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Modern supercomputers have complex features: many hardware threads, deep 

memory hierarchies, and many co-processors/accelerators. Productively and 

effectively designing programs to utilize those hardware features is crucial in gaining 

the best performance. There are several highly parallel programming models in active 

development that allow programmers to write efficient code on those architectures. 

Performance profiling is a very important technique in the development to achieve the 

best performance. 



  

In this dissertation, I proposed a new performance measurement and mapping 

technique that can associate performance data with program variables instead of code 

blocks. To validate the applicability of my data-centric profiling idea, I designed and 

implemented a profiler for PGAS and CUDA. For PGAS, I developed ChplBlamer, 

for both single-node and multi-node Chapel programs. My tool also provides new 

features such as data-centric inter-node load imbalance identification. For CUDA, I 

developed CUDABlamer for GPU-accelerated applications. CUDABlamer also 

attributes performance data to program variables, which is a feature that was not 

found in any previous CUDA profilers. Directed by the insights from the tools, I 

optimized several widely-studied benchmarks and significantly improved program 

performance by a factor of up to 4x for Chapel and 47x for CUDA kernels. 
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Chapter 1 

Introduction 

As the computing power of distributed systems escalates, the complexity of scientific 

and engineering problems that can be solved by these systems also increases. 

However, there is a divide between system designers who know how to utilize these 

distributed systems efficiently and the people who have real problems to solve. There 

has been much effort made from different directions to help take full advantage of the 

power of parallel architectures. One effort to better utilize large-scale, highly parallel 

and increasingly heterogeneous supercomputers is to develop parallel programming 

models that have better productivity and higher performance. This dissertation studies 

the performance of two highly parallel programming models: PGAS (Partitioned 

Global Address Space) and CUDA (Compute Unified Device Architecture), which 

are popular on recent supercomputers. Specifically, PGAS is a promising productive 

programming model for systems with tens of thousands of CPUs; CUDA is currently 

the mainstream programming model for CPU-GPU heterogeneous computing 

systems. Newer and higher-level programming models usually ease the programming 

for end-users, but how to associate the performance issues back to original program 

elements is also a critical issue in understanding the program performance 

characteristics.  

Performance tools can help users take full advantage of the power of parallel 

architectures by providing insights into where and why a program fails to obtain peak 

performance. Currently, there are few profilers for highly parallel programming 
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models and most of them are code-centric, meaning they can only associate 

performance data to computation regions in the source, such as functions, loop, and 

code blocks. The conventional code-centric view of performance data is helpful in 

pinpointing hot spots at the granularity of from the instruction-level to the procedure-

level in the program. However, the traditional code-centric view of performance data 

lacks the capability to find performance problems associated with different variables 

accessed by specific lines of the code. In many cases, it is the data and its movement 

that cause the greatest performance loss instead of the computation. Additionally, 

data-centric profiling can aggregate performance statistics from all memory accesses 

that are associated with the same variable via full data flow analysis, which a code-

centric profiler cannot accomplish. Data-centric approaches are especially important 

for HPC applications since memory allocation and data movement are usually the 

bottlenecks of the overall performance. Therefore, a profiling tool that can identify 

these inefficiencies and associate them with memory regions and source-level data 

abstractions is highly desirable. My thesis shows that a new data-centric performance 

mapping technique can greatly help PGAS and CUDA programmers to improve the 

performance of their programs. 

Partitioned Global Address Space (PGAS) [23] is an alternative programming model 

that marries the good performance scalability of message passing with the good 

programmability of a shared memory model. PGAS improves the productivity in 

HPC by introducing an additional layer of abstraction, described as “global address 

space” for a cluster. It defines a global memory address space that is logically 

partitioned and a portion of it is local to each process, thread, or processing element 
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[40]. The novelty of PGAS is that portions of the shared memory space may have an 

affinity for a particular process, thereby allowing programmers to exploit locality of 

reference. Because of this additional layer of abstraction, users do not have to 

explicitly handle the communication between nodes as is required in traditional 

message-passing based programs, such as MPI. However, a major challenge of higher 

level semantics is that it also significantly increases the difficulty of diagnosing 

performance bottlenecks that are now hidden from users.  

Among the languages that have PGAS features, I chose Chapel [1] for evaluation 

mainly for two reasons: 

1. Chapel is a promising language in productively solving large HPC problems 

with hybrid parallelism, but currently, it still has much room for performance 

improvement, especially in distributed systems with heavy communication 

between multiple nodes. 

2. Currently, there are only a few performance analysis tools that are Chapel-

specific and user-friendly with valuable performance insights for user-level 

performance optimization.  

Even though this work is built for Chapel, the methods and ideas I used can be 

applied to other programming languages. This is because: first, the tool framework 

and top-level abstractions in implementing this data-centric idea are generic to most 

programming languages; second, my analysis is based on a machine-independent 

intermediate representation LLVM. Therefore, both my idea and my tool can be 

extended to support a number of other programming languages. 
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Besides multi-thread, multi-node computing, the use of accelerators, such as GPUs, is 

growing rapidly in supercomputers and thus CUDA programming also plays an 

important role in achieving high performance. The application of GPUs in general-

purpose-computing other than traditional graphics processing is known as GPGPU. 

The main challenge in developing such programs is that they often do not fit in the 

model required by GPUs, limiting the scope of applications that may benefit from the 

massive parallelism provided by GPUs. Even if the application fits the GPU model, 

obtaining optimal performance using heterogeneous architectures is non-trivial. 

Therefore, it is important to create performance tools that assist the development and 

guide programmers to write efficient code.  

Although a handful GPU profilers exist [57, 58, 59, 75], most traditional tools, 

unfortunately, simply provide programmers with a number of different kinds of 

measurements and metrics obtained by running applications. It is very hard for users 

to map these metrics back to source code to understand the root causes of slowdowns, 

much less decide what next optimization step to take to alleviate the bottlenecks and 

improve the overall performance. Therefore, I applied the same data-centric idea to 

GPU-accelerated applications, implementing a tool prototype for programmers to 

easily understand the causes of performance degradation and hotspots that consume 

most GPU time during execution. 

 In this dissertation, I describe new performance mapping techniques that employ 

sampling in conjunction with static analysis to study the performance of highly 

parallel programs running on modern architectures with many CPU and GPU cores. 
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In the rest of this chapter, I briefly describe the contributions of this work, the 

dissertation organization, and the thesis statement. 

Contributions This dissertation describes the design and implementation of two 

performance measurement and mapping tools for PGAS and CUDA. The 

fundamental uniqueness of my tools is that they provide a data-centric profiling 

feature that can link the runtime performance data back to program variables and data 

structures with a complete user-level calling context. The way I determine the 

mapped variables is not to simply link the accessed memory addresses with the 

specific variables that are created with the allocation within that memory range but to 

figure out the program-wide variables that should be really “responsible” for that 

executed statement. This inclusive data-centric performance analysis technique can 

also propagate the performance loss due to the use of third-party libraries up to user-

visible variables so that programmers are able to focus on optimizing user code 

instead of trying to improve the performance of the library. 

Specifically, building on Blame by Rutar [18], I implemented two performance tools. 

First, I designed and developed ChplBlamer, for both single-node and multi-node 

Chapel environments. It supports most Chapel language features and provides 

hierarchical profiling over program abstractions and call path profiling in a user-level 

context. It pinpoints performance losses due to data distribution and remote data 

accesses, and provides new features such as data-centric inter-node load imbalance 

identification. It solves problems like multi-threading and asynchronous tasking that 

Blame [18] does not solve. The combination of the tool’s data-centric and code-

centric profiling provides insights into inter and intra node communication 
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bottlenecks that could not be discovered by previous Chapel profilers. Secondly, I 

developed an effective performance tool for GPU-accelerated HPC applications. It is 

also able to map performance statistics to program variables and it provides complete 

calling context from the device stack to the host stack for the sampling-based runtime 

data. The tool is able to provide different performance insights into kernels against 

existing CUDA profilers, such as Nvidia Visual Profiler (NVP) [57] and TAU [3]. 

I conducted several benchmark experiments for each tool to validate the functionality 

and utility of the tool, and manually optimized those benchmarks with the guidance of 

my tools. By doing this tuning, I achieved significant speedups of up to 4x for Chapel 

and 47x for CUDA kernels. 

Dissertation organization There are total 7 chapters in this dissertation. Among 

those, the contents of Chapter 4 and Chapter 5 are adapted from my previous 

conference publications [68, 69]. Chapter 2 describes the background in PGAS 

programming model, Chapel language features, GPGPU, and several widely-used 

performance analysis techniques that show us the big picture of the field that I’ve 

been working in. Chapter 3 introduces the unique performance metric “Variable 

Blame” used in my tools and illustrates its calculation with a few simple examples. 

Chapter 4 describes the design and implementation of a single-node Chapel profiler 

for end users. Chapter 5 shows the implementation of a multi-node Chapel profiler 

that supports detecting communication bottlenecks. Chapter 6 describes the design 

and implementation of a data-centric profiler for guiding CUDA optimization in 

GPU-accelerated applications. Finally, Chapter 7 presents some conclusions from my 

work and identifies a few directions for future research. 
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Thesis statement   Using static analysis, plus hardware counter based sampling in 

conjunction with call path profiling, one can develop data-centric profilers with 

reasonable overhead to analyze program executions on a parallel architecture with 

many hardware threads, deep memory hierarchies, and GPU accelerators. These 

methods can provide rich information to guide code optimization. 
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Chapter 2 

Background 

Performance is always essential to HPC. The efforts to make programs run faster lie 

in two broad categories: hardware and software. On the one hand, hardware 

innovations have been impressive, especially in the recent two decades as the 

supercomputer systems are becoming more and more heterogeneous, and as a result, 

more complicated. On the other hand, software innovations are often not in the 

spotlight but the problems are actually becoming more and more critical. With each 

new hardware feature, the challenge of how to utilize new hardware architectures to 

make programs run faster and more efficient is getting harder, not easier. Researches 

from different fields have made many attempts to improve system software, runtime 

libraries, compiler-based programming model, and domain-specific application 

libraries. Programming model can abstract away the complexity of the machine and 

abstract away the implementation differences, thus letting programmers focus on the 

algorithmic choices. Evaluating the performance of a new programming model is 

significantly important in its development. This thesis focuses on providing 

performance insights for two highly parallel programming models: PGAS and 

CUDA. The rest of this chapter introduces prior work about these two programming 

models and their performance tools. 
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2.1 PGAS Language 

To exploit locality and scalability in High Performance Computing (HPC), while 

alleviating the burden on programmers and improving the productivity in parallel 

programming, researchers continue to look for new programming models other than 

the traditional C plus MPI/OpenMP model.  Partitioned Global Address Space 

(PGAS) [23] emerged in the last twenty years as an alternative, and it has been 

actively studied in both academia and industry. PGAS provides users with a flat 

address space atop a possible physically distributed computer memory system, so 

users can write programs as if coding for a shared memory system and let the 

underlying infrastructure take care of the onerous and error-prone work such as the 

communication between nodes, memory address translation, and data motion.  PGAS 

attempts to combine the advantages of an SPMD programming style for distributed 

memory systems and the data referencing semantics of shared memory systems. 

HPF (High Performance Fortran) [10] is a forerunner of PGAS. It is an extension of 

Fortran 90 with constructs that support parallel computing. Similar to PGAS, it is a 

global view language that allows users to express the global semantics of data 

structures. Operators on the whole data structure are defined, allowing concise and 

expressive programs to be written. It was popular on SIMD and MIDM style 

architectures. However, the chief disadvantage of HPF is its limited power of 

expression, which limited its further application. 

There are a set of languages using the PGAS model as the basis.  One such language, 

Unified Parallel C (UPC), originally developed by Lawrence Berkeley National 

Laboratory and others, is an extension of ISO C that boasts multiple proprietary and 
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open source compilers [41]. Another PGAS language, Titanium [42], centered at 

Berkeley is a dialect of Java designed for high-performance scientific computation. 

Compilers for both these languages use a source-to-source compilation strategy that 

translates the parallel languages to C with calls to a communication layer called 

GASNet. Beyond UPC and Titanium, there are X10 [43] developed by IBM, Fortress 

developed by Sun (now Oracle), Global Array [44] developed by Pacific Northwest 

National Laboratory (PNNL), and Chapel developed by Cray Inc., etc. Among these 

languages, Chapel [1] and X10 [43] also support asynchronous task creation, which is 

referred to as asynchronous partitioned global address space (APGAS) [45].  

Currently, many PGAS languages offer comparable or even better performance in the 

single-node systems compared against OpenMP but suffer a great performance loss 

on multiple-node parallel architectures. There has been a continuing effort made to 

improve the performance of PGAS languages. For example, the Chapel team has been 

putting a major effort on correctness instead of performance of programs over the 

past ten years. Obviously, to make those languages successful, the performance issues 

must be solved. To tackle the performance problems, a good profiler provides an 

important first step. 

 

2.2 Chapel 

Chapel [1] is an emerging parallel language whose design and development have 

been led by Cray Inc. Chapel supports a multithreaded execution model, permitting 

the expression of more general and dynamic styles of computation than the typical 
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Single Program, Multiple Data (SPMD) programming models that became dominant 

during the 1990’s.  

Chapel has several features that are distinct from previous parallel languages and 

libraries. Chapel diverges from most HPC languages by supporting what its designers 

refer to as a global view of data structures and control flow. Chapel distributes 

variables as global data and accesses them using global indices, freeing programmers 

from calculating process-based subarray indices and local access ranges. On the other 

hand, Chapel also supports the global view of control, which refers to the fact that a 

Chapel program begins executing using a single task and then introduces parallelism 

through the use of additional language constructs. This is in contrast to SPMD 

programming models in which users write their program under the assumption that 

multiple copies of main() will execute simultaneously.  Consider Figure 2.1: 

 

 

Figure 2.1: Code snippet for Chapel “begin” keyword 

Here, the begin keyword creates a new task that will execute the statements within 

braces. The original task goes on to execute the statements that follow. In this way, 

Chapel creates a flexible and asynchronous parallelism. Synchronization variables 

and sync statements are used to ensure the task synchronization whenever necessary.  

 

writeln(“The original task print this”); 

begin { 

  writeln(“A seoncd task is created to print this”); 

  compute(); 

  writeln(“The second task ends”); 

} 

writeln(“This may print before the 2
nd
 task completes”). 
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Figure 2.2: Code snippet for Chapel “cobegin” and “coforall” keywords 

The above two statements (cobegin, coforall) in Figure 2.2 create groups of tasks in a 

structured manner. cobegin is a compound statement in which a distinct task is 

created for each of its component statements. The original task also waits until its 

child tasks complete before proceeding. The coforall-loop is like a traditional for-loop 

except that it creates a distinct task for every loop iteration. Like the cobegin 

statement, coforall has an implicit join that causes the original task to wait for its 

children to finish before proceeding. 

The data parallelism features of Chapel provide a more abstract and implicit style of 

parallelism, consider the example in Figure 2.3: 

 

 

Figure 2.3: Code snippet for Chapel “domain” 

 

cobegin { 

  producer(numUpdates); 

  consumer(); 

} 

writeln(“Print until producer and consumer are done”); 

 

coforall elem in Mat do 

  processElement(elem); 

writeln(“Print until all elements have been processed’); 

const MatSpace: domain(1) = {-N..N}; 

const MatSpaceD: domain(1) dmapped block(boundingBox=MatSpace); 

var Mat: [MatSpace] real; 

var MatD: [MatSpaceD] real; 

 

forall m in Mat do  

    m = 0; 

forall m in MatD do 

    m = 0; 
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The forall-loop is Chapel's central concept for expressing data parallelism. Forall-

loops are similar to coforall-loops in that both are parallel variants of Chapel's for-

loop. However, where a coforall-loop creates a concurrent task per iteration and a for-

loop is executed serially by a single task, a forall-loop may use an arbitrary number of 

tasks to execute the loop. As a result, it may execute serially using a single task, or it 

can use any number of tasks up to the number of iterations (or even beyond, though 

that is unusual). For typical iterands, this choice is based on the amount of hardware 

parallelism available. Domain is a first-class language concept that represents an 

index set. In the examples above, there are two domains: MatSpace and MatSpaceD. 

Every Chapel domain is defined in terms of a domain map that specifies how to 

distribute the array indices. When no domain map is specified, like MatSpace, a 

default domain map is used, and it maps the domain’s indices and the array’s 

elements to the current node. For a multi-node system, the second domain 

MatSpaceD distributes elements and array indices to all nodes. By comparing two 

forall-loops, you will see that Chapel provides a global view data distribution by 

using domains and locales so that programmers can only change the domains they use 

rather than modifying process-specific array indices and subarray accessing methods. 

Another important feature is that Chapel supports the expression of locality. Chapel 

was designed to execute on the largest-scale parallel machines where locality and 

affinity are crucial for performance. Locality features provide control over where 

tasks execute so that users can explicitly leverage the data locality and this feature 

largely contrasts HPF [10] in the effective expression of data locality.  
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Figure 2.4: Code snippet for Chapel “on” keyword 

The core feature for Chapel’s locality feature is the locale type. For most 

conventional parallel architectures, a locale tends to describe a compute node, such as 

a multicore or SMP processor. The on-clause in Figure 2.4 is used to specify that a 

statement should execute on a specific locale. Locales is a built-in array representing 

system resources that can be queried directly in the user code. Combining locality 

manipulation and task parallelism, programmers can create tasks and access data in 

local or any remote nodes from a global view. 

Moreover, Chapel is an elegant language because of the conciseness in expression. In 

practice, an implementation of a popular benchmark LULESH takes just 1,288 lines 

of code (plus 266 lines of comments and 487 blank lines), while the corresponding 

C+OpenMP+MPI version is nearly four times bigger [2]. 

 

2.3 Existing HPC Performance Tools 

The prerequisite for optimizing an application is to understand its execution 

characteristics. There are many established performance tools that measure and 

analyze program performance on parallel architectures, ranging from simple shell 

utilities, timers, and profilers, trace analysis tools, to sophisticated full-featured 

graphical toolsets. 

This section presents a brief review of the recent efforts made in mapping 

performance measurement data to a different level of abstractions in the program. I 

on Locales[1] do 

    writeln(“I’m on Locale 1”); 
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start from the general profilers for HPC applications to very specific profilers that can 

analyze certain PGAS languages. I also summarize a few tools having a data-centric 

way of viewing the profiling results. 

2.3.1 HPC Profiling Tools 

Much prior work has analyzed High Performance Computing (HPC) applications, 

based on different profiling methods such as simulation, sampling, and direct 

instrumentation. For instance, the Tuning Analysis Utilities (TAU) from the 

University of Oregon [3] is one of the most popular profiling tools; the popularity 

comes partly from the fact it is available on most platforms and supports a variety of 

languages, including FORTRAN, C, C++, Java, and Python. TAU also handles 

language extensions such as OpenMP and MPI implementations on supported 

platforms. The framework for TAU has three layers: Instrumentation, measurement, 

and analysis. The instrumentation is primarily source-based, but the binary 

instrumentation is also supported by DyninstAPI [19].  

Scalasca [4] is a performance toolset that has been specifically designed to analyze 

parallel application execution behavior on large-scale systems with many thousands 

of processors. It offers an incremental performance-analysis procedure that integrates 

runtime summaries with in-depth studies of concurrent behavior via event tracing, 

adopting a strategy of successively refined measurement configurations. Distinctive 

features are its ability to identify wait states in applications with very large numbers 

of processes and to combine these with efficiently summarized local measurements. 



 

 16 

 

Vampir provides interactive visualization and exploration of parallel event traces [5]. 

It consists of the run-time measurement system VampirTrace and the visualization 

tools Vampir and VampirServer. 

HPCToolkit [9] is another popular performance analysis system in the HPC field. It is 

an integrated suite of tools for measurement and analysis of program performance on 

computers ranging from multicore desktop systems to the world’s largest 

supercomputers. It relies on periodic sampling to capture the dynamic runtime 

behavior of parallel target applications. It also uses PAPI [20] library to read 

hardware counters as the performance metrics. 

Some profilers focus on solving a very specific performance issue in HPC. 

ThreadSpotter [6] is a commercial tool that focuses on the memory access behavior of 

applications, specifically on how the application's memory access patterns interact 

with processor caches. With ThreadSpotter, users can sample an application from the 

beginning to the end, or attach to the application while it is running and sample it for 

a while then detach. It calculates cache metrics, such as cache miss ratios, cache fetch 

ratios, cache line utilization, and hardware prefetching probabilities. It can operate 

only at the binary code level, but the source code is needed to map performance data 

back to source lines. However, the responsibility of interpreting the performance 

information and using it to optimize the application lies with the programmer. 

MemProf [7] instruments thread and memory management operations with a user 

library and a kernel module. It leverages AMD’s Instruction-Based Sampling (IBS) 

[76] to associate latency with data structures to identify costly memory accesses to 

remote sockets. MemProf exclusively focuses on the NUMA locality problem. It 
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allows precise identification of the objects that are involved in remote memory access 

and corresponding causes. However, there are also some limitations to this tool:  first, 

it relies on programmers to establish a diagnosis and devise a solution; second, it is 

mostly used for applications that are not cache-efficient and perform a large number 

of memory accesses; third, it records a trace of each IBS sample and variable 

allocation rather than collapsing it on-the-fly into a compact profile. The resulting 

high data volume makes it hard to scale to a cluster with a large number of nodes. 

Finally, it doesn’t map performance metrics to individual static variables; instead, it 

treats all static variables from a load module as one group and coarsely attributes 

metrics to these groups. 

Buck and Hollingsworth developed CacheScope [8] to perform a data-centric analysis 

on Itanium 2. The Itanium processor provides a set of event address registers (EARs) 

that record the instruction and data address of data cache misses for loads, the 

instruction and data address of data TLB misses, the instruction addresses of 

instruction TLB and cache misses [24]. 

2.3.2 PGAS Profiling 

Only a few profilers partially support PGAS programs and fewer have data-centric 

features. Tallent and Kerbyson [11] proposed a method to profile PNNL’s Global 

Arrays based on HPCToolkit [9]. Their tool provides a code-centric, data-centric and 

time-centric view, using a hybrid tracing and profiling approach. It shows reads and 

writes of global data objects with respect to time, rank, and calling context. It will 

attribute performance metrics such as “bytes accessed per read” and “average latency 

per blocking write” to global data objects in their full static and dynamic context. To 
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collect profiles and traces at scale and with minimal overhead, it combines the 

sampling of global reads and writes with the sampling of program behavior. 

Parallel Performance Wizard (PPW) is another tool that supports both UPC and 

SHMEM. One important feature of this framework is the use of generic operation 

types instead of model-specific constructs whenever possible. Thus it has the 

potential to support multiple PGAS languages [12]. To accommodate the many 

instrumentation techniques appropriate for various PGAS model implementations, 

without introducing multiple measurement components, the developers proposed an 

Instrumentation-Measurement interface called the Global Address Space Performance 

(GASP) interface. For each model, an event type mapper maps the model-specific 

constructs to their appropriate generic operation types. By using the GASP interface, 

a potential disadvantage of PPW is that PPW requires a PGAS application to be 

compiled with a GASP-aware compiler. 

Seisei Itahashi, et al., from the University of Tokyo, is working on a profiler for X10. 

It consists of a profiler and visualizer; the profiler is a modified version of the x10 

compiler built with Polyglot. It is a source-to-source translator that inserts probe code 

into a target x10 program code. It supports analysis of activities involved in 

synchronization, but not on implicit data transfer.  For example, unlike a typical MPI 

program, some data transfers in X10 are implicit. When an activity is moved among 

places, data transfers are implicitly executed (specifically, all local variables and 

arrays declared before the move will be copied and transferred to the destination 

place), but not explicitly described in the source code. It aims at better visualizing the 

implicit behavior in X10 [13]. 
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Sebastian, et al. is working on extending Vampir to support the OpenSHMEM 

standard for parallel programming [14]. They proposed a theory about the mapping of 

OpenSHMEM communication primitives to generic event records that is compatible 

with a range of PGAS libraries. They also demonstrated an experimental extension 

for Cray-SHMEM in VampirTrace and Vampir and first results with a parallel 

example application. 

2.3.3 Chapel Performance Analysis 

As for profiling Chapel code, there are few established performance analysis tools 

that have deep integration with Chapel language features.  The TAU suite [3] 

demonstrated its support for Chapel with a simple program [15], but there are no 

papers about profiling Chapel production codes using TAU published as far as I 

know. HPCToolkit [9] can be used to profile the Chapel runtime library, but it does 

not associate the work offloaded to worker threads to the full calling context at the 

source level.  

For multi-threaded programs, it is especially important to have the full calling context 

of performance bottlenecks in the code because otherwise, programmers will 

probably lose track of root causes of the performance issue and miss opportunities for 

optimization. Let’s say you have a function bar which is called in many different 

places and consumes a large portion of time during the execution. However, the time 

spent on bar is determined by actual parameters it receives and most time it consumes 

comes from certain bad calls. Therefore, without a full calling context, it will be very 

difficult to find the real problem. Besides, the tasks completed by worker threads are 

usually wrapped into several task functions with generated function names; simply 
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attributing performance data to those functions would be of little help to users in 

locating problematic user code blocks. Pprof from Google’s gperftools [16] partially 

supports the traditional code-centric profiling of Chapel. It is code-centric and more 

useful in profiling the runtime library from a Chapel developer’s perspective. 

Consider Figure 4.10 and its following explanation, the output of Pprof on LULESH 

[74] shows it’s insufficient for end-user purposes. 

HPCToolkit-Data-Centric component [17], derived from the original HPCToolKit, 

has been used to profile several HPC benchmarks, either for single-locale or multi-

locale environments. Nonetheless, it only tracks the memory allocation and 

deallocation of static variables (data allocated in the .bss section in load modules), 

heap-allocated variables that have size over 4K bytes, and no local variables. 

Therefore, it lacks complete data-centric information of the whole program. 

Additionally, after the Chapel compiler’s translation, the global variables in Chapel 

source code are not treated as “static data” in the view of HPCToolkit’s data-centric 

component. Therefore, most variables in Chapel benchmarks are regarded as 

“unknown data”, which cannot provide useful information to programmers. Chplvis 

[26] is built for Chapel programmers. It visualizes the inter-locale communication and 

task computation of Chapel programs that help the user to discover the pitfalls of 

certain uses of parallelism in their code. However, it needs source modifications and 

it shows only the phenomena but not the causes of performance issues. 

Besides the automated performance measurement tools, there exist several studies of 

the performance of Chapel. Chamberlain et al. studied Chapel’s performance with 

HPCC benchmarks including STREAM as well as random access and FFT. They 
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report that STREAM performance was near optimal at the date of writing [22]. Nan 

and Kenjiro analyzed Chapel performance and compared single-locale Chapel 

execution to C execution; they report that Chapel performance can get as close as 

70% performance as C [46]. A study by Chamberlain et al. details what productive 

features a PGAS language should have and gives examples of Chapel’s such features 

[1]. Johnson and Hollingsworth also conducted several case studies of Chapel’s 

performance for single-node environments [21]. They chose OpenMP as a point of 

comparison and hand-tuned the generated code of four competitive Chapel 

benchmarks and gained a speedup of up to 6x. Most recently, a study by Kayraklioglu 

and El-Ghazawi examined several language optimizations provided by Chapel on a 

set of benchmarks using multiple locales and analyze their impact on programmer 

productivity quantitatively [47]. The optimization methods that they studied achieved 

improvements over non-optimized versions ranging from 1.1 to 68.1 times depending 

on the benchmark. Haque and Richards [55] implemented CoMD in Chapel. They 

demonstrated that optimizing data access through replication and localization is 

crucial for achieving performance comparable to the reference implementation. They 

discussed limitations of existing scope-based locality optimizations and argue instead 

for a more general (and robust) type-based approach. It’s because Chapel’s type 

system currently lacks a notion of locality i.e. a description of an object's access 

behavior in relation to its actual location. This often necessitates programmer 

intervention to avoid redundant non-local data access. Moreover, due to insufficient 

locality information, the compiler ends up using “wide” pointers that can point to 
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non-local data for objects referenced in an otherwise completely local manner, adding 

to the runtime overhead. 

 

2.4 GPU-accelerated Computing 

Emerging supercomputers are increasingly employing GPU accelerators and 

integrated many-core devices. Not only do these GPU-accelerated systems deliver 

higher performance than their counterparts built with conventional multicore 

processors alone, but these accelerated systems also deliver improved energy 

efficiency because they are optimized for throughput and performance per watt and 

not absolute performance [65]. Nowadays, GPGPU (general-purpose computing on 

graphics processing units) is used to speed up parts of applications that require 

intensive numerical computations. In 2003, Mark Harris recognized the potential of 

using graphical processing chips for general purpose applications and started 

gpgpu.org to while he was still a Ph.D. student at UNC for those working in the field 

to share and discuss their work [50]. Traditionally, these parts of applications are 

handled by the CPUs but GPUs have floating points arithmetic rates much higher 

than CPUs. The reason why GPUs have FLOP rates much better than multicore CPUs 

is that the GPUs are specialized for highly parallel intensive computations and they 

are designed with much more transistors allocated to data processing rather than flow 

control or data caching [51]. As the use of such GPU-accelerated computing systems 

increases, it has also motivated researchers to develop new techniques to analyze the 

performance of these systems. To date, much work on performance analysis of 
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heterogeneous systems focuses on data copying and communication optimization 

between GPU and CPU, I am more interested in kernel optimization. 

2.4.1 GPU 

GPUs (Graphics Processing Unit) were designed as a specialized integrated circuit to 

handle graphics processing, video decoding, image rendering, and shading, etc. With 

the GPU's rapid evolution from a configurable graphics processor to a programmable 

parallel processor, GPUs are increasingly used in scientific computing. Today's GPUs 

use hundreds of cores executing tens of thousands of parallel threads to rapidly solve 

large problems that have substantial inherent parallelism. They're now the most 

pervasive massively parallel processing platform available, as well as offer the most 

cost-effective for those applications that can effectively use them [52]. Figure 2.5 

from NVIDIA website [53] shows the importance of GPUs in continuing the Moore’s 

Law in microprocessor development. 

GPU computing may be the path forward for HPC. NVIDIA powers the most 

advanced systems in Europe and Japan. U.S.-based Summit is the world’s fastest 

supercomputer, with over 200 petaFLOPS for HPC and 3 exaOPS for AI. Summit 

includes over 27,000 NVIDIA Volta Tensor Core GPUs [56].  

The importance of GPU acceleration is escalating as the HPC applications are more 

data-intensive. Data parallel programming paradigm can be found in many 

applications like linear algebra routines, computational biology, computational 

finance or econometrics. All these applications can obtain high speedups by mapping 

data elements to GPU threads that are executed in parallel.  

 



 

 24 

 

 

Figure 2.5: Microprocessor Performance Growing Trend over 40 years 

2.4.2 CUDA 

GPUs are designed to solve problems that can be formulated as data-parallel 

computations – the same instructions are executed in parallel on many data elements 

with a high ratio between arithmetic operations and memory accesses. This is similar 

to the SIMD approach. CUDA (Compute Unified Device Architecture) was 

introduced in 2006 by NVIDIA [54]. It is a general purpose parallel programming 

model that uses the parallel compute engine in NVIDIA GPUs to solve complex 

computational problems. At the time of its introduction CUDA supported only the C 

programming language, but nowadays it supports FORTRAN, C++, Java, and 

Python. The CUDA parallel programming model has three key abstractions: a 

hierarchy of thread groups, shared memories, and barrier synchronization. These 

abstractions are exposed to the programmer as language extensions. They provide 

fine grain data parallelism and thread parallelism together with task parallelism that 
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can be considered as coarse-grain parallelism. The CUDA parallel programming 

model requires programmers to partition the problem to be solved into coarse tasks 

that can be independently executed in parallel by blocks of threads and each task is 

further divided into finer pieces of code that can be executed cooperatively in parallel 

by the threads within the block. This model allows threads to cooperate when solving 

each task, and also enables automatic scalability. 

GPU programming needs to explicitly handle data movement between CPU and GPU 

memories and know GPU hardware limitations, such as the GPU memory capacity 

and the number of registers, to effectively utilize GPUs. For most entry-level CUDA 

programmers, not getting good speedups or sometimes even worse performance than 

pure-CPU programs is a common issue. The synchronization between threads, the 

overlapping of computation and data movement, and poor kernel performance are 

major problems in CUDA programming.  

2.4.3 GPU Profiling 

GPU-accelerated computing is becoming the mainstream for modern supercomputers. 

Therefore, the performance analysis of hybrid architectures becomes more critical. 

Generally, there are two types of GPU profilers: one focuses on kernel-level 

performance analysis and the other is more system-wide, exploring potential benefits 

by coordinating CPU and GPU tasks more effectively. 

With regard to profilers that are focused more on kernel performance, NVIDIA has 

provided Nvidia Visual Profiler (NVP) [57] using measurement-based approaches. 

NVP logs the execution characteristics of each GPU task, including method name, 

start and end times, launch parameters, CPU status (idleness or in-execution) and 
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GPU hardware counter values, etc. Some useful functionality, such as Unified CPU 

and GPU Timeline, CUDA API trace, Power and thermal profiling and Guided 

Application Analysis provide users with abilities to trace the execution of the entire 

program and identify inefficiencies in computation/communication overlapping, 

synchronization, and load imbalance problems. Besides the visual profiler, Nvidia 

also has a command line based profiler – nvprof, which can produce most of the same 

performance information as the visual profiler, and generate runtime data that can be 

fed into the visual profiler if desired. Although NVP is the most popular GPU/CUDA 

profiler, it lacks some features, such as source-level, in-depth analysis of kernels, 

mapping the performance issues to specific variables and functions, and the complete 

user-level calling context, which can be of great use to CUDA programmers. 

S. S. Baghsorkhi and I. Gelado, et al. [58] use modeling and simulation to provide 

insights into the performance of individual kernels. The proposed analysis is based on 

memory traces collected for snapshots of an application execution. A trace-based 

memory hierarchy model with a Monte Carlo experimental methodology generates 

statistical bounds of performance measures without being concerned about the exact 

inter-thread ordering of individual events but rather studying the behavior of the 

overall system. The statistical approach overcomes the classical problem of disturbed 

execution timing due to fine-grained instrumentation. However, simulation-based 

methods have an inherent limitation that they do not reflect the actual execution 

profiles. S.J. Pennycook and S.D. Hammond, et al. [59] presented a performance 

study of a port of the LU benchmark from the NAS Parallel Benchmark suite [60] to 

CUDA. They conducted comprehensive performance comparison among a selection 
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of GPUs, ranging from workstation-grade, commodity GPUs to NVIDIA’s HPC 

center products, as well as between the CUDA port and the original FORTRAN 77 

implementation. They also compared GPU cluster performance to that of existing 

CPU clusters using performance modeling. The analytic model they employed is a 

reusable model of pipelined wavefront computations by Mudalige, et al. [61], which 

abstracts parallel behavior into the generic model. Jaewoong Sim and Aniruddha 

Dasgupta, et al. [62] developed a performance analysis framework for identifying 

potential benefits when applying several commonly-used optimizations in GPGPU 

applications. They first develop an analytical performance model – the MWP-CWP 

model [63] that can precisely predict performance and provide user-interpretable 

metrics. Then they apply static and dynamic profiling to instantiate the performance 

model for a particular input code and show how the model can predict the potential 

performance benefits gained from each independent optimization or combined 

optimizations. This static and dynamic combined approach resembles my tool in 

understanding the root causes of slowdowns, but their model-based technique cannot 

be applied to all cases. Their performance advisor is an interesting component, which 

estimates the potential gains from reducing or eliminating these bottlenecks.  

With regard to performance tools focused on both GPU and CPU activities, several 

interesting works have been done. The NVP [57] provides coarse CPU activity 

information with a unified timeline with GPU activities, which also indicates the 

potential benefits of adjusting the order and the workload of CPU tasks and GPU 

tasks. G-HPCTOOLKIT [64] characterizes kernel behavior by looking at idleness 

analysis vial blame-shifting and stall analysis for performance degradation. It 
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quantifies CPU code regions that execute when a GPU is idle, or GPU tasks that 

execute when a CPU thread is idle, and accumulate blame to the executing task 

proportional to the idling task. Their approach does a good job in identifying the root 

cause of slowdowns instead of simply the performance phenomena and the use of 

sampling-based method enables it to scale for real applications. Coincidently, my tool 

also uses the concept of “blame”, but with a completely different meaning and 

quantification. The Vampir performance analysis toolset [5] keeps track of program 

executions on heterogeneous clusters. VampirTrace monitors GPU tasks using 

CUPTI [66], logging information including kernel launch parameters, hardware 

counter values, and details about the memory allocations. For CPU activities, Vampir 

traces the entry/exit of functions like TAU [3, 75] does.  

TAU is another performance analysis toolset that has support for hybrid architectures. 

It employs more specific instrumentation for performance measurement, which could 

incur high overhead. Robert Lim [67] presented extensions to TAU that characterize 

the behavior of GPU application kernels and their performance at the node level. It 

also uses CUPTI sampling function to sample the instruction mixes for kernel 

execution runs, which reveals a variety of intrinsic program characteristics relating to 

computation, memory and control flow. The work demonstrates the effectiveness of 

their proposed techniques with two case studies on a variety of GPU architectures. 

However, they did not identify any optimizations based on the insights they obtained.  
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Chapter 3 

Blame Definition 

My data-centric approach builds on a performance mapping technique called 

“variable blame”, proposed by Nick Rutar [18]. A variable’s blame is a percentage 

that indicates the share of certain performance metrics, such as time, cache misses, or 

I/O operations due to individual variables. 

Blame is an inclusive data-centric method that utilizes the control flow and full data 

flow information to map performance data to variables in the source code. During the 

runtime, I use event-driven sampling. If a sample is triggered for an instruction that is 

part of the data flow of a given variable, then that particular variable will be blamed 

for the sample.  

Blame is particularly useful in analyzing scientific computing applications that have 

multi-level abstractions and complex data structures. These objects are often 

inherently distributed and contain calls to message passing and third-party libraries 

that are mostly hidden from users, masking both data motion and parallelism. Such 

hiding makes it easier for programmers to write parallel programs but also far more 

difficult to diagnose performance issues. Blame is a profiling tool that can attribute 

performance data to these abstractions, from the very bottom internal data to higher 

level concepts. The following sections explain the most important parts in the blame 

calculation using a single-thread program as an example. 
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3.1 Blame Calculus 

Formally, “blame” is presented in terms of values for each variable for one run of a 

program. Let S be the set of all samples gathered during the run of the program. For a 

given sample s within S, W is the set of all statements containing a write to the 

memory region allocated to the variable v, the aliases of v, and all fields of v.  For a 

structure, this includes all sub-fields within the hierarchy of v. The blame set for v is 

the union of all the statements in the backward slices [38] for each of the statements 

in set W: 

𝐵𝑙𝑎𝑚𝑒𝑆𝑒𝑡(𝑣, 𝑊) = ⋃ 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑠𝑆𝑙𝑖𝑐𝑒(𝑤)

𝑤∈𝑊

 

 

Variable v is blamed for sample s in the cases where s is a member of the BlameSet(v, 

W). The result is computed with the following function: 

 

𝑖𝑠𝐵𝑙𝑎𝑚𝑒𝑑(𝑣, 𝑠){𝑖𝑓(𝑠 ∈ 𝐵𝑙𝑎𝑚𝑒𝑆𝑒𝑡(𝑣)) 𝑡ℎ𝑒𝑛 1 𝑒𝑙𝑠𝑒 0} 

 

The blame percentage for a variable for the entire program is the number of samples 

that are attributed to a particular variable divided by the total number of samples. This 

is calculated by the following formula: 

 

𝐵𝑙𝑎𝑚𝑒𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒(𝑣, 𝑆) =
∑ 𝑖𝑠𝐵𝑙𝑎𝑚𝑒𝑑(𝑣,𝑠)𝑠∈𝑆

|𝑆|
 

 

After computing the BlamePercentage of variable v, I can declare that v is responsible 

for that fraction of whatever performance metric I chose to generate the samples. For 

example, if I chose CPU clock cycles as the performance metric and the 
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BlamePercentage was x, I can declare that v was responsible for the x fraction of all 

CPU clock cycles consumed over the entire course of the program execution. 

In order to properly calculate the blame of each variable, I need a set of rules that 

dictate how the blame is transferred from one variable to another. Blame can be 

propagated through variables in three ways: explicit transfer, implicit transfer, and 

transfer functions. 

3.1.1 Explicit Blame Transfer 

Explicit blame transfer occurs when there is an explicit data dependency between 

variables. This is the most common transfer that’s reflected by most assignment 

operations. For instance, consider the C code below: 

 

Figure 3.1: Code snippet for Explicit Blame Transfer 

From the snippet, I see two variable dependencies from two assignments (I do not 

care about constant values, so the first two assignments are ignored). Clearly, the 

blame of a and b will be explicitly transferred to c because the values of a and b are 

calculated directly for the purpose of having their sum stored in c. The last 

assignment causes d to have all the blame of the snippet because there is an explicit 

transfer between d and c, d and a, even though b does not appear in the direct 

assignment of d, b’s blame will also be indirectly transferred to d through c. The 

int a, b, c, d; 

a = 6; 

b = 8; 

c = a + b; 

d = a + c; 
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variable d may be used in another computation and will be subsequently included in 

the BlameSet of the variables that use it. 

3.1.2 Implicit Blame Transfer 

Implicit transfer is a little more complicated. It happens when there is no direct value 

assignment between two variables, but there exists a variable used in a control 

dependency. For example, a loop index is incremented for every iteration but is never 

explicitly involved in any calculation in the loop body. However, all variables that are 

within the loop body will inherit the blame from the index variable. The same 

situation happens to the standard conditional statements. 

 

Figure 3.2: Code snippet for Implicit Blame Transfer 

In this case, the variable i is used as a loop index, even though it is not in the direct 

assignment of variable a or b, it would be assigned to both a and b through an implicit 

transfer.  The variable a also acts as a conditional variable in the if statement, so even 

though there isn’t a direct assignment from a to b, what value b will be assigned still 

depends on a’s value. Therefore, variable b and a also have an implicit dependency 

relationship between them; the blame of a needs to be transferred to b as well. Such 

dependency relationships are obtained by doing a control flow analysis of the 

program so that all variables inside a loop will have blame from the loop’s index 

int i, a, b 

for (i=0; i<10; i++) { 

    a = 6; 

    if (a>7) 

       b = 8; 

    else  

       b = 9; 

} 
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variables and variables inside a conditional statement will have blame from the 

conditional variable 

3.1.3 Transfer Function and Exit Variable 

The above two transfers reside within each function for the blame transferring 

between local variables and possible global variables used there, but what about the 

blame transferred through function parameters? I use a transfer function based on 

“Exit Variables” to properly propagate blame up along the call trace. 

A transfer function serves as a link to transfer blame between the callee and the caller 

function in my performance data mapping system. To transfer blame between 

functions, “Exit Variables” of the callee are kept and used as intermediate 

transmitters to transfer blame to the caller’s local variables. “Exit Variables” are those 

whose values can affect the program outside the scope of the analyzed function.  

Categories of exit variables include:  

 Parameters that can result in side effects outside the analyzed function (pass 

by reference, pointers) are eligible for exit variables. The cases where a 

pointer is passed in and has its elements read instead of written won’t be 

counted since blame is transferred only through write operations. 

 If return value exists, and it is assigned to a variable in the caller function, the 

transfer function is checked to see whether the blame needs to be transferred. 

 Global and static variables (in C/C++ context) are handled by transfer 

functions as well, but they are not treated as other variables at a per-function 

level. They are hoisted to a program level and all blame from each function 

will be aggregated to the single instance of that variable. 
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3.2 Simple Example 

This subsection demonstrates how to calculate the blame for each variable with a 

simple example. The example is written in C for better readability, not for those who 

are familiar with Chapel, but my tool handles Chapel programs besides C programs.  

The BlameSet of each variable represents a set of line numbers, so whenever a 

sample point falls on that line during runtime, variables that have a BlameSet 

including that line will be blamed for the sample. I list the BlameSet for each variable 

after each step in Table 3.1. The sample program is displayed in Figure 3.3. 

In this example, there are 4 variables of interest. Three of them are local variables: i, 

temp, med and the other one is a pointer parameter x, which is counted as an exit 

variable as well. Note that x is the name of a formal parameter; therefore its blame 

will be propagated to the real parameter, which could be a local variable in the caller 

or a global or static variable defined in the global space. 

First, you can easily find out the lines for each variable that is either a declaration or a 

write to that variable. The variable i and temp both have line 7 as their declaration 

line, so 7 is included in the BlameSet of i and temp. Line 8 is both a declaration and 

an assignment for med, so 8 is included in med’s BlameSet. Line 9 is the head of a for 

loop and i is the loop index and gets incremented for every iteration, thus 9 will be 

attributed to i. Line 10 is included in temp’s since it’s a direct write to temp. Line 11 

won’t be assigned to anyone for now since it’s neither a declaration nor a writes to 

some variable, and neither will line 13. Line 12 is assigned to x and so is line 14. Line 

16 won’t be assigned to anyone either since it’s just a read to temp. 
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Figure 3.3: Example code for blame calculation 

 

Table 3.1: Blame Calculation Result for the Example in Figure 3.3 

Variable 

Name 

BlameSet 

declaration and writes after Explicit Transfer after Implicit Transfer 

i 7,9 7,9 7,9 

med 8 8 8 

temp 7,10 7,9,10 7,9,10 

x 12,14 8,12,14 7,8,9,10,11,12,13,14 

 

Secondly, I analyze the explicit blame relationship between these variables and do the 

transferring accordingly. The variable med depends on the value of increment, which 

is a non-pointer parameter, so it is not counted as an exit variable. The variable temp 

depends on i in Line 10, so it will have everything in i’s. The same situation for x and 

med’s will be merged to x’s as well.  

5 int foo(int *x,  int increment) 

6 { 

7   int i, temp; 

8   int med=increment; 

9   for(i=0; i<N ;i++){  //Sample Point 1 

10     temp = i+3;   //Sample Point 2 

11     if(temp%2 == 0) 

12       x[i] = med + 1; 

13     else 

14       x[i] = med - 1;  //Sample Point 3 

15   } 

16   return temp; 

17 } 
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Thirdly, I have one for loop and one if statement in this function, so an implicit blame 

dependency exists. First of all, all variables that are written inside a for loop will be 

blamed for i’s; this includes x and temp. Then since temp is used as a conditional 

variable, x will also be blamed for each line in temp’s BlameSet. 

Lastly, I find that the function foo has a return value temp, which is an exit variable. 

The variable that gets assigned the return value of foo will accept all the blame 

assigned to temp within foo and as a result, counter lives outside the scope of foo. 

The procedure that is described so far is a simplified blame analysis and it does not 

represent the real analysis’ order and steps. Real blame analysis is far more 

complicated and works on an LLVM intermediate representation (IR) [48] instead of 

source code.  

Now that I have the BlameSet for each variable, I can combine it with the given 

runtime data (samples) to calculate the final blame percentage for each variable. From 

Table 3.1, I notice that Sample Point 1 (short as “S1”) falls on Line 9, which is an 

element of the BlameSet of the variable i, temp and x; therefore i, temp and x will be 

blamed for S1. S2 corresponds to line 10, which is included in temp’s and x’s, so 

these two variables are blamed for S2. S3 on Line 14 is only attributed to x since only 

x’s BlameSet contains 14. According to the formula of blame I displayed in Section 

3.1, I can calculate the blame percentage for each variable in foo as the following: 

33% for i, 66% for temp, 100% for x and 0% for med. 

For any given sample, multiple variables may be blamed. For example, S1 is 

attributed to the variable i, temp, and x as I explained before. Therefore, in a given 

function, the total percentage assigned to all variables can be more than 100%. 
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Chapter 4 

Data-centric Profiling for Single-locale Chapel Programs 

Chapel is an emerging PGAS (Partitioned Global Address Space) language whose 

design goal is to make parallel programming more productive and generally 

accessible. To date, the implementation effort has focused primarily on correctness 

over performance. I designed and implemented a performance tool ChplBlamer for 

single-locale1 Chapel programs based on my data-centric idea and the blame metric. 

The same idea is also applicable to other PGAS models. I also included a case study 

on three well-known benchmarks and manually optimized the code with insights into 

the programs. The optimized versions improved the performance by a factor of 1.4x 

for LULESH, 2.3x for MiniMD, and 2.1x for CLOMP with simple source 

modifications. This chapter is adapted from a paper that has been presented at the 

International Parallel and Distributed Processing Symposium (IPDPS’17) [68].    

 

4.1 Implementing the Tool 

The framework of my data-centric profiling system is presented in Figure 4.1. It 

consists of 4 steps, combining the static (pre-run) information and dynamic (runtime) 

information of a binary, to map performance data to variables in the source code. My 

approach leaves most work to the static analysis and postmortem processing, to 

minimize the perturbation to the program execution. Step 1 runs intraprocedural static 

                                                 

1  “Locale” is a Chapel abstraction that represents a compute node, such as a multicore or SMP 

processor in most typical parallel architectures.   
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analysis, including complete control flow analysis and data-flow analysis to get 

BlameSet for each variable in each function. Step 2 is the program execution under a 

monitor process. Step 3 is a postmortem processing step, which can be concurrently 

executed on each node in the environment when the tool is extended to support multi-

locale. Step 4 is responsible for profiling data aggregation, processing, and 

presentation to the user via a GUI. 

 

 

Figure 4.1: Process of Calculating the Performance Data for Variables 

4.1.1 Debug Information Support for Chapel LLVM Frontend 

My static analysis component runs an analysis pass on the LLVM Intermediate 

Representation (IR) of Chapel programs. LLVM [48] is a widely used language-

agnostic compiler infrastructure, originally designed for C/C++, but later has 
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spawned a variety of front ends: ActionScript, Ada, C#, Fortran, Haskell, Java 

bytecode, Objective-C, Python, R, Ruby, Rust, CUDA, Scala, and Swift, etc. The 

great advantage of LLVM is that you can write a language-specific front using its 

C++ library to get a language-independent intermediate representation, which is also 

hardware-independent. At this level, you have the same IR grammar and syntax for 

different languages; therefore you can apply the same compiler optimization passes to 

different languages. LLVM greatly simplifies the development of a compiler for a 

new language and also exposes language-independent optimization opportunities. 

I chose to analyze the LLVM IR of Chapel for several reasons: first, LLVM supports 

a rich language-independent library for program analysis and transformation, so the 

implementation of my static analysis pass will be relatively easier and more generic; 

second, there are many existing LLVM-based optimization passes that can be plug-

and-play for Chapel programs. For example, Hayashi, Akihiro, et al. [25] developed 

several LLVM-based communication optimizations for Chapel. They first enabled 

some existing LLVM optimization passes for Chapel’s LLVM IR, such as Loop 

Invariant Code Motion (LICM) and Scalar Replacement; then they created Chapel-

specific optimization “Aggregation”, which combines sequences of loads/stores on 

adjacent memory location into a single memcpy operation. 

Chapel had a basic LLVM frontend with very limited support for debugging. 

Originally, it was only able to produce the debug information of modules and 

functions from the Chapel standard modules. It did not produce any debug 

information for variables, function parameters, and composite types, nor did it 

produce any debug information for anything from the user code (including modules, 
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functions, variables, etc.). However, I need the debug information to associate low-

level instructions and memory addresses with source lines in the user code. Therefore, 

I implemented the complete debug information generation in the code generation pass 

of the Chapel compiler.  

 

 

Figure 4.2: Chapel Compilation Flow 

Figure 4.2 [39] shows two ways of compiling Chapel programs. The default method 

that Chapel compiler uses will first convert the user code and Chapel standard 

modules into C code and then use gcc to compile the generated C code and produce 

the ultimate binary. On the other side, the LLVM frontend is used to generate the 

LLVM IR for both the user code and standard modules and clang is used to build the 

binary. As I mentioned before, the debug information generation for the LLVM track 

is added during the code generation step of the compiler.  Everything in the user code 

including compile units, variables, functions, types, instructions, etc. will have the 

corresponding debug information attached. Among all the debug information, the 

context information (including the file name and line number) of each program 
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element is the most important metadata for my work since it is key to mapping blame 

data back to source code variables. 

4.1.2 Static Analysis 

The First step of my performance data mapping system is static analysis, which is the 

core part of my system. LLVM follows the SSA (Static Single-Assignment) 

convention for its registers. Registers are temporary holders of intermediate values 

represented by “%#”, where “#” will be replaced by a unique integer in each function. 

LLVM represents variables from the original compiled code as memory locations, so 

no “MOVE” operations exist in LLVM; registers are used to move data to and from 

memory through load and store operations.  

Although my complete analysis is interprocedural, I limit the analysis to 

intraprocedural at this point for two reasons. First, I need runtime information for 

interprocedural data-flow information and alias analysis. I can perform some 

interprocedural analysis before running the program, but it would be incomplete. 

Second, by limiting the static analysis to intraprocedural information, I can easily 

reuse analyses from run to run (or among programs that use shared libraries). Also, 

static analysis is parameter-independent, which means users are free to change real 

parameters and configurable arguments during execution without running the static 

analysis again. 

Instruction Parsing 

The blame calculation needs full dataflow information so that I have to thoroughly 

analyze all the instructions within a function one by one. While parsing instructions, I 

categorize each variable/register by their different roles in different types of 
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instructions. I also need to store the information of function parameters to create exit 

variables, which will be used to create transfer functions. The details about transfer 

function are explained in Section 3.1.3.  

Graph Representation 

Variable blame is calculated based on dataflow interactions; therefore, to formalize 

the propagation of information, I use sets to present the elements removed or inserted 

in each category for each variable/register after parsing every instruction. It ends up 

with a BlameSet for each variable that associates them with blamed lines in the 

source code. Along with BlameSet, I have several auxiliary sets for each 

variable/register that are used in the data-flow analysis to transfer blame between 

variables. This leads to redundant data from set to set. I use a graph to represent the 

blame relationship between variables. I represent the dataflow interactions as edges 

within a graph, and variables and registers and function calls as vertices. The edges 

are directed, from the blamed vertices to blamee vertices. For example, if it is a load 

instruction, then the node representing the return value will have a directed edge to 

the node representing the address from where the load instruction gets its value. 

To show how my graph representation encodes the blame calculus, here I will go 

through a simple Chapel code snippet shown in Figure 4.3 with the corresponding 

generated LLVM IR in Figure 4.4. Figure 4.5 shows the original graph representation 

and Figure 4.6 shows the compact graph that removes redundant data from the 

original. 
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Figure 4.3: Sample Code for Graph Representation 

 

 

Figure 4.4: LLVM Instructions for the snippet in Figure 4.3 

 

The LLVM IR in Figure 4.4 is a simplified version while the complete IR has many 

more instructions, making the generated graph far more complicated. 

Consider Figure 4.5, the graph is constructed in the following way: the SSA registers 

generated by LLVM are presented with white ovals; the constant values are 

represented by rounded rectangles filled with light blue; the variables from user code 

or temporary variables generated by Chapel are represented with white rectangles. If 

there is a blame relation between vertex a and b, I add an edge directed from a to b if 

a is blamed for b. 

var a : int = 6; 

var b : int = 7; 

var c : int = a + b; 

store i32 6, i32* %a_chpl 

store i32 7, i32* %b_chpl 

%0 = load i32* %a_chpl 

store i32 %0, i32* %call_tmp_chpl 

%1 = load i32* %b_chpl 

store i32 %1, i32* %call_tmp_chpl2 

%2 = load i32* %call_tmp_chpl 

%3 = load i32* %call_tmp_chpl2 

%4 = add i32 %2, i32 %3 

store i32 %4, i32* %c_chpl 
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Figure 4.5: Original LLVM IR Graph Representation 

 

 

Figure 4.6: Compact LLVM IR Graph Representation 
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In most cases, the raw graph consists of a lot of redundant data and I can compress 

the graph to get a clearer blame relationship between variables from user code. I 

migrate vertices and edges to the compact graph once they meet certain criteria. Local 

variables and function parameters are migrated automatically. Any registers that are a 

pointer to one of the elements listed above are eligible to migrate. Any registers that 

are the receiver of a store operation are migrated as well. According to Chapel’s 

naming pattern, variables starting with “call_tmp_chpl” will be recognized as 

temporary variables and will be removed. The deleted vertices need to transfer their 

connected edges to other remaining variables. After a variety of operations, I get a 

compact graph as shown in Figure 4.6. 

Hierarchical Processing of Structures  

The most important instruction of the LLVM IR in static analysis is the 

“getelementptr” (GEP) instruction [70]. The GEP instruction gets the address of a 

complex data structure or array but does not actually access memory. In GEP 

instructions, the first argument is always a type used as the basis for the calculations. 

The second argument is always a pointer or a vector of pointers. The remaining 

arguments are indices of the elements of the aggregate object that are accessed. The 

interpretation of each index is dependent on the type being indexed. The first index 

always indexes the pointer value given as the second argument, the second index 

indexes a value of the type pointed to (not necessarily the value directly pointed to, 

since the first index can be non-zero), etc. The first type indexed must be a pointer 

value, subsequent types can be arrays, vectors, and structs [71]. A load instruction 

usually follows a GEP instruction to get the value from the calculated address. In 
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some other cases, the retrieved address will be first stored into some other temporary 

variables and later loaded and de-referenced, in that case, I need to handle the aliasing 

relationship between the original GEP instruction and the ones that are loaded and 

used later. I do back-tracing along GEP and load/store operations to resolve the 

pointer relationships. In the graph representation, a GEP instruction is illustrated with 

several nodes representing the base, the field index, and field address, respectively.  

The tool adds edges between each field and their structure base or “Parent” (this is a 

recursive process since a data structure can be multi-level so the “Parent” may have 

its own “Parent”, which becomes the “Grandparent” of the original field 

representation). The nodes in the graph that actually point to the same field of a data 

structure will be collapsed to a single node so that the distributed blame to all the 

representations can coalesce. Later, a “Parent” can absorb all the blame of its 

“Children”. In this way, the blame can bubble up along the data hierarchy. And if a 

user-defined high-level abstraction employs a low-level library data structure, the 

blame on that library structure can be reflected on the user-defined variable and 

provides programmers with insights for user-level optimization.  

4.1.3 Runtime Information Acquisition 

The execution step involves running the program under a monitoring process and 

generating raw sampling data. 

The sampling mechanism uses hardware support via PMU (performance monitoring 

unit) that exists in most current processors. A PMU can be configured to trigger an 

interrupt when a marked event count reaches some threshold.  



 

 47 

 

I use the PAPI [20] library as the interface to utilize PMUs. PAPI provides the tool 

designer and application engineer with a consistent interface and methodology for use 

of the performance hardware counter in most major microprocessors. When a PMU 

triggers a sample event, the profiler receives a signal and reads PMU registers to 

extract the precise instruction pointer of the sampled instruction. The marked PAPI 

event I used as the performance metric is PAPI_TOT_CYC. One issue with 

measurements involving interrupts is “skid”: once an overflow interrupt happens, it 

takes a CPU (especially modern complex out-of-order designs) some amount of time 

to stop the processor and pinpoint exactly which instruction was active at the time of 

the overflow. Often there is an offset between the instruction indicated versus the one 

causing the interrupt (this offset is called skid). PEBS [88] and IBS [76] provide 

support for low-skid sampling, at the expense of some additional overhead. Some 

previous work [49] has been done to avoid this problem by sampling instructions 

instead of events. I do not account for skid in my current implementation, but I plan 

to add a skid compensation feature in the future. 

For each sample that is triggered during the program execution, I need to perform a 

stackwalk to get the call path using libunwind [82]. Libunwind is a portable and 

efficient C programming interface (API) to determine the call-chain of a program. 

The API supports both local (same-process, first-party) and remote (cross-process, 

third-party) operation. I used the remote/third-party stack walk by creating a 

monitoring process to ensure thread safety because the online stackwalk of a multi-

threaded program within a signal handler is currently not safely supported by 

libunwind. Whenever the sampling process receives an overflow signal indicating it is 
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time to take a sample, the monitoring process will perform a stack walk on the 

associated thread, which guarantees the memory space of the target process not being 

corrupted. To implement my monitoring process, I use DyninstAPI [19]. DyninstAPI 

is a widely-used Application Program Interface (API) that permits the insertion of 

code into a computer application that is either running or on disk. When running 

under Dyninst, all signals are first sent to the Dyninst monitoring process. 

To support multi-threading, I instrument the Chapel tasking layer and enable the 

PAPI initialization whenever a new thread is created so the corresponding PMU can 

start counting on that thread. For parallel blocks in Chapel (i.e., forall and coforall), 

the master thread spawns worker threads to execute distributed tasks. To get the full 

call paths for the samples for each worker thread, I keep a unique tag for each spawn 

operation and record the stack trace before the spawn operation begins. It allows us to 

combine the pre-spawn stack trace with the post-spawn stack trace to produce a full 

call path for worker threads. 

4.1.4 Postmortem Analysis 

The postmortem analysis is the key step to combine the static information with the 

runtime information and produce a list of blamed variables for each sample. Several 

important passes in this step such as address parsing, full call path construction, and 

transfer function application are explained in the following subsections. 

Address Parsing  

First of all, I need to parse the raw sample data. Each sample is constructed as an 

“instance” object.  Each instance consists of an instance index and a vector of frames 

obtained by walking the stack periodically during runtime. Each frame has three basic 
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fields: frame number, address, and frame name (the name of the procedure that 

created the stack frame). I can resolve the raw instruction memory address to the 

precise file name and line number with the debug information. 

Parsing is done not only for the samples generated by the sampling mechanism but 

also for pre-Spawn stack traces I got from the instrumentation in the Chapel runtime 

library. These partial stack traces are linked together to constitute full stack traces in 

the next step. 

Glue Stack Traces and Assign Blame to Variables  

To get a full call path for each sample, I need to glue the pre-spawn and post-spawn 

stack traces based on the unique spawn tag. All the context information, including 

module name, file name, line number, and frame number are stored in an abstraction 

named “instance” for each sample.  

 

 

Figure 4.7: Process of getting full call path for the sample inside a parallel block 

 

foo(){ 

    … 

  bar(){ 

… 

forall … { 

  funcA(){ 

    funcB(){ 

     //sample point 

    } 

    … 

  } 
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} 
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Consider Figure 4.7 as an illustration of concatenating partial stack traces; the code is 

written in a nested function style to show the call chain in a more intuitive way.  

Later, I combine the stored intraprocedural analysis results with the runtime data 

(“instances”) to determine the blamed variables for each sample.  After resolving the 

addresses to functions and line numbers, I can utilize the predetermined exit variables 

to apply transfer functions at each level of the call trace. It means I can bubble the 

blame up as far as I need to assign blame to appropriate variables in each function 

along the call chain. 

After this step, I have a list of blamed variables for each sample on the current 

compute node. For multi-locale programs, it will be one file per node to store the 

postmortem processing result and that part will be discussed in Chapter 5.  

4.1.5 GUI Display 

The last component of ChplBlamer is the Graphic User Interface (GUI). There are 

three different windows to view the data: a flat data-centric view, a traditional code-

centric view, and a hybrid way. The flat data-centric view is the default window. It 

provides a flat view of all the variables defined in the program, ranked in descending 

order by the blame they are assigned to. The second view is a hybrid view based on 

“blame points”. Blame points are points in the program deemed to have interesting 

variables; the most common one is the main function since variables in there cannot 

be bubbled up any further in the call stack. The third window is a traditional code-

centric view that attributes samples to different functions instead of variables, in an 

inclusive way with complete calling context. Since I have processed all the context-
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sensitive samples in data-centric view, this code-centric view incurs almost no 

additional overhead. 

In the data-centric view, I also show the declaration point of the variable, a call trace 

starting from the main function. For now, I do not distinguish local variables from 

global variables. All variables from all functions are laid out in the same window. 

Therefore, this location information is critical to identify the exact variables blamed 

in the code since local variables from different functions can share the same names 

and as well as the global variables. Figure 4.8 is a screenshot of the GUI with a flat 

data-centric and code-centric main display for one run of MiniMD. The right side is 

the unique data-centric result that my tool provides using blame analysis while the 

left side is the inclusive view of the regular sampling based code-centric result. 

 

 

 

Figure 4.8: GUI screenshots of MiniMD 
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4.1.6 Exclusive Blame 

So far as presented, the blame calculation is an inclusive data-centric profiling 

approach. This means that the blame value of a certain variable will absorb all the 

blame of its dependent variables. Therefore, the variables that hold the ultimate 

results will stand out in terms of weight. For example, variable c in Figure 4.9 has a 

blame value of 100% since the whole block of code is to compute the value of c. 

After examining the code, I find that the largest contribution to c is from b since c 

depends on b and b is responsible for all previous computation except for the last 

assignment to c. Therefore, optimizing the computation of b (line 2 to 4) may 

potentially provide better speedup than optimizing the single assignment to c (line 5).  

 

Figure 4.9: Code snippet for Inclusive and Exclusive Blame Calculation 

 

Table 4.1: Inclusive and Exclusive blame calculation for Figure 4.9 

Variable a b c i 

Result Type inc exc inc exc inc exc inc exc 

BlameSet 1 1 1,2,3,4 2, 4 1,2,3,4,5 5 3 3 

Blame Samples s1 S1 S1,2,3,4 S2,3 S1,2,3,4,5 S5 s4 S4 

Blame 20% 20% 80% 40% 20% 20% 20% 20% 

 

1 a = 8;   //Sample 1 

2 b = a * a;  //Sample 2,3 

3 for (i = 0; i < N; i++) //Sample 4 

4     b = b + i; 

5 c = a + b;  //Sample 5 
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To supplement the original inclusive blame, I provide another way of evaluating the 

weight of variables in terms of the potential of optimization: exclusive blame. 

Exclusive blame only attributes a line to a variable if there is a direct write to the 

variable at that line. Therefore, more blame will be aggregated to computation-

intensive variables, where usually more optimization opportunities exist. Table 4.1 

shows the process and result of exclusive blame calculation for the code snippet in 

Figure 4.9. Now the most blamed variable is b, I can quickly locate b’s first write 

statement with the multiplication as a potential performance bottleneck and optimize 

it. In the following subsections, only the inclusive blame results are presented. 

 

4.2 Case Studies 

I have chosen three Chapel benchmarks to demonstrate the utility of my tool. Two of 

them, LULESH [74] and MiniMD are from the Chapel source distribution, the third 

benchmark CLOMP, was ported by my group member Johnson [21] from the C 

version of the Livermore OpenMP benchmark on the Coral Collaboration Benchmark 

Codes website [71]. All experiments were done on a single locale. I used a 12-core 

SMP system, each is a 2.53GHz Xeon CPU. The Chapel version I used in 

experiments is 1.11. The threshold 2  I utilized with PAPI to trigger samples is 

608,888,809, which is a large prime. 

All programs were compiled with “--llvm --no-checks -g” (meaning the llvm frontend 

with no redundant boundary checks). Specifically, I did not use “--fast” (equivalent to 

                                                 

2 Threshold is set to be a prime since it’s important to avoid sampling bias caused when the sampling 

interval is a multiple of loop trim cause.  
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“-O3” in GNU compilers) since my intraprocedural analysis heavily depends on the 

generated LLVM bitcode of the Chapel program. Using “--fast” option in compilation 

would result in an LLVM intermediate representation with too many functions 

removed or renamed, variables optimized out and instructions reordered. These 

optimizations would make it nearly impossible to map the performance data from the 

IR nodes (temporary variables and registers) back to the source level variables with 

real names. A production version of Chapel should use augmented debug data to 

allow higher level optimizations. To validate that the information supplied by my tool 

w/o “--fast” provides useful guidance, I reran all of the original and optimized 

benchmarks with the “--fast” option and show that I get similar gains when using this 

option as without it. 

As for the overhead of my tool, taking LULESH as an example: the typical cost per 

stack walk is 0.051ms while the interval is about 241ms (or a total overhead of 

0.02%); the sizes of the datasets generated during runtime are 6MB to 20MB 

depending on the problem size; post-processing analysis takes an average of 16ms to 

process one sample. 

4.2.1 MiniMD 

MiniMD, short for “Mini Molecular Dynamics”, is a proxy application from Sandia’s 

Mantevo group. It represents key idioms of their real applications. Molecular 

Dynamics codes compute physical properties like energy, pressure, and temperature 

for a simulated space containing moving atoms. MiniMD was previously 

implemented in C++ using MPI and OpenMP, requiring about 5,000 lines of code, 

while the Chapel version only takes about 2,000 lines.  
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I picked this application for two reasons: first, it is an important strategic benchmark; 

second, it has several variables with multi-level data structures that are responsible 

for most computation so data-centric information is particularly useful. The problem 

size I tested for the benchmark is (16, 16, 16) unit cells (16,384 atoms). All other 

input parameters are pre-defined in the source by default. 

I ran the test 10 times and reported mean values to eliminate run to run variance in the 

data. Variables with the largest blame values are listed in Table 4.2. First, I describe 

the roles of the variables that have a large blame. Then I explain how I used this 

information to optimize the program. 

 

Table 4.2: Variables and Their Blame for THE Run of MiniMD 

Name Type Blame Context 

Pos [DistSpace][perBinSpace] v3 96.3% main 

Bins [Space][perBinSpace] atom 84.2% main 

RealCount [binSpace] int(32) 80.8% main 

RealPos [binSpace][perBinSpace] v3 80.8% main 

Count [DistSpace] int(32) 54.9% main 

binSpace domain 49.4% main 

 

The record named “atom” is the most important data structure in the benchmark. It is 

an abstraction of atoms in the Molecular Dynamics simulation and contains two basic 

attributes: velocity (v) and force (f), both are (x, y, z) 3-D real values. It also includes 

the storage for the neighbor list, which stores the bin and index of a neighboring 

atom. Therefore, in the global space, which is initialized before the main function 
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runs, I have the two most important variables: Pos, which is an array of positions, and 

Bins, which is an array of atoms. 

Pos (96.3%): Pos serves as one of the root variables for the entire program. It stores 

all the position data of the atoms in the space. “v3” is a created type, using a 3*real 

tuple. DistSpace is a domain that defines the bounds of the arrays (Pos, Bins) and 

distributes them across locales in the multi-locale environment, while here it is simply 

the expanded domain of binSpace. perBinSpace is a one-dimensional domain. Pos 

takes a lot of blame because the positions are accessed and updated frequently in the 

program for the computation of the atom forces as well as neighboring atoms’ 

attributes.  

Bins (84.2%): The variable Bins is a collection of atoms based on spatial position.  

The benchmark is to simulate the space by calculating the attributes of each atom, 

thus this variable is read and written frequently and continuously throughout the 

entire program. The domains of this variable are basically the same as Pos, except the 

first domain ‘Space’ is exactly equal to binSpace instead of binSpace.expand() in the 

single locale environment.  

RealCount/RealPos (80.8%): These two variables are array aliases of Count and Pos, 

respectively. In Chapel, array slices alias the data in arrays rather than copying it. 

They are accessed and updated frequently in the time-critical code. 

Count (54.9%): The variable Count is an array that keeps the count of bins in the 

space. For domain remapping reason, which I will address later, this variable is 

“written” (not at the source code level, but at the LLVM instruction level) during the 

main calculations, so is its array alias RealCount. 
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binSpace (49.4%): As I introduced earlier, binSpace is a domain whose range is 

determined by the problem size I set, which tells us the number of bins I need in each 

direction in the simulation space. 

Discussion and Optimization: After a brief review of the benchmark source, I found 

three functions that handle most of the computation workload inside the real 

simulation function: run. They are buildNeighbors, updateFluff, and 

ForceLJ.Compute.  Combined with my profiling results, it was discovered that the 

hot spots of these three functions are inside the nested for loop, where Bins and Pos 

are calculated after several domain remapping operations. The function 

buildNeighbors is used to put atoms into correct bins and rebuild neighbor lists; 

updateFluff is to update ghost information of Pos and Bins, and ForceLJ.compute is 

to compute forces between atoms. 

The original code uses succinct zippered iteration expressions to do domain 

remapping in nested loops. Specifically, zippered iteration refers to a way in which 

Chapel for-loops can be driven by multiple iterands in a coordinated manner. 

However, based on my experience, that could produce significant overhead, 

especially in a large nested loop. Johnson’s work [21] has done some optimizations 

on substituting for those zippered iterations in MiniMD. I applied their modifications 

to the source and obtained a significant improvement in the performance. The full 

details about the modifications can be found in Appendix A of [21].  

The optimization opportunity found by Johnson [21], et al. was based on a manual 

performance analysis of the generated code, a complicated and painful process that 

required examining over 50 C source files mixed with user code and Chapel library 
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code. It is very difficult to identify bottlenecks by hand and even harder to map them 

back to Chapel source code and then optimize them. Using my tool, programmers can 

quickly identify the problematic variables in the source code. In the case of MiniMD, 

by searching for the two most blamed variables, Pos and Bins, I was able to quickly 

locate those forall loops that contain zippered iteration and domain remapping. Based 

on my experience of the poor performance when using zippered iteration and domain 

remapping, I could apply those transformations to improve the performance. 

 

Table 4.3: Results w/ or w/o  “--fast” Flags 

 Original(s) Optimized(s) Speedup 

w/o –fast 20.87 9.23 2.26x 

w/ --fast 6.41 2.50 2.56x 

 

Table 4.3 shows the performance improvement using my optimization. I gained a 

speedup of 2.26x on a small-sized problem (size=16). To show that my optimization 

works no matter which compilation flags I use, I applied the same optimization to the 

benchmark recompiled with the “--fast” option. The result of “--fast” version shows 

that with compiler optimization, my optimization still produces similar speedups. 

4.2.2 CLOMP 

CLOMP stands for C version of the Livermore OpenMP benchmark [71] and is used 

to simulate a typical scientific application to measure the overhead of different usage 

of OpenMP primitives. I selected variables with blame larger than 10% in Table 4.4. 
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CLOMP is a simple benchmark.  After the initialization, the application starts the 

simulation by calling function update_part over and over again through the top loop 

function do_parallel_version, inside which, there is only one function: parallel_cycle. 

The function parallel_cycle calls four subprograms: parallel_module1, 

parallel_module2, parallel_module3 and parallel_module4. The difference between 

these subprograms is simply the number of the parallel forall loops in each function. 

Besides this dominating calculation, there are multiple re-initializations and 

calc_deposit function calls, which only consume a small portion of the total run time. 

The roles of blamed variables are introduced below. 

 

Table 4.4: Profiling Result for the Run of CLOMP 

Name Type Blame Context 

partArray [partDomain] Part 99.5% main 

->partArray[i] Part 99.5% main 

->partArray[i].zoneArray[j] Zone 99.0% main 

->partArray[i].zoneArray[j].value real 99.0% main 

->partArray[i].residue real 12.3% main 

remaining_deposit real 11.8% update_part 

“->” symbol is used to represent field to its parent struct relation, with the parent struct variable 
listed above it in the table 

 

partArray (99.5%): Variable partArray is the top-level data structure in the 

benchmark that holds everything of importance. It is created as a global variable, so 

that the final blame value from all the points wherever a piece of it gets written, that 

portion of blame will be aggregated to one single variable in the last step of my tool. 

The partArray is defined on a partDomain, which is based on the configurable 
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constant CLOMP_numParts so that I can control the size of the domain in the 

execution command line. Besides other attributes in the Part data structure, I have an 

array of zones, which is created with the self-defined Zone type and runtime 

configurable array size: CLOMP_zonesPerPart. 

partArray[i].zoneArray[j](99.0%): This variable is the element of the zoneArray in 

the global variable partArray. By following the hierarchical symbol “->”, I’m able to 

find which field of the complex data structure is actually responsible for the most 

computation. I can see the value in Zone takes most credits so I have a basic idea that 

the whole program is trying to compute the field value for each zone in partArray.  

partArray[i].residue (12.3%): The residue is a field of the Part class, it is calculated 

in the update_part function. It’s another important field that needs to be updated 

frequently for each part besides all the zones. 

remaining_deposit (11.8%): This is simply a local variable defined in function 

update_part. Since the function update_part is called frequently, so this variable is 

accessed a lot as well. It is used as a temporary variable for computing the value of 

partArray[i].residue. 

Discussion and Optimization: Since the number of parts and the number of zones per 

part are determined on the command line, I can use a large 2D array to hold those 

values, like Johnson and Hollingsworth did [21]. Accessing elements in one big array 

is much faster than through nested structures. The performance improved by up to a 

factor of 2.13x. The details can be found in Table 4.5. I also list the result with 

compiler optimization enabled, in which case I get even better speedups with the 

same manual optimization. 
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Table 4.5: Results w/ or w/o  “--fast” Flags 

Flag Problem Size Original (s) Optimized (s) Speedup 

w/o   --fast 

1024/64,000 4.02 2.18 1.84x 

65536/10 4.79 4.40 1.09x 

12/640,000 3.87 1.82 2.13x 

65536/6400 7.88 7.14 1.10x 

w/    --fast 

1024/64,000 3.72 1.44 2.59x 

65536/10 5.13 2.14 2.40x 

12/640,000 3.75 1.41 2.65x 

65536/6400 7.98 4.07 1.96x 

numThreads=12, allocThreads=12, flopScale=1, timescale=100 

 

4.2.3 LULESH 

LULESH was first implemented by Lawrence Livermore National Lab (LLNL) and 

has since become a widely studied proxy application in DOE co-design efforts for 

exascale. LULESH approximates the hydrodynamics equations discretely by 

partitioning the spatial problem domain into a collection of volumetric elements 

defined by a mesh. It has a collection of implementation versions based on most 

modern HPC programming models and languages, including Chapel. The problem 

size I chose is 15 elements per edge for the time limit considering my current 

sampling threshold. 

LULESH Chapel source was designed to mirror the overall structure of the C++ 

LULESH but use Chapel constructs wherever they can to help make the code more 

concise and compact. It was implemented as a single locale, multi-threading program. 
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The function LagrangeleapFrog in main is responsible for 96% running time and 

most work is done underneath the forall parallel blocks inside its subroutines, 

therefore traditional code-centric profiler would only give limited insight while my 

profiler provides more insights about what and where to look for optimizations. 

To compare my tool to prior approaches, I used Pprof from gperftools [16], an 

existing code-centric profiler that works for Chapel, to profile the benchmark. The 

profile output of the top ten functions is shown in Figure 4.10. The columns are: 

1. Number of profiling samples in this function 

2. Percentage of profiling samples in this function 

3. Cumulative percentage of samples 

4. Number of samples in this function and its callees 

5. Percentage of samples in this function and its callees 

6. Function name 

 

 

Figure 4.10: Pprof output for LULESH 

The output of Pprof is a bit confusing. First, it mixes functions from the Chapel 

runtime libraries and user code. The function that takes the largest portion of time on 

the list is __sched_yield, a system call that’s referenced by Chapel threading layer. 
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It’s used to force the running thread to relinquish the processor and move the thread 

to the end of the queue; time spent in this function is often due to load imbalance or 

lack of parallelism elsewhere in the program. The only function that can be 

recognized by users on the list is CalcElemNodeNormals, which only consumes 0.9% 

of the total time and reveals limited optimization opportunities. Second, the 

information isn’t fine-grained enough to identify the specific performance bottlenecks 

in the code. In comparison, the blame profiling result in Table 4.6 provides richer 

variable-specific information, thus giving better insights into the user code 

optimizations. 

The function main primarily serves as the highest level structure: initializing the test, 

starting the main loop that contains the core work, timing, and printing results. 

Almost all the samples fell within the function LagrangeLeapFrog. The “Context” 

column in Table 4.6 only lists the subroutines where the corresponding variables are 

defined. Note the sum of the blame for all variables is over 100%. As I briefly 

explained in Section 3.2, multiple variables could be blamed for a single sample. In 

this case, all the samples that were counted for hourmodx’s will be assigned to hx, 

shx, and hgfx as well, thus these variables all get their own number of samples 

incremented. Therefore, the overall blame is larger than 100% for almost all programs 

as long as there is data dependency between variables. The roles of variables that are 

blamed most are introduced below. 

hgfx (29.5%): LULESH is a symmetric 3-D simulation, thus I’ll just use the x-axis 

variable to represent corresponding variables in all 3 dimensions later in the paper. 

Here, hgfx is an 8*real  tuple, defined in CalcFBHourglassForceForElems. Together 
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with shx, hx, hourgam, and hourmodx, they compute the hourglass control force for 

each element. 

 
 

Table 4.6: Variables and Their Blame for the Run of LULESH 

Name Type Blame Context 

hgfz 8*real 30.8% CalcFBHourglassForceForElems 

hgfx 8*real 29.5% CalcFBHourglassForceForElems 

hgfy 8*real 29.2% CalcFBHourglassForceForElems 

shz real 27.9% CalcElemFBHourglassForce 

hz 4*real 27.6% CalcElemFBHourglassForce 

shx real 26.9% CalcElemFBHourglassForce 

shy real 26.6% CalcElemFBHourglassForce 

hx 4*real 26.6% CalcElemFBHourglassForce 

hy 4*real 26.6% CalcElemFBHourglassForce 

hourgam 8*(4*real) 25.0% CalcFBHourglassForceForElems 

determ [Elems] real 15.7% CalcVolumeForceForElems 

b_x 8*real 9.7% IntegrateStressForElems 

b_z 8*real 9.7% IntegrateStressForElems 

b_y 8*real 8.7% IntegrateStressForElems 

dvdx(y/z) [Elems] 8*real 8.3% CalcHourglassControlForElems 

hourmodx real 5.8% CalcFBHourglassForceForElems 

hourmody real 5.1% CalcFBHourglassForceForElems 

hourmodz real 4.8% CaclFBHourglassForceForElems 
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determ (15.7%): The variable determ is a higher level data abstraction defined in 

CalcVolumeForceForElems. It’s a local array with a domain being dynamically 

allocated on the heap every time the function is called. The same situation happens to 

the variable dvdx, which is defined in CalcHourglassControlForElems. I will explore 

the potential optimization opportunities of these variables later in the discussion. 

b_x (9.7%): The variable b_x is also a 8*real (floating point double) tuple declared in 

IntegrateStressForElems and passed into CalcElemNodeNormals as a reference. The 

value of b_x is assigned through a nested function inside CalcElemNodeNormals. 

hourmodx (5.8%): The variable hourmodx is a local variable defined inside a nested 

for loop in function  CaclFBHourglassForceForElems. It is used to calculate the 

value of hgfx. There is only one write to this variable in the code, but it is updated 

frequently due to the loop and it acts as an important role in transferring blame. 

 

 

Figure 4.11:  Code Snapshot of LULESH hotspot 

Discussion and Optimization: From Table 4.6, I discovered variables that hold the 

most blame in the program. After examining the code, I found that hgfx(y/z), shx(y/z), 
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hx(y/z), hourgam and hourmodx(y/z) have direct data dependency between them: 

hgfx(y/z) depends on the value of shx(y/z); shx(y/z) depends on hourgam and hx(y/z); 

hx(y/z) depends on hourgam, which ultimately depends on the value of 

hourmodx(y/z). By further checking the code-centric data, it was discovered that over 

21% of the total time came from the loop block in Figure 4.11. Therefore, optimizing 

this for loop is a good way to improve the overall performance. 

 

Table 4.7: Results for Loop Unrolling Methods 

Unrolling tag Run time (s) Speedup 

Original 12.47 1.00x 

0 params 12.04 1.04x 

P 1 11.65 1.07x 

P 2 12.95 0.96x 

P 3 11.78 1.06x 

P1+P2 12.59 0.99x 

P1+P3 11.89 1.05x 

P2+P3 12.60 0.99x 

P1+U2 12.10 1.03x 

P1+U3 12.33 1.01x 

P1+U2+U3 12.75 0.98x 

‘U x’ means I manually do the unrolling for that for loop in place x 

The keyword “param” before the loop iterator in Chapel causes the compiler to 

optimize the code by unrolling the loop. However, sometimes it would be 

counterproductive since it enlarges the code size. Therefore, I did control tests by 

preserving or eliminating these keywords in each location (denoted as “P #”). I 

further combined it with manual unrolling to see if that would be beneficial as well. 

The experiment results are displayed in Table 4.7. 
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Among all the options, I can see that simply keeping “param” for the outermost loop 

(P 1) gives us the best performance for this block of code. By shortening the 

execution time of this loop block, I expect to decrease the blame of those variables 

used in the loop, e.g., hourmodx and hourgam. This worked well and the result is 

shown in Table 4.8. 

The second optimization I made to the benchmark is from observing the variables 

determ and dvdx. At first, they seemed hard to optimize since the calculations of their 

values are deep inside the subroutines after their declarations. Without changing the 

algorithm, I can’t simplify the computation. Fortunately, inspired by the optimization 

in Johnson’s paper [21], I did Variable Globalization (VG). This optimization moves 

the declarations of several safe local variables to the global space so that they won’t 

be dynamically allocated every time when the function is called. In this way, I saved 

about 19% execution time. 

Another optimization I found through analyzing the profiling result is to work on 

variables b_x, b_y, and b_z. The values of b_x, b_y, and b_z, representing the 

“normal” from each face in the program, are computed in function 

CalcElemNodeNormals (“CENN” for short). Inside CENN, partial results are 

calculated through the nested function ElemFaceNormal and stored in temporary 

variables. Finally, the partial results from multiple ElemFaceNormal calls are added 

up through an addition operation on tuples. Since all temporary variables use tuple 

type, it involves tuple constructions and destructions, which are not cheap when they 

are nested deeply inside a big loop. I optimized this part by directly assigning 

intermediate results to the passed-in variables, thus avoiding redundant tuple 



 

 68 

 

constructions and destructions. This optimization denoted as “CENN” is able to 

reduce the execution time by 7%. 

 

Table 4.8: Profiling Results Comparison between Different Optimizations 

variable name 

Blame (%) 

Original P1 VG CENN 

hgfx 29.5% 20.5% 31.3% 26.4 % 

hgfy 29.2% 18.8% 31.3% 27.4% 

hgfz 30.8% 19.8% 28.0% 27.1% 

shx 26.9% 18.1% 27.7% 23.08% 

shy 26.6% 17.0% 28.0% 24.8% 

shz 27.9% 17.4% 27.0% 24.4% 

hx 26.6% 17.0% 27.7% 23.1% 

hy 26.6% 16.3% 27.0% 23.4% 

hz 27.6% 17.0% 27.0% 23.8% 

hourgam 25.0% 13.2% 25.7% 22.1% 

hourmodx 5.8% 2.8% 7.3% 6.4% 

hourmody 5.1% 3.8% 6.1% 6.7% 

hourmodz 4.8% 2.4% 8.3% 6.0% 

 dvdx(y/z) 8.3% 7.3% 8.2% 7.0% 

determ 15.7% 20.8% 14.8% 16.1% 

 b_x 9.7% 10.4% 9.0% 6.0% 

b_y 8.7% 10.1% 9.0% 6.0% 

b_z 9.7% 10.8% 9.3% 6.0% 
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Table 4.8 shows a profiling result comparison between each optimization I applied to 

the program. Instead of the default descending order, I group the variables that are 

affected by the same optimization. It gives us a clearer view of how a particular 

optimization would affect the profiling result of the relevant variables. The first 

optimization “P 1” reduces the computation time of that for loop, which directly 

affects variables hourgam, hourmodx(y/z), indirectly affects variables like hgfx(y/z), 

etc. Therefore, there is a decrease in the ratio of the above variables between the 3rd 

and 2nd columns in Table 4.8. The second optimization “VG” relates to determ and 

dvdx since it would reduce the number of times that these variables are declared and 

initialized. The total reduction in time brought by this optimization was achieved by 

hoisting many similar variables. The last optimization “CENN” focuses on 

simplifying the calculation of b_x(y/z).  By comparing the 5th and 2nd column in 

Table 4.8 of these three variables, there is an obvious drop in their weight, which also 

meets my expectation. 

Table 4.9 summarized the timing results of all versions of LULESH benchmark. The 

speedup column is the exclusive effect that the corresponding option achieves. The 

best case is the combination of all three optimizations (Combo). Overall, I achieved a 

factor of 1.4x speedup by modifying only 20~30 lines of source code. 

I also list the “w/ --fast” column in Table 4.9, which shows the result for the 

compiler-optimized version. The overall speedup is bigger than that of “w/o --fast”. 

The first and third manual optimization that I made obtain smaller speedups than 

before, that’s probably because the “--fast” flag has already done some similar work 

for the original code, so my manual modifications gain less speedup. 
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Table 4.9: Optimization results w/ or w/o “--fast” flags 

 w/o --fast w/ --fast 

 Run Time(s) Speedup Run Time(s) Speedup 

Combo 9.02 1.38x 3.20 1.47x 

VG 9.98 1.25x 3.39 1.39x 

P 1 11.65 1.07x 4.54 1.04x 

CENN 11.57 1.08x 4.59 1.02x 

Original 12.47 1.00x 4.70 1.00x 

 

4.3 Discussion and Summary 

New parallel programming models provide newer abstractions for programmers. 

However, performance tools need to keep pace with these changes to present useful 

performance information in an intuitive way. A few established profilers, such as 

HPCToolkit-data-centric, lack the full capability to properly profile PGAS languages, 

where most variables in Chapel benchmarks are regarded as “unknown data”. For 

example, in experiments, CLOMP has 96.88% performance statics falling in 

“unknown data” category and LULESH reports 95.1% in “unknown data”, which 

cannot provide useful information to programmers. Compared to some existing work, 

my tool distinguishes itself in several aspects: 

First of all, my tool is the first Chapel-specific performance measurement and 

analysis tool. Different from [11, 12, 13, 14], my approach chooses Chapel as the 

target language and provides valuable insights into the performance issue. My 

approach will support profiling Chapel in both the single-locale and multi-locale 

environments. For single-locale, my approach appropriately handles the task-based 
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multi-threaded situation by merging the performance data from each thread to a single 

node while for multi-locale my approach will aggregate the complete performance 

data from each node. At the end of the profiling, users can directly identify the most 

time-consuming variables through a Graphic User Interface without any more digging 

in the performance data. It is a more straightforward data-centric view than locating 

problematic variables by source code and line number as [11, 17].  

Secondly, my novel approach is able to map performance statistics back to variables 

in a user-level context. Unlike TAU [3], PPW [12], and pprof [16], which attribute 

performance data to functions, loops, basic blocks, mine attributes the performance 

loss to variables with real names in the source code. Besides, my tool only blames the 

variables from the user code for the performance loss because all the other variables 

are utilized to compute the ultimate values of user variables, and it is better for users 

to concentrate on optimizing their own code. 

Lastly, my approach supports profiling a full user code calling context. A call path is 

a chain of functions with calling relationships. Associating performance losses with 

call paths provides unique performance insight into program executions. For example, 

consider a threaded program that employs task-based parallelism. If threads spend a 

lot of time spinning in synchronization routines for accesses to shared resources, a flat 

profiling without the call path information cannot tell which task caused the spinning. 

Besides, without call path information, programmers cannot distinguish variables 

with the same name but different scopes. Unlike pprof [16] which lacks the ability to 

gain the calling context and HPCToolKit [17] which shows the limited capability in 

analyzing multi-threaded Chapel programs, mine has the full support of call path 
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profiling on the Chapel code, mine maps the performance data to the original user 

code elements from the bottom frame in the stack and propagates it all the way up to 

the top main function. This support helps users quickly identify the performance 

bottlenecks in programs. 

In this chapter, I designed and developed a data-centric profiling tool ChplBlamer 

that supports PGAS languages, using Chapel as an exemplar. I introduced the state-

of-art HPC/PGAS profiling tools and compared them with my tool. I demonstrated 

the functionality and usability of ChplBlamer on three well-known benchmarks. With 

the guidance supplied by ChplBlamer, I significantly improved the performance by 

factors of 1.4x for LULESH, 2.3x for MiniMD, and up to 2.1x for CLOMP, with 

minimal changes to the source code. I also concluded that domain remapping and 

zippered iterations are expensive to use. The overhead of ChplBlamer is discussed in 

a multi-locale context in Section 5.4 Discussion and Summary. 
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Chapter 5 

Data-centric Profiling for Multi-locale Chapel Programs 

In the prior chapter, I proposed a data-centric performance measurement tool 

ChplBlamer for single-locale Chapel programs. In this chapter, I extended the prior 

work by providing a more functional data-centric and code-centric combined Chapel 

profiler, ChplBlamer-ML, to pinpoint performance losses due to data distribution and 

remote data accesses in a multi-locale environment. ChplBlamer-ML improves the 

prior work in several aspects: 

1. It supports more generic Chapel code, including multi-locale Chapel and 

abstractions that support both asynchronous and remote tasks. 

2. It provides additional tool capabilities: such as inter-node load imbalance 

examination to help users investigate performance issues more efficiently.  

3. The instrumentation to the Chapel runtime library is optimized and the 

runtime overhead is significantly reduced from 3.5x to 14% compared to the 

previous work in Chapter 4. 

To demonstrate the utility of ChplBlamer-ML, I studied three multi-locale Chapel 

benchmarks. For each benchmark, ChplBlamer-ML found the causes of the 

performance losses. With the optimization guidance provided by ChplBlamer-ML, I 

significantly improved the performance by up to 4x with little code modification. 

This chapter is adapted from a paper that has been presented at the International 

Conference on Supercomputing (ICS’18) [69]. 
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5.1 Challenges and Solutions 

Conducting data-centric profiling on multi-locale Chapel is far more challenging than 

the single-locale. Chapel, as a PGAS language, includes a runtime middleware to 

handle inter-node communication and data distribution. A single-line distributed 

vector addition statement “C = A+B” in the Chapel source will be compiled to 

thousands of instructions that involve calls to the Chapel runtime library to handle 

data distribution and inter-node communication. In order to accurately attribute blame 

to source code variables, I need to address several challenges.   

 

 

Figure 5.1: Sample multi-locale Chapel code 

 

Figure 5.1 shows a simple example using Chapel multi-locale syntax that the single-

locale ChplBlamer cannot handle. The variable myVec is a distributed array defined 

use CyclicDist; 

const myD = {1..N} dmapped Cyclic(startIdx=1); 

var myVec: [myD] real; 

forall a in myVec 

    a = ..; 

begin { 

    localCompute(myVec); 

} 

on Locales[1] do 

    remoteCompute(myVec); 
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on a cyclic distributed domain myD; forall loop tries to leverage all threads on all 

locales to initialize myVec; the begin block creates a new task on the current locale 

and the parent thread continues without waiting for the block to finish; the on clause 

launches a remote task on Locale 1 in an asynchronous style as well. 

5.1.1 1st Challenge and Solution 

Challenge 

For a variable that is distributed among multiple locales and requires remote access, 

there are hundreds of aliases and temporary variables representing a block of the data 

of the variable in the computation. How to identify those data blocks and finally 

aggregate their individual blame share to the original variable becomes a problem. 

Moreover, Chapel creates a unique private identifier (PrivID) for each distributed 

variable (e.g., myVec in Figure 5.1) for future references. Therefore, when it’s 

accessed and passed through functions, the original logic to handle variables with a 

type of array or structure in Chapter 4 will fail since now reference of those 

distributed variables are simply integers and will not be regarded as “exit variables”. 

Solution 

Since distributed variables are referenced via unique PrivIDs (private IDs), I 

established a mapping between the vertex that represents the PrivID and the one that 

represents the original source variable when I build graphs in the static analysis. 

Every time a distributed variable is accessed, I can locate the corresponding PrivID 

node following the dataflow path in the IR. And with the link between the PrivID and 

the original variable, I can identify exactly which variable is being accessed. 

However, the biggest question is how do I figure out which nodes represent PrivIDs 
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and link them to the corresponding variables (I use “object” to refer to the original 

source variable and all its compiler-generated aliases and tempory copies) since 

PrivIDs are no different than constant integers once created at the IR level. I solved 

that by tracking two critical functions from the Chapel runtime library: 

chpl_getPrivatizedCopy, and chpl_getPrivatizedClass. I found that these functions 

resolve PID from the corresponding object. Therefore, I can identify PrivIDs and their 

associated objects. Once I determine a PrivID and the object, I find all aliases3 of the 

PrivID as well as the aliases of the object backward and forward in this function. Now 

wherever an object alias is accessed, I can trace it back to the original source variable.  

 

 

 

Figure 5.2: The process of locating the original variable 

 

                                                 

3 “Alias” is not technically correct for PIDs since they are integers so “aliases” are just variable copies, 

but I use it for its literal meaning and the way I find them is similar to alias analysis. 
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Figure 5.2 illustrates the idea of this process. At any access point to Object(i), I can 

follow the red path (the top arrowed curve) to track down the original distributed 

variable that this Object(i) was derived from. 

Since an integer is not recognized as a PrivID until it is found to be a parameter in 

one of these two functions (chpl_getPrivatizedCopy, and chpl_getPrivatizedClass), 

then how does the upper-level function know whether the integer variable will be 

used as a PrivID in its callees? The answer is that it is not known in the intra-

procedural static analysis step. To solve this problem, ChplBlamer-ML 

conservatively treats all integer parameters as potential PrivIDs and store their 

aliases; then in the postmortem analysis, it can get all PrivIDs back frame by frame 

along the call path if any integer parameters are determined as PrivIDs in a certain 

frame.  

5.1.2 2nd Challenge and Solution 

Challenge 

 At the IR level, multi-locale Chapel programs call functions from the runtime library 

and standard modules to retrieve the locality information for remote data access, 

which involves implicit dataflow information. For example, communication calls 

such as chpl_gen_comm_get and chpl_gen_comm_put, implicitly generate data 

dependency between the remote data and the local copy. I need to recover this hidden 

dataflow information to propagate blame properly. Moreover, explicit operations on 

distributed variables or within a parallel region at the source level will be wrapped 

into generated functions and implicitly invoked within Chapel runtime functions 
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using function pointers. The “transfer function” mechanism from Chapter 4 is not 

able to handle this case, thus it will fail the inter-procedural blame propagation. 

Solution  

In regard to the second challenge, I observed that non-user functions containing 

important dataflow information fall into two categories: module functions and 

runtime functions. 

For functions from Chapel standard modules, since their definitions are also in the IR, 

I implemented a simplified blame analysis to figure out the blamed parameters that 

are responsible for any call to that function. For a few functions from the Chapel 

runtime library, I manually figured out the blamed parameter indices since their 

function bodies are not included in the IR. In this way, I keep propagating blame to 

the callers via blamed parameters for calls to those functions. 

To solve the problem of wrapper functions and function pointers, I conduct additional 

analysis on the program IR. First, I record the table of function pointers (with symbol 

names) that point to all generated wrapper functions in this program. Second, I extract 

parameters of three critical functions from the Chapel runtime library: 

chpl_executeOn, chpl_taskListAddBegin, and chpl_taskListAddCoStmt. The most 

important parameter of these functions is a constant integer that equals to the index of 

the corresponding function pointer in the table I previously recorded. In this way, I 

retrieve the exact wrapper function that will be called. Finally, I also need to match 

the parameters of those runtime functions to the real parameters that will be fed to the 

wrapper function. This is also tricky since the parameters are decomposed and 

reconstructed and it’s not a 1-1 correspondence. With all these efforts, I am able to 
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mimic the explicit operations at the source level with the program IR and recover the 

dataflow information. 

5.1.3 3rd Challenge and Solution 

Challenge 

A multi-locale Chapel program does not launch the same execution from the main 

function on all locales simultaneously; rather only the master locale launches the 

execution from the very beginning and all other locales launch their jobs as needed 

during the entire course of execution (essentially a fork-join model). Therefore, when 

I walk the stack of a thread on a worker locale, it is very likely that the top stack 

frame (suppose the stack grows downwards) is not the “main” function but 

somewhere that particular task starts from. Missing the complete calling context 

precludes propagating blame along the call path appropriately. Moreover, Chapel’s 

asynchronous tasking feature aggravates this problem, since now a task can be 

created on Locale 1 at beginning of the execution and later remotely executed by 

Locale 2, while Locale 0 continues right after it launches that task. 

Solution 

To get the complete user-level calling context for each sample, I instrumented both 

the tasking and communication layers of the Chapel runtime using callback functions. 

In the tasking layer, I insert a callback in the function add_to_task_pool, so that every 

time a new task is added to the local task pool, I unwind the stack of the current 

thread and keep the unique function ID (referred as “fID”) for that task. The 

stacktrace shows the call path before a local task is executed. In the communication 

layer, I insert callbacks in function chpl_comm_execute_on, 
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chpl_comm_execute_on_nb, and chpl_comm_execute_on_fast, so that every time a 

remote task is created and sent to another locale, I unwind the stack and keep the 

unique fID, as well as the locale IDs of the sender and receiver (referred as “sID” and 

“rID”) for the task. The stacktrace shows the call path before a remote task is 

launched. 

During the instrumentation and sampling of the program execution, I also track the 

frame name as I unwind the stack. Once I find the top frame is one of the fork 

wrapper functions of a remote task defined in the Chapel runtime (e.g. 

“fork_wrapper”), I read the fID, sID, and rID from the function parameters, or simply 

fID if the top frame indicates a local task.  

 

 

Figure 5.3: Stacktrace concatenation flowchart 
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Finally, during the process of stacktrace concatenation, I use the above keys (fID, 

sID, rID) to find the call path before a certain task. The parent task is found iteratively 

until I see the user main function in the stack. In the meantime, I also remove frames 

that are not resolved to user functions so that the ultimate sample stacktraces are in a 

full user-level context. Figure 5.3 shows the flowchart of this concatenation process; I 

use hash maps to retrieve stacktraces efficiently.  

The way I reconstruct the calling context for samples brings two benefits:  

First, it essentially solves the asynchronous and remote tasking problem. Since every 

piece of sequential work is a task in Chapel, with the keys (fID, sID, rID), I know 

what it does and where it was launched. If Locale 1 launched a task on Locale 2 at 

Time 1 and Locale 2 later executed the task at Time 2 where a sample is triggered, I 

can reproduce the calling context without interfering with the program execution. 

Second, it significantly reduces the runtime overhead. While unwinding the stack in 

the callbacks, I also keep those keys in a set that is shared by all threads in the same 

locale. Therefore, the next time a task with the same key comes in, I need not unwind 

the stack again since the same information has been recorded. The prior work in 

Chapter 4 unwinds the stack every time a task list is executed (A task list is created 

for each “forall” or “coforall” parallel loop). That approach could not handle 

asynchronous parallelism and would incur unacceptable overhead in certain 

circumstances. Table 5.1 shows that this approach can reduce the average overhead 

from 3.5x to 14% for three single-locale Chapel benchmarks. The overhead is 

measured using the formula (
𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑑 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

𝑐𝑙𝑒𝑎𝑛 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛
− 1) × 100%. 
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Table 5.1: Tool overhead comparison on single-locale 

Benchmark MiniMD CLOMP LULESH 

Prior overhead 4.2x 1.4x 4.9x 

Current overhead 5% 9% 27% 

 

5.2 Inter-node Load imbalance Examination 

Load-imbalance is a critical performance problem in High Performance Computing, 

researchers use static or dynamic load balancing techniques to evenly distribute data 

and computations across all processors/nodes in order to optimize the run time and 

system I/O. Most traditional approaches present this information based on the 

computation cost on each processor/node, instead, I include a feature of data-centric 

inter-node load imbalance examination in ChplBlamer-ML.  

 

 

Figure 5.4: Node information for Ab of HPL on 32 locales 

In ChplBlamer, there are three ways to view the data: a flat data-centric view, a 

traditional code-centric view, and a hybrid view using the concept of “blame point” 

where you can basically stop blame propagation at a certain point in the call path and 
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reflect the performance statistics at that scope. Besides the above three different 

views, I also include a view of workload information. Clicking on a particular 

variable in the data-centric view will pop up a window showing the total CPU 

seconds for that variable on each locale. Note that the total CPU time is the 

aggregation of all cores involved in that locale. You can also drill down from each 

node to display the specific samples that contribute to the time, which can be used 

with data profiles to verify the result. The different time on each locale shows the 

load imbalance situation in terms of this variable. For a distributed array, if certain 

locale consumes significantly more or less time than others, it means significantly 

greater or fewer array elements are distributed on that locale than others. Thus the 

user should tune the block size of the distribution based on the array size for that 

variable. Figure 5.4 shows an example of variable Ab in HPL on 32 locales. 

 

5.3 Case Studies 

I evaluated ChplBlamer-ML on a local InfiniBand-based cluster Deepthought2. 

Deepthought2 consists of 484 nodes with dual socket (20 cores per node) Ivy Bridge 

2.8 GHz processors. I used from 2 to 32 nodes in each case in this evaluation. I use 

CPU clock cycles as the sampling event and the sampling period is 1,073,807,359, 

properly chosen to balance the overhead and precision. Taking HPL as an example, 

the time overhead of ChplBlamer-ML ranges from 13% to 25% with 2 to 32 nodes, 

respectively; the space overhead is 90KB for problem size 500 with 32 nodes. 
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In this section, I studied three well-known multi-locale Chapel benchmarks. All 

programs were built with Chapel 1.15 and the --fast (equivalent to “-O3” in GNU 

compilers) optimization. The description of each benchmark is as follows: 

 HPL [72], the High Performance Linpack benchmark solves a uniformly 

random system of linear equations and reports time and floating-point 

execution rate using a standard formula for operation count. 

 ISx [73] is the scalable Integer Sorting application. The Chapel version is 

fully Single-Program-Multiple-Data (SPMD), creating a task per locale and a 

task per physical core on each locale.  

 LULESH [74] approximates the hydrodynamics equations discretely by 

partitioning the spatial problem domain into a collection of volumetric 

elements defined by a mesh. It has many implementations for most HPC 

programming models and languages, including Chapel. 

I tried different Chapel configurations to get the fastest run time and used that as my 

performance baseline. There are two environment variables I tuned for performance: 

CHPL_TASKS (“fifo” or “qthreads” implementation as the Chapel tasking layer) and 

CHPL_RT_NUM_THREADS_PER_LOCALE (up to how many threads can be 

created per node). Based on my experimental results, I’ve concluded that fifo is better 

for HPL and LULESH while qthreads is better for ISx. Those values are what I used 

to measure the performance reported in the rest of this section. As for 

CHPL_RT_NUM_THREADS_PER_LOCALE4, it only affects the fifo version and 

                                                 

4 Ideally, I would not need to set this environment variable since I want fifo to spawn as many threads 

as it needs and qthreads internally creates fixed number of user-level threads. However, the 

performance difference makes it a worthwhile effort. 
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the details will be discussed case by case. I focused on the strong scaling study for 

HPL and LULESH (fixed problem size), and the weak scaling study for ISx (fixed 

problem size per task).  

To clarify, while profiling, I only used “fifo” as the Chapel tasking layer and 

compiled all programs with “--llvm --no-checks” (using the llvm frontend 

with no boundary checks). I did not use “—fast” in profiling since my 

intraprocedural analysis heavily depends on the generated LLVM bitcode of the 

Chapel program and “—fast” option loses too much debug information that I need 

to associate the IR-level objects (temporary variables and registers) with the source-

level variables. I also discussed the optimization guided by my tool for each 

benchmark in detail. Since all execution time was measured for binaries built with “—

fast”, I demonstrated that the optimization found by profiling non-optimized 

versions still helps in tuning the optimized versions. 

5.3.1 HPL 

 

Figure 5.5: Data-centric blame for HPL on 2 locales. The red rectangles enclose 

interesting variables with their name, type, full calling context, and blame percentage. 
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Figure 5.5 shows the blame for each variable as well as the context information in the 

source, including the name, type, and full call path to the point where the associated 

variable is declared. Note that there are some functions ending with numbers (e.g. 

“on_fn44” and “coforall_fn14”) in the calling context; they are auto-generated by the 

compiler to handle the parallel constructs (e.g. “forall”) in the program. Users can 

simply ignore those functions or treat them as code blocks of the nearest caller 

function when analyzing the result. First, I describe the purpose of the most blamed 

variables and functions (the corresponding blame is shown in the parentheses). Then I 

explain how I interpret the blame results in both code-centric and data-centric ways to 

discover the performance bottlenecks and scalability issues. Finally, I use this 

information to optimize the program. 

Ab (55.7%): A 2D array allocated on distributed memory with the distributed domain 

MatVectSpace. It holds the value of a matrix and a vector and is responsible for the 

calculation of most linear equations in the program. 

MatVectSpace (18.6%): A 2D domain that represents the n X n matrix adjacent to the 

column vector b. It uses the BlockCyclic distribution to distribute Ab to all nodes, 

leveraging the spatial locality in the blocked-computation. The default block size is 8, 

which can be tuned for performance in executions. 

Figure 5.6 shows the inclusive code-centric result in the user-level calling context. 

Several functions are described below: 
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Figure 5.6: Code-centric blame for HPL on 2 locales. The red rectangles enclose 

runtime functions that indicate special performance issues and the underscored are user 

functions that are to be optimized 

LUFactorize (45.5%): The function that consumes the most CPU cycles. It computes 

the blocked LU factorization with pivoting for matrix augmented with a vector of 

right-hand-side values. The computation is on a block by block basis. 

schurComplement (30.7%): Computes the distributed matrix-multiplication. Each 

locale with a block of data updates itself by multiplying the neighboring left block to 

the upper block.  

panelSolve (13.4%): Does unblocked-LU decomposition in the specified panel and 

updates the pivot vector for Ab, difficult to optimize for its unblocked data accesses. 
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pthread_spin_lock (14.3%): A low-level synchronization function used by the Chapel 

runtime for concurrent operations on the shared memory. The percentage shows the 

overhead in the Chapel tasking layer. 

chpl_comm_barrier (7.5%): A Chapel runtime library function used to implement 

implicit barriers in Chapel. The time spent on chpl_comm_barrier indicates load 

imbalance in the program. 

polling (3.4%): A specific task created on each locale to check for Active Messages 

(both requests and replies) which are inbound to that locale. Time spent on polling 

shows the communication overhead in the program. 

 

Table 5.2: Major data-centric and code-centric blame percentages for HPL on different 

number of locales 

#Locales 2 4 8 16 32(200) 

Variable Name Data-centric Blame 

Ab 55.7% 45.8% 36.4% 32.7% 23.6% 

MatVectSpace 18.6% 27.8% 37.1% 38.7% 51.0% 

Function Name Code-centric Blame 

schurComplement 30.7% 22.2% 17.3% 14.0% 8.7% 

panelSolve 13.4% 15.7% 15.0% 15.8% 12.0% 

polling 3.4% 11.5% 7.5% 11.7% 9.6% 

chpl_comm_barrier 7.5% 10.5% 11.4% 11.5% 11.0% 

pthread_spin_lock 14.3% 3.8% 7.1% 5.0% 4.5% 

 

Discussion and Optimization: Variable Ab and MatVectSpace, and function 

schurComplement and panelSolve are the most telling data about what is going on in 
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the program. Table 5.2 summarizes the profiling data of these program elements after 

executing on from 2 to 32 locales. CHPL_RT_NUM_THREADS_PER_LOCALE is 

set to be the number in the parentheses associated with the number of locales entry 

and unset otherwise, for the best performance on that number of locales. The Same 

denotation is used in Table 5.3 and Table 5.9. The relative weight change between 

variable MatVectSpace and Ab as more locales are used shows that the initialization 

cost of a distributed domain is very high. The increasing proportion of polling and 

chpl_comm_barrier and the decrease of pthread_spin_lock show that the inter-locale 

overhead becomes dominant over the intra-locale as more locales are involved. 

I explored several ways to optimize the program. First, in schurComplement, I can 

enable the ‘local’ clause right inside the ‘forall’ loop to assert the local matrix 

multiplication and remove redundant communication calls. Code segments 

guaranteed to access only local data may be enclosed within a ‘local’ statement. The 

keyword restrains the compiler from generating wide pointers 5  to access some 

distributed variables. This change reduced the total execution time by 3.1%. The 

speedups are summarized in Table 5.3. 

The optimization to function panelSolve is trickier as most of its computation needs 

to access remote data. I leveraged the ReplicatedDist module to create a local copy of 

a row in Ab on each locale to avoid frequent remote accesses within the loop. The 

modified code is shown in Figure 5.7: Loop optimization using replication for 

panelSolve.  

 

                                                 

5 Chapel uses “wide pointers” to point to non-local data. 
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Figure 5.7: Loop optimization using replication for panelSolve 

However, this optimization only got a speedup of 1.1x in the test on 4 locales. It is 

because the overhead caused by updating the local copy (AbRep) in every iteration 

cannot be compensated by the performance benefit it brings when the block size is 

not well tuned with different problem sizes and the number of locales, in which case 

the locality is not fully leveraged. 

The HPL benchmark has been studied and highly optimized for years so it is hard to 

further improve the performance without a major change to the fundamental 

algorithm. However, I still gained some insights and speedups with the help of 

ChplBlamer-ML. 

 

 

const DLow: int = panel.dim(2).low; 

const DHigh: int = panel.dim(2).high; 

const DRep: domain(2)  

  dmapped ReplicatedDist()={1..1,Dlow..Dhigh}; 

var AbRep: [DRep] elemType; 

for k in panel.dim(2) { 

  ... 

  AbRep = Ab[k..k, DLow..DHigh]; 

  forall (i,j) in panel[k+1.., k+1..] { 

     local { 

       Ab[i,j] -= Ab[I,k] * AbRep[1,j]; 

... 
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Table 5.3: Speedups of the localization optimization for HPL 

#Locales 2 4 8 16 32(200) 

original (s) 13.67 18.26 17.70 19.30 30.48 

localization (s) 13.49 18.01 17.52 17.98 29.08 

speedup 1.01x 1.01x 1.01x 1.07x 1.05x 

 

5.3.2 ISx 

The Chapel port of ISx is a newly developed benchmark based on the OpenSHMEM 

implementation [73]. Table 5.4 shows the most blamed objects in both data-centric 

and code-centric profiling of ISx execution on 2 or 8 locales. The difference between 

2-loc and 8-loc tells us which program objects (variable or function) are more 

affected by the communication and task synchronization cost. 

myBucketedKeys (41.1%): It is a local variable in bucketSort, an array of configurable 

number (default 5,592,400) of keys. Every task allocates each one of this variable and 

populates the value in function bucketizeLocalKeys.  

barrier (10.3%): An instance of the Barrier class in Chapel, it is used for task 

synchronization in the program. Since the current implementation of the Barrier 

standard module is not expected to perform well at scale, this variable becomes a 

major performance bottleneck when the number of tasks increases. 

sendOffsets (27.3%) and bucketOffsets(26.9%): sendOffsets is an array of integers 

allocated on the master locale and bucketOffsets is the local copy of sendOffsets for 

each task and is used to compute myBucketedKeys in function bucketizeLocalKeys. 
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Function bucketSort is the core function to implement the sorting algorithm. It 

consists of 5 steps (each step is implemented by a sub-function): makeInput, 

countLocalBucketSizes, bucketizeLocalKeys, exchangeKeys, and countLocalKeys. 

 

Table 5.4: Data-centric and code-centric results of the most blamed variables and 

functions in ISx on 2 or 8 locales 

Data-centric type context 2-loc 8-loc 

myBucketedKeys Struct bucketSort 41.1% 22.9% 

myKeys Struct bucketSort 36.9% 20.9% 

sendOffsets Struct bucketSort 27.3% 15.4% 

bucketOffsets Struct bucketizeLocalKeys 26.9% 15.2% 

barrier Struct chpl_user_main 10.3% 20.8% 

Code-centric context 2-loc 8-loc 

bucketSort chpl_user_main 80.9% 64.2% 

bucketizeLocalKeys bucketSort 40.2% 22.3% 

countLocalKeys bucketSort 11.4% 6.4% 

pthread_spin_lock chpl_gen_main 16.7% 29.3% 

chpl_comm_barrier Chapel runtime 0 3.46% 

 

Discussion and Optimization: With the help of ChplBlamer-ML, I easily identified 

the most “valuable” variables (such as barrier, myBucketedKeys, and myKeys) and 

functions (such as bucketizeLocalKeys, countLocalKeys) in terms of the performance. 

Optimizing the Barrier module would be the best thing to do since it affects the 

scalability largely and that is indeed part of the future work of the Chapel team. Here, 

I optimized the code using localization (localizing certain computation using the 
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‘local’ clause), similar to what I did for HPL. By tracking the most blamed variable 

myBucketedKeys, I found an opportunity for localization inside bucketizeLocalKeys. I 

enclosed all computation of that function in a ‘local’ statement. The same 

modification was done for the scan operation on variable sendOffsets. After the 

optimization, the blame percentage of those variables and functions also decreased 

correspondingly, as shown in Table 5.5. Table 5.6 lists the speedups on a different 

number of locales with the simple modification. 

 

Table 5.5: Blame change before and after the optimization for related variables and 

function (bottom row) 

Name original localization 

myBucketedKeys 41.11% 17.78% 

sendOffsets 27.28% 6.02% 

bucketOffsets 26.85% 5.46% 

bucketizeLocalKeys 40.24% 24.54% 

 

 

Table 5.6: Speedups of the localization optimization on a different number of locales for 

ISx 

#Locales 2 4 8 16 32 

original (s) 0.53 0.66 0.89 1.30 2.21 

localization (s) 0.42 0.59 0.85 1.19 1.99 

speedup 1.26x 1.12x 1.05x 1.09x 1.11x 
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5.3.3 LULESH 

The input problem size for all tests is 15 elements per edge. I carefully tuned 

CHPL_RT_NUM_THREADS_PER_LOCALE for tests on a different number of 

locales. The best values are indicated in Table 5.9. After manually tuning the 

parameter, I found that the best value is always 4 when you allocate more than 8 

locales. This experience shows the poor intra-node scalability of the program because 

the thread-level parallelism is not fully utilized. Table 5.7 shows the data-centric 

blame result of LULESH. 

 

Table 5.7: Data-centric blame for LULESH 

Variable Type Blame Context 

Elems Struct 74.3% chpl_gen_main 

elemToNode Struct 60.4% chpl_gen_main 

xd/yd/zd Struct 48.0% chpl_gen_main 

x/y/z Struct 37.0% chpl_gen_main 

fx/fy/fz Struct 35.6% chpl_gen_main 

dvdx/dvdy/dvdz Struct 33.4% CalcHourglassControlForElems 

x8n/y8n/z8n Struct 33.3% CalcHourglassControlForElems 

elemMass Struct 29.5% chpl_gen_main 

hgfx/hgfy/hgfz Array 26.7% CalcFBHourglassForceForElems 

shx/shy/shz Double 26.7% CalcElemFBHourglassForce 

hx/hy/hz Array 26.6% CalcElemFBHourglassForce 

dxx/dyy/dzz Struct 12.2% CalcLagrangeElements 
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Elems (74.3%): The essential domain that the construction of most distributed 

variables use. It uses block distribution so the block of elements to compute are 

evenly distributed among all compute nodes.  

elemToNode (60.4%): A large distributed array that supports the complement 

mapping between each element and its surrounding nodes (Node and Element are the 

two most important units for computation in the program; each Element has 8 

neighboring Nodes by default). Therefore, elemToNode is accessed frequently during 

the entire course of execution by all nodes to retrieve the index information. 

x/y/z (37.0%), xd/yd/zd (48.0%), and fx/fy/fz (35.6%): These are attributes of each 

Node, representing the coordinates, velocities, and forces in each dimension. They are 

calculated and updated frequently during the simulation process. 

 

Table 5.8: Code-centric blame for LULESH 

Function (caller->callee) Blame 

chpl_gen_main->chpl_user_main 94.3% 

chpl_user_main->CalcForceForNode 47.9% 

CalcForceForNode->CalcVolumeForceForElems 46.6% 

CalcVolumeForceForElems->CalcHourglassControlForElems 34.6% 

CalcHourglassControlForElems->CalcFBHourglassForceForElems 27.1% 

chpl_user_main->ApplyMaterialPropertiesForElems 15.5% 

chpl_user_main->CalcLagrangeElements 12.9% 

chpl_user_main->CalcQForElems 12.6% 

CalcLagrangeElements->CalcKinematicsForElems 11.4% 

CalcQForElems->CalcMonotonicQGradientsForElems 9.4% 

CalcVolumeForceForElems->IntegrateStressForElems 8.7% 
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Table 5.8 lists the most blamed user functions. I show the callsite of each function 

(caller->callee). The blame percentage shown above is the inclusive result. 

Discussion and Optimization: I found some optimizations that speed up the program 

by a factor of 1.4x for LULESH on a single locale. First, I tried those optimizations to 

see if they still benefit the performance in a multi-locale environment.  

Two of my earlier optimizations from a single locale still help the multi-locale 

LULESH execution as you can see the speedups of “O1” over “original” in Table 5.9. 

The modification to function CalcElemNodeNormals improves the performance by 

6% by minimizing the construction and destruction of temporary tuples. However, the 

biggest contribution is by safely hoisting several distributed local variables such as 

dvdx/dvdy/dvdz, x8n/y8n/z8n, dxx/dyy/dzz to the global space so that they won’t be 

dynamically allocated whenever the function that declares them is called. I call this 

optimization “globalization” in the following description. Globalization is very 

important to multi-locale execution since creating and initializing distributed 

variables is expensive. Within a single locale, frequent data allocation and reclaim 

also cause thread contention, which is also bad for performance.  

However, the scalability of LULESH is still not good enough although the execution 

time does seem to drop a little bit on the 32-locale case. I further examined the 

program by tracking the accesses of the most blamed variables. 

localizeNeighborNodes is an inline function that is called at multiple places to get the 

local copies of some attributes, like coordinates (x/y/z) and velocities (xd/yd/zd) of 

the neighboring Nodes of an Element for the purpose of optimization. However, it 
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performs 32 (when I use the default value 8 for the parameter nodesPerElem) remote 

data accesses for each Element in a sequential order because the neighboring Nodes 

may not be on the same locale with the Element. Besides, the function is called inside 

deeply nested loops, so it still causes significant communication overhead.  

Figure 5.8 illustrates an example of such as a case: The attributes of the blue Element 

and Nodes are stored on Locale 1 while the red ones are on Locale 2; the blue 

Element on the border of the two locales needs to access the red Nodes on Locale 2, 

which incurs a remote access. 

 

 

Figure 5.8: An Element-Node topology that would cause remote data accesses 

To fix the problem, I allocate 6 new array variables: x_map, y_map, z_map, xd_map, 

yd_map, and zd_map to prestore the 8 neighboring Nodes for each Element. They use 

the same distributed domain Elems so that they can be read or written in a distributed 

parallel style, just like other Elems based distributed variables. Now except for the 

first call of localizeNeighborNodes in initMasses, I can remove all other calls to that 

communication-intensive function localizeNeighborNodes and simply do the copy to 

localize Node’s attributes. 
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To update those map variables as the execution continues, I create a function 

updateNeighborNodeMaps using full parallelism (all available threads) to do so once 

in each LagrangeNodal call. In this way, I avoided redundant remote accesses to the 

data that has been accessed before and I refer to this optimization as “replication”. 

Replication brings more opportunities for localization, now I can enclose most 

computation into the “local” statement as long as they are within the loop iteration of 

same distributed domain Elems. I’ve found several functions that can benefit from 

this replication and localization combined optimization, such as 

CalcHourglassControlForElems. The performance improvement is shown in Table 

5.9 (“O2” is the combination of all optimizations: globalization, localization, and 

replication). Overall, I improved the performance of LULESH by a factor of 4x on 32 

locales. Significantly, I move from having slowdown as more locales were added to 

having speedups. 

 

Table 5.9: Speedups of optimization on a different number of locales for LULESH 

#Locales 2(12) 4(12) 8(4) 16(4) 32(4) 

original (s) 17.70 17.99 19.84 22.80 28.26 

O1 (s) 14.89 13.40 14.73 14.51 11.29 

speedup-01 1.19x 1.34x 1.35x 1.57x 2.51x 

O2 (s) 11.73 9.74 8.15 8.20 7.10 

speedup-02 1.51x 1.85x 2.43x 2.78x 3.98x 
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5.4 Discussion and Summary 

This chapter describes ChplBlamer-ML, a profiler to identify, quantify, and analyze 

the performance bottlenecks in multi-locale Chapel programs. Compared to the 

single-locale ChplBlamer, ChplBlamer-ML fully supports multi-locale, asynchronous 

and remote tasking; provides richer information such as inter-node load imbalance, 

and incurs much lower runtime overhead, from 3.5x to 14%. Guided by ChplBlamer-

ML, I was able to pinpoint performance bottlenecks in three communication-bound 

multi-locale Chapel benchmarks and identify the causes in the user-level context. I 

used three optimization techniques:  globalization, replication, and localization to 

improve three benchmark codes. With little modification to the code, I was able to 

achieve speedups of 1.05x for HPL, 1.11x for ISx, and 4.0x for LULESH on 32 

locales over the previously fastest versions. 

I also studied the overhead of ChplBlamer-ML. Table 5.10 shows the overhead study 

of ChplBlamer-ML on three multi-locale benchmarks. It shows the time spent in each 

step of a profiling, including a pre-run static analysis, an execution with sampling and 

instrumentation enabled, and a post-run processing. The runtime overhead is 

calculated with (𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝐶𝑙𝑒𝑎𝑛 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛⁄ ) − 1 , which shows the 

extra time cost of the sampling and instrumentation I added. The total overhead is 

calculated with (𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑓𝑖𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝐶𝑙𝑒𝑎𝑛 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛⁄ ) − 1 , while the Total 

profiling time is the sum of static analysis, monitored execution and post processing. 

The total overhead shows the overhead of one-time profiling of a particular 

benchmark. As is shown in the table, there is a big difference between the runtime 

overhead and total overhead due to the pre-run and post-run analyses. Fortunately, the 
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static analysis runs only once for each benchmark. After that, users can experiment 

with different problem sizes as many times as they need, thus, the overhead of static 

analysis can be amortized. The post processing is proportional to the total number of 

samples, which is originally determined by an adjustable sampling rate that’s used in 

ChplBlamer-ML. Therefore, the runtime overhead is the key overhead to users.  

Further investigation reveals the major contributor to the runtime overhead; it’s the 

instrumentation I added into the Chapel runtime library. Since it enforces a stack 

unwinding whenever a unique asynchronous task is created or a unique parallel 

region is met in context, the more unique parallel and asynchronous regions exist in a 

program, the higher runtime overhead it may incur. 

 

Table 5.10: ChplBlamer overhead study 

Benchmark 

name 

Clean 

execution 

Static 

analysis 

Monitored 

execution 

Post 

processing 

Runtime 

overhead 

Total 

overhead 

HPL 19.38 7.82 22.16 10.24 14.3% 107% 

ISx 2.13 5.68 2.18 1.35 2.3% 332% 

LULESH 15.27 32.66 20.56 9.75 34.6% 312% 

Unit: seconds 
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Chapter 6 

Data-centric Profiling for GPGPU Applications   

Historically, GPUs were used for graphics only. However, with the high demand of 

computing capability and the increased programmability of GPUs, people are seeking 

to apply GPUs for general purpose applications (GPGPU). Using a CPU-GPU hybrid 

computing framework is becoming a common configuration for mainstream 

supercomputers. The wide deployment of GPUs (as well as other hardware 

accelerators) brings to the HPC community a big question: Are we using them 

effectively? Unlike CPU programming, GPU programming must take into 

consideration GPU architecture specifications. Inappropriate use of GPUs will 

generate incorrect results in certain cases, but more often, will slow down the 

program instead of speed it up with its massive parallelism. In CUDA, functions that 

are launched by CPUs and run on GPUs are called “kernels”. The performance of 

kernels directly determines how well we utilize the GPU devices. Unfortunately, 

besides NVP [57], there are few performance tools for CUDA programmers to detect 

performance bottlenecks and obtain insight for optimization. Therefore, my work, 

CUDABlamer, fills a critical need for programmers to analyze the runtime 

characteristics of kernels and obtain insights for optimizations for better GPU 

utilization. With CUDABlamer, we improved the kernel performance of two 

benchmarks by a factor of up to 46.6x. 
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6.1 Introduction 

GPU profiling is a non-trivial but valuable problem. It is difficult because it requires 

in-depth knowledge of the characteristics of the GPU hardware and the complicated 

execution model of both the CPU and GPU involved. Combining modern computing 

systems with multi-core CPUs with multi-threading, plus the massive parallelism 

GPUs, the complexity of program execution substantially escalates. Therefore, the 

complexity to reasonably reflect the performance characteristics of these GPU-

accelerated applications has significantly increased. There have been continuous 

efforts made in this field since GPU began to be popular in the HPC community. 

However, tool development has resulted in only a few profilers that can be used for 

GPU programmers. It is partially because the hardware is quickly upgrading and new 

features are being added to the architecture, while software support is still on the way. 

Moreover, CUDA [54], as the most commonly used GPU programming model, is not 

open-sourced, which limits effective measurement of the language performance by 

academic researches.  

Currently, NVP [57] dominates the CUDA profiling and optimization needs. While it 

is an easy-to-use, information-rich performance tool with comprehensive 

performance metrics measurement and valuable optimization guidance, it has several 

limitations: 1
st
, it does not associate performance statistics to fine-grained data or 

code objects within launched kernels; 2
nd

, it does not provide complete calling 

context for each kernel launched. These two features are very desirable for CUDA 

programmers to understand performance and conduct fine-grained tuning.  
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Therefore, I have designed and implemented a performance analysis tool 

“CUDABlamer”, for GPU-accelerated programs as an alternative approach for 

programmers who are interested in GPU kernel performance analysis and 

optimization. Based on the same “Blame” idea as was used in ChplBlamer, I use a 

static analysis and dynamic sampling combined approach to generate data-centric 

performance profiles for CUDA programs. Though the top-level idea and the 

framework are the same as ChplBlamer, shown in Figure 4.1, CUDABlamer needs to 

handle a number of language-specific issues in implementing such a data-centric 

profiler. As to the runtime information collection, I used PAPI to access CPU 

hardware counters, and its sampling mechanism drives my sampling-based approach 

in profiling. However, PAPI has no native support for GPU; its current support is 

essentially a simple wrapper of NVIDIA CUPTI library. In CUDABlamer, I used 

CUPTI to obtain the runtime information of the target applications. 

The NVIDIA CUDA Profiling Tools Interface (CUPTI) provides performance 

analysis tools with detailed information about how applications are using the GPUs in 

a system. CUPTI provides two simple mechanisms to enable performance tools to 

understand the inner workings of an application and deliver valuable insights to 

developers. The first mechanism is a callback API that allows tools to inject analysis 

code into the entry and exit point of each CUDA C Runtime (CUDART) and CUDA 

Driver API function.  Using this callback API, tools can monitor an application’s 

interactions with the CUDA runtime and driver.  The second mechanism allows 

performance analysis tools to query and configure hardware event counters in GPU 

and software event counters in the CUDA driver.  These event-counters record 
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activity such as instruction counts, memory transactions, cache hits/misses, divergent 

branches, and more [77]. How we utilized CUPTI will be detailed in Section 6.2.2. 

6.2 Tool Design and Implementation 

Profilers that monitor GPU kernel execution are complicated by the limited hardware 

support of fine-grained kernel measurement and the asynchronous concurrency that 

exists between the CPU and GPU. Programs that run on GPUs are treated like a black 

box, where measurements can only be read at the start and stop points of kernel 

launches. Therefore, pure timestamps based measurement of GPU-accelerated 

applications is too coarse-grained for complicated kernels. Most current profiling 

methods provide an overview of the behaviors of the application in a summarized 

manner without exposing sufficient low-level details. My tool, CUDABlamer, has 

been designed to provide more low-level details about kernel execution. More 

importantly, CUDABlamer is another instantiation of my “blame” idea for highly 

parallel programming models. I re-used the same basic framework of ChplBlamer, 

using LLVM based static analysis and sampling based dynamic analysis approaches 

to generate complete performance profiles, which will attribute performance data 

back to CUDA source data objects. In order to apply the unique data-centric profiling 

capability of ChplBlamer to CUDA programs, I have dealt with several CUDA-

specific technical problems. 

6.2.1 Language-specific LLVM Handling in Static Analysis  

The two dominant programming models for GPUs are NVDIA’s CUDA [54] and the 

cross-platform OpenCL standard [78]. While NVIDIA has previously open sourced 
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their NVPTX code generator [79], encouraging language and compiler research and 

development, a completely open-source CUDA compiler is necessary for promoting 

general compiler and architecture research, especially in addressing the performance 

issues and understanding the execution characteristics. Fortunately, Jingyue and 

Artem, et al. [80] have proposed gpucc, an LLVM-based, fully open-source CUDA 

compatible compiler. The work has been integrated into LLVM toolchain [81] since 

LLVM 3.9 and is still in active development. To support the GPU in the test, GP100 

[89], I used LLVM 4.1 and CUDA 8.0 package. When running static analysis on the 

CUDA IR (intermediate representation), I added some CUDA-specific language 

features that didn't need to be handled for Chapel. 

First, CUDA runtime API and driver API calls. Common calls like cudaMalloc, 

associates a pointer variable with a memory allocation on the GPU; cudaMemcpy 

establishes a data-dependency relationship between host memory and device memory 

pointers; cudaBindTexture binds a memory area to a texture, therefore establishing a 

data-dependency relationship between the pointer pointing to the memory area on 

device and the texture reference, etc. Since my data-centric profiling approach 

depends on the complete data-flow information, I took special steps to analyze those 

library functions. Specifically, I manually figured out the blamed parameter indices of 

those CUDA API functions and prestore the corresponding parameter indices in a 

file; my tool retrieves the information and recovers the data-dependency relationships 

between parameters during the postmortem processing step. With the information of 

blamed parameters, CUDABlamer is able to propagate blame to the callers via 

blamed parameters for calls to those functions. 
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Second, the Clang frontend for CUDA generates IR in a style that is different from 

Chapel’s LLVM frontend in some ways. For example, to handle the situation in GPU 

kernels where variables are defined in different GPU memory spaces: global, shared, 

local, it frequently uses the “addrspacecast .. to” instruction, which converts the 

pointer value from one type to another. Pointer conversions within different address 

spaces should use this instruction while “bitcast .. to” must be performed for pointers 

in the same address space. I basically mimicked the way that ChplBlamer processed 

“bitcast .. to” instruction so that the intra-procedural blame analysis will not be 

broken and correct source variables can be blamed through appropriate propagation 

among complex temporary variables. 

Third, the Clang frontend for CUDA tends to produce composite instructions in the 

IR, which means an operand of an instruction can be another instruction. The most 

frequent instruction that has this kind of composite operands is the “getelementptr” 

(GEP) instruction. As we introduced in Section 4.1.2, the analysis of GEP instructions 

is very important in implementing my hierarchical blame attribution idea. The 

composite operand can be another GEP instruction or a casting instruction, such as 

addrspacecast or bitcast. In order to maintain the “Parent-Child” relationships 

between correct variables, I used a recursive approach to process it whenever a 

composite operand is met, keeping the necessary dataflow information complete and 

concise in the static analysis phase. 

Last, name de-mangling. The names of functions and variables in CUDA IR are 

mangled, thus simply presenting the mangled names to users will be confusing. I 
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retrieved native names from debug information and kept them along with mangled 

link names for each program object and finally presented native names in GUI. 

6.2.2 Calling Context Construction for CPU-GPU Hybrid Framework 

Besides the changes in the static analysis component, I basically rewrite the whole 

dynamic sampling and part of the postmortem analysis component, in order to 

construct the complete calling context for CUDA applications. The complete calling 

context I refer to here is defined as the combination of a complete call stack on GPUs 

(device) from the sampled point during the execution to the top-level kernel function, 

and the complete call stack on CPU (host) from that exact kernel’s launch point to the 

top-level main function. To my knowledge, this work is the first attempt at gaining 

the complete calling context for a CPU-GPU Hybrid computing framework. It was a 

surprise to me at first that there was no existing work that provides such information, 

as its importance in performance profiling and tuning is obvious. Later, I realized the 

difficulty in doing so due to the limitation in both hardware support and complex 

asynchronous execution model of CUDA. In this work, I use static analysis combined 

with the runtime partial stack information to reconstruct the complete calling context. 

This approach has been evaluated on 16 open-source benchmarks and proved to be 

effective in most cases. 

CUDABlamer utilizes the CUPTI Callback API and Activity API to sample the 

kernel execution and gain runtime stack information. Just like using the NVIDIA 

profiler, programmers need to insert two function calls: “initTrace” and “finiTrace” at 

the start and the end of the code region that they are interested in profiling. There is 

another option in CUDABlamer that programmers don’t need to do anything to their 
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source code and the profiling will begin when the program starts to execute. Currently, 

manually inserting those two calls is the default option since it allows programmers to 

explicitly control the scope of interest and avoid additional runtime overhead. After 

initializing the profiling, CUDABlamer will start tracking kernel execution as the 

program runs.  

6.2.2.1 CPU Stack for Kernel Launch 

To get the CPU stack trace for each kernel launch, CUDABlamer registers a callback 

in “initTrace”, which is invoked whenever a kernel is launched. The callback method 

is a mechanism in the device layer that triggers callbacks on the host for registered 

actions or events. The callback function in CUDABlamer does a simple stack 

unwinding on CPU using libunwind [82]. While logging the stacktrace for each 

kernel launch, it also records the “correlationId” of that specific kernel launch, to be 

used as a unique ID when concatenating with the GPU stack. 

6.2.2.2 GPU Sampling 

We use sampling to get the CUDA program runtime characteristics. CUPTI provides 

an Activity API that allows asynchronous collections of a trace of an application’s 

CPU and GPU activity. Moreover, CUPTI supports device-wide sampling of the 

program counter (PC). In CUDA, each SM (streaming multiprocessor) splits its own 

blocks into warps (currently with a maximum size of 32 threads). All the threads in a 

warp execute concurrently on the resources of the SM. The PC Sampling gives the 

number of samples for each source and assembly line with various stall reasons. 

Samples are taken in Round-robin order for all active warps at a fixed number of 

cycles regardless of whether the warp is issuing an instruction or not. The PC 
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Sampling feature is only available on devices with compute capability 5.2 and higher. 

Therefore, in “initTrace”, CUDABlamer enables the tracking of PC Sampling activity 

by calling cuptiActivityEnable(CUPTI_ACTIVITY_KIND_PC_SAMPLING) and 

configures the sampling period by choosing one from five CUPTI pre-set options 

(MIN, LOW, MID, HIGH, MAX). CUPTI Activity API also provides an 

asynchronous buffering mechanism, with which you can record the activity data and 

deliver the data to output streams asynchronously. There are three types of activity 

information that CUDABlamer delivers: 1. FUNCTION: it records device function 

(including kernels) information, including the unique function ID, module ID and 

function name; 2. SOURCE_LOCATOR: it records the source line and file 

information for sampled instructions, with a unique ID for each new source locator; 3. 

PC_SAMPLING: it records the corresponding source locator ID, function ID, and 

correlation ID, which maps to the exact kernel launch that this sample is associated 

with. These activity records are collected as profiles and are written out to disk for 

further analysis.  

6.2.2.3 Reconstruct the Calling Context 

With all the runtime information collected in Section 6.2.2.1 and Section 6.2.2.2, 

CUDABlamer is able to derive the complete calling context for each sample in the 

postmortem processing step. As I explained in the previous section, each PC sample 

records 3 numbers: source locator ID, function ID, and correlation ID. The correlation 

ID can relate that particular sample to the CPU stacktrace of the associated kernel 

launch. The source locator ID and the function ID show the source line number and 

filename corresponding to that sample and in which device function that sample is 
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triggered. Now we have the CPU stacktrace, but how do we rebuild the GPU 

stacktrace for a particular sample? Consider Figure 6.1 as an example: the GPU 

kernel kernelFunc calls two device function foo and bar at line 8 and line 18, 

respectively and function foo also calls bar at line 38. CUDABlamer has already 

obtained all call sites for each procedure earlier in the static analysis step; therefore, 

it’s not difficult to build a call graph (Note the arrows are reversed to show the call 

path from the callee to the caller) for the sample code, displayed in Figure 6.2.  

 

 

Figure 6.1: Sample CUDA code 

Now suppose we have three samples gathered during execution, denoted as Sample 1, 

Sample 2 and Sample 3. For Sample 1 and Sample 2, their GPU stacks are easy to 

determine since the paths from the sample point to the kernel are unique. For Sample 

1 __global__ void kernelFunc(…){ 

  … 

8    foo();     

    …   

18  bar();     

  … 

 } 

 

28 __device__ void foo(){ 

    … 

38    bar();   

39    x = 1;    //Sample 1 

40    y = 2;   //Sample 2 

   … 

 } 

 

48 __device__ void bar(){ 

  … 

56    A[i] = B[i] * s; //Sample 3 

    … 

88 } 
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3, however, there are two possible paths from the sample point to the top-level kernel: 

bar->kernelFunc and bar->foo->kernelFunc. Until now, limited by the context 

information from CUPTI library, CUDABlamer is unable to distinguish these two 

potential call paths. Therefore, it will create two stacktraces for the same sample with 

a weight of 0.5 for each stacktrace. The weight for each GPU stacktrace is basically 

calculated by dividing 1 by the number of possible call paths from the sample point to 

the top-level kernel.  

 

 

Figure 6.2: Reversed call graph for the sample code Fig. 6.1 

Each sample starts with a source function and a destination function (E.g., S3 has a 

source function “bar” and a destination function “kernelFunc”). To derive all possible 

call paths for a particular sample from the source and destination functions, we 

developed a modified Depth-First-Search [83] algorithm to recursively traverse all 

possible call nodes in the reversed call graph. The pseudocode is shown in Figure 6.3. 

For each sample, it starts with a srcName and desName, representing the bottom 

frame where this sample is triggered and the top kernel frame on GPU, respectively. 
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The algorithm keeps adding frames to the call stack for this sample until srcName 

equals to desName, meaning it finishes finding a path from the sample point to the 

kernel. 

 

Figure 6.3: Pseudocode of finding all possible call paths 

This approach explores all potential GPU stacktraces for each sample; therefore, it is 

conservative and could incur high processing time. However, since most GPU call 

stacks will have no more than three levels and the ambiguity only happens when the 

sample is triggered from a device function that has multiple call sites within the same 

kernel launch, this method of combining the static calling context information with 

the runtime sample information works very well in most benchmarks we tested. 

Evaluation details can be found in Section 6.2.2.4. Moreover, since the call depth on 

GPU is usually shallow, the time cost of running my modified depth-first-search 

void findAllPaths(string srcName, string desName, int 

 &idx, unordered_map<string, bool> &visited, 

 Instance &inst, int srcLine, string srcFile) { 

  

 create a frame for srcName; 

 push it into the instance from this sample; 

 set the function with srcName as visited; 

 if srcName == desName 

  finish the instance created for this sample; 

  put the instance to the global instance map; 

 else 

  for all callers of this callee (srcName) 

   if the caller is not visited 

    get the source line and file; 

    recursively call findAllPaths on 

the caller function with srcName being caller’s name; 

 

 

 pop out the new frame; 

 set the function as unvisited; 

} 
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algorithm is negligible. I also pre-process the GPU sample profile to count the 

number of occurrences of each unique sample, using the combination of source 

locator ID, function ID, and correlation ID as the key to the sample. Therefore, 

CUDABlamer does not need to process every sample, but only those unique ones, 

which saves the overall postmortem processing time by orders of magnitudes. The 

blame weight of each sample is now calculated by the following formula: 

 

𝑏𝑊𝑒𝑖𝑔ℎ𝑡(𝑠) = 𝑐𝑊𝑒𝑖𝑔ℎ𝑡 ∗ 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 

 

where bWeight represents the final weight of this sample with a particular call stack 

in blame calculation, cWeight is a fraction representing the share of this call stack out 

of all possible call stacks, occurrence represents how many times this unique sample 

was generated during the entire execution.  

6.2.2.4 Evaluation 

To evaluate the usability of my approach in constructing the complete calling context, 

I tried CUDABlamer on 16 benchmarks from two widely-used open-source 

benchmark suites. The two open-source benchmark suites are: 

SHOC: SHOC [84] is a spectrum of programs that test the performance and stability 

of scalable heterogeneous computing systems. At the lowest level, SHOC uses micro-

benchmarks to access architectural features of the system. At higher levels, SHOC 

uses application kernels to determine system-wide performance including intra and 

inter node communication among devices. I picked 8 benchmarks from SHOC 1.1.5. 

Rodinia: Rodinia [85] includes applications and kernels which target multi-core CPU 

and GPU platforms. The Rodinia is inspired by Berkeley’s dwarf taxonomy [86]. I 
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picked 8 benchmarks from Rodinia 3.1 that can be compiled by gpucc [80] and 

represent different types of applications. 

 

 

Figure 6.4: Coverage for SHOC and Rodinia benchmarks 

The metrics for evaluating the usability of CUDABlamer’s approach to a particular 

benchmark is called “coverage”, determined by the following formula: 

 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  
𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑆𝑎𝑚𝑝𝑙𝑒𝑠 − 𝑛𝑢𝑚𝐴mbi𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 

 

where numAmbiSamples represents the number of samples that have more than one 

possible stacktraces (“ambiguous sample”) and totalNumSamples is the total number 

of samples as the name tells. The coverage metric basically indicates what percentage 

of samples that are obtained from one run of a program will have a deterministic 

stacktrace from the sample point to the top-level kernel function. The higher the 

coverage is, the more precisely CUDABlamer can attribute time spent in that 

benchmark to variables and functions. 
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From Figure 6.4, only one benchmark cfd is not 100% covered. It is due to the calls to 

several inline function compute_speed_sqd, compute_pressure, 

compute_speed_of_sound, compute_velocity, and compute_flux_contribution at 

different points within the same kernel cuda_compute_flux. 

 

6.3 Case Studies 

To evaluate CUDABlamer, I tested it on 16 open-source benchmarks from two 

widely-used benchmark suites, as introduced in Section 6.2.2.4. From those, I studied 

the performance details of two benchmarks: Particlefilter and Triad and manually 

optimized the code. The experiments were done on a server with 2 NVIDIA Tesla 

P100 GPUs and 64 Intel Xeon Gold 6142 CPU processors (2.6 GHz). The NVIDIA 

P100 accelerator uses the Pascal architecture, featuring at extreme performance, 

including high speed, high bandwidth interconnect NVLink, and the first high 

capacity, highly efficient Chip-on-Wafer-on-Substrate stacked memory architecture 

HBM2. Each P100 GPU contains 16 GB on-chip memory and 56 SM (streaming 

multiprocessors). Each SM has 64 FP32 cores and 32 FP64 cores, which makes a 

total 5376 CUDA cores. Each SM also has 64KB of shared memory, which can be 

accessed as quickly as a register under certain access patterns. The entire GPU device 

also provides 48KB of constant memory, which is basically a global memory space 

but cached for frequent reads. Effective use of shared memory and constant memory 

can be very helpful for CUDA performance optimization. From a software 

perspective, the compilers that were used are nvcc 8.0, gcc 4.8.5 and clang 4.0.1 and 

“-O2” was used as the optimization option in the compilation. 
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6.3.1 Particlefilter 

Particle Filter (PF) is a medical imaging application that is used for tracking 

leukocytes and myocardial cells. However, this algorithm can be used in different 

domains, including video surveillance, and video compression. 

Table 6.1 shows the most blamed variables in Particlefilter, the information that 

CUDABlamer delivers to programmers include the blame percentage, name, type, 

calling context which tells whether the data object is allocated on the host or device. 

 

Table 6.1: Profiling result of Particlefilter 

Variable Type Context Blame 

ye/xe double main.particleFilter 100% 

arrayX/arrayY *double main.particleFilter 100% 

xj *double main.particleFilter 97.9% 

yj *double main.particleFilter 97.8% 

xj_GPU *double main.particleFilter 97.9% 

yj_GPU *double main.particleFilter 97.8% 

index int main.particleFilter.kernel 95.7% 

 

xe/ye (100%): Estimated centroid object location, initialized at the beginning of each 

iteration for a frame and later calculated from particle coordinates. Therefore, in each 

round, the values depend on the result of the previous round of kernel execution. 

arrayX/arrayY (100%): Array of coordinates of particles, reassigned every time after 

a kernel execution from xj/yj arrays. 
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xj/yj (97.9%/97.8%): CPU copies of xj_GPU and yj_GPU. Temporary arrays to store 

particle coordinates after the kernel execution.  

xj_GPU/yj_GPU (97.9%/97.8%): Pointers to GPU allocations, storing the computed 

results of new particle coordinates. Each element is calculated by one CUDA thread. 

index (95.7%): The main variable calculated in the kernel, indicating the index of the 

input arrays to be loaded to the corresponding output xj_GPU/yj_GPU element. 

therefore is attributed to most samples triggered within the kernel.   

Discussion and Optimization：The kernel is not complicated and does not call other 

device functions. Basically, each CUDA thread is responsible for loading one element 

in the output array based on the global Id of the thread. Therefore, simplifying the 

algorithm in the kernel is a dead end. However, CUDABlamer told us that xj_GPU 

and yj_GPU are the major blame holders. Since they are the only GPU arrays that are 

written while a few other arrays are read-only within the kernel, we can use GPU 

constant memory to store those read-only arrays. Constant memory is a global 

memory with cache, meaning except the cost for the first access, further reading the 

same memory addresses is almost as fast as on registers. Therefore, I moved 4 arrays 

(arrayX_GPU, array_GPU, u_GPU, CDF_GPU) that were previously allocated on 

the normal GPU global memory to the constant memory, resulting in an average 

speedup of 46.6x for the kernel performance, as shown in Table 6.2. The Larger the 

number-of-frames parameter is, the higher the kernel speedup will be since the cost of 

first-time access can be amortized. CUDABlamer also provides traditional code-

centric profiling result, with a complete calling context. Since Particlefilter has only 
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one kernel, the code-centric view attributes 100% to each function on the single call 

path: main->particleFilter->kernel. 

 

Table 6.2: Performance comparison for Particlefilter 

Original Kernel Execution (ms) Modified Kernel Execution (ms) Speedup 

163.1 3.5 46.6x 

 

6.3.2 Triad 

From SHOC, this benchmark is a CUDA version of the STREAM Triad benchmark 

[87], which measures sustainable memory bandwidth for a large vector dot product 

operation on single precision floating point data. The benchmark uses a block-

pipelined implementation to partially overlap the cost of the dot computation with the 

transfer of data from the host memory to the device memory. Table 6.3 shows the 

most blamed variables for Triad. First, I briefly introduced these variables. 

h_mem (100%): a host-allocated big array that has the initial values for the vectors 

and stores the output data of kernel calls. It uses offset to properly store the value for 

three vectors in a continuous memory space, thus saving time on the memory 

allocation. Therefore the value of h_mem holds the ultimate result of running the 

entire program and is assigned 100% of the blame.  

d_memC0/d_memC1 (50.8%/49.2%): The output vector of the vector dot production 

operation. The benchmark uses 2 copies to switch between computation and data 

movement, therefore the two output vectors share the total blame. 

d_memB0/d_memB1 (14.9%/19.8%): The input vector B of the kernel. 

d_memA0/d_memA1 (4.2%/5.3%): The input vector A of the kernel. 
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gid (7%): The global thread id calculated in each CUDA thread, acting as the index of 

an element in the vectors. 

 

Table 6.3: Profiling result of Triad 

Variable Type Context Blame 

h_mem *float main.RunBenchmark 100% 

d_memC0 *float main.RunBenchmark 50.8% 

d_memC1 *float main. RunBenchmark 49.2% 

d_memB1 *float main. RunBenchmark 19.8% 

d_memB0 *float main. RunBenchmark 14.9% 

gid int main. RunBenchmark 7.0% 

d_memA1 *float main. RunBenchmark 5.3% 

d_memA0 *float main. RunBenchmark 4.2% 

 

Discussion and optimization: The Triad benchmark has been widely-studied and 

highly optimized in multiple ways. The kernel is extremely small and there are no 

shared data accesses between threads within a block. Therefore, changing the 

memory types for vector allocations does not give us speedups. However, I still found 

an opportunity for optimizing the calculation of the output vectors. In the original 

code, each CUDA thread calculates one element, even though the memory accesses 

coalesce, the thread creation and destruction become the obvious overhead compared 

to the simple computation in the kernel. Therefore, I manually tuned the number of 

blocks allocated to a thread grid and use multiple operations per thread, which 

reduced the parallelism to some extent but also reduced the overhead by reusing 

active threads. The comparison between the original and modified code snippet is 
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shown in Figure 6.5 and the performance comparison in Table 6.4 shows that we 

gained a speedup of 1.2x from this optimization. 

 

 

Figure 6.5: Code comparison for Triad 

 

Table 6.4: Performance comparison for Triad 

Original Kernel Execution (ms) Modified Kernel Execution (ms) Speedup 

20.87 17.75 1.2x 

 

6.4 Discussion and Summary 

Tuning code for GPUGPU and other emerging many-core platforms is challenging 

because there are few models or tools that can precisely pinpoint performance 

bottlenecks. Although several GPGPU profilers exist, most traditional tools, 

unfortunately, simply provide programmers with a number of different kinds of 

measurements and metrics obtained by running applications. As a result, it is very 

__global__ void triad (float* A, float* B, float* C, float s) 

{ 

int gid = threadIdx.x + (blockIdx.x * blockDim.x); 

C[gid] = A[gid] + s*B[gid]; 

} 

 

Original 
 

__global__ void triad (float* A, float* B, float* C, float s) 

{ 

int gid = threadIdx.x + (blockIdx.x * blockDim.x); 

// do multiple calculations per thread 

for (; gid < nElems; gid += gridDim.x * blockDim.x) 

        C[gid] = A[gid] + s*B[gid]; 

} 

 

Optimized 
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hard for users to map these metrics back to their source code to understand the root 

causes of slowdowns, much less decide what next optimization step to take to 

alleviate the bottlenecks and improve the overall performance. Some model-based 

approaches [59, 62] are able to provide such fine-grained information by 

appropriately mapping performance metrics to the application. However, the intrinsic 

deficiency of model-based approaches limits the application of those techniques. G-

HPCTOOLKIT [64] employed some smart ways to shift the blame of slowdown back 

and forth between CPU thread execution and GPU tasks, while keeping a very low 

overhead. Although it provides the call stack on the CPU for each kernel launch, it 

does provide the call stack on the GPU. Therefore, if a complicated kernel generates a 

deep call stack on the GPU, G-HPCTOOLKIT [64] is not able to provide 

performance insights into that kernel. In comparison, my tool has the ability to 

provide users with the complete user-level calling context, from the CPU side to the 

GPU side. The call stack information can direct programmers precisely to the root 

causes of program slowdowns.  

Lim [67] focuses on characterizing kernel executions and it uses the same sampling 

mechanism provided by CUPTI [66] library as I do. Although it provides more 

detailed kernel information “instruction mix” than previous performance analysis 

tools, it does not identify the bottlenecks in the source code that cause the 

performance slowdowns. In comparison, my techniques map the performance metrics 

back to source code elements so the programmers can have a straightforward idea of 

what is slowing down the program and what are the bottlenecks of the performance. 
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Moreover, none of the existing profilers provide data-centric metrics as I use in the 

performance analysis.  

In summary, CUDABlamer distinguishes itself significantly in three aspects: 

First, the tool offers fine-grained, in-depth performance analysis into the kernel 

execution, providing programmers much more insights about the functions and tasks 

executed on GPUs. The insights are straightforward and mapped to the source; 

therefore, programmers are able to quickly locate the hotspot data or functions. 

Second, the tool uses a data-centric performance analysis technique for GPU-

accelerated applications. I utilize the GPU hardware sampling technique to get 

sampled runtime information and map that back to source code variables.  

Third, it is the first tool that offers the complete calling context in the execution 

profile, from the CPU side to GPU side, including the call stack before a kernel is 

launched and the call stack within a kernel. 

With CUDABlamer, I studied the performance of 16 GPU benchmarks and optimized 

two of them. For Particlefilter, I gained a speed of 46.6x by simply moving some 

read-only data to the constant memory space on the GPU. For Triad, I gained a 

speedup of 1.2x by reusing active threads. Moreover, I again demonstrated the 

usability and applicability of the data-centric idea “Blame” in performance analysis of 

high parallel programming models by instantiating another performance tool for a 

widely-adopted HPC programming model. 

I also studied the overhead of CUDABlamer; the result is shown in Table 6.5, using 

the same categories as Table 5.10. As I explained in Section 5.4, the runtime 

overhead is the major concern of our profiler. From Table 6.5, we see a significant 
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difference in the runtime overhead between benchmarks. With further investigation, I 

found that the high runtime overhead is largely due to the poor performance of 

PC_SAMPLING mechanism from the CUPTI library. Therefore, when the kernel is 

large and complex, the runtime overhead can surge, such as Streamcluster. 

Unfortunately, PC_SAMPLING is relatively new and currently the only available 

tool that supports sampling the GPU execution. I will keep looking for optimizations 

and hopefully, its performance will be improved in the future CUDA releases.  

 

Table 6.5: CUDABlamer overhead study 

Benchmark 

name 

Clean 

execution 

Static 

analysis 

Monitored 

execution 

Post 

processing 

Runtime 

overhead 

Total 

overhead 

Hotspot 10.43 1.61 10.82 0.83 3.7% 27.0% 

Streamcluster 16.96 2.54 115.35 55.46 580% 922% 

Particlefilter 10.21 1.34 11.1 1.74 8.7% 38.9% 

Unit: seconds 
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Chapter 7 

Conclusions   

This chapter summarizes the conclusions of this dissertation. Section 7.1 summarizes 

the contributions of this dissertation; Section 7.2 describes some open problems that 

are opportunities for future work. 

7.1 Summary of Contributions 

Using static analysis, plus the sampling-based measurements triggered by hardware 

performance counters in conjunction with call path profiling, I was able to develop 

data-centric profilers with reasonable overhead to analyze program executions on a 

parallel architecture with many hardware threads, deep memory hierarchies, and GPU 

accelerators. These methods can provide valuable insights to guide code optimization. 

 

New Performance Attribution for Emerging Programming Models 

As supercomputing evolves, the hardware tends to be more distributed and 

heterogeneous to provide massive parallelism. Meanwhile, emerging parallel 

programming models that support software programming on these powerful machines 

are in active development. Newer parallel programming models provide newer 

abstractions for programmers. However, performance tools need to keep pace with 

these changes to present useful performance information in an instructive way. Some 

traditional performance attribution methods may not be sufficient to profile these 

newer programming models. 
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In this dissertation, I proposed a new performance data attribution method for two 

highly parallel programming models: PGAS and CUDA. The new attribution 

approach is referred to as data-centric profiling and is based on the performance 

metric Blame explained in Chapter 3. This data-centric profiling technique allows 

users to attribute performance data to program variables and data structures instead of 

functions and code regions. Today, it is the data instead of the computation that 

frequently becomes the bottleneck of the overall performance. Therefore, memory 

allocation, data storage, and inter-node communication are critical to the performance 

of an HPC system and thus data-centric performance measurement and mapping 

provide valuable insights into performance optimization. 

To validate the applicability of my data-centric profiling idea, I designed and 

implemented two profilers for PGAS and CUDA, extending the Blame tool by Rutar 

[18]. For PGAS, I developed ChplBlamer, for both single-node and multi-node 

Chapel programs. It supports most Chapel language features and provides 

hierarchical profiling over program abstractions and call path profiling in the user 

context. I also augmented ChplBlamer with some new features such as data-centric 

inter-node load imbalance identification. The combination of the tool’s data-centric 

and code-centric profiling provides insights into inter and intra node communication 

bottlenecks as well as optimization opportunities that could not be discovered by 

previous Chapel profilers. For CUDA, I developed CUDABlamer for GPGPU 

programs with features not available in previous CUDA profilers. More importantly, I 

used the same tool framework, the same Blame metric, and the same Graphical User 

Interface (GUI) as ChplBlamer uses to implement CUDABlamer. Specifically, the 



 

 126 

 

use of pre-run static analysis of a language-independent intermediate representation 

(LLVM) combined with minimum necessary runtime data and thorough post-run 

processing is proven to be a generic approach to build performance tools for different 

parallel programming models. My tool framework is extensible to support other 

languages. 

 

Complete User-level Calling Context  

This dissertation also shows the importance of constructing a complete user-level 

calling context for runtime samples in effectively delivering performance issues to 

programmers. I used different strategies to construct a complete calling context for 

PGAS and CUDA based on their execution models. The functionality to get the 

complete user-level calling context for Chapel and CUDA was not achievable from 

existing performance analysis tools as far as I know. 

For the PGAS language Chapel, I added lightweight instrumentation in the Chapel 

runtime library, inside tasking and communication layers and used CPU sampling to 

gain runtime data from one run of a program. I reconstructed the complete user-level 

calling context in the post-run analysis step based on the logged runtime data and the 

pre-run static information to minimize the intrusion to the program’s execution.  

For CUDA, I used the CUDA Profiling Tools Interface (CUPTI) to do GPU sampling 

and added lightweight instrumentation to each kernel launched. Besides, I constructed 

a static calling context with the help of the pre-run static analysis. With the source 

information recorded along with runtime samples, I used a modified Depth-First-

Search algorithm to determine the actual calling context for each collected sample. 

More details can be found in Section 6.2.2. 
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Valuable Performance Insights 

To evaluate the effectiveness of ChplBlamer and CUDABlamer, I tested both 

ChplBlamer and CUDABlamer with several widely-studied open-source benchmarks. 

From the profiling results, I derived valuable insights into each program and found 

optimization for each benchmark that I have studied. For single-locale ChplBlamer, I 

gained a speedup of up to 2.3x and concluded that users should restrain using domain 

remapping and zippered iterations because they are expensive features to use in 

Chapel’s current implementation. For ChplBlamer-ML, I gained a speedup of up to 

4.0x and concluded that using some techniques like localization, globalization, and 

replication can significantly improve the performance and scalability of a multi-locale 

benchmark. For CUDABlamer, I gained a speedup of up to 46.6x for a GPU kernel 

execution and concluded that appropriate use of special GPU memories, such as 

constant memory and shared memory, can be of great benefit to the kernel 

performance. Also, creating too many parallel threads with little work on each thread 

sometimes hurts the overall performance. These programming experience and 

performance insights are valuable to the development of PGAS and CUDA as well as 

to application developers. 

 

7.2 Open Problems 

In this section, I present some high-level ideas for future work. I plan to extend 

approaches described in this dissertation in four ways: finer blame attribution, blame 
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combined with auto-tuning, GPU read-only memory identification, and blame used in 

taint analysis.  

7.2.1 Finer Blame Attribution 

Currently, my data-centric profilers only present the blamed variables in descending 

order to reveal the possible performance bottlenecks. However, programmers cannot 

determine why certain variables stand out in the final result and such information can 

be very useful for precise optimization and better understanding the execution 

characteristics. From my experience, in a multi-thread and multi-node computing 

system, the synchronization among threads within a node and among multiple nodes 

is commonly one of the major performance bottlenecks in HPC. Also within a CPU-

GPU hybrid architecture, the synchronization between the host (CPU) and the device 

(GPU) also consumes a big portion of execution time in many GPU-accelerated 

applications I studied. It would be great if ChplBlamer and CUDABlamer can 

associate those specific performance bottlenecks to the corresponding variables, such 

as shared memory variables within a GPU kernel block that needs synchronization 

between the threads within that block, or a distributed variable that is allocated across 

nodes and needs synchronization between nodes to continue execution. With this kind 

of strengthened performance mapping technique, a data-centric profiler can be more 

effective in guiding user-level optimizations.  

7.2.2 Blame Combined with Auto-tuning 

Our profiling system can figure out the time spent in populating the value of each 

program abstraction. Many of the variables shown in our results have tunable 
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parameters that affect how much computation goes into calculating the data for that 

variable. These tunable parameters range from the communication patterns used for 

distributed data structures to the underlying data structures that are used to represent 

the variable such as whether to use a sparse or dense matrix. Using Chapel as an 

example, the data parallelism provides the domain control over array-like variable 

allocation. Domains are first-class index sets, which specify the size and shape of 

arrays. For distributed memory systems, different domain maps can make a big 

difference in managing load balancing and minimizing communication cost between 

nodes. Domain maps are “recipes” that instruct the compiler how to map the global 

view of computation to a locale’s memory and processors. Chapel provides a library 

of standard domain maps to support common array implementations, and the user can 

switch between domain maps effortlessly without changing other code. Auto-tuning 

has established itself as an important tool in HPC. It has been used in place of 

complex analysis to optimize everything from linear algebra libraries to parallel 

multicore stencil computations [27]. My future work will also investigate the 

integration of data-centric profiling and auto-tuning; specifically, I use my profiling 

framework to get the most blamed variables to reduce the state space and use certain 

existing auto-tuning framework, such as Active Harmony [28] to tune parameters 

(e.g., domain map).  

7.2.3 GPU Read-only memory Identification 

In my evaluation of CUDABlamer, I found an opportunity for optimizing the kernel 

in the benchmark Particlefilter (Details can be found in Section 6.3.1). Simply placing 

some read-only data in the constant memory instead of the general global memory in 
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GPU could bring dramatic performance improvement. The limitations in this 

optimization are: 1
st
 the size of available constant memory on any current GPUs is 

small (48KB on P100); 2
nd

 the memory allocation on the constant memory must be 

done at compilation time. The only effort in this optimization is to manually identify 

the fitting read-only variables on the GPU and move them to the constant memory 

space. Therefore, it would be nice if my tool can automatically identify read-only 

variables on the GPU along with their size information. This would help a user 

change their allocation without manually searching for optimizable objects. However, 

one thing to note is that the cost of the first access to the constant memory is very 

high, which would probably undermine the performance gain from subsequent 

accesses if reading the same memory space is not frequent enough. Therefore, 

profiling how often something is accessed is necessary before applying this 

optimization. 

7.2.4 Blame Used in Taint Analysis 

Taint analysis is a prevalent approach to detect malicious behavior in programs. 

Based on the concept that some data (such as the input from the user or any data from 

the website) is not trustworthy, taint analysis is proposed to keep track of the data 

which can be used to harm the software, and monitor suspicious actions. There are 

many previous uses of taint analysis [29, 30, 33, 35]. There are two categories of taint 

analysis: Static Taint Analysis (STA) and Dynamic Taint Analysis (DTA). DTA is 

more attractive because it allows us to reason about actual executions [31]. There are 

two limitations of DTA: 1
st
 under-taint due to the tested inputs missing control-flow 

information; 2
nd

 prohibitive runtime overhead due to the fact that it needs to examine 



 

 131 

 

every executed instruction. There exists some work composing static and dynamic 

methods to resolve the issues [32, 34, 35, 36, 37]. However, the analysis's runtime 

cost is still way too high. 

My blame analysis is more than a profiler; it can also be used in other fields that 

require precise dataflow analysis yet need to limit performance impact. Blame 

analysis can tell programmers what statements in the program will contribute to the 

value of a particular variable. Since the data dependency information for each 

variable is mutually inclusive, we can obtain the reverse information: with any 

variable in the program, you can know what statements or variables that variable will 

touch. It closely resembles the taint analysis. Meanwhile, the blame system has a very 

low runtime overhead when using a relatively low sampling rate. To optimize the 

procedure of taint analysis, I would investigate a novel blame-assisted approach for 

DTA using sampling. Firstly, we can leverage the dual attributes of our blame 

analysis to get most intraprocedural dataflow analysis results. During the runtime, I 

will use sampling to focus on a small portion of variables in taint analysis. However, 

what type of sampling mechanism to use is still to be determined. This blame-assisted 

approach provides a tradeoff between monitoring coverage and overhead. 
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