and output ports). From

this point of view, the topologies of Figs. 3.4, 3.5 and 3.6 are all crossbar designs,

di�ering only in the use of the input and output ports. The fully interconnected net-

works of Fig. 3.4 are also known as networks with N2 disjoint paths [4,5,30].

Since crossbar designs bear a complexity in paths or crosspoints that grows

quadratically with the number of ports, they do not scale well to large sizes. They

are however, very useful for the construction of nonblocking, self-routing, switching

elements and switches of modest sizes. In the literature several switches that use this

crossbar architecture have been reported. By interleaving the distribution and concen-

tration stages of Fig. 3.4(a), the Christmas Tree switch uses less than N2 paths [45].

The Knockout switch is one example of the structure of Fig. 3.4(b) [30]. A matrix
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structure with cell bu�ers in each of the crosspoints is used in the switch designs from

Fujitsu, and in the RACE program [26,30].

The banyan network, as originally de�ned, covered a large class of interconnection

networks that had only a single path between any input and output. Currently the

term \banyan" is applied to a family of self-routing networks constructed from 2x2

switching elements with a single path between any input and output pair [12]. The

banyan network has a complexity of paths and switching elements of order N log N.

This makes it more suitable than the crossbar structure (of order N2) for the construc-

tion of large switch fabrics. Unfortunately, the banyan is a blocking architecture and

its performance degrades rapidly as the size of the network increases. Noteworthy, the

degree of blocking is related to the speci�c combination of destination requests present

in the incident tra�c. The performance may be improved if switching elements larger

than 2x2 are employed. This leads to the class of delta networks.

Delta networks are self-routing multi-stage interconnection networks with a single

path between any input and output. Although the performance of a delta network can

be signi�cantly better than that of banyan networks, it is still a blocking network. Its

performance degrades as it increases in size, and it is sensitive to the incident tra�c

pattern [30].

A banyan design will o�er nonblocking performance if the incoming cells are

sorted in order based upon their output port requests. The batcher network can sort

an arbitrary set of cells into order based on their routing tags and grouped the active

cells together. Thus the combination of a batcher and a banyan network will o�er

nonblocking performance if some means is provided to prevent multiple cells from si-

multaneously requesting the same destination [12,26].

Although the individual 2x2 sorting elements of the batcher-banyan network are

simple to implement, a large batcher-banyan network is not easy to partition into in-

tegrated circuits and maintaining synchronization across the entire structure becomes

36



Figure 3.5: Single-path switching architectures based upon Space division (2nd illus-
tration)

increasingly di�cult with size. Additionally, the growth of a batcher network is of or-

der N(log N2), so many more switching stages are required in batcher networks than

in banyan networks. The batcher-banyan network is useful for the construction of

nonblocking switch fabrics of much greater size than can be achieved with a crossbar

design [30].

The batcher-banyan interconnection network was �rst proposed in the Starlite

switch design from AT&T [30]. The construction of a 256x256 Batcher-banyan net-

work (requiring 36 sorting stages in the Batcher network and eight switching stages in

the banyan network) has been reported by Bellcore [12,26,30]. It is being implemented

in a set of �ve chips and forms the switch fabric of the Sunshine switch. Most of the

interest in the batcher-banyan switch fabric has come from the research community

rather than from equipment manufacturers.

Multiple-Path Networks

Multiple-path networks are used to overcome the limitations and improve

the performance of a single-path network, or to construct large switches from switch

modules. Some of the multiple-path interconnection networks suggested for switch
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Figure 3.6: Single-path switching architectures based upon Space division (3rd illus-
tration)

designs are: augmented banyan networks, switch planes in parallel, Clos networks,

recirculating networks and load sharing networks [30].

In the augmented banyan network, multiple paths are introduced into a banyan

or delta network by adding multiple stages of switching elements. The extra stages

can be used to distribute the tra�c evenly across the banyan (or delta) network, to

remove the sensitivity of the network to the incident tra�c pattern, and to improve

the network's performance.

Switch designs that propose this approach include: Turner's switch [4] and also

the MARS switch [31,41]. Extra switching elements and interconnection links may

also be added between the stages of a banyan or delta network to provide redundant

paths for fault tolerance and to improve the performance.

Another method for introducing multiple paths into an interconnection network

is to connect multiple switch planes in parallel. This technique o�ers both increased

reliability and improved performance, since the loss of a complete switch plane will

reduce the network's capacity but not the connectivity [3,30].

Fig. 3.8(a) shows the two-sided Clos network. A Clos network built with non-

blocking switch modules will have m paths between each input-output pair, and will

be strictly nonblocking if m > 2n � 1. Fig. 3.8(b) illustrates the Clos network in
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the folded form, in which case, all of the interconnection links are bidirectional and

cells pass through the �rst stage of the folded network in both directions. So, the

�rst stage performs the functions of both the �rst and last stages of the two-sided

structure. The Clos structure has been proposed in a number of very large switch

designs. The two-sided structure is used in the large switch proposals from Bellcore,

the Generalized Knockout switch from AT&T and the NEC ATOM switch. Examples

of switch designs using a folded structure can be found in [1] from Alcatel and in [10]

from the RACE program. The ATOM switch and the Alcatel projects involve the

implementation of large switch prototypes based on a Clos structure of interconnected

shared medium or shared memory switching elements.

Another approach for providing multiple paths through an interconnection net-

work of switching elements is to recirculate cells that have failed to reach their destina-

tions. Some recirculating designs require that the size of the interconnection network

be increased to accommodate the ports required for recirculation [30]. Other designs

allow cells to exit from the network's internal stages [26,41].

Finally, a multiple-path network may be achieved by adding extra paths to in-

terconnect switching elements in the same stage of a banyan (or delta) network while

preserving the self-routing property [12,41].

3.5 Queuing Disciplines

A switch's bu�ering mechanism plays an important role as does a switch's

throughput or the type of switching fabric employed. Bu�ers are needed to hold

cells in the event the switch fabric can not process a particular cell to its requested

destination. Holding cells in a bu�er can increase delay, but not bu�ering cells (i.e.,

dropping them) can decrease the throughput. The smaller the requirements for cell de-
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Figure 3.7: Multiple-path switching architectures based on Space division (1st illus-
tration)

Figure 3.8: Multiple-path switching architectures based upon Space division (2nd
illustration)

Figure 3.9: Multiple-path switching architectures based upon Space division (3rd il-
lustration)
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Figure 3.10: Classi�cation of bu�ering strategies

lay variation (jitter) and cell delay, the smaller the bu�ers should be. The smaller the

requirements for cell loss the larger the bu�ers should be. Bu�ers provide a convenient

place to apply tra�c management schemes to examine and select cells for tagging or

dropping. They can be arranged in multiple priority queues according to tra�c type.

They can also be attributed per port, per group of ports, or one large bu�er allocated

per connection.

Mainly two di�erent bu�ering strategies are possible. These are determined by the

physical location of the bu�ers, namely within the switch fabric (internally bu�ered)

or outside of it (externally bu�ered). Internal bu�ering is usually employed between

switch elements of a matrix architecture, while external bu�ering occurs either before

or after cells pass through the switch fabric, and thus can exist at input or output

ports (i.e., input and output queuing).

41



3.5.1 Internal Bu�ering

In this approach, with cell queues located within the switch fabric, all cells be-

longing to the same virtual connection must travel the same path across the switch

fabric, if sequence errors are to be avoided. This implies that if a multiple-path switch

fabric is used, a path across the switch fabric must be selected for each virtual connec-

tion at call setup. To do this, the switch must keep a record of the estimated tra�c

load on each link within the switch fabric and base its call-acceptance decision on the

estimated load across each possible path. For a large switch, this will complicate the

call establishment process signi�cantly. The alternative is to allow each cell to take

any path through the switch fabric and re-sequence the cells on exit from the switch

[5].

A switch formed from a single shared memory switch module (Fig. 3.3(a)) may

be considered as internally bu�ered with respect to its physical construction although

it o�ers the performance of an output bu�ered switch. The shared memory design

permits a single bu�er to be shared by many input and output ports. This sharing of

bu�ers substantially reduces the number of cell bu�ers required to support a given per-

formance. This is a tremendous advantage if the cell bu�ers are implemented within

a custom integrated circuit (i.e., there is limited space available for bu�ers). However,

when congestion occurs, the sharing of the bu�ers between many ports can make it

more di�cult to locate the source of the congestion by monitoring queue occupancy.

One class of internally bu�ered designs locates the bu�ers on the input side of

every switching element. These designs generally adopt a banyan (or possible delta)

network for the switch fabric and are often referred to as bu�ered banyan designs

[10,31]. In this class of design the switching element is simple to construct, but the

performance su�ers from blocking within the switch fabric. Internally bu�ered designs

with higher performance are obtained if a multiple-path, multi-stage switch fabric is

employed with shared memory or output bu�ered switch modules [31]. Many large
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switch designs are based on this idea.

3.5.2 External Bu�ering

Externally bu�ering allows the cell queues to be located close to the switch

ports that they serve. Each switch port may monitor its cell queues and perform load

monitoring to support congestion control. Furthermore, each queue may be separated

easily into multiple classes of service, and each port controller may implement a dy-

namic scheduling policy based on queue occupancy to best serve the delay and loss

requirements of each tra�c class. The absence of cell queues within the switch fabric

eases the support of multiple levels of priority across the switch fabric to support the

di�erent classes of tra�c.

In this context, if a multiple path switch fabric is employed, a random selection be-

tween the alternative paths may be implemented to distribute the tra�c evenly across

the switch fabric. Hence, the switch need not keep a record of the estimated tra�c

load on every internal link within the switch fabric. This considerably simpli�es the

call acceptance process. Cells on the same virtual connection will not su�er sequence

errors, even if they take di�erent paths across the switch fabric, as there are no bu�ers

within the switch fabric.

With the external bu�ering strategy, bu�ers can be organized as input, output,

shared input, shared output or shared input-output queues.

Input Bu�ering (Queuing)

In an input bu�ered scenario, the bandwidth between each input port and

the switch fabric, and between the switch fabric and each output port, need only be

slightly greater than that of the port itself. This permits the input queues to be located
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separately from the switch fabric, simpli�es the implementation of the switch fabric,

and avoids the necessity for bu�ers operating at some multiple of the port speed.

Input bu�ering or queuing is easiest to implement, but it can severely degrade

performance due to Head-of-Line (HOL) blocking, where a blocked cell at the Head-

of-Queue (HOQ) prevents cells with unblocked paths from proceeding. Nevertheless,

the HOL problem can be alleviated by mixing with a carefully chosen output queuing

strategy, or with other operations such as windowing, and so does appear on some

switches.

Input bu�ers are more likely to appear on larger switches, particularly ones which

have direct interfaces to other protocols. A large nonblocking switch with FIFO input

bu�ers, saturated with uniform random tra�c, has a throughput of about 58 percent

compared to that of the ideal output bu�ered switch [5,10,31]. The performance may

be improved by a technique known as input queue bypass if access is permitted to

other cells in the input queues besides the cell at the HOQ. This technique nonethe-

less complicates the implementation of the input bu�ers and requires a more complex

contention resolution scheme.

Output Bu�ering (Queuing)

Output queuing has been shown to be optimal, with shared output queu-

ing providing the optimal delay-throughput performance. Most switches use output

bu�ers, the majority of which are shared. In an ideal output bu�ered switch every

output port must be able to accept a cell from every input port simultaneously. In

anything larger than a small switch module, it is unreasonable to expect the switch

fabric and output bu�ers to have su�cient capacity to achieve ideal output bu�ered

operation. Thus, in an output bu�ered switch of reasonable size, there is always the

possibility that more cells will request access to a particular output port than the
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switch fabric or output bu�er can support. In this case, the excess cells must be dis-

carded.

It is the switch designer's task to ensure that the cell loss probability is su�cient

low for all reasonable patterns of incident tra�c and acceptable operating loads. An

output bu�ered switch can be much more complex than an input bu�ered switch be-

cause the switch fabric and output bu�ers must e�ectively operate at a much higher

speed than that of each switch port to reduce the probability of cell loss.

A single-stage, shared memory design (Fig. 3.3(a)) may be considered as output

bu�ered from the viewpoint of its performance. It has a single bu�er shared by all

input and output ports. A switch with dedicated output bu�ers has a separate bu�er

on each output port (Fig. 3.11). Each output bu�er is shared by all input ports wish-

ing to access that output port. Output bu�ered switch designs based upon a matrix

interconnection network (Fig. 3.5(a)) use crosspoint bu�ers. A separate crosspoint

bu�er is required for each input-output pair resulting in N2 crosspoint bu�ers.

Input and Output Bu�ering (Queuing)

An input and output bu�ered switch combines the two approaches of input

bu�ering and output bu�ering. Cell loss within the switch fabric of an output bu�ered

switch due to transient tra�c pattern is undesirable. Therefore, instead of discarding

cells that can not be handled during the current time slot, they are retained in input

bu�ers. The input bu�ers need not be large to substantially reduce the probability of

cell loss for reasonably random tra�c, even at very high loads.

Recirculation Bu�ering (Queuing)

In this approach, output port contention is handled by recirculating those
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Figure 3.11: Illustration of external bu�ering strategies with respect to the switch
fabric

cells that can not be output during the current time slot back to the input ports via

a set of recirculation bu�ers. It o�ers the performance of an output bu�ered switch,

but will discard cells in the switch fabric if more cells require recirculation during

a particular time slot than the recirculation ports. Recirculation may cause out-of-

sequence errors between cells in the same virtual connection unless steps are taken to

prevent it.

3.6 Contention Resolution

Given the context of queuing disciplines discussed above, a contention resolution

scheme is a relevant design feature to improve the performance of a switch. A simple

classi�cation of contention resolution methods is shown in Fig. 3.12 .

In an internally bu�ered switch, contention is handled by placing bu�ers at the

point of contention, while in an externally bu�ered switch some practical contention
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Single- Multi- Broadcast Time
Stage Stage Matrix Division
Fabric Fabric Bus

Fabric Blocking
Probability Zero Medium Zero Zero

Cell Replication
Complexity Fair High Low Low

Scaleability
(fabric speed) Good Fair Fair Poor

Scalability
(number of ports) Poor Good Fair Poor

Bu�ering in Fabric Likely Required Likely Unlikely

Input Bu�ering No Possible Possible No

Cost to Produce Low Medium High Low

Table 3.1: Comparison of some switch fabric architectures

resolution approach is needed. Three basic actions can be taken once contention is

detected in an externally bu�ered switch: backpressure, deection, and loss. Input

bu�ered switch designs typically use backpressure from the point of contention to the

input bu�ers. Pure output bu�ered designs use a loss mechanism in which cells that

can not be handled are discarded at the point of contention. Switch designs based

upon recirculation use both deection and loss. A deection mechanism will route the

cells that lose contention over a path other than the shortest path to the requested

destination.

The decisions as to which cells to accept and which cells to reject is made by an ar-

biter. The arbitration decision may be based on cell priority, a time-stamp associated

with the cell, or it may be random. The arbiter may be centralized and implemented

externally to the switch fabric, or distributed and implemented internally within each

switching component that forms the switch fabric.

Three basic arbitration mechanisms have been proposed: ring reservation, sort

and arbitrate, and route and arbitrate. In ring reservation, the input ports are inter-

connected via a ring which is used to request access to the output ports. For switches
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Figure 3.12: Classi�cation of contention resolution schemes

that employ a sorting mechanism in the switch fabric, all cells requesting the same

output port will be adjacent to each other after sorting. Thus, an arbitration mecha-

nism may be implemented by comparing the destination requests of each cell to those

of its neighbors on exit from the sorting network. In the route and arbitrate approach,

cells are routed through the switch fabric and arbiters detect contention at the point

of conict.

spacing1

3.7 Other Issues related to Switch Fabric Architectures

A key factor in switch architecture design is blocking probability. Non-blocking

architectures guarantee an absence of internal conicts. In blocking architectures,

paths from input ports to output ports share links between stages. Virtually non-

blocking indicates a very small blocking probability in a blocking architecture.

All switches must employ bu�er management and tra�c management schemes
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to compensate for potential cell loss, so a blocking switch will not automatically per-

form worse than a non-blocking switch based solely on the blocking probability of the

architecture. Blocking performance is sensitive to switch architecture and tra�c char-

acteristics. A time division-based switching fabric, for example, can be non-blocking

provided the aggregate port capacity does not exceed the bus capacity. Space division

switch blocking probability depends on the number of paths between switch elements.

The more paths, the lower the blocking probability. If there are as many paths between

switch elements as there are input ports, then it is non-blocking. Most space-division

switches particularly of the campus and enterprise type, are virtually non-blocking.

One important consideration in ATM switch technology is scalability. Scalability

refers to increasing the number of ports, increasing the speed of the port interfaces

or increasing distances between switches; all with no major architectural or software

changes nor signi�cant performance loss. Primarily, users will be concerned with per-

formance and reliability, but issues in scaling and response to tra�c characteristics

deserve careful attention as well in selecting the optimal switch architecture.

Another design issue in ATM switching, is the maximum number of ATM ports

across the ATM switch. Currently, most campus-type switches o�er at least 16 ATM

ports and the switch providers plan on o�ering up to 64. However, none have released

a switch of that capacity yet. The more ports a switch has, the atter and more in-

terconnected the network topology can be. More ports also facilitates redundant links

for critical connections.

3.8 Performance Characterization

For the performance parameterization of a switch, switch capacity and transit

delay are the characteristics mostly promoted in the literature and the industry. And

also since they are similar factors considered in our ALAX switch design, we advocate
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them here.

Aggregate switch capacity refers to the maximum number of bits that can pass

through the switch fabric per second while aggregate port capacity is the maximum

number of bits that all ports on the switch can feed into the switch, with continuous

tra�c running on all ports at the highest supported data rate. Aggregate switch ca-

pacity and aggregate port capacity should be looked at together. If aggregate switch

capacity is less that the aggregate port capacity, then the latter becomes the upper

bound on maximum throughput. If aggregate switch capacity is greater than aggregate

port capacity, this may indicate the possibility of speed scalability of the architecture

for faster ports, or it may reveal an architectural limitation that requires increased

internal speed.

Transit delay or switch latency is the time it takes for a cell to enter, pass through

and exit the switch. Since the speed within VLSI circuits has become so fast and

reliable, the dominant delay in the network becomes the switch transit delay. Tran-

sit delay is by no means the ultimate measure on throughput, since it does not take

congestion into account. However, it establishes a lower bound for total latency over

a connection, since the total delay will be at least equal to the transit delay. Mea-

surements taken under di�erent switch load and con�gurations also have an impact

on transit delay measurements as well. Transit delay can be measured as a loop back

(in and out of the same port), or from one input port to a di�erent output port. It

can also be measured as the delay between individual cells in a stream of cells.

3.9 Summary Note

We have analyzed several architecture designs involved when considering ATM

switches. We have outlined the key factors that interplay in the optimal organization

of switches. Finally, we have briey set the grounds on the performance characteristics
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of a switch.

With respect to ALAX, the switching architecture of the fabric conforms to the

space division model, as described earlier. The switch topology follows a crossbar

format which is non-blocking in nature while the switch routing property abides to

the self-routing technique. A combination of input and output queuing is favored,

along with a backpressure contention resolution scheme.
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Chapter 4

The ALAX System: Architecture,

Organization and Preliminary Design

This chapter de�nes and describes the ALAX system. It discusses functional,

organizational and operational issues pertaining to the logical and hardware design.

The scope of the material presented extends only from the architecture to the

preliminary design of the ALAX switch. These technical aspects of ALAX 1are also

discussed in the documents titled, \Design of an ATM LAN Access Switch Based

on the IEEE P1355" and \ATM LAN Access Switch (ALAX): Protocol Architecture

(LAN Emulation Version)"[22,23].

4.1 Purpose and de�nition

The primary interest that pushed the research for the development of ALAX

is the IEEE 1355 or P1355 serial bus standard [14]. Using this new standard, and

speci�cally devices built around it, we sought to introduce new approaches and devise

novel strategies for an ATM switching fabric. Hence, in the name ALAX, A refers to

ATM, L stands for LAN, A implies Access and the X symbolizes the crossbar switch

1The system architecture and design of ALAX involved major contributions and e�orts from Dr.

Kim and Mr. Man-Geun Ryu.
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fabric upon which this switch is built. The purpose of ALAX consists primarily of

providing an interface between legacy LANs and ATM networks. While investigating

the optimal design for this switch, some signi�cant constraints include low system

integration cost and compliance with emerging standards.

Being an ATM LAN edge device, ALAX encompasses all the packet relaying and

routing functions needed to ensure reliable and e�cient end-to-end communication

between the respective ATM and LAN network interfaces (ports). It possesses also

the capability to forward packets between LANs. However, the only version developed

thus far is for interconnecting with the IEEE 802.3 Ethernet LAN types. Packet

conversion, fragmentation and reassembly between the ATM and the Ethernet worlds

are accomplished using the ATM Forum LANE standard version 1.0. At the heart of

the ALAX system resides the SGS-Thomson C104 fast packet routing switch (STC104)

[16], a communication device based on the IEEE 1355 Bus Standard. This is essentially

the switching fabric that forwards and routes packets across all the ports of the ALAX

switch.

From a functional point of view, ALAX maintains a hub architecture to allow

interface ports for other applications to be easily integrated in the future by inserting

the plug-in modules in question. This is consistent with a modular design approach.

The fragmentation and reassembly of packets inside the network interfaces of the

switch is performed with T9000 transputers. This leads to a parallel and distributed

architecture, and by the same token, a concurrent processing capability within ALAX.

4.2 System Level Architecture and Organization

The internetworking di�erences between legacy Ethernet and ATM is resolved

within ALAX by employing commercial o� the shelf (COTS) components. Thus,
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Figure 4.1: Operational context currently envisioned for ALAX
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Figure 4.2: Overall system architecture for the ALAX switch with some proposed
interfaces (reproduced from [22,23])
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ALAX complies with an open system architecture requirement. This edge switching

device is designed to operate in conjunction with an IBM PC or compatible platform

across the PCI bus. The ALAX switching device alone constitutes only one integral

component of the overall system.

There are other subsystems which participate in the operation of this access switch.

The complete ALAX system comprises primarily a Graphical User Interface (GUI), an

operating system, main control and network management functions, all of which reside

on the PC's main CPU, device drivers, the PCI bus and the ALAX switch per se. The

purpose of these subsystems is to facilitate the coordination, control and monitoring

of the operations of the ALAX switch. The whole system can basically be visualized

as a PC with the ALAX switch subsystem being a peripheral for the interconnection

of networks.

The main control functions include the system initialization (e.g. start up, boot-

ing, etc.), status reporting and recon�guration. They are required to manage all the

interface modules or adapter boards installed within ALAX. The commands issued

by these functions and the responses in return will be transmitted via the PCI bus.

The system control processor on the ALAX switch is responsible for the interaction

between the main CPU of the IBM PC and the interface modules (network ports).

So, the PCI bus will be used essentially to provide communication paths between the

system control processor of the ALAX switch and the main CPU of the IBM PC. Ad-

ditionally, the system control processor will perform control of the interface modules

(i.e., adapter boards) through its IEEE 1355 communication links.

All these functionalities mentioned above will be integrated within a Graphical

User Interface (GUI) display at the desktop for the convenience of the network man-

ager or operator. Thus, the GUI will be the end-point control interface to oversee

the operation of ALAX. While developing this GUI, the principles of good interface

design, taking into account human factors, prior knowledge and experience of the user
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will be observed.

The network management tool for the system will most likely be SNMP, this

should also be part of the GUI integration design. Since, the application of ALAX is

intended for a PC environment, the network operating system of choice is primarily

Windows NT/Windows 952. There will probably be versions of ALAX for each of

these operating systems. Finally, NDIS drivers will be distributed across the interface

modules.

Figures 4.5 and 4.7 show the networking protocol architecture environment where

the current prototype version of ALAX will be implemented. Observe that, the ALAX

switch incorporates three main and independent generic subsystems: ATM-IEEE 1355

interface module, LAN-IEEE 1355 interface module and the IEEE 1355 switch fabric.

These devices implement the lower layers in LAN and ATM networks, and there are

a bridging relay along with LANE to connect these layers [23]. It is worth noting

also that there is a packet conversion from IEEE 1355 format into MAC format and

vice versa, which occurs at this bridging relay. This is named MAC Mapping Layer

(MML) and is crucial to guarantee transparency between the IEEE 1355 and MAC

layers. MML was developed in-house by the LAST research team at the University of

Maryland. It represents a sub-layer intrinsic to the switch's internal operation.

In summary, The protocol components required for the design of ALAX in the

user plane are then LANE, Bridging relay function, IEEE 1355, MML, MAC, LAN

physical, AAL5, ATM and ATM physical. Some other protocols necessary within the

control plane, but which are not being addressed in this document, are the ATM sig-

naling and Network Management (i.e., SNMP) (see summary in Fig. 4.3).

2Software Products by Microsoft
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Figure 4.3: ALAX in LAN Emulation environment with the control and transport
protocols (reproduced from [22,23])
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Figure 4.4: Flow of control functions in the ALAX (reproduced from [22,23])

Figure 4.5: Protocol architecture environment where ALAX will be set up
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4.3 Key Functionalities inside ALAX

Before delving into the system design layout of ALAX, we �rst take a brief look

at some inherent functionalities that di�erentiate ALAX from other comparable access

switches. Aside from the adoption of a multiprocessor and modular design approach,

we can cite the ATM LAN integration solution, the internal packet conversion and

the data transport mechanisms. Studying these features, provides the opportunity to

clarify some concepts alluded in the previous paragraph, while allowing a smoother

assimilation of the system design characteristics.

4.3.1 ATM and LAN Integration

The ALAX platform relies on LANE version 1.0 (see Chap. 2) to assure that

ATM can be incorporated transparently into an Ethernet-based network with existing

hardware and physical media. LANE as deployed in ALAX is not so distinct since we

are complying with the standards. The LEC can be (another T9000 on) any of the

Ethernet ports. The other entities, such as LES, LECS and BUS, were not precisely

determined at this point of the preliminary system design. But, based on recent

updated information3, we expect these functionalities to be implemented remotely.

4.3.2 Packet Conversion

Packets in ATM and LAN network environments respectively are di�erent in

both formats and sizes. Hence, within the ALAX switch one of the main tasks will

consist in translating packets from one network port to the other. In fact, these

packets will be further converted into the IEEE 1355 format to maintain consistency

with the IEEE 1355 switching fabric implemented in the C104 chip. E�ectively, what

this amounts to is: frames from the LAN side with the IEEE 802.3 Ethernet format

3Status updates on the ALAX prototype received from Dr. J. Kim, in Korea.
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are converted �rst into IEEE 1355 format and then into ATM cells, before being sent

out to the ATM network side. A similar process occurs in the opposite direction.

However, for LAN-to-LAN communications, IEEE 802.3 packets are put into IEEE

1355 format, and then back into IEEE 802.3 format before being forwarded to the

appropriate LAN destination.

The packet conversion process inside the ALAX involves several notions such as

addressing, routing, fragmentation and reassembly. Fig. 4.6 illustrates the packet

conversion operations that take place within the ALAX switching system. One key

step necessary in the packet conversion at both types of network interfaces (i.e., ATM

and LAN) is the MML (MAC Mapping Layer). On the LAN side, this protocol simply

facilitates addressing between the switching fabric and the LAN port, while on the

ATM side, the packet which results from the MML process is LAN emulated �rst (i.e.,

LANE is performed on the packet) before being mapped into the appropriate ATM

cells and vice versa.

The main functions of MML are to perform local addressing and conversion to

IEEE 1355 packet format (Fig. 4.8). Local addressing provides the means to extract

the local address from the MAC address. A Local Addressing Look Up Table (LALUT)

is maintained. It contains all the local destination port addresses (local with respect to

the switch fabric). This local address is then matched one to one with the port number

of the C104 switch fabric chip so that the packets can be routed to their requested

destination ports. The conversion into IEEE 1355 format is necessary because all

the packets that traverse the switch fabric must be in that format. This requires

fragmentation of the MAC packets into IEEE 1355 packets at the incoming DS links

and re-constitution of the entire packets at the outgoing DS links of the destination

ports.
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Figure 4.6: Local Addressing and conversion to IEEE 1355 within MML (reproduced
from [22,23])

Figure 4.7: Packet translation/conversion within ALAX
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Figure 4.8: A detailed look at the data transport protocols implemented in ALAX

4.3.3 Data Transport with the IEEE 1355 (P1355) Serial Bus

ALAX relies on the fast data bus of the IEEE 1355 to transmit packets or sig-

nals between the T9000 transputer and the C104 chipset. IEEE 1355 is a standard

that has been developed through the works of the ESPRIT OMI/HIC Project. This

standard was proposed \to complement recent technical developments of highly in-

tegrated, low power interconnect technology implemented in high volume commodity

VLSI processes" [14,16] for chip-to-chip and board-to-board communications and \to

exploit the simpli�cations in encodings and protocols resulting from the use of rela-

tively reliable media over relatively short distances"[14,16].

The motivation for this new serial bus standard �nds its roots in the search of

modular devices for constructing high-performance systems with parallel or distributed

communications. Such a construction generally must be fast and low-latency, other-

wise it will be a limiting factor in system performance, and it must be low-cost or
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else it will dominate the system cost. It must also scale well in both performance

and cost relative to the system size, otherwise highly parallel systems will be limited

in performance or too expensive. IEEE 1355 was strategically devised to meet these

criteria whereas existing standards could not.

IEEE 1355 is appealing since it enables high-performance, scalable, modular, par-

allel systems to be built with low system integration cost. In addition, it supports

communications system fabric, provides a transparent implementation of high level

protocols and can e�ectively create links between heterogeneous systems.

Two bi-directional link protocols were born out of these IEEE 1355 or P1355 re-

search initiatives: a 100 Mbps Data-Strobe (DS) link and a 1-3 Gbps High Speed (HS)

link [14]. ALAX is based on the DS link protocol. This DS link protocol consists of

a data and strobe signals (Fig. 4.9). The data line carries the data while the strobe

line only changes state when the data remains constant. In this protocol the clock is

encoded, enabling autobauding at the receiver and asynchronous links. There are four

levels or layers, a Bit level at the lower end of the physical infrastructure, and on top

of the Bit level, the Character, Exchange and Packet levels.

The Character level PDU is a group of consecutive bits (characters) used to rep-

resent data or control information. The Exchange layer describes the exchange of

characters to ensure proper function of a link. In particular ow control characters are

used to enable tra�c ow from the link sender. This guarantees that the switching

fabric is lossless: no characters are lost internally due to bu�er overow. At the Packet

layer, a packet de�nes a sequence of characters with a speci�c order and format: a

header, which contains routing information, a payload containing zero or more data

bytes and an end of packet marker. The protocol does not indicate a speci�c packet

size. Messages are sent through the network as a sequence of packets.

A family of communication devices have been developed to support the DS link

protocol, these include a parallel DS link converter (C101) and an asynchronous packet
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Figure 4.9: The DS Link protocol

Figure 4.10: The IEEE 1355 protocol stack

routing chip (C104) by Inmos SGS-Thomson. The DS link is also used by the T9000

transputer.

Having identi�ed the activities in ALAX for packet conversion and data transport,

we are now well positioned to approach and clearly understand the design structure

of ALAX. The next section summarizes the design characteristics of ALAX as found

in [22,23].

4.4 System Design

The proposed hardware set design to implement the logical and functional at-

tributes of the ALAX switch is partitioned into three major components as indicated

earlier: the ATM-IEEE 1355, the IEEE 1355 switch matrix and the LAN-IEEE 1355

adapter boards. Because the T9000 transputer and the C104 chip play the key func-

tions inside the switch, we will describe them �rst and then proceed with the other

system components.
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Figure 4.11: Block diagram representation of the entire ALAX system hardware design
(reproduced from [22,23])
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Figure 4.12: T9000 functional block diagram (reproduced from Inmos SGS-Thomson
Technical Data Sheet)
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4.4.1 The T9000 Transputer

A transputer is a complete microprocessor integrated in a single VLSI chip.

Unlike conventional computers which execute programs sequentially, the transputer

executes programs concurrently which means that many steps of the program can be

run at once. This device can be used on its own, but its forte is in multi-processor

applications. It is easy to run many transputers in parallel, and performance increase

is directly proportional to the number of processors used. This is not the case with

conventional processors. Internally, the transputer uses reduced-instruction-set com-

puter (RISC) architecture. This allows high performance on a small silicon area. The

average operating speed is about 10 million instructions per second [28].

The T9000 is the second-generation of transputers from INMOS. It has a 32-

bit pipelined processor with a 64-bit FPU and 16 Kbytes of cache. There are four

bi-directional serial data links and an autonomous Virtual Channel Processor (VCP)

allowing e�cient T9000-to-T9000 communications [28].

The T9000 has several improvements over the previous generation of transput-

ers in both performance and functionality. Improved performance has been gained

through an increase in clock speed (50 MHz design), the implementation of an on-chip

cache and a pipelined super scalar architecture. Improved communication is also pro-

vided by the new Data-Strobe (DS) link technology (mentioned earlier). Messages in

the T9000 are divided into a sequence of packets of the same format as the C104 chip

(see next section). All routing information is contained in the packet header. The

T9000 can handle a maximum packet body of 32 bytes. Any device receiving a data

packet replies to the sender with an acknowledgment packet. No further packets are

transmitted by the sender until the corresponding acknowledgment response has been

received by the sender.

Communication between T9000 processes is performed via virtual links. A virtual

link is de�ned as a single logical communication connection between two processes
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mapped onto a physical processor link. The VCP of the T9000 is a hardware com-

munications processor which multiplexes the virtual links onto a speci�ed processor

link. Packets from separate virtual links are interleaved onto the physical link, allow-

ing separate processes to communicate simultaneously. The virtual link to which a

packet destined is identi�ed as a �eld in the packet header. T9000 processors can be

directly connected using their DS links or through a network of C104 packet routing

chips, thus enabling the construction of large networks with scalable communication

bandwidth between nodes [28].

4.4.2 The C104 Asynchronous Packet Routing Chip

The SGS Thomson C104 (STC104) is a complete, low latency, packet routing

switch on a single chip, that connects 32 high bandwidth serial communication links

to each other via a 32 by 32 way non-blocking crossbar switch. The links operate

concurrently and the transfer of a packet between one pair of links does not a�ect the

data rate or latency for another packet passing between a second pair of links. The

packet latency across the C104 has been measured to be �1 microsecond [16,28]. The

nominal link speed of 100 Mbps allows a maximum bi-directional bandwidth across

the chip of approximately 300 Mbytes/s [16].

To enable packets to be routed, each packet has a header at the front which

contains routing information. The router on the C104 uses the header of each incom-

ing packet to determine the corresponding output link. Anything after the header is

treated as the packet body until the packet terminator is received (i.e., EOP (End of

Packet) or EOM (End of Message) token).

The C104 uses wormhole routing, in which the routing decision is taken as soon

as the routing information, which is contained in the packet header, has been in-

put. Wormhole routing functions essentially in a similar fashion as the self-routing
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cell mechanism of some space division switching architectures (see Chap. 3). The

algorithm that makes the routing decision in the C104 is called interval labeling; it

is deadlock-free, inexpensive and fast [16]. Each link on the routing switch is labeled

with an interval of possible header values, and only packets whose header values falls

within that interval are output via that link.

Hence, as a token stream is received on the DS link, it is passed to the Packet Pro-

cessor and interpreted as a sequence of packets. Each packet is either output through

one of the 32 links of the crossbar switch or discarded. If the speci�ed link of the

header is not busy, the packet is transmitted immediately without being bu�ered. If

the output link is busy, as much data as possible will be bu�ered before data ow is

stalled until the output link becomes available. The C104 uses a token ow control

method to regulate the data ow across the links. This ow control technique approx-

imates to a backpressure scheme in case of contention (See Chap. 2). The bene�t of

the token level ow control lies in the simpli�cation which it implies, and guarantees

for higher-level protocols. It prevents data from being lost due to bu�er overow and

so removes the need for re-transmission unless errors occur.

This token level ow control is performed in each link module of the C104. It is a

mechanism which prevents a sender from over-running the input bu�er of a receiving

link. Theoretically, each receiving input link contains a bu�er for at least 8 tokens.

However, 20 tokens of bu�ering are actually provided for the input link whereas 50

tokens for the output link. So in essence, the C104 combines both input and output

bu�ering design approaches. Whenever the input link has su�cient bu�ering space

available for a further 8 tokens, a ow control token (FCT) is transmitted on the asso-

ciated link output, and this FCT gives the sender permission to transmit a further 8

tokens. This sender waits until it receives another FCT before transmitting anymore

tokens.

We can identify the basic hardware contents of the C104 as follows (see Fig. 4.15)
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Figure 4.13: Packet structure in the C104 chip (reproduced from Inmos SGS-Thomson
Technical Data Sheet)

:

1. IMS C104 Packet Routing Switch Object Module

2. D-S(Data-Strobe) Link Functional Module

(a) Packet Processor Sub-Module

i. Interval Selector Sub-Sub-Module

ii. Random Header Generator Sub-Sub-Module

iii. Header Bu�er Sub-Sub-Module

iv. Header Stripper Sub-Sub-Module

(b) Data Link Sub-Module

3. Command Processor Module

4. Output Crossbar Switch Module

5. Control Unit Module

(a) Control Link0 Sub-Module

(b) Control Link1 Sub-Module
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Figure 4.14: Wormhole routing in the C104 switch (reproduced from Inmos SGS-
Thomson Technical Data Sheet)

4.4.3 ATM-IEEE 1355 Interface Module (Adapter Board)

This module holds by far the largest level of complexity proportionally to the

extensive set of tasks that it is expected to perform within the ALAX switch. One end

of this module receives and sends ATM tra�c, while the other end receives and sends

IEEE 1355 packets. As the schematic indicates (see Fig. 4.16), this module consists of

a T9000 transputer (in original preliminary design there was 1 T9000, current design

includes two instead; we will see why later), an ATMizer chip, a TAXI chip, the ODL

interface and some shared memory bu�er. These building blocks will combine their

functions to achieve packet conversion and other related services, discussed earlier, for

the ATM port of the ALAX. The ODL chip reects the multi mode �ber connector

standard of 100 Mbps. The TAXI chip provides the means of connecting parallel data

over serial links, whereas the ATMizer introduces the B-ISDN layer.
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Figure 4.15: C104 functional block diagram (reproduced from Inmos SGS-Thomson
Technical Data Sheet)
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Figure 4.16: Block diagram representation of the ATM-IEEE 1355 interface module
(reproduced from [22,23])

4.4.4 IEEE 1355 Switch Matrix Interface Module (Adapter Board)

This module includes the C104, a T9000 transputer, a PCI Bus controller chip

and some bu�er memory. The T9000 is assigned the task of controlling the C104 and

its related DS links. This T9000 represents the system control processor as de�ned in

section 4.2. It is connected to the control links of the C104, and interacts with the

main CPU of the IBM PC, required for the entire ALAX system, through the PCI bus

controller. It sends information and receives commands destined for the ALAX switch

(i.e., con�guration, status report, etc.). The memory mentioned here is required only

for management purposes. The C104 divides equally its total number of DS links into

the data and control paths for the T9000s of each interface module that it is connected

to. In other words, ALAX can support up to 16 data and 16 respective control ports

across the 32-by-32 way C104 switch. Because each T9000 transputer of an interface

module will use two DS links of the C104 chip, one for sending and receiving data
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Figure 4.17: Block diagram representation of the IEEE 1355 switch matrix interface
module (reproduced from [22,23])

and the other for sending and receiving control information from the system control

processor towards a particular interface module or port.

4.4.5 LAN-IEEE 1355 Interface Module (Adapter Board)

The block diagram for this interface module (Fig. 4.17) shows a standard Ether-

net interface connector, the LLC chip, the T9000 and some bu�er memory. The level

of complexity in this board is of a smaller scale compared to the ATM one. The T9000

bears the same functionalities as previously described, except that now the packets

are only LAN frames. The functionalities are included also for maintaining a Local

Addressing Look Up Table (LALUT).
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Figure 4.18: Block diagram representation of the LAN-IEEE 1355 interface module
(reproduced from [22,23])

4.4.6 Speci�cations Underlying the System Design

In summary, the system design for ALAX can be characterized as follows:

1. ALAX must be built using COTS components.

2. The system design must be simple and compliant with current and emerging

standards, and interoperability practices.

3. ALAX uses one C104 switching fabric.

4. ALAX can support up to 16 data network ports, e.g. 15 Ethernet ports and one

single ATM port.

5. Even though, the C104 has 32 DS links only half of them are actually used for

transporting data, the other half is used for control signals of the interconnected

T9000 processors at the interface modules.
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6. T9000 transputers are distributed among the interface modules or network ports

of the switch (i.e., each module has its own T9000 processor). Thus each interface

module is independent, and this provides the ease of partitioning for building

scalable system and adding more modules as the need arises.

7. At the ATM port, the T9000 transputer performs LAN Emulation, ALAX local

addressing (i.e., MML) and other higher ATM layer functions such as multi

protocol process, Common Part Convergence Sub layer function in AAL and

signaling function.

8. At the LAN port, the T9000 transputer performs the MML function and LAN

Circuit Emulation (LANCE).

9. The T9000 maximum message or packet size is 32 bytes, so the maximum packet

size in the C104 is constrained to the same size.

10. T9000's functions across all the ports require some bu�er memory to carry and

maintain the packet conversion.

4.5 Summary Note

ALAX has been de�ned and presented from its early conception to the actual

preliminary design. It embodies a simple communication system platform with su-

perior performance to support the needs of speed increase and demand for dedicated

bandwidth across an ATM network. In addition, ALAX reects a cost-e�ective solu-

tion since on the one hand, it utilizes COTS parts and, on the other hand, protects

investments made in existing LANs by interfacing primarily with IEEE 802.3 Ether-

nets, the most dominant LAN type in use. Noticeably, several design characteristics of

the ALAX system distinguishes it from other existing or emerging systems: the dual

adoption of the IEEE 1355 standard, and the multi-processor approach using the C104
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and T9000 hardware components respectively; and last but not least the modularity

of the overall switch architecture.

One other major task of the ALAX project besides the physical construction of

the switch prototype, requires the determination of design parameters to guide the

construction. In the next chapter we specify the design parameters of interest and

outline the strategies and approaches adopted to obtain them.
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Chapter 5

The ALAX Simulation Model

This part of the thesis focuses on ALAX from the simulation modeling angle.

Simulation modeling is one of the most crucial aspects of the ALAX project to which

the LAST research team at the University of Maryland has been devoting the bulk of

their time.

Inside the modeling section, we de�ne and introduce the purpose of simulation.

We establish the rationale and motivation for using simulation in developing the ALAX

system, and also the goals to be met by simulating the ALAX switch design. Then,

some selected simulation languages and packages utilized for modeling of systems are

discussed. And with some engineering judgment calls, we choose the simulation tool

appropriately suited to meet the needs of the ALAX system design. Finally, the

simulation model of ALAX is thoroughly described and explained, along with all its

related components.

5.1 Introduction

An engineer would like to predict the performance of a given switch design ar-

chitecture without �rst having to build it. This prediction is what is referred to as

performance evaluation [15,16,23]. In order to accomplish it the performance analyst

has commonly two approaches (Table 5.1). One approach requires making use of ana-
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lytical or statistical models of switch behavior to determine such essential performance

measures as throughput, time delay, utilization, blocking, loss probability and bu�er

occupancy. The other approach is simulation, and more precisely discrete-event sim-

ulation [15,17,28].

The analytical approach relies on the tools and techniques of queuing theory.

Compared to a discrete-event simulation, analytical models, once developed, are usu-

ally solved quickly. And, more importantly analytical models give insight into the

operation of switches and networks. Nonetheless, the ALAX switch architecture at

hand has already been determined with the chosen switching fabric and the necessary

protocols to support the ATM LAN internetworking communication (Chap. 4). Thus,

our interest at this point lies not so much in getting insight into the operation of the

switching architecture, but instead we seek to produce a numerical evaluation for sup-

plying design parameters in order to build a prototype of the switch.

Henceforth, we take the road to simulation because we are concerned with a

preliminary assessment of the feasibility of the ALAX system design, validating and

verifying the protocol architecture conceptualized for the switch and, possibly optimiz-

ing this developed protocol-based communication system. Simulation is often favored

as a viable method due to the risk of high cost that can be incurred in prototyping

di�erent scenarios or con�gurations of a particular system, especially when the system

is novel and fairly complex. Consequently, a simulation model for ALAX will provide

an easy and cost-e�ective way to study and predict the performance of the system.

Generally speaking, simulation implies the imitation or representation of the op-

eration of a real-world system over time. It generates numerical measures to draw

inferences pertaining to the operating characteristics of the real system that is repre-

sented. Simulation prevails as an indispensable problem-solving methodology for the

solution of many real-world problems such as to describe and analyze the behavior of

a system, ask \what if" questions about the real system, and aid in the design of real
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Criterion Analytical Simulation Measurement
Modeling Modeling

Stage Any Any Post-prototype

Time Required Small Medium Varies

Primary Resources
Required Analysts Simulation Tools Instrumentation

Accuracy Low Moderate Varies

Trade-o� Evaluation Easy Moderate Di�cult

Cost Small Medium High

\Saleability" Low Medium High

Table 5.1: Performance Evaluation Techniques and Criteria for Selection (reproduced
from [17])

systems.

5.2 Overview

5.2.1 Simulation Design Analysis Discussion

Looking back at the ALAX system design (Chap. 4, Sec. 4.4), several compo-

nents can clearly be identi�ed as congestion points or bottlenecks in the process of

transporting data from one end to the other of the ALAX entity. They are primar-

ily the C104 switch and the T9000 transputer. Consequently, from an engineering-

economic angle, these components ought to be con�gured and designed in a cost-

e�ective manner with adequate resources to support the intended network environ-

ments. Otherwise, they could dramatically a�ect the cost per port for ALAX, and by

the same token the �nal cost of the ALAX switch. This is signi�cant, for we must not

depart from our earlier projection that ALAX must be a low-cost platform.

The C104 should obviously be considered since it is the point where data tra�c

converges and decisions are made for forwarding packets to their required destinations.

It is one of the stages where a data packet can su�er substantial delays or can literally
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be lost. Additionally, The T9000 handles several functions that can cause also overall

delays on the ALAX switch: LAN Emulation and possibly, MML. These functions in

order to be achieved e�ciently and e�ectively must be supplemented with su�cient

bu�ering. Furthermore, given that the T9000 will be the intermediary for forwarding

packets to the C104, again in this case adequate bu�ering must be provided to protect

against packet loss for the worst-case of congestion that may occur at the C104.

5.2.2 Simulation Objectives

Henceforth, the basic goals of the ALAX simulation activities are:

1. to study the performance tradeo�s associated with crucial design decisions (e.g.,

number of transputers)

2. to provide a means for testing, evaluating and verifying the performance of our

proposed ALAX design at the functional level, hence identifying strengths and

weaknesses

3. to investigate issues related to potential bottlenecks inside the ALAX switch

4. to determine the end-to-end packet delays and the acceptable (memory) bu�er

sizes to perform the ATM LAN internetworking process de�ned in chapter 4

5. also, another interesting parameter that necessitates careful investigation, is the

optimal processing speed of the T9000 particularly at the ATM port where LAN

Emulation along with the MML function will be performed.

Thus, on the one hand, the simulation model for ALAX will provide answers to some

speci�c unknown design parameters, while on the other hand, it will generate a simple

model for the protocol architecture of the switch to supplement the system design.

In general, when building any model, it is important to choose the correct level of

detail commensurate with the scale of questions that the model is expected to answer.
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This is sometimes referred to as the granularity of the model. At this step of the

modeling process, caution must be observed while analyzing and making the decisions,

as this will greatly inuence the degree of success of the simulation. For instance, if not

enough details are included, then some important aspects of the system's behavior may

be omitted, or the precision or accuracy of some targeted measurements may be awed.

In contrast, if too many details are taken into account, this would require investing

a great deal of e�ort for researching and implementing the details. Consequently, a

model which is larger than needed may result and this implies longer times to run

each experiment. Eventually, the decisions to be made call upon the experience and

the engineering judgment of the analyst.

In our case, since the objectives to be achieved in building a simulation model of

ALAX are already established, the scope of the ALAX simulation is to a great extent

scaled down and simpli�ed. Because, we know where to emphasize and put weight in

our simulation design. This reduces the complexity of details that would be involved

if the entire switch and its components were modeled.

5.3 System Modeling Tools

In order to create a simulation model of the ALAX switch, several tools are

available. The tools introduced in this section are packages which are widely used and

readily available o� the shelf. They consist of either simulation languages or network

simulators for developing simulation models of communication systems. To end up

with an adequate simulation tool, we explore several avenues:

1. the selection of a simulation language

2. the selection of the best network simulation package

3. the tradeo� of developing a simulation model in the simulation language or

package selected

83



The simulation languages investigated here are FORTRAN, SIMSCRIPT II.5 and

SIMAN. The network simulation packages considered are COMNET and OPNET.

These languages and network simulation packages are all briey described throughout

the following paragraphs. Some other simulation tools are also discussed in [16,23].

5.3.1 Simulation Languages

FORTRAN (FORmula TRANslation) is a structured programming language

widely used for simulation because of its processing power. Many mathematical com-

putations can be done quickly through the use of FORTRAN.

In spite of this, many experts in the �eld would concede that FORTRAN is prac-

tically extinct. It is still used, but many other languages have been developed which

have been con�rmed more e�cient than FORTRAN. Newer languages also perform

much better than FORTRAN, because of the lines of code necessary to create the

same function (e.g., C, C++). FORTRAN has a lot to o�er, but functions such as

random distribution and status reports have to be coded. Other structured program-

ming languages have more to o�er, hence FORTRAN is seldom used currently.

SIMSCRIPT II.51, developed by CACI Products company, is a powerful, free-

form, English-like discrete-event simulation language that greatly simpli�es writing

programs for simulation modeling. Programs written in SIMSCRIPT II.5 are easily

read and maintained. They are e�cient, and generate adequate results.

Unlike other simulation programming languages, SIMSCRIPT II.5 requires no

coding in other languages. It has been in existence for over 30 years now, and its wide

acceptance and success can be attributed to the design format of the language which

consists of Entities and Processes. This provides a natural conceptual framework that

easily relates real objects to the model. A well-designed package of debugging fa-

cilities is also included. Simulation status information is provided, and control can

1Developed by CACI Products
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optionally be transferred to a user program for additional analysis and output. Many

modi�cations, such as the choice of set disciplines and statistics are simply speci�ed

in the Preamble block of the SIMSCRIPT program. Moreover, SIMSCRIPT can be

integrated with the SIMGRAPHICS package to create advanced GUI displays and

develop icons for the animation of the simulation process.

In summary, SIMSCRIPT II.5 can e�ectively be used for several types of simula-

tion which extend from single queue and server to complex communication networks.

SIMAN2 (SIMulation ANalysis) on the contrary, is a general-purpose procedu-

ral language for modeling combined discrete-continuous systems. The SIMAN lan-

guage allows simulation programs to be entered using either batch input statements

or through an interactive mode. CINEMA is the associated animation package which

provides for constructing animation objects, linking them to the SIMAN model, and

jointly executing the simulation and animation. Arena is a new modeling environment

which allows models to be constructed through a GUI. Within the Arena environment,

the SIMAN and Cinema code is automatically generated. Models can be run (with

the animation) from within the Arena environment. Thus Arena is an environment

which is layered on top of SIMAN and that integrates the CINEMA functionality.

SIMAN models are de�ned by two text �le components which are compiled and

used by the simulation "engine" to perform the simulation, the Model Frame and

the Experimental Frame. The Model Frame embodies the structural elements of the

model, its components, the layout, etc. The Experimental Frame de�nes the param-

eters, the random number seeds, the number of replications, and the data collection

components. The intent is to isolate the model data from that characterizing individ-

ual experiments. Thus, di�erent experiments can be performed without altering the

model.

2SIMAN is developed by Systems Modeling Corp.
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Tradeo� Analysis

Among the simulation languages discussed above, SIMSCRIPT was the primary

choice. This can be attributed partly to the fact that the SIMAN block structures

are most appropriately conceptualized and suited for manufacturing and assembly

line systems, while on the contrary SIMSCRIPT o�ers a much greater generality and

exibility for the prospect of representing any type of systems. Nevertheless both

languages are limiting since they can not conveniently and e�ciently characterize

the context of communication systems. We will see then, what some of the selected

network modeling tools can o�er in contrast to these simulation languages.

5.3.2 Simulation Network Modeling Tools

COMNET III 3(current version of COMNET) is CACI's next generation of net-

work planning tool integrating LAN and WAN performance prediction in a single,

object-oriented environment. COMNET III's hierarchical design �ts equally to all

networks from single high performance LANs to some complex, enterprise-wide sys-

tems, existing or planned.

With COMNET III, the performance of proposals can be veri�ed, "what-if" anal-

ysis tested, competing designs evaluated, and the operation of a proposed network can

be observed using the built-in graphics and extensive reporting. No programming is

required. Prede�ned hardware and protocol objects make model description fast and

easy. The objects can also be customized to some degree in order to suit speci�c needs.

COMNET III shows an animated picture and dynamic graphs while the simulation

is running. Based on observation, parameters can be changed and, links and nodes can

be taken down with the e�ect of such changes immediately apparent. A COMNET III

model may contain hierarchically de�ned subnetworks. The designer can observe the

3Developed by CACI Products.
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entire subnetwork in animated form. COMNET III models data transport protocols

as well as the scheduling of applications on end systems, and the use of processing,

storage, and transport resources during application execution.

OPNET4 (OPtimized Network Engineering Tools) on the other hand developed by

MIL3,is a comprehensive and extensive network modeling system capable of simulat-

ing large communications networks with detailed protocol modeling and performance

analysis. The features of OPNET include among other things, graphical speci�cation

of models, a dynamic event-scheduled simulation kernel, integrated data analysis tools

and hierarchical object-based modeling.

OPNET deals with the problems of distributed algorithm development through

its hierarchical modeling structure to describe and control the network to be analyzed.

This includes from top to bottom: the Network, Node and Process levels. The Net-

work level consists of network nodes that can be connected by means of unidirectional

or bidirectional communications links. Within the Node level, there are queue and

processor modules which handle packet generation, termination, storage and routing.

The distance between them can be speci�ed, and this extends to link delays at the

network level. The function and operation of these modules in question can be altered

by modifying their respective �nite state machine (FSM) within the Process level. This

provides a lot of exibility to model any type of communication node.

The FSM provides the means to process and operate the communication modules

of the Node level. Speci�cally, the FSM through self generated interrupts, that model

event transitions from state to state, can collect packets o� the communication stream,

read pertinent information from the packets, perform other processing operations on

the packets and forward them on outgoing stream links. Inside a state of the FSM, a

programming code written in pseudo�C (Proto�C) can be included to execute some

of the operations mentioned earlier. In addition, the Analysis, Tracing and Anima-

4Developed by MIL3
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tion capabilities of OPNET help the designer in synthesizing, interpreting the output

data, while monitoring the network behavior. It is worth also adding that the OPNET

environment comes rich with built-in models of networks, such as X.25, Frame Relay

and ATM, suitable for design of current and emerging technologies. These built-in

models can be altered to conform to a speci�c custom design, and they are all based

on approved speci�cation standards.

Tradeo� Analysis

Among these two network environment tools evaluated, OPNET was picked.

This decision was based upon the fact that, since ALAX is considered complex due to

the novelty of some of its protocols, it becomes imperative to utilize a package that

will grant as much exibility and generality as possible, to simulate the protocol op-

eration in anticipation of uncertainties that may arise later. Consequently, if we were

to use COMNET for instance, we could have been limited with the scale of model-

ing framework and libraries available on this package, which can not be modi�ed for

instance. But, OPNET has more to o�er since programming can be accomplished to

the extent appropriate as the need emerges. Thus, it brings a large set of capabilities

in our hands to create the ATM LAN access switch, ALAX.

Indeed, OPNET models are very fast and memory-e�cient compared to COM-

NET models at a similar level of detail. While OPNET has been successfully utilized

to model networks as large as 17000 individual nodes, anecdotal evidence would indi-

cate that COMNET is ine�ective for modeling network larger than a few dozen nodes.

High-speed networks for example, produce so many events that simulation with COM-

NET is prohibitive.

Furthermore, modeling exercises are iterative in nature, requiring successive im-

plementations of more and more detailed models before all of the data important to
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the speci�c network or technology being studied is generated. The OPNET model

hierarchy (Network, Node, and Process) allow lower levels to be initially modeled in a

coarse manner, and subsequently re�ned as more data becomes available. In contrast,

COMNET models while easier to lay out initially, do not support this type of gradual,

modular re�nement. There are also standard features of OPNET for which there is

little or no support for in COMNET. We will mention only a few of them: mechanisms

to support inter-process communications, protocol speci�cation using an FSM and a

library of built-in procedures that provides programmable access to interrupts, and

the ability to extract information from named �elds in data packets.

5.4 The OPNET Simulation Models

5.4.1 Developing the simulation model

The process of building the OPNET simulation of ALAX involved initially break-

ing down the conceptualized operations and functionalities of the proposed architec-

ture into sample queuing constructs. This methodology was applied for each interface

module and further, for each device within the ALAX switch as designed in Figs. 4.16,

4.17 and 4.18. Several iterative analyses and exercises followed then, before settling for

the most adequate queuing abstracts leading to the detailed characteristics simulated

within the OPNET environment. Subsequently, a great deal of simulation implemen-

tations were produced in OPNET, prior to generating the �nal model that contained

the most signi�cant information for pursuing our study.

In the next discussions, we engage in summarizing these �ndings by outlining the

ALAX model properly. We de�ne the extent of the embedded assumptions and related

speci�cations. We present our basic representative queuing system and its respective

operating properties. Finally, we establish and describe the OPNET models derived

from the preceding analytical studies.
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Figure 5.1: Simpli�ed representation of ALAX as a queuing system

Assumptions and Speci�cations

The �rst version of the OPNET simulation of ALAX incorporates precisely four

network ports. This constitutes the 4-by-4 model, with one ATM-IEEE 1355 and three

LAN-IEEE 1355 interface modules. Fig. 5.1 shows a system-level sketch of this basic

ALAX model with the components deemed necessary for our investigation. Several

considerations and ground rules are made in building this model:

1. The ATM-IEEE 1355 module is abbreviated to account only for three submod-

ules or devices, contrary to the original design schematic of Fig. 4.16. The three

submodules are TAXI, ATMizer and T9000 chipsets. In this context, the ODL

interface module is omitted due to the anticipated miniscule delays that it would

impart overall compared to the other modules of the ATM-IEEE 1355 network

adapter.

2. The LAN-IEEE 1355 interface module for Ethernet network is su�ciently rep-

resented with just two submodules: T9000 transputer and the MAC chipset.
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3. Since the C104 is a key component of this switching system, it is modeled in-

dependently as a queue with further details internally. This is also true for the

T9000. Meanwhile, the other modules are simply single queues with some delays

built-in, and performing packet stripping and collection.

4. The shared memory bu�er across the T9000 transputer is divided into subqueues

within the T9000 model itself.

5. The T9000 message or packet with its maximum size of 32 bytes is referred here

and after, as the IEEE 1355 packet. Noteworthy, this is actually a misnomer,

since the IEEE 1355 standard does not directly imply a threshold for the packet

size. However, as acknowledged in Sec. 4.4.6, the architecture and system design

of ALAX, and by the same token the simulation model, are constrained to this

size. And this is due to the fact that T9000's are utilized along the data and

control paths.

5.4.2 Queuing System for Derivation of OPNET Model

Generality

The diagrams in Figs. 5.1 and 5.2 reect the essence of the OPNET simulation

model for ALAX. They represent the underlying queuing systems accounting for the

assumptions stated above. In contrast to the �rst one, the second diagram delves into

the speci�c characteristics of both the T9000 and the C104. And, these are merely

seen as a network of queues and servers. In order to bring them to the context of

simulation, we explore in an in-depth manner the signi�cance of these queuing models.
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The Queue and Server Entities

The C104 queuing representation directly follows from the description in the data

sheets provided by Inmos SGS-Thomson [28]. It includes primarily queues and servers

to replicate the DS link transmission and reception mechanisms (GQ1355, HQ1355,

SGQ1355 and SHQ1355). The main server, SC104 along with the input and output

queues, RQi and XQi, participate in accomplishing the switching and forwarding of

IEEE 1355 packets as de�ned in [28] also.

The T9000's respectively of the ATM-IEEE 1355 and the LAN-IEEE 1355 interface

modules are distinguishable, for they di�er in their functions and processing load. At

the ATM-IEEE 1355, the T9000 separates the ATM cloud from the C104 switch. This

T9000 includes the following queues:

1. On the top half, AQ0, AQ1 and AQ1355.

2. On the bottom half, BQ1355, BQMAC and CQMAC.

In AQ0, where incoming MAC packets, are held, the HOL packet is served by the

server SAQ0 �rst, and then by SAQ1. AQ1 receives the MAC frames for segmentation

and mapping into IEEE 1355 packets. The activities of these �rst two servers account

for the T9000 processing the packets (i.e., LANE, packet segmentation and local ad-

dressing). At the end of the processing stage, the packets are stacked up in AQ1355

where they remain until the C104 is free to accept them. When this occurs, the IEEE

1355 packets are transmitted over the D-S links. This transmission over the DS serial

links is emulated by the sever SAQ1355. This represents a very small delay, which can

literally be ignored, because the DS link bears a high-speed transmission property.

BQ1355 and SBQ1355 play the role of DS link receivers for IEEE 1355 packets.

There are several BQ1355 queues for the incoming IEEE 1355 packets from the C104

switch. Each of these queues corresponds to a di�erent input port of the C104. Hence

with a 16-port C104 switch, the number of BQ1355 queues can potentially be 15.
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For each BQ1355 queue there is also a BQMAC queue that collects the reconstructed

MAC packets for the LAN Emulation process to take place. BQMAC and SBQMAC

together attend to the HOL MAC packet. As soon as the �rst N IEEE 1355 packets

corresponding to the MAC packet arrive the server SBQMAC can start the LANE

tasks. Once the LANE is over, the frames can be accepted by CQMAC, where they

can be dispatched by SCQMAC to the ATMizer.

The processing capacity of this T9000 is to be divided primarily between two

main tasks: LANE service and local addressing. These tasks are performed on both

incoming and outgoing tra�c streams.

At the LAN-IEEE 1355, the T9000 links the Ethernet cloud to the C104 switch.

In this case, the hardship on the T9000 is lesser compared to the previous one, since

the packet translation is somewhat di�erent. The queues inside the T9000 are:

1. On the top part, DQ0, DQ1 and DQ1355.

2. On the bottom part, EQ1355, EQMAC and FQMAC.

DQ0 receives MAC packets from the Ethernet world. DQ1 holds the MAC packets for

local addressing and segmentation (MML) into IEEE 1355 packets. DQ1355 receives

the IEEE 1355 packets and makes them available for transmission over the IEEE 1355

serial links. In this context, we can easily get away with not having DQ1, however, we

keep it here for the sake of symmetry with the other T9000 at the ATM-IEEE 1355

interface. This will lead to an easier generic implementation of the T9000 in OPNET.

The queues EQ1355 are similar to the BQ1355 ones above. The same is true for the

EQMAC and BQMAC queues. But, at the FQMAC queue no LANE service is done,

the MAC packets are simply transmitted over to the MAC chipset. Noticeably, for

the LAN-IEEE 1355 interface the T9000 processing capacity is once again split among

the top and bottom part, i.e. outgoing and incoming tra�c. This is done in a similar

fashion as indicated for the ATM-IEEE 1355 interface, however this is likely to be less
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Figure 5.2: Detailed Queuing Model of the T9000 and C104 in ALAX

extensive since no LAN Emulation occurs at the LAN side.

While creating these queuing constructs, several considerations emerged for schedul-

ing the sequence of tasks at the T9000. They were First Come First Served (FCFS),

Longest Packet First Served (LPFS) and Round-robin (RR). These scheduling algo-

rithms referred to the scheduling between HOL packets of the various queues attended

by the servers inside the T9000, both within the top and bottom half. The Round-

robin approach was chosen for its fairness and optimal bene�ts.
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Figure 5.3: Operation of the ALAX switch within OPNET
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5.4.3 Description of the T9000 Model in OPNET

In OPNET, the T9000 is �rst represented as a queue at the Node level. Then

within the Process level, the T900 FSM further divides the queue into many sub-

queues, as established above, with Proto-C programming code to perform the tasks

(see appendix)[23]. At the T9000 of the ATM-IEEE interface module, these subqueues

include ATM output bu�er and IEEE 1355 input bu�ers. At the T9000 of the LAN-

IEEE 1355 a similar con�guration exists with Ethernet output bu�er and IEEE 1355

input bu�ers. The output bu�ers here refer to the respective port where the T9000 is

located as being the sender of packets, while the input bu�ers mean that the packets

residing at this location come from other sources across the C104. The idea behind

these bu�ers is also to detain the packets when the backpressure mechanism is applied

by the C104 to refrain the ow of packets from ooding the switch.

Given that the T9000, speci�cally at the ATM port, could end up being the bot-

tleneck in this interconnection scenario, two approaches were determined to alleviate

the resulting side e�ects.

One requires providing a large memory bu�er in anticipation of packet loss. The

other consists of having an adequate speed for the T9000 clock in order to prevent

slowing down the C104 while performing LAN Emulation for instance. The T9000

transputer processing speed/time at the ATM port is determined in function of:

ProcessingT imeIEEE1355�Pkt =
Mult

RateAverage
(5.1)

In this formula5, the Mult parameter characterizes a multiplier factor for the

processing speed/time of the T9000. The average tra�c rate, in bps, amounts to

5Implemented only in the T9000 at the ATM port, because we assumed the bottleneck to occur

primarily at the ATM port instead of the Ethernet.
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the aggregate Ethernet tra�c rate injected into the ATM port, while the IEEE 1355

packet processing time represents the time, in sec, to process an IEEE 1355 packet

at the ATM port. Hence, with a Mult level of 0.4, the T9000 is expected to process

packet two times faster than with a Mult level of 0.8. Further, it is established that

Mult > 1 implies that packets are being processed at a slower rate than their arrival

rate.

These two characteristics, above, involve some kind of tradeo� to derive the op-

timal point of performance of the switch. One e�ective way that has been devised

to model the T9000 requires using preemptive queuing whereby IEEE 1355 packets

which have been completely translated into the IEEE 802.3 format are given highest

priority. What this means in reality, is that unless a HOQ packet has been completely

serviced it will not be extracted by the transmission server of the T9000 [23].

5.4.4 Description of the C104 Model in OPNET

The picture in Fig. 5.6 illustrates the OPNET model of the C104 in the original

4-by-4 con�guration of ALAX. There are 4 input queues and 4 output queues for each

network port. However, in OPNET, this is implemented in the Node level as a queue,

and in the same manner as in the T9000 case, there is an FSM and the operations

are executed as Proto-C code. This can be summarized as follows6, when a packet

arrives at the input port of the C104, the header of the packet is read to decide the

destination output subqueue. Then, the destination output subqueue is checked, if it

is empty the packet is put into the subqueue. Otherwise, the packet is temporarily

stored in the input subqueue of the corresponding input stream port until the output

port is available [23]. This is done to replicate the combined input and output bu�ering

implementation of the C104 as indicated in Chap. 4. A delay of 1 �second is inherent

in the model to account for the minimum delay that the C104 bears [16].

6A pseudo-code of the C104 fabric as implemented in OPNET is available in [23].
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Figure 5.4: Diagram of the 4x4 ALAX switch with designated bu�ers for statistics
monitoring

5.4.5 Tra�c Characterization Models

Overview

Tra�c modeling7 is an important component of the simulation of any commu-

nication system. This is even more crucial for emerging high speed communication

networks. As the design of a network depends to a great extent on the type of traf-

�c it is expected to transport, it becomes necessary to appropriately characterize the

tra�c that the particular network is expected to carry. In the absence of these tra�c

models, the only way to validate and re�ne the network design would be to inject into

7This section of the thesis is largely due to the contributions and e�orts of Sandeep Rao in devel-

oping the tra�c models for ALAX.
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the network model real life tra�c. Even then, we still could not be ascertain with the

results obtained that the network design behaves, routes and coordinates the tra�c

as it is supposed to.

It is for this reason that tra�c models are used throughout network design sim-

ulation, for they allow a parameterization of the essential characteristics of expected

network loads. Hence by generating the tra�c under the rules set up by the tra�c

models in question, one can clearly establish with great con�dence the validity of a

network design model.[34]

Scientists/Mathematicians have been doing a lot of research with respect to tra�c

models. And through the years, several basic models have been developed and com-

piled, which accurately imitate any type of tra�c source (i.e., data, voice, video etc.).

In simulating the operation of ALAX the tra�c models used in the tra�c/packet

generators are based on the Long Range Dependent (LRD), Short Range Dependent

(SRD) and VBR models. The SRD tra�c pro�le implemented is based on the Markov

Modulated Poisson Process (MMPP), the VBR tra�c model used is the StarWars c

movie, while the LRD tra�c operates under some speci�ed parameters for theM=G=1

queuing model. The main di�erence between SRD and LRD models, is that unlike

SRD models, LRD models display correlation between packets separated very far apart

in time [35]. Further details on the tra�c models utilized for the ALAX simulation

can be found in [23,35]. These tra�c generators are represented in OPNET through

processors at the Node level and FSMs at the Process level. With their respective

characteristic parameters appropriately set they generate packets to be sent to some

destinations across the C104.[23]

Burstiness in SRD and LRD Tra�c Pro�les

In generating any tra�c, especially data, one important characteristic pertains
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to the burstiness nature. This can tremendously a�ect the design requirements of a

network system. Simply stated, burstiness reects the behavior of a tra�c to have

short periods of intense activity followed by long period of idle time.

The average rate for generating the LRD-type tra�c source based on theM=G=1

queuing process is given by8:

RateAverage = �� �T �E[�] (5.2)

The average rate here refers to the tra�c rate in question. � is the arrival rate

into theM=G=1 queuing process. E[�] is the expected mean of the pareto distributed

activity periods in the M=G=1. �T represents the time unit at which the M=G=1 is

sampled (i.e., frequency).

The SRD tra�c pro�le is implemented with two FSMs (Fig. 5.7) with equal time

spent at both states. Each state generates packets at a certain rate so that the average

of the two rates is a ratio parameter � that bears the burstiness characteristic of the

tra�c. So, burstiness is embedded into the tra�c rates as: �1 : �2 or simply, xk : x.

Now, the average rate for generating the SRD-type tra�c based on the MMPP process

is given by9:

RateAverage
PktSize

=
x+ kx

2
(5.3)

In this formula, the average rate represents the overall rate of the tra�c source in

question. Pkt-Size is the size of each packet to be produced. x is the rate that packets

are generated at one state, while k is the multiplier factor for the rate that packets are

8This formula was provided by Sandeep Rao. And the steps to derive it can be found in [35]

9This formula was provided by Sandeep Rao. And the steps to derive it can be found in [35].
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Figure 5.5: Representation of the MMPP Tra�c Generator

generated at the other state of the MMPP. Hence in this case, the burstiness property

of the tra�c model is essentially varied through a ratio level, as opposed to a frequency

level in the LRD case.

5.5 Summary Note

We have gone through the appropriateness of simulating the ALAX switch for

collecting data to guide in the correct implementation of this system. Then, we have

highlighted the design process involved in modeling this switch with particular atten-

tion given to key elements of the simulation model of ALAX: the T9000 and C104.

The next chapters outline the OPNET simulation runs and other related activi-

ties that shaped the experimentation. We will report on the data collected for various

network scenarios.
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Chapter 6

The ALAX Simulation Experiments- Part I

Using the ALAX Simulation model, we have endeavored to build and execute an

extensive series of experiments and benchmarks that would provide our collaborators,

ETRI and Modacom, with critical queuing sizes, optimal T9000 processing speed

and end-to-end packet delay measurements. These numerical indicators would give

guidance in selecting the most appropriate memory sizes and speeds for the T9000,

while suggesting the expected levels of performance that could be achieved with the

ALAX switch. The process of conducting these tests has opened up areas for further

testing and researching within the life-cycle of the ALAX switch. One can expect then

the ALAX simulation model to be re�ned and used concurrently during the prototype

building phase to investigate and verify design options.

In this part of the thesis, we deal with data presentation and interpretation for

the simulations involving the original 4-by-4 ALAX model developed during the 2

years of the ALAX project. The testing or experimental framework is outlined �rst.

Then the results collected for each type of tra�c pro�le fed into the 4-by-4 ALAX are

analyzed from di�erent angles. These results include average end-to-end packet delays

and queuing sizes1. Overall, observations and conclusions about the architecture and

1Variances/standard deviations for the queuing sizes were also collected, however they are not part

of the analysis. These variance/standard deviation measurements can be made available upon request.
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design of this 4-port ALAX switch are derived.

6.1 Experimental/Testing Framework

6.1.1 Strategy/Methodology

Our study targeted a 100 Mbps-TAXI physical interface connector. This in-

terface is integral to the ATM port as designed (see Chap. 4). Testing covered two

general areas: end-to-end packet delay across the switch or latency, and queue sizes for

both ATM and Ethernet ports. The tests caused the ALAX switch to service 4 net-

work physical ports under three types of network packet generators, which are based

on the LRD, SRD and Star Wars tra�c models de�ned earlier (Chap. 5). For our

case studies, there are one ATM port and three Ethernet ports. Tra�c ow occurred

bi-directionally between the ATM and all the Ethernet ports. Each physical switch

port hosted a number of logical or virtual circuit connections to other ports in a mesh

con�guration (see Fig. 6.3). Each test was designed such that any physical port could

send packets to any other ports, except itself. Ethernet frames with a maximum size

of 1526 bytes (12208 bits) and ATM cells of 53 bytes (424 bits) [10,19,39] were the

baselines utilized for the tra�c generators at each network port across the switch.

The Ethernet port rate was �xed for all the simulation runs at 4 Mbps. This

number was chosen because, even though the nominal speed of shared-Ethernet is

theoretically 10 Mbps, on average a station can only expect to use successfully and

e�ectively between 4 to 6 Mbps, owing to collisions and retransmissions.

The ATM port rate, even though designed for a 100 Mbps transmission with the

TAXI interface, was simulated for the aggregate rate of all the corresponding Ethernet

sending ports. Thus, its rate was set for 12 Mbps. The motivation for this decision re-

sides in the fact that a worst-case condition was sought for the switch's operation. This

would optimally give the queue sizes and latencies for design considerations. Hence
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provisioning for the worst-case situations that may prevail within ALAX.

Finally, in order to monitor the behavior of the ALAX switching device, several

burstiness levels were selected for each type of tra�c generator used while four levels

of T9000 processing speed were adopted. Consequently, in each simulation run these

associated levels that a�ect both the processing speed and the burstiness of the tra�c

type at hand were varied accordingly.

6.1.2 Simulation Setup

The OPNET environment provides the capability to execute the programs within

the GUI environment or in batch mode at the command prompt. We selected the

batch mode for execution was much faster than in the GUI environment. Running a

simulation in the batch mode, required several �les. First, the simulation �le itself, i.e.

the �le with the model description, as produced in OPNET with the extension \.sim",

second an environment �le, where the simulation parameters or variables are de�ned

and can be modi�ed, with the extension ``.ef" and �nally the �le(s) for de�ning or

modifying the burstiness properties or characteristics of the tra�c generator with the

extension \.gdf". These �les were integrated into a UNIX pipeline command as:

Alax.sim -duration \in sec" -ef AlaxEnv > data�le

The data�le refers to the ASCII �le where the results are stored. The other �les with

the \.gdf" extension were called internally by the tra�c models as the simulation ran.

These �les are provided in the appendix for references.

One interesting parameter in the command statement is the duration of the simu-

lation, de�ned in units of seconds. This simulation time as it is commonly called, must

be speci�ed since we can not run the simulation inde�nitely due to logistic constraints

(e.g., limited resources available). Moreover, it must be identi�ed appropriately in or-

der to remove any transient results. After several long run trials, this simulation time
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was determined to be 10 seconds. Hence all the simulations were run for a duration

of 10 seconds with the view that 10 seconds reect the steady-state operation of the

simulation model for ALAX.

6.1.3 Notation and Parameters Used in the Study

In the previous sections of this thesis, we have discussed several design char-

acteristics that are inherent to the ALAX switch. Here, we review and de�ne some

terminologies pertaining to these properties as they relate to the presentation of the

results.

First of all, as indicated earlier in Chap. 5, Sec. 5.4.2, the unit of measurement

for the ALAX packets is referred to as IEEE 1355 packet (32 bytes). The queue or

memory size estimates reported below are also given in terms of this unit. Secondly,

the Mult factor which establishes the processing capability of the T9000 transputer, is

implied under the denomination of T9000 Processing Speed Level. Thirdly, the param-

eter measure that a�ects the burstiness characteristic applicable to each tra�c model

is labeled accordingly as burst frequency or burst ratio levels for the LRD-type and

SRD-type tra�c pro�les.

Finally, since each T9000 at a corresponding port, contains a queue for each send-

ing port irrespective of the model being used, the numbering of each queue properly

reects and identi�es the sending port. Hence, for the ATM port, Q[0] and Q[1] apply

to the tra�c stream going towards the C104; they are the locations where LANE is

performed, local addressing for the MML occurs and also bu�er space until the C104

is ready to accept packets within its input queues. However, Q[2], Q[3], Q[4] up to

Q[17] indicate the receiver queues for tra�c coming from the ATM port itself, Ether-

net port 1, Ethernet port 2 and up to Ethernet port 15 (accounting for the maximum

data port that can be implemented on ALAX). On the LAN sides, however, for each

Ethernet port, Q[0] and Q[1] account only for MML and the bu�er space until the
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C104 is ready to accept packets. And, for the remaining queues from Q[2] and on, the

same principle evoked above is applicable. The implications of queue numbering are

exempli�ed in Figs. 6.1 and 6.2 .

6.1.4 Preliminary Findings, Observations and Related Modi�cations

During the initial simulation tests, the early results obtained using the �rst

model of ALAX (i.e., 4-by-4) allowed the determination of essential parameter values

or benchmarks to pursue further simulation studies, and pointed out many bottlenecks

in the ALAX system design.

The T9000 processing speed level should range from 0.0 to 1.0, to be acceptable

for a stable operation of the ALAX switch. This was seen in the previous chapter.

Given that we could not possibly run simulations for the entire range of possible values,

four points were selected to conduct the complete simulation sets: 0.1, 0.5, 0.8 and

1.0. Within these points, 0.8 satis�ed the requirements for the worst-case scenario

where the T9000 would still maintain a stable condition for the overall operation of

the ALAX switch. Along with these speed levels, the burst frequency levels chosen for

testing purposes in the case of the LRD-type tra�c were: 7.5 secs, 15 secs, 30 secs, 60

secs and 120 secs. Additionally, the burst ratio levels associated with the SRD-type

tra�c were: 1:1, 10:1, 50:1 and 500:1.

Further, it was determined that having one T9000 processor at the ATM port

led to heavy end-to-end packet delays and large queue build-up as indicated through

the �rst runs. Hence the original design presented in Chap. 4 - Sec. 4.4, Figs. 4.11

and 4.16 - was revised and modi�ed to include two T9000's instead of one. These

changes did not a�ect the overall ALAX architecture. What this amounted to, was

that the load at the ATM port would be divided between the two T9000's. Thus, one

T9000 would carry unidirectional tra�c stream from the ATM network port to the

C104, using Q[0] and Q[1], while the other would cater to the other unidirectional
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Figure 6.1: Implications of queue numbering at the ATM port

tra�c stream from the C104 to the ATM network port, using Q[2], Q[3] and so on

depending on the model used. These changes where implemented into the original

OPNET model of ALAX without too much e�ort. These T9000's are labeled T9000

# 1 and # 2 respectively.
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Figure 6.2: Implications of queue numbering at Ethernet port 3
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Figure 6.3: Mesh Connectivity inside the 4-by-4 ALAX model in OPNET

6.2 Outcomes under the LRD Tra�c (M=G=1)

The experiments conducted with the LRD-type tra�c generators based on the

M=G=1 queuing process, involved two contexts. In the �rst context, the packets pro-

duced at any port of the switch were sent to every other port in a uniformly distributed

manner (i.e., address destinations created upon the assumption of a uniform distri-

bution among the number of ports). In the second context, however, packets were

generated with their destinations addresses randomly distributed among the switch

ports. The LRD-type tra�c pro�le was used only in the case of the 4-by-4 ALAX

switch model.

6.2.1 Testing with Destination Address Uniformly Distributed

For each of the four T9000 processing speed levels, the 4-by-4 model is moni-

tored under �ve burst frequency levels of the LRD-type tra�c: 7.5, 15, 30, 60 and

120 seconds. Hence the most frequent bursts would occur for 7.5 seconds, while 120

seconds would feature the least frequent bursts. The total number of simulation runs

is 20 for this scenario. We analyze the results for the queuing and delay evaluation.

Queuing Analysis

At the ATM port, when the T9000 processing speed level is 0.1 (i.e., fastest),

the observations are the following. In the T9000 handling tra�c stream towards the
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C104 switch (i.e., T9000 #1), the average and maximum occupancy for Q[0] remain

constant at 0.08 and 1.0 IEEE 1355 packet respectively (see Fig. 6.4), throughout the

burstiness variation from 7.5 seconds to 120 seconds. However, for Q[1], the values

vary depending on the burstiness intensity. From very bursty at 7.5 to least bursty at

120 (see Fig. 6.5 and 6.7), the average size decreases to 40%, while the maximum to

about 20%. This is due to the backpressure from the C104 preventing T9000 #1 from

sending too many packets than it can serve. Meanwhile, in T9000 #2, for each queue

receiving packets from a sending port, the sizes are constant throughout the burstiness

variation both for the average and maximum (see Table A.2 in the appendix). Slowing

down the T9000 processing speed level from 0.1 to 0.5, results in a quick build up at

Q[0] of T9000#1 as noted by the queue occupancies in Table A.3 and Fig. 6.8. The

same phenomenon occurs at Q[1] (Fig. 6.9). This net increase is valid for both the

average and maximum sizes. Now, instead of having a constant size at the average

and maximum size of Q[0], there is a variation dependent upon the burstiness level.

Overall though, the pattern is such that as the burstiness level decreases, so does the

average and maximum sizes at both Q[0] and Q[1]. In T9000 #2, one interesting

revelation is that we have more or less the same occupancy levels at all three queues

for the average (Figs. 6.10 and 6.11). And further, in the case of burstiness level being

7.5, the maximum size at all queues is the same as when the T9000 processing level was

0.1. But, the maximum sizes vary for all the other burstiness cases. Further, in the

case where the T9000 processing speed level is 0.8, a net increase in the queue sizes for

both the average and the maximum is observed in T9000 # 1 and #2. This increase is

about the same order of magnitude as in the case where the T9000 processing speed is

0.5. The same trend of increasing queue sizes as burstiness level is high, and decreasing

as burstiness level is low is noted. And again, as for when the T9000 processing speed

level was 0.5, the average and maximum queue sizes at T9000 # 2 for all three queues

at a speci�c burstiness level is the same. This should be expected since all the Ethernet
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ports are sending packets at the same rate. Finally, at the T9000 processing speed level

of 1.0, the same dependency of queue sizes on burstiness levels is observed. In T9000

#1, Q[0] maintains the same order of magnitude as when the T9000 processing speed

level is 0.5. But, in Q[1] the sizes more than double sometimes for each burstiness

case. In T9000 #2, the average and maximum occupancies more or less double in size

in all the queues,Q[3], Q[4] and Q[5].

In each of the four cases of T9000 processing speed levels, at the four Ethernet

ports the queue sizes at the respective T9000 of each Ethernet port stayed within

the same range. Hence, we only report the results at Ethernet port 3. The results

for the other Ethernet ports are available upon request. Throughout the process of

changing the T9000 processing speed level from 0.1, 0.5, 0.8 and 1.0 at the ATM port,

no signi�cant e�ects were noted. As exempli�ed in tables A.9, A.10, A.11 and A.12

for Ethernet port 3, the values are more or less the same for the corresponding burst

frequency levels. The average of Q[0] wanders around 0.002 to 0.004 (i.e., almost zero),

while the maximum hovers at 1.0 . ForQ[1], the average sits at 0.3 and the maximum

at 48.0 . In Q[2] though, there is a drastic increase in both the average and maximum

sizes, because these packets come from the ATM port, which has a far greater rate

of transmission than all the Ethernet ports. In Q[3] and Q[4], the same patterns

as noted earlier in Q[1] are seen. Overall, we can a�rm that the T9000 processing

speed level does not a�ect the queues inside the T9000 of an Ethernet port, except the

queued receiving packets coming from the ATM port Q[2]. This is expected, since the

processing speed level only applies to the ATM port and not the other switch ports.

Delay Analysis

The delays collected under the scenario of the LRD tra�c with address destina-

tions uniformly distributed among the 4-by-4 ALAX switch ports are shown in Tables
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Figure 6.4: ATM port Q[0] Occupancy vs. Burst Frequency Level- T9000 Proc. Speed
= 0.1

Figure 6.5: ATM port Q[1] Occupancy vs. Burst Frequency Level- T9000 Proc. Speed
= 0.1
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Figure 6.6: ATM port Q[0] Occupancy vs. Burst Frequency Level- T9000 Proc. Speed
= 0.8

Figure 6.7: ATM port Q[1] Occupancy vs. Burst Frequency Level- T9000 Proc. Speed
= 0.8

113



Figure 6.8: ATM port Q[0] Occupancy vs. T9000 Speed Level- Burst Frequency = 7.5
secs.

Figure 6.9: ATM port Q[1] Occupancy vs. T9000 Speed Level- Burst Frequency = 7.5
secs.
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Figure 6.10: ATM port Q[3],Q[4],Q[5] Mean Occupancy vs. Burst Frequency- T9000
Proc. Speed = 0.1

Figure 6.11: ATM port Q[3],Q[4],Q[5] Mean Occupancy vs. Burst Frequency- T9000
Proc. Speed = 0.8
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A.13 and A.14 . The �rst table o�ers the average delays for packets leaving the ATM

port towards any of the Ethernet ports. The second table indicates the average delays

for packets leaving any of the Ethernet ports towards any other ports, meaning ATM

or the other Ethernet ports.

For each of the �ve levels of burstiness intensity, as the speed of the T9000 at

the ATM port is increased, the delay proportionally decreases. However, this pattern

does not adapt well with regard to changing the burstiness intensity while keeping

T9000 processing speed constant. For instance, in both cases where the T9000 pro-

cessing speed level is higher, the delay stays more or less uniform across the burst

frequency levels, respectively at 0.3 msec and 1 msec. This robustness in delay per-

formance is quickly lost when the T9000 processing speed levels are 0.8 and 1.0 (Fig.

6.12). Indeed, the packet delay uctuates with respect to the burstiness: the lower the

burstiness level the lower the end-to-end packet delay. And, these delays have more

than doubled compared to the previous ones. This would lead us to infer that the

acceptable performance region of the T9000 under the worst-case tra�c conditions

that may arise is situated somewhere in the range of [0.0,0.8] as determined in earlier

simulation runs.

At the Ethernet ports, when the T9000 processing speed level is increased, the

delay decreases proportionally (Fig. 6.13). And unlike the ATM port, the packet

delays vary for T9000 processing speed levels of 0.5, 0.8 and 1.0; while for the T9000

processing speed level of 0.1, the delays remain more or less constant throughout the

burstiness variations.
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Figure 6.12: Average End-to-end Packet Delays from the ATM Port to Any Other

Figure 6.13: Average End-to-end Packet Delays from Any Ethernet Port to Any Other
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ATM Ethernet Ethernet Ethernet
Port Port 1 Port 2 Port 3

ATM Port 0 0.31 0.44 0.25

Ethernet Port 1 0.53 0 0.26 0.21

Ethernet Port 2 0.26 0.53 0 0.21

Ethernet Port 3 0.21 0.53 0.26 0

Table 6.1: Probability Matrix for Random Destination Address Selection

6.2.2 Testing with Destination Address Randomly Distributed

In this case, there is no need for the concept of burst frequency level that we

used previously. Because, even though the meshed connectivity shown in Fig. 6.3 is

still maintained, the LRD-type tra�c generated at any port is now sent randomly to

other destinations according to a probability distribution. The probabilities used in

these tests appear in Table 6.1 . As usual, a port does not send to itself, i.e., the

probability for these entries is zero. Knowing that, a T9000 processing speed level

of 1.0 would not perform very well compared to the other speeds, the 4-by-4 ALAX

model was evaluated for T9000 processing speed levels of 0.1, 0.5 and 0.8. Hence, the

total number of simulation runs is only 3 for this setup. This accounts for all the three

T9000 processing speeds simulated.

Queuing Analysis

In T9000 #1 of the ATM port, the queue occupancies are low for both the

average and the maximum at the highest T9000 processing speed level (i.e., 0.1). But,

they grow if the T9000 processing speed level decreases, as expected (Table A.15, Figs.

6.14 and 6.15). At T9000 #2, The average number of packets sent by Ethernet port

1 are greater than the average sent by the other two ports (Fig. 6.16). This should

be so, since the probability of sending packets to the ATM port is higher for Ethernet

port 1. Nevertheless, the maximum number of packets sent by all the Ethernet ports
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to the ATM, is the same for each speed of the T9000 (Table A.16).

For the T9000 at Ethernet port 1 (Table A.17), the maximum queue occupancies

remain the same for each case of T9000 processing speed. Since the probability of

sending to Ethernet port 1 is higher for the Ethernet ports 2 and 3, the average queue

occupancy should indeed be higher for Q[4] and Q[5]. However, this can not be because

the ATM port is sending data at a much faster rate than the others. Consequently,

the average of Q[2] is much higher. Noticeably, the averages at Q[4] and Q[5] are

the same, due to the fact that both port have the same probability of sending to the

Ethernet port 1. In Q[0] and Q[1] the values stay intact even as the speed changes for

the T900 at the ATM port. There is no surprise there, since the Ethernet port has no

direct relationship to the T9000 ATM port.

At Ethernet port 2 (Table A.18), the outcomes are somewhat similar, but applied

with respect to the ports with the highest probabilities. In this case, it is the ATM

port. The number of IEEE 1355 packets for its corresponding queue are higher than

all the other queues compared. Aside from that fact, the same observations made

earlier are true. Essentially, the average and maximum number of packets for all the

queues, besides the one for the ATM port, remain the same even though the T9000

processing speed at the T9000 was varied.

The T9000 at Ethernet port 3 (Table A.19) behaves more or less in the same

fashion as the previous other ones. Once again, the average and maximum number of

IEEE 1355 packets are maintained throughout the variation of the T9000 processing

speed level at the ATM port. Also, the average number of packets from the T9000

port is much higher than all the others.

Delay Analysis

For the simulations involving the LRD-type tra�c with address destinations
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Figure 6.14: ATM Port Q[0] occupancy

Figure 6.15: ATM Port Q[1] occupancy
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Figure 6.16: ATM Port Q[3], Q[4] and Q[5] occupancy

randomly determined, average packet latencies are low as the T9000 processing speed

is high and vice versa. This is true on both the ATM and Ethernet ends (Table

A.20). One important outcome worth acknowledging, is that more or less the average

delays at the ATM port match the average delays for the Ethernet ports (Fig. 6.17).

This attractive performance behavior would indicate that the ALAX architecture can

comfortably accommodate real-world situations, because the delay at each port on

average is uniform.
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Figure 6.17: Average End-to-end Packet Delays
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6.3 Outcomes under the SRD Tra�c (MMPP)

The SRD-based tra�c generators throughout the simulation runs involved also

four levels of burst intensity, identi�ed as ratios (see Chap. 5, Sec. 5.4). These ratios

ranged from least bursty to most bursty at 1:1, 10:1, 50:1 and 500:1. Henceforth the

experimentations were carried for each burst ratio and each T9000 processing speed

level. Thus, the total number of simulation runs under the auspices of the SRD-type

tra�c for the 4-by-4 ALAX model is 16.

6.3.1 Queuing Analysis

For the ATM port, when the T9000 processing speed level is 0.1, at T9000 #1,

the average size at Q[0] varies from 0.3 to 0.6, while the maximum size goes from

6.0 to 11.0 (Table A.21). This trend is observed as the burst ratio level is intensi�ed

accordingly from 1:1 to 500:1. Further in Q[1], the average size also varies from 5.5 to

42.4, and the maximum size increases from 28.0 to 574.0. Indeed, here just like in the

case of the LRD, seen previously, occupancies in Q[1] are much greater than Q[0], as

a result of the backpressure from the C104 switching device. Meanwhile, in T9000 #2

(Table A.22), the average sizes for Q[3], Q[4] and Q[5] remain more or less steady at

around 1.7, 1.2 and 1.0 respectively throughout the burstiness variation. However, the

maximum size at these corresponding queues jump by about 20% as the burst ratio

level is augmented.

Shifting the T9000 processing speed level from 0.1 to 0.5, results in a substantial

increase in average and maximum sizes at Q[0] and Q[1] (see Table A.23, Figs. 6.18,

6.19, 6.20 and 6.21). Because, the processing speed is slowed down, more packets are

now waiting to be served for LAN Emulation and MML at Q[0]; while at Q[1] more

packets are prevented from moving on, due to the backpressure from the C104. A

similar buildup is observed in T9000 #2 (Table A.24). However, the maximum size

123



at the queues remain the same as when the T9000 processing speed level was 0.1 .

Stepping down further to slower processing speed levels at 0.8 and 1.0 (Tables A.25,

A.26, A.27 and A.28), the growth in queue sizes is again noticeable (Fig. 6.22 and

6.23).

At all Ethernet ports, the queuing results are more or less the same. Hence,

here we only acknowledge the results at Ethernet port 3. The statistics at the other

Ethernet ports, for this scenario are available upon request. Tables A.29, A.30, A.31

and A.32 show that as the T9000 processing speed level is changed from 0.1, 0.5, 0.8

and 1.0 respectively, there was no direct or immediate e�ects on all the queues at

Ethernet port 3, except for Q[2]. This is expected, since the processing speed level at

the ATM port has no direct relationship to the other Ethernet ports. Nevertheless, it

does a�ect the number of packets that they do receive from the ATM port, as revealed

in the values for Q[2]. Eventually, as the processing speed decreases a substantial

decrease in the average size at Q[2] is noted, but the maximum size remains the same

throughout.

6.3.2 Delay Analysis

Tables A.33 and A.34 denote the average packet latencies at the ATM and

Ethernet ports. In both tables, as the T9000 processing speed level goes down, the

packet delay proportionally increases. So that the highest end-to-end delay is obtained

for the slowest speed level at any burstiness ratio intensity (Figs. 6.24 and 6.25).

At the ATM port, when the T9000 processing speed level is 0.1, if the burst ratio

is 1:1, the delay is 0.4 msec. Further, if the burstiness variation is introduced for 10:1,

50:1 and 500:1, there is an increase by 0.1 msec in each case from 0.4 msec. For a

T9000 processing speed level of 0.5, the delay jumps to 1.4 msec, 1.6 msec, 1.7 msec

and 1.8 msec respectively at 1:1, 10:1, 50:1 and 500:1 burst ratios. The same pattern
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Figure 6.18: ATM port Q[0] Occupancy vs. Burst Ratio Level- T9000 Proc. Speed =
0.1

Figure 6.19: ATM port Q[1] Occupancy vs. Burst Ratio Level- T9000 Proc. Speed =
0.1
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Figure 6.20: ATM port Q[0] Occupancy vs. Burst Ratio Level- T9000 Proc. Speed =
0.8

Figure 6.21: ATM port Q[1] Occupancy vs. Burst Ratio Level- T9000 Proc. Speed =
0.8
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Figure 6.22: ATM port Q[0] Occupancy vs. T9000 Speed Level- Burst Ratio = 500:1

Figure 6.23: ATM port Q[1] Occupancy vs. T9000 Speed Level- Burst Ratio = 500:1
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Figure 6.24: Average End-to-end Packet Delays from the ATM Port to Any Other

goes on for the two other speed levels.

Meanwhile at Ethernet port 3, the delays look at little bit more stable around the

�rst decimal point, until the most bursty level at T9000 processing speed level of 0.8.

Then, it degrades up to 3.4 msec. Overall, though these delays appear relatively small

and acceptable.
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Figure 6.25: Average End-to-end Packet Delays from Any Ethernet Port to Any Other
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6.4 Outcomes under the VBR Tra�c (Star Wars Movie)

Within the context of simulating the 4-by-4 ALAX under the loads of a VBR

tra�c, the selected tra�c was represented by the popular Star Wars movie. As the

future holds the promise of video to the desktop over existing or emerging high-speed

networks, this experiment is a projection of this imminent reality.

Each network port acted as a possible video server/client to all the other ports,

so that there are in total 12 simultaneous video streams inside the ALAX switch.

The T9000 processing speed level at the ATM port again, was varied from 0.1 to 1.0,

and statistics were captured only for the average queue sizes and the average delays

experienced by a packet going from one end port to any other of the ALAX switch.

There are a total of 4 simulation runs for this case.

6.4.1 Queuing Analysis

Surveying T9000 #1 (Table A.85), the average queue sizes are seen inversely

proportional to the T9000 processing speed levels (Fig. 6.53). Stated another way, as

the T9000 processing speed level increases, the queue sizes decrease and vice versa.

Further in T9000 #2 (Table A.86), the same characteristics are observed. But the

queue sizes among Q[3], Q[4] and Q[5] are of the same magnitude. In addition, they

are more or less equivalent to the small sizes observed at Q[0] in T9000 #1 (Fig. 6.54).

On the other hand, all the Ethernet ports adopt the same behavior irrespective of

the T9000 processing speed level (Tables A.87, A.88 and A.89). The queue sizes are

the same for all these ports, except in Q[2] where there are some slight uctuations. As

previously seen, Q[2] is where packets coming from the ATM port are stored. Hence,

these uctuations reveal the variation of the tra�c stream from the ATM port as the

T9000 processing speed changes.
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Figure 6.26: Average Occupancy for Q[0] and Q[1] at ATM port

Figure 6.27: Average Occupancy for Q[3], Q[4] and Q[5] at ATM port
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Figure 6.28: End-to-end Packet Delays

6.4.2 Delay Analysis

For the Star Wars tra�c pro�le, the delay performance bear the same values

at both Ethernet and ATM ports (see Table A.90 and Fig. 6.55). The same order

of magnitude is noted overall for all the ports across the ALAX switch. Varying the

T9000 processing speed level from slowest to fastest decreases the average end-to-end

packet delays by almost 90% at the ATM port, while this decrease is approximately

30% at each Ethernet port. Broadly speaking, it seems that again a value between

0.0 and 0.8 could provide a superior performance of the ALAX switch. Note on the

graph of Fig. 6.55 the curves for the ATM and Ethernet delays cross each other at

the T9000 processing speed of 0.8.

6.5 Summary Note

The OPNET simulations for ALAX answered the questions and goals that it

was set for. Relevant queue sizes were determined for the shared memory bu�er
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at each T9000 transputer. The most e�ective and optimal processing speed range

for the T9000 was determined for the 4-by-4 ALAX model to be [0.0, 0.8]. For a

small switch con�guration with 4 data ports, the performance of the ALAX design

and its architecture as reected in the average end-to-end delays reported, seems well

positioned overall, assuming of course the optimal speed is set and adequate memory

provisioning is provided.
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Chapter 7

The ALAX Simulation Experiments- Part II

This chapter outlines �rst the steps in modifying the original 4-by-4 ALAX sim-

ulation model into the 8-by-8, 12-by-12 and 16-by-16 models. Then, the methodology

for conducting the simulation runs are discussed for all three of these cases indicated.

These cases were studied using only the SRD-based tra�c model. The results1 are

presented and interpreted for each case individually, and �nally a comparison is made

between all four sizes developed for the ALAX switch model.

7.1 Expanding the ALAX Simulation Model

7.1.1 Motivation

The creations of 8-port, 12-port and 16-port con�gurations of the ALAX switch

are motivated by the interest to match comparable switch sizes on the market and

also to test the scalability of the switch when the port size increases, because ALAX

is designed with the capability to grow to a maximum of 16 data ports (see Chap.

4). Hence, having these models help in further establishing benchmarks in accordance

1These results include again average end-to-end packet delays and queuing sizes. Vari-

ances/standard deviations are not part of the analysis. They can be made available upon request.
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with the industry, while providing data to assess the performance of the ALAX archi-

tecture when we go from a 4-by-4 to a 16-by-16 size.

7.1.2 Modi�cations Required

These models were built upon the original 4-by-4. There were minor changes to the

architecture and organization, aside from an increase in the number of devices, e.g.,

transputers, for each Ethernet port added to the simulation model. Overall the system

design was maintained, again accounting for the exibility of the OPNET simulation

tool. In all these models, one C104 was used. The only points where major changes

occurred were in the internal operations of the C104 and the T9000 transputer. These

alterations involved adding line of codes, increasing the internal number of sub-queues

and some other general programming structures to accommodate the increase of ports

and tra�c in each case. The code for each model is provided in the appendix for

references.

7.2 Experimental Methodology

The methodology for pursuing the simulations for the 8-by-8, 12-by-12 and 16-

by-16 ALAX models are similar to the one discussed in the previous chapter. End-

to-end packet delays and queuing sizes are still the parameters of interest. The same

Ethernet and ATM packet sizes are maintained. And the tests are such that any port

can send to any other port except itself. We still have one ATM port but the number

of Ethernet ports grow with respect to the model at hand. Hence, there are 7, 11 and

15 Ethernet ports respectively for the 8-by-8, 12-by-12 and 16-by-16 ALAX models.

The other signi�cant di�erence is in the speed of the ATM port which changes for
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each ALAX model, 28 Mbps, 44 Mbps and 60 Mbps while each Ethernet port speed

remains at 4 Mbps. Finally, it is worth mentioning also that the steady-state operation

of ALAX was maintained at 10 secs for the 8-by-8 case, however in the 12-by-12 and

16-by-16 models we used 15 secs as the most suitable value. In total there were 48

simulation runs executed for all these models, 16 for each.
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Figure 7.1: Mesh Connectivity inside the 8-by-8 ALAX model in OPNET

7.3 Testing with the 8-by-8 Model

7.3.1 Queuing Analysis

All the values collected for T9000 #1 (Tables A.35, A.37, A.39 and A.41) under

each speed level of the T9000 indicate that as the burstiness is increased, there is

a surge of packets that piles up into Q[0] and Q[1] (Figs. 7.2, 7.3, 7.4 and 7.5).

However, Q[1] is much larger than Q[0] due to the backpressure from the C104. In

T9000 #2 (Tables A.36, A.38, A.40 and A.42), the same e�ect happens for the queues

storing incoming packets from other ports. The only obvious di�erence between these

results and the ones from the 4-by-4 model seem to be that the queues have increased

dramatically from their previous values. And naturally this is expected, for there are

twice as many ports as before.

Just as in the previous cases, the Ethernet ports for the 8-by-8 model ranked the

same in terms of maximum and average queue sizes. So we only report the results

for Ethernet port 4. Again, the same values when T9000 processing speed level is

0.1 (Table A.43), are repeated more or less for T9000 processing speed levels of 0.5,

0.8 and 1.0 (Tables A.44, A.45 and A.46). The only queue that uctuates is the one

holding packets from the ATM port, Q[2] and here again the uctuations are not
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Figure 7.2: ATM port Q[0] Occupancy vs. Burst Ratio Level- T9000 Proc. Speed =
0.1

as accentuated as in the 4-by-4 model case. These values are very close to the ones

observed in the 4-by-4 model for the all the Ethernet ports.

7.3.2 Delay Analysis

Tables A.47 and A.48 reect the end-to-end packet delays for the ATM and Eth-

ernet ports respectively. The striking feature in these results is noted at the Ethernet

port, where for the high value of T9000 processing speed level, there are e�ectively low

delays across the switch comparable to the ATM delays (Figs. 7.8 and 7.9). Nonethe-

less, as soon as the T9000 processing speed level hits the 1.0 mark, the immediate

consequence is felt at the Ethernet ports, where the delays increase ten-fold.
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Figure 7.3: ATM port Q[1] Occupancy vs. Burst Ratio Level- T9000 Proc. Speed =
0.1
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Figure 7.4: ATM port Q[0] Occupancy vs. Burst Ratio Level- T9000 Proc. Speed =
0.8
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Figure 7.5: ATM port Q[1] Occupancy vs. Burst Ratio Level- T9000 Proc. Speed =
0.8

Figure 7.6: ATM port Q[0] Occupancy vs. T9000 Speed Level- Burst Ratio = 500:1
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Figure 7.7: ATM port Q[1] Occupancy vs. T9000 Speed Level- Burst Ratio = 500:1

Figure 7.8: Average End-to-end Packet Delays from the ATM Port to Any Other
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Figure 7.9: Average End-to-end Packet Delays from Any Ethernet Port to Any Other
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Figure 7.10: Mesh Connectivity inside the 12-by-12 ALAX model in OPNET

7.4 Testing with the 12-by-12 Model

7.4.1 Queuing Analysis

In T9000 #1, when the processing speed level is 0.1 (Table A.49), the average

and maximum at Q[0] are relatively small compared to the ones with respect to Q[1]

(Figs. 7.11 and 7.12). Once again, as acknowledged in previous cases, the large queue

build-up at Q[1]] is most likely due to the C104 backpressure. When the processing

speed is changed to 0.5, there is a small increase in the average at Q[0] (see Table

A.51), while the maximum occupancy stays more or less the same. In the meantime,

the consequences are di�erent at Q[1]. A dramatic increase for both the average and

maximum occupancy at Q[1] is noticed. The magnitude of the increase is dependent

upon the burstiness level. A decrease in the speed of the T9000 to 0.8 (see Table A.53),

results in further increase at Q[1] (Fig. 7.14). At Q[0], for burstiness levels in the

range of 10:1 to 500:1, as selected, a similar increase is felt (Fig. 7.13). However, for

the burstiness level of 1:1, there is almost no increase observed since the same values

are repeated. This could probably be a reection of the low intensity exhibited by a
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1:1 burst ratio. At a speed of 1.0 (Table A.55), the outcomes are identical to the ones

for a speed of 0.8 .

For T9000 #2, there are no signi�cant changes with regard to the occupancies of

the queues under the conditions imposed by varying T9000 processing speed and burst

levels. Tables A.50, A.52, A.54 and A.56 show that aside from slight uctuations the

queue occupancies are uniformly the same.

All 11 Ethernet ports for the 12-by-12 model ranked the same in terms of max-

imum and average queue sizes. Hence in Tables A.57, A.58, A.59 and A.60 we only

show the results for Ethernet port 6. Results from the other Ethernet ports are avail-

able upon request.

Again, the same values when the T9000 processing speed level is 0.1, are repeated

more or less for T9000 processing speed levels of 0.5, 0.8 and 1.0. This time though,

there are no signi�cant uctuations for Q[2], holding the packets from the ATM port.

Note that in the 4-by-4 and 8-by-8 model cases, these uctuations were more accen-

tuated.

7.4.2 Delay Analysis

Tables A.61 and A.62 give an account on the packet latencies for the ATM and

Ethernet ports respectively. These results are plotted in Figures 7.17 and 7.18.

In the �rst table, the delay increases proportionally as the T9000 processing speed

level decreases for all the burstiness points selected. The �gures for these delays stay

stable throughout each processing speed level attained independently of the burstiness

chosen. For the Ethernet ports, the delays also increase as the T9000 processing

speed level decreases. Overall, we observe that when the T9000 processing speed

is somewhere between 0.0 and 0.5, we can hope to achieve at the Ethernet port an

almost identical delay performance as in the ATM port. But, when the speed is 0.8,
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Figure 7.11: ATM port Q[0] Occupancy vs. Burst Ratio Level- T9000 Proc. Speed =
0.1

Figure 7.12: ATM port Q[1] Occupancy vs. Burst Ratio Level- T9000 Proc. Speed =
0.1
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Figure 7.13: ATM port Q[0] Occupancy vs. Burst Ratio Level- T9000 Proc. Speed =
0.8

Figure 7.14: ATM port Q[1] Occupancy vs. Burst Ratio Level- T9000 Proc. Speed =
0.8
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Figure 7.15: ATM port Q[0] Occupancy vs. T9000 Speed Level- Burst Ratio = 500:1

Figure 7.16: ATM port Q[1] Occupancy vs. T9000 Speed Level- Burst Ratio = 500:1
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Figure 7.17: Average End-to-end Packet Delays from the ATM Port to Any Other

packets from the Ethernet ports face much more delay than the ATM one. And in

this case, Ethernet delays above 30 msec should be rejected as this is an indication of

poor performance compared to the accepted levels in the industry [43]. Beyond 0.8,

the Ethernet packet delays can not be considered. Again, we can clearly see that the

range of [0.0, 0.8] still holds, but [0.0, 0.5] may be even better.
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Figure 7.18: Average End-to-end Packet Delays from Any Ethernet Port to Any Other
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Figure 7.19: Mesh Connectivity inside the 16-by-16 ALAX model in OPNET

7.5 Testing with the 16-by-16 Model

7.5.1 Queuing Analysis

For T9000 # 1, when the T9000 processing speed level is 0.1, the average and

maximum queue sizes at all burstiness levels for Q[0] are relatively small (Table A.63

and Figs. 7.20). Slowing down the speed to 0.5, increases the average queue size at

Q[0] while the maximum size stays the same (Table A.66). In Q[1] the outcomes are

di�erent. For speeds, there is a net increase in average and maximum size proportion-

ally to the burstiness levels. If the speed is 0.8 or 1.0, then the average and maximum

queue sizes increase for both Q[0] and Q[1] (Tables A.69 and A.72) at all the burstiness

points of interest (Figs. 7.22 and 7.23). The only exception can be extracted for Q[0]

at a burstiness level of 1:1 .

Tables A.64, A.65, A.67, A.68, A.70, A.71, A.73 and A.74 summarize the e�ects
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observed at the downstream T9000 queues (T9000 # 2). When the T9000 processing

speed level is set at 0.1 or 0.5, as indicated in the �rst four tables above, the queue

sizes are practically the same. The average size at each queue is very small, while the

maximum is almost a thousand times what the average is. Conversely, if the speed is

further decreased to 0.8 or 1.0, the outcomes are similar. Meaning that the average

occupancy at each queue increases slightly, while the maximum remains the same.

As seen in the prior cases, all the Ethernet ports ranked the same in terms of

magnitude of queue sizes. For this reason again, we only report the results at one

port, Ethernet port 8. Data for other Ethernet ports are available upon request.

One general observation that can be made about the queue for Ethernet port 8,

concerns the maximum occupancy. Aside from Q[1] where this maximum is relatively

large, and Q[0] where this maximum is relatively small, for all the other queues (Q[3]

to Q[17), the maximum occupancy approaches 70. And this is true for all four T9000

processing speeds (see Tables A.75 to A.82). Meanwhile, the average for all the queues

at every speed level is of an order much less than 1; except at Q[1] and Q[2] where

it oscillates between 1 and 2. These two queues (Q[1] and Q[2]) appear the most

inuenced by any changes in T9000 processing speeds, as expected. Indeed, the max-

imum occupancy at Q[1] is probably large because of the C104 backpressure, and as

the T9000 speed decreases, the average slightly decreases while the maximum remain

steady. Q[2] is directly linked to the packets sent by the ATM port, so any variation in

T9000 speed there, would considerably a�ect Q[2]. This is noted in the slight increase

or decrease of the average at Q[2] as the speed changes. One �nal observation can be

traced to Q[0]. Since any Ethernet port only performs MML (contrary to the ATM)

which is small with respect to delays, then Q[0] experiences a very small magnitude

of occupancy for both the average and the maximum.
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Figure 7.20: ATM port Q[0] Occupancy vs. Burst Ratio Level- T9000 Proc. Speed =
0.1

Figure 7.21: ATM port Q[1] Occupancy vs. Burst Ratio Level- T9000 Proc. Speed =
0.1
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Figure 7.22: ATM port Q[0] Occupancy vs. Burst Ratio Level- T9000 Proc. Speed =
0.8

Figure 7.23: ATM port Q[1] Occupancy vs. Burst Ratio Level- T9000 Proc. Speed =
0.8
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Figure 7.24: ATM port Q[0] Occupancy vs. T9000 Speed Level- Burst Ratio = 500:1

Figure 7.25: ATM port Q[1] Occupancy vs. T9000 Speed Level- Burst Ratio = 500:1
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Figure 7.26: Average End-to-end Packet Delays from the ATM Port to Any Other

7.5.2 Delay Analysis

From the ATM port, the performance with regards to delay is great. Because

across variations in tra�c load burstiness or T9000 processing speed, the average end-

to-end delay , experienced by packets coming from the ATM port and destined to any

Ethernet ports of the 16-by-16 switch, is very small within 1 msec (see Table A.83 and

the graph in Fig. 7.26)).

However, the average packet delay for any Ethernet port (Table A.84) varies in

relation to the tra�c burstiness or the T9000 processing speed level (See Fig. 7.27).

At the T9000 processing speed level of 0.1, the delay stays well within 0.5 msec, no

matter what the burstiness intensity is. But for 0.5 processing speed, it uctuates

between 1 and 1.5 msec. While for 0.8, the range of delay increases by a factor of 10,

but still acceptable since it is below 30 msec [43]. When the speed becomes 1.0, the

Ethernet delays are relatively large compared to the other faster speeds.
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Figure 7.27: Average End-to-end Packet Delays from Any Ethernet Port to Any Other
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7.6 Comparative Assessment of ALAX Sizes

In this section, we further investigate the e�ects inherent in the ALAX architec-

ture as it is expanded from its basic 4-by-4 size to 8-by-8, 12-by-12 and 16-by-16.

7.6.1 Queuing Analysis

Looking at the ATM port results, the values for the maximum queue occupancy

are repeated throughout T9000 # 2 of the 4-by-4, 8-by-8, 12-by-12 and 16-by-16

models. These values are not exactly the same �gures, but they are well within the

same order of magnitude and with very minimal uctuations. This is a good sign, as

it may be an acceptable indication for the scalability of the ALAX switch architecture.

The average queue sizes though, vary depending on the size of the switch as much as

it did with respect to the T9000 processing speed and tra�c burstiness intensity. One

obvious trend is that the average size of all queues at T9000 # 2 seem to decrease as the

switch size is increased, perhaps due to the speed scalability of ATM. These patterns

do not occur quite in the same fashion at T9000 # 1. The average queue size for Q[1]

increases with the switch size and so does the maximum. This is expected since more

packets are generated for every port increase in the switch, and the C104 still executes

its backpressure mechanism to prevent ooding. It is worth noting also, that Q[0] in

all four cases of the ALAX switch model is always maintained relatively small in size

compared to Q[1]. This is again in accordance with our overall architecture as seen

previously in the 4-by-4 case (Chapter 6).

When comparing all the results compiled for the T9000 at each Ethernet port, in

each case of the ALAX switch sizes, one outstanding phenomenon that emerges is that

the same maximum occupancy occurs in all the ALAX models. The only di�erences

are detected in the average size uctuations. This is probably a result of injecting
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Figure 7.28: Average End-to-end Packet Delays at the ATM port for all ALAX sizes
(with a T9000 Proc. Speed = 0.1)

packets at the same rate for each Ethernet port.

7.6.2 Delay Analysis

The average end-to-end delay for any packet leaving the ATM port seems to

be well maintained at around 1 msec for all four ALAX switch models, within the

T9000 speed range of 0 to 1.0 . The same can not be said for the average end-to-

end delay at the Ethernet ports. In this case, the observations point out that large

delays of the order of 40 to 80 msec can occur speci�cally when the T9000 processing

speed is above 0.8, and especially in the 12-by-12 and 16-by-16 models. Given that

the average latency tested and reported by the Tolly Group for the typical fastest

Ethernet switch encountered in the industry lies around 30 msec [43], these delays are

probably unacceptable. Taking this fact into account would lead us to favor a much

smaller range [0.0,0.5] instead of [0.0,0.8] as previously established in the 4-by-4 case.
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Figure 7.29: Average End-to-end Packet Delays at the ATM port for all ALAX sizes
(with a T9000 Proc. Speed = 0.5)
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Figure 7.30: Average End-to-end Packet Delays at the ATM port for all ALAX sizes
(with a T9000 Proc. Speed = 0.8)
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Figure 7.31: Average End-to-end Packet Delays at the ATM port for all ALAX sizes
(with a T9000 Proc. Speed = 1.0)

7.7 Summary Note

With the exibility of the OPNET simulation tool, it was not a much di�cult

task to modify the existing 4-by-4 ALAX model into 8-by-8, 12-by-12 and 16-by-16

con�gurations. We noticed that, in each individual ALAX model simulated that the

performance level was still acceptable in the ranges previously established under the

4-by-4 case. The queue sizes did grow proportionally with the tra�c load encountered

on each case simulated and as the burstiness increased and the T9000 speed decreased.

However, all the four models did not perform consistently in the same manner. Large

delays and substantial queue buildup in the 12-by-12 model were experienced when

the T9000 was running at the acceptable worst speed of 0.8. Nonetheless, we did

not observe the same trend in the 16-by-16 case under the same conditions. So, this

�nding even though not convincing totally, could probably indicate the need to shrink

the optimal speed range of the T9000 to [0.0, 0.5] instead of [0.0,0.8] as previously

agreed. Note that further investigations are needed to understand why this behavior

is occurring.
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Overall, though relevant queue sizes have been determined for the shared memory

bu�er at each T9000 transputer. The performance of the ALAX switch itself growing

from 4 to 16 ports is fairly scaleable to a great extent provided of course an adequate

speed is selected from the range established and su�cient bu�ering is provided as

indicated by our results.
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Chapter 8

Conclusions and Future Growth

This chapter presents a summary of recommendations and conclusions to aid

in the design implementation of ALAX. This summary is based on the analysis and

results from previous chapters. The Future Growth section presents other ways to

extend the architecture developed for ALAX into other areas.

8.1 Conclusions

Through the OPNET simulation experiments, several results have been collected

for the design and implementation of the ALAX switch.

First of all, the number of T9000 transputers increased to 2 instead of one as

in the original design. This modi�cation was prompted by early indications of poor

performance of the ALAX switch with one transputer at the ATM port. And conse-

quently, the subsequent observations in the simulation experiments have shown much

less bottleneck at the ATM port than as previously experienced.

Secondly, since the implementation of the ALAX prototype requires adequate

capacity sizing of memory, good estimates for these memory bu�ers at each port of

the switch would probably be the maximum sizes as reported in the tables with some

provisioning of a margin of 15 to 20 % above the actual �gures. The following set of
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Size (IEEE 1355 Pkts.)

Q[0] 88

Q[1] 4706

Shared Memory 4794 (153 KB)

Table 8.1: Recommended Queue Size Estimates for 4-by-4 ALAX with LRD-type
Tra�c, ATM side T9000 #1

Size (IEEE 1355 Pkts.)

Q[3] 491

Q[4] 490

Q[5] 490

Shared Memory 1471 (50 KB)

Table 8.2: Recommended Queue Size Estimates for 4-by-4 ALAX with LRD-type
Tra�c, ATM side T9000 #2

tables highlight these estimated design �gures for each of the scenarios tested1.

Thirdly, the optimal speed for the worst-case scenario (i.e., least fast but stable

operation of the ALAX switch) was determined to be 0.8, when the model to be im-

plemented is a 4-by-4. When expanding the switch size by adding more ports, we

still could maintain acceptable performance at the processing speed of 0.8 under the

SRD-type tra�c pro�le. But there are clear indications that if we are designing up to

the 16 ports, this optimal speed should be 0.5 instead.

Finally, the ALAX switch architecture appears to be fairly scalable up to 16 ports.

This can be inferred because overall the delays were low when the switch was aug-

mented from 4, 8, 12 and 16 ports with a T9000 processing speed range of [0.0, 0.8].

Thus, if we were to provision the ATM port accordingly with respect to the other

ports, ALAX would be able to achieve a scalable performance with minimal delays.

1KB = KiloByte, MB = MegaByte
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Size (IEEE 1355 Pkts.)

Q[0] 1

Q[1] 48

Q[2] 66

Q[3] 49

Q[4] 49

Shared Memory 213 (6.8 KB2)

Table 8.3: Recommended Queue Size Estimates for 4-by-4 ALAX with LRD-type
Tra�c, Ethernet side T9000

Size (IEEE 1355 Pkts.)

Q[0] 24

Q[1] 1480

Shared Memory 1540 (48 KB)

Table 8.4: Recommended Queue Size Estimates for 4-by-4 ALAX with SRD-type
Tra�c, ATM side T9000 #1

Size (IEEE 1355 Pkts.)

Q[3] 588

Q[4] 441

Q[5] 441

Shared Memory 1470 (47 KB)

Table 8.5: Recommended Queue Size Estimates for 4-by-4 ALAX with SRD-type
Tra�c, ATM side T9000 #2

Size (IEEE 1355 Pkts.)

Q[0] 11

Q[1] 538

Q[2] 67

Q[3] 67

Q[4] 67

Shared Memory 750 (24 KB)

Table 8.6: Recommended Queue Size Estimates for 4-by-4 ALAX with SRD-type
Tra�c, Ethernet side T9000

Size (IEEE 1355 Pkts.)

Q[0] 1132

Q[1] 148852

Shared Memory 149984 (4.8 MB)

Table 8.7: Recommended Queue Size Estimates for 8-by-8 ALAX with SRD-type
Tra�c, ATM side T9000 #1
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Size (IEEE 1355 Pkts.)

Q[3] 441

Q[4] 539

Q[5] 441

Q[6] 686

Q[7] 441

Q[8] 490

Q[9] 539

Shared Memory 3577 (114 KB)

Table 8.8: Recommended Queue Size Estimates for 8-by-8 ALAX with SRD-type
Tra�c, ATM side T9000 #2

Size (IEEE 1355 Pkts.)

Q[0] 11

Q[1] 538

Q[2] 67

Q[3] 66

Q[4] 66

Q[5] 66

Q[6] 66

Q[7] 66

Q[8] 66

Q[9] 66

Shared Memory 1078 (35 KB)

Table 8.9: Recommended Queue Size Estimates for 8-by-8 ALAX with SRD-type
Tra�c, Ethernet side T9000

Size (IEEE 1355 Pkts.)

Q[0] 2835

Q[1] 228930

Shared Memory 231765 (7.4 MB)

Table 8.10: Recommended Queue Size Estimates for 12-by-12 ALAX with SRD-type
Tra�c, ATM side T9000 #1
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Size (IEEE 1355 Pkts.)

Q[3] 441

Q[4] 441

Q[5] 490

Q[6] 392

Q[7] 441

Q[8] 441

Q[9] 441

Q[10] 441

Q[11] 441

Q[12] 490

Q[13] 490

Shared Memory 4949 (158 KB)

Table 8.11: Recommended Queue Size Estimates for 12-by-12 ALAX with SRD-type
Tra�c, ATM side T9000 #2

Size (IEEE 1355 Pkts.)

Q[0] 11

Q[1] 538

Q[2] 71

Q[3] 66

Q[4] 66

Q[5] 66

Q[6] 66

Q[7] 66

Q[8] 66

Q[9] 66

Q[10] 66

Q[11] 66

Q[12] 66

Q[13] 66

Shared Memory 1346 (43 KB)

Table 8.12: Recommended Queue Size Estimates for 12-by-12 ALAX with SRD-type
Tra�c, Ethernet side T9000

Size (IEEE 1355 Pkts.)

Q[0] 2474

Q[1] 195890

Shared Memory 198364 (6.3 MB)

Table 8.13: Recommended Queue Size Estimates for 16-by-16 ALAX with SRD-type
Tra�c, ATM side T9000 #1
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Size (IEEE 1355 Pkts.)

Q[3] 441

Q[4] 441

Q[5] 392

Q[6] 490

Q[7] 343

Q[8] 392

Q[9] 343

Q[10] 539

Q[11] 539

Q[12] 294

Q[13] 441

Q[14] 441

Q[15] 441

Q[16] 343

Q[17] 392

Shared Memory 6272 (200 KB)

Table 8.14: Recommended Queue Size Estimates for 16-by-16 ALAX with SRD-type
Tra�c, ATM side T9000 #2

Size (IEEE 1355 Pkts.)

Q[0] 11

Q[1] 538

Q[2] 69

Q[3] 66

Q[4] 66

Q[5] 66

Q[6] 66

Q[7] 66

Q[8] 66

Q[9] 66

Q[10] 66

Q[11] 66

Q[12] 66

Q[13] 66

Q[14] 66

Q[15] 66

Q[16] 66

Q[17] 66

Shared Memory 1542 (49 KB)

Table 8.15: Recommended Queue Size Estimates for 16-by-16 ALAX with SRD-type
Tra�c, Ethernet side T9000
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8.2 Considerations for Future Growth

We could investigate other areas with the current architecture and the simulation

model of ALAX. These include:

1. Use other performance metrics besides end-to-end delay such as utilization,

throughput, e�ciency or cost/performance ratio.

2. we could develop the approaches to integrate MPOA inside ALAX. And also

explore the application of the concepts of Cells In Frame (CIF) into the ALAX

architecture.

3. Using the current simulation of ALAX, we could conduct more simulation runs

with 8-by-8, 12-by-12, 16-by-16 under the LRD Tra�c, execute simulations at

nominal speeds of each physical port as designed and �nally model ALAX using

a concurrent or parallel simulation approach, since ALAX is based on a multi-

processor system with parallel architecture capabilities.

4. The current ALAX model can be enhanced by remodeling the Transputer with a

dynamic/adaptive processing speed, modeling the control plane and add it to the

current ALAX switch, expanding the LANE implementation and add it to the

current simulation model and also, by inserting ALAX into an actual network

scenario.

5. For extending the ALAX internetworking span, several considerations are: Frame

Relay, Fast Ethernet, Token Ring, xDSL Family, MPEG, ISDN and Satellite

on-board switching, this topic was properly addressed in a technical document

titled \`IEEE 1355-Based Architecture for an ATM Switch- A Case for On-board

Switching and Processing"[25,26].
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Appendix A

ALAX Simulation Results

This appendix contains selected sets of results pertaining to the performance

evaluation and the conclusions derived in Chapter 6. It is divided according to the

three types of tra�c used in the study : LRD, SRD and VBR. In the case of the SRD

tra�c, the results are further subdivided with respect to each model of the ALAX

switch (i.e., 4-by-4, 8-by-8, 12-by-12 and 16-by-16). The complete set of the results

including variance measurements can be made available upon request.

A.1 Outcomes under the LRD Tra�c (M=G=1)

A.1.1 With the 4-by-4 Model (Destns. Uniformly Distributed)

Burstiness Frequency Level
(sec.)

Queue Size
(# IEEE 1355 pkts) 7.5 15.0 30.0 60.0 120.0

Avg. @ Q[0] 0.08 0.08 0.08 0.08 0.09
Max. @ Q[0] 1.0 1.0 1.0 1.0 1.0

Avg. @ Q[1] 93.0 73.7 73.2 57.1 37.9
Max. @ Q[1] 1794.0 1794.0 1182.0 616.0 310.0

Table A.1: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru 3
(T9000 Proc. Speed Level = 0.1)
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Burstiness Frequency Level
(sec.)

Queue Size
(# IEEE 1355 pkts) 7.5 15.0 30.0 60.0 120.0

Avg. @ Q[3] 0.5 0.7 0.7 0.6 0.6
Max. @ Q[3] 49.0 49.0 49.0 49.0 49.0

Avg. @ Q[4] 0.5 0.6 0.6 0.6 0.6
Max. @ Q[4] 49.0 49.0 49.0 49.0 49.0

Avg. @ Q[5] 0.6 0.6 0.5 0.5 0.6
Max. @ Q[5] 49.0 49.0 49.0 49.0 49.0

Table A.2: Queue Occupancy in T9000 #2: tra�c coming from Ethernet Port 1 thru
3 (T9000 Proc. Speed Level = 0.1)

Burstiness Frequency Level
(sec.)

Queue Size
(# IEEE 1355 pkts) 7.5 15.0 30.0 60.0 120.0

Avg. @ Q[0] 13.4 7.4 4.0 2.2 1.3
Max. @ Q[0] 79.0 41.0 22.0 11.0 6.0

Avg. @ Q[1] 1032.1 611.4 339.7 184.0 107.1
Max. @ Q[1] 4698.0 2444.0 1248.0 650.0 328.0

Table A.3: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru 3
(T9000 Proc. Speed Level = 0.5)
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Burstiness Frequency Level
(sec.)

Queue Size
(# IEEE 1355 pkts) 7.5 15.0 30.0 60.0 120.0

Avg. @ Q[3] 2.6 4.0 3.4 3.3 3.0
Max. @ Q[3] 49.0 245.0 147.0 98.0 98.0

Avg. @ Q[4] 2.2 3.5 2.9 3.2 3.0
Max. @ Q[4] 49.0 245.0 147.0 98.0 98.0

Avg. @ Q[5] 2.9 3.5 2.7 2.9 3.0
Max. @ Q[5] 49.0 196.0 147.0 98.0 98.0

Table A.4: Queue Occupancy in T9000 #2: tra�c coming from Ethernet Port 1 thru
3 (T9000 Proc. Speed Level = 0.5)

Burstiness Frequency Level
(sec.)

Queue Size
(# IEEE 1355 pkts) 7.5 15.0 30.0 60.0 120.0

Avg. @ Q[0] 24.0 13.2 7.2 4.0 2.3
Max. @ Q[0] 88.0 46.0 24.0 13.0 7.0

Avg. @ Q[1] 1610.8 894.2 466.6 244.2 163.1
Max. @ Q[1] 4706.0 2466.0 1310.0 780.0 544.0

Table A.5: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru 3
(T9000 Proc. Speed Level = 0.8)
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Burstiness Frequency Level
(sec.)

Queue Size
(# IEEE 1355 pkts) 7.5 15.0 30.0 60.0 120.0

Avg. @ Q[3] 19.0 16.5 9.5 7.3 5.5
Max. @ Q[3] 491.0 490.0 262.0 164.0 115.0

Avg. @ Q[4] 16.0 15.2 9.0 7.1 5.7
Max. @ Q[4] 490.0 453.0 263.0 166.0 113.0

Avg. @ Q[5] 20.3 20.3 7.8 6.5 5.7
Max. @ Q[5] 490.0 490.0 257.0 180.0 114.0

Table A.6: Queue Occupancy in T9000 #2: tra�c coming from Ethernet Port 1 thru
3 (T9000 Proc. Speed Level = 0.8)

Burstiness Frequency Level
(sec.)

Queue Size
(# IEEE 1355 pkts) 7.5 15.0 30.0 60.0 120.0

Avg. @ Q[0] 31.0 17.0 9.2 5.0 2.9
Max. @ Q[0] 91.0 47.0 25.0 13.0 7.0

Avg. @ Q[1] 2502.2 1619.6 942.8 553.2 316.7
Max. @ Q[1] 8598.0 6281.0 3737.0 2786.0 2056.0

Table A.7: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru 3
(T9000 Proc. Speed Level = 1.0)
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Burstiness Frequency Level
(sec.)

Queue Size
(# IEEE 1355 pkts) 7.5 15.0 30.0 60.0 120.0

Avg. @ Q[3] 35.0 27.7 14.8 10.4 7.6
Max. @ Q[3] 743.0 583.0 311.0 180.0 117.0

Avg. @ Q[4] 29.4 25.8 14.2 10.2 7.8
Max. @ Q[4] 735.0 551.0 294.0 178.0 113.0

Avg. @ Q[5] 37.1 24.0 12.2 9.3 7.8
Max. @ Q[5] 735.0 512.0 294.0 180.0 116.0

Table A.8: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 1 thru 3 (T9000
Proc. Speed Level = 1.0)

Burstiness Frequency Level
(sec.)

Queue Size
(# IEEE 1355 pkts) 7.5 15.0 30.0 60.0 120.0

Avg. @ Q[0] 0.002 0.003 0.003 0.003 0.004
Max. @ Q[0] 1.0 N/A N/A N/A 1.0

Avg. @ Q[1] 0.3 0.2 0.3 0.3 0.2
Max. @ Q[1] 48.0 N/A N/A N/A 48.0

Avg. @ Q[2] 0.6 0.9 1.3 1.8 1.9
Max. @ Q[2] 67.0 N/A N/A N/A 67.0

Avg. @ Q[3] 0.1 0.1 0.1 0.09 0.09
Max. @ Q[3] 49.0 N/A N/A N/A 49.0

Avg. @ Q[4] 0.08 0.1 0.1 0.09 0.9
Max. @ Q[4] 49.0 N/A N/A N/A 49.0

Table A.9: Queue Occupancy in T9000 (@ Ethernet Port 3): tra�c from ATM and
Ethernet Port 1 & 2 (T9000 Proc. Speed Level = 0.1)
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Burstiness Frequency Level
(sec.)

Queue Size
(# IEEE 1355 pkts) 7.5 15.0 30.0 60.0 120.0

Avg. @ Q[0] 0.002 0.003 0.003 0.003 0.004
Max. @ Q[0] 1.0 N/A N/A N/A 1.0

Avg. @ Q[1] 0.3 0.3 0.3 0.3 0.3
Max. @ Q[1] 48.0 N/A N/A N/A 48.0

Avg. @ Q[2] 3.4 3.8 4.8 5.0 3.7
Max. @ Q[2] 67.0 N/A N/A N/A 58.0

Avg. @ Q[3] 0.1 0.1 0.1 0.1 0.1
Max. @ Q[3] 49.0 N/A N/A N/A 49.0

Avg. @ Q[4] 0.08 0.1 0.1 0.09 0.09
Max. @ Q[4] 49.0 N/A N/A N/A 49.0

Table A.10: Queue Occupancy in T9000 (@ Ethernet Port 3): tra�c from ATM and
Ethernet Port 1 & 2 (T9000 Proc. Speed Level = 0.5)
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Burstiness Frequency Level
(sec.)

Queue Size
(# IEEE 1355 pkts) 7.5 15.0 30.0 60.0 120.0

Avg. @ Q[0] 0.002 0.003 0.003 0.003 0.004
Max. @ Q[0] 1.0 N/A N/A N/A 1.0

Avg. @ Q[1] 0.3 0.3 0.3 0.3 0.2
Max. @ Q[1] 48.0 N/A N/A N/A 48.0

Avg. @ Q[2] 4.8 5.2 7.0 5.6 3.4
Max. @ Q[2] 66.0 N/A N/A N/A 52.0

Avg. @ Q[3] 0.1 0.1 0.1 0.1 0.1
Max. @ Q[3] 49.0 N/A N/A N/A 49.0

Avg. @ Q[4] 0.09 0.1 0.1 0.1 0.08
Max. @ Q[4] 49.0 N/A N/A N/A 49.0

Table A.11: Queue Occupancy in T9000 (@ Ethernet Port 3): tra�c from ATM and
Ethernet Port 1 & 2 (T9000 Proc. Speed Level = 0.8)
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Burstiness Frequency Level
(sec.)

Queue Size
(# IEEE 1355 pkts) 7.5 15.0 30.0 60.0 120.0

Avg. @ Q[0] 0.002 0.003 0.003 0.003 0.004
Max. @ Q[0] 1.0 N/A N/A N/A 1.0

Avg. @ Q[1] 0.3 0.3 0.3 0.3 0.2
Max. @ Q[1] 48.0 N/A N/A N/A 48.0

Avg. @ Q[2] 5.0 6.2 8.0 6.2 5.9
Max. @ Q[2] 67.0 N/A N/A N/A 67.0

Avg. @ Q[3] 0.1 0.1 0.1 0.09 0.09
Max. @ Q[3] 49.0 N/A N/A N/A 49.0

Avg. @ Q[4] 0.08 0.1 0.1 0.09 0.09
Max. @ Q[4] 49.0 N/A N/A N/A 49.0

Table A.12: Queue Occupancy in T9000 (@ Ethernet Port 3): tra�c from ATM and
Ethernet Port 1 & 2 (T9000 Proc. Speed Level = 1.0)
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Burstiness Frequency Level
(sec.)

End-to-end Packet Delay
(msec.) 7.5 15.0 30.0 60.0 120.0

When T9000 Proc. Speed Level = 0.1 0.3 0.3 0.3 0.3 0.3

When T9000 Proc. Speed Level = 0.5 0.8 1.0 0.9 0.9 0.9

When T9000 Proc. Speed Level = 0.8 4.9 3.7 2.3 1.8 1.5

When T9000 Proc. Speed Level = 1.0 8.8 6.1 3.5 2.5 2.0

Table A.13: End-to-end Delay for Packets leaving the ATM Port towards any Ethernet
Port

Burstiness Frequency Level
(sec.)

End-to-end Packet Delay
(msec.) 7.5 15.0 30.0 60.0 120.0

When T9000 Proc. Speed Level = 0.1 0.1 0.1 0.1 0.1 0.07

When T9000 Proc. Speed Level = 0.5 3.0 1.7 0.9 0.5 0.3

When T9000 Proc. Speed Level = 0.8 4.9 2.6 1.3 0.7 0.3

When T9000 Proc. Speed Level = 1.0 7.0 4.1 2.2 1.2 0.6

Table A.14: End-to-end Delay for Packets leaving any Ethernet Port towards any
other Ethernet or the ATM Port
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A.1.2 With the 4-by-4 Model (Destns. Randomly Distributed)

T9000 Proc. Speed Level
Queue Size

(# IEEE 1355 pkts) 0.1 0.5 0.8

Avg. @ Q[0] 0.08 4.0 9.2
Max. @ Q[0] 1.0 22.0 25.0

Avg. @ Q[1] 75.4 345.8 645.0
Max. @ Q[1] 1182.0 1294.0 1207.0

Table A.15: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru
3

T9000 Proc. Speed Level
Queue Size

(# IEEE 1355 pkts) 0.1 0.5 0.8

Avg. @ Q[3] 0.9 4.8 17.7
Max. @ Q[3] 49.0 147.0 294.0

Avg. @ Q[4] 0.5 2.4 12.0
Max. @ Q[4] 49.0 147.0 294.0

Avg. @ Q[5] 0.3 1.8 8.1
Max. @ Q[5] 49.0 147.0 294.0

Table A.16: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 1 thru 3
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T9000 Proc. Speed Level
Queue Size

(# IEEE 1355 pkts) 0.1 0.5 0.8

Avg. @ Q[0] 0.003 0.003 0.003
Max. @ Q[0] 1.0 1.0 1.0

Avg. @ Q[1] 0.2 0.2 0.2
Max. @ Q[1] 48.0 48.0 48.0

Avg. @ Q[2] 1.1 4.5 6.4
Max. @ Q[2] 67.0 67.0 67.0

Avg. @ Q[4] 0.2 0.2 0.2
Max. @ Q[4] 49.0 49.0 49.0

Avg. @ Q[5] 0.2 0.2 0.2
Max. @ Q[5] 49.0 49.0 49.0

Table A.17: Queue Occupancy in T9000 (@ Ethernet Port 1): tra�c to/from ATM
and Ethernet Port 2 & 3

T9000 Proc. Speed Level
Queue Size

(# IEEE 1355 pkts) 0.1 0.5 0.8

Avg. @ Q[0] 0.003 0.003 0.003
Max. @ Q[0] 1.0 1.0 1.0

Avg. @ Q[1] 0.3 0.4 0.3
Max. @ Q[1] 48.0 48.0 48.0

Avg. @ Q[2] 1.9 6.0 10.2
Max. @ Q[2] 67.0 67.0 67.0

Avg. @ Q[3] 0.06 0.06 0.06
Max. @ Q[3] 49.0 49.0 49.0

Avg. @ Q[5] 0.09 0.1 0.1
Max. @ Q[5] 49.0 49.0 49.0

Table A.18: Queue Occupancy in T9000 (@ Ethernet Port 2): tra�c to/from ATM
and Ethernet Port 1 & 3
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T9000 Proc. Speed Level
Queue Size

(# IEEE 1355 pkts) 0.1 0.5 0.8

Avg. @ Q[0] 0.003 0.003 0.003
Max. @ Q[0] 1.0 1.0 1.0

Avg. @ Q[1] 0.3 0.4 0.4
Max. @ Q[1] 48.0 48.0 48.0

Avg. @ Q[2] 1.1 3.7 6.0
Max. @ Q[2] 69.0 65.0 67.0

Avg. @ Q[3] 0.04 0.04 0.04
Max. @ Q[3] 49.0 49.0 49.0

Avg. @ Q[4] 0.09 0.09 0.09
Max. @ Q[4] 49.0 49.0 49.0

Table A.19: Queue Occupancy in T9000 (@ Ethernet Port 3): tra�c to/from ATM
and Ethernet Port 1 & 2

T9000 Proc. Speed Level
End-to-end Packet Delay

(msec.) 0.1 0.5 0.8

From ATM Port to any Ethernet Port 0.3 0.9 3.2

From any Ethernet Port to any
other Ethernet or the ATM Port 0.1 0.9 2.6

Table A.20: End-to-end Delay for Packets
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A.2 Outcomes under the SRD Tra�c (MMPP)

A.2.1 With the 4-by-4 Model

Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 0.3 0.5 0.6 0.6
Max. @ Q[0] 6.0 10.0 11.0 11.0

Avg. @ Q[1] 5.5 11.0 19.7 42.4
Max. @ Q[1] 28.0 49.0 212.0 574.0

Table A.21: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru
3 (T9000 Proc. Speed Level = 0.1)

Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[3] 1.3 1.7 1.7 1.8
Max. @ Q[3] 294.0 392.0 441.0 441.0

Avg. @ Q[4] 1.2 1.1 1.2 1.2
Max. @ Q[4] 343.0 441.0 441.0 430.0

Avg. @ Q[5] 1.2 0.9 0.9 0.9
Max. @ Q[5] 343.0 392.0 405.0 441.0

Table A.22: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 1 thru 3
(T9000 Proc. Speed Level = 0.1)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 1.4 2.5 1.0 1.5
Max. @ Q[0] 6.0 11.0 14.0 17.0

Avg. @ Q[1] 9.7 20.5 49.4 155.0
Max. @ Q[1] 37.0 114.0 295.0 877.0

Table A.23: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru
3 (T9000 Proc. Speed Level = 0.5)

Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[3] 6.6 8.4 8.9 8.9
Max. @ Q[3] 294.0 392.0 441.0 441.0

Avg. @ Q[4] 6.3 5.9 6.2 6.2
Max. @ Q[4] 343.0 441.0 441.0 441.0

Avg. @ Q[5] 6.0 4.4 4.6 4.8
Max. @ Q[5] 343.0 392.0 392.0 441.0

Table A.24: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 1 thru 3
(T9000 Proc. Speed Level = 0.5)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 2.3 3.4 3.4 3.9
Max. @ Q[0] 7.0 19.0 25.0 24.0

Avg. @ Q[1] 23.6 67.2 93.8 499.6
Max. @ Q[1] 287.0 496.0 905.0 1480.0

Table A.25: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru
3 (T9000 Proc. Speed Level = 0.8)

Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[3] 10.8 14.8 16.0 16.4
Max. @ Q[3] 294.0 539.0 539.0 588.0

Avg. @ Q[4] 10.5 10.0 10.9 11.0
Max. @ Q[4] 343.0 441.0 441.0 441.0

Avg. @ Q[5] 10.0 7.6 8.0 8.1
Max. @ Q[5] 343.0 392.0 392.0 441.0

Table A.26: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 1 thru 3
(T9000 Proc. Speed Level = 0.8)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 4.0 6.2 8.1 8.4
Max. @ Q[0] 12.0 24.0 36.0 41.0

Avg. @ Q[1] 64.6 124.7 202.7 1491.7
Max. @ Q[1] 330.0 845.0 2068.0 3655.0

Table A.27: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru
3 (T9000 Proc. Speed Level = 1.0)

Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[3] 14.1 20.4 22.1 22.9
Max. @ Q[3] 294.0 588.0 588.0 637.0

Avg. @ Q[4] 13.6 13.8 15.3 15.9
Max. @ Q[4] 343.0 441.0 441.0 441.0

Avg. @ Q[5] 12.8 10.0 10.8 11.2
Max. @ Q[5] 343.0 392.0 441.0 441.0

Table A.28: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 1 thru 3
(T9000 Proc. Speed Level = 1.0)

184



Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 0.003 0.002 0.002 0.002
Max. @ Q[0] 10.0 10.0 11.0 11.0

Avg. @ Q[1] 1.0 1.1 1.1 1.4
Max. @ Q[1] 489.0 489.0 538.0 538.0

Avg. @ Q[2] 3.2 3.7 3.9 3.9
Max. @ Q[2] 59.0 67.0 66.0 67.0

Avg. @ Q[3] 0.1 0.2 0.2 0.2
Max. @ Q[3] 67.0 67.0 67.0 67.0

Avg. @ Q[4] 0.1 0.1 0.1 0.1
Max. @ Q[4] 67.0 67.0 67.0 67.0

Table A.29: Queue Occupancy in T9000 (@ Ethernet Port 3): tra�c to/from ATM
and Ethernet Port 1 & 2 (T9000 Proc. Speed Level = 0.1)

Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 0.003 0.002 0.002 0.002
Max. @ Q[0] 10.0 10.0 11.0 11.0

Avg. @ Q[1] 1.1 1.1 1.4 1.6
Max. @ Q[1] 489.0 489.0 538.0 538.0

Avg. @ Q[2] 3.8 4.4 4.7 5.3
Max. @ Q[2] 49.0 67.0 67.0 67.0

Avg. @ Q[3] 0.1 0.2 0.2 0.2
Max. @ Q[3] 66.0 67.0 67.0 67.0

Avg. @ Q[4] 0.1 0.1 0.1 0.1
Max. @ Q[4] 67.0 67.0 67.0 67.0

Table A.30: Queue Occupancy in T9000 (@ Ethernet Port 3): tra�c to/from ATM
and Ethernet Port 1 & 2 (T9000 Proc. Speed Level = 0.5)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 0.003 0.002 0.002 0.002
Max. @ Q[0] 10.0 10.0 11.0 11.0

Avg. @ Q[1] 1.5 1.4 1.6 1.9
Max. @ Q[1] 489.0 489.0 538.0 538.0

Avg. @ Q[2] 5.1 7.1 8.0 5.8
Max. @ Q[2] 67.0 67.0 67.0 67.0

Avg. @ Q[3] 5.1 0.2 0.2 0.2
Max. @ Q[3] 67.0 67.0 67.0 67.0

Avg. @ Q[4] 0.1 0.2 0.1 0.1
Max. @ Q[4] 66.0 67.0 67.0 67.0

Table A.31: Queue Occupancy in T9000 (@ Ethernet Port 3): tra�c to/from ATM
and Ethernet Port 1 & 2 (T9000 Proc. Speed Level = 0.8)

Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 0.003 0.002 0.002 0.002
Max. @ Q[0] 10.0 10.0 11.0 11.0

Avg. @ Q[1] 2.0 1.7 1.7 2.8
Max. @ Q[1] 489.0 489.0 538.0 538.0

Avg. @ Q[2] 8.2 9.2 9.7 6.8
Max. @ Q[2] 67.0 67.0 67.0 67.0

Avg. @ Q[3] 0.2 0.3 0.3 0.3
Max. @ Q[3] 66.0 67.0 67.0 67.0

Avg. @ Q[4] 0.1 0.2 0.2 0.2
Max. @ Q[4] 67.0 67.0 67.0 67.0

Table A.32: Queue Occupancy in T9000 (@ Ethernet Port 3): tra�c to/from ATM
and Ethernet Port 1 & 2 (T9000 Proc. Speed Level = 1.0)
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Burstiness Ratio Level
End-to-end Packet Delay

(msec.) 1:1 10:1 50:1 500:1

When T9000 Proc. Speed Level = 0.1 0.4 0.5 0.5 0.5

When T9000 Proc. Speed Level = 0.5 1.4 1.6 1.7 1.8

When T9000 Proc. Speed Level = 0.8 2.2 2.6 2.9 3.0

When T9000 Proc. Speed Level = 1.0 2.7 3.6 3.9 4.0

Table A.33: End-to-end Delay for Packets leaving the ATM Port towards any Ethernet
Port

Burstiness Ratio Level
End-to-end Packet Delay

(msec.) 1:1 10:1 50:1 500:1

When T9000 Proc. Speed Level = 0.1 0.1 0.2 0.1 0.2

When T9000 Proc. Speed Level = 0.5 0.2 0.3 0.3 0.5

When T9000 Proc. Speed Level = 0.8 0.5 0.6 0.8 1.3

When T9000 Proc. Speed Level = 1.0 1.0 1.8 0.8 3.4

Table A.34: End-to-end Delay for Packets leaving any Ethernet Port towards any
other Ethernet or the ATM Port
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A.2.2 With the 8-by-8 Model

Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 0.6 0.7 0.8 0.8
Max. @ Q[0] 13.0 23.0 25.0 25.0

Avg. @ Q[1] 107.2 457.5 531.8 516.5
Max. @ Q[1] 424.0 6637.0 8365.0 9725.0

Table A.35: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru
7 (T9000 Proc. Speed Level = 0.1)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[3] 0.5 0.6 0.7 0.7
Max. @ Q[3] 294.0 343.0 392.0 392.0

Avg. @ Q[4] 0.6 0.7 0.8 0.8
Max. @ Q[4] 441.0 441.0 490.0 490.0

Avg. @ Q[5] 0.5 0.6 0.7 0.7
Max. @ Q[5] 245.0 343.0 392.0 392.0

Avg. @ Q[6] 0.6 0.8 0.9 0.9
Max. @ Q[6] 441.0 441.0 490.0 490.0

Avg. @ Q[7] 0.6 0.8 0.9 0.9
Max. @ Q[7] 294.0 372.0 392.0 392.0

Avg. @ Q[8] 0.4 0.5 0.6 0.6
Max. @ Q[8] 294.0 343.0 392.0 392.0

Avg. @ Q[9] 0.5 0.6 0.7 0.7
Max. @ Q[9] 294.0 343.0 392.0 392.0

Table A.36: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 1 thru 7
(T9000 Proc. Speed Level = 0.1)

Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 3.0 3.5 4.0 4.3
Max. @ Q[0] 13.0 23.0 25.0 29.0

Avg. @ Q[1] 1001.8 1720.0 2338.0 5935.5
Max. @ Q[1] 6448.0 19596.0 23234.0 55126.0

Table A.37: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru
7 (T9000 Proc. Speed Level = 0.5)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[3] 2.8 3.6 4.0 4.0
Max. @ Q[3] 294.0 392.0 441.0 441.0

Avg. @ Q[4] 3.2 4.4 4.9 5.0
Max. @ Q[4] 490.0 490.0 539.0 539.0

Avg. @ Q[5] 2.6 3.7 4.0 4.1
Max. @ Q[5] 294.0 392.0 441.0 441.0

Avg. @ Q[6] 3.2 4.9 5.5 5.6
Max. @ Q[6] 490.0 490.0 539.0 539.0

Avg. @ Q[7] 3.3 4.9 5.5 5.6
Max. @ Q[7] 294.0 441.0 441.0 441.0

Avg. @ Q[8] 2.5 3.0 3.3 3.4
Max. @ Q[8] 343.0 441.0 490.0 490.0

Avg. @ Q[9] 2.9 3.8 4.2 4.4
Max. @ Q[9] 294.0 392.0 441.0 441.0

Table A.38: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 1 thru 7
(T9000 Proc. Speed Level = 0.5)

Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 4.8 125.5 170.4 181.85
Max. @ Q[0] 13.0 860.0 1077.0 1132.0

Avg. @ Q[1] 2539.2 28210.5 19185.3 24857.2
Max. @ Q[1] 14370.0 144212.0 92025.0 148852.0

Table A.39: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru
7 (T9000 Proc. Speed Level = 0.8)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[3] 4.5 5.9 6.4 6.6
Max. @ Q[3] 294.0 392.0 441.0 441.0

Avg. @ Q[4] 5.2 7.1 8.0 8.2
Max. @ Q[4] 490.0 490.0 539.0 539.0

Avg. @ Q[5] 4.2 6.0 6.5 6.7
Max. @ Q[5] 294.0 392.0 441.0 441.0

Avg. @ Q[6] 5.3 8.1 9.0 9.3
Max. @ Q[6] 490.0 588.0 686.0 686.0

Avg. @ Q[7] 5.3 7.9 9.0 9.2
Max. @ Q[7] 294.0 441.0 441.0 441.0

Avg. @ Q[8] 4.1 5.0 5.4 5.5
Max. @ Q[8] 343.0 441.0 490.0 490.0

Avg. @ Q[9] 4.6 6.1 6.89 7.2
Max. @ Q[9] 294.0 441.0 490.0 539.0

Table A.40: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 1 thru 7
(T9000 Proc. Speed Level = 0.8)

Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 7.2 322.8 380.6 395.8
Max. @ Q[0] 20.0 1258.0 1475.0 1530.0

Avg. @ Q[1] 66881.0 66251.0 53543.2 42111.3
Max. @ Q[1] 201714.0 230387.0 201652.0 201188.0

Table A.41: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru
7 (T9000 Proc. Speed Level = 1.0)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[3] 5.6 7.4 8.1 8.4
Max. @ Q[3] 294.0 392.0 441.0 441.0

Avg. @ Q[4] 6.5 9.0 10.2 10.4
Max. @ Q[4] 490.0 490.0 539.0 539.0

Avg. @ Q[5] 5.3 7.6 8.4 8.6
Max. @ Q[5] 294.0 392.0 441.0 441.0

Avg. @ Q[6] 6.7 10.4 11.7 12.0
Max. @ Q[6] 539.0 637.0 735.0 735.0

Avg. @ Q[7] 6.7 10.0 11.6 11.9
Max. @ Q[7] 294.0 441.0 441.0 441.0

Avg. @ Q[8] 5.2 6.3 6.9 7.0
Max. @ Q[8] 343.0 441.0 490.0 490.0

Avg. @ Q[9] 5.8 7.8 8.8 9.2
Max. @ Q[9] 294.0 588.0 637.0 686.0

Table A.42: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 1 thru 7
(T9000 Proc. Speed Level = 1.0)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 0.004 0.004 0.005 0.005
Max. @ Q[0] 10.0 10.0 11.0 11.0

Avg. @ Q[1] 0.8 1.0 1.3 1.3
Max. @ Q[1] 489.0 489.0 538.0 538.0

Avg. @ Q[2] 2.3 1.4 1.3 1.3
Max. @ Q[2] 49.0 67.0 67.0 67.0

Avg. @ Q[3] 0.03 0.03 0.03 0.04
Max. @ Q[3] 66.0 66.0 66.0 66.0

Avg. @ Q[4] 0.04 0.06 0.06 0.06
Max. @ Q[4] 66.0 66.0 66.0 66.0

Avg. @ Q[5] 0.04 0.05 0.05 0.05
Max. @ Q[5] 66.0 66.0 66.0 66.0

Avg. @ Q[7] 0.05 0.06 0.07 0.07
Max. @ Q[7] 66.0 66.0 66.0 66.0

Avg. @ Q[8] 0.04 0.05 0.05 0.05
Max. @ Q[8] 66.0 66.0 66.0 66.0

Avg. @ Q[9] 0.03 0.03 0.04 0.04
Max. @ Q[9] 67.0 66.0 66.0 66.0

Table A.43: Queue Occupancy in T9000 (@ Ethernet Port 4): tra�c to/from ATM
and Ethernet Port 1 thru 7 (T9000 Proc. Speed Level = 0.1)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 0.004 0.004 0.005 0.005
Max. @ Q[0] 10.0 10.0 11.0 11.0

Avg. @ Q[1] 0.8 1.2 1.44 1.5
Max. @ Q[1] 489.0 489.0 538.0 538.0

Avg. @ Q[2] 3.3 2.0 1.4 1.7
Max. @ Q[2] 67.0 67.0 67.0 67.0

Avg. @ Q[3] 0.03 0.04 0.04 0.05
Max. @ Q[3] 66.0 66.0 66.0 66.0

Avg. @ Q[4] 0.04 0.06 0.06 0.07
Max. @ Q[4] 66.0 66.0 66.0 66.0

Avg. @ Q[5] 0.04 0.05 0.05 0.05
Max. @ Q[5] 66.0 66.0 66.0 66.0

Avg. @ Q[7] 0.06 0.07 0.08 0.08
Max. @ Q[7] 66.0 66.0 66.0 66.0

Avg. @ Q[8] 0.05 0.04 0.05 0.05
Max. @ Q[8] 66.0 66.0 66.0 66.0

Avg. @ Q[9] 0.04 0.05 0.04 0.05
Max. @ Q[9] 66.0 66.0 66.0 66.0

Table A.44: Queue Occupancy in T9000 (@ Ethernet Port 4): tra�c to/from ATM
and Ethernet Port 1 thru 7 (T9000 Proc. Speed Level = 0.5)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 0.004 0.004 0.005 0.005
Max. @ Q[0] 10.0 10.0 11.0 11.0

Avg. @ Q[1] 0.8 1.3 1.5 1.5
Max. @ Q[1] 489.0 489.0 538.0 538.0

Avg. @ Q[2] 2.5 2.3 1.5 1.7
Max. @ Q[2] 67.0 67.0 67.0 67.0

Avg. @ Q[3] 0.04 0.04 0.04 0.04
Max. @ Q[3] 66.0 66.0 66.0 66.0

Avg. @ Q[4] 0.05 0.05 0.06 0.07
Max. @ Q[4] 66.0 66.0 66.0 66.0

Avg. @ Q[5] 0.04 0.05 0.04 0.05
Max. @ Q[5] 66.0 66.0 66.0 66.0

Avg. @ Q[7] 0.06 0.08 0.09 0.09
Max. @ Q[7] 66.0 66.0 66.0 66.0

Avg. @ Q[8] 0.04 0.04 0.04 0.05
Max. @ Q[8] 66.0 66.0 66.0 66.0

Avg. @ Q[9] 0.03 0.05 0.05 0.06
Max. @ Q[9] 66.0 66.0 66.0 66.0

Table A.45: Queue Occupancy in T9000 (@ Ethernet Port 4) tra�c to/from ATM and
Ethernet Port 1 thru 7 (T9000 Proc. Speed Level = 0.8)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 0.004 0.004 0.005 0.005
Max. @ Q[0] 10.0 10.0 11.0 11.0

Avg. @ Q[1] 0.8 1.3 1.4 1.5
Max. @ Q[1] 489.0 489.0 538.0 538.0

Avg. @ Q[2] 3.6 3.4 2.9 3.7
Max. @ Q[2] 67.0 67.0 67.0 67.0

Avg. @ Q[3] 0.04 0.04 0.04 0.04
Max. @ Q[3] 66.0 66.0 66.0 66.0

Avg. @ Q[4] 0.05 0.06 0.06 0.06
Max. @ Q[4] 66.0 66.0 66.0 66.0

Avg. @ Q[5] 0.04 0.05 0.05 0.05
Max. @ Q[5] 66.0 66.0 66.0 66.0

Avg. @ Q[7] 0.05 0.08 0.09 0.09
Max. @ Q[7] 66.0 66.0 66.0 66.0

Avg. @ Q[8] 0.04 0.04 0.05 0.05
Max. @ Q[8] 66.0 66.0 66.0 66.0

Avg. @ Q[9] 0.04 0.05 0.05 0.06
Max. @ Q[9] 66.0 66.0 66.0 66.0

Table A.46: Queue Occupancy in T9000 (@ Ethernet Port 4): tra�c to/from ATM
and Ethernet Port 1 thru 7 (T9000 Proc. Speed Level = 1.0)
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Burstiness Ratio Level
End-to-end Packet Delay

(msec.) 1:1 10:1 50:1 500:1

When T9000 Proc. Speed Level = 0.1 0.2 0.2 0.2 0.2

When T9000 Proc. Speed Level = 0.5 0.7 0.8 0.9 0.9

When T9000 Proc. Speed Level = 0.8 1.1 1.3 1.4 1.4

When T9000 Proc. Speed Level = 1.0 1.4 1.7 1.8 1.8

Table A.47: End-to-end Delay for Packets leaving the ATM Port towards any Ethernet
Port

Burstiness Ratio Level
End-to-end Packet Delay

(msec.) 1:1 10:1 50:1 500:1

When T9000 Proc. Speed Level = 0.1 0.08 0.3 0.3 0.3

When T9000 Proc. Speed Level = 0.5 0.6 1.0 1.4 3.3

When T9000 Proc. Speed Level = 0.8 1.4 14.7 18.0 18.4

When T9000 Proc. Speed Level = 1.0 27.0 32.8 38.5 43.2

Table A.48: End-to-end Delay for Packets leaving any Ethernet Port towards any
other Ethernet or the ATM Port
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A.2.3 With the 12-by-12 Model

Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 0.9 1.7 1.9 2.0
Max. @ Q[0] 20.0 35.0 37.0 38.0

Avg. @ Q[1] 658.2 1227.6 1496.9 1625.8
Max. @ Q[1] 3761.0 11427.0 24949.0 16528.0

Table A.49: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru
11 (T9000 Proc. Speed Level = 0.1)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[3] 0.2 0.3 0.3 0.4
Max. @ Q[3] 245.0 343.0 343.0 343.0

Avg. @ Q[4] 0.2 0.3 0.3 0.34
Max. @ Q[4] 245.0 294.0 343.0 294.0

Avg. @ Q[5] 0.2 0.2 0.2 0.2
Max. @ Q[5] 245.0 343.0 340.0 303.0

Avg. @ Q[6] 0.2 0.3 0.3 0.3
Max. @ Q[6] 203.0 294.0 294.0 294.0

Avg. @ Q[7] 0.2 0.3 0.28 0.28
Max. @ Q[7] 196.0 294.0 343.0 343.0

Avg. @ Q[8] 0.2 0.2 0.3 0.3
Max. @ Q[8] 263.0 312.0 313.0 294.0

Avg. @ Q[9] 0.2 0.2 0.3 0.3
Max. @ Q[9] 245.0 343.0 343.0 343.0

Avg. @ Q[10] 0.2 0.3 0.3 0.3
Max. @ Q[10] 245.0 294.0 294.0 294.0

Avg. @ Q[11] 0.2 0.3 0.4 0.4
Max. @ Q[11] 245.0 343.0 343.0 343.0

Avg. @ Q[12] 0.2 0.2 0.2 0.2
Max. @ Q[12] 366.0 343.0 392.0 392.0

Avg. @ Q[13] 0.2 0.3 0.3 0.3
Max. @ Q[13] 294.0 343.0 392.0 392.0

Table A.50: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 1 thru 11
(T9000 Proc. Speed Level = 0.1)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 4.6 8.2 9.4 10.0
Max. @ Q[0] 20.0 35.0 39.0 44.0

Avg. @ Q[1] 3017.7 4459.2 5267.8 5779.2
Max. @ Q[1] 12850.0 52127.0 60879.0 43621.0

Table A.51: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru
11 (T9000 Proc. Speed Level = 0.5)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[3] 1.3 2.0 2.3 2.4
Max. @ Q[3] 294.0 392.0 441.0 441.0

Avg. @ Q[4] 1.2 2.0 2.1 2.2
Max. @ Q[4] 294.0 392.0 441.0 441.0

Avg. @ Q[5] 1.2 1.4 1.5 1.5
Max. @ Q[5] 343.0 490.0 490.0 490.0

Avg. @ Q[6] 1.2 1.6 1.8 1.8
Max. @ Q[6] 245.0 343.0 392.0 392.0

Avg. @ Q[7] 1.3 1.7 1.8 1.9
Max. @ Q[7] 245.0 343.0 392.0 392.0

Avg. @ Q[8] 1.4 1.6 1.8 1.8
Max. @ Q[8] 343.0 441.0 441.0 441.0

Avg. @ Q[9] 1.2 1.6 1.7 1.7
Max. @ Q[9] 294.0 441.0 441.0 441.0

Avg. @ Q[10] 1.3 1.7 1.9 1.9
Max. @ Q[10] 294.0 392.0 441.0 441.0

Avg. @ Q[11] 1.5 2.2 2.4 2.5
Max. @ Q[11] 294.0 441.0 441.0 441.0

Avg. @ Q[12] 1.3 1.3 1.5 1.5
Max. @ Q[12] 490.0 441.0 490.0 490.0

Avg. @ Q[13] 1.3 1.7 1.8 1.86
Max. @ Q[13] 343.0 441.0 490.0 490.0

Table A.52: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 1 thru 11
(T9000 Proc. Speed Level = 0.5)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 7.3 446.9 631.4 680.9
Max. @ Q[0] 20.0 2024.0 2667.0 2835.0

Avg. @ Q[1] 5597.6 211179.0 67631.4 54342.0
Max. @ Q[1] 30998.0 365312.0 228930.0 235216.0

Table A.53: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru
11 (T9000 Proc. Speed Level = 0.8)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[3] 2.2 3.4 3.8 4.0
Max. @ Q[3] 343.0 392.0 441.0 441.0

Avg. @ Q[4] 2.0 3.2 3.5 3.7
Max. @ Q[4] 294.0 392.0 441.0 441.0

Avg. @ Q[5] 1.9 2.3 2.5 2.5
Max. @ Q[5] 343.0 490.0 490.0 490.0

Avg. @ Q[6] 2.0 2.7 3.0 3.0
Max. @ Q[6] 245.0 343.0 392.0 392.0

Avg. @ Q[7] 2.2 2.7 3.0 3.0
Max. @ Q[7] 245.0 343.0 392.0 392.0

Avg. @ Q[8] 2.3 2.6 3.0 3.0
Max. @ Q[8] 343.0 441.0 441.0 441.0

Avg. @ Q[9] 2.0 2.6 2.8 2.8
Max. @ Q[9] 294.0 441.0 441.0 441.0

Avg. @ Q[10] 2.1 2.7 3.0 3.2
Max. @ Q[10] 294.0 392.0 441.0 441.0

Avg. @ Q[11] 2.4 3.6 3.9 4.0
Max. @ Q[11] 294.0 441.0 441.0 441.0

Avg. @ Q[12] 2.2 2.2 2.4 2.4
Max. @ Q[12] 490.0 441.0 490.0 490.0

Avg. @ Q[13] 2.0 2.7 3.0 3.0
Max. @ Q[13] 343.0 441.0 490.0 490.0

Table A.54: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 1 thru 11
(T9000 Proc. Speed Level = 0.8)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 10.5 1640.8 1944.9 2019.6
Max. @ Q[0] 29.0 3817.0 4500.0 4668.0

Avg. @ Q[1] 304942.8 89829.4 271501.7 213597.4
Max. @ Q[1] 573624.0 239978.0 560687.0 475928.0

Table A.55: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru
11 (T9000 Proc. Speed Level = 1.0)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[3] 2.7 4.2 4.8 5.0
Max. @ Q[3] 343.0 392.0 441.0 441.0

Avg. @ Q[4] 2.5 4.0 4.5 4.6
Max. @ Q[4] 294.0 392.0 441.0 441.0

Avg. @ Q[5] 2.4 2.8 3.1 3.1
Max. @ Q[5] 343.0 490.0 490.0 490.0

Avg. @ Q[6] 2.5 3.3 3.7 3.8
Max. @ Q[6] 245.0 343.0 392.0 392.0

Avg. @ Q[7] 2.7 3.4 3.8 3.8
Max. @ Q[7] 245.0 343.0 392.0 392.0

Avg. @ Q[8] 2.8 3.3 3.8 3.8
Max. @ Q[8] 343.0 441.0 441.0 441.0

Avg. @ Q[9] 2.5 3.0 3.5 3.6
Max. @ Q[9] 294.0 441.0 441.0 441.0

Avg. @ Q[10] 2.7 3.3 3.9 4.0
Max. @ Q[10] 294.0 343.0 441.0 441.0

Avg. @ Q[11] 3.0 4.4 5.0 5.1
Max. @ Q[11] 294.0 441.0 441.0 441.0

Avg. @ Q[12] 2.7 2.8 3.0 3.0
Max. @ Q[12] 490.0 441.0 490.0 490.0

Avg. @ Q[13] 2.6 3.4 3.7 3.8
Max. @ Q[13] 343.0 441.0 490.0 490.0

Table A.56: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 1 thru 11
(T9000 Proc. Speed Level = 1.0)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 0.004 0.004 0.004 0.004
Max. @ Q[0] 10.0 10.0 11.0 11.0

Avg. @ Q[1] 0.7 0.9 1.0 1.2
Max. @ Q[1] 489.0 489.0 538.0 538.0

Avg. @ Q[2] 2.0 1.3 1.5 1.4
Max. @ Q[2] 67.0 67.0 67.0 67.0

Avg. @ Q[3] 0.03 0.03 0.04 0.04
Max. @ Q[3] 66.0 66.0 66.0 66.0

Avg. @ Q[4] 0.03 0.02 0.02 0.02
Max. @ Q[4] 66.0 66.0 66.0 66.0

Avg. @ Q[5] 0.03 0.03 0.03 0.03
Max. @ Q[5] 66.0 66.0 66.0 66.0

Avg. @ Q[6] 0.03 0.03 0.03 0.03
Max. @ Q[6] 66.0 66.0 66.0 66.0

Avg. @ Q[7] 0.03 0.03 0.03 0.02
Max. @ Q[7] 66.0 66.0 66.0 66.0

Avg. @ Q[9] 0.04 0.02 0.03 0.03
Max. @ Q[9] 66.0 66.0 66.0 66.0

Avg. @ Q[10] 0.04 0.04 0.03 0.04
Max. @ Q[10] 66.0 66.0 66.0 66.0

Avg. @ Q[11] 0.03 0.04 0.04 0.04
Max. @ Q[11] 66.0 66.0 66.0 66.0

Avg. @ Q[12] 0.03 0.03 0.03 0.04
Max. @ Q[12] 66.0 66.0 66.0 66.0

Avg. @ Q[13] 0.03 0.04 0.03 0.03
Max. @ Q[13] 66.0 66.0 66.0 66.0

Table A.57: Queue Occupancy in T9000 (@ Ethernet Port 6): tra�c to/from ATM
and Ethernet Port 1 thru 11 (T9000 Proc. Speed Level = 0.1)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 0.004 0.004 0.004 0.004
Max. @ Q[0] 10.0 10.0 11.0 11.0

Avg. @ Q[1] 0.7 1.0 1.2 1.1
Max. @ Q[1] 489.0 489.0 538.0 538.0

Avg. @ Q[2] 2.2 2.3 1.3 1.9
Max. @ Q[2] 67.0 67.0 67.0 67.0

Avg. @ Q[3] 0.03 0.04 0.04 0.05
Max. @ Q[3] 66.0 66.0 66.0 66.0

Avg. @ Q[4] 0.02 0.02 0.02 0.03
Max. @ Q[4] 66.0 66.0 66.0 66.0

Avg. @ Q[5] 0.03 0.03 0.03 0.03
Max. @ Q[5] 66.0 66.0 66.0 66.0

Avg. @ Q[6] 0.03 0.03 0.03 0.03
Max. @ Q[6] 66.0 66.0 66.0 66.0

Avg. @ Q[7] 0.03 0.03 0.02 0.03
Max. @ Q[7] 66.0 66.0 66.0 66.0

Avg. @ Q[9] 0.03 0.03 0.04 0.04
Max. @ Q[9] 66.0 66.0 66.0 66.0

Avg. @ Q[10] 0.04 0.04 0.05 0.04
Max. @ Q[10] 66.0 66.0 66.0 66.0

Avg. @ Q[11] 0.04 0.04 0.04 0.04
Max. @ Q[11] 66.0 66.0 66.0 66.0

Avg. @ Q[12] 0.03 0.03 0.04 0.04
Max. @ Q[12] 66.0 66.0 66.0 66.0

Avg. @ Q[13] 0.03 0.03 0.04 0.04
Max. @ Q[13] 66.0 66.0 66.0 66.0

Table A.58: Queue Occupancy in T9000 (@ Ethernet Port 6): tra�c to/from ATM
and Ethernet Port 1 thru 11 (T9000 Proc. Speed Level = 0.5)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 0.004 0.004 0.004 0.004
Max. @ Q[0] 10.0 10.0 11.0 11.0

Avg. @ Q[1] 0.8 1.0 1.1 1.0
Max. @ Q[1] 489.0 489.0 538.0 538.0

Avg. @ Q[2] 2.9 1.7 1.7 2.2
Max. @ Q[2] 67.0 67.0 67.0 71.0

Avg. @ Q[3] 0.03 0.04 0.04 0.04
Max. @ Q[3] 66.0 66.0 66.0 66.0

Avg. @ Q[4] 0.02 0.02 0.02 0.03
Max. @ Q[4] 66.0 66.0 66.0 66.0

Avg. @ Q[5] 0.03 0.03 0.03 0.03
Max. @ Q[5] 66.0 66.0 66.0 66.0

Avg. @ Q[6] 0.03 0.03 0.03 0.04
Max. @ Q[6] 66.0 66.0 66.0 66.0

Avg. @ Q[7] 0.03 0.02 0.03 0.03
Max. @ Q[7] 66.0 66.0 66.0 66.0

Avg. @ Q[9] 0.03 0.03 0.04 0.04
Max. @ Q[9] 66.0 66.0 66.0 66.0

Avg. @ Q[10] 0.04 0.04 0.04 0.04
Max. @ Q[10] 66.0 66.0 66.0 66.0

Avg. @ Q[11] 0.03 0.04 0.04 0.03
Max. @ Q[11] 66.0 67.0 66.0 66.0

Avg. @ Q[12] 0.03 0.04 0.03 0.03
Max. @ Q[12] 66.0 66.0 66.0 66.0

Avg. @ Q[13] 0.03 0.03 0.04 0.04
Max. @ Q[13] 66.0 66.0 66.0 66.0

Table A.59: Queue Occupancy in T9000 (@ Ethernet Port 6): tra�c to/from ATM
and Ethernet Port 1 thru 11 (T9000 Proc. Speed Level = 0.8)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 0.004 0.004 0.004 0.004
Max. @ Q[0] 10.0 10.0 11.0 11.0

Avg. @ Q[1] 0.8 1.6 1.2 1.2
Max. @ Q[1] 489.0 489.0 538.0 538.0

Avg. @ Q[2] 2.4 2.7 3.0 3.0
Max. @ Q[2] 67.0 67.0 67.0 67.0

Avg. @ Q[3] 0.03 0.06 0.05 0.05
Max. @ Q[3] 66.0 67.0 66.0 66.0

Avg. @ Q[4] 0.02 0.05 0.02 0.02
Max. @ Q[4] 66.0 67.0 66.0 66.0

Avg. @ Q[5] 0.02 0.05 0.03 0.03
Max. @ Q[5] 66.0 67.0 66.0 66.0

Avg. @ Q[6] 0.03 0.04 0.03 0.04
Max. @ Q[6] 66.0 67.0 66.0 66.0

Avg. @ Q[7] 0.03 0.05 0.04 0.03
Max. @ Q[7] 66.0 66.0 66.0 66.0

Avg. @ Q[9] 0.03 0.05 0.04 0.04
Max. @ Q[9] 66.0 66.0 66.0 66.0

Avg. @ Q[10] 0.04 0.04 0.04 0.04
Max. @ Q[10] 66.0 67.0 66.0 66.0

Avg. @ Q[11] 0.03 0.09 0.04 0.04
Max. @ Q[11] 66.0 67.0 66.0 66.0

Avg. @ Q[12] 0.03 0.05 0.03 0.04
Max. @ Q[12] 66.0 67.0 66.0 66.0

Avg. @ Q[13] 0.03 0.05 0.04 0.04
Max. @ Q[13] 66.0 66.0 66.0 66.0

Table A.60: Queue Occupancy in T9000 (@ Ethernet Port 6): tra�c to/from ATM
and Ethernet Port 1 thru 11 (T9000 Proc. Speed Level = 1.0)
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Burstiness Ratio Level
End-to-end Packet Delay

(msec.) 1:1 10:1 50:1 500:1

When T9000 Proc. Speed Level = 0.1 0.1 0.1 0.1 0.1

When T9000 Proc. Speed Level = 0.5 0.5 0.6 0.6 0.6

When T9000 Proc. Speed Level = 0.8 0.8 0.9 0.9 1.0

When T9000 Proc. Speed Level = 1.0 1.0 1.1 1.2 1.2

Table A.61: End-to-end Delay for Packets leaving the ATM Port towards any Ethernet
Port

Burstiness Ratio Level
End-to-end Packet Delay

(msec.) 1:1 10:1 50:1 500:1

When T9000 Proc. Speed Level = 0.1 0.2 0.4 0.4 0.5

When T9000 Proc. Speed Level = 0.5 1.0 1.3 1.5 1.6

When T9000 Proc. Speed Level = 0.8 1.8 23.3 25.8 61.2

When T9000 Proc. Speed Level = 1.0 44.4 75.0 76.5 83.7

Table A.62: End-to-end Delay for Packets leaving any Ethernet Port towards any
other Ethernet or the ATM Port
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A.2.4 With the 16-by-16 Model

Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 1.3 1.9 2.2 2.2
Max. @ Q[0] 27.0 47.0 50.0 52.0

Avg. @ Q[1] 1058.1 1556.7 1379.5 1729.8
Max. @ Q[1] 7775.0 24086.0 18966.0 33474.0

Table A.63: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru
15 (T9000 Proc. Speed Level = 0.1)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[3] 0.1 0.1 0.1 0.1
Max. @ Q[3] 245.0 294.0 294.0 310.0

Avg. @ Q[4] 0.1 0.1 0.1 0.1
Max. @ Q[4] 230.0 248.0 245.0 245.0

Avg. @ Q[5] 0.09 0.1 0.1 0.1
Max. @ Q[5] 196.0 245.0 265.0 284.0

Avg. @ Q[6] 0.1 0.2 0.2 0.2
Max. @ Q[6] 245.0 248.0 280.0 271.0

Avg. @ Q[7] 0.09 0.1 0.1 0.1
Max. @ Q[7] 194.0 196.0 245.0 245.0

Avg. @ Q[8] 0.1 0.1 0.1 0.1
Max. @ Q[8] 196.0 245.0 245.0 245.0

Avg. @ Q[9] 0.09 0.09 0.1 0.1
Max. @ Q[9] 196.0 245.0 245.0 294.0

Avg. @ Q[10] 0.1 0.1 0.2 0.2
Max. @ Q[10] 294.0 294.0 294.0 294.0

Avg. @ Q[11] 0.1 0.1 0.2 0.2
Max. @ Q[11] 343.0 343.0 392.0 392.0

Avg. @ Q[12] 0.09 0.1 0.1 0.1
Max. @ Q[12] 181.0 196.0 203.0 196.0

Avg. @ Q[13] 0.1 0.1 0.2 0.2
Max. @ Q[13] 245.0 300.0 338.0 343.0

Table A.64: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 1 thru 11
(T9000 Proc. Speed Level = 0.1)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[14] 0.1 0.1 0.1 0.1
Max. @ Q[14] 245.0 245.0 294.0 294.0

Avg. @ Q[15] 0.1 0.1 0.1 0.1
Max. @ Q[15] 201.0 261.0 245.0 245.0

Avg. @ Q[16] 0.09 0.09 0.1 0.1
Max. @ Q[16] 196.0 245.0 235.0 236.0

Avg. @ Q[17] 0.1 0.1 0.1 0.1
Max. @ Q[17] 196.0 294.0 294.0 294.0

Table A.65: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 12 thru 15
(T9000 Proc. Speed Level = 0.1)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 6.1 9.3 10.7 11.3
Max. @ Q[0] 27.0 47.0 51.0 55.0

Avg. @ Q[1] 4057.7 7187.8 6074.0 5752.6
Max. @ Q[1] 25881.0 54685.0 55669.0 43076.0

Table A.66: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru
15 (T9000 Proc. Speed Level = 0.5)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[3] 0.8 0.8 0.9 0.9
Max. @ Q[3] 294.0 392.0 441.0 441.0

Avg. @ Q[4] 0.7 0.9 0.9 1.0
Max. @ Q[4] 294.0 428.0 441.0 426.0

Avg. @ Q[5] 0.7 1.0 1.1 1.1
Max. @ Q[5] 245.0 343.0 343.0 392.0

Avg. @ Q[6] 0.8 1.1 1.2 1.2
Max. @ Q[6] 343.0 441.0 490.0 490.0

Avg. @ Q[7] 0.6 0.8 0.8 0.9
Max. @ Q[7] 294.0 294.0 343.0 343.0

Avg. @ Q[8] 0.7 0.9 0.9 1.0
Max. @ Q[8] 294.0 343.0 392.0 392.0

Avg. @ Q[9] 0.7 0.7 0.7 0.7
Max. @ Q[9] 294.0 343.0 343.0 343.0

Avg. @ Q[10] 0.8 1.0 1.2 1.2
Max. @ Q[10] 441.0 441.0 490.0 490.0

Avg. @ Q[11] 0.7 1.2 1.3 1.4
Max. @ Q[11] 490.0 490.0 539.0 539.0

Avg. @ Q[12] 0.7 0.8 0.8 0.8
Max. @ Q[12] 245.0 294.0 294.0 294.0

Avg. @ Q[13] 0.7 1.0 1.2 1.2
Max. @ Q[13] 294.0 392.0 441.0 441.0

Table A.67: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 1 thru 11
(T9000 Proc. Speed Level = 0.5)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[14] 0.7 0.8 1.0 1.0
Max. @ Q[14] 343.0 392.0 441.0 441.0

Avg. @ Q[15] 0.7 1.0 1.0 1.1
Max. @ Q[15] 294.0 441.0 441.0 441.0

Avg. @ Q[16] 0.6 0.7 0.8 0.8
Max. @ Q[16] 245.0 297.0 343.0 343.0

Avg. @ Q[17] 0.7 1.0 1.0 1.0
Max. @ Q[17] 245.0 392.0 392.0 392.0

Table A.68: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 12 thru 15
(T9000 Proc. Speed Level = 0.5)

Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 9.8 377.8 500.3 530.9
Max. @ Q[0] 27.0 1876.0 2354.0 2474.0

Avg. @ Q[1] 6644.7 13577.7 26337.1 48910.8
Max. @ Q[1] 24858.0 74321.0 141543.0 195890.0

Table A.69: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru
15 (T9000 Proc. Speed Level = 0.8)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[3] 1.3 1.3 1.4 1.5
Max. @ Q[3] 294.0 392.0 441.0 441.0

Avg. @ Q[4] 1.2 1.4 1.5 1.6
Max. @ Q[4] 294.0 441.0 441.0 441.0

Avg. @ Q[5] 1.1 1.6 1.8 1.9
Max. @ Q[5] 245.0 343.0 343.0 392.0

Avg. @ Q[6] 1.2 1.8 2.0 2.0
Max. @ Q[6] 343.0 441.0 490.0 490.0

Avg. @ Q[7] 1.0 1.3 1.4 1.4
Max. @ Q[7] 294.0 343.0 343.0 343.0

Avg. @ Q[8] 1.1 1.4 1.5 1.6
Max. @ Q[8] 294.0 343.0 392.0 392.0

Avg. @ Q[9] 1.1 1.0 1.2 1.2
Max. @ Q[9] 245.0 343.0 343.0 343.0

Avg. @ Q[10] 1.4 1.8 2.0 2.0
Max. @ Q[10] 460.0 490.0 539.0 539.0

Avg. @ Q[11] 1.2 2.0 2.2 2.3
Max. @ Q[11] 490.0 490.0 539.0 539.0

Avg. @ Q[12] 1.0 1.3 1.4 1.4
Max. @ Q[12] 245.0 294.0 294.0 294.0

Avg. @ Q[13] 1.1 1.8 2.0 2.0
Max. @ Q[13] 294.0 392.0 441.0 441.0

Table A.70: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 1 thru 11
(T9000 Proc. Speed Level = 0.8)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[14] 1.2 1.4 1.6 1.6
Max. @ Q[14] 343.0 440.0 441.0 441.0

Avg. @ Q[15] 1.2 1.6 1.8 1.9
Max. @ Q[15] 294.0 441.0 441.0 441.0

Avg. @ Q[16] 1.0 1.2 1.4 1.4
Max. @ Q[16] 245.0 343.0 343.0 343.0

Avg. @ Q[17] 1.0 1.6 1.7 1.8
Max. @ Q[17] 245.0 392.0 392.0 392.0

Table A.71: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 12 thru 15
(T9000 Proc. Speed Level = 0.8)

Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 13.6 1184.2 1404.7 1458.2
Max. @ Q[0] 36.0 3550.0 4182.0 4339.0

Avg. @ Q[1] 50936.0 161836.0 187674.7 374593.1
Max. @ Q[1] 159642.0 273327.0 378466.0 748523.0

Table A.72: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru
15 (T9000 Proc. Speed Level = 1.0)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[3] 1.6 1.7 1.8 1.9
Max. @ Q[3] 294.0 392.0 441.0 441.0

Avg. @ Q[4] 1.5 1.8 2.0 2.0
Max. @ Q[4] 294.0 441.0 441.0 441.0

Avg. @ Q[5] 1.4 2.0 2.3 2.4
Max. @ Q[5] 245.0 343.0 343.0 392.0

Avg. @ Q[6] 1.6 2.3 2.6 2.6
Max. @ Q[6] 343.0 441.0 490.0 490.0

Avg. @ Q[7] 1.3 1.6 1.7 1.8
Max. @ Q[7] 294.0 343.0 343.0 343.0

Avg. @ Q[8] 1.4 1.8 1.9 2.0
Max. @ Q[8] 294.0 343.0 392.0 392.0

Avg. @ Q[9] 1.4 1.4 1.5 1.6
Max. @ Q[9] 245.0 343.0 343.0 343.0

Avg. @ Q[10] 1.8 2.3 2.5 2.5
Max. @ Q[10] 490.0 490.0 539.0 539.0

Avg. @ Q[11] 1.6 2.5 2.8 2.9
Max. @ Q[11] 490.0 490.0 539.0 539.0

Avg. @ Q[12] 1.4 1.6 1.7 1.8
Max. @ Q[12] 245.0 294.0 294.0 294.0

Avg. @ Q[13] 1.4 2.2 2.4 2.5
Max. @ Q[13] 294.0 392.0 441.0 441.0

Table A.73: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 1 thru 11
(T9000 Proc. Speed Level = 1.0)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[14] 1.5 1.8 2.0 2.0
Max. @ Q[14] 343.0 441.0 490.0 490.0

Avg. @ Q[15] 1.5 2.0 2.3 2.4
Max. @ Q[15] 294.0 441.0 441.0 441.0

Avg. @ Q[16] 1.2 1.5 1.7 1.8
Max. @ Q[16] 245.0 343.0 381.0 380.0

Avg. @ Q[17] 1.4 2.0 2.2 2.2
Max. @ Q[17] 245.0 392.0 392.0 392.0

Table A.74: Queue Occupancy in T9000 #2: tra�c from Ethernet Port 12 thru 15
(T9000 Proc. Speed Level = 1.0)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 0.004 0.004 0.004 0.004
Max. @ Q[0] 10.0 10.0 11.0 11.0

Avg. @ Q[1] 0.8 1.1 1.4 1.2
Max. @ Q[1] 489.0 489.0 538.0 538.0

Avg. @ Q[2] 1.2 0.7 0.7 0.6
Max. @ Q[2] 67.0 67.0 67.0 67.0

Avg. @ Q[3] 0.02 0.02 0.02 0.02
Max. @ Q[3] 66.0 66.0 66.0 66.0

Avg. @ Q[4] 0.02 0.02 0.02 0.02
Max. @ Q[4] 66.0 66.0 66.0 66.0

Avg. @ Q[5] 0.03 0.03 0.04 0.04
Max. @ Q[5] 66.0 66.0 66.0 66.0

Avg. @ Q[6] 0.03 0.04 0.05 0.03
Max. @ Q[6] 66.0 66.0 66.0 66.0

Avg. @ Q[7] 0.02 0.02 0.02 0.02
Max. @ Q[7] 66.0 66.0 66.0 66.0

Avg. @ Q[8] 0.02 0.02 0.02 0.02
Max. @ Q[8] 66.0 66.0 66.0 66.0

Avg. @ Q[9] 0.02 0.02 0.02 0.03
Max. @ Q[9] 66.0 66.0 66.0 66.0

Avg. @ Q[11] 0.03 0.04 0.04 0.03
Max. @ Q[11] 66.0 66.0 66.0 66.0

Avg. @ Q[12] 0.01 0.02 0.02 0.02
Max. @ Q[12] 66.0 66.0 66.0 66.0

Avg. @ Q[13] 0.01 0.02 0.02 0.01
Max. @ Q[13] 66.0 66.0 66.0 66.0

Table A.75: Queue Occupancy in T9000 (@ Ethernet Port 8): tra�c to/from ATM
and Ethernet Port 1 thru 11 (T9000 Proc. Speed Level = 0.1)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[14] 0.03 0.02 0.02 0.02
Max. @ Q[14] 66.0 66.0 66.0 66.0

Avg. @ Q[15] 0.02 0.02 0.02 0.02
Max. @ Q[15] 66.0 66.0 66.0 66.0

Avg. @ Q[16] 0.02 0.02 0.03 0.02
Max. @ Q[16] 66.0 66.0 66.0 66.0

Avg. @ Q[17] 0.02 0.02 0.02 0.02
Max. @ Q[17] 66.0 66.0 66.0 66.0

Table A.76: Queue Occupancy in T9000 (@ Ethernet Port 8): tra�c to/from ATM
and Ethernet Port 12 thru 15 (T9000 Proc. Speed Level = 0.1)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 0.004 0.04 0.004 0.004
Max. @ Q[0] 10.0 10.0 11.0 11.0

Avg. @ Q[1] 0.8 1.1 1.3 1.2
Max. @ Q[1] 489.0 489.0 538.0 538.0

Avg. @ Q[2] 1.4 0.8 0.9 1.2
Max. @ Q[2] 67.0 67.0 67.0 67.0

Avg. @ Q[3] 0.02 0.02 0.02 0.02
Max. @ Q[3] 66.0 66.0 66.0 66.0

Avg. @ Q[4] 0.02 0.02 0.02 0.02
Max. @ Q[4] 66.0 66.0 66.0 66.0

Avg. @ Q[5] 0.03 0.03 0.03 0.04
Max. @ Q[5] 66.0 66.0 66.0 66.0

Avg. @ Q[6] 0.02 0.04 0.04 0.04
Max. @ Q[6] 66.0 66.0 66.0 66.0

Avg. @ Q[7] 0.02 0.02 0.03 0.02
Max. @ Q[7] 66.0 66.0 66.0 66.0

Avg. @ Q[8] 0.02 0.02 0.02 0.02
Max. @ Q[8] 66.0 66.0 66.0 66.0

Avg. @ Q[9] 0.02 0.02 0.03 0.03
Max. @ Q[9] 66.0 66.0 66.0 66.0

Avg. @ Q[11] 0.03 0.04 0.04 0.03
Max. @ Q[11] 66.0 66.0 66.0 66.0

Avg. @ Q[12] 0.02 0.02 0.02 0.02
Max. @ Q[12] 66.0 66.0 66.0 66.0

Avg. @ Q[13] 0.01 0.01 0.02 0.01
Max. @ Q[13] 66.0 66.0 66.0 66.0

Table A.77: Queue Occupancy in T9000 (@ Ethernet Port 8): tra�c to/from ATM
and Ethernet Port 1 thru 11 (T9000 Proc. Speed Level = 0.5)

223



Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[14] 0.02 0.02 0.02 0.03
Max. @ Q[14] 66.0 66.0 66.0 66.0

Avg. @ Q[15] 0.02 0.02 0.02 0.02
Max. @ Q[15] 66.0 66.0 66.0 66.0

Avg. @ Q[16] 0.02 0.02 0.03 0.03
Max. @ Q[16] 66.0 66.0 66.0 66.0

Avg. @ Q[17] 0.02 0.03 0.02 0.02
Max. @ Q[17] 66.0 66.0 66.0 66.0

Table A.78: Queue Occupancy in T9000 (@ Ethernet Port 8): tra�c to/from ATM
and Ethernet Port 12 thru 15 (T9000 Proc. Speed Level = 0.5)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 0.004 0.004 0.004 0.004
Max. @ Q[0] 10.0 10.0 11.0 11.0

Avg. @ Q[1] 0.7 1.1 1.2 1.3
Max. @ Q[1] 489.0 489.0 538.0 538.0

Avg. @ Q[2] 1.9 1.7 1.1 1.3
Max. @ Q[2] 67.0 72.0 70.0 69.0

Avg. @ Q[3] 0.01 0.02 0.02 0.02
Max. @ Q[3] 66.0 66.0 66.0 66.0

Avg. @ Q[4] 0.02 0.02 0.02 0.02
Max. @ Q[4] 66.0 66.0 66.0 66.0

Avg. @ Q[5] 0.03 0.03 0.04 0.03
Max. @ Q[5] 66.0 66.0 66.0 66.0

Avg. @ Q[6] 0.03 0.03 0.03 0.04
Max. @ Q[6] 66.0 66.0 66.0 66.0

Avg. @ Q[7] 0.02 0.02 0.02 0.03
Max. @ Q[7] 66.0 66.0 66.0 66.0

Avg. @ Q[8] 0.02 0.02 0.02 0.02
Max. @ Q[8] 66.0 66.0 66.0 66.0

Avg. @ Q[9] 0.02 0.02 0.03 0.02
Max. @ Q[9] 66.0 66.0 66.0 66.0

Avg. @ Q[11] 0.03 0.04 0.04 0.04
Max. @ Q[11] 66.0 66.0 66.0 66.0

Avg. @ Q[12] 0.02 0.02 0.02 0.02
Max. @ Q[12] 66.0 66.0 66.0 66.0

Avg. @ Q[13] 0.01 0.01 0.01 0.02
Max. @ Q[13] 66.0 66.0 66.0 66.0

Table A.79: Queue Occupancy in T9000 (@ Ethernet Port 8): tra�c to/from ATM
and Ethernet Port 1 thru 11 (T9000 Proc. Speed Level = 0.8)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[14] 0.02 0.02 0.02 0.02
Max. @ Q[14] 66.0 66.0 66.0 66.0

Avg. @ Q[15] 0.02 0.02 0.02 0.02
Max. @ Q[15] 66.0 66.0 66.0 66.0

Avg. @ Q[16] 0.02 0.03 0.03 0.02
Max. @ Q[16] 66.0 66.0 66.0 66.0

Avg. @ Q[17] 0.02 0.02 0.02 0.03
Max. @ Q[17] 66.0 66.0 66.0 66.0

Table A.80: Queue Occupancy in T9000 (@ Ethernet Port 8): tra�c to/from ATM
and Ethernet Port 12 thru 15 (T9000 Proc. Speed Level = 0.8)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[0] 0.004 0.004 0.004 0.004
Max. @ Q[0] 10.0 10.0 11.0 11.0

Avg. @ Q[1] 0.8 1.1 1.2 1.3
Max. @ Q[1] 489.0 489.0 538.0 538.0

Avg. @ Q[2] 1.8 1.8 1.8 1.7
Max. @ Q[2] 67.0 67.0 67.0 69.0

Avg. @ Q[3] 0.02 0.02 0.02 0.02
Max. @ Q[3] 66.0 66.0 66.0 66.0

Avg. @ Q[4] 0.02 0.02 0.02 0.02
Max. @ Q[4] 66.0 66.0 66.0 66.0

Avg. @ Q[5] 0.03 0.04 0.04 0.04
Max. @ Q[5] 66.0 66.0 66.0 66.0

Avg. @ Q[6] 0.03 0.02 0.03 0.03
Max. @ Q[6] 66.0 66.0 66.0 66.0

Avg. @ Q[7] 0.02 0.02 0.03 0.03
Max. @ Q[7] 66.0 66.0 66.0 66.0

Avg. @ Q[8] 0.02 0.02 0.02 0.02
Max. @ Q[8] 66.0 66.0 66.0 66.0

Avg. @ Q[9] 0.02 0.02 0.03 0.03
Max. @ Q[9] 66.0 66.0 66.0 66.0

Avg. @ Q[11] 0.03 0.04 0.04 0.04
Max. @ Q[11] 66.0 66.0 66.0 66.0

Avg. @ Q[12] 0.02 0.02 0.02 0.02
Max. @ Q[12] 66.0 66.0 66.0 66.0

Avg. @ Q[13] 0.01 0.01 0.01 0.02
Max. @ Q[13] 66.0 66.0 66.0 66.0

Table A.81: Queue Occupancy in T9000 (@ Ethernet Port 8): tra�c to/from ATM
and Ethernet Port 1 thru 11 (T9000 Proc. Speed Level = 1.0)
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Burstiness Ratio Level
Queue Size

(# IEEE 1355 pkts) 1:1 10:1 50:1 500:1

Avg. @ Q[14] 0.02 0.02 0.02 0.02
Max. @ Q[14] 66.0 66.0 66.0 66.0

Avg. @ Q[15] 0.02 0.02 0.02 0.02
Max. @ Q[15] 66.0 66.0 66.0 66.0

Avg. @ Q[16] 0.02 0.03 0.03 0.03
Max. @ Q[16] 66.0 66.0 66.0 66.0

Avg. @ Q[17] 0.02 0.03 0.02 0.02
Max. @ Q[17] 66.0 66.0 66.0 66.0

Table A.82: Queue Occupancy in T9000 (@ Ethernet Port 8): tra�c to/from ATM
and Ethernet Port 12 thru 15 (T9000 Proc. Speed Level = 1.0)
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Burstiness Ratio Level
End-to-end Packet Delay

(msec.) 1:1 10:1 50:1 500:1

When T9000 Proc. Speed Level = 0.1 0.1 0.1 0.1 0.1

When T9000 Proc. Speed Level = 0.5 0.4 0.4 0.5 0.5

When T9000 Proc. Speed Level = 0.8 0.6 0.7 0.7 0.7

When T9000 Proc. Speed Level = 1.0 0.7 0.8 0.9 0.9

Table A.83: End-to-end Delay for Packets leaving the ATM Port towards any Ethernet
Port

Burstiness Ratio Level
End-to-end Packet Delay

(msec.) 1:1 10:1 50:1 500:1

When T9000 Proc. Speed Level = 0.1 0.3 0.4 0.3 0.4

When T9000 Proc. Speed Level = 0.5 1.0 1.6 1.4 1.3

When T9000 Proc. Speed Level = 0.8 1.5 8.1 10.5 14.2

When T9000 Proc. Speed Level = 1.0 25.1 33.7 53.4 82.5

Table A.84: End-to-end Delay for Packets leaving any Ethernet Port towards any
other Ethernet or the ATM Port
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A.3 Outcomes under a VBR Tra�c (Star Wars Movie)

T9000 Proc. Speed Level
Queue Size

(# IEEE 1355 pkts) 0.1 0.5 0.8 1.0

Avg. @ Q[0] 0.4 1.0 1.5 3.0

Avg. @ Q[1] 11.3 25.9 73.3 139.7

Table A.85: Queue Occupancy in T9000 #1: tra�c destined to Ethernet Port 1 thru
3

T9000 Proc. Speed Level
Queue Size

(# IEEE 1355 pkts) 0.1 0.5 0.8 1.0

Avg. @ Q[3] 0.2 0.5 1.9 4.4

Avg. @ Q[4] 0.2 0.7 2.5 4.9

Avg. @ Q[5] 0.1 0.5 2.3 4.2

Table A.86: Queue Occupancy in T9000 #2: tra�c coming from Ethernet Port 1 thru
3
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T9000 Proc. Speed Level
Queue Size

(# IEEE 1355 pkts) 0.1 0.5 0.8 1.0

Avg. @ Q[0] 0.003 0.003 0.003 0.003

Avg. @ Q[1] 0.3 0.29 0.3 0.3

Avg. @ Q[2] 3.6 4.4 4.9 5.2

Avg. @ Q[4] 0.1 0.1 0.1 1.0

Avg. @ Q[5] 0.1 0.1 0.1 0.1

Table A.87: Queue Occupancy in T9000 (@ Ethernet Port 1): tra�c to/from ATM
and Ethernet Port 2 & 3

T9000 Proc. Speed Level
Queue Size

(# IEEE 1355 pkts) 0.1 0.5 0.8 1.0

Avg. @ Q[0] 0.003 0.003 0.003 0.003

Avg. @ Q[1] 0.3 0.3 0.3 0.29

Avg. @ Q[2] 2.9 3.5 4.9 3.9

Avg. @ Q[3] 0.09 0.09 0.1 0.094

Avg. @ Q[5] 0.1 0.1 0.1 0.13

Table A.88: Queue Occupancy in T9000 (@ Ethernet Port 2): tra�c to/from ATM
and Ethernet Port 1 & 3
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T9000 Proc. Speed Level
Queue Size

(# IEEE 1355 pkts) 0.1 0.5 0.8 1.0

Avg. @ Q[0] 0.003 0.003 0.003 0.003

Avg. @ Q[1] 0.3 0.3 0.3 0.3

Avg. @ Q[2] 3.5 4.2 4.6 4.8

Avg. @ Q[3] 0.1 0.1 0.1 0.1

Avg. @ Q[4] 0.1 0.1 0.1 0.1

Table A.89: Queue Occupancy in T9000 (@ Ethernet Port 3): tra�c to/from ATM
and Ethernet Port 1 & 2

T9000 Proc. Speed Level
End-to-end Packet Delay

(msec.) 0.1 0.5 0.8 1.0

From ATM to any Ethernet Port 0.1 0.4 0.7 1.4

From any Ethernet to any other
Ethernet or the ATM Port 0.6 0.5 0.7 0.9

Table A.90: End-to-end Delay for Packets
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Appendix B

ALAX OPNET (Selected) Simulation Programs

This appendix contains selected components and modules of the ALAX simula-

tion programs as implemented in OPNET. The complete set of programs can be made

available upon request

B.1 ALAX Models
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Figure B.1: ALAX Model at the Network Level in OPNET (for all con�gurations
implemented)
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Figure B.2: ALAX Model at the Node Level in OPNET (4-port con�guration)
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Figure B.3: ALAX Model at the Node Level in OPNET (8-port con�guration)
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Figure B.4: ALAX Model at the Node Level in OPNET (12-port con�guration)
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Figure B.5: ALAX Model at the Node Level in OPNET (16-port con�guration)
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Figure B.6: T9000 FSM Model at the Process Level in OPNET (for all con�gurations
implemented)
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Figure B.7: C104 FSM Model at the Process Level in OPNET (for all con�gurations
implemented)
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B.1.1 Programming Code for the ATM Port T9000 (4-by-4 Case)
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Process Model Attributes
attribute value type default value
INTERARRIVAL_ATM promoted double 3.533319E-05
MAX_EXT_MODULES promoted integer 4
T_DEL promoted double 1.28E-06
mult promoted double 1.0
OUTPUT_START promoted double 6.0

Header Block
#define STAT_WIRE0 0
#define THRESHOLD  1
#define STAT (op_intrpt_type() == OPC_INTRPT_STAT)
#define PK_ARRIVAL (op_intrpt_type() == OPC_INTRPT_STRM)

   5 #define PK_SEND (op_intrpt_type() == OPC_INTRPT_SELF)
#define END op_intrpt_type()==OPC_INTRPT_ENDSIM
#define MAC_QUEUE 0
#define P1355_QUEUE 1
#define CODE0 0

  10 #define CODE1 1
#define CODE2 2
#define CODE3 3
#define CODE4 4
/*#define OUTPUT_START 2.0  */

  15 /*OUTPUT_START is now passed by the user thru ef or at run time */

State Variable Block
int       \conch;
int       \flag_HOQ_down[64];  /*we won’t exceed 64 for MAX_EXT_MODULES*/
int       \subqueue;
double    \last_arrival_time;

   5 int       \MAX_EXT_MODULES;
double    \T_DEL;
double    \T_LANE;
double    \SERV_DIFF;
double    \UPDATE;

  10 int       \queries;
double    \SERV_TIME_DOWN;
double    \P1355_SEND_TIME;
double    \t_last;
double    \t_1;

  15 int       \stat_flag;
int       \self_flag;
Gshandle  \ete_gsh1;
Gshandle  \ete_gsh3;
Gshandle  \ete_gsh4;

  20 Gshandle  \ete_gsh5;
double    \mult;
double \mean_q[10],\prev_q[10],\prev_time;
double \tot_pkt[10];
double \OUTPUT_START;

  25 double \atmhigh_q[10],\atmvar_q[10];
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Temporary Variable Block
int         queue_condition;
int         i,j,k;
int         max_num_p1355;
double      time;

   5 Packet*     pkptr;
Packet*     pkptr1;
Packet*     pkptr2;
int         service;
int         rounds;

  10 int         origen;
int         condition;
int         condition1;
int         condition2;
int         eth_size;

  15 double      interarrival_atm;
double      t_lane;
double      t_trans;
int         flag;
int         address;

  20 int         N;
double         bit_interarrival_atm;

unforced state   idle
attribute value type default value
name idle string st
enter execs (See below.) textlist (See below.)
exit execs (See below.) textlist (See below.)
status unforced toggle unforced

enter execs   idle
/**********************************************************************/
/*we’ll send a P1355 to the C104 if (1.) the subqueue is not empty,   */
/*(2.) there is no backpressure, and (3.) the last P1355 has not been */
/*sent in less than P1355_SEND_TIME seconds                           */

   5 /**********************************************************************/
if (((op_subq_stat(P1355_QUEUE,OPC_QSTAT_PKSIZE)>0)&&(stat_flag==0))&&((op_sim_time()-t_1)>P1355_SEND_TIME))
pkptr = op_subq_pk_access(P1355_QUEUE,OPC_QPOS_HEAD);

/*t_trans = t_SENT + t_TRANS   */
  10 /*it will have been written at the preceding stage*/

op_pk_nfd_get(pkptr,"TRANS",&t_trans); 

/*************************************************************/
/* present op_sim_time() will take into account the delay for*/

  15 /* t_LANE and t_DEL(first 16 bytes) by virtue of the self    */
/* interrupt initiated when the MAC gets serviced            */
/*************************************************************/
t_lane = op_sim_time();             

  20 /*this sends a P1355 to the C104*/
if (t_lane>t_trans) {     
    pkptr = op_subq_pk_remove(P1355_QUEUE,OPC_QPOS_HEAD);
    op_pk_send(pkptr,0);
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    t_1 = op_sim_time();
  25     }    

    if (op_sim_time()>OUTPUT_START) {op_stat_global_write(ete_gsh1,op_subq_stat(1,OPC_QSTAT_PKSIZE));}
}

else if (self_flag==0) {
  30 op_intrpt_schedule_self(op_sim_time() +  UPDATE,CODE3);

self_flag=1;
}

if (op_subq_stat(10,OPC_QSTAT_PKSIZE)>0) {
  35 pkptr = op_subq_pk_remove(10,OPC_QPOS_HEAD);

op_pk_send(pkptr,1);
}

exit execs   idle
/*if(op_sim_time()>OUTPUT_START)
{op_stat_local_write(0,op_subq_stat(0,OPC_QSTAT_PKSIZE));
 op_stat_local_write(1,op_subq_stat(1,OPC_QSTAT_PKSIZE));
op_stat_local_write(2,op_subq_stat(3,OPC_QSTAT_PKSIZE));

   5 op_stat_local_write(3,op_subq_stat(4,OPC_QSTAT_PKSIZE));
op_stat_local_write(4,op_subq_stat(5,OPC_QSTAT_PKSIZE));
} 
  */

  10 /*The above stuff writes onto output vectors and has been disabled for t 
the present*/

 for(i=0;i<10;i=i+1){
mean_q[i]=mean_q[i]+prev_q[i]*(op_sim_time()-prev_time);

  15 prev_q[i]=op_subq_stat(i,OPC_QSTAT_PKSIZE);
tot_pkt[i]=tot_pkt[i]+1;
if (atmhigh_q[i]<prev_q[i]) {atmhigh_q[i]=prev_q[i];}
atmvar_q[i]=atmvar_q[i]+ prev_q[i]*prev_q[i]*(op_sim_time()-prev_time);
}

  20
prev_time=op_sim_time();

transition   idle -> self
attribute value type default value
name tr_1 string tr
condition PK_SEND string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

transition   idle -> rec
attribute value type default value
name tr_3 string tr
condition PK_ARRIVAL string
executive string
color RGB333 color RGB333
drawing style spline toggle spline
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transition   idle -> stat
attribute value type default value
name tr_8 string tr
condition STAT string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

transition   idle -> idle
attribute value type default value
name tr_10 string tr
condition default string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

transition   idle -> st_5
attribute value type default value
name tr_13 string tr
condition END string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

forced state   rec
attribute value type default value
name rec string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

enter execs   rec
/* get packet from stream */
pkptr = op_pk_get(op_intrpt_strm());

/***************************************************************************/
   5 /*  ETH packets from ATM_ETH-->T9000 or MAC-->T9000                        */

/*  the emptiness or non_emptiness of MAC_QUEUE subqueue implies whether   */
/*  T_DEL will be appended to the T_LANE when service is done              */
/*  if MAC_QUEUE is nonempty, then it is assumed that the 16 bytes that    */
/*  contribute to T_DEL will have already arrived by the time LANE starts  */

  10 /*  total delay - suggested to be 80% interarrival time                    */
/***************************************************************************/
/* (a.) MAC_QUEUE subqueue is empty */
if ((op_intrpt_strm()==0)&&(op_subq_stat(MAC_QUEUE,OPC_QSTAT_PKSIZE)==0)) {
    flag=0;

  15     op_pk_nfd_set(pkptr,"FLAG",flag);
    op_subq_pk_insert(MAC_QUEUE,pkptr,OPC_QPOS_TAIL);
    }

/*(b.) MAC_QUEUE subqueue is nonempty*/
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  20 else if ((op_intrpt_strm()==0)&&(op_subq_stat(MAC_QUEUE,OPC_QSTAT_PKSIZE)>0)) {
    flag=1;
    op_pk_nfd_set(pkptr,"FLAG",flag);
    op_subq_pk_insert(MAC_QUEUE,pkptr,OPC_QPOS_TAIL);
}

  25
/******************************************************************/
/*P1355 packets from C104 --> T9000 to be put into subqueues that */
/*correspond to their origination              */
/******************************************************************/

  30 else if (op_intrpt_strm()==1) {
   op_pk_nfd_get(pkptr,"ORIGEN",&origen); 
   op_pk_nfd_get(pkptr,"dest_address",&address);
   op_subq_pk_insert(origen+2,pkptr,OPC_QPOS_TAIL);
   pkptr = op_subq_pk_access(origen+2,OPC_QPOS_HEAD);

  35    op_pk_nfd_get(pkptr,"MAX_NUM_P1355",&max_num_p1355);
     if  ((op_sim_time()>OUTPUT_START)&&(origen==1)) {op_stat_global_write(ete_gsh3,op_subq_stat(origen+2,OPC_QSTAT
     else if ((op_sim_time()>OUTPUT_START)&&(origen==2)) {op_stat_global_write(ete_gsh4,op_subq_stat(origen+2,OPC_QS
     else if ((op_sim_time()>OUTPUT_START)&&(origen==3)) {op_stat_global_write(ete_gsh5,op_subq_stat(origen+3,OPC_QS

  40 /***************************************************************************/
/*  if service has been given to the HOQ P1355 and this new addition       */
/*  puts the subqueue occupancy over the edge(i.e. MAX_NUM_P1355 required) */
/*  then send out an ETH packet and destroy MAX_NUM_P1355 from the HOQ     */
/***************************************************************************/

  45    if ((flag_HOQ_down[origen+2]==1)&&(op_subq_stat(origen+2,OPC_QSTAT_PKSIZE)>=max_num_p1355)) {
     pkptr1 = op_subq_pk_remove(origen+2,OPC_QPOS_HEAD);
     i=1;
     while (i<max_num_p1355) {
       op_pk_destroy(pkptr1);

  50        pkptr1 = op_subq_pk_remove(origen+2,OPC_QPOS_HEAD);
       if (op_subq_stat(origen+2,OPC_QSTAT_PKSIZE)==0) {i=max_num_p1355;}
       i++;
       }
      op_pk_nfd_strip(pkptr1,"P1355");

  55       op_pk_nfd_set(pkptr1,"ETH");
      op_pk_nfd_set(pkptr1,"NUM",max_num_p1355); /*ETH doesn’t have weight the way Sandeep set it... so indicate size this way*/
      op_pk_nfd_get(pkptr1,"NUM",&max_num_p1355);
      op_subq_pk_insert(10,pkptr1,OPC_QPOS_TAIL);
      flag_HOQ_down[origen+2]=0;

  60       if ((op_sim_time()>OUTPUT_START)&&(origen==1)) {op_stat_global_write(ete_gsh3,op_subq_stat(origen+2,OPC_QSTAT
      else if ((op_sim_time()>OUTPUT_START)&&(origen==2)) {op_stat_global_write(ete_gsh4,op_subq_stat(origen+2,OPC_QS
      else if ((op_sim_time()>OUTPUT_START)&&(origen==3)) {op_stat_global_write(ete_gsh5,op_subq_stat(origen+2,OPC_QS
     }
}

  65

transition   rec -> idle
attribute value type default value
name tr_4 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline
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transition   rec -> stat
attribute value type default value
name tr_12 string tr
condition STAT string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

forced state   self
attribute value type default value
name self string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

enter execs   self
/****************************************************************************************/
/****************************************************************************************/
/**  C104 is the center of the roving server.  When condition C104 is true then the    **/
/**  server has been released from serving the up-side(CODE1) or the                   **/

   5 /**  down-side(CODE2) of the T9000.  Upon a CODE0 interrupt, the roving server will    **/
/**  alternate(i.e., up->down or down->up) and service the corresponding part of       **/
/**  the T9000.  If this part of the T9000 doesn’t require service, the roving server  **/
/**  reverts back to the former part of the T9000.  If neither part requires service,  **/
/**  then a self interrupt CODE0 is originated for SERV_DIFF seconds after the present **/

  10 /**  time.  For example, (1.) just serviced top, (2.) switch and try service at bottom,**/ 
/**  (3.) if service is not required at bottom, go to top and try service, (4.) if     **/
/**  service is not required at top or bottom, then originate self interrupt for       **/
/**  SERV_DIFF seconds into the future                                                 **/
/****************************************************************************************/

  15 /****************************************************************************************/
if  (op_intrpt_code()==CODE0)  {        
       queue_condition=0;
       for (i=0;i<MAX_EXT_MODULES;i++) {
       if ((op_subq_stat(i+2,OPC_QSTAT_PKSIZE)>0)&&(flag_HOQ_down[i+2]==0)) {

  20           queue_condition++;                  /*(queue_condition>0)implies we can service a subqueue on bottom*/
          }
       }

/*****************************************************************************************/
  25 /* The roving server is on top, and there is non-zero queue occupancy in SUBQ0           */

/*****************************************************************************************/
if ((conch==0)&&(op_subq_stat(MAC_QUEUE,OPC_QSTAT_PKSIZE)>0)) {
    pkptr = op_subq_pk_access(MAC_QUEUE,OPC_QPOS_HEAD);
    op_pk_nfd_get(pkptr,"FLAG",&flag);        /*flag queue occupancy empty (=0) or non-zero(=1)*/

  30     condition1 = (flag==1)&&(last_arrival_time<=op_sim_time());
    condition2 = (flag==1)&&(last_arrival_time>op_sim_time());
     /************************************************************/
     /* MAC packet in top of T9000 has not been given service yet*/
     /************************************************************/

  35       if (flag==0) { 
      op_intrpt_schedule_self(op_sim_time()+T_LANE+T_DEL,CODE1);
         }
      /***************************************************************************************/
      /*MAC packet has been given service, and "the end of the last packet has arrived"      */
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  40       /***************************************************************************************/
      else if (condition1) {
         op_intrpt_schedule_self(op_sim_time()+T_LANE,CODE1);
      }                      
      /***************************************************************************************/

  45       /* MAC packet has been given service, but "the end of the last packet has not arrived" */
      /***************************************************************************************/
      else if ((condition2)&&(last_arrival_time>=op_sim_time()+T_LANE)) {
         op_intrpt_schedule_self(last_arrival_time,CODE1);
      }

  50       else if ((condition2)&&(last_arrival_time<op_sim_time()+T_LANE)) {
         op_intrpt_schedule_self(op_sim_time()+T_LANE,CODE1);
      }
      queries=0;
    }              

  55
/****************************************************************************************/
/* the roving server is at the bottom, and condition>0 ==> there exists some queue with */
/* non-zero queue occupancy in SUBQ2-SUBQ"MAX"                                          */
/****************************************************************************************/

  60 else if ((conch==1)&&(queue_condition>0)) {  
      op_intrpt_schedule_self(op_sim_time()+SERV_TIME_DOWN,CODE2);
      queries=0;
    }   

  65 /*****************************************************************************************/
/* we have checked either top or bottom but not both                                     */
/*****************************************************************************************/
else if (queries<1) {
         conch=conch^1;

  70          op_intrpt_schedule_self(op_sim_time(),CODE0);
         queries++;
    }

/****************************************************************************************/
  75 /* we have checked both top and bottom to no avail... don’t waste time or interrupts... */

/* come back and check again after a delayed self interrupt                             */
/****************************************************************************************/
else if (queries==1) {
         conch=conch^1;

  80          time = op_sim_time()+SERV_DIFF;
         op_intrpt_schedule_self(time,CODE0);
         queries=0;
         }
}

  85                                              
/***********************************************************************************/
/***********************************************************************************/
/** A true condition for CODE1 signifies that the top half(i.e. T9000->C104 flow) **/
/**   is being given service.                                                     **/

  90 /***********************************************************************************/
/***********************************************************************************/
else if (op_intrpt_code()==CODE1) { 
      pkptr1 = op_subq_pk_remove(MAC_QUEUE,OPC_QPOS_HEAD);
      eth_size = op_pk_nfd_size(pkptr1,"ETH");

  95            max_num_p1355 = eth_size/(32*8);   /*change this to ceiling function(.) (?)*/
           /***************************************************************************/
           /* send first p1355 with flag=1, and field information about max_num_p1355 */
           /* NB: flag and MAX_NUM_P1355 fields ought not have a nonzero bit size     */
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           /***************************************************************************/
 100            pkptr2 = op_pk_copy(pkptr1);

           op_pk_nfd_set(pkptr2,"P1355",1);
           op_pk_nfd_strip(pkptr2,"ETH");
           op_pk_nfd_set(pkptr2,"MAX_NUM_P1355",max_num_p1355);
           op_subq_pk_insert(P1355_QUEUE,pkptr2,OPC_QPOS_TAIL);

 105            /***********************************************************************************/
           /* send max_num_p1355 p1355s with flag=0 for all P1355 packets except the first one*/
           /***********************************************************************************/
           for (i=1;i<max_num_p1355;i++) {
           pkptr2 = op_pk_copy(pkptr1);

 110            op_pk_nfd_set(pkptr2,"P1355",0);
           op_pk_nfd_set(pkptr2,"MAX_NUM_P1355",max_num_p1355);
           op_pk_nfd_strip(pkptr2,"ETH");
           op_pk_nfd_get(pkptr2,"TRANS",&last_arrival_time);
           op_subq_pk_insert(P1355_QUEUE,pkptr2,OPC_QPOS_TAIL);

 115            }
           op_pk_destroy(pkptr1);
           if (op_sim_time()>OUTPUT_START) {op_stat_global_write(ete_gsh1,op_subq_stat(1,OPC_QSTAT_PKSIZE));}
           

 120            /**************************************************/
           /* XOR the roving server: (0->1) or (1->0)        */
           /* go immediately back to CODE0... control center */ 
           /**************************************************/ 
           conch=conch^1;

 125            time = op_sim_time();
           op_intrpt_schedule_self(time,CODE0);
}

 130
/**************************************************************************************/    
/**************************************************************************************/
/** A true condition for CODE2 signifies that the bottom half(i.e. C104->T9000 flow) **/
/**   is being given service                                                         **/

 135 /**************************************************************************************/
/**************************************************************************************/
else if (op_intrpt_code()==CODE2) {
      /*initialize: ~locally*/
      service=0;

 140       rounds=0;
      /*******************************************************************/
      /*give the next subqueue a chance for the service and send back to */
      /*the beginning if the cardinality of destinations has been reached*/
      /*******************************************************************/

 145       if (subqueue<MAX_EXT_MODULES+1) {subqueue++;}    
      else {subqueue=2;}
      /*****************************************************************************/
      /*jump out of loop if no service after checking "cardinality of destinations"*/
      /*number of subqueues or service is performed on one subqueue                */

 150       /*****************************************************************************/
      while ((rounds<=MAX_EXT_MODULES+1)&&(service==0)) {
         if ((op_subq_stat(subqueue,OPC_QSTAT_PKSIZE)>0)&&(flag_HOQ_down[subqueue]==0)) {
            flag_HOQ_down[subqueue]=1;
            service=1;

 155             }       
         else if (subqueue<MAX_EXT_MODULES+1) {subqueue++; rounds++;}
         else if (subqueue==MAX_EXT_MODULES+1) {subqueue=2; rounds++;}
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      }       

 160       /**********************************************************************************/
      /* only need to access the SUBQ in order to do op_subq_stat in next "if" statement*/
      /**********************************************************************************/
      if (op_subq_stat(subqueue,OPC_QSTAT_PKSIZE)>0) {
      pkptr = op_subq_pk_access(subqueue,OPC_QPOS_HEAD);

 165       op_pk_nfd_get(pkptr,"MAX_NUM_P1355",&max_num_p1355); 
      }

      /*****************************************************************************************/
      /* service has been given and there are a commensurate number of P1355 to create the MAC */

 170       /*****************************************************************************************/
      if ((flag_HOQ_down[subqueue]==1)&&(op_subq_stat(subqueue,OPC_QSTAT_PKSIZE)>=max_num_p1355)) {
         pkptr1 = op_subq_pk_remove(subqueue,OPC_QPOS_HEAD);
         i=1;
         while (i<max_num_p1355) {

 175             op_pk_destroy(pkptr1);
            pkptr1 = op_subq_pk_remove(subqueue,OPC_QPOS_HEAD);
            if (op_subq_stat(subqueue,OPC_QSTAT_PKSIZE)==0) {i=max_num_p1355;}    /*an earlier condition ought to have requir
            i++;
            }

 180          op_pk_nfd_strip(pkptr1,"P1355");
         op_pk_nfd_set(pkptr1,"ETH");
         op_pk_nfd_set(pkptr1,"NUM",max_num_p1355); /*ETH doesn’t take a size the way Sandeep set it... so give indication of size t
         op_subq_pk_insert(10,pkptr1,OPC_QPOS_TAIL);
         flag_HOQ_down[subqueue]=0;

 185         } 
        if ((op_sim_time()>OUTPUT_START)&&(subqueue==3))  {op_stat_global_write(ete_gsh3,op_subq_stat(subqueue,OPC_Q
        else if ((op_sim_time()>OUTPUT_START)&&(subqueue==4)) {op_stat_global_write(ete_gsh4,op_subq_stat(subqueue,OPC
        else if ((op_sim_time()>OUTPUT_START)&&(subqueue==5)) {op_stat_global_write(ete_gsh5,op_subq_stat(subqueue,OPC

 190        /*****************************/
       /* same situation as in CODE1 */
       /*****************************/
       conch=conch^1;
       time=op_sim_time();

 195        op_intrpt_schedule_self(time,CODE0);
}

/******************/
/******************/

 200 /** CODE3 occurs **/
/******************/
/******************/
else if (op_intrpt_code()==CODE3) { 
if (op_stat_local_read(STAT_WIRE0)==0) {stat_flag=0;}

 205 else if (op_stat_local_read(STAT_WIRE0)==1) {stat_flag=1;}
self_flag=0;
}

 210
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transition   self -> idle
attribute value type default value
name tr_2 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

transition   self -> stat
attribute value type default value
name tr_11 string tr
condition STAT string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

forced state   init
attribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (See below.) textlist (See below.)
status forced toggle unforced

enter execs   init
/************************/
/* initialize parameters*/
/************************/
for (i=0;i<=MAX_EXT_MODULES;i++) {

   5     flag_HOQ_down[i+2]=0;                          /*represents whether the subqueue "i" has been given already*/
    }
conch=0;
queries=0;
subqueue=2;                                        /*subqueue starts at 2 because this parameter indicates the first subqueue in the lower half of T

  10 last_arrival_time=0;
stat_flag = 0;
self_flag = 0;

/************************/
  15 /*obtain promoted values*/

/************************/
op_ima_obj_attr_get(op_id_self(),"INTERARRIVAL_ATM",&interarrival_atm);
op_ima_obj_attr_get(op_id_self(),"MAX_EXT_MODULES",&MAX_EXT_MODULES);  
op_ima_obj_attr_get(op_id_self(),"T_DEL",&T_DEL);                      

  20 op_ima_obj_attr_get(op_id_self(),"mult",&mult);
op_ima_obj_attr_get(op_id_self(),"OUTPUT_START",&OUTPUT_START);
/**********************************************************/
/*assume DELAYS dependent on promoted values just obtained*/
/**********************************************************/

  25 bit_interarrival_atm = 1.0/28000000.0;             /*currently, rated at 12Mbps*/
T_LANE = mult*12570*bit_interarrival_atm;          /*service time parameter on top of T9000*/
SERV_TIME_DOWN = mult*12570*bit_interarrival_atm;  /*service time parameter on bottom of T9000*/ 
    
UPDATE = .01*interarrival_atm;                     /*rechecks to send P1355 after UPDATE...  is heuristic*/  

Process Model Report: T9000_ATMpm Fri Oct 10 22:10:04 1997 Page 10 of 12
...
...

251



  30 SERV_DIFF = .5*interarrival_atm;                   /*heuristic... for now*/
/*P1355_SEND_TIME = .00001*interarrival_atm;         heuristic... perhaps, should be in terms of ETH interarrival or something els
t_1=0;

ete_gsh1 = op_stat_global_reg("t9000_atm_side_subqueue1");
  35 ete_gsh3 = op_stat_global_reg("t9000_atm_side_subqueue3");

ete_gsh4 = op_stat_global_reg("t9000_atm_side_subqueue4");
ete_gsh5 = op_stat_global_reg("t9000_atm_side_subqueue5");

  40
for(i=0;i<10;i=i+1){
mean_q[i]=0;
prev_q[i]=0;
tot_pkt[i]=0;

  45 atmhigh_q[i]=0;
atmvar_q[i]=0;
}

prev_time=0;
  50

exit execs   init
op_intrpt_schedule_self(op_sim_time()+interarrival_atm,CODE0);

transition   init -> idle
attribute value type default value
name tr_5 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

forced state   stat
attribute value type default value
name stat string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

enter execs   stat
/************************************************************/
/* there has been a change in the statistic wire backpressure*/
/* modify the stat_flag accordingly
/************************************************************/

   5 if (op_stat_local_read(STAT_WIRE0)==0) {stat_flag=0;}
else if (op_stat_local_read(STAT_WIRE0)==1) {stat_flag=1;}
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transition   stat -> idle
attribute value type default value
name tr_9 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

unforced state   st_5
attribute value type default value
name st_5 string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status unforced toggle unforced

enter execs   st_5

 for(i=0;i<10;i=i+1){
printf("(atm side t9000)average_queue_lenght of queue[%d]=%lf\n",i,mean_q[i]/op_sim_time());
op_stat_scalar_write("ave_queue_length(atm side)",mean_q[i]/op_sim_time());

   5 printf("(atm side T9000) highest queue size[%d]=%1f\n",i,atmhigh_q[i]);
printf("(atm side T9000)  variances in queue size[%d]=%1f\n",i,sqrt((atmvar_q[i]/op_sim_time())-(mean_q[i]/op_sim
}

transition   st_5 -> idle
attribute value type default value
name tr_15 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline
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B.1.2 Programming Code for the Ethernet Port T9000 (4-by-4 Case)
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Process Model Attributes
attribute value type default value
INTERARRIVAL_ATM promoted double 3.533319E-05
MAX_EXT_MODULES promoted integer 4
T_DEL promoted double 1.28E-06
GUGU promoted integer 0

Header Block
#define STAT_WIRE0 0
#define THRESHOLD  1
#define STAT (op_intrpt_type() == OPC_INTRPT_STAT)
#define PK_ARRIVAL (op_intrpt_type() == OPC_INTRPT_STRM)

   5 #define PK_SEND (op_intrpt_type() == OPC_INTRPT_SELF)
#define MAC_QUEUE 0
#define P1355_QUEUE 1
#define CODE0 0
#define CODE1 1

  10 #define CODE2 2
#define CODE3 3
#define CODE4 4
#define END op_intrpt_type()==OPC_INTRPT_ENDSIM

State Variable Block
int       \conch;
int       \flag_HOQ_down[64];  /*we won’t exceed 64 for MAX_EXT_MODULES*/
int       \subqueue;
double    \last_arrival_time;

   5 int       \MAX_EXT_MODULES;
double    \T_DEL;
double    \T_LANE;
double    \UPDATE;
double    \SERV_DIFF;

  10 int       \queries;
double    \SERV_TIME_DOWN;
double    \t_last
double    \t_1;
int       \stat_flag;

  15 double    \P1355_SEND_TIME;
int       \self_flag;
int \gugu;
double \mean_q[10],\prev_q[10],\prev_time,\tot_pkt[10];
int  \sum11;

  20 int \no_of_insertions;
double \ethhigh_q[10],\ethvar_q[10];

Temporary Variable Block
int         queue_condition;
int         i,j,k;
int         max_num_p1355;
double      time;

   5 Packet*     pkptr;
Packet*     pkptr1;
Packet*     pkptr2;
int         service;
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int         rounds;
  10 int         origen;

int         condition;
int         condition1;
int         condition2;
int         eth_size;

  15 double      interarrival_atm;
double      t_lane;
double      t_trans;
int         flag;
int         address;

  20 int         N;
int         bit_interarrival_atm;

  25

unforced state   idle
attribute value type default value
name idle string st
enter execs (See below.) textlist (See below.)
exit execs (See below.) textlist (See below.)
status unforced toggle unforced

enter execs   idle
/**********************************************************************/
/*we’ll send a P1355 to the C104 if (1.) the subqueue is not empty,   */
/*(2.) there is no backpressure, and (3.) the last P1355 has not been */
/*sent in less than P1355_SEND_TIME seconds                           */

   5 /**********************************************************************/
if (((op_subq_stat(P1355_QUEUE,OPC_QSTAT_PKSIZE)>0)&&(stat_flag==0))&&((op_sim_time()-t_1)>P1355_SEND_TIME))
pkptr = op_subq_pk_access(P1355_QUEUE,OPC_QPOS_HEAD);

/*t_trans = t_SENT + t_TRANS   */
  10 /*it will have been written at the preceding stage*/

op_pk_nfd_get(pkptr,"TRANS",&t_trans); 

/*************************************************************/
/* present op_sim_time() will take into account the delay for*/

  15 /* t_LANE and t_DEL(first 16 bytes) by virtue of the self    */
/* interrupt initiated when the MAC gets serviced            */
/*************************************************************/
t_lane = op_sim_time();             

  20 /*this sends a P1355 to the C104*/
if (t_lane>t_trans) {     
    pkptr = op_subq_pk_remove(P1355_QUEUE,OPC_QPOS_HEAD);
    op_pk_send(pkptr,0);
    t_1 = op_sim_time();

  25     }    
}

else if (self_flag==0) {
op_intrpt_schedule_self(op_sim_time() +  UPDATE,CODE3);

  30 self_flag=1;
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}

if (op_subq_stat(6,OPC_QSTAT_PKSIZE)>0) {
pkptr = op_subq_pk_remove(6,OPC_QPOS_HEAD);

  35 op_pk_send(pkptr,1);
}

exit execs   idle

for(i=0;i<10;i=i+1)
{

   5 mean_q[i]=mean_q[i]+prev_q[i]*(op_sim_time()-prev_time);

if (ethhigh_q[i] < prev_q[i]) {ethhigh_q[i]=prev_q[i];}
ethvar_q[i]=ethvar_q[i]+prev_q[i]*prev_q[i]*(op_sim_time()-prev_time);

  10 prev_q[i]=op_subq_stat(i,OPC_QSTAT_PKSIZE);
tot_pkt[i]=tot_pkt[i]+1;
}

/*if(prev_q[2]>0){printf("prev_q[2]=%lf\n",prev_q[2]);}; */
  15 if((gugu==1)&(prev_q[3]>0)){printf("q3 caught red handed");};

prev_time=op_sim_time();

transition   idle -> self
attribute value type default value
name tr_1 string tr
condition PK_SEND string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

transition   idle -> rec
attribute value type default value
name tr_3 string tr
condition PK_ARRIVAL string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

transition   idle -> stat
attribute value type default value
name tr_8 string tr
condition STAT string
executive string
color RGB333 color RGB333
drawing style spline toggle spline
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transition   idle -> idle
attribute value type default value
name tr_10 string tr
condition default string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

transition   idle -> st_5
attribute value type default value
name tr_13 string tr
condition END string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

forced state   rec
attribute value type default value
name rec string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

enter execs   rec
/* get packet from stream */
pkptr = op_pk_get(op_intrpt_strm());
op_pk_nfd_get (pkptr, "ORIGEN", &origen);
if(origen==0){sum11=sum11+1;}

   5 op_pk_nfd_get (pkptr, "dest_address", &address);
/*printf ("origen=%d,address=%d \n", origen,address);*/

/***************************************************************************/
/*  ETH packets from ATM_ETH-->T9000 or MAC-->T9000                        */

  10 /*  the emptiness or non_emptiness of MAC_QUEUE subqueue implies whether   */
/*  T_DEL will be appended to the T_LANE when service is done              */
/*  if MAC_QUEUE is nonempty, then it is assumed that the 16 bytes that    */
/*  contribute to T_DEL will have already arrived by the time LANE starts  */
/*  total delay - suggested to be 80% interarrival time                    */

  15 /***************************************************************************/

/* (a.) MAC_QUEUE subqueue is empty */
if ((op_intrpt_strm()==0)&&(op_subq_stat(MAC_QUEUE,OPC_QSTAT_PKSIZE)==0)) {
    flag=0;

  20     op_pk_nfd_set(pkptr,"FLAG",flag);
    op_subq_pk_insert(MAC_QUEUE,pkptr,OPC_QPOS_TAIL);
    }

/*(b.) MAC_QUEUE subqueue is nonempty*/
  25 else if ((op_intrpt_strm()==0)&&(op_subq_stat(MAC_QUEUE,OPC_QSTAT_PKSIZE)>0)) {

    flag=1;
    op_pk_nfd_set(pkptr,"FLAG",flag);
    op_subq_pk_insert(MAC_QUEUE,pkptr,OPC_QPOS_TAIL);
}
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  30
/******************************************************************/
/*P1355 packets from C104 --> T9000 to be put into subqueues that */
/*correspond to their origination              */
/******************************************************************/

  35 else if (op_intrpt_strm()==1) {
   op_pk_nfd_get(pkptr,"ORIGEN",&origen); 
   op_pk_nfd_get(pkptr,"dest_address",&address);
   op_subq_pk_insert(origen+2,pkptr,OPC_QPOS_TAIL);
 if(origen==0){  no_of_insertions=no_of_insertions+1;}

  40    pkptr = op_subq_pk_access(origen+2,OPC_QPOS_HEAD);
   op_pk_nfd_get(pkptr,"MAX_NUM_P1355",&max_num_p1355);

/***************************************************************************/
/*  if service has been given to the HOQ P1355 and this new addition       */

  45 /*  puts the subqueue occupancy over the edge(i.e. MAX_NUM_P1355 required) */
/*  then send out an ETH packet and destroy MAX_NUM_P1355 from the HOQ     */
/***************************************************************************/
   if ((flag_HOQ_down[origen+2]==1)&&(op_subq_stat(origen+2,OPC_QSTAT_PKSIZE)>=max_num_p1355)) {
     pkptr1 = op_subq_pk_remove(origen+2,OPC_QPOS_HEAD);

  50      i=1;
     while (i<max_num_p1355) {
       op_pk_destroy(pkptr1);
       pkptr1 = op_subq_pk_remove(origen+2,OPC_QPOS_HEAD);
       if (op_subq_stat(origen+2,OPC_QSTAT_PKSIZE)==0) {i=max_num_p1355;}

  55        i++;
       }
      op_pk_nfd_strip(pkptr1,"P1355");
      op_pk_nfd_set(pkptr1,"ETH");
      op_pk_nfd_set(pkptr1,"NUM",max_num_p1355); /*ETH doesn’t have weight the way Sandeep set it... so indicate size this way*/

  60       op_subq_pk_insert(10,pkptr1,OPC_QPOS_TAIL);
      flag_HOQ_down[origen+2]=0;
     }
}

transition   rec -> idle
attribute value type default value
name tr_4 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

transition   rec -> stat
attribute value type default value
name tr_12 string tr
condition STAT string
executive string
color RGB333 color RGB333
drawing style spline toggle spline
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forced state   self
attribute value type default value
name self string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

enter execs   self
/****************************************************************************************/
/****************************************************************************************/
/**  C104 is the center of the roving server.  When condition C104 is true then the    **/
/**  server has been released from serving the up-side(CODE1) or the                   **/

   5 /**  down-side(CODE2) of the T9000.  Upon a CODE0 interrupt, the roving server will    **/
/**  alternate(i.e., up->down or down->up) and service the corresponding part of       **/
/**  the T9000.  If this part of the T9000 doesn’t require service, the roving server  **/
/**  reverts back to the former part of the T9000.  If neither part requires service,  **/
/**  then a self interrupt CODE0 is originated for SERV_DIFF seconds after the present **/

  10 /**  time.  For example, (1.) just serviced top, (2.) switch and try service at bottom,**/ 
/**  (3.) if service is not required at bottom, go to top and try service, (4.) if     **/
/**  service is not required at top or bottom, then originate self interrupt for       **/
/**  SERV_DIFF seconds into the future                                                 **/
/****************************************************************************************/

  15 /****************************************************************************************/
if  (op_intrpt_code()==CODE0)  {        
       queue_condition=0;
       for (i=0;i<MAX_EXT_MODULES;i++) {
       if ((op_subq_stat(i+2,OPC_QSTAT_PKSIZE)>0)&&(flag_HOQ_down[i+2]==0)) {

  20           queue_condition++;  /*(queue_condition>0)implies we can service a subqueue on bottom*/
          }
       }

/*****************************************************************************************/
  25 /* The roving server is on top, and there is non-zero queue occupancy in SUBQ0           */

/*****************************************************************************************/
if ((conch==0)&&(op_subq_stat(MAC_QUEUE,OPC_QSTAT_PKSIZE)>0)) {
    pkptr = op_subq_pk_access(MAC_QUEUE,OPC_QPOS_HEAD);
    op_pk_nfd_get(pkptr,"FLAG",&flag);        /*flag queue occupancy empty (=0) or non-zero(=1)*/

  30     condition1 = (flag==1)&&(last_arrival_time<=op_sim_time());
    condition2 = (flag==1)&&(last_arrival_time>op_sim_time());
     /************************************************************/
     /* MAC packet in top of T9000 has not been given service yet*/
     /************************************************************/

  35       if (flag==0) { 
      op_intrpt_schedule_self(op_sim_time()+T_LANE+T_DEL,CODE1);
         }
      /***************************************************************************************/
      /*MAC packet has been given service, but "the end of the last packet has arrived"      */

  40       /***************************************************************************************/
      else if (condition1) {
         op_intrpt_schedule_self(op_sim_time()+T_LANE,CODE1);
      }                      
      /***************************************************************************************/

  45       /* MAC packet has been given service, and "the end of the last packet has not arrived" */
      /***************************************************************************************/
      else if ((condition2)&&(last_arrival_time>=op_sim_time()+T_LANE)) {
         op_intrpt_schedule_self(last_arrival_time,CODE1);
      }

Process Model Report: T9000_ETH_SIDE Sun Feb 15 10:48:52 1998 Page 6 of 12
...
...

260



  50       else if ((condition2)&&(last_arrival_time<op_sim_time()+T_LANE)) {
         op_intrpt_schedule_self(op_sim_time()+T_LANE,CODE1);
      }
      queries=0;
    }              

  55
/****************************************************************************************/
/* the roving server is at the bottom, and condition>0 ==> there exists some queue with */
/* non-zero queue occupancy in SUBQ2-SUBQ"MAX"                                          */
/****************************************************************************************/

  60 else if ((conch==1)&&(queue_condition>0)) {  
      op_intrpt_schedule_self(op_sim_time()+SERV_TIME_DOWN,CODE2);
      queries=0;
    }   

  65 /*****************************************************************************************/
/* we have checked either top or bottom but not both                                     */
/*****************************************************************************************/
else if (queries<1) {
         conch=conch^1;

  70          op_intrpt_schedule_self(op_sim_time(),CODE0);
         queries++;
    }

/****************************************************************************************/
  75 /* we have checked both top and bottom to no avail... don’t waste time or interrupts... */

/* come back and check again after a delayed self interrupt                             */
/****************************************************************************************/
else if (queries==1) {
         conch=conch^1;

  80          time = op_sim_time()+SERV_DIFF;
         op_intrpt_schedule_self(time,CODE0);
         queries=0;
         }
}

  85

/***********************************************************************************/
/***********************************************************************************/

  90 /** A true condition for CODE1 signifies that the top half(i.e. T9000->C104 flow) **/
/**   is being given service.                                                     **/
/***********************************************************************************/
/***********************************************************************************/
else if (op_intrpt_code()==CODE1) { 

  95       pkptr1 = op_subq_pk_remove(MAC_QUEUE,OPC_QPOS_HEAD);
      eth_size = op_pk_nfd_size(pkptr1,"ETH");
           max_num_p1355 = eth_size/(32*8);   /*change this to ceiling function(.) (?)*/
           /***************************************************************************/
           /* send first p1355 with flag=1, and field information about max_num_p1355 */

 100            /* NB: flag and MAX_NUM_P1355 fields ought not have a nonzero bit size     */
           /***************************************************************************/
           pkptr2 = op_pk_copy(pkptr1);
           op_pk_nfd_set(pkptr2,"P1355",1);
           op_pk_nfd_strip(pkptr2,"ETH");

 105            op_pk_nfd_set(pkptr2,"MAX_NUM_P1355",max_num_p1355);
           op_subq_pk_insert(P1355_QUEUE,pkptr2,OPC_QPOS_TAIL);
           /***********************************************************************************/
           /* send max_num_p1355 p1355s with flag=0 for all P1355 packets except the first one*/
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           /***********************************************************************************/
 110            for (i=1;i<max_num_p1355;i++) {

           pkptr2 = op_pk_copy(pkptr1);
           op_pk_nfd_set(pkptr2,"P1355",0);
           op_pk_nfd_set(pkptr2,"MAX_NUM_P1355",max_num_p1355);
           op_pk_nfd_strip(pkptr2,"ETH");

 115            op_pk_nfd_get(pkptr2,"TRANS",&last_arrival_time);
           op_subq_pk_insert(P1355_QUEUE,pkptr2,OPC_QPOS_TAIL);
           }
           op_pk_destroy(pkptr1);

 120            /**************************************************/
           /* XOR the roving server: (0->1) or (1->0)        */
           /* go immediately back to CODE0... control center */ 
           /**************************************************/ 
           conch=conch^1;

 125            time = op_sim_time();
           op_intrpt_schedule_self(time,CODE0);
}

 130
/**************************************************************************************/    
/**************************************************************************************/
/** A true condition for CODE2 signifies that the bottom half(i.e. C104->T9000 flow) **/
/**   is being given service                                                         **/

 135 /**************************************************************************************/
/**************************************************************************************/
else if (op_intrpt_code()==CODE2) {
      /*initialize: ~locally*/
      service=0;

 140       rounds=0;
      /*******************************************************************/
      /*give the next subqueue a chance for the service and send back to */
      /*the beginning if the cardinality of destinations has been reached*/
      /*******************************************************************/

 145       if (subqueue<MAX_EXT_MODULES+1) {subqueue++;}    
      else {subqueue=2;}
      /*****************************************************************************/
      /*jump out of loop if no service after checking "cardinality of destinations"*/
      /*number of subqueues or service is performed on one subqueue                */

 150       /*****************************************************************************/
      while ((rounds<=MAX_EXT_MODULES+1)&&(service==0)) {
         if ((op_subq_stat(subqueue,OPC_QSTAT_PKSIZE)>0)&&(flag_HOQ_down[subqueue]==0)) {
            flag_HOQ_down[subqueue]=1;
            service=1;

 155             }       
         else if (subqueue<MAX_EXT_MODULES+1) {subqueue++; rounds++;}
         else if (subqueue==MAX_EXT_MODULES+1) {subqueue=2; rounds++;}
      }       

 160       /**********************************************************************************/
      /* only need to access the SUBQ in order to do op_subq_stat in next "if" statement*/
      /**********************************************************************************/
      if (op_subq_stat(subqueue,OPC_QSTAT_PKSIZE)>0) {
      pkptr = op_subq_pk_access(subqueue,OPC_QPOS_HEAD);

 165       op_pk_nfd_get(pkptr,"MAX_NUM_P1355",&max_num_p1355); 
      }
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      /*****************************************************************************************/
      /* service has been given and there are a commensurate number of P1355 to create the MAC */

 170       /*****************************************************************************************/
      if ((flag_HOQ_down[subqueue]==1)&&(op_subq_stat(subqueue,OPC_QSTAT_PKSIZE)>=max_num_p1355)) {
         pkptr1 = op_subq_pk_remove(subqueue,OPC_QPOS_HEAD);
         i=1;
         while (i<max_num_p1355) {

 175             op_pk_destroy(pkptr1);
            pkptr1 = op_subq_pk_remove(subqueue,OPC_QPOS_HEAD);
            if (op_subq_stat(subqueue,OPC_QSTAT_PKSIZE)==0) {i=max_num_p1355;}    /*an earlier condition ought to have requir
            i++;
            }

 180          op_pk_nfd_strip(pkptr1,"P1355");
         op_pk_nfd_set(pkptr1,"ETH");
         op_pk_nfd_set(pkptr1,"NUM",max_num_p1355); /*ETH doesn’t take a size the way Sandeep set it... so give indication of size t
         op_subq_pk_insert(10,pkptr1,OPC_QPOS_TAIL);
         flag_HOQ_down[subqueue]=0;

 185         } 

       /*****************************/
       /* same situation as in CODE1 */
       /*****************************/

 190        conch=conch^1;
       time=op_sim_time();
       op_intrpt_schedule_self(time,CODE0);
}

 195 /******************/
/******************/
/** CODE3 occurs **/
/******************/
/******************/

 200 else if (op_intrpt_code()==CODE3) { 
if (op_stat_local_read(STAT_WIRE0)==0) {stat_flag=0;}
else if (op_stat_local_read(STAT_WIRE0)==1) {stat_flag=1;}
self_flag=0;
}

 205
/*********************************************************************/
/*********************************************************************/
/**  condition CODE3 signifies that a P1355 will be sent to the C104**/  
/*********************************************************************/

 210 /*********************************************************************/
/*else if ((op_intrpt_code()==CODE3)&&(op_subq_stat(P1355_QUEUE,OPC_QSTAT_PKSIZE)>0)) { */
/*the second condition above - op_subq_stat(.)>0 - ought not be there*/
/*this condition should be checked in state IDLE; however, it seemed */
/*that there might have been a race condition, so for now check the  */

 215 /*condition again here... this should be ok... just redundant        */
/*if (op_stat_local_read(STAT_WIRE0)<THRESHOLD) {  */
/*pkptr = op_subq_pk_remove(P1355_QUEUE,OPC_QPOS_HEAD); */
/*send to appropriate stream*/
/*op_pk_send_forced(pkptr,0);*/

 220 /*}*/
/*}*/
/*------------------we’re doing this in the IDLE state, now------------------*/

 225
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transition   self -> idle
attribute value type default value
name tr_2 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

transition   self -> stat
attribute value type default value
name tr_11 string tr
condition STAT string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

forced state   init
attribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (See below.) textlist (See below.)
status forced toggle unforced

enter execs   init
/************************/
/* initialize parameters*/
/************************/
for (i=0;i<=MAX_EXT_MODULES;i++) {

   5     flag_HOQ_down[i+2]=0;
    }
conch=0;
queries=0;
subqueue=2;   /*subqueue starts at 2 because this parameter indicates the lower half of T9000*/

  10 last_arrival_time=0;
stat_flag = 0;
self_flag = 0;

  15

/************************/
/*obtain promoted values*/
/************************/

  20 op_ima_obj_attr_get(op_id_self(),"INTERARRIVAL_ATM",&interarrival_atm);
op_ima_obj_attr_get(op_id_self(),"MAX_EXT_MODULES",&MAX_EXT_MODULES);  
op_ima_obj_attr_get(op_id_self(),"T_DEL",&T_DEL);
op_ima_obj_attr_get(op_id_self(),"GUGU",&gugu);                      
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  25 /**********************************************************/
/*assume DELAYS dependent on promoted values just obtained*/
/**********************************************************/
bit_interarrival_atm = 1/28000000;      /*promote later*/
T_LANE = 0;                             /*there is no LAN emulation... LAN emulation is on ATM side*/

  30 SERV_TIME_DOWN = .1*24*32*8*bit_interarrival_atm;   /*10 percent interarrival... need time to reconstruct ETH packet*/
UPDATE = .01*interarrival_atm;          /*rechecks to send P1355 after UPDATE...  is heuristic*/

                                        /*if UPDATE too large... then too many interrupts*/
                                        /*if UPDATE too small... then it’s not doing its job of sending to the C104 as soon as THRESHOLD conditio

  35 SERV_DIFF = .5*interarrival_atm;             /*heuristic... for now*/
P1355_SEND_TIME = .00001*interarrival_atm;     /*heuristic... perhaps, should be in terms of ETH interarrival or something else...
t_1=0;

for(i=0;i<10;i=i+1){
  40 mean_q[i]=0;

prev_q[i]=0;
tot_pkt[i]=0;
ethhigh_q[i]=0;
ethvar_q[i]=0;

  45 }

prev_time=op_sim_time();

  50 /*DEBUGGING*/
sum11=0;
no_of_insertions=0;
/*END OF DEBUGGING*/

exit execs   init
op_intrpt_schedule_self(op_sim_time(),CODE0);

 /*op_sim_time()+inter_arrival_atm_time has been changed to as shown above*/

transition   init -> idle
attribute value type default value
name tr_5 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

forced state   stat
attribute value type default value
name stat string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced
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enter execs   stat
/************************************************************/
/* there has been a change in the statistic wire backpressure*/
/* modify the stat_flag accordingly
/************************************************************/

   5 if (op_stat_local_read(STAT_WIRE0)==0) {stat_flag=0;}
else if (op_stat_local_read(STAT_WIRE0)==1) {stat_flag=1;}

transition   stat -> idle
attribute value type default value
name tr_9 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

unforced state   st_5
attribute value type default value
name st_5 string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status unforced toggle unforced

enter execs   st_5
for(i=0;i<10;i=i+1){
printf("(eth side t9000) mean_q[%d]=%lf ,ethset=%d\n",i,mean_q[i]/op_sim_time(),gugu);
printf("(ETH SIDE T9000) highest qsize[%d]=%1f,ethset=%d\n",i,ethhigh_q[i],gugu);
printf("(ETH SIDE T9000) variance of qsize[%d]=%1f,ethset=%d\n",i,(sqrt(ethvar_q[i]/op_sim_time())-(mean_q[i]/op_

   5 }

printf("no of p1355 packets received from atm side by t9000 on eth side=%d\n",sum11);
printf("no of insertions=%d\n",no_of_insertions);

  10

transition   st_5 -> idle
attribute value type default value
name tr_15 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline
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B.1.3 Programming Code for the C104 (4-by-4 Case)
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Process Model Attributes
attribute value type default value
DELAY promoted double 1E-06

Header Block
/*-----------------------------------------------------------------------------------------------
Name of Software : c104_sw
Version : 1.0
Description/Purpose : To manage the tasks and operations within the C104 module performed by the 

   5   Packet Layer Protocol according to the IEEE P1355 Heterogeneous Interconnect 
  Standard.
___________________________________________________________________

Name of Developer(s): Jangkyung Kim
  10 Released to : Institute for Systems Research (ISR)

  University of Maryland at College Park
Date of Creation : 07/19/95
Date of Revision : N/A
By : N/A

  15 Comments on Revision: N/A
Warnings : None.
-------------------------------------------------------------------------------------------------*/
#define MAX_NO_LINK 8 /* Maximum number of DS Link */
/*#define DELAY .000001*/ /* DELAY = 1 usec */

  20 /*now got from user at runtime or from ef file*/
/* Define the types of Events that can occur on the States of this Switch Process */
#define PK_ARRVD (op_intrpt_type() == OPC_INTRPT_STRM) /* packet arrived */
#define PK_SENT (op_intrpt_type() == OPC_INTRPT_SELF) /* packet is now ready for transmit */ 
#define END (op_intrpt_type()==OPC_INTRPT_ENDSIM)

  25

/* End of Types of Events that can occur on the States of the Switch Process */

State Variable Block
/* Received Packets Counter */
int \rcvd_pkts;

/* Transmitted Packets Counter */
   5 int \xmitd_pkts;

/* Destroyed Packets */
int \destr_pkts;

  10 int \out;

/* input subq number for the round robin access */
int \curr_q[MAX_NO_LINK];
double  \tot_packets;

  15 double \DELAY;
int \origen2;
int \sum1;
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Temporary Variable Block
Packet *tmp_pkptr; /* the temporary packet pointer */
Packet *pkptr; /* the received packet pointer  */
Packet *out_pkptr;      /* the packet to be transmitted */

   5 int count; /* To be used to count maximum number of links */
int out_ds_link; /* output DS Link number */
int out_subq; /* Output sub_queue number (from 0 to MAX_NO_LINK) */
int dest_address;       /* the destination output data link address where packet is to be routed */
int curr_input_lnk; /* the current input link where packet came from */

  10 double stamp_time1, stamp_time2;
double pk_transfer_time;
int pk_len;

Function Block
/* This function writes the end_of_simulation traffic on the */
/* output links and the ouput links throughput               */
record_stats()

{
   5 /* Record Final Statistics */

op_stat_scalar_write("Channel Traffic G",
(double) xmitd_pkts/op_sim_time());

op_stat_scalar_write("Channel Throughput S",
(double) rcvd_pkts/op_sim_time());

  10 printf("the final statistics are : %d, %d, %d\n", rcvd_pkts, xmitd_pkts, destr_pkts);

}

forced state   Init
attribute value type default value
name Init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

enter execs   Init
/* Initialize Accumulators */
rcvd_pkts = 0;
xmitd_pkts = 0;
destr_pkts = 0;

   5
stamp_time1 = 0.0;
stamp_time2 = 0.0;

for(count=0; count < MAX_NO_LINK; count++)
  10 curr_q[count] = MAX_NO_LINK; /* First input queue index */

tot_packets=0;

op_ima_obj_attr_get(op_id_self(),"DELAY",&DELAY);
  15

sum1=0; /*debugging*/
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transition   Init -> Idle
attribute value type default value
name tr_0 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

unforced state   Idle
attribute value type default value
name Idle string st
enter execs (See below.) textlist (See below.)
exit execs (See below.) textlist (See below.)
status unforced toggle unforced

enter execs   Idle
/*************************************************************************************/
/* Wait interrupt                                                                    */
/* If packet arrived then go to receive state                                        */
/* If packet is sent then go to the transmit state                                   */

   5 /*************************************************************************************/

exit execs   Idle

transition   Idle -> Recv
attribute value type default value
name tr_1 string tr
condition PK_ARRVD string
executive string
color RGB312 color RGB333
drawing style spline toggle spline

transition   Idle -> Xmit
attribute value type default value
name tr_3 string tr
condition PK_SENT string
executive string
color RGB330 color RGB333
drawing style spline toggle spline

transition   Idle -> Idle
attribute value type default value
name tr_18 string tr
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condition default string
executive string
color RGB320 color RGB333
drawing style spline toggle spline

transition   Idle -> st_4
attribute value type default value
name tr_21 string tr
condition END string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

forced state   Recv
attribute value type default value
name Recv string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

enter execs   Recv
/* increment the count of received packets for the switch */
++rcvd_pkts;
/* get the current input stream index where the packet is arriving from */
curr_input_lnk = op_intrpt_strm();

   5 /*if(curr_input_lnk==4){printf("C104 GETS A P1355=%lf\n",op_sim_time());};
*/
/* retrieve the packet from the input stream where the arrival occured */
pkptr = op_pk_get(curr_input_lnk);
/*FOLOOWING STATEMENT STAMPS THE ARRIVAL TO SEE IF T9000 IS A BOTTLE NECK*/ 

  10 op_pk_nfd_set(pkptr,"POST_T9000_TIME",op_sim_time());
/* Stamp the packet so that later we can extract the packet delay inside the switch */
op_pk_stamp(pkptr);

  15 /* get the output link destination address of the packet */
op_pk_nfd_get(pkptr,"dest_address",&dest_address);
/*THE NEXT STATEMENT HAS BEEN ADDED FOR DEBUGGING -sandeep*/
/*if((curr_input_lnk>4)&&(curr_input_lnk<=7)&&(dest_address!=0)){
printf("******************************************************\n");

  20 printf("PANIC PANIC PANIC PANIC PANIC PANIC PANIC PANIC\n");
printf("******************************************************\n");
} */
op_pk_nfd_get(pkptr,"ORIGEN",&origen2);
if(origen2==0){sum1=sum1+1;}

  25
/*END OF DEBUGGING STUFF*/

/* Determine if this output data link is busy or not */
if (!op_subq_empty(dest_address))

  30 { /* output link is busy(output subq is not empty), so save the packet in the input subq */
op_subq_pk_insert(curr_input_lnk,pkptr,OPC_QPOS_TAIL);
op_stat_local_write(0,1);

}
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else
  35 { /* output link is not busy (Output subq is empty)*/

pk_len = op_pk_total_size_get (pkptr);
pk_transfer_time = pk_len / 1000000000.0;
op_intrpt_schedule_self(op_sim_time() + pk_transfer_time,dest_address);
op_subq_pk_insert(dest_address,pkptr,OPC_QPOS_TAIL);

  40 }

transition   Recv -> Idle
attribute value type default value
name tr_12 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

forced state   Xmit
attribute value type default value
name Xmit string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

enter execs   Xmit
/* If the P1355 packets are transmitted to the outlink of the C104 (i.e. if transmit timer expired), then  */
/* transmit one p1355 packet from input subq to the output subq in round robin fashion.                    */

out_subq = op_intrpt_code();
   5 out_ds_link = out_subq;

out_pkptr = op_subq_pk_remove(out_subq,OPC_QPOS_HEAD);

if (out_pkptr == OPC_NIL) {
printf("recoverable error \n");

  10 }
else {
    if(out_ds_link==0)
   { tot_packets=tot_packets+1;}
    op_pk_send_delayed(out_pkptr,out_ds_link,DELAY);

  15 /* The packet in the out_subq are sent to the output ds-link */
xmitd_pkts++;

}

for(count=0; count<MAX_NO_LINK; count++, curr_q[out_ds_link]++){
  20 if (curr_q[out_ds_link] >= (2 * MAX_NO_LINK)) 

curr_q[out_ds_link] = curr_q[out_ds_link] - MAX_NO_LINK; 
/* Input queue index are from MAX_NO_LINK to 2 * MAX_NO_LINK-1 */

if (!op_subq_empty(curr_q[out_ds_link])) /* If input subq has packet to send */
  25 { 

/* get the packet from the corresponding input queue index */
tmp_pkptr = op_subq_pk_access(curr_q[out_ds_link],OPC_QPOS_HEAD);
if (tmp_pkptr == OPC_NIL)
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 {
  30 printf("recoverable error \n");

 }
 else
 {
 /* get the output link destination address */

  35  op_pk_nfd_get(tmp_pkptr, "dest_address", &dest_address);
if ((dest_address == out_ds_link) && op_subq_empty (dest_address))
{ /* if packet is headed to the just emptied out_subq then, */
  /* move p1355 packet from input_subq to out_subq */

out_pkptr = op_subq_pk_remove (curr_q[out_ds_link], OPC_QPOS_HEAD);
  40 op_stat_local_write(0,0);

 /* send the packet through the output link */
pk_len = op_pk_total_size_get (out_pkptr);
pk_transfer_time = pk_len / 1000000000.0;

  45 op_intrpt_schedule_self(op_sim_time() + pk_transfer_time, dest_address);
op_subq_pk_insert(dest_address, out_pkptr, OPC_QPOS_TAIL);
break;

} /* end of if */
} /* end of else */

  50 } /* end of if */
}/* end of for */

curr_q[out_ds_link] = curr_q[out_ds_link] + 1; /* Increase the current queue index by 1 for the round robin */

  55 /*--------------------------------------------------------------------------------------------------*/

transition   Xmit -> Idle
attribute value type default value
name tr_4 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

unforced state   st_4
attribute value type default value
name st_4 string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status unforced toggle unforced

enter execs   st_4
printf("total no of packets=%lf \n",tot_packets);
printf("sum1=%d\n",sum1);
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transition   st_4 -> Idle
attribute value type default value
name tr_22 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline
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B.2 Programming Code for the LRD-based Tra�c Gen-

erator at the ATM Port
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Process Model Attributes
attribute value type default value
source_time_step promoted double 0.0
alpha promoted double 0.0
lambda promoted double 0.0
mul_fact promoted integer 0

Header Block
#include <stdio.h>
#include <math.h> 
#define  NEXT op_intrpt_code()==0
#define SIZE 1000000

   5 #define END (op_intrpt_type()==OPC_INTRPT_ENDSIM)
                               
/*#define ALPHA 2.5
#define PP 2000*/
long parito();

State Variable Block
long \server[SIZE];
int \new_arrival;
int \max_len;
int \dec;

   5 int \no;
Distribution* \pois;
double \time_step;
double \PP;
double \ALPHA;

  10 int  \mf;
int \burst_fact;
double \source_bits; 

Temporary Variable Block
long  i,j;

Function Block
long parito( )
{ 
  float y,z;
  long res;

   5   y=op_dist_uniform(1);
 z= pow(1-y,1/(1-ALPHA));
  res=(long)z;
  return(res);}

forced state   st_0
attribute value type default value
name st_0 string st
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enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

enter execs   st_0
printf("YEH BUDDY I’M IN LRD\n");

 max_len=0;
 no=0;

   5
for(i=0;i<SIZE;i=i+1){
server[i]=0;}
op_ima_obj_attr_get(op_id_self(),"source_time_step",&time_step);
op_ima_obj_attr_get(op_id_self(),"alpha",&ALPHA);

  10 op_ima_obj_attr_get(op_id_self(),"lambda",&PP);
op_ima_obj_attr_get(op_id_self(),"mul_fact",&mf);
/*op_ima_obj_attr_get(op_id_self(),"burst_fact",&burst_fact);*/
pois=op_dist_load("poisson",PP,1);
/*printf("alpha=%lf\n",ALPHA);*/

  15 /*printf("lambda=%lf\n",PP);*/
source_bits=0;
burst_fact=1;
mf=mf/(burst_fact);
time_step=time_step/(burst_fact);

  20 /* printf("time_Step=%lf\n",time_step);*/

transition   st_0 -> st_1
attribute value type default value
name tr_0 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

unforced state   st_1
attribute value type default value
name st_1 string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status unforced toggle unforced

enter execs   st_1
new_arrival=op_dist_outcome(pois);
no=no+new_arrival;
/*printf("time=%lf\n",op_sim_time());   */
dec=0;

   5 for(i=0;i<max_len;i=i+1){
if(server[i]!=0){
server[i]=server[i]-1;
if(server[i]==0){dec=dec+1;}
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 }
  10 }

i=0;
while((new_arrival!=0)&(i<SIZE)){
if(server[i]==0){
new_arrival=new_arrival-1;

  15 server[i]=parito();}
i=i+1;
}

if(i>max_len) max_len=i;
  20 no=no-dec;

/*printf("lrd sending %d\n", no*mf);*/
op_pk_send(op_pk_create(no*mf),0);
source_bits=source_bits+no*mf;
/*printf("ONE PACKET SENT no*mf= %d\n",no*mf);*/

  25 op_intrpt_schedule_self(op_sim_time()+time_step,0);

op_stat_local_write(1,no*mf);
op_stat_local_write(2,max_len);
op_stat_local_write(3,dec);

transition   st_1 -> st_1
attribute value type default value
name tr_1 string tr
condition NEXT string
executive string
color RGB333 color RGB333
drawing style spline toggle spline
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B.3 Programming Code for the SRD-based Tra�c Gen-

erator at the ATM Port
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Process Model Attributes
attribute value type default value
no_of_states promoted integer 0
packet_mult promoted integer 0
discrete_unit promoted double 0.0
frame_time promoted double 0.0
atm_low promoted integer 0
atm_high promoted integer 0
origen promoted integer 0

Header Block
#define NEXT_ARRIVAL op_intrpt_code()==0
#define CHANGE_STATE op_intrpt_code()==1
#define TRANSITION  "transition"
/*#define N 3 no. of states in markov*/

   5 #define OUTSTREAM 0     /*where to send packets*/
/* #define pack_size 10 */
#define RATES "rates"

/* commented out stuff has been promoted */
  10

  15

                            

State Variable Block
/* List*  /list_ptr, /list_ptr2;   */
 
double \da[10][10];
int \st;

   5 double \markov_time, \arr_time;
int \df;
double \rn;
double \tm[10][10];
double \rate_poi[10];

  10 int  \ch_flag ;
Distribution *\exp_markov[10];
Distribution *\pois[10];    
Distribution *\addr_ptr;
int \N;

  15 int \pack_size;
int \pack_mult;
int \origen,\low,\high; 
FILE *\fp1;
FILE *\fp2;

  20 FILE *\fp3;
int \no_of_times;
double \residual_time, \time_step,\time_stamp;
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int \no_sent;
double \frame_time;

Temporary Variable Block

List* list_ptr;
List* list_ptr2;
double sum;

   5 double temp;
int j;
int i;
 int sw;
double testw,no_of_arrival;

  10 Packet* pkt;
Packet* cp_pkt;
int address;

forced state   init
attribute value type default value
name init string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

enter execs   init

/*HERE ALL THE INPUT PARAMETERS ARE TAKEN*/
/*packet_mult=multiplication factor to (effectively)increase size of packets*/
/*discrete_unit = lenght of discretiastion*/

   5
/*no_of_states=no_of_states of the markov chain*/ 
op_ima_obj_attr_get(op_id_self(),"no_of_states",&N);
op_ima_obj_attr_get(op_id_self(),"packet_mult",&pack_mult);
op_ima_obj_attr_get(op_id_self(),"discrete_unit",&time_step); 

  10 op_ima_obj_attr_get(op_id_self(),"atm_low",&low);
op_ima_obj_attr_get(op_id_self(),"atm_high",&high);
/*low and high define the range of the addresses generated*/ 
op_ima_obj_attr_get(op_id_self(),"origen",&origen);
addr_ptr=op_dist_load("uniform integer",low,high+1);

  15 /*op_ima_obj_attr_get(op_id_self(),"frame_time",&frame_time); */
/*transition.gdf and rates.gdf store the (modified transition matrix) and the rates of the 
poison processess in each state*/ 
fp1=fopen("transition_atm.gdf","r");
fp2=fopen("rates_atm.gdf","r");

  20 fp3=fopen("checkwala","w");
 printf("SIMULATION BEGINS42=%d,%d \n",N,pack_size);
/*list_ptr=op_prg_gdf_read(TRANSITION); */
for(i=0;i<N;++i){
for(j=0;j<N;++j){

  25 fscanf(fp1,"%lf\n",&temp);tm[i][j]=temp; 
printf("tm[%d][%d]=%lf,%d\n",i,j,tm[i][j],N*i+j);}
exp_markov[i]=op_dist_load("exponential",(1/tm[i][i]),5.0);}

for(sw=0;sw<100;sw=sw+1){
  30 testw=op_dist_outcome(exp_markov[1]);
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/*printf("testw=%lf\n",testw);*/
}

/*now load parameters for distribution functions*/
  35 /*load rates of state transition */

/*load rates in each state*/
/*list_ptr2=op_prg_gdf_read(RATES);*/
for(i=0;i<N;++i){

  40 fscanf(fp2,"%lf\n",&rate_poi[i]);
/*printf("rate_poi=%lf\n" , rate_poi[i]);*/
pois[i]=op_dist_load("poisson",(rate_poi[i]*time_step),5.0);
}

  45 for(sw=0;sw<100;sw=sw+1){
testw=op_dist_outcome(pois[0]);
/*printf("testw2=%lf\n",testw);*/
testw=op_dist_outcome(pois[1]);
/*printf("testw3=%lf\n",testw);*/ }

  50

  55 for(i=0;i<N;i=i+1 ){
da[i][i]=0;
}

  60 for(i=0;i<N;i=i+1){
sum=0;
for(j=0;j<N;j=j+1){
if(j!=i){ sum=da[i][j]=tm[i][j]+sum;}  }
for(j=0;j<N;j=j+1){da[i][j]=da[i][j]/sum;}

  65 }

for(i=0;i<N;i=i+1){
for(j=0;j<N;j=j+1){
printf("%lf\n", da[i][j]);}}

  70
 st=0;
 /*initialise*/
markov_time=op_dist_outcome(exp_markov[st]); /*(to be filled)*/         
no_of_times=(int)(markov_time/time_step);

  75 no_sent=0;                            

pack_size=1;
time_stamp=0;

  80 printf("im in initialisation\n");

transition   init -> arrival
attribute value type default value
name tr_3 string tr
condition string
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executive string
color RGB333 color RGB333
drawing style spline toggle spline

unforced state   arrival
attribute value type default value
name arrival string st
enter execs (See below.) textlist (See below.)
exit execs (See below.) textlist (See below.)
status unforced toggle unforced

enter execs   arrival
/*IN THIS PART THE POISSSON PROCESS GIVES OUT BITS CORRESPONDING TO THE RATE OF THE STATE THE MARKOV
  
/* printf("hey i’m in state1\n");*/ 

   5
no_sent=no_sent+1; /*number of times this routine has been entered for this particular soujourn time)*/  
no_of_arrival=op_dist_outcome(pois[st]); /*calculates # of arrivals for current time interval*/

/*printf("st,no of arrivals=%d ,%lf,%lf\n",st,op_dist_outcome(pois[st]),no_of_arrival);*/
  10 /*HERE WE CREATE AN ATM PACKET COPIES OF WHICH ARE SENT */  

pkt=op_pk_create_fmt("ATM_token");
op_pk_nfd_set(pkt,"CREATE_TIME",op_sim_time());
address=op_dist_outcome(addr_ptr);
op_pk_nfd_set(pkt,"dest_address",address);

  15 op_pk_nfd_set(pkt,"ORIGEN",origen);

/*END OF PACKET FORMAT CREATION*/
/* This section was modified by Giles Charleston due to errors encountered */

  20 for(j=0;j<no_of_arrival;j=j+1)
{
cp_pkt = op_pk_copy(pkt);
op_pk_send(cp_pkt,0);
}                    /* forgot to destroy packet in orginal version */

  25 op_pk_destroy(pkt); /* so added this line to assure packet is destroyed */ 
/******************************************************/
/*printf("aithappa 1\n");*/

if(no_sent<no_of_times){   /*still remain in this  state*/
  30 /*printf("NO switching,no_sent=%d\n",no_sent);*/

op_intrpt_schedule_self(op_sim_time()+time_step,0);
}
else
{ 

  35 /*printf("YES switching\n");*/
/*switch states*/
op_intrpt_schedule_self(op_sim_time()+time_step,1);
}
/*printf("3\n");*/

  40
op_stat_local_write(1,no_of_arrival);
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exit execs   arrival
                      

transition   arrival -> markov_set
attribute value type default value
name tr string tr
condition CHANGE_STATE string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

transition   arrival -> arrival
attribute value type default value
name tr_2 string tr
condition NEXT_ARRIVAL string
executive string
color RGB333 color RGB333
drawing style spline toggle spline

forced state   markov_set
attribute value type default value
name markov_set string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

enter execs   markov_set
/*THIS ROUTINE IS ENTERED WHENEVER THERE IS A CHANGE OF STATE
THIS ROUTINE DETERMINES WHAT THE NEXT STATE SHOULD BE AND HOW LONG IT SHOULD STAY THERE*/
/*printf("i’m in this state(changing state)\n");*/
df=0;

   5 i=0;
rn=op_dist_uniform(1);
while((df==0)&&(i<N)){
if(rn<da[st][i]){df=1;st=i;}
i=i+1;}

  10
markov_time=op_dist_outcome(exp_markov[st]); /*generate sojourn time*/
/*printf("markov_time,st=%lf,%d\n",markov_time,st);*/
no_of_times=(int)(markov_time/time_step);
/*printf("no_of_times=%d\n",no_of_times);*/

  15 no_sent=0;
/*residual_time=markov_time-(no_of_times*timestep);*/
op_stat_local_write(0,st);

/*fprintf(fp3,"%d %lf %d\n",st,markov_time,no_of_times);*/
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transition   markov_set -> arrival
attribute value type default value
name tr_5 string tr
condition string
executive string
color RGB333 color RGB333
drawing style spline toggle spline
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Appendix C

Acronyms/Abbreviations

This appendix provides a compilation of several abbreviations/acronyms used

throughout the thesis and also some common ones generally employed in the industry

and academia.
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AAL ATM Adaptation Layer

ABR Available Bit Rate

ALAX ATM LAN Access Switch based on the

IEEE1355 (P1355) Serial Bus Standard

ANSI American National Standards Institute

ARP Address Resolution Protocol

ARPANET Advanced Research Projects Agency NETwork

ATM Asynchronous Transfer Mode

AT&T American Telephone & Telegraph

AUI Attachment Unit Interface

B-ISDN Broadband Integrated Services Digital Network

BER Bit Error Rate

BIOS Basic Input/Output System

BRI Basic Rate Interface

BUS Broadcast and Unknown Server

CBR Constant Bit Rate

CCITT Consultative Committee on International

Telephony/Telegraphy

CES Circuit Emulation Service

CIF Cells In Frame

CODEC CODer-DECoder

CNET Centre National des Etudes de Telecommunications (French)

National Center for Studies in Telecommunications

COTS Commercial O� The Shelf

CPCS Common Part Convergence Sublayer

CPE Customer Premises Equipment

CPU Central Processing Unit
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CS Convergence Sublayer

CSMA Carrier Sense Multiple Access

CSMA/CD Carrier Sense Multiple Access with Collision Detection

CSU Channel Service Unit

DCE Data Communication Equipment

DQDB Distributed Queue Dual Bus

DS Data Strobe

DSL Digital Subscriber Line

DSU Data Service Unit

DTE Data Terminal Equipment

EIA Electronics Industry Association

ELAN Emulated LAN

EOF End Of File

EOM End Of Message

ESPRIT European Strategic Program for Research and

Development in Information Technology

ETRI Electronics and Telecommunications Research Institute

(a Korean research entity)

FCFS First Come First Served

FCT Flow Control Token

FDDI Fiber Distributed Data Interface

FIFO First-In-First-Out

FO Fiber Optic

FPU Front Processor Unit

FSM Finite State Machine

FTP File Transfer Protocol

FORTRAN FORmula TRANslation
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GUI Graphical User Interface

HDLC High Level Data Link Control

HIC Heterogeneous Inter-Connect

HOL Head Of the Line

HOQ Head of the Queue

HS High Speed

IAB Internet Architecture Board

IC Input Controller

IEEE Institute of Electrical and Electronic Engineers

IETF Internet Engineering Task Force

IP Internet Protocol

ISO International Standards Organization

ISDN Integrated Services Digital Network (Narrowband ISDN)

ISR Institute for Systems Research

ITU International Telecommunications Union

(formerly known as CCITT)

LALUT Local Addressing Look Up Table

LAN Local Area Network

LANCE LAN Circuit Emulation

LANE Local Area Network Emulation

LAST Laboratory for Advanced Switching Technology

LEC LAN Emulation Client

LECS LAN Emulation Con�guration Server

LES LAN Emulation Service (or Server)

LLC Logical Link Control

LPFS Longest Packet First Served

LRD Long Range Dependent
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MAC Media Access Control

MARS Multicast Address Resolution

MAU Media Attachment Unit

MML MAC Mapping Layer

MMPP Markov Modulated Poisson Process

MPOA Multiple Protocol Over ATM

MPEG Motion Picture Experts Group

NDIS Network Driver Interface Speci�cation

NHRP Next Hop Resolution Protocol

NIC Network Interface Card

NNI Network-to-Network Interface

OC Output Controller

ODL Optical Data Link

OMI Open Microprocessor Systems Initiative

OPNET OPtimized Network Engineering Tools

OSI Open Systems Interconnect

PBX Private Branch Exchange

PC Personal Computer

PCI Peripheral Component Interconnect

PDU Protocol Data Unit

PEC Protocol Engineering Center (within ETRI)

POTS Plain Old Telephone Service

PPP Point to Point Protocol

PRI Primary Rate Interface

PSTN Public Switched Telephone Network

PVC Permanent Virtual Circuit/Connection

QoS Quality of Service
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RACE Research for Advanced Communication in Europe

RFC Request For Comment

RR Round Robin

RISC Reduced Instruction Set Computing

SAR Segmentation And Reassembly

SDLC Synchronous Data Link Control

SIMAN SIMulation ANalysis

SLIP Serial Line Internet Protocol (IP)

SMDS Switched Multimegabit Data Service

SNA Systems Network Architecture

SNMP Simple Network Management Protocol

SONET Synchronous Optical Network

SRD Short Range Dependent

SS7 Signaling System # 7

STP Shielded Twisted Pair

SVC Switched Virtual Circuit/Connection

TAXI Transparent Asynchronous Transmitter/Receiver Interface

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TCS Transmission Convergence Sublayer

TDM Time Division Multiplexing

UBR Unspeci�ed Bit Rate

UNI User-to-Network Interface

UTP Unshielded Twisted Pair

VBR Variable Bit Rate

VC Virtual Channel

VCC Virtual Channel Connection
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VCI Virtual Channel Identi�er

VCP Virtual Channel Processor

VLAN Virtual LAN

VLSI Very Large Scale Integration

VP Virtual Path

VPC Virtual Path Connection

VPI Virtual Path Identi�er

WAN Wide Area Network

WWW World Wide Web
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Appendix D

Glossary of Some Selected Technical Terms
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Address Resolution - A protocol used to dynamically

Protocol (ARP) discover the low-level physical

network hardware address that

corresponds to the higher level

protocol address for a given host.

ARP is limited to physical network

systems that support broadcast

packets that can be heard by all

hosts on the network.

ARPANET - A pioneering long haul network funded by ARPA

(Advanced Research Projects Agency) later named

DARPA (Defense Advanced & Research Projects Agency)

and built by BBN. it served from 1969 through 1990

as the basis for early networking research and as a

central backbone during the development of the Internet.

The ARPANET consisted of individual packet switching

nodes interconnected by leased lines.

Attachment Unit - An IEEE 802.3 cable connecting the

Interface (AUI) media attachment unit (MAU) to the

network device. The term AUI also can

be used to refer to the host back-panel

connector to which an AUI transceiver

might attach.
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Backbone Network - Any network that forms the central interconnect for

an internetwork. A national backbone is a WAN; a

corporate backbone can be a LAN.

Backplane - The main bus that carries data within a device.

Benchmark - A point of reference from which measurements can be made;

involves the use of typical problems for comparing performance

and is often used in determining which system can best serve a

particular application.

Bridge - An intermediate system (i.e. computer) that connects

two or more LANs which use identical LAN protocols. The

bridge acts as an address �lter, picking up packets from

one LAN that are intended for a destination on an

other LAN and passing those packets on. The bridge

does not modify the contents of the packets and does

not add anything to the packet. The bridge operates

at layer 2 of the OSI protocol stack.

Bridging - Techniques for interconnecting two LAN segments

that utilize the same LLC procedures but may use the

same or di�erent MAC procedures.
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Bus - A set of signals de�ned by an interface system that connect

to devices for the purpose of transferring data.

Bus Speci�cation - The de�nition of a bus. In many cases, the bus

speci�cation also includes the de�nition of bus

module and enclosure mechanical requirements.

Cell - A small �xed-size frame used on ATM networks for instance.

Each ATM cell contains 48 octets of data and 5 octets

of header.

Collapsed - A non-distributed backbone where all

Backbone all network segments are interconnected

via an interconnecting device. A collapsed

backbone may be a virtual network segment

existing in a device such as hub, a router

or a switch.

Concentrator - Device that serves a wiring hub in a star-topology

network. Sometimes it refers to a device containing

multiple modules of network equipment.
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CSMA/CD - A characteristic of multiple access protocols that

operates by allowing multiple stations to contend for

access to a transmission medium by listening to see if

the medium is idle, and a mechanism that allows the

hardware to detect when two stations simultaneously

attempt transmission (e.g. Ethernet uses CSMA/CD).

DS3 - A telephony classi�cation of speed for leased lines

equivalent to approximately 45 Mbps.

Emulation - The imitation of a computer system, performed by

a combination of hardware and software, that allows

programs to run on otherwise incompatible systems.

Enterprise - A geographically dispersed network under

Network the auspices of one organization.

Ethernet - A baseband LAN speci�cation invented by Xerox

Corporation and developed jointly by Xerox, Intel,

and Digital Equipment Corporation. Ethernet networks

operate at 10 Mbps using CSMA/CD to run over coaxial

cable. Ethernet is similar to a series of standards

produced by IEEE referred to as IEEE 802.3 .

Finite State - A way of describing a network module

Machine (FSM) as a set of states that, based on input

and con�guration, perform transitions to

other states.
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Firmware - Permanent or semi-permanent micro-instruction control for

a user-oriented function.

Gateway - Originally, researchers used the term gateway for

dedicated computers that route packets; vendors have

adopted the term router. Gateway now refers to an

application program that interconnects two services

(e.g. an e-mail gateway).

Gbps - (Giga Bits Per Second) A measure of the rate of data

transmission.

Hot Swap - Meaning live insertion. Installation and removal of

boards without turning o� the system power.

Hub - A combination of concentrators, repeaters and possibly

other functions (such as bridging) combined into a single

chassis is a hub.

In-band - A method of sending management and/or control signals

on the same frequency (in the same band) as data signals.

Internet - Physically, a collection of packet switching

networks interconnected by bridges and/or routers

along with inter networking protocols that allow them

to function logically as a single, large, virtual
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network. When written in upper-case, Internet refers

speci�cally to the global Internet.

Internetworking - The connection or interconnection of local and

remote networks through intermediate systems such

as bridges and routers.

Interoperability - The ability of software and hardware on multiple

machines from multiple vendors to communicate

meaningfully. This term best describes the goal

of inter networking, namely to de�ne an abstract,

hardware independent networking environment that

makes it possible to build distributed computations

that interact at the network transport level without

knowing the details of underlying technologies.

Kbps - (Kilo Bits Per Second) A measure of the rate of data

transmission.

Kernel - A term used in operating systems. The kernel shields the low-

level functioning of the operating system from high-level

interfaces, such as user shells.

Latency - The delay between the time a device receives a packet and

the packet is forwarded out of the destination port.

Mbps - (Millions of Bits Per Second) A measure of the rate

of data transmission.
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Multicast - A technique that allows copies of a single packet

to be passed to a selected subset of all possible

destinations.

Network Interface - The circuit board or other hardware that

Card (NIC) provides the interface between a communicating

DTE and the network.

OC3 - A bit rate of approximately 155 million bits per second

used over �ber optic connections.

OSI - (Open Systems Interconnect) A reference to protocols,

speci�cally ISO standards, for the interconnection of

cooperative computer systems.

Out-of-band - Any frequency separate from the band being used

for data, voice or video tra�c. This typically

requires a completely separate signal path or wire.

Packet - Used loosely to refer to any small block of data

sent across a packet switching network.

Protocol - A formal description of message formats and the

rules two or more machines must follow to exchange

those messages. These rules or procedures are

commonly agreed upon by committees such as IEEE

and ANSI.
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Repeater - A hardware device that extends a LAN. A repeater

regenerates and propagates electrical signals from one

physical network to another. A repeater rebroadcasts a

signal to prevent its degradation.

Router - A special purpose intermediate system, speci�cally

dedicated computer, used to connect two or more networks

that may or may not be similar. The router employs an

internet protocol present in each router and each host

(station) of the network. The router operates at layer 3

of the OSI model. The router usually has more function

for tra�c management of large networks. It performs

functions beyond those of a bridge including the

determination of optimal network routes to minimize

network tra�c, provide congestion control and �lter

broadcast frames.

Simple Network - The Internet standard protocol for

Management managing nodes on an IP network.

Protocol (SNMP)

Topology - The physical arrangement or shape of a network.

Tunneling - Carrying protocol A within protocol B packets such that

B treats A as though it were a higher level protocol. It

is used to get data between network segments that use a

protocol that is not supported by the internet.
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Twisted Pair - Two insulated wires twisted together so that each

wire faces the same amount of electromagnetic and

radio-frequency interference from the environment.

It consists of two 18 to 24 American Wire Gauge (AWG)

solid copper strands.
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