

ABSTRACT

Title of Dissertation: DATA-CENTRIC PERFORMANCE

MEASUREMENT AND MAPPING FOR

HIGHLY PARALLEL PROGRAMMING

MODELS

 Hui Zhang, Doctor of Philosophy, 2018

Dissertation directed by: Professor, Jeffrey K. Hollingsworth,

Department of Computer Science

Modern supercomputers have complex features: many hardware threads, deep

memory hierarchies, and many co-processors/accelerators. Productively and

effectively designing programs to utilize those hardware features is crucial in gaining

the best performance. There are several highly parallel programming models in active

development that allow programmers to write efficient code on those architectures.

Performance profiling is a very important technique in the development to achieve the

best performance.

In this dissertation, I proposed a new performance measurement and mapping

technique that can associate performance data with program variables instead of code

blocks. To validate the applicability of my data-centric profiling idea, I designed and

implemented a profiler for PGAS and CUDA. For PGAS, I developed ChplBlamer,

for both single-node and multi-node Chapel programs. My tool also provides new

features such as data-centric inter-node load imbalance identification. For CUDA, I

developed CUDABlamer for GPU-accelerated applications. CUDABlamer also

attributes performance data to program variables, which is a feature that was not

found in any previous CUDA profilers. Directed by the insights from the tools, I

optimized several widely-studied benchmarks and significantly improved program

performance by a factor of up to 4x for Chapel and 47x for CUDA kernels.

DATA-CENTRIC PERFORMANCE MEASUREMENT AND

MAPPING FOR HIGHLY PARALLEL PROGRAMMING MODELS

by

Hui Zhang

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2018

Advisory Committee:

Professor Jeffrey K. Hollingsworth, Chair/Advisor

Professor William Dorland, Dean’s Representative

Professor Alan L. Sussman

Professor Donald Yeung

Professor Bruce Jacob

© Copyright by

Hui Zhang

2018

 ii

Dedication

To my wife,

For continuously loving me and driving me forward.

To my mother,

For support and never asking why it is taking so long to finish.

To my grandmother,

How I wish you could see this, but I know you are always here for me.

 iii

Acknowledgments

I would like to begin by thanking my advisor, Dr. Jeffrey K. Hollingsworth. His

guidance, inspiration, and support are invaluable to my research, my career, and my

life. His serious and professional attitude and the commitment to the work set a great

example for me. Without him, this dissertation would not have been possible.

I want to thank my advisory committee: Professor Donald Yeung, Professor Bruce

Jacob, Professor Alan Sussman, and Professor William Dorland. Each member of the

committee contributed valuable suggestions that helped me finish this work.

I would also like to thank my colleagues in the research group: Ray Chen, Richard

Johnson, Mike Lam, Sukhyun Song, and Yoav Segev. Thank you Ray, you are like a

second advisor to me, enlightening me when I was lost in the research. Thank you

Richard, for sharing ideas of research, thoughts about life, and points on geopolitics;

and of course, for the hop-on day trip and Canadian dollar bills. Thank you Mike, for

encouraging words through email when I struggled for the prelim examination.

I want to thank all other friends I made since I came to the States in 2011, such as

Nuttiiya Seekhao, Peixin Gao, Xingjian Ling, Teng Long, Yuan Zhou, Yuhan Rao,

and Lei Wang, for the time we spent together and the support when it was needed.

To my wife, Lianglei Zhang, I cannot thank you enough for all your understanding

and support, although we were apart in different countries for most of the time. I

promise I will put you in front of work at any time.

Finally, I want to express my respect and gratitude to my mom, Wenjuan Jin. Your

endless love is truly what keeps me going and you are a lifetime role model to me.

 iv

Table of Contents

List of Tables .. vii

List of Figures .. ix

 Introduction .. 1

 Background .. 8

2.1 PGAS Language .. 9

2.2 Chapel ... 10

2.3 Existing HPC Performance Tools ... 14

2.3.1 HPC Profiling Tools .. 15

2.3.2 PGAS Profiling .. 17

2.3.3 Chapel Performance Analysis .. 19

2.4 GPU-accelerated Computing .. 22

2.4.1 GPU.. 23

2.4.2 CUDA .. 24

2.4.3 GPU Profiling .. 25

 Blame Definition .. 29

3.1 Blame Calculus ... 30

3.1.1 Explicit Blame Transfer ... 31

3.1.2 Implicit Blame Transfer ... 32

3.1.3 Transfer Function and Exit Variable .. 33

3.2 Simple Example .. 34

 Data-centric Profiling for Single-locale Chapel Programs .. 37

 v

4.1 Implementing the Tool .. 37

4.1.1 Debug Information Support for Chapel LLVM Frontend 38

4.1.2 Static Analysis ... 41

4.1.3 Runtime Information Acquisition .. 46

4.1.4 Postmortem Analysis ... 48

4.1.5 GUI Display ... 50

4.1.6 Exclusive Blame .. 52

4.2 Case Studies .. 53

4.2.1 MiniMD ... 54

4.2.2 CLOMP .. 58

4.2.3 LULESH .. 61

4.3 Discussion and Summary .. 70

 Data-centric Profiling for Multi-locale Chapel Programs ... 73

5.1 Challenges and Solutions .. 74

5.1.1 1
st
 Challenge and Solution ... 75

5.1.2 2
nd

 Challenge and Solution .. 77

5.1.3 3
rd

 Challenge and Solution ... 79

5.2 Inter-node Load imbalance Examination .. 82

5.3 Case Studies .. 83

5.3.1 HPL .. 85

5.3.2 ISx .. 91

5.3.3 LULESH .. 94

5.4 Discussion and Summary .. 99

 vi

 Data-centric Profiling for GPGPU Applications ... 101

6.1 Introduction ... 102

6.2 Tool Design and Implementation .. 104

6.2.1 Language-specific LLVM Handling in Static Analysis 104

6.2.2 Calling Context Construction for CPU-GPU Hybrid Framework 107

6.3 Case Studies .. 115

6.3.1 Particlefilter .. 116

6.3.2 Triad ... 118

6.4 Discussion and Summary .. 120

 Conclusions .. 124

7.1 Summary of Contributions .. 124

7.2 Open Problems .. 127

7.2.1 Finer Blame Attribution ... 128

7.2.2 Blame Combined with Auto-tuning ... 128

7.2.3 GPU Read-only memory Identification ... 129

7.2.4 Blame Used in Taint Analysis ... 130

Bibliography ... 132

 vii

List of Tables

Table 3.1: Blame Calculation Result for the Example in Figure 3.3 35

Table 4.1: Inclusive and Exclusive blame calculation for Figure 4.9 52

Table 4.2: Variables and Their Blame for THE Run of MiniMD 55

Table 4.3: Results w/ or w/o “--fast” Flags .. 58

Table 4.4: Profiling Result for the Run of CLOMP.. 59

Table 4.5: Results w/ or w/o “--fast” Flags .. 61

Table 4.6: Variables and Their Blame for the Run of LULESH 64

Table 4.7: Results for Loop Unrolling Methods ... 66

Table 4.8: Profiling Results Comparison between Different Optimizations 68

Table 4.9: Optimization results w/ or w/o “--fast” flags ... 70

Table 5.1: Tool overhead comparison on single-locale .. 82

Table 5.2: Major data-centric and code-centric blame percentages for HPL on

different number of locales ... 88

Table 5.3: Speedups of the localization optimization for HPL 91

Table 5.4: Data-centric and code-centric results of the most blamed variables and

functions in ISx on 2 or 8 locales .. 92

Table 5.5: Blame change before and after the optimization for related variables and

function (bottom row) ... 93

Table 5.6: Speedups of the localization optimization on a different number of locales

for ISx ... 93

Table 5.7: Data-centric blame for LULESH ... 94

 viii

Table 5.8: Code-centric blame for LULESH .. 95

Table 5.9: Speedups of optimization on a different number of locales for LULESH 98

Table 5.10: ChplBlamer overhead study .. 100

Table 6.1: Profiling result of Particlefilter .. 116

Table 6.2: Performance comparison for Particlefilter ... 118

Table 6.3: Profiling result of Triad ... 119

Table 6.4: Performance comparison for Triad .. 120

Table 6.5: CUDABlamer overhead study ... 123

 ix

List of Figures

Figure 2.1: Code snippet for Chapel “begin” keyword ... 11

Figure 2.2: Code snippet for Chapel “cobegin” and “coforall” keywords 12

Figure 2.3: Code snippet for Chapel “domain” .. 12

Figure 2.4: Code snippet for Chapel “on” keyword ... 14

Figure 2.5: Microprocessor Performance Growing Trend over 40 years 24

Figure 3.1: Code snippet for Explicit Blame Transfer .. 31

Figure 3.2: Code snippet for Implicit Blame Transfer .. 32

Figure 3.3: Example code for blame calculation .. 35

Figure 4.1: Process of Calculating the Performance Data for Variables 38

Figure 4.2: Chapel Compilation Flow .. 40

Figure 4.3: Sample Code for Graph Representation ... 43

Figure 4.4: LLVM Instructions for the snippet in Figure 4.3 43

Figure 4.5: Original LLVM IR Graph Representation ... 44

Figure 4.6: Compact LLVM IR Graph Representation .. 44

Figure 4.7: Process of getting full call path for the sample inside a parallel block 49

Figure 4.8: GUI screenshots of MiniMD .. 51

Figure 4.9: Code snippet for Inclusive and Exclusive Blame Calculation 52

Figure 4.10: Pprof output for LULESH .. 62

Figure 4.11: Code Snapshot of LULESH hotspot ... 65

Figure 5.1: Sample multi-locale Chapel code ... 74

Figure 5.2: The process of locating the original variable ... 76

 x

Figure 5.3: Stacktrace concatenation flowchart .. 80

Figure 5.4: Node information for Ab of HPL on 32 locales 82

Figure 5.5: Data-centric blame for HPL on 2 locales. The red rectangles enclose

interesting variables with their name, type, full calling context, and blame percentage.

... 85

Figure 5.6: Code-centric blame for HPL on 2 locales. The red rectangles enclose

runtime functions that indicate special performance issues and the underscored are

user functions that are to be optimized ... 87

Figure 5.7: Loop optimization using replication for panelSolve 90

Figure 5.8: An Element-Node topology that would cause remote data accesses 97

Figure 6.1: Sample CUDA code ... 110

Figure 6.2: Reversed call graph for the sample code Fig. 6.1 111

Figure 6.3: Pseudocode of finding all possible call paths ... 112

Figure 6.4: Coverage for SHOC and Rodinia benchmarks....................................... 114

Figure 6.5: Code comparison for Triad... 120

 1

Chapter 1

Introduction

As the computing power of distributed systems escalates, the complexity of scientific

and engineering problems that can be solved by these systems also increases.

However, there is a divide between system designers who know how to utilize these

distributed systems efficiently and the people who have real problems to solve. There

has been much effort made from different directions to help take full advantage of the

power of parallel architectures. One effort to better utilize large-scale, highly parallel

and increasingly heterogeneous supercomputers is to develop parallel programming

models that have better productivity and higher performance. This dissertation studies

the performance of two highly parallel programming models: PGAS (Partitioned

Global Address Space) and CUDA (Compute Unified Device Architecture), which

are popular on recent supercomputers. Specifically, PGAS is a promising productive

programming model for systems with tens of thousands of CPUs; CUDA is currently

the mainstream programming model for CPU-GPU heterogeneous computing

systems. Newer and higher-level programming models usually ease the programming

for end-users, but how to associate the performance issues back to original program

elements is also a critical issue in understanding the program performance

characteristics.

Performance tools can help users take full advantage of the power of parallel

architectures by providing insights into where and why a program fails to obtain peak

performance. Currently, there are few profilers for highly parallel programming

 2

models and most of them are code-centric, meaning they can only associate

performance data to computation regions in the source, such as functions, loop, and

code blocks. The conventional code-centric view of performance data is helpful in

pinpointing hot spots at the granularity of from the instruction-level to the procedure-

level in the program. However, the traditional code-centric view of performance data

lacks the capability to find performance problems associated with different variables

accessed by specific lines of the code. In many cases, it is the data and its movement

that cause the greatest performance loss instead of the computation. Additionally,

data-centric profiling can aggregate performance statistics from all memory accesses

that are associated with the same variable via full data flow analysis, which a code-

centric profiler cannot accomplish. Data-centric approaches are especially important

for HPC applications since memory allocation and data movement are usually the

bottlenecks of the overall performance. Therefore, a profiling tool that can identify

these inefficiencies and associate them with memory regions and source-level data

abstractions is highly desirable. My thesis shows that a new data-centric performance

mapping technique can greatly help PGAS and CUDA programmers to improve the

performance of their programs.

Partitioned Global Address Space (PGAS) [23] is an alternative programming model

that marries the good performance scalability of message passing with the good

programmability of a shared memory model. PGAS improves the productivity in

HPC by introducing an additional layer of abstraction, described as “global address

space” for a cluster. It defines a global memory address space that is logically

partitioned and a portion of it is local to each process, thread, or processing element

 3

[40]. The novelty of PGAS is that portions of the shared memory space may have an

affinity for a particular process, thereby allowing programmers to exploit locality of

reference. Because of this additional layer of abstraction, users do not have to

explicitly handle the communication between nodes as is required in traditional

message-passing based programs, such as MPI. However, a major challenge of higher

level semantics is that it also significantly increases the difficulty of diagnosing

performance bottlenecks that are now hidden from users.

Among the languages that have PGAS features, I chose Chapel [1] for evaluation

mainly for two reasons:

1. Chapel is a promising language in productively solving large HPC problems

with hybrid parallelism, but currently, it still has much room for performance

improvement, especially in distributed systems with heavy communication

between multiple nodes.

2. Currently, there are only a few performance analysis tools that are Chapel-

specific and user-friendly with valuable performance insights for user-level

performance optimization.

Even though this work is built for Chapel, the methods and ideas I used can be

applied to other programming languages. This is because: first, the tool framework

and top-level abstractions in implementing this data-centric idea are generic to most

programming languages; second, my analysis is based on a machine-independent

intermediate representation LLVM. Therefore, both my idea and my tool can be

extended to support a number of other programming languages.

 4

Besides multi-thread, multi-node computing, the use of accelerators, such as GPUs, is

growing rapidly in supercomputers and thus CUDA programming also plays an

important role in achieving high performance. The application of GPUs in general-

purpose-computing other than traditional graphics processing is known as GPGPU.

The main challenge in developing such programs is that they often do not fit in the

model required by GPUs, limiting the scope of applications that may benefit from the

massive parallelism provided by GPUs. Even if the application fits the GPU model,

obtaining optimal performance using heterogeneous architectures is non-trivial.

Therefore, it is important to create performance tools that assist the development and

guide programmers to write efficient code.

Although a handful GPU profilers exist [57, 58, 59, 75], most traditional tools,

unfortunately, simply provide programmers with a number of different kinds of

measurements and metrics obtained by running applications. It is very hard for users

to map these metrics back to source code to understand the root causes of slowdowns,

much less decide what next optimization step to take to alleviate the bottlenecks and

improve the overall performance. Therefore, I applied the same data-centric idea to

GPU-accelerated applications, implementing a tool prototype for programmers to

easily understand the causes of performance degradation and hotspots that consume

most GPU time during execution.

 In this dissertation, I describe new performance mapping techniques that employ

sampling in conjunction with static analysis to study the performance of highly

parallel programs running on modern architectures with many CPU and GPU cores.

 5

In the rest of this chapter, I briefly describe the contributions of this work, the

dissertation organization, and the thesis statement.

Contributions This dissertation describes the design and implementation of two

performance measurement and mapping tools for PGAS and CUDA. The

fundamental uniqueness of my tools is that they provide a data-centric profiling

feature that can link the runtime performance data back to program variables and data

structures with a complete user-level calling context. The way I determine the

mapped variables is not to simply link the accessed memory addresses with the

specific variables that are created with the allocation within that memory range but to

figure out the program-wide variables that should be really “responsible” for that

executed statement. This inclusive data-centric performance analysis technique can

also propagate the performance loss due to the use of third-party libraries up to user-

visible variables so that programmers are able to focus on optimizing user code

instead of trying to improve the performance of the library.

Specifically, building on Blame by Rutar [18], I implemented two performance tools.

First, I designed and developed ChplBlamer, for both single-node and multi-node

Chapel environments. It supports most Chapel language features and provides

hierarchical profiling over program abstractions and call path profiling in a user-level

context. It pinpoints performance losses due to data distribution and remote data

accesses, and provides new features such as data-centric inter-node load imbalance

identification. It solves problems like multi-threading and asynchronous tasking that

Blame [18] does not solve. The combination of the tool’s data-centric and code-

centric profiling provides insights into inter and intra node communication

 6

bottlenecks that could not be discovered by previous Chapel profilers. Secondly, I

developed an effective performance tool for GPU-accelerated HPC applications. It is

also able to map performance statistics to program variables and it provides complete

calling context from the device stack to the host stack for the sampling-based runtime

data. The tool is able to provide different performance insights into kernels against

existing CUDA profilers, such as Nvidia Visual Profiler (NVP) [57] and TAU [3].

I conducted several benchmark experiments for each tool to validate the functionality

and utility of the tool, and manually optimized those benchmarks with the guidance of

my tools. By doing this tuning, I achieved significant speedups of up to 4x for Chapel

and 47x for CUDA kernels.

Dissertation organization There are total 7 chapters in this dissertation. Among

those, the contents of Chapter 4 and Chapter 5 are adapted from my previous

conference publications [68, 69]. Chapter 2 describes the background in PGAS

programming model, Chapel language features, GPGPU, and several widely-used

performance analysis techniques that show us the big picture of the field that I’ve

been working in. Chapter 3 introduces the unique performance metric “Variable

Blame” used in my tools and illustrates its calculation with a few simple examples.

Chapter 4 describes the design and implementation of a single-node Chapel profiler

for end users. Chapter 5 shows the implementation of a multi-node Chapel profiler

that supports detecting communication bottlenecks. Chapter 6 describes the design

and implementation of a data-centric profiler for guiding CUDA optimization in

GPU-accelerated applications. Finally, Chapter 7 presents some conclusions from my

work and identifies a few directions for future research.

 7

Thesis statement Using static analysis, plus hardware counter based sampling in

conjunction with call path profiling, one can develop data-centric profilers with

reasonable overhead to analyze program executions on a parallel architecture with

many hardware threads, deep memory hierarchies, and GPU accelerators. These

methods can provide rich information to guide code optimization.

 8

Chapter 2

Background

Performance is always essential to HPC. The efforts to make programs run faster lie

in two broad categories: hardware and software. On the one hand, hardware

innovations have been impressive, especially in the recent two decades as the

supercomputer systems are becoming more and more heterogeneous, and as a result,

more complicated. On the other hand, software innovations are often not in the

spotlight but the problems are actually becoming more and more critical. With each

new hardware feature, the challenge of how to utilize new hardware architectures to

make programs run faster and more efficient is getting harder, not easier. Researches

from different fields have made many attempts to improve system software, runtime

libraries, compiler-based programming model, and domain-specific application

libraries. Programming model can abstract away the complexity of the machine and

abstract away the implementation differences, thus letting programmers focus on the

algorithmic choices. Evaluating the performance of a new programming model is

significantly important in its development. This thesis focuses on providing

performance insights for two highly parallel programming models: PGAS and

CUDA. The rest of this chapter introduces prior work about these two programming

models and their performance tools.

 9

2.1 PGAS Language

To exploit locality and scalability in High Performance Computing (HPC), while

alleviating the burden on programmers and improving the productivity in parallel

programming, researchers continue to look for new programming models other than

the traditional C plus MPI/OpenMP model. Partitioned Global Address Space

(PGAS) [23] emerged in the last twenty years as an alternative, and it has been

actively studied in both academia and industry. PGAS provides users with a flat

address space atop a possible physically distributed computer memory system, so

users can write programs as if coding for a shared memory system and let the

underlying infrastructure take care of the onerous and error-prone work such as the

communication between nodes, memory address translation, and data motion. PGAS

attempts to combine the advantages of an SPMD programming style for distributed

memory systems and the data referencing semantics of shared memory systems.

HPF (High Performance Fortran) [10] is a forerunner of PGAS. It is an extension of

Fortran 90 with constructs that support parallel computing. Similar to PGAS, it is a

global view language that allows users to express the global semantics of data

structures. Operators on the whole data structure are defined, allowing concise and

expressive programs to be written. It was popular on SIMD and MIDM style

architectures. However, the chief disadvantage of HPF is its limited power of

expression, which limited its further application.

There are a set of languages using the PGAS model as the basis. One such language,

Unified Parallel C (UPC), originally developed by Lawrence Berkeley National

Laboratory and others, is an extension of ISO C that boasts multiple proprietary and

 10

open source compilers [41]. Another PGAS language, Titanium [42], centered at

Berkeley is a dialect of Java designed for high-performance scientific computation.

Compilers for both these languages use a source-to-source compilation strategy that

translates the parallel languages to C with calls to a communication layer called

GASNet. Beyond UPC and Titanium, there are X10 [43] developed by IBM, Fortress

developed by Sun (now Oracle), Global Array [44] developed by Pacific Northwest

National Laboratory (PNNL), and Chapel developed by Cray Inc., etc. Among these

languages, Chapel [1] and X10 [43] also support asynchronous task creation, which is

referred to as asynchronous partitioned global address space (APGAS) [45].

Currently, many PGAS languages offer comparable or even better performance in the

single-node systems compared against OpenMP but suffer a great performance loss

on multiple-node parallel architectures. There has been a continuing effort made to

improve the performance of PGAS languages. For example, the Chapel team has been

putting a major effort on correctness instead of performance of programs over the

past ten years. Obviously, to make those languages successful, the performance issues

must be solved. To tackle the performance problems, a good profiler provides an

important first step.

2.2 Chapel

Chapel [1] is an emerging parallel language whose design and development have

been led by Cray Inc. Chapel supports a multithreaded execution model, permitting

the expression of more general and dynamic styles of computation than the typical

 11

Single Program, Multiple Data (SPMD) programming models that became dominant

during the 1990’s.

Chapel has several features that are distinct from previous parallel languages and

libraries. Chapel diverges from most HPC languages by supporting what its designers

refer to as a global view of data structures and control flow. Chapel distributes

variables as global data and accesses them using global indices, freeing programmers

from calculating process-based subarray indices and local access ranges. On the other

hand, Chapel also supports the global view of control, which refers to the fact that a

Chapel program begins executing using a single task and then introduces parallelism

through the use of additional language constructs. This is in contrast to SPMD

programming models in which users write their program under the assumption that

multiple copies of main() will execute simultaneously. Consider Figure 2.1:

Figure 2.1: Code snippet for Chapel “begin” keyword

Here, the begin keyword creates a new task that will execute the statements within

braces. The original task goes on to execute the statements that follow. In this way,

Chapel creates a flexible and asynchronous parallelism. Synchronization variables

and sync statements are used to ensure the task synchronization whenever necessary.

writeln(“The original task print this”);

begin {

 writeln(“A seoncd task is created to print this”);

 compute();

 writeln(“The second task ends”);

}

writeln(“This may print before the 2
nd
 task completes”).

 12

Figure 2.2: Code snippet for Chapel “cobegin” and “coforall” keywords

The above two statements (cobegin, coforall) in Figure 2.2 create groups of tasks in a

structured manner. cobegin is a compound statement in which a distinct task is

created for each of its component statements. The original task also waits until its

child tasks complete before proceeding. The coforall-loop is like a traditional for-loop

except that it creates a distinct task for every loop iteration. Like the cobegin

statement, coforall has an implicit join that causes the original task to wait for its

children to finish before proceeding.

The data parallelism features of Chapel provide a more abstract and implicit style of

parallelism, consider the example in Figure 2.3:

Figure 2.3: Code snippet for Chapel “domain”

cobegin {

 producer(numUpdates);

 consumer();

}

writeln(“Print until producer and consumer are done”);

coforall elem in Mat do

 processElement(elem);

writeln(“Print until all elements have been processed’);

const MatSpace: domain(1) = {-N..N};

const MatSpaceD: domain(1) dmapped block(boundingBox=MatSpace);

var Mat: [MatSpace] real;

var MatD: [MatSpaceD] real;

forall m in Mat do

 m = 0;

forall m in MatD do

 m = 0;

 13

The forall-loop is Chapel's central concept for expressing data parallelism. Forall-

loops are similar to coforall-loops in that both are parallel variants of Chapel's for-

loop. However, where a coforall-loop creates a concurrent task per iteration and a for-

loop is executed serially by a single task, a forall-loop may use an arbitrary number of

tasks to execute the loop. As a result, it may execute serially using a single task, or it

can use any number of tasks up to the number of iterations (or even beyond, though

that is unusual). For typical iterands, this choice is based on the amount of hardware

parallelism available. Domain is a first-class language concept that represents an

index set. In the examples above, there are two domains: MatSpace and MatSpaceD.

Every Chapel domain is defined in terms of a domain map that specifies how to

distribute the array indices. When no domain map is specified, like MatSpace, a

default domain map is used, and it maps the domain’s indices and the array’s

elements to the current node. For a multi-node system, the second domain

MatSpaceD distributes elements and array indices to all nodes. By comparing two

forall-loops, you will see that Chapel provides a global view data distribution by

using domains and locales so that programmers can only change the domains they use

rather than modifying process-specific array indices and subarray accessing methods.

Another important feature is that Chapel supports the expression of locality. Chapel

was designed to execute on the largest-scale parallel machines where locality and

affinity are crucial for performance. Locality features provide control over where

tasks execute so that users can explicitly leverage the data locality and this feature

largely contrasts HPF [10] in the effective expression of data locality.

 14

Figure 2.4: Code snippet for Chapel “on” keyword

The core feature for Chapel’s locality feature is the locale type. For most

conventional parallel architectures, a locale tends to describe a compute node, such as

a multicore or SMP processor. The on-clause in Figure 2.4 is used to specify that a

statement should execute on a specific locale. Locales is a built-in array representing

system resources that can be queried directly in the user code. Combining locality

manipulation and task parallelism, programmers can create tasks and access data in

local or any remote nodes from a global view.

Moreover, Chapel is an elegant language because of the conciseness in expression. In

practice, an implementation of a popular benchmark LULESH takes just 1,288 lines

of code (plus 266 lines of comments and 487 blank lines), while the corresponding

C+OpenMP+MPI version is nearly four times bigger [2].

2.3 Existing HPC Performance Tools

The prerequisite for optimizing an application is to understand its execution

characteristics. There are many established performance tools that measure and

analyze program performance on parallel architectures, ranging from simple shell

utilities, timers, and profilers, trace analysis tools, to sophisticated full-featured

graphical toolsets.

This section presents a brief review of the recent efforts made in mapping

performance measurement data to a different level of abstractions in the program. I

on Locales[1] do

 writeln(“I’m on Locale 1”);

 15

start from the general profilers for HPC applications to very specific profilers that can

analyze certain PGAS languages. I also summarize a few tools having a data-centric

way of viewing the profiling results.

2.3.1 HPC Profiling Tools

Much prior work has analyzed High Performance Computing (HPC) applications,

based on different profiling methods such as simulation, sampling, and direct

instrumentation. For instance, the Tuning Analysis Utilities (TAU) from the

University of Oregon [3] is one of the most popular profiling tools; the popularity

comes partly from the fact it is available on most platforms and supports a variety of

languages, including FORTRAN, C, C++, Java, and Python. TAU also handles

language extensions such as OpenMP and MPI implementations on supported

platforms. The framework for TAU has three layers: Instrumentation, measurement,

and analysis. The instrumentation is primarily source-based, but the binary

instrumentation is also supported by DyninstAPI [19].

Scalasca [4] is a performance toolset that has been specifically designed to analyze

parallel application execution behavior on large-scale systems with many thousands

of processors. It offers an incremental performance-analysis procedure that integrates

runtime summaries with in-depth studies of concurrent behavior via event tracing,

adopting a strategy of successively refined measurement configurations. Distinctive

features are its ability to identify wait states in applications with very large numbers

of processes and to combine these with efficiently summarized local measurements.

 16

Vampir provides interactive visualization and exploration of parallel event traces [5].

It consists of the run-time measurement system VampirTrace and the visualization

tools Vampir and VampirServer.

HPCToolkit [9] is another popular performance analysis system in the HPC field. It is

an integrated suite of tools for measurement and analysis of program performance on

computers ranging from multicore desktop systems to the world’s largest

supercomputers. It relies on periodic sampling to capture the dynamic runtime

behavior of parallel target applications. It also uses PAPI [20] library to read

hardware counters as the performance metrics.

Some profilers focus on solving a very specific performance issue in HPC.

ThreadSpotter [6] is a commercial tool that focuses on the memory access behavior of

applications, specifically on how the application's memory access patterns interact

with processor caches. With ThreadSpotter, users can sample an application from the

beginning to the end, or attach to the application while it is running and sample it for

a while then detach. It calculates cache metrics, such as cache miss ratios, cache fetch

ratios, cache line utilization, and hardware prefetching probabilities. It can operate

only at the binary code level, but the source code is needed to map performance data

back to source lines. However, the responsibility of interpreting the performance

information and using it to optimize the application lies with the programmer.

MemProf [7] instruments thread and memory management operations with a user

library and a kernel module. It leverages AMD’s Instruction-Based Sampling (IBS)

[76] to associate latency with data structures to identify costly memory accesses to

remote sockets. MemProf exclusively focuses on the NUMA locality problem. It

 17

allows precise identification of the objects that are involved in remote memory access

and corresponding causes. However, there are also some limitations to this tool: first,

it relies on programmers to establish a diagnosis and devise a solution; second, it is

mostly used for applications that are not cache-efficient and perform a large number

of memory accesses; third, it records a trace of each IBS sample and variable

allocation rather than collapsing it on-the-fly into a compact profile. The resulting

high data volume makes it hard to scale to a cluster with a large number of nodes.

Finally, it doesn’t map performance metrics to individual static variables; instead, it

treats all static variables from a load module as one group and coarsely attributes

metrics to these groups.

Buck and Hollingsworth developed CacheScope [8] to perform a data-centric analysis

on Itanium 2. The Itanium processor provides a set of event address registers (EARs)

that record the instruction and data address of data cache misses for loads, the

instruction and data address of data TLB misses, the instruction addresses of

instruction TLB and cache misses [24].

2.3.2 PGAS Profiling

Only a few profilers partially support PGAS programs and fewer have data-centric

features. Tallent and Kerbyson [11] proposed a method to profile PNNL’s Global

Arrays based on HPCToolkit [9]. Their tool provides a code-centric, data-centric and

time-centric view, using a hybrid tracing and profiling approach. It shows reads and

writes of global data objects with respect to time, rank, and calling context. It will

attribute performance metrics such as “bytes accessed per read” and “average latency

per blocking write” to global data objects in their full static and dynamic context. To

 18

collect profiles and traces at scale and with minimal overhead, it combines the

sampling of global reads and writes with the sampling of program behavior.

Parallel Performance Wizard (PPW) is another tool that supports both UPC and

SHMEM. One important feature of this framework is the use of generic operation

types instead of model-specific constructs whenever possible. Thus it has the

potential to support multiple PGAS languages [12]. To accommodate the many

instrumentation techniques appropriate for various PGAS model implementations,

without introducing multiple measurement components, the developers proposed an

Instrumentation-Measurement interface called the Global Address Space Performance

(GASP) interface. For each model, an event type mapper maps the model-specific

constructs to their appropriate generic operation types. By using the GASP interface,

a potential disadvantage of PPW is that PPW requires a PGAS application to be

compiled with a GASP-aware compiler.

Seisei Itahashi, et al., from the University of Tokyo, is working on a profiler for X10.

It consists of a profiler and visualizer; the profiler is a modified version of the x10

compiler built with Polyglot. It is a source-to-source translator that inserts probe code

into a target x10 program code. It supports analysis of activities involved in

synchronization, but not on implicit data transfer. For example, unlike a typical MPI

program, some data transfers in X10 are implicit. When an activity is moved among

places, data transfers are implicitly executed (specifically, all local variables and

arrays declared before the move will be copied and transferred to the destination

place), but not explicitly described in the source code. It aims at better visualizing the

implicit behavior in X10 [13].

 19

Sebastian, et al. is working on extending Vampir to support the OpenSHMEM

standard for parallel programming [14]. They proposed a theory about the mapping of

OpenSHMEM communication primitives to generic event records that is compatible

with a range of PGAS libraries. They also demonstrated an experimental extension

for Cray-SHMEM in VampirTrace and Vampir and first results with a parallel

example application.

2.3.3 Chapel Performance Analysis

As for profiling Chapel code, there are few established performance analysis tools

that have deep integration with Chapel language features. The TAU suite [3]

demonstrated its support for Chapel with a simple program [15], but there are no

papers about profiling Chapel production codes using TAU published as far as I

know. HPCToolkit [9] can be used to profile the Chapel runtime library, but it does

not associate the work offloaded to worker threads to the full calling context at the

source level.

For multi-threaded programs, it is especially important to have the full calling context

of performance bottlenecks in the code because otherwise, programmers will

probably lose track of root causes of the performance issue and miss opportunities for

optimization. Let’s say you have a function bar which is called in many different

places and consumes a large portion of time during the execution. However, the time

spent on bar is determined by actual parameters it receives and most time it consumes

comes from certain bad calls. Therefore, without a full calling context, it will be very

difficult to find the real problem. Besides, the tasks completed by worker threads are

usually wrapped into several task functions with generated function names; simply

 20

attributing performance data to those functions would be of little help to users in

locating problematic user code blocks. Pprof from Google’s gperftools [16] partially

supports the traditional code-centric profiling of Chapel. It is code-centric and more

useful in profiling the runtime library from a Chapel developer’s perspective.

Consider Figure 4.10 and its following explanation, the output of Pprof on LULESH

[74] shows it’s insufficient for end-user purposes.

HPCToolkit-Data-Centric component [17], derived from the original HPCToolKit,

has been used to profile several HPC benchmarks, either for single-locale or multi-

locale environments. Nonetheless, it only tracks the memory allocation and

deallocation of static variables (data allocated in the .bss section in load modules),

heap-allocated variables that have size over 4K bytes, and no local variables.

Therefore, it lacks complete data-centric information of the whole program.

Additionally, after the Chapel compiler’s translation, the global variables in Chapel

source code are not treated as “static data” in the view of HPCToolkit’s data-centric

component. Therefore, most variables in Chapel benchmarks are regarded as

“unknown data”, which cannot provide useful information to programmers. Chplvis

[26] is built for Chapel programmers. It visualizes the inter-locale communication and

task computation of Chapel programs that help the user to discover the pitfalls of

certain uses of parallelism in their code. However, it needs source modifications and

it shows only the phenomena but not the causes of performance issues.

Besides the automated performance measurement tools, there exist several studies of

the performance of Chapel. Chamberlain et al. studied Chapel’s performance with

HPCC benchmarks including STREAM as well as random access and FFT. They

 21

report that STREAM performance was near optimal at the date of writing [22]. Nan

and Kenjiro analyzed Chapel performance and compared single-locale Chapel

execution to C execution; they report that Chapel performance can get as close as

70% performance as C [46]. A study by Chamberlain et al. details what productive

features a PGAS language should have and gives examples of Chapel’s such features

[1]. Johnson and Hollingsworth also conducted several case studies of Chapel’s

performance for single-node environments [21]. They chose OpenMP as a point of

comparison and hand-tuned the generated code of four competitive Chapel

benchmarks and gained a speedup of up to 6x. Most recently, a study by Kayraklioglu

and El-Ghazawi examined several language optimizations provided by Chapel on a

set of benchmarks using multiple locales and analyze their impact on programmer

productivity quantitatively [47]. The optimization methods that they studied achieved

improvements over non-optimized versions ranging from 1.1 to 68.1 times depending

on the benchmark. Haque and Richards [55] implemented CoMD in Chapel. They

demonstrated that optimizing data access through replication and localization is

crucial for achieving performance comparable to the reference implementation. They

discussed limitations of existing scope-based locality optimizations and argue instead

for a more general (and robust) type-based approach. It’s because Chapel’s type

system currently lacks a notion of locality i.e. a description of an object's access

behavior in relation to its actual location. This often necessitates programmer

intervention to avoid redundant non-local data access. Moreover, due to insufficient

locality information, the compiler ends up using “wide” pointers that can point to

 22

non-local data for objects referenced in an otherwise completely local manner, adding

to the runtime overhead.

2.4 GPU-accelerated Computing

Emerging supercomputers are increasingly employing GPU accelerators and

integrated many-core devices. Not only do these GPU-accelerated systems deliver

higher performance than their counterparts built with conventional multicore

processors alone, but these accelerated systems also deliver improved energy

efficiency because they are optimized for throughput and performance per watt and

not absolute performance [65]. Nowadays, GPGPU (general-purpose computing on

graphics processing units) is used to speed up parts of applications that require

intensive numerical computations. In 2003, Mark Harris recognized the potential of

using graphical processing chips for general purpose applications and started

gpgpu.org to while he was still a Ph.D. student at UNC for those working in the field

to share and discuss their work [50]. Traditionally, these parts of applications are

handled by the CPUs but GPUs have floating points arithmetic rates much higher

than CPUs. The reason why GPUs have FLOP rates much better than multicore CPUs

is that the GPUs are specialized for highly parallel intensive computations and they

are designed with much more transistors allocated to data processing rather than flow

control or data caching [51]. As the use of such GPU-accelerated computing systems

increases, it has also motivated researchers to develop new techniques to analyze the

performance of these systems. To date, much work on performance analysis of

 23

heterogeneous systems focuses on data copying and communication optimization

between GPU and CPU, I am more interested in kernel optimization.

2.4.1 GPU

GPUs (Graphics Processing Unit) were designed as a specialized integrated circuit to

handle graphics processing, video decoding, image rendering, and shading, etc. With

the GPU's rapid evolution from a configurable graphics processor to a programmable

parallel processor, GPUs are increasingly used in scientific computing. Today's GPUs

use hundreds of cores executing tens of thousands of parallel threads to rapidly solve

large problems that have substantial inherent parallelism. They're now the most

pervasive massively parallel processing platform available, as well as offer the most

cost-effective for those applications that can effectively use them [52]. Figure 2.5

from NVIDIA website [53] shows the importance of GPUs in continuing the Moore’s

Law in microprocessor development.

GPU computing may be the path forward for HPC. NVIDIA powers the most

advanced systems in Europe and Japan. U.S.-based Summit is the world’s fastest

supercomputer, with over 200 petaFLOPS for HPC and 3 exaOPS for AI. Summit

includes over 27,000 NVIDIA Volta Tensor Core GPUs [56].

The importance of GPU acceleration is escalating as the HPC applications are more

data-intensive. Data parallel programming paradigm can be found in many

applications like linear algebra routines, computational biology, computational

finance or econometrics. All these applications can obtain high speedups by mapping

data elements to GPU threads that are executed in parallel.

 24

Figure 2.5: Microprocessor Performance Growing Trend over 40 years

2.4.2 CUDA

GPUs are designed to solve problems that can be formulated as data-parallel

computations – the same instructions are executed in parallel on many data elements

with a high ratio between arithmetic operations and memory accesses. This is similar

to the SIMD approach. CUDA (Compute Unified Device Architecture) was

introduced in 2006 by NVIDIA [54]. It is a general purpose parallel programming

model that uses the parallel compute engine in NVIDIA GPUs to solve complex

computational problems. At the time of its introduction CUDA supported only the C

programming language, but nowadays it supports FORTRAN, C++, Java, and

Python. The CUDA parallel programming model has three key abstractions: a

hierarchy of thread groups, shared memories, and barrier synchronization. These

abstractions are exposed to the programmer as language extensions. They provide

fine grain data parallelism and thread parallelism together with task parallelism that

 25

can be considered as coarse-grain parallelism. The CUDA parallel programming

model requires programmers to partition the problem to be solved into coarse tasks

that can be independently executed in parallel by blocks of threads and each task is

further divided into finer pieces of code that can be executed cooperatively in parallel

by the threads within the block. This model allows threads to cooperate when solving

each task, and also enables automatic scalability.

GPU programming needs to explicitly handle data movement between CPU and GPU

memories and know GPU hardware limitations, such as the GPU memory capacity

and the number of registers, to effectively utilize GPUs. For most entry-level CUDA

programmers, not getting good speedups or sometimes even worse performance than

pure-CPU programs is a common issue. The synchronization between threads, the

overlapping of computation and data movement, and poor kernel performance are

major problems in CUDA programming.

2.4.3 GPU Profiling

GPU-accelerated computing is becoming the mainstream for modern supercomputers.

Therefore, the performance analysis of hybrid architectures becomes more critical.

Generally, there are two types of GPU profilers: one focuses on kernel-level

performance analysis and the other is more system-wide, exploring potential benefits

by coordinating CPU and GPU tasks more effectively.

With regard to profilers that are focused more on kernel performance, NVIDIA has

provided Nvidia Visual Profiler (NVP) [57] using measurement-based approaches.

NVP logs the execution characteristics of each GPU task, including method name,

start and end times, launch parameters, CPU status (idleness or in-execution) and

 26

GPU hardware counter values, etc. Some useful functionality, such as Unified CPU

and GPU Timeline, CUDA API trace, Power and thermal profiling and Guided

Application Analysis provide users with abilities to trace the execution of the entire

program and identify inefficiencies in computation/communication overlapping,

synchronization, and load imbalance problems. Besides the visual profiler, Nvidia

also has a command line based profiler – nvprof, which can produce most of the same

performance information as the visual profiler, and generate runtime data that can be

fed into the visual profiler if desired. Although NVP is the most popular GPU/CUDA

profiler, it lacks some features, such as source-level, in-depth analysis of kernels,

mapping the performance issues to specific variables and functions, and the complete

user-level calling context, which can be of great use to CUDA programmers.

S. S. Baghsorkhi and I. Gelado, et al. [58] use modeling and simulation to provide

insights into the performance of individual kernels. The proposed analysis is based on

memory traces collected for snapshots of an application execution. A trace-based

memory hierarchy model with a Monte Carlo experimental methodology generates

statistical bounds of performance measures without being concerned about the exact

inter-thread ordering of individual events but rather studying the behavior of the

overall system. The statistical approach overcomes the classical problem of disturbed

execution timing due to fine-grained instrumentation. However, simulation-based

methods have an inherent limitation that they do not reflect the actual execution

profiles. S.J. Pennycook and S.D. Hammond, et al. [59] presented a performance

study of a port of the LU benchmark from the NAS Parallel Benchmark suite [60] to

CUDA. They conducted comprehensive performance comparison among a selection

 27

of GPUs, ranging from workstation-grade, commodity GPUs to NVIDIA’s HPC

center products, as well as between the CUDA port and the original FORTRAN 77

implementation. They also compared GPU cluster performance to that of existing

CPU clusters using performance modeling. The analytic model they employed is a

reusable model of pipelined wavefront computations by Mudalige, et al. [61], which

abstracts parallel behavior into the generic model. Jaewoong Sim and Aniruddha

Dasgupta, et al. [62] developed a performance analysis framework for identifying

potential benefits when applying several commonly-used optimizations in GPGPU

applications. They first develop an analytical performance model – the MWP-CWP

model [63] that can precisely predict performance and provide user-interpretable

metrics. Then they apply static and dynamic profiling to instantiate the performance

model for a particular input code and show how the model can predict the potential

performance benefits gained from each independent optimization or combined

optimizations. This static and dynamic combined approach resembles my tool in

understanding the root causes of slowdowns, but their model-based technique cannot

be applied to all cases. Their performance advisor is an interesting component, which

estimates the potential gains from reducing or eliminating these bottlenecks.

With regard to performance tools focused on both GPU and CPU activities, several

interesting works have been done. The NVP [57] provides coarse CPU activity

information with a unified timeline with GPU activities, which also indicates the

potential benefits of adjusting the order and the workload of CPU tasks and GPU

tasks. G-HPCTOOLKIT [64] characterizes kernel behavior by looking at idleness

analysis vial blame-shifting and stall analysis for performance degradation. It

 28

quantifies CPU code regions that execute when a GPU is idle, or GPU tasks that

execute when a CPU thread is idle, and accumulate blame to the executing task

proportional to the idling task. Their approach does a good job in identifying the root

cause of slowdowns instead of simply the performance phenomena and the use of

sampling-based method enables it to scale for real applications. Coincidently, my tool

also uses the concept of “blame”, but with a completely different meaning and

quantification. The Vampir performance analysis toolset [5] keeps track of program

executions on heterogeneous clusters. VampirTrace monitors GPU tasks using

CUPTI [66], logging information including kernel launch parameters, hardware

counter values, and details about the memory allocations. For CPU activities, Vampir

traces the entry/exit of functions like TAU [3, 75] does.

TAU is another performance analysis toolset that has support for hybrid architectures.

It employs more specific instrumentation for performance measurement, which could

incur high overhead. Robert Lim [67] presented extensions to TAU that characterize

the behavior of GPU application kernels and their performance at the node level. It

also uses CUPTI sampling function to sample the instruction mixes for kernel

execution runs, which reveals a variety of intrinsic program characteristics relating to

computation, memory and control flow. The work demonstrates the effectiveness of

their proposed techniques with two case studies on a variety of GPU architectures.

However, they did not identify any optimizations based on the insights they obtained.

 29

Chapter 3

Blame Definition

My data-centric approach builds on a performance mapping technique called

“variable blame”, proposed by Nick Rutar [18]. A variable’s blame is a percentage

that indicates the share of certain performance metrics, such as time, cache misses, or

I/O operations due to individual variables.

Blame is an inclusive data-centric method that utilizes the control flow and full data

flow information to map performance data to variables in the source code. During the

runtime, I use event-driven sampling. If a sample is triggered for an instruction that is

part of the data flow of a given variable, then that particular variable will be blamed

for the sample.

Blame is particularly useful in analyzing scientific computing applications that have

multi-level abstractions and complex data structures. These objects are often

inherently distributed and contain calls to message passing and third-party libraries

that are mostly hidden from users, masking both data motion and parallelism. Such

hiding makes it easier for programmers to write parallel programs but also far more

difficult to diagnose performance issues. Blame is a profiling tool that can attribute

performance data to these abstractions, from the very bottom internal data to higher

level concepts. The following sections explain the most important parts in the blame

calculation using a single-thread program as an example.

 30

3.1 Blame Calculus

Formally, “blame” is presented in terms of values for each variable for one run of a

program. Let S be the set of all samples gathered during the run of the program. For a

given sample s within S, W is the set of all statements containing a write to the

memory region allocated to the variable v, the aliases of v, and all fields of v. For a

structure, this includes all sub-fields within the hierarchy of v. The blame set for v is

the union of all the statements in the backward slices [38] for each of the statements

in set W:

𝐵𝑙𝑎𝑚𝑒𝑆𝑒𝑡(𝑣, 𝑊) = ⋃ 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑠𝑆𝑙𝑖𝑐𝑒(𝑤)

𝑤∈𝑊

Variable v is blamed for sample s in the cases where s is a member of the BlameSet(v,

W). The result is computed with the following function:

𝑖𝑠𝐵𝑙𝑎𝑚𝑒𝑑(𝑣, 𝑠){𝑖𝑓(𝑠 ∈ 𝐵𝑙𝑎𝑚𝑒𝑆𝑒𝑡(𝑣)) 𝑡ℎ𝑒𝑛 1 𝑒𝑙𝑠𝑒 0}

The blame percentage for a variable for the entire program is the number of samples

that are attributed to a particular variable divided by the total number of samples. This

is calculated by the following formula:

𝐵𝑙𝑎𝑚𝑒𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒(𝑣, 𝑆) =
∑ 𝑖𝑠𝐵𝑙𝑎𝑚𝑒𝑑(𝑣,𝑠)𝑠∈𝑆

|𝑆|

After computing the BlamePercentage of variable v, I can declare that v is responsible

for that fraction of whatever performance metric I chose to generate the samples. For

example, if I chose CPU clock cycles as the performance metric and the

 31

BlamePercentage was x, I can declare that v was responsible for the x fraction of all

CPU clock cycles consumed over the entire course of the program execution.

In order to properly calculate the blame of each variable, I need a set of rules that

dictate how the blame is transferred from one variable to another. Blame can be

propagated through variables in three ways: explicit transfer, implicit transfer, and

transfer functions.

3.1.1 Explicit Blame Transfer

Explicit blame transfer occurs when there is an explicit data dependency between

variables. This is the most common transfer that’s reflected by most assignment

operations. For instance, consider the C code below:

Figure 3.1: Code snippet for Explicit Blame Transfer

From the snippet, I see two variable dependencies from two assignments (I do not

care about constant values, so the first two assignments are ignored). Clearly, the

blame of a and b will be explicitly transferred to c because the values of a and b are

calculated directly for the purpose of having their sum stored in c. The last

assignment causes d to have all the blame of the snippet because there is an explicit

transfer between d and c, d and a, even though b does not appear in the direct

assignment of d, b’s blame will also be indirectly transferred to d through c. The

int a, b, c, d;

a = 6;

b = 8;

c = a + b;

d = a + c;

 32

variable d may be used in another computation and will be subsequently included in

the BlameSet of the variables that use it.

3.1.2 Implicit Blame Transfer

Implicit transfer is a little more complicated. It happens when there is no direct value

assignment between two variables, but there exists a variable used in a control

dependency. For example, a loop index is incremented for every iteration but is never

explicitly involved in any calculation in the loop body. However, all variables that are

within the loop body will inherit the blame from the index variable. The same

situation happens to the standard conditional statements.

Figure 3.2: Code snippet for Implicit Blame Transfer

In this case, the variable i is used as a loop index, even though it is not in the direct

assignment of variable a or b, it would be assigned to both a and b through an implicit

transfer. The variable a also acts as a conditional variable in the if statement, so even

though there isn’t a direct assignment from a to b, what value b will be assigned still

depends on a’s value. Therefore, variable b and a also have an implicit dependency

relationship between them; the blame of a needs to be transferred to b as well. Such

dependency relationships are obtained by doing a control flow analysis of the

program so that all variables inside a loop will have blame from the loop’s index

int i, a, b

for (i=0; i<10; i++) {

 a = 6;

 if (a>7)

 b = 8;

 else

 b = 9;

}

 33

variables and variables inside a conditional statement will have blame from the

conditional variable

3.1.3 Transfer Function and Exit Variable

The above two transfers reside within each function for the blame transferring

between local variables and possible global variables used there, but what about the

blame transferred through function parameters? I use a transfer function based on

“Exit Variables” to properly propagate blame up along the call trace.

A transfer function serves as a link to transfer blame between the callee and the caller

function in my performance data mapping system. To transfer blame between

functions, “Exit Variables” of the callee are kept and used as intermediate

transmitters to transfer blame to the caller’s local variables. “Exit Variables” are those

whose values can affect the program outside the scope of the analyzed function.

Categories of exit variables include:

 Parameters that can result in side effects outside the analyzed function (pass

by reference, pointers) are eligible for exit variables. The cases where a

pointer is passed in and has its elements read instead of written won’t be

counted since blame is transferred only through write operations.

 If return value exists, and it is assigned to a variable in the caller function, the

transfer function is checked to see whether the blame needs to be transferred.

 Global and static variables (in C/C++ context) are handled by transfer

functions as well, but they are not treated as other variables at a per-function

level. They are hoisted to a program level and all blame from each function

will be aggregated to the single instance of that variable.

 34

3.2 Simple Example

This subsection demonstrates how to calculate the blame for each variable with a

simple example. The example is written in C for better readability, not for those who

are familiar with Chapel, but my tool handles Chapel programs besides C programs.

The BlameSet of each variable represents a set of line numbers, so whenever a

sample point falls on that line during runtime, variables that have a BlameSet

including that line will be blamed for the sample. I list the BlameSet for each variable

after each step in Table 3.1. The sample program is displayed in Figure 3.3.

In this example, there are 4 variables of interest. Three of them are local variables: i,

temp, med and the other one is a pointer parameter x, which is counted as an exit

variable as well. Note that x is the name of a formal parameter; therefore its blame

will be propagated to the real parameter, which could be a local variable in the caller

or a global or static variable defined in the global space.

First, you can easily find out the lines for each variable that is either a declaration or a

write to that variable. The variable i and temp both have line 7 as their declaration

line, so 7 is included in the BlameSet of i and temp. Line 8 is both a declaration and

an assignment for med, so 8 is included in med’s BlameSet. Line 9 is the head of a for

loop and i is the loop index and gets incremented for every iteration, thus 9 will be

attributed to i. Line 10 is included in temp’s since it’s a direct write to temp. Line 11

won’t be assigned to anyone for now since it’s neither a declaration nor a writes to

some variable, and neither will line 13. Line 12 is assigned to x and so is line 14. Line

16 won’t be assigned to anyone either since it’s just a read to temp.

 35

Figure 3.3: Example code for blame calculation

Table 3.1: Blame Calculation Result for the Example in Figure 3.3

Variable

Name

BlameSet

declaration and writes after Explicit Transfer after Implicit Transfer

i 7,9 7,9 7,9

med 8 8 8

temp 7,10 7,9,10 7,9,10

x 12,14 8,12,14 7,8,9,10,11,12,13,14

Secondly, I analyze the explicit blame relationship between these variables and do the

transferring accordingly. The variable med depends on the value of increment, which

is a non-pointer parameter, so it is not counted as an exit variable. The variable temp

depends on i in Line 10, so it will have everything in i’s. The same situation for x and

med’s will be merged to x’s as well.

5 int foo(int *x, int increment)

6 {

7 int i, temp;

8 int med=increment;

9 for(i=0; i<N ;i++){ //Sample Point 1

10 temp = i+3; //Sample Point 2

11 if(temp%2 == 0)

12 x[i] = med + 1;

13 else

14 x[i] = med - 1; //Sample Point 3

15 }

16 return temp;

17 }

 36

Thirdly, I have one for loop and one if statement in this function, so an implicit blame

dependency exists. First of all, all variables that are written inside a for loop will be

blamed for i’s; this includes x and temp. Then since temp is used as a conditional

variable, x will also be blamed for each line in temp’s BlameSet.

Lastly, I find that the function foo has a return value temp, which is an exit variable.

The variable that gets assigned the return value of foo will accept all the blame

assigned to temp within foo and as a result, counter lives outside the scope of foo.

The procedure that is described so far is a simplified blame analysis and it does not

represent the real analysis’ order and steps. Real blame analysis is far more

complicated and works on an LLVM intermediate representation (IR) [48] instead of

source code.

Now that I have the BlameSet for each variable, I can combine it with the given

runtime data (samples) to calculate the final blame percentage for each variable. From

Table 3.1, I notice that Sample Point 1 (short as “S1”) falls on Line 9, which is an

element of the BlameSet of the variable i, temp and x; therefore i, temp and x will be

blamed for S1. S2 corresponds to line 10, which is included in temp’s and x’s, so

these two variables are blamed for S2. S3 on Line 14 is only attributed to x since only

x’s BlameSet contains 14. According to the formula of blame I displayed in Section

3.1, I can calculate the blame percentage for each variable in foo as the following:

33% for i, 66% for temp, 100% for x and 0% for med.

For any given sample, multiple variables may be blamed. For example, S1 is

attributed to the variable i, temp, and x as I explained before. Therefore, in a given

function, the total percentage assigned to all variables can be more than 100%.

 37

Chapter 4

Data-centric Profiling for Single-locale Chapel Programs

Chapel is an emerging PGAS (Partitioned Global Address Space) language whose

design goal is to make parallel programming more productive and generally

accessible. To date, the implementation effort has focused primarily on correctness

over performance. I designed and implemented a performance tool ChplBlamer for

single-locale1 Chapel programs based on my data-centric idea and the blame metric.

The same idea is also applicable to other PGAS models. I also included a case study

on three well-known benchmarks and manually optimized the code with insights into

the programs. The optimized versions improved the performance by a factor of 1.4x

for LULESH, 2.3x for MiniMD, and 2.1x for CLOMP with simple source

modifications. This chapter is adapted from a paper that has been presented at the

International Parallel and Distributed Processing Symposium (IPDPS’17) [68].

4.1 Implementing the Tool

The framework of my data-centric profiling system is presented in Figure 4.1. It

consists of 4 steps, combining the static (pre-run) information and dynamic (runtime)

information of a binary, to map performance data to variables in the source code. My

approach leaves most work to the static analysis and postmortem processing, to

minimize the perturbation to the program execution. Step 1 runs intraprocedural static

1 “Locale” is a Chapel abstraction that represents a compute node, such as a multicore or SMP

processor in most typical parallel architectures.

 38

analysis, including complete control flow analysis and data-flow analysis to get

BlameSet for each variable in each function. Step 2 is the program execution under a

monitor process. Step 3 is a postmortem processing step, which can be concurrently

executed on each node in the environment when the tool is extended to support multi-

locale. Step 4 is responsible for profiling data aggregation, processing, and

presentation to the user via a GUI.

Figure 4.1: Process of Calculating the Performance Data for Variables

4.1.1 Debug Information Support for Chapel LLVM Frontend

My static analysis component runs an analysis pass on the LLVM Intermediate

Representation (IR) of Chapel programs. LLVM [48] is a widely used language-

agnostic compiler infrastructure, originally designed for C/C++, but later has

 39

spawned a variety of front ends: ActionScript, Ada, C#, Fortran, Haskell, Java

bytecode, Objective-C, Python, R, Ruby, Rust, CUDA, Scala, and Swift, etc. The

great advantage of LLVM is that you can write a language-specific front using its

C++ library to get a language-independent intermediate representation, which is also

hardware-independent. At this level, you have the same IR grammar and syntax for

different languages; therefore you can apply the same compiler optimization passes to

different languages. LLVM greatly simplifies the development of a compiler for a

new language and also exposes language-independent optimization opportunities.

I chose to analyze the LLVM IR of Chapel for several reasons: first, LLVM supports

a rich language-independent library for program analysis and transformation, so the

implementation of my static analysis pass will be relatively easier and more generic;

second, there are many existing LLVM-based optimization passes that can be plug-

and-play for Chapel programs. For example, Hayashi, Akihiro, et al. [25] developed

several LLVM-based communication optimizations for Chapel. They first enabled

some existing LLVM optimization passes for Chapel’s LLVM IR, such as Loop

Invariant Code Motion (LICM) and Scalar Replacement; then they created Chapel-

specific optimization “Aggregation”, which combines sequences of loads/stores on

adjacent memory location into a single memcpy operation.

Chapel had a basic LLVM frontend with very limited support for debugging.

Originally, it was only able to produce the debug information of modules and

functions from the Chapel standard modules. It did not produce any debug

information for variables, function parameters, and composite types, nor did it

produce any debug information for anything from the user code (including modules,

 40

functions, variables, etc.). However, I need the debug information to associate low-

level instructions and memory addresses with source lines in the user code. Therefore,

I implemented the complete debug information generation in the code generation pass

of the Chapel compiler.

Figure 4.2: Chapel Compilation Flow

Figure 4.2 [39] shows two ways of compiling Chapel programs. The default method

that Chapel compiler uses will first convert the user code and Chapel standard

modules into C code and then use gcc to compile the generated C code and produce

the ultimate binary. On the other side, the LLVM frontend is used to generate the

LLVM IR for both the user code and standard modules and clang is used to build the

binary. As I mentioned before, the debug information generation for the LLVM track

is added during the code generation step of the compiler. Everything in the user code

including compile units, variables, functions, types, instructions, etc. will have the

corresponding debug information attached. Among all the debug information, the

context information (including the file name and line number) of each program

 41

element is the most important metadata for my work since it is key to mapping blame

data back to source code variables.

4.1.2 Static Analysis

The First step of my performance data mapping system is static analysis, which is the

core part of my system. LLVM follows the SSA (Static Single-Assignment)

convention for its registers. Registers are temporary holders of intermediate values

represented by “%#”, where “#” will be replaced by a unique integer in each function.

LLVM represents variables from the original compiled code as memory locations, so

no “MOVE” operations exist in LLVM; registers are used to move data to and from

memory through load and store operations.

Although my complete analysis is interprocedural, I limit the analysis to

intraprocedural at this point for two reasons. First, I need runtime information for

interprocedural data-flow information and alias analysis. I can perform some

interprocedural analysis before running the program, but it would be incomplete.

Second, by limiting the static analysis to intraprocedural information, I can easily

reuse analyses from run to run (or among programs that use shared libraries). Also,

static analysis is parameter-independent, which means users are free to change real

parameters and configurable arguments during execution without running the static

analysis again.

Instruction Parsing

The blame calculation needs full dataflow information so that I have to thoroughly

analyze all the instructions within a function one by one. While parsing instructions, I

categorize each variable/register by their different roles in different types of

 42

instructions. I also need to store the information of function parameters to create exit

variables, which will be used to create transfer functions. The details about transfer

function are explained in Section 3.1.3.

Graph Representation

Variable blame is calculated based on dataflow interactions; therefore, to formalize

the propagation of information, I use sets to present the elements removed or inserted

in each category for each variable/register after parsing every instruction. It ends up

with a BlameSet for each variable that associates them with blamed lines in the

source code. Along with BlameSet, I have several auxiliary sets for each

variable/register that are used in the data-flow analysis to transfer blame between

variables. This leads to redundant data from set to set. I use a graph to represent the

blame relationship between variables. I represent the dataflow interactions as edges

within a graph, and variables and registers and function calls as vertices. The edges

are directed, from the blamed vertices to blamee vertices. For example, if it is a load

instruction, then the node representing the return value will have a directed edge to

the node representing the address from where the load instruction gets its value.

To show how my graph representation encodes the blame calculus, here I will go

through a simple Chapel code snippet shown in Figure 4.3 with the corresponding

generated LLVM IR in Figure 4.4. Figure 4.5 shows the original graph representation

and Figure 4.6 shows the compact graph that removes redundant data from the

original.

 43

Figure 4.3: Sample Code for Graph Representation

Figure 4.4: LLVM Instructions for the snippet in Figure 4.3

The LLVM IR in Figure 4.4 is a simplified version while the complete IR has many

more instructions, making the generated graph far more complicated.

Consider Figure 4.5, the graph is constructed in the following way: the SSA registers

generated by LLVM are presented with white ovals; the constant values are

represented by rounded rectangles filled with light blue; the variables from user code

or temporary variables generated by Chapel are represented with white rectangles. If

there is a blame relation between vertex a and b, I add an edge directed from a to b if

a is blamed for b.

var a : int = 6;

var b : int = 7;

var c : int = a + b;

store i32 6, i32* %a_chpl

store i32 7, i32* %b_chpl

%0 = load i32* %a_chpl

store i32 %0, i32* %call_tmp_chpl

%1 = load i32* %b_chpl

store i32 %1, i32* %call_tmp_chpl2

%2 = load i32* %call_tmp_chpl

%3 = load i32* %call_tmp_chpl2

%4 = add i32 %2, i32 %3

store i32 %4, i32* %c_chpl

 44

Figure 4.5: Original LLVM IR Graph Representation

Figure 4.6: Compact LLVM IR Graph Representation

 45

In most cases, the raw graph consists of a lot of redundant data and I can compress

the graph to get a clearer blame relationship between variables from user code. I

migrate vertices and edges to the compact graph once they meet certain criteria. Local

variables and function parameters are migrated automatically. Any registers that are a

pointer to one of the elements listed above are eligible to migrate. Any registers that

are the receiver of a store operation are migrated as well. According to Chapel’s

naming pattern, variables starting with “call_tmp_chpl” will be recognized as

temporary variables and will be removed. The deleted vertices need to transfer their

connected edges to other remaining variables. After a variety of operations, I get a

compact graph as shown in Figure 4.6.

Hierarchical Processing of Structures

The most important instruction of the LLVM IR in static analysis is the

“getelementptr” (GEP) instruction [70]. The GEP instruction gets the address of a

complex data structure or array but does not actually access memory. In GEP

instructions, the first argument is always a type used as the basis for the calculations.

The second argument is always a pointer or a vector of pointers. The remaining

arguments are indices of the elements of the aggregate object that are accessed. The

interpretation of each index is dependent on the type being indexed. The first index

always indexes the pointer value given as the second argument, the second index

indexes a value of the type pointed to (not necessarily the value directly pointed to,

since the first index can be non-zero), etc. The first type indexed must be a pointer

value, subsequent types can be arrays, vectors, and structs [71]. A load instruction

usually follows a GEP instruction to get the value from the calculated address. In

 46

some other cases, the retrieved address will be first stored into some other temporary

variables and later loaded and de-referenced, in that case, I need to handle the aliasing

relationship between the original GEP instruction and the ones that are loaded and

used later. I do back-tracing along GEP and load/store operations to resolve the

pointer relationships. In the graph representation, a GEP instruction is illustrated with

several nodes representing the base, the field index, and field address, respectively.

The tool adds edges between each field and their structure base or “Parent” (this is a

recursive process since a data structure can be multi-level so the “Parent” may have

its own “Parent”, which becomes the “Grandparent” of the original field

representation). The nodes in the graph that actually point to the same field of a data

structure will be collapsed to a single node so that the distributed blame to all the

representations can coalesce. Later, a “Parent” can absorb all the blame of its

“Children”. In this way, the blame can bubble up along the data hierarchy. And if a

user-defined high-level abstraction employs a low-level library data structure, the

blame on that library structure can be reflected on the user-defined variable and

provides programmers with insights for user-level optimization.

4.1.3 Runtime Information Acquisition

The execution step involves running the program under a monitoring process and

generating raw sampling data.

The sampling mechanism uses hardware support via PMU (performance monitoring

unit) that exists in most current processors. A PMU can be configured to trigger an

interrupt when a marked event count reaches some threshold.

 47

I use the PAPI [20] library as the interface to utilize PMUs. PAPI provides the tool

designer and application engineer with a consistent interface and methodology for use

of the performance hardware counter in most major microprocessors. When a PMU

triggers a sample event, the profiler receives a signal and reads PMU registers to

extract the precise instruction pointer of the sampled instruction. The marked PAPI

event I used as the performance metric is PAPI_TOT_CYC. One issue with

measurements involving interrupts is “skid”: once an overflow interrupt happens, it

takes a CPU (especially modern complex out-of-order designs) some amount of time

to stop the processor and pinpoint exactly which instruction was active at the time of

the overflow. Often there is an offset between the instruction indicated versus the one

causing the interrupt (this offset is called skid). PEBS [88] and IBS [76] provide

support for low-skid sampling, at the expense of some additional overhead. Some

previous work [49] has been done to avoid this problem by sampling instructions

instead of events. I do not account for skid in my current implementation, but I plan

to add a skid compensation feature in the future.

For each sample that is triggered during the program execution, I need to perform a

stackwalk to get the call path using libunwind [82]. Libunwind is a portable and

efficient C programming interface (API) to determine the call-chain of a program.

The API supports both local (same-process, first-party) and remote (cross-process,

third-party) operation. I used the remote/third-party stack walk by creating a

monitoring process to ensure thread safety because the online stackwalk of a multi-

threaded program within a signal handler is currently not safely supported by

libunwind. Whenever the sampling process receives an overflow signal indicating it is

 48

time to take a sample, the monitoring process will perform a stack walk on the

associated thread, which guarantees the memory space of the target process not being

corrupted. To implement my monitoring process, I use DyninstAPI [19]. DyninstAPI

is a widely-used Application Program Interface (API) that permits the insertion of

code into a computer application that is either running or on disk. When running

under Dyninst, all signals are first sent to the Dyninst monitoring process.

To support multi-threading, I instrument the Chapel tasking layer and enable the

PAPI initialization whenever a new thread is created so the corresponding PMU can

start counting on that thread. For parallel blocks in Chapel (i.e., forall and coforall),

the master thread spawns worker threads to execute distributed tasks. To get the full

call paths for the samples for each worker thread, I keep a unique tag for each spawn

operation and record the stack trace before the spawn operation begins. It allows us to

combine the pre-spawn stack trace with the post-spawn stack trace to produce a full

call path for worker threads.

4.1.4 Postmortem Analysis

The postmortem analysis is the key step to combine the static information with the

runtime information and produce a list of blamed variables for each sample. Several

important passes in this step such as address parsing, full call path construction, and

transfer function application are explained in the following subsections.

Address Parsing

First of all, I need to parse the raw sample data. Each sample is constructed as an

“instance” object. Each instance consists of an instance index and a vector of frames

obtained by walking the stack periodically during runtime. Each frame has three basic

 49

fields: frame number, address, and frame name (the name of the procedure that

created the stack frame). I can resolve the raw instruction memory address to the

precise file name and line number with the debug information.

Parsing is done not only for the samples generated by the sampling mechanism but

also for pre-Spawn stack traces I got from the instrumentation in the Chapel runtime

library. These partial stack traces are linked together to constitute full stack traces in

the next step.

Glue Stack Traces and Assign Blame to Variables

To get a full call path for each sample, I need to glue the pre-spawn and post-spawn

stack traces based on the unique spawn tag. All the context information, including

module name, file name, line number, and frame number are stored in an abstraction

named “instance” for each sample.

Figure 4.7: Process of getting full call path for the sample inside a parallel block

foo(){

 …

 bar(){

…

forall … {

 funcA(){

 funcB(){

 //sample point

 }

 …

 }

}

}

}

foo->bar

(pre-spawn)

funcA->funcB

(post-spawn)

foo

bar

funcA

funcB

code snippet in nested

function style

call path for both pre-spawn

 and post-spawn stages

full call path for the

sample point

 50

Consider Figure 4.7 as an illustration of concatenating partial stack traces; the code is

written in a nested function style to show the call chain in a more intuitive way.

Later, I combine the stored intraprocedural analysis results with the runtime data

(“instances”) to determine the blamed variables for each sample. After resolving the

addresses to functions and line numbers, I can utilize the predetermined exit variables

to apply transfer functions at each level of the call trace. It means I can bubble the

blame up as far as I need to assign blame to appropriate variables in each function

along the call chain.

After this step, I have a list of blamed variables for each sample on the current

compute node. For multi-locale programs, it will be one file per node to store the

postmortem processing result and that part will be discussed in Chapter 5.

4.1.5 GUI Display

The last component of ChplBlamer is the Graphic User Interface (GUI). There are

three different windows to view the data: a flat data-centric view, a traditional code-

centric view, and a hybrid way. The flat data-centric view is the default window. It

provides a flat view of all the variables defined in the program, ranked in descending

order by the blame they are assigned to. The second view is a hybrid view based on

“blame points”. Blame points are points in the program deemed to have interesting

variables; the most common one is the main function since variables in there cannot

be bubbled up any further in the call stack. The third window is a traditional code-

centric view that attributes samples to different functions instead of variables, in an

inclusive way with complete calling context. Since I have processed all the context-

 51

sensitive samples in data-centric view, this code-centric view incurs almost no

additional overhead.

In the data-centric view, I also show the declaration point of the variable, a call trace

starting from the main function. For now, I do not distinguish local variables from

global variables. All variables from all functions are laid out in the same window.

Therefore, this location information is critical to identify the exact variables blamed

in the code since local variables from different functions can share the same names

and as well as the global variables. Figure 4.8 is a screenshot of the GUI with a flat

data-centric and code-centric main display for one run of MiniMD. The right side is

the unique data-centric result that my tool provides using blame analysis while the

left side is the inclusive view of the regular sampling based code-centric result.

Figure 4.8: GUI screenshots of MiniMD

 52

4.1.6 Exclusive Blame

So far as presented, the blame calculation is an inclusive data-centric profiling

approach. This means that the blame value of a certain variable will absorb all the

blame of its dependent variables. Therefore, the variables that hold the ultimate

results will stand out in terms of weight. For example, variable c in Figure 4.9 has a

blame value of 100% since the whole block of code is to compute the value of c.

After examining the code, I find that the largest contribution to c is from b since c

depends on b and b is responsible for all previous computation except for the last

assignment to c. Therefore, optimizing the computation of b (line 2 to 4) may

potentially provide better speedup than optimizing the single assignment to c (line 5).

Figure 4.9: Code snippet for Inclusive and Exclusive Blame Calculation

Table 4.1: Inclusive and Exclusive blame calculation for Figure 4.9

Variable a b c i

Result Type inc exc inc exc inc exc inc exc

BlameSet 1 1 1,2,3,4 2, 4 1,2,3,4,5 5 3 3

Blame Samples s1 S1 S1,2,3,4 S2,3 S1,2,3,4,5 S5 s4 S4

Blame 20% 20% 80% 40% 20% 20% 20% 20%

1 a = 8; //Sample 1

2 b = a * a; //Sample 2,3

3 for (i = 0; i < N; i++) //Sample 4

4 b = b + i;

5 c = a + b; //Sample 5

 53

To supplement the original inclusive blame, I provide another way of evaluating the

weight of variables in terms of the potential of optimization: exclusive blame.

Exclusive blame only attributes a line to a variable if there is a direct write to the

variable at that line. Therefore, more blame will be aggregated to computation-

intensive variables, where usually more optimization opportunities exist. Table 4.1

shows the process and result of exclusive blame calculation for the code snippet in

Figure 4.9. Now the most blamed variable is b, I can quickly locate b’s first write

statement with the multiplication as a potential performance bottleneck and optimize

it. In the following subsections, only the inclusive blame results are presented.

4.2 Case Studies

I have chosen three Chapel benchmarks to demonstrate the utility of my tool. Two of

them, LULESH [74] and MiniMD are from the Chapel source distribution, the third

benchmark CLOMP, was ported by my group member Johnson [21] from the C

version of the Livermore OpenMP benchmark on the Coral Collaboration Benchmark

Codes website [71]. All experiments were done on a single locale. I used a 12-core

SMP system, each is a 2.53GHz Xeon CPU. The Chapel version I used in

experiments is 1.11. The threshold 2 I utilized with PAPI to trigger samples is

608,888,809, which is a large prime.

All programs were compiled with “--llvm --no-checks -g” (meaning the llvm frontend

with no redundant boundary checks). Specifically, I did not use “--fast” (equivalent to

2 Threshold is set to be a prime since it’s important to avoid sampling bias caused when the sampling

interval is a multiple of loop trim cause.

 54

“-O3” in GNU compilers) since my intraprocedural analysis heavily depends on the

generated LLVM bitcode of the Chapel program. Using “--fast” option in compilation

would result in an LLVM intermediate representation with too many functions

removed or renamed, variables optimized out and instructions reordered. These

optimizations would make it nearly impossible to map the performance data from the

IR nodes (temporary variables and registers) back to the source level variables with

real names. A production version of Chapel should use augmented debug data to

allow higher level optimizations. To validate that the information supplied by my tool

w/o “--fast” provides useful guidance, I reran all of the original and optimized

benchmarks with the “--fast” option and show that I get similar gains when using this

option as without it.

As for the overhead of my tool, taking LULESH as an example: the typical cost per

stack walk is 0.051ms while the interval is about 241ms (or a total overhead of

0.02%); the sizes of the datasets generated during runtime are 6MB to 20MB

depending on the problem size; post-processing analysis takes an average of 16ms to

process one sample.

4.2.1 MiniMD

MiniMD, short for “Mini Molecular Dynamics”, is a proxy application from Sandia’s

Mantevo group. It represents key idioms of their real applications. Molecular

Dynamics codes compute physical properties like energy, pressure, and temperature

for a simulated space containing moving atoms. MiniMD was previously

implemented in C++ using MPI and OpenMP, requiring about 5,000 lines of code,

while the Chapel version only takes about 2,000 lines.

 55

I picked this application for two reasons: first, it is an important strategic benchmark;

second, it has several variables with multi-level data structures that are responsible

for most computation so data-centric information is particularly useful. The problem

size I tested for the benchmark is (16, 16, 16) unit cells (16,384 atoms). All other

input parameters are pre-defined in the source by default.

I ran the test 10 times and reported mean values to eliminate run to run variance in the

data. Variables with the largest blame values are listed in Table 4.2. First, I describe

the roles of the variables that have a large blame. Then I explain how I used this

information to optimize the program.

Table 4.2: Variables and Their Blame for THE Run of MiniMD

Name Type Blame Context

Pos [DistSpace][perBinSpace] v3 96.3% main

Bins [Space][perBinSpace] atom 84.2% main

RealCount [binSpace] int(32) 80.8% main

RealPos [binSpace][perBinSpace] v3 80.8% main

Count [DistSpace] int(32) 54.9% main

binSpace domain 49.4% main

The record named “atom” is the most important data structure in the benchmark. It is

an abstraction of atoms in the Molecular Dynamics simulation and contains two basic

attributes: velocity (v) and force (f), both are (x, y, z) 3-D real values. It also includes

the storage for the neighbor list, which stores the bin and index of a neighboring

atom. Therefore, in the global space, which is initialized before the main function

 56

runs, I have the two most important variables: Pos, which is an array of positions, and

Bins, which is an array of atoms.

Pos (96.3%): Pos serves as one of the root variables for the entire program. It stores

all the position data of the atoms in the space. “v3” is a created type, using a 3*real

tuple. DistSpace is a domain that defines the bounds of the arrays (Pos, Bins) and

distributes them across locales in the multi-locale environment, while here it is simply

the expanded domain of binSpace. perBinSpace is a one-dimensional domain. Pos

takes a lot of blame because the positions are accessed and updated frequently in the

program for the computation of the atom forces as well as neighboring atoms’

attributes.

Bins (84.2%): The variable Bins is a collection of atoms based on spatial position.

The benchmark is to simulate the space by calculating the attributes of each atom,

thus this variable is read and written frequently and continuously throughout the

entire program. The domains of this variable are basically the same as Pos, except the

first domain ‘Space’ is exactly equal to binSpace instead of binSpace.expand() in the

single locale environment.

RealCount/RealPos (80.8%): These two variables are array aliases of Count and Pos,

respectively. In Chapel, array slices alias the data in arrays rather than copying it.

They are accessed and updated frequently in the time-critical code.

Count (54.9%): The variable Count is an array that keeps the count of bins in the

space. For domain remapping reason, which I will address later, this variable is

“written” (not at the source code level, but at the LLVM instruction level) during the

main calculations, so is its array alias RealCount.

 57

binSpace (49.4%): As I introduced earlier, binSpace is a domain whose range is

determined by the problem size I set, which tells us the number of bins I need in each

direction in the simulation space.

Discussion and Optimization: After a brief review of the benchmark source, I found

three functions that handle most of the computation workload inside the real

simulation function: run. They are buildNeighbors, updateFluff, and

ForceLJ.Compute. Combined with my profiling results, it was discovered that the

hot spots of these three functions are inside the nested for loop, where Bins and Pos

are calculated after several domain remapping operations. The function

buildNeighbors is used to put atoms into correct bins and rebuild neighbor lists;

updateFluff is to update ghost information of Pos and Bins, and ForceLJ.compute is

to compute forces between atoms.

The original code uses succinct zippered iteration expressions to do domain

remapping in nested loops. Specifically, zippered iteration refers to a way in which

Chapel for-loops can be driven by multiple iterands in a coordinated manner.

However, based on my experience, that could produce significant overhead,

especially in a large nested loop. Johnson’s work [21] has done some optimizations

on substituting for those zippered iterations in MiniMD. I applied their modifications

to the source and obtained a significant improvement in the performance. The full

details about the modifications can be found in Appendix A of [21].

The optimization opportunity found by Johnson [21], et al. was based on a manual

performance analysis of the generated code, a complicated and painful process that

required examining over 50 C source files mixed with user code and Chapel library

 58

code. It is very difficult to identify bottlenecks by hand and even harder to map them

back to Chapel source code and then optimize them. Using my tool, programmers can

quickly identify the problematic variables in the source code. In the case of MiniMD,

by searching for the two most blamed variables, Pos and Bins, I was able to quickly

locate those forall loops that contain zippered iteration and domain remapping. Based

on my experience of the poor performance when using zippered iteration and domain

remapping, I could apply those transformations to improve the performance.

Table 4.3: Results w/ or w/o “--fast” Flags

 Original(s) Optimized(s) Speedup

w/o –fast 20.87 9.23 2.26x

w/ --fast 6.41 2.50 2.56x

Table 4.3 shows the performance improvement using my optimization. I gained a

speedup of 2.26x on a small-sized problem (size=16). To show that my optimization

works no matter which compilation flags I use, I applied the same optimization to the

benchmark recompiled with the “--fast” option. The result of “--fast” version shows

that with compiler optimization, my optimization still produces similar speedups.

4.2.2 CLOMP

CLOMP stands for C version of the Livermore OpenMP benchmark [71] and is used

to simulate a typical scientific application to measure the overhead of different usage

of OpenMP primitives. I selected variables with blame larger than 10% in Table 4.4.

 59

CLOMP is a simple benchmark. After the initialization, the application starts the

simulation by calling function update_part over and over again through the top loop

function do_parallel_version, inside which, there is only one function: parallel_cycle.

The function parallel_cycle calls four subprograms: parallel_module1,

parallel_module2, parallel_module3 and parallel_module4. The difference between

these subprograms is simply the number of the parallel forall loops in each function.

Besides this dominating calculation, there are multiple re-initializations and

calc_deposit function calls, which only consume a small portion of the total run time.

The roles of blamed variables are introduced below.

Table 4.4: Profiling Result for the Run of CLOMP

Name Type Blame Context

partArray [partDomain] Part 99.5% main

->partArray[i] Part 99.5% main

->partArray[i].zoneArray[j] Zone 99.0% main

->partArray[i].zoneArray[j].value real 99.0% main

->partArray[i].residue real 12.3% main

remaining_deposit real 11.8% update_part

“->” symbol is used to represent field to its parent struct relation, with the parent struct variable
listed above it in the table

partArray (99.5%): Variable partArray is the top-level data structure in the

benchmark that holds everything of importance. It is created as a global variable, so

that the final blame value from all the points wherever a piece of it gets written, that

portion of blame will be aggregated to one single variable in the last step of my tool.

The partArray is defined on a partDomain, which is based on the configurable

 60

constant CLOMP_numParts so that I can control the size of the domain in the

execution command line. Besides other attributes in the Part data structure, I have an

array of zones, which is created with the self-defined Zone type and runtime

configurable array size: CLOMP_zonesPerPart.

partArray[i].zoneArray[j](99.0%): This variable is the element of the zoneArray in

the global variable partArray. By following the hierarchical symbol “->”, I’m able to

find which field of the complex data structure is actually responsible for the most

computation. I can see the value in Zone takes most credits so I have a basic idea that

the whole program is trying to compute the field value for each zone in partArray.

partArray[i].residue (12.3%): The residue is a field of the Part class, it is calculated

in the update_part function. It’s another important field that needs to be updated

frequently for each part besides all the zones.

remaining_deposit (11.8%): This is simply a local variable defined in function

update_part. Since the function update_part is called frequently, so this variable is

accessed a lot as well. It is used as a temporary variable for computing the value of

partArray[i].residue.

Discussion and Optimization: Since the number of parts and the number of zones per

part are determined on the command line, I can use a large 2D array to hold those

values, like Johnson and Hollingsworth did [21]. Accessing elements in one big array

is much faster than through nested structures. The performance improved by up to a

factor of 2.13x. The details can be found in Table 4.5. I also list the result with

compiler optimization enabled, in which case I get even better speedups with the

same manual optimization.

 61

Table 4.5: Results w/ or w/o “--fast” Flags

Flag Problem Size Original (s) Optimized (s) Speedup

w/o --fast

1024/64,000 4.02 2.18 1.84x

65536/10 4.79 4.40 1.09x

12/640,000 3.87 1.82 2.13x

65536/6400 7.88 7.14 1.10x

w/ --fast

1024/64,000 3.72 1.44 2.59x

65536/10 5.13 2.14 2.40x

12/640,000 3.75 1.41 2.65x

65536/6400 7.98 4.07 1.96x

numThreads=12, allocThreads=12, flopScale=1, timescale=100

4.2.3 LULESH

LULESH was first implemented by Lawrence Livermore National Lab (LLNL) and

has since become a widely studied proxy application in DOE co-design efforts for

exascale. LULESH approximates the hydrodynamics equations discretely by

partitioning the spatial problem domain into a collection of volumetric elements

defined by a mesh. It has a collection of implementation versions based on most

modern HPC programming models and languages, including Chapel. The problem

size I chose is 15 elements per edge for the time limit considering my current

sampling threshold.

LULESH Chapel source was designed to mirror the overall structure of the C++

LULESH but use Chapel constructs wherever they can to help make the code more

concise and compact. It was implemented as a single locale, multi-threading program.

 62

The function LagrangeleapFrog in main is responsible for 96% running time and

most work is done underneath the forall parallel blocks inside its subroutines,

therefore traditional code-centric profiler would only give limited insight while my

profiler provides more insights about what and where to look for optimizations.

To compare my tool to prior approaches, I used Pprof from gperftools [16], an

existing code-centric profiler that works for Chapel, to profile the benchmark. The

profile output of the top ten functions is shown in Figure 4.10. The columns are:

1. Number of profiling samples in this function

2. Percentage of profiling samples in this function

3. Cumulative percentage of samples

4. Number of samples in this function and its callees

5. Percentage of samples in this function and its callees

6. Function name

Figure 4.10: Pprof output for LULESH

The output of Pprof is a bit confusing. First, it mixes functions from the Chapel

runtime libraries and user code. The function that takes the largest portion of time on

the list is __sched_yield, a system call that’s referenced by Chapel threading layer.

 63

It’s used to force the running thread to relinquish the processor and move the thread

to the end of the queue; time spent in this function is often due to load imbalance or

lack of parallelism elsewhere in the program. The only function that can be

recognized by users on the list is CalcElemNodeNormals, which only consumes 0.9%

of the total time and reveals limited optimization opportunities. Second, the

information isn’t fine-grained enough to identify the specific performance bottlenecks

in the code. In comparison, the blame profiling result in Table 4.6 provides richer

variable-specific information, thus giving better insights into the user code

optimizations.

The function main primarily serves as the highest level structure: initializing the test,

starting the main loop that contains the core work, timing, and printing results.

Almost all the samples fell within the function LagrangeLeapFrog. The “Context”

column in Table 4.6 only lists the subroutines where the corresponding variables are

defined. Note the sum of the blame for all variables is over 100%. As I briefly

explained in Section 3.2, multiple variables could be blamed for a single sample. In

this case, all the samples that were counted for hourmodx’s will be assigned to hx,

shx, and hgfx as well, thus these variables all get their own number of samples

incremented. Therefore, the overall blame is larger than 100% for almost all programs

as long as there is data dependency between variables. The roles of variables that are

blamed most are introduced below.

hgfx (29.5%): LULESH is a symmetric 3-D simulation, thus I’ll just use the x-axis

variable to represent corresponding variables in all 3 dimensions later in the paper.

Here, hgfx is an 8*real tuple, defined in CalcFBHourglassForceForElems. Together

 64

with shx, hx, hourgam, and hourmodx, they compute the hourglass control force for

each element.

Table 4.6: Variables and Their Blame for the Run of LULESH

Name Type Blame Context

hgfz 8*real 30.8% CalcFBHourglassForceForElems

hgfx 8*real 29.5% CalcFBHourglassForceForElems

hgfy 8*real 29.2% CalcFBHourglassForceForElems

shz real 27.9% CalcElemFBHourglassForce

hz 4*real 27.6% CalcElemFBHourglassForce

shx real 26.9% CalcElemFBHourglassForce

shy real 26.6% CalcElemFBHourglassForce

hx 4*real 26.6% CalcElemFBHourglassForce

hy 4*real 26.6% CalcElemFBHourglassForce

hourgam 8*(4*real) 25.0% CalcFBHourglassForceForElems

determ [Elems] real 15.7% CalcVolumeForceForElems

b_x 8*real 9.7% IntegrateStressForElems

b_z 8*real 9.7% IntegrateStressForElems

b_y 8*real 8.7% IntegrateStressForElems

dvdx(y/z) [Elems] 8*real 8.3% CalcHourglassControlForElems

hourmodx real 5.8% CalcFBHourglassForceForElems

hourmody real 5.1% CalcFBHourglassForceForElems

hourmodz real 4.8% CaclFBHourglassForceForElems

 65

determ (15.7%): The variable determ is a higher level data abstraction defined in

CalcVolumeForceForElems. It’s a local array with a domain being dynamically

allocated on the heap every time the function is called. The same situation happens to

the variable dvdx, which is defined in CalcHourglassControlForElems. I will explore

the potential optimization opportunities of these variables later in the discussion.

b_x (9.7%): The variable b_x is also a 8*real (floating point double) tuple declared in

IntegrateStressForElems and passed into CalcElemNodeNormals as a reference. The

value of b_x is assigned through a nested function inside CalcElemNodeNormals.

hourmodx (5.8%): The variable hourmodx is a local variable defined inside a nested

for loop in function CaclFBHourglassForceForElems. It is used to calculate the

value of hgfx. There is only one write to this variable in the code, but it is updated

frequently due to the loop and it acts as an important role in transferring blame.

Figure 4.11: Code Snapshot of LULESH hotspot

Discussion and Optimization: From Table 4.6, I discovered variables that hold the

most blame in the program. After examining the code, I found that hgfx(y/z), shx(y/z),

 66

hx(y/z), hourgam and hourmodx(y/z) have direct data dependency between them:

hgfx(y/z) depends on the value of shx(y/z); shx(y/z) depends on hourgam and hx(y/z);

hx(y/z) depends on hourgam, which ultimately depends on the value of

hourmodx(y/z). By further checking the code-centric data, it was discovered that over

21% of the total time came from the loop block in Figure 4.11. Therefore, optimizing

this for loop is a good way to improve the overall performance.

Table 4.7: Results for Loop Unrolling Methods

Unrolling tag Run time (s) Speedup

Original 12.47 1.00x

0 params 12.04 1.04x

P 1 11.65 1.07x

P 2 12.95 0.96x

P 3 11.78 1.06x

P1+P2 12.59 0.99x

P1+P3 11.89 1.05x

P2+P3 12.60 0.99x

P1+U2 12.10 1.03x

P1+U3 12.33 1.01x

P1+U2+U3 12.75 0.98x

‘U x’ means I manually do the unrolling for that for loop in place x

The keyword “param” before the loop iterator in Chapel causes the compiler to

optimize the code by unrolling the loop. However, sometimes it would be

counterproductive since it enlarges the code size. Therefore, I did control tests by

preserving or eliminating these keywords in each location (denoted as “P #”). I

further combined it with manual unrolling to see if that would be beneficial as well.

The experiment results are displayed in Table 4.7.

 67

Among all the options, I can see that simply keeping “param” for the outermost loop

(P 1) gives us the best performance for this block of code. By shortening the

execution time of this loop block, I expect to decrease the blame of those variables

used in the loop, e.g., hourmodx and hourgam. This worked well and the result is

shown in Table 4.8.

The second optimization I made to the benchmark is from observing the variables

determ and dvdx. At first, they seemed hard to optimize since the calculations of their

values are deep inside the subroutines after their declarations. Without changing the

algorithm, I can’t simplify the computation. Fortunately, inspired by the optimization

in Johnson’s paper [21], I did Variable Globalization (VG). This optimization moves

the declarations of several safe local variables to the global space so that they won’t

be dynamically allocated every time when the function is called. In this way, I saved

about 19% execution time.

Another optimization I found through analyzing the profiling result is to work on

variables b_x, b_y, and b_z. The values of b_x, b_y, and b_z, representing the

“normal” from each face in the program, are computed in function

CalcElemNodeNormals (“CENN” for short). Inside CENN, partial results are

calculated through the nested function ElemFaceNormal and stored in temporary

variables. Finally, the partial results from multiple ElemFaceNormal calls are added

up through an addition operation on tuples. Since all temporary variables use tuple

type, it involves tuple constructions and destructions, which are not cheap when they

are nested deeply inside a big loop. I optimized this part by directly assigning

intermediate results to the passed-in variables, thus avoiding redundant tuple

 68

constructions and destructions. This optimization denoted as “CENN” is able to

reduce the execution time by 7%.

Table 4.8: Profiling Results Comparison between Different Optimizations

variable name

Blame (%)

Original P1 VG CENN

hgfx 29.5% 20.5% 31.3% 26.4 %

hgfy 29.2% 18.8% 31.3% 27.4%

hgfz 30.8% 19.8% 28.0% 27.1%

shx 26.9% 18.1% 27.7% 23.08%

shy 26.6% 17.0% 28.0% 24.8%

shz 27.9% 17.4% 27.0% 24.4%

hx 26.6% 17.0% 27.7% 23.1%

hy 26.6% 16.3% 27.0% 23.4%

hz 27.6% 17.0% 27.0% 23.8%

hourgam 25.0% 13.2% 25.7% 22.1%

hourmodx 5.8% 2.8% 7.3% 6.4%

hourmody 5.1% 3.8% 6.1% 6.7%

hourmodz 4.8% 2.4% 8.3% 6.0%

 dvdx(y/z) 8.3% 7.3% 8.2% 7.0%

determ 15.7% 20.8% 14.8% 16.1%

 b_x 9.7% 10.4% 9.0% 6.0%

b_y 8.7% 10.1% 9.0% 6.0%

b_z 9.7% 10.8% 9.3% 6.0%

 69

Table 4.8 shows a profiling result comparison between each optimization I applied to

the program. Instead of the default descending order, I group the variables that are

affected by the same optimization. It gives us a clearer view of how a particular

optimization would affect the profiling result of the relevant variables. The first

optimization “P 1” reduces the computation time of that for loop, which directly

affects variables hourgam, hourmodx(y/z), indirectly affects variables like hgfx(y/z),

etc. Therefore, there is a decrease in the ratio of the above variables between the 3rd

and 2nd columns in Table 4.8. The second optimization “VG” relates to determ and

dvdx since it would reduce the number of times that these variables are declared and

initialized. The total reduction in time brought by this optimization was achieved by

hoisting many similar variables. The last optimization “CENN” focuses on

simplifying the calculation of b_x(y/z). By comparing the 5th and 2nd column in

Table 4.8 of these three variables, there is an obvious drop in their weight, which also

meets my expectation.

Table 4.9 summarized the timing results of all versions of LULESH benchmark. The

speedup column is the exclusive effect that the corresponding option achieves. The

best case is the combination of all three optimizations (Combo). Overall, I achieved a

factor of 1.4x speedup by modifying only 20~30 lines of source code.

I also list the “w/ --fast” column in Table 4.9, which shows the result for the

compiler-optimized version. The overall speedup is bigger than that of “w/o --fast”.

The first and third manual optimization that I made obtain smaller speedups than

before, that’s probably because the “--fast” flag has already done some similar work

for the original code, so my manual modifications gain less speedup.

 70

Table 4.9: Optimization results w/ or w/o “--fast” flags

 w/o --fast w/ --fast

 Run Time(s) Speedup Run Time(s) Speedup

Combo 9.02 1.38x 3.20 1.47x

VG 9.98 1.25x 3.39 1.39x

P 1 11.65 1.07x 4.54 1.04x

CENN 11.57 1.08x 4.59 1.02x

Original 12.47 1.00x 4.70 1.00x

4.3 Discussion and Summary

New parallel programming models provide newer abstractions for programmers.

However, performance tools need to keep pace with these changes to present useful

performance information in an intuitive way. A few established profilers, such as

HPCToolkit-data-centric, lack the full capability to properly profile PGAS languages,

where most variables in Chapel benchmarks are regarded as “unknown data”. For

example, in experiments, CLOMP has 96.88% performance statics falling in

“unknown data” category and LULESH reports 95.1% in “unknown data”, which

cannot provide useful information to programmers. Compared to some existing work,

my tool distinguishes itself in several aspects:

First of all, my tool is the first Chapel-specific performance measurement and

analysis tool. Different from [11, 12, 13, 14], my approach chooses Chapel as the

target language and provides valuable insights into the performance issue. My

approach will support profiling Chapel in both the single-locale and multi-locale

environments. For single-locale, my approach appropriately handles the task-based

 71

multi-threaded situation by merging the performance data from each thread to a single

node while for multi-locale my approach will aggregate the complete performance

data from each node. At the end of the profiling, users can directly identify the most

time-consuming variables through a Graphic User Interface without any more digging

in the performance data. It is a more straightforward data-centric view than locating

problematic variables by source code and line number as [11, 17].

Secondly, my novel approach is able to map performance statistics back to variables

in a user-level context. Unlike TAU [3], PPW [12], and pprof [16], which attribute

performance data to functions, loops, basic blocks, mine attributes the performance

loss to variables with real names in the source code. Besides, my tool only blames the

variables from the user code for the performance loss because all the other variables

are utilized to compute the ultimate values of user variables, and it is better for users

to concentrate on optimizing their own code.

Lastly, my approach supports profiling a full user code calling context. A call path is

a chain of functions with calling relationships. Associating performance losses with

call paths provides unique performance insight into program executions. For example,

consider a threaded program that employs task-based parallelism. If threads spend a

lot of time spinning in synchronization routines for accesses to shared resources, a flat

profiling without the call path information cannot tell which task caused the spinning.

Besides, without call path information, programmers cannot distinguish variables

with the same name but different scopes. Unlike pprof [16] which lacks the ability to

gain the calling context and HPCToolKit [17] which shows the limited capability in

analyzing multi-threaded Chapel programs, mine has the full support of call path

 72

profiling on the Chapel code, mine maps the performance data to the original user

code elements from the bottom frame in the stack and propagates it all the way up to

the top main function. This support helps users quickly identify the performance

bottlenecks in programs.

In this chapter, I designed and developed a data-centric profiling tool ChplBlamer

that supports PGAS languages, using Chapel as an exemplar. I introduced the state-

of-art HPC/PGAS profiling tools and compared them with my tool. I demonstrated

the functionality and usability of ChplBlamer on three well-known benchmarks. With

the guidance supplied by ChplBlamer, I significantly improved the performance by

factors of 1.4x for LULESH, 2.3x for MiniMD, and up to 2.1x for CLOMP, with

minimal changes to the source code. I also concluded that domain remapping and

zippered iterations are expensive to use. The overhead of ChplBlamer is discussed in

a multi-locale context in Section 5.4 Discussion and Summary.

 73

Chapter 5

Data-centric Profiling for Multi-locale Chapel Programs

In the prior chapter, I proposed a data-centric performance measurement tool

ChplBlamer for single-locale Chapel programs. In this chapter, I extended the prior

work by providing a more functional data-centric and code-centric combined Chapel

profiler, ChplBlamer-ML, to pinpoint performance losses due to data distribution and

remote data accesses in a multi-locale environment. ChplBlamer-ML improves the

prior work in several aspects:

1. It supports more generic Chapel code, including multi-locale Chapel and

abstractions that support both asynchronous and remote tasks.

2. It provides additional tool capabilities: such as inter-node load imbalance

examination to help users investigate performance issues more efficiently.

3. The instrumentation to the Chapel runtime library is optimized and the

runtime overhead is significantly reduced from 3.5x to 14% compared to the

previous work in Chapter 4.

To demonstrate the utility of ChplBlamer-ML, I studied three multi-locale Chapel

benchmarks. For each benchmark, ChplBlamer-ML found the causes of the

performance losses. With the optimization guidance provided by ChplBlamer-ML, I

significantly improved the performance by up to 4x with little code modification.

This chapter is adapted from a paper that has been presented at the International

Conference on Supercomputing (ICS’18) [69].

 74

5.1 Challenges and Solutions

Conducting data-centric profiling on multi-locale Chapel is far more challenging than

the single-locale. Chapel, as a PGAS language, includes a runtime middleware to

handle inter-node communication and data distribution. A single-line distributed

vector addition statement “C = A+B” in the Chapel source will be compiled to

thousands of instructions that involve calls to the Chapel runtime library to handle

data distribution and inter-node communication. In order to accurately attribute blame

to source code variables, I need to address several challenges.

Figure 5.1: Sample multi-locale Chapel code

Figure 5.1 shows a simple example using Chapel multi-locale syntax that the single-

locale ChplBlamer cannot handle. The variable myVec is a distributed array defined

use CyclicDist;

const myD = {1..N} dmapped Cyclic(startIdx=1);

var myVec: [myD] real;

forall a in myVec

 a = ..;

begin {

 localCompute(myVec);

}

on Locales[1] do

 remoteCompute(myVec);

 75

on a cyclic distributed domain myD; forall loop tries to leverage all threads on all

locales to initialize myVec; the begin block creates a new task on the current locale

and the parent thread continues without waiting for the block to finish; the on clause

launches a remote task on Locale 1 in an asynchronous style as well.

5.1.1 1st Challenge and Solution

Challenge

For a variable that is distributed among multiple locales and requires remote access,

there are hundreds of aliases and temporary variables representing a block of the data

of the variable in the computation. How to identify those data blocks and finally

aggregate their individual blame share to the original variable becomes a problem.

Moreover, Chapel creates a unique private identifier (PrivID) for each distributed

variable (e.g., myVec in Figure 5.1) for future references. Therefore, when it’s

accessed and passed through functions, the original logic to handle variables with a

type of array or structure in Chapter 4 will fail since now reference of those

distributed variables are simply integers and will not be regarded as “exit variables”.

Solution

Since distributed variables are referenced via unique PrivIDs (private IDs), I

established a mapping between the vertex that represents the PrivID and the one that

represents the original source variable when I build graphs in the static analysis.

Every time a distributed variable is accessed, I can locate the corresponding PrivID

node following the dataflow path in the IR. And with the link between the PrivID and

the original variable, I can identify exactly which variable is being accessed.

However, the biggest question is how do I figure out which nodes represent PrivIDs

 76

and link them to the corresponding variables (I use “object” to refer to the original

source variable and all its compiler-generated aliases and tempory copies) since

PrivIDs are no different than constant integers once created at the IR level. I solved

that by tracking two critical functions from the Chapel runtime library:

chpl_getPrivatizedCopy, and chpl_getPrivatizedClass. I found that these functions

resolve PID from the corresponding object. Therefore, I can identify PrivIDs and their

associated objects. Once I determine a PrivID and the object, I find all aliases3 of the

PrivID as well as the aliases of the object backward and forward in this function. Now

wherever an object alias is accessed, I can trace it back to the original source variable.

Figure 5.2: The process of locating the original variable

3 “Alias” is not technically correct for PIDs since they are integers so “aliases” are just variable copies,

but I use it for its literal meaning and the way I find them is similar to alias analysis.

 77

Figure 5.2 illustrates the idea of this process. At any access point to Object(i), I can

follow the red path (the top arrowed curve) to track down the original distributed

variable that this Object(i) was derived from.

Since an integer is not recognized as a PrivID until it is found to be a parameter in

one of these two functions (chpl_getPrivatizedCopy, and chpl_getPrivatizedClass),

then how does the upper-level function know whether the integer variable will be

used as a PrivID in its callees? The answer is that it is not known in the intra-

procedural static analysis step. To solve this problem, ChplBlamer-ML

conservatively treats all integer parameters as potential PrivIDs and store their

aliases; then in the postmortem analysis, it can get all PrivIDs back frame by frame

along the call path if any integer parameters are determined as PrivIDs in a certain

frame.

5.1.2 2nd Challenge and Solution

Challenge

 At the IR level, multi-locale Chapel programs call functions from the runtime library

and standard modules to retrieve the locality information for remote data access,

which involves implicit dataflow information. For example, communication calls

such as chpl_gen_comm_get and chpl_gen_comm_put, implicitly generate data

dependency between the remote data and the local copy. I need to recover this hidden

dataflow information to propagate blame properly. Moreover, explicit operations on

distributed variables or within a parallel region at the source level will be wrapped

into generated functions and implicitly invoked within Chapel runtime functions

 78

using function pointers. The “transfer function” mechanism from Chapter 4 is not

able to handle this case, thus it will fail the inter-procedural blame propagation.

Solution

In regard to the second challenge, I observed that non-user functions containing

important dataflow information fall into two categories: module functions and

runtime functions.

For functions from Chapel standard modules, since their definitions are also in the IR,

I implemented a simplified blame analysis to figure out the blamed parameters that

are responsible for any call to that function. For a few functions from the Chapel

runtime library, I manually figured out the blamed parameter indices since their

function bodies are not included in the IR. In this way, I keep propagating blame to

the callers via blamed parameters for calls to those functions.

To solve the problem of wrapper functions and function pointers, I conduct additional

analysis on the program IR. First, I record the table of function pointers (with symbol

names) that point to all generated wrapper functions in this program. Second, I extract

parameters of three critical functions from the Chapel runtime library:

chpl_executeOn, chpl_taskListAddBegin, and chpl_taskListAddCoStmt. The most

important parameter of these functions is a constant integer that equals to the index of

the corresponding function pointer in the table I previously recorded. In this way, I

retrieve the exact wrapper function that will be called. Finally, I also need to match

the parameters of those runtime functions to the real parameters that will be fed to the

wrapper function. This is also tricky since the parameters are decomposed and

reconstructed and it’s not a 1-1 correspondence. With all these efforts, I am able to

 79

mimic the explicit operations at the source level with the program IR and recover the

dataflow information.

5.1.3 3rd Challenge and Solution

Challenge

A multi-locale Chapel program does not launch the same execution from the main

function on all locales simultaneously; rather only the master locale launches the

execution from the very beginning and all other locales launch their jobs as needed

during the entire course of execution (essentially a fork-join model). Therefore, when

I walk the stack of a thread on a worker locale, it is very likely that the top stack

frame (suppose the stack grows downwards) is not the “main” function but

somewhere that particular task starts from. Missing the complete calling context

precludes propagating blame along the call path appropriately. Moreover, Chapel’s

asynchronous tasking feature aggravates this problem, since now a task can be

created on Locale 1 at beginning of the execution and later remotely executed by

Locale 2, while Locale 0 continues right after it launches that task.

Solution

To get the complete user-level calling context for each sample, I instrumented both

the tasking and communication layers of the Chapel runtime using callback functions.

In the tasking layer, I insert a callback in the function add_to_task_pool, so that every

time a new task is added to the local task pool, I unwind the stack of the current

thread and keep the unique function ID (referred as “fID”) for that task. The

stacktrace shows the call path before a local task is executed. In the communication

layer, I insert callbacks in function chpl_comm_execute_on,

 80

chpl_comm_execute_on_nb, and chpl_comm_execute_on_fast, so that every time a

remote task is created and sent to another locale, I unwind the stack and keep the

unique fID, as well as the locale IDs of the sender and receiver (referred as “sID” and

“rID”) for the task. The stacktrace shows the call path before a remote task is

launched.

During the instrumentation and sampling of the program execution, I also track the

frame name as I unwind the stack. Once I find the top frame is one of the fork

wrapper functions of a remote task defined in the Chapel runtime (e.g.

“fork_wrapper”), I read the fID, sID, and rID from the function parameters, or simply

fID if the top frame indicates a local task.

Figure 5.3: Stacktrace concatenation flowchart

 81

Finally, during the process of stacktrace concatenation, I use the above keys (fID,

sID, rID) to find the call path before a certain task. The parent task is found iteratively

until I see the user main function in the stack. In the meantime, I also remove frames

that are not resolved to user functions so that the ultimate sample stacktraces are in a

full user-level context. Figure 5.3 shows the flowchart of this concatenation process; I

use hash maps to retrieve stacktraces efficiently.

The way I reconstruct the calling context for samples brings two benefits:

First, it essentially solves the asynchronous and remote tasking problem. Since every

piece of sequential work is a task in Chapel, with the keys (fID, sID, rID), I know

what it does and where it was launched. If Locale 1 launched a task on Locale 2 at

Time 1 and Locale 2 later executed the task at Time 2 where a sample is triggered, I

can reproduce the calling context without interfering with the program execution.

Second, it significantly reduces the runtime overhead. While unwinding the stack in

the callbacks, I also keep those keys in a set that is shared by all threads in the same

locale. Therefore, the next time a task with the same key comes in, I need not unwind

the stack again since the same information has been recorded. The prior work in

Chapter 4 unwinds the stack every time a task list is executed (A task list is created

for each “forall” or “coforall” parallel loop). That approach could not handle

asynchronous parallelism and would incur unacceptable overhead in certain

circumstances. Table 5.1 shows that this approach can reduce the average overhead

from 3.5x to 14% for three single-locale Chapel benchmarks. The overhead is

measured using the formula (
𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑑 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

𝑐𝑙𝑒𝑎𝑛 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛
− 1) × 100%.

 82

Table 5.1: Tool overhead comparison on single-locale

Benchmark MiniMD CLOMP LULESH

Prior overhead 4.2x 1.4x 4.9x

Current overhead 5% 9% 27%

5.2 Inter-node Load imbalance Examination

Load-imbalance is a critical performance problem in High Performance Computing,

researchers use static or dynamic load balancing techniques to evenly distribute data

and computations across all processors/nodes in order to optimize the run time and

system I/O. Most traditional approaches present this information based on the

computation cost on each processor/node, instead, I include a feature of data-centric

inter-node load imbalance examination in ChplBlamer-ML.

Figure 5.4: Node information for Ab of HPL on 32 locales

In ChplBlamer, there are three ways to view the data: a flat data-centric view, a

traditional code-centric view, and a hybrid view using the concept of “blame point”

where you can basically stop blame propagation at a certain point in the call path and

 83

reflect the performance statistics at that scope. Besides the above three different

views, I also include a view of workload information. Clicking on a particular

variable in the data-centric view will pop up a window showing the total CPU

seconds for that variable on each locale. Note that the total CPU time is the

aggregation of all cores involved in that locale. You can also drill down from each

node to display the specific samples that contribute to the time, which can be used

with data profiles to verify the result. The different time on each locale shows the

load imbalance situation in terms of this variable. For a distributed array, if certain

locale consumes significantly more or less time than others, it means significantly

greater or fewer array elements are distributed on that locale than others. Thus the

user should tune the block size of the distribution based on the array size for that

variable. Figure 5.4 shows an example of variable Ab in HPL on 32 locales.

5.3 Case Studies

I evaluated ChplBlamer-ML on a local InfiniBand-based cluster Deepthought2.

Deepthought2 consists of 484 nodes with dual socket (20 cores per node) Ivy Bridge

2.8 GHz processors. I used from 2 to 32 nodes in each case in this evaluation. I use

CPU clock cycles as the sampling event and the sampling period is 1,073,807,359,

properly chosen to balance the overhead and precision. Taking HPL as an example,

the time overhead of ChplBlamer-ML ranges from 13% to 25% with 2 to 32 nodes,

respectively; the space overhead is 90KB for problem size 500 with 32 nodes.

 84

In this section, I studied three well-known multi-locale Chapel benchmarks. All

programs were built with Chapel 1.15 and the --fast (equivalent to “-O3” in GNU

compilers) optimization. The description of each benchmark is as follows:

 HPL [72], the High Performance Linpack benchmark solves a uniformly

random system of linear equations and reports time and floating-point

execution rate using a standard formula for operation count.

 ISx [73] is the scalable Integer Sorting application. The Chapel version is

fully Single-Program-Multiple-Data (SPMD), creating a task per locale and a

task per physical core on each locale.

 LULESH [74] approximates the hydrodynamics equations discretely by

partitioning the spatial problem domain into a collection of volumetric

elements defined by a mesh. It has many implementations for most HPC

programming models and languages, including Chapel.

I tried different Chapel configurations to get the fastest run time and used that as my

performance baseline. There are two environment variables I tuned for performance:

CHPL_TASKS (“fifo” or “qthreads” implementation as the Chapel tasking layer) and

CHPL_RT_NUM_THREADS_PER_LOCALE (up to how many threads can be

created per node). Based on my experimental results, I’ve concluded that fifo is better

for HPL and LULESH while qthreads is better for ISx. Those values are what I used

to measure the performance reported in the rest of this section. As for

CHPL_RT_NUM_THREADS_PER_LOCALE4, it only affects the fifo version and

4 Ideally, I would not need to set this environment variable since I want fifo to spawn as many threads

as it needs and qthreads internally creates fixed number of user-level threads. However, the

performance difference makes it a worthwhile effort.

 85

the details will be discussed case by case. I focused on the strong scaling study for

HPL and LULESH (fixed problem size), and the weak scaling study for ISx (fixed

problem size per task).

To clarify, while profiling, I only used “fifo” as the Chapel tasking layer and

compiled all programs with “--llvm --no-checks” (using the llvm frontend

with no boundary checks). I did not use “—fast” in profiling since my

intraprocedural analysis heavily depends on the generated LLVM bitcode of the

Chapel program and “—fast” option loses too much debug information that I need

to associate the IR-level objects (temporary variables and registers) with the source-

level variables. I also discussed the optimization guided by my tool for each

benchmark in detail. Since all execution time was measured for binaries built with “—

fast”, I demonstrated that the optimization found by profiling non-optimized

versions still helps in tuning the optimized versions.

5.3.1 HPL

Figure 5.5: Data-centric blame for HPL on 2 locales. The red rectangles enclose

interesting variables with their name, type, full calling context, and blame percentage.

 86

Figure 5.5 shows the blame for each variable as well as the context information in the

source, including the name, type, and full call path to the point where the associated

variable is declared. Note that there are some functions ending with numbers (e.g.

“on_fn44” and “coforall_fn14”) in the calling context; they are auto-generated by the

compiler to handle the parallel constructs (e.g. “forall”) in the program. Users can

simply ignore those functions or treat them as code blocks of the nearest caller

function when analyzing the result. First, I describe the purpose of the most blamed

variables and functions (the corresponding blame is shown in the parentheses). Then I

explain how I interpret the blame results in both code-centric and data-centric ways to

discover the performance bottlenecks and scalability issues. Finally, I use this

information to optimize the program.

Ab (55.7%): A 2D array allocated on distributed memory with the distributed domain

MatVectSpace. It holds the value of a matrix and a vector and is responsible for the

calculation of most linear equations in the program.

MatVectSpace (18.6%): A 2D domain that represents the n X n matrix adjacent to the

column vector b. It uses the BlockCyclic distribution to distribute Ab to all nodes,

leveraging the spatial locality in the blocked-computation. The default block size is 8,

which can be tuned for performance in executions.

Figure 5.6 shows the inclusive code-centric result in the user-level calling context.

Several functions are described below:

 87

Figure 5.6: Code-centric blame for HPL on 2 locales. The red rectangles enclose

runtime functions that indicate special performance issues and the underscored are user

functions that are to be optimized

LUFactorize (45.5%): The function that consumes the most CPU cycles. It computes

the blocked LU factorization with pivoting for matrix augmented with a vector of

right-hand-side values. The computation is on a block by block basis.

schurComplement (30.7%): Computes the distributed matrix-multiplication. Each

locale with a block of data updates itself by multiplying the neighboring left block to

the upper block.

panelSolve (13.4%): Does unblocked-LU decomposition in the specified panel and

updates the pivot vector for Ab, difficult to optimize for its unblocked data accesses.

 88

pthread_spin_lock (14.3%): A low-level synchronization function used by the Chapel

runtime for concurrent operations on the shared memory. The percentage shows the

overhead in the Chapel tasking layer.

chpl_comm_barrier (7.5%): A Chapel runtime library function used to implement

implicit barriers in Chapel. The time spent on chpl_comm_barrier indicates load

imbalance in the program.

polling (3.4%): A specific task created on each locale to check for Active Messages

(both requests and replies) which are inbound to that locale. Time spent on polling

shows the communication overhead in the program.

Table 5.2: Major data-centric and code-centric blame percentages for HPL on different

number of locales

#Locales 2 4 8 16 32(200)

Variable Name Data-centric Blame

Ab 55.7% 45.8% 36.4% 32.7% 23.6%

MatVectSpace 18.6% 27.8% 37.1% 38.7% 51.0%

Function Name Code-centric Blame

schurComplement 30.7% 22.2% 17.3% 14.0% 8.7%

panelSolve 13.4% 15.7% 15.0% 15.8% 12.0%

polling 3.4% 11.5% 7.5% 11.7% 9.6%

chpl_comm_barrier 7.5% 10.5% 11.4% 11.5% 11.0%

pthread_spin_lock 14.3% 3.8% 7.1% 5.0% 4.5%

Discussion and Optimization: Variable Ab and MatVectSpace, and function

schurComplement and panelSolve are the most telling data about what is going on in

 89

the program. Table 5.2 summarizes the profiling data of these program elements after

executing on from 2 to 32 locales. CHPL_RT_NUM_THREADS_PER_LOCALE is

set to be the number in the parentheses associated with the number of locales entry

and unset otherwise, for the best performance on that number of locales. The Same

denotation is used in Table 5.3 and Table 5.9. The relative weight change between

variable MatVectSpace and Ab as more locales are used shows that the initialization

cost of a distributed domain is very high. The increasing proportion of polling and

chpl_comm_barrier and the decrease of pthread_spin_lock show that the inter-locale

overhead becomes dominant over the intra-locale as more locales are involved.

I explored several ways to optimize the program. First, in schurComplement, I can

enable the ‘local’ clause right inside the ‘forall’ loop to assert the local matrix

multiplication and remove redundant communication calls. Code segments

guaranteed to access only local data may be enclosed within a ‘local’ statement. The

keyword restrains the compiler from generating wide pointers 5 to access some

distributed variables. This change reduced the total execution time by 3.1%. The

speedups are summarized in Table 5.3.

The optimization to function panelSolve is trickier as most of its computation needs

to access remote data. I leveraged the ReplicatedDist module to create a local copy of

a row in Ab on each locale to avoid frequent remote accesses within the loop. The

modified code is shown in Figure 5.7: Loop optimization using replication for

panelSolve.

5 Chapel uses “wide pointers” to point to non-local data.

 90

Figure 5.7: Loop optimization using replication for panelSolve

However, this optimization only got a speedup of 1.1x in the test on 4 locales. It is

because the overhead caused by updating the local copy (AbRep) in every iteration

cannot be compensated by the performance benefit it brings when the block size is

not well tuned with different problem sizes and the number of locales, in which case

the locality is not fully leveraged.

The HPL benchmark has been studied and highly optimized for years so it is hard to

further improve the performance without a major change to the fundamental

algorithm. However, I still gained some insights and speedups with the help of

ChplBlamer-ML.

const DLow: int = panel.dim(2).low;

const DHigh: int = panel.dim(2).high;

const DRep: domain(2)

 dmapped ReplicatedDist()={1..1,Dlow..Dhigh};

var AbRep: [DRep] elemType;

for k in panel.dim(2) {

 ...

 AbRep = Ab[k..k, DLow..DHigh];

 forall (i,j) in panel[k+1.., k+1..] {

 local {

 Ab[i,j] -= Ab[I,k] * AbRep[1,j];

...

 91

Table 5.3: Speedups of the localization optimization for HPL

#Locales 2 4 8 16 32(200)

original (s) 13.67 18.26 17.70 19.30 30.48

localization (s) 13.49 18.01 17.52 17.98 29.08

speedup 1.01x 1.01x 1.01x 1.07x 1.05x

5.3.2 ISx

The Chapel port of ISx is a newly developed benchmark based on the OpenSHMEM

implementation [73]. Table 5.4 shows the most blamed objects in both data-centric

and code-centric profiling of ISx execution on 2 or 8 locales. The difference between

2-loc and 8-loc tells us which program objects (variable or function) are more

affected by the communication and task synchronization cost.

myBucketedKeys (41.1%): It is a local variable in bucketSort, an array of configurable

number (default 5,592,400) of keys. Every task allocates each one of this variable and

populates the value in function bucketizeLocalKeys.

barrier (10.3%): An instance of the Barrier class in Chapel, it is used for task

synchronization in the program. Since the current implementation of the Barrier

standard module is not expected to perform well at scale, this variable becomes a

major performance bottleneck when the number of tasks increases.

sendOffsets (27.3%) and bucketOffsets(26.9%): sendOffsets is an array of integers

allocated on the master locale and bucketOffsets is the local copy of sendOffsets for

each task and is used to compute myBucketedKeys in function bucketizeLocalKeys.

 92

Function bucketSort is the core function to implement the sorting algorithm. It

consists of 5 steps (each step is implemented by a sub-function): makeInput,

countLocalBucketSizes, bucketizeLocalKeys, exchangeKeys, and countLocalKeys.

Table 5.4: Data-centric and code-centric results of the most blamed variables and

functions in ISx on 2 or 8 locales

Data-centric type context 2-loc 8-loc

myBucketedKeys Struct bucketSort 41.1% 22.9%

myKeys Struct bucketSort 36.9% 20.9%

sendOffsets Struct bucketSort 27.3% 15.4%

bucketOffsets Struct bucketizeLocalKeys 26.9% 15.2%

barrier Struct chpl_user_main 10.3% 20.8%

Code-centric context 2-loc 8-loc

bucketSort chpl_user_main 80.9% 64.2%

bucketizeLocalKeys bucketSort 40.2% 22.3%

countLocalKeys bucketSort 11.4% 6.4%

pthread_spin_lock chpl_gen_main 16.7% 29.3%

chpl_comm_barrier Chapel runtime 0 3.46%

Discussion and Optimization: With the help of ChplBlamer-ML, I easily identified

the most “valuable” variables (such as barrier, myBucketedKeys, and myKeys) and

functions (such as bucketizeLocalKeys, countLocalKeys) in terms of the performance.

Optimizing the Barrier module would be the best thing to do since it affects the

scalability largely and that is indeed part of the future work of the Chapel team. Here,

I optimized the code using localization (localizing certain computation using the

 93

‘local’ clause), similar to what I did for HPL. By tracking the most blamed variable

myBucketedKeys, I found an opportunity for localization inside bucketizeLocalKeys. I

enclosed all computation of that function in a ‘local’ statement. The same

modification was done for the scan operation on variable sendOffsets. After the

optimization, the blame percentage of those variables and functions also decreased

correspondingly, as shown in Table 5.5. Table 5.6 lists the speedups on a different

number of locales with the simple modification.

Table 5.5: Blame change before and after the optimization for related variables and

function (bottom row)

Name original localization

myBucketedKeys 41.11% 17.78%

sendOffsets 27.28% 6.02%

bucketOffsets 26.85% 5.46%

bucketizeLocalKeys 40.24% 24.54%

Table 5.6: Speedups of the localization optimization on a different number of locales for

ISx

#Locales 2 4 8 16 32

original (s) 0.53 0.66 0.89 1.30 2.21

localization (s) 0.42 0.59 0.85 1.19 1.99

speedup 1.26x 1.12x 1.05x 1.09x 1.11x

 94

5.3.3 LULESH

The input problem size for all tests is 15 elements per edge. I carefully tuned

CHPL_RT_NUM_THREADS_PER_LOCALE for tests on a different number of

locales. The best values are indicated in Table 5.9. After manually tuning the

parameter, I found that the best value is always 4 when you allocate more than 8

locales. This experience shows the poor intra-node scalability of the program because

the thread-level parallelism is not fully utilized. Table 5.7 shows the data-centric

blame result of LULESH.

Table 5.7: Data-centric blame for LULESH

Variable Type Blame Context

Elems Struct 74.3% chpl_gen_main

elemToNode Struct 60.4% chpl_gen_main

xd/yd/zd Struct 48.0% chpl_gen_main

x/y/z Struct 37.0% chpl_gen_main

fx/fy/fz Struct 35.6% chpl_gen_main

dvdx/dvdy/dvdz Struct 33.4% CalcHourglassControlForElems

x8n/y8n/z8n Struct 33.3% CalcHourglassControlForElems

elemMass Struct 29.5% chpl_gen_main

hgfx/hgfy/hgfz Array 26.7% CalcFBHourglassForceForElems

shx/shy/shz Double 26.7% CalcElemFBHourglassForce

hx/hy/hz Array 26.6% CalcElemFBHourglassForce

dxx/dyy/dzz Struct 12.2% CalcLagrangeElements

 95

Elems (74.3%): The essential domain that the construction of most distributed

variables use. It uses block distribution so the block of elements to compute are

evenly distributed among all compute nodes.

elemToNode (60.4%): A large distributed array that supports the complement

mapping between each element and its surrounding nodes (Node and Element are the

two most important units for computation in the program; each Element has 8

neighboring Nodes by default). Therefore, elemToNode is accessed frequently during

the entire course of execution by all nodes to retrieve the index information.

x/y/z (37.0%), xd/yd/zd (48.0%), and fx/fy/fz (35.6%): These are attributes of each

Node, representing the coordinates, velocities, and forces in each dimension. They are

calculated and updated frequently during the simulation process.

Table 5.8: Code-centric blame for LULESH

Function (caller->callee) Blame

chpl_gen_main->chpl_user_main 94.3%

chpl_user_main->CalcForceForNode 47.9%

CalcForceForNode->CalcVolumeForceForElems 46.6%

CalcVolumeForceForElems->CalcHourglassControlForElems 34.6%

CalcHourglassControlForElems->CalcFBHourglassForceForElems 27.1%

chpl_user_main->ApplyMaterialPropertiesForElems 15.5%

chpl_user_main->CalcLagrangeElements 12.9%

chpl_user_main->CalcQForElems 12.6%

CalcLagrangeElements->CalcKinematicsForElems 11.4%

CalcQForElems->CalcMonotonicQGradientsForElems 9.4%

CalcVolumeForceForElems->IntegrateStressForElems 8.7%

 96

Table 5.8 lists the most blamed user functions. I show the callsite of each function

(caller->callee). The blame percentage shown above is the inclusive result.

Discussion and Optimization: I found some optimizations that speed up the program

by a factor of 1.4x for LULESH on a single locale. First, I tried those optimizations to

see if they still benefit the performance in a multi-locale environment.

Two of my earlier optimizations from a single locale still help the multi-locale

LULESH execution as you can see the speedups of “O1” over “original” in Table 5.9.

The modification to function CalcElemNodeNormals improves the performance by

6% by minimizing the construction and destruction of temporary tuples. However, the

biggest contribution is by safely hoisting several distributed local variables such as

dvdx/dvdy/dvdz, x8n/y8n/z8n, dxx/dyy/dzz to the global space so that they won’t be

dynamically allocated whenever the function that declares them is called. I call this

optimization “globalization” in the following description. Globalization is very

important to multi-locale execution since creating and initializing distributed

variables is expensive. Within a single locale, frequent data allocation and reclaim

also cause thread contention, which is also bad for performance.

However, the scalability of LULESH is still not good enough although the execution

time does seem to drop a little bit on the 32-locale case. I further examined the

program by tracking the accesses of the most blamed variables.

localizeNeighborNodes is an inline function that is called at multiple places to get the

local copies of some attributes, like coordinates (x/y/z) and velocities (xd/yd/zd) of

the neighboring Nodes of an Element for the purpose of optimization. However, it

 97

performs 32 (when I use the default value 8 for the parameter nodesPerElem) remote

data accesses for each Element in a sequential order because the neighboring Nodes

may not be on the same locale with the Element. Besides, the function is called inside

deeply nested loops, so it still causes significant communication overhead.

Figure 5.8 illustrates an example of such as a case: The attributes of the blue Element

and Nodes are stored on Locale 1 while the red ones are on Locale 2; the blue

Element on the border of the two locales needs to access the red Nodes on Locale 2,

which incurs a remote access.

Figure 5.8: An Element-Node topology that would cause remote data accesses

To fix the problem, I allocate 6 new array variables: x_map, y_map, z_map, xd_map,

yd_map, and zd_map to prestore the 8 neighboring Nodes for each Element. They use

the same distributed domain Elems so that they can be read or written in a distributed

parallel style, just like other Elems based distributed variables. Now except for the

first call of localizeNeighborNodes in initMasses, I can remove all other calls to that

communication-intensive function localizeNeighborNodes and simply do the copy to

localize Node’s attributes.

 98

To update those map variables as the execution continues, I create a function

updateNeighborNodeMaps using full parallelism (all available threads) to do so once

in each LagrangeNodal call. In this way, I avoided redundant remote accesses to the

data that has been accessed before and I refer to this optimization as “replication”.

Replication brings more opportunities for localization, now I can enclose most

computation into the “local” statement as long as they are within the loop iteration of

same distributed domain Elems. I’ve found several functions that can benefit from

this replication and localization combined optimization, such as

CalcHourglassControlForElems. The performance improvement is shown in Table

5.9 (“O2” is the combination of all optimizations: globalization, localization, and

replication). Overall, I improved the performance of LULESH by a factor of 4x on 32

locales. Significantly, I move from having slowdown as more locales were added to

having speedups.

Table 5.9: Speedups of optimization on a different number of locales for LULESH

#Locales 2(12) 4(12) 8(4) 16(4) 32(4)

original (s) 17.70 17.99 19.84 22.80 28.26

O1 (s) 14.89 13.40 14.73 14.51 11.29

speedup-01 1.19x 1.34x 1.35x 1.57x 2.51x

O2 (s) 11.73 9.74 8.15 8.20 7.10

speedup-02 1.51x 1.85x 2.43x 2.78x 3.98x

 99

5.4 Discussion and Summary

This chapter describes ChplBlamer-ML, a profiler to identify, quantify, and analyze

the performance bottlenecks in multi-locale Chapel programs. Compared to the

single-locale ChplBlamer, ChplBlamer-ML fully supports multi-locale, asynchronous

and remote tasking; provides richer information such as inter-node load imbalance,

and incurs much lower runtime overhead, from 3.5x to 14%. Guided by ChplBlamer-

ML, I was able to pinpoint performance bottlenecks in three communication-bound

multi-locale Chapel benchmarks and identify the causes in the user-level context. I

used three optimization techniques: globalization, replication, and localization to

improve three benchmark codes. With little modification to the code, I was able to

achieve speedups of 1.05x for HPL, 1.11x for ISx, and 4.0x for LULESH on 32

locales over the previously fastest versions.

I also studied the overhead of ChplBlamer-ML. Table 5.10 shows the overhead study

of ChplBlamer-ML on three multi-locale benchmarks. It shows the time spent in each

step of a profiling, including a pre-run static analysis, an execution with sampling and

instrumentation enabled, and a post-run processing. The runtime overhead is

calculated with (𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝐶𝑙𝑒𝑎𝑛 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛⁄) − 1 , which shows the

extra time cost of the sampling and instrumentation I added. The total overhead is

calculated with (𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑓𝑖𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝐶𝑙𝑒𝑎𝑛 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛⁄) − 1 , while the Total

profiling time is the sum of static analysis, monitored execution and post processing.

The total overhead shows the overhead of one-time profiling of a particular

benchmark. As is shown in the table, there is a big difference between the runtime

overhead and total overhead due to the pre-run and post-run analyses. Fortunately, the

 100

static analysis runs only once for each benchmark. After that, users can experiment

with different problem sizes as many times as they need, thus, the overhead of static

analysis can be amortized. The post processing is proportional to the total number of

samples, which is originally determined by an adjustable sampling rate that’s used in

ChplBlamer-ML. Therefore, the runtime overhead is the key overhead to users.

Further investigation reveals the major contributor to the runtime overhead; it’s the

instrumentation I added into the Chapel runtime library. Since it enforces a stack

unwinding whenever a unique asynchronous task is created or a unique parallel

region is met in context, the more unique parallel and asynchronous regions exist in a

program, the higher runtime overhead it may incur.

Table 5.10: ChplBlamer overhead study

Benchmark

name

Clean

execution

Static

analysis

Monitored

execution

Post

processing

Runtime

overhead

Total

overhead

HPL 19.38 7.82 22.16 10.24 14.3% 107%

ISx 2.13 5.68 2.18 1.35 2.3% 332%

LULESH 15.27 32.66 20.56 9.75 34.6% 312%

Unit: seconds

 101

Chapter 6

Data-centric Profiling for GPGPU Applications

Historically, GPUs were used for graphics only. However, with the high demand of

computing capability and the increased programmability of GPUs, people are seeking

to apply GPUs for general purpose applications (GPGPU). Using a CPU-GPU hybrid

computing framework is becoming a common configuration for mainstream

supercomputers. The wide deployment of GPUs (as well as other hardware

accelerators) brings to the HPC community a big question: Are we using them

effectively? Unlike CPU programming, GPU programming must take into

consideration GPU architecture specifications. Inappropriate use of GPUs will

generate incorrect results in certain cases, but more often, will slow down the

program instead of speed it up with its massive parallelism. In CUDA, functions that

are launched by CPUs and run on GPUs are called “kernels”. The performance of

kernels directly determines how well we utilize the GPU devices. Unfortunately,

besides NVP [57], there are few performance tools for CUDA programmers to detect

performance bottlenecks and obtain insight for optimization. Therefore, my work,

CUDABlamer, fills a critical need for programmers to analyze the runtime

characteristics of kernels and obtain insights for optimizations for better GPU

utilization. With CUDABlamer, we improved the kernel performance of two

benchmarks by a factor of up to 46.6x.

 102

6.1 Introduction

GPU profiling is a non-trivial but valuable problem. It is difficult because it requires

in-depth knowledge of the characteristics of the GPU hardware and the complicated

execution model of both the CPU and GPU involved. Combining modern computing

systems with multi-core CPUs with multi-threading, plus the massive parallelism

GPUs, the complexity of program execution substantially escalates. Therefore, the

complexity to reasonably reflect the performance characteristics of these GPU-

accelerated applications has significantly increased. There have been continuous

efforts made in this field since GPU began to be popular in the HPC community.

However, tool development has resulted in only a few profilers that can be used for

GPU programmers. It is partially because the hardware is quickly upgrading and new

features are being added to the architecture, while software support is still on the way.

Moreover, CUDA [54], as the most commonly used GPU programming model, is not

open-sourced, which limits effective measurement of the language performance by

academic researches.

Currently, NVP [57] dominates the CUDA profiling and optimization needs. While it

is an easy-to-use, information-rich performance tool with comprehensive

performance metrics measurement and valuable optimization guidance, it has several

limitations: 1
st
, it does not associate performance statistics to fine-grained data or

code objects within launched kernels; 2
nd

, it does not provide complete calling

context for each kernel launched. These two features are very desirable for CUDA

programmers to understand performance and conduct fine-grained tuning.

 103

Therefore, I have designed and implemented a performance analysis tool

“CUDABlamer”, for GPU-accelerated programs as an alternative approach for

programmers who are interested in GPU kernel performance analysis and

optimization. Based on the same “Blame” idea as was used in ChplBlamer, I use a

static analysis and dynamic sampling combined approach to generate data-centric

performance profiles for CUDA programs. Though the top-level idea and the

framework are the same as ChplBlamer, shown in Figure 4.1, CUDABlamer needs to

handle a number of language-specific issues in implementing such a data-centric

profiler. As to the runtime information collection, I used PAPI to access CPU

hardware counters, and its sampling mechanism drives my sampling-based approach

in profiling. However, PAPI has no native support for GPU; its current support is

essentially a simple wrapper of NVIDIA CUPTI library. In CUDABlamer, I used

CUPTI to obtain the runtime information of the target applications.

The NVIDIA CUDA Profiling Tools Interface (CUPTI) provides performance

analysis tools with detailed information about how applications are using the GPUs in

a system. CUPTI provides two simple mechanisms to enable performance tools to

understand the inner workings of an application and deliver valuable insights to

developers. The first mechanism is a callback API that allows tools to inject analysis

code into the entry and exit point of each CUDA C Runtime (CUDART) and CUDA

Driver API function. Using this callback API, tools can monitor an application’s

interactions with the CUDA runtime and driver. The second mechanism allows

performance analysis tools to query and configure hardware event counters in GPU

and software event counters in the CUDA driver. These event-counters record

 104

activity such as instruction counts, memory transactions, cache hits/misses, divergent

branches, and more [77]. How we utilized CUPTI will be detailed in Section 6.2.2.

6.2 Tool Design and Implementation

Profilers that monitor GPU kernel execution are complicated by the limited hardware

support of fine-grained kernel measurement and the asynchronous concurrency that

exists between the CPU and GPU. Programs that run on GPUs are treated like a black

box, where measurements can only be read at the start and stop points of kernel

launches. Therefore, pure timestamps based measurement of GPU-accelerated

applications is too coarse-grained for complicated kernels. Most current profiling

methods provide an overview of the behaviors of the application in a summarized

manner without exposing sufficient low-level details. My tool, CUDABlamer, has

been designed to provide more low-level details about kernel execution. More

importantly, CUDABlamer is another instantiation of my “blame” idea for highly

parallel programming models. I re-used the same basic framework of ChplBlamer,

using LLVM based static analysis and sampling based dynamic analysis approaches

to generate complete performance profiles, which will attribute performance data

back to CUDA source data objects. In order to apply the unique data-centric profiling

capability of ChplBlamer to CUDA programs, I have dealt with several CUDA-

specific technical problems.

6.2.1 Language-specific LLVM Handling in Static Analysis

The two dominant programming models for GPUs are NVDIA’s CUDA [54] and the

cross-platform OpenCL standard [78]. While NVIDIA has previously open sourced

 105

their NVPTX code generator [79], encouraging language and compiler research and

development, a completely open-source CUDA compiler is necessary for promoting

general compiler and architecture research, especially in addressing the performance

issues and understanding the execution characteristics. Fortunately, Jingyue and

Artem, et al. [80] have proposed gpucc, an LLVM-based, fully open-source CUDA

compatible compiler. The work has been integrated into LLVM toolchain [81] since

LLVM 3.9 and is still in active development. To support the GPU in the test, GP100

[89], I used LLVM 4.1 and CUDA 8.0 package. When running static analysis on the

CUDA IR (intermediate representation), I added some CUDA-specific language

features that didn't need to be handled for Chapel.

First, CUDA runtime API and driver API calls. Common calls like cudaMalloc,

associates a pointer variable with a memory allocation on the GPU; cudaMemcpy

establishes a data-dependency relationship between host memory and device memory

pointers; cudaBindTexture binds a memory area to a texture, therefore establishing a

data-dependency relationship between the pointer pointing to the memory area on

device and the texture reference, etc. Since my data-centric profiling approach

depends on the complete data-flow information, I took special steps to analyze those

library functions. Specifically, I manually figured out the blamed parameter indices of

those CUDA API functions and prestore the corresponding parameter indices in a

file; my tool retrieves the information and recovers the data-dependency relationships

between parameters during the postmortem processing step. With the information of

blamed parameters, CUDABlamer is able to propagate blame to the callers via

blamed parameters for calls to those functions.

 106

Second, the Clang frontend for CUDA generates IR in a style that is different from

Chapel’s LLVM frontend in some ways. For example, to handle the situation in GPU

kernels where variables are defined in different GPU memory spaces: global, shared,

local, it frequently uses the “addrspacecast .. to” instruction, which converts the

pointer value from one type to another. Pointer conversions within different address

spaces should use this instruction while “bitcast .. to” must be performed for pointers

in the same address space. I basically mimicked the way that ChplBlamer processed

“bitcast .. to” instruction so that the intra-procedural blame analysis will not be

broken and correct source variables can be blamed through appropriate propagation

among complex temporary variables.

Third, the Clang frontend for CUDA tends to produce composite instructions in the

IR, which means an operand of an instruction can be another instruction. The most

frequent instruction that has this kind of composite operands is the “getelementptr”

(GEP) instruction. As we introduced in Section 4.1.2, the analysis of GEP instructions

is very important in implementing my hierarchical blame attribution idea. The

composite operand can be another GEP instruction or a casting instruction, such as

addrspacecast or bitcast. In order to maintain the “Parent-Child” relationships

between correct variables, I used a recursive approach to process it whenever a

composite operand is met, keeping the necessary dataflow information complete and

concise in the static analysis phase.

Last, name de-mangling. The names of functions and variables in CUDA IR are

mangled, thus simply presenting the mangled names to users will be confusing. I

 107

retrieved native names from debug information and kept them along with mangled

link names for each program object and finally presented native names in GUI.

6.2.2 Calling Context Construction for CPU-GPU Hybrid Framework

Besides the changes in the static analysis component, I basically rewrite the whole

dynamic sampling and part of the postmortem analysis component, in order to

construct the complete calling context for CUDA applications. The complete calling

context I refer to here is defined as the combination of a complete call stack on GPUs

(device) from the sampled point during the execution to the top-level kernel function,

and the complete call stack on CPU (host) from that exact kernel’s launch point to the

top-level main function. To my knowledge, this work is the first attempt at gaining

the complete calling context for a CPU-GPU Hybrid computing framework. It was a

surprise to me at first that there was no existing work that provides such information,

as its importance in performance profiling and tuning is obvious. Later, I realized the

difficulty in doing so due to the limitation in both hardware support and complex

asynchronous execution model of CUDA. In this work, I use static analysis combined

with the runtime partial stack information to reconstruct the complete calling context.

This approach has been evaluated on 16 open-source benchmarks and proved to be

effective in most cases.

CUDABlamer utilizes the CUPTI Callback API and Activity API to sample the

kernel execution and gain runtime stack information. Just like using the NVIDIA

profiler, programmers need to insert two function calls: “initTrace” and “finiTrace” at

the start and the end of the code region that they are interested in profiling. There is

another option in CUDABlamer that programmers don’t need to do anything to their

 108

source code and the profiling will begin when the program starts to execute. Currently,

manually inserting those two calls is the default option since it allows programmers to

explicitly control the scope of interest and avoid additional runtime overhead. After

initializing the profiling, CUDABlamer will start tracking kernel execution as the

program runs.

6.2.2.1 CPU Stack for Kernel Launch

To get the CPU stack trace for each kernel launch, CUDABlamer registers a callback

in “initTrace”, which is invoked whenever a kernel is launched. The callback method

is a mechanism in the device layer that triggers callbacks on the host for registered

actions or events. The callback function in CUDABlamer does a simple stack

unwinding on CPU using libunwind [82]. While logging the stacktrace for each

kernel launch, it also records the “correlationId” of that specific kernel launch, to be

used as a unique ID when concatenating with the GPU stack.

6.2.2.2 GPU Sampling

We use sampling to get the CUDA program runtime characteristics. CUPTI provides

an Activity API that allows asynchronous collections of a trace of an application’s

CPU and GPU activity. Moreover, CUPTI supports device-wide sampling of the

program counter (PC). In CUDA, each SM (streaming multiprocessor) splits its own

blocks into warps (currently with a maximum size of 32 threads). All the threads in a

warp execute concurrently on the resources of the SM. The PC Sampling gives the

number of samples for each source and assembly line with various stall reasons.

Samples are taken in Round-robin order for all active warps at a fixed number of

cycles regardless of whether the warp is issuing an instruction or not. The PC

 109

Sampling feature is only available on devices with compute capability 5.2 and higher.

Therefore, in “initTrace”, CUDABlamer enables the tracking of PC Sampling activity

by calling cuptiActivityEnable(CUPTI_ACTIVITY_KIND_PC_SAMPLING) and

configures the sampling period by choosing one from five CUPTI pre-set options

(MIN, LOW, MID, HIGH, MAX). CUPTI Activity API also provides an

asynchronous buffering mechanism, with which you can record the activity data and

deliver the data to output streams asynchronously. There are three types of activity

information that CUDABlamer delivers: 1. FUNCTION: it records device function

(including kernels) information, including the unique function ID, module ID and

function name; 2. SOURCE_LOCATOR: it records the source line and file

information for sampled instructions, with a unique ID for each new source locator; 3.

PC_SAMPLING: it records the corresponding source locator ID, function ID, and

correlation ID, which maps to the exact kernel launch that this sample is associated

with. These activity records are collected as profiles and are written out to disk for

further analysis.

6.2.2.3 Reconstruct the Calling Context

With all the runtime information collected in Section 6.2.2.1 and Section 6.2.2.2,

CUDABlamer is able to derive the complete calling context for each sample in the

postmortem processing step. As I explained in the previous section, each PC sample

records 3 numbers: source locator ID, function ID, and correlation ID. The correlation

ID can relate that particular sample to the CPU stacktrace of the associated kernel

launch. The source locator ID and the function ID show the source line number and

filename corresponding to that sample and in which device function that sample is

 110

triggered. Now we have the CPU stacktrace, but how do we rebuild the GPU

stacktrace for a particular sample? Consider Figure 6.1 as an example: the GPU

kernel kernelFunc calls two device function foo and bar at line 8 and line 18,

respectively and function foo also calls bar at line 38. CUDABlamer has already

obtained all call sites for each procedure earlier in the static analysis step; therefore,

it’s not difficult to build a call graph (Note the arrows are reversed to show the call

path from the callee to the caller) for the sample code, displayed in Figure 6.2.

Figure 6.1: Sample CUDA code

Now suppose we have three samples gathered during execution, denoted as Sample 1,

Sample 2 and Sample 3. For Sample 1 and Sample 2, their GPU stacks are easy to

determine since the paths from the sample point to the kernel are unique. For Sample

1 __global__ void kernelFunc(…){

 …

8 foo();

 …

18 bar();

 …

 }

28 __device__ void foo(){

 …

38 bar();

39 x = 1; //Sample 1

40 y = 2; //Sample 2

 …

 }

48 __device__ void bar(){

 …

56 A[i] = B[i] * s; //Sample 3

 …

88 }

 111

3, however, there are two possible paths from the sample point to the top-level kernel:

bar->kernelFunc and bar->foo->kernelFunc. Until now, limited by the context

information from CUPTI library, CUDABlamer is unable to distinguish these two

potential call paths. Therefore, it will create two stacktraces for the same sample with

a weight of 0.5 for each stacktrace. The weight for each GPU stacktrace is basically

calculated by dividing 1 by the number of possible call paths from the sample point to

the top-level kernel.

Figure 6.2: Reversed call graph for the sample code Fig. 6.1

Each sample starts with a source function and a destination function (E.g., S3 has a

source function “bar” and a destination function “kernelFunc”). To derive all possible

call paths for a particular sample from the source and destination functions, we

developed a modified Depth-First-Search [83] algorithm to recursively traverse all

possible call nodes in the reversed call graph. The pseudocode is shown in Figure 6.3.

For each sample, it starts with a srcName and desName, representing the bottom

frame where this sample is triggered and the top kernel frame on GPU, respectively.

 112

The algorithm keeps adding frames to the call stack for this sample until srcName

equals to desName, meaning it finishes finding a path from the sample point to the

kernel.

Figure 6.3: Pseudocode of finding all possible call paths

This approach explores all potential GPU stacktraces for each sample; therefore, it is

conservative and could incur high processing time. However, since most GPU call

stacks will have no more than three levels and the ambiguity only happens when the

sample is triggered from a device function that has multiple call sites within the same

kernel launch, this method of combining the static calling context information with

the runtime sample information works very well in most benchmarks we tested.

Evaluation details can be found in Section 6.2.2.4. Moreover, since the call depth on

GPU is usually shallow, the time cost of running my modified depth-first-search

void findAllPaths(string srcName, string desName, int

 &idx, unordered_map<string, bool> &visited,

 Instance &inst, int srcLine, string srcFile) {

 create a frame for srcName;

 push it into the instance from this sample;

 set the function with srcName as visited;

 if srcName == desName

 finish the instance created for this sample;

 put the instance to the global instance map;

 else

 for all callers of this callee (srcName)

 if the caller is not visited

 get the source line and file;

 recursively call findAllPaths on

the caller function with srcName being caller’s name;

 pop out the new frame;

 set the function as unvisited;

}

 113

algorithm is negligible. I also pre-process the GPU sample profile to count the

number of occurrences of each unique sample, using the combination of source

locator ID, function ID, and correlation ID as the key to the sample. Therefore,

CUDABlamer does not need to process every sample, but only those unique ones,

which saves the overall postmortem processing time by orders of magnitudes. The

blame weight of each sample is now calculated by the following formula:

𝑏𝑊𝑒𝑖𝑔ℎ𝑡(𝑠) = 𝑐𝑊𝑒𝑖𝑔ℎ𝑡 ∗ 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒

where bWeight represents the final weight of this sample with a particular call stack

in blame calculation, cWeight is a fraction representing the share of this call stack out

of all possible call stacks, occurrence represents how many times this unique sample

was generated during the entire execution.

6.2.2.4 Evaluation

To evaluate the usability of my approach in constructing the complete calling context,

I tried CUDABlamer on 16 benchmarks from two widely-used open-source

benchmark suites. The two open-source benchmark suites are:

SHOC: SHOC [84] is a spectrum of programs that test the performance and stability

of scalable heterogeneous computing systems. At the lowest level, SHOC uses micro-

benchmarks to access architectural features of the system. At higher levels, SHOC

uses application kernels to determine system-wide performance including intra and

inter node communication among devices. I picked 8 benchmarks from SHOC 1.1.5.

Rodinia: Rodinia [85] includes applications and kernels which target multi-core CPU

and GPU platforms. The Rodinia is inspired by Berkeley’s dwarf taxonomy [86]. I

 114

picked 8 benchmarks from Rodinia 3.1 that can be compiled by gpucc [80] and

represent different types of applications.

Figure 6.4: Coverage for SHOC and Rodinia benchmarks

The metrics for evaluating the usability of CUDABlamer’s approach to a particular

benchmark is called “coverage”, determined by the following formula:

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑆𝑎𝑚𝑝𝑙𝑒𝑠 − 𝑛𝑢𝑚𝐴mbi𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑆𝑎𝑚𝑝𝑙𝑒𝑠

where numAmbiSamples represents the number of samples that have more than one

possible stacktraces (“ambiguous sample”) and totalNumSamples is the total number

of samples as the name tells. The coverage metric basically indicates what percentage

of samples that are obtained from one run of a program will have a deterministic

stacktrace from the sample point to the top-level kernel function. The higher the

coverage is, the more precisely CUDABlamer can attribute time spent in that

benchmark to variables and functions.

68.01%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

St
en

ci
l2

D

B
FS

So
rt

M
D

5
H

as
h

N
eu

ra
ln

et

R
ed

u
ct

io
n

Sc
an

Tr
ia

d

p
at

h
Fi

n
d

er cf
d

h
o

ts
p

o
t

ga
u

ss
ia

n

h
ea

rt
w

al
l

n
n

p
ar

ti
cl

ef
ilt

er

st
re

am
cl

u
st

er

SHOC Rodinia

SHOC Stencil2D

SHOC BFS

SHOC Sort

SHOC MD5Hash

SHOC Neuralnet

SHOC Reduction

SHOC Scan

SHOC Triad

Rodinia pathFinder

Rodinia cfd

Rodinia hotspot

Rodinia gaussian

Rodinia heartwall

Rodinia nn

Rodinia particlefilter

Rodinia streamcluster

 115

From Figure 6.4, only one benchmark cfd is not 100% covered. It is due to the calls to

several inline function compute_speed_sqd, compute_pressure,

compute_speed_of_sound, compute_velocity, and compute_flux_contribution at

different points within the same kernel cuda_compute_flux.

6.3 Case Studies

To evaluate CUDABlamer, I tested it on 16 open-source benchmarks from two

widely-used benchmark suites, as introduced in Section 6.2.2.4. From those, I studied

the performance details of two benchmarks: Particlefilter and Triad and manually

optimized the code. The experiments were done on a server with 2 NVIDIA Tesla

P100 GPUs and 64 Intel Xeon Gold 6142 CPU processors (2.6 GHz). The NVIDIA

P100 accelerator uses the Pascal architecture, featuring at extreme performance,

including high speed, high bandwidth interconnect NVLink, and the first high

capacity, highly efficient Chip-on-Wafer-on-Substrate stacked memory architecture

HBM2. Each P100 GPU contains 16 GB on-chip memory and 56 SM (streaming

multiprocessors). Each SM has 64 FP32 cores and 32 FP64 cores, which makes a

total 5376 CUDA cores. Each SM also has 64KB of shared memory, which can be

accessed as quickly as a register under certain access patterns. The entire GPU device

also provides 48KB of constant memory, which is basically a global memory space

but cached for frequent reads. Effective use of shared memory and constant memory

can be very helpful for CUDA performance optimization. From a software

perspective, the compilers that were used are nvcc 8.0, gcc 4.8.5 and clang 4.0.1 and

“-O2” was used as the optimization option in the compilation.

 116

6.3.1 Particlefilter

Particle Filter (PF) is a medical imaging application that is used for tracking

leukocytes and myocardial cells. However, this algorithm can be used in different

domains, including video surveillance, and video compression.

Table 6.1 shows the most blamed variables in Particlefilter, the information that

CUDABlamer delivers to programmers include the blame percentage, name, type,

calling context which tells whether the data object is allocated on the host or device.

Table 6.1: Profiling result of Particlefilter

Variable Type Context Blame

ye/xe double main.particleFilter 100%

arrayX/arrayY *double main.particleFilter 100%

xj *double main.particleFilter 97.9%

yj *double main.particleFilter 97.8%

xj_GPU *double main.particleFilter 97.9%

yj_GPU *double main.particleFilter 97.8%

index int main.particleFilter.kernel 95.7%

xe/ye (100%): Estimated centroid object location, initialized at the beginning of each

iteration for a frame and later calculated from particle coordinates. Therefore, in each

round, the values depend on the result of the previous round of kernel execution.

arrayX/arrayY (100%): Array of coordinates of particles, reassigned every time after

a kernel execution from xj/yj arrays.

 117

xj/yj (97.9%/97.8%): CPU copies of xj_GPU and yj_GPU. Temporary arrays to store

particle coordinates after the kernel execution.

xj_GPU/yj_GPU (97.9%/97.8%): Pointers to GPU allocations, storing the computed

results of new particle coordinates. Each element is calculated by one CUDA thread.

index (95.7%): The main variable calculated in the kernel, indicating the index of the

input arrays to be loaded to the corresponding output xj_GPU/yj_GPU element.

therefore is attributed to most samples triggered within the kernel.

Discussion and Optimization：The kernel is not complicated and does not call other

device functions. Basically, each CUDA thread is responsible for loading one element

in the output array based on the global Id of the thread. Therefore, simplifying the

algorithm in the kernel is a dead end. However, CUDABlamer told us that xj_GPU

and yj_GPU are the major blame holders. Since they are the only GPU arrays that are

written while a few other arrays are read-only within the kernel, we can use GPU

constant memory to store those read-only arrays. Constant memory is a global

memory with cache, meaning except the cost for the first access, further reading the

same memory addresses is almost as fast as on registers. Therefore, I moved 4 arrays

(arrayX_GPU, array_GPU, u_GPU, CDF_GPU) that were previously allocated on

the normal GPU global memory to the constant memory, resulting in an average

speedup of 46.6x for the kernel performance, as shown in Table 6.2. The Larger the

number-of-frames parameter is, the higher the kernel speedup will be since the cost of

first-time access can be amortized. CUDABlamer also provides traditional code-

centric profiling result, with a complete calling context. Since Particlefilter has only

 118

one kernel, the code-centric view attributes 100% to each function on the single call

path: main->particleFilter->kernel.

Table 6.2: Performance comparison for Particlefilter

Original Kernel Execution (ms) Modified Kernel Execution (ms) Speedup

163.1 3.5 46.6x

6.3.2 Triad

From SHOC, this benchmark is a CUDA version of the STREAM Triad benchmark

[87], which measures sustainable memory bandwidth for a large vector dot product

operation on single precision floating point data. The benchmark uses a block-

pipelined implementation to partially overlap the cost of the dot computation with the

transfer of data from the host memory to the device memory. Table 6.3 shows the

most blamed variables for Triad. First, I briefly introduced these variables.

h_mem (100%): a host-allocated big array that has the initial values for the vectors

and stores the output data of kernel calls. It uses offset to properly store the value for

three vectors in a continuous memory space, thus saving time on the memory

allocation. Therefore the value of h_mem holds the ultimate result of running the

entire program and is assigned 100% of the blame.

d_memC0/d_memC1 (50.8%/49.2%): The output vector of the vector dot production

operation. The benchmark uses 2 copies to switch between computation and data

movement, therefore the two output vectors share the total blame.

d_memB0/d_memB1 (14.9%/19.8%): The input vector B of the kernel.

d_memA0/d_memA1 (4.2%/5.3%): The input vector A of the kernel.

 119

gid (7%): The global thread id calculated in each CUDA thread, acting as the index of

an element in the vectors.

Table 6.3: Profiling result of Triad

Variable Type Context Blame

h_mem *float main.RunBenchmark 100%

d_memC0 *float main.RunBenchmark 50.8%

d_memC1 *float main. RunBenchmark 49.2%

d_memB1 *float main. RunBenchmark 19.8%

d_memB0 *float main. RunBenchmark 14.9%

gid int main. RunBenchmark 7.0%

d_memA1 *float main. RunBenchmark 5.3%

d_memA0 *float main. RunBenchmark 4.2%

Discussion and optimization: The Triad benchmark has been widely-studied and

highly optimized in multiple ways. The kernel is extremely small and there are no

shared data accesses between threads within a block. Therefore, changing the

memory types for vector allocations does not give us speedups. However, I still found

an opportunity for optimizing the calculation of the output vectors. In the original

code, each CUDA thread calculates one element, even though the memory accesses

coalesce, the thread creation and destruction become the obvious overhead compared

to the simple computation in the kernel. Therefore, I manually tuned the number of

blocks allocated to a thread grid and use multiple operations per thread, which

reduced the parallelism to some extent but also reduced the overhead by reusing

active threads. The comparison between the original and modified code snippet is

 120

shown in Figure 6.5 and the performance comparison in Table 6.4 shows that we

gained a speedup of 1.2x from this optimization.

Figure 6.5: Code comparison for Triad

Table 6.4: Performance comparison for Triad

Original Kernel Execution (ms) Modified Kernel Execution (ms) Speedup

20.87 17.75 1.2x

6.4 Discussion and Summary

Tuning code for GPUGPU and other emerging many-core platforms is challenging

because there are few models or tools that can precisely pinpoint performance

bottlenecks. Although several GPGPU profilers exist, most traditional tools,

unfortunately, simply provide programmers with a number of different kinds of

measurements and metrics obtained by running applications. As a result, it is very

__global__ void triad (float* A, float* B, float* C, float s)

{

int gid = threadIdx.x + (blockIdx.x * blockDim.x);

C[gid] = A[gid] + s*B[gid];

}

Original

__global__ void triad (float* A, float* B, float* C, float s)

{

int gid = threadIdx.x + (blockIdx.x * blockDim.x);

// do multiple calculations per thread

for (; gid < nElems; gid += gridDim.x * blockDim.x)

 C[gid] = A[gid] + s*B[gid];

}

Optimized

 121

hard for users to map these metrics back to their source code to understand the root

causes of slowdowns, much less decide what next optimization step to take to

alleviate the bottlenecks and improve the overall performance. Some model-based

approaches [59, 62] are able to provide such fine-grained information by

appropriately mapping performance metrics to the application. However, the intrinsic

deficiency of model-based approaches limits the application of those techniques. G-

HPCTOOLKIT [64] employed some smart ways to shift the blame of slowdown back

and forth between CPU thread execution and GPU tasks, while keeping a very low

overhead. Although it provides the call stack on the CPU for each kernel launch, it

does provide the call stack on the GPU. Therefore, if a complicated kernel generates a

deep call stack on the GPU, G-HPCTOOLKIT [64] is not able to provide

performance insights into that kernel. In comparison, my tool has the ability to

provide users with the complete user-level calling context, from the CPU side to the

GPU side. The call stack information can direct programmers precisely to the root

causes of program slowdowns.

Lim [67] focuses on characterizing kernel executions and it uses the same sampling

mechanism provided by CUPTI [66] library as I do. Although it provides more

detailed kernel information “instruction mix” than previous performance analysis

tools, it does not identify the bottlenecks in the source code that cause the

performance slowdowns. In comparison, my techniques map the performance metrics

back to source code elements so the programmers can have a straightforward idea of

what is slowing down the program and what are the bottlenecks of the performance.

 122

Moreover, none of the existing profilers provide data-centric metrics as I use in the

performance analysis.

In summary, CUDABlamer distinguishes itself significantly in three aspects:

First, the tool offers fine-grained, in-depth performance analysis into the kernel

execution, providing programmers much more insights about the functions and tasks

executed on GPUs. The insights are straightforward and mapped to the source;

therefore, programmers are able to quickly locate the hotspot data or functions.

Second, the tool uses a data-centric performance analysis technique for GPU-

accelerated applications. I utilize the GPU hardware sampling technique to get

sampled runtime information and map that back to source code variables.

Third, it is the first tool that offers the complete calling context in the execution

profile, from the CPU side to GPU side, including the call stack before a kernel is

launched and the call stack within a kernel.

With CUDABlamer, I studied the performance of 16 GPU benchmarks and optimized

two of them. For Particlefilter, I gained a speed of 46.6x by simply moving some

read-only data to the constant memory space on the GPU. For Triad, I gained a

speedup of 1.2x by reusing active threads. Moreover, I again demonstrated the

usability and applicability of the data-centric idea “Blame” in performance analysis of

high parallel programming models by instantiating another performance tool for a

widely-adopted HPC programming model.

I also studied the overhead of CUDABlamer; the result is shown in Table 6.5, using

the same categories as Table 5.10. As I explained in Section 5.4, the runtime

overhead is the major concern of our profiler. From Table 6.5, we see a significant

 123

difference in the runtime overhead between benchmarks. With further investigation, I

found that the high runtime overhead is largely due to the poor performance of

PC_SAMPLING mechanism from the CUPTI library. Therefore, when the kernel is

large and complex, the runtime overhead can surge, such as Streamcluster.

Unfortunately, PC_SAMPLING is relatively new and currently the only available

tool that supports sampling the GPU execution. I will keep looking for optimizations

and hopefully, its performance will be improved in the future CUDA releases.

Table 6.5: CUDABlamer overhead study

Benchmark

name

Clean

execution

Static

analysis

Monitored

execution

Post

processing

Runtime

overhead

Total

overhead

Hotspot 10.43 1.61 10.82 0.83 3.7% 27.0%

Streamcluster 16.96 2.54 115.35 55.46 580% 922%

Particlefilter 10.21 1.34 11.1 1.74 8.7% 38.9%

Unit: seconds

 124

Chapter 7

Conclusions

This chapter summarizes the conclusions of this dissertation. Section 7.1 summarizes

the contributions of this dissertation; Section 7.2 describes some open problems that

are opportunities for future work.

7.1 Summary of Contributions

Using static analysis, plus the sampling-based measurements triggered by hardware

performance counters in conjunction with call path profiling, I was able to develop

data-centric profilers with reasonable overhead to analyze program executions on a

parallel architecture with many hardware threads, deep memory hierarchies, and GPU

accelerators. These methods can provide valuable insights to guide code optimization.

New Performance Attribution for Emerging Programming Models

As supercomputing evolves, the hardware tends to be more distributed and

heterogeneous to provide massive parallelism. Meanwhile, emerging parallel

programming models that support software programming on these powerful machines

are in active development. Newer parallel programming models provide newer

abstractions for programmers. However, performance tools need to keep pace with

these changes to present useful performance information in an instructive way. Some

traditional performance attribution methods may not be sufficient to profile these

newer programming models.

 125

In this dissertation, I proposed a new performance data attribution method for two

highly parallel programming models: PGAS and CUDA. The new attribution

approach is referred to as data-centric profiling and is based on the performance

metric Blame explained in Chapter 3. This data-centric profiling technique allows

users to attribute performance data to program variables and data structures instead of

functions and code regions. Today, it is the data instead of the computation that

frequently becomes the bottleneck of the overall performance. Therefore, memory

allocation, data storage, and inter-node communication are critical to the performance

of an HPC system and thus data-centric performance measurement and mapping

provide valuable insights into performance optimization.

To validate the applicability of my data-centric profiling idea, I designed and

implemented two profilers for PGAS and CUDA, extending the Blame tool by Rutar

[18]. For PGAS, I developed ChplBlamer, for both single-node and multi-node

Chapel programs. It supports most Chapel language features and provides

hierarchical profiling over program abstractions and call path profiling in the user

context. I also augmented ChplBlamer with some new features such as data-centric

inter-node load imbalance identification. The combination of the tool’s data-centric

and code-centric profiling provides insights into inter and intra node communication

bottlenecks as well as optimization opportunities that could not be discovered by

previous Chapel profilers. For CUDA, I developed CUDABlamer for GPGPU

programs with features not available in previous CUDA profilers. More importantly, I

used the same tool framework, the same Blame metric, and the same Graphical User

Interface (GUI) as ChplBlamer uses to implement CUDABlamer. Specifically, the

 126

use of pre-run static analysis of a language-independent intermediate representation

(LLVM) combined with minimum necessary runtime data and thorough post-run

processing is proven to be a generic approach to build performance tools for different

parallel programming models. My tool framework is extensible to support other

languages.

Complete User-level Calling Context

This dissertation also shows the importance of constructing a complete user-level

calling context for runtime samples in effectively delivering performance issues to

programmers. I used different strategies to construct a complete calling context for

PGAS and CUDA based on their execution models. The functionality to get the

complete user-level calling context for Chapel and CUDA was not achievable from

existing performance analysis tools as far as I know.

For the PGAS language Chapel, I added lightweight instrumentation in the Chapel

runtime library, inside tasking and communication layers and used CPU sampling to

gain runtime data from one run of a program. I reconstructed the complete user-level

calling context in the post-run analysis step based on the logged runtime data and the

pre-run static information to minimize the intrusion to the program’s execution.

For CUDA, I used the CUDA Profiling Tools Interface (CUPTI) to do GPU sampling

and added lightweight instrumentation to each kernel launched. Besides, I constructed

a static calling context with the help of the pre-run static analysis. With the source

information recorded along with runtime samples, I used a modified Depth-First-

Search algorithm to determine the actual calling context for each collected sample.

More details can be found in Section 6.2.2.

 127

Valuable Performance Insights

To evaluate the effectiveness of ChplBlamer and CUDABlamer, I tested both

ChplBlamer and CUDABlamer with several widely-studied open-source benchmarks.

From the profiling results, I derived valuable insights into each program and found

optimization for each benchmark that I have studied. For single-locale ChplBlamer, I

gained a speedup of up to 2.3x and concluded that users should restrain using domain

remapping and zippered iterations because they are expensive features to use in

Chapel’s current implementation. For ChplBlamer-ML, I gained a speedup of up to

4.0x and concluded that using some techniques like localization, globalization, and

replication can significantly improve the performance and scalability of a multi-locale

benchmark. For CUDABlamer, I gained a speedup of up to 46.6x for a GPU kernel

execution and concluded that appropriate use of special GPU memories, such as

constant memory and shared memory, can be of great benefit to the kernel

performance. Also, creating too many parallel threads with little work on each thread

sometimes hurts the overall performance. These programming experience and

performance insights are valuable to the development of PGAS and CUDA as well as

to application developers.

7.2 Open Problems

In this section, I present some high-level ideas for future work. I plan to extend

approaches described in this dissertation in four ways: finer blame attribution, blame

 128

combined with auto-tuning, GPU read-only memory identification, and blame used in

taint analysis.

7.2.1 Finer Blame Attribution

Currently, my data-centric profilers only present the blamed variables in descending

order to reveal the possible performance bottlenecks. However, programmers cannot

determine why certain variables stand out in the final result and such information can

be very useful for precise optimization and better understanding the execution

characteristics. From my experience, in a multi-thread and multi-node computing

system, the synchronization among threads within a node and among multiple nodes

is commonly one of the major performance bottlenecks in HPC. Also within a CPU-

GPU hybrid architecture, the synchronization between the host (CPU) and the device

(GPU) also consumes a big portion of execution time in many GPU-accelerated

applications I studied. It would be great if ChplBlamer and CUDABlamer can

associate those specific performance bottlenecks to the corresponding variables, such

as shared memory variables within a GPU kernel block that needs synchronization

between the threads within that block, or a distributed variable that is allocated across

nodes and needs synchronization between nodes to continue execution. With this kind

of strengthened performance mapping technique, a data-centric profiler can be more

effective in guiding user-level optimizations.

7.2.2 Blame Combined with Auto-tuning

Our profiling system can figure out the time spent in populating the value of each

program abstraction. Many of the variables shown in our results have tunable

 129

parameters that affect how much computation goes into calculating the data for that

variable. These tunable parameters range from the communication patterns used for

distributed data structures to the underlying data structures that are used to represent

the variable such as whether to use a sparse or dense matrix. Using Chapel as an

example, the data parallelism provides the domain control over array-like variable

allocation. Domains are first-class index sets, which specify the size and shape of

arrays. For distributed memory systems, different domain maps can make a big

difference in managing load balancing and minimizing communication cost between

nodes. Domain maps are “recipes” that instruct the compiler how to map the global

view of computation to a locale’s memory and processors. Chapel provides a library

of standard domain maps to support common array implementations, and the user can

switch between domain maps effortlessly without changing other code. Auto-tuning

has established itself as an important tool in HPC. It has been used in place of

complex analysis to optimize everything from linear algebra libraries to parallel

multicore stencil computations [27]. My future work will also investigate the

integration of data-centric profiling and auto-tuning; specifically, I use my profiling

framework to get the most blamed variables to reduce the state space and use certain

existing auto-tuning framework, such as Active Harmony [28] to tune parameters

(e.g., domain map).

7.2.3 GPU Read-only memory Identification

In my evaluation of CUDABlamer, I found an opportunity for optimizing the kernel

in the benchmark Particlefilter (Details can be found in Section 6.3.1). Simply placing

some read-only data in the constant memory instead of the general global memory in

 130

GPU could bring dramatic performance improvement. The limitations in this

optimization are: 1
st
 the size of available constant memory on any current GPUs is

small (48KB on P100); 2
nd

 the memory allocation on the constant memory must be

done at compilation time. The only effort in this optimization is to manually identify

the fitting read-only variables on the GPU and move them to the constant memory

space. Therefore, it would be nice if my tool can automatically identify read-only

variables on the GPU along with their size information. This would help a user

change their allocation without manually searching for optimizable objects. However,

one thing to note is that the cost of the first access to the constant memory is very

high, which would probably undermine the performance gain from subsequent

accesses if reading the same memory space is not frequent enough. Therefore,

profiling how often something is accessed is necessary before applying this

optimization.

7.2.4 Blame Used in Taint Analysis

Taint analysis is a prevalent approach to detect malicious behavior in programs.

Based on the concept that some data (such as the input from the user or any data from

the website) is not trustworthy, taint analysis is proposed to keep track of the data

which can be used to harm the software, and monitor suspicious actions. There are

many previous uses of taint analysis [29, 30, 33, 35]. There are two categories of taint

analysis: Static Taint Analysis (STA) and Dynamic Taint Analysis (DTA). DTA is

more attractive because it allows us to reason about actual executions [31]. There are

two limitations of DTA: 1
st
 under-taint due to the tested inputs missing control-flow

information; 2
nd

 prohibitive runtime overhead due to the fact that it needs to examine

 131

every executed instruction. There exists some work composing static and dynamic

methods to resolve the issues [32, 34, 35, 36, 37]. However, the analysis's runtime

cost is still way too high.

My blame analysis is more than a profiler; it can also be used in other fields that

require precise dataflow analysis yet need to limit performance impact. Blame

analysis can tell programmers what statements in the program will contribute to the

value of a particular variable. Since the data dependency information for each

variable is mutually inclusive, we can obtain the reverse information: with any

variable in the program, you can know what statements or variables that variable will

touch. It closely resembles the taint analysis. Meanwhile, the blame system has a very

low runtime overhead when using a relatively low sampling rate. To optimize the

procedure of taint analysis, I would investigate a novel blame-assisted approach for

DTA using sampling. Firstly, we can leverage the dual attributes of our blame

analysis to get most intraprocedural dataflow analysis results. During the runtime, I

will use sampling to focus on a small portion of variables in taint analysis. However,

what type of sampling mechanism to use is still to be determined. This blame-assisted

approach provides a tradeoff between monitoring coverage and overhead.

 132

Bibliography

[1] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability and the

Chapel language,” Int. J. High Perform. Comput. Appl., vol. 21, no. 3, pp. 291–312,

Aug. 2007. [Online] Available: http://dx.doi.org/10.1177/1094342007078442

[2] Lydia Duncan, “Chapel: A Productive Parallel Programming Language”, Women

Techmakers Community Talks, January 19, 2016. [Online] Available:

http://chapel.cray.com/presentations/Duncan-WomenTechmakers.pdf

[3] Shende, S.S., Malony, A.D.: The tau parallel performance system. Int. J. High

Perform. Comput. Appl. 20(2), 287–311 (2006)

[4] Geimer, M., Wolf, F., Wylie, B.J.N., Ábraham, E., Becker, D., Mohr, B.: The

Scalasca performance toolset architecture. Concurrency and Computation: Practice

and Experience 22(6), 702–719 (2010)

[5] Müller, M.S., Knüpfer, A., Jurenz, M., Lieber, M., Brunst, H., Mix, H., Nagel,

W.E.: Developing scalable applications with vampir, vampirserver, and vampirtrace.

In: Parallel Computing: Architectures, Algorithms, and Applications, vol. 15, pp.637–

644. IOS Press (2008)

[6] Rogue Wave Software, "ThreadSpotter manual, version 2012.1,"

http://www.roguewave.com/documents.aspx?Command=Core Download&Entry

Id=1492, August 2012.

[7] Lachaize, Renaud, Baptiste Lepers, and Vivien Quéma. "MemProf: A Memory

Profiler for NUMA Multicore Systems." USENIX Annual Technical Conference.

2012.

 133

[8] Buck, Bryan R., and Jeffrey K. Hollingsworth. "Data centric cache measurement

on the Intel Itanium 2 processor." Proceedings of the 2004 ACM/IEEE conference on

Supercomputing. IEEE Computer Society, 2004.

[9] Adhianto, Laksono, et al. "HPCToolkit: Tools for performance analysis of

optimized parallel programs." Concurrency and Computation: Practice and

Experience 22.6 (2010): 685-701.

[10] Loveman DB. High performance fortran. IEEE Parallel & Distributed

Technology: Systems & Applications. 1993 Feb;1(1):25-42.

[11] Tallent, Nathan R., and Darren Kerbyson. "Data-centric performance analysis of

PGAS applications." Proc. of the Second Intl. Workshop on High-performance

Infrastructure for Scalable Tools (WHIST), San Servolo Island, Venice, Italy. 2012.

[12] Su, Hung-Hsun, Max Billingsley III, and Alan D. George. "Parallel performance

wizard: A performance analysis tool for partitioned global-address-space

programming." Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE

International Symposium on. IEEE, 2008.

[13] Seisei Itahashi, Yoshiki Sato and Shigeru Chiba. “Toward a profiling tool for

visualizing implicit behavior in X10” The 2014 X10 Workshop (X10'14) co-located

with PLDI'14, Edinburgh, UK, 2014

[14] Oeste, Sebastian, Andreas Knüpfer, and Thomas Ilsche. "Towards Parallel

Performance Analysis Tools for the OpenSHMEM Standard." Workshop on

OpenSHMEM and Related Technologies. Springer International Publishing, 2014.

[15] TAU for Chapel, Available: http://www.nic.uoregon.edu/tau-

wiki/Guide:TAUChapel

 134

[16] Vöcking, Heye. "Performance analysis using Great Performance Tools and

Linux Trace Toolkit next generation." p. 17. (2012).

[17] Liu, Xu, and John Mellor-Crummey. "A data-centric profiler for parallel

programs." 2013 SC-International Conference for High Performance Computing,

Networking, Storage and Analysis (SC). IEEE, 2013.

[18] Rutar, Nickolas Jon. Foo's To Blame: Techniques For Mapping Performance

Data To Program Variables. Dissertation. 2011.

 [19] Buck, Bryan, and Jeffrey K. Hollingsworth. "An API for runtime code

patching." The International Journal of High Performance Computing Applications

14.4 (2000): 317-329.

[20] Mucci, Philip J., et al. "PAPI: A portable interface to hardware performance

counters." Proceedings of the department of defense HPCMP users group conference.

1999.

[21] R. B. Johnson, J. K. Hollingsworth, “Optimizing Chapel for Single-Node

Environments”, In CHIUW workshop of the 30th IEEE International Parallel &

Distributed Processing Symposium, Chicago, IL, 2016

[22] Sidelnik, Albert, et al. "Performance portability with the chapel language."

Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE 26th

International. IEEE, 2012.

[23] Almasi, George. "PGAS (Partitioned Global Address Space) Languages."

Encyclopedia of Parallel Computing. Springer US, 2011. 1539-1545.

 [24] Intel Itanium Processor Reference Manual for Software Development

http://people.freebsd.org/~marcel/refs/ia64/itanium/24532003.pdf

 135

 [25] Hayashi, Akihiro, et al. "LLVM-based communication optimizations for PGAS

programs." Proceedings of the Second Workshop on the LLVM Compiler

Infrastructure in HPC. ACM, 2015.

[26] Nelson, Philip A., and Greg Titus. "Chplvis: A Communication and Task

Visualization Tool for Chapel." Parallel and Distributed Processing Symposium

Workshops, IEEE, 2016.

[27] Chen, Ray S., and Jeffrey K. Hollingsworth. "Angel: A hierarchical approach to

multi-objective online auto-tuning." Proceedings of the 5th International Workshop

on Runtime and Operating Systems for Supercomputers. ACM, 2015.

[28] Ţăpuş, Cristian, I-Hsin Chung, and Jeffrey K. Hollingsworth. "Active harmony:

Towards automated performance tuning." Proceedings of the 2002 ACM/IEEE

conference on Supercomputing. IEEE Computer Society Press, 2002.

 [29] Newsome, James, and Dawn Song. "Dynamic taint analysis for automatic

detection, analysis, and signature generation of exploits on commodity software."

(2005).

[30] Clause, James, Wanchun Li, and Alessandro Orso. "Dytan: a generic dynamic

taint analysis framework." Proceedings of the 2007 international symposium on

Software testing and analysis. ACM, 2007.

[31] Schwartz, Edward J., Thanassis Avgerinos, and David Brumley. "All you ever

wanted to know about dynamic taint analysis and forward symbolic execution (but

might have been afraid to ask)." Security and privacy (SP), 2010 IEEE symposium

on. IEEE, 2010.

 136

[32] Aggarwal, Ashish, and Pankaj Jalote. "Integrating static and dynamic analysis

for detecting vulnerabilities." Computer Software and Applications Conference, 2006.

COMPSAC'06. 30th Annual International. Vol. 1. IEEE, 2006.

[33] Kang, Min Gyung, et al. "DTA++: Dynamic Taint Analysis with Targeted

Control-Flow Propagation." NDSS. 2011.

[34] Zhang, Ruoyu, et al. "Static program analysis assisted dynamic taint tracking for

software vulnerability discovery." Computers & Mathematics with Applications 63.2

(2012): 469-480.

[35] Chang, Walter, Brandon Streiff, and Calvin Lin. "Efficient and extensible

security enforcement using dynamic data flow analysis." Proceedings of the 15th

ACM conference on Computer and communications security. ACM, 2008.

[36] Greathouse, Joseph L., et al. "Highly scalable distributed dataflow

analysis." Proceedings of the 9th Annual IEEE/ACM International Symposium on

Code Generation and Optimization. IEEE Computer Society, 2011.

[37] Greathouse, Joseph L., et al. "Testudo: Heavyweight security analysis via

statistical sampling." Proceedings of the 41st annual IEEE/ACM International

Symposium on Microarchitecture. IEEE Computer Society, 2008.

[38] Weiser M. Program slicing. InProceedings of the 5th international conference on

Software engineering 1981 Mar 9 (pp. 439-449). IEEE Press.

[39] Hayashi, Akihiro, et al. "LLVM-based communication optimizations for PGAS

programs.” https://chapel-lang.org/CHIUW/2014/akihiro.hayashi.CHIUW2014.pdf.

 137

[40] Coarfa, Cristian, et al. "An evaluation of global address space languages: co-

array fortran and unified parallel C." Proceedings of the tenth ACM SIGPLAN

symposium on Principles and practice of parallel programming. ACM, 2005.

[41] Carlson, William W., et al. Introduction to UPC and language specification. Vol.

576. Technical Report CCS-TR-99-157, IDA Center for Computing Sciences, 1999.

[42] Yelick, Kathy, et al. "Titanium: A high-performance Java dialect." Concurrency

Practice and Experience 10.11-13 (1998): 825-836.

[43] Charles, Philippe, et al. "X10: an object-oriented approach to non-uniform

cluster computing." Acm Sigplan Notices. Vol. 40. No. 10. ACM, 2005.

[44] Nieplocha, Jaroslaw, Robert J. Harrison, and Richard J. Littlefield. "Global

arrays: A nonuniform memory access programming model for high-performance

computers." The Journal of Supercomputing 10.2 (1996): 169-189.

[45] Tardieu, Olivier, et al. "X10 and APGAS at petascale." ACM SIGPLAN

Notices. Vol. 49. No. 8. ACM, 2014.

[46] Dun, Nan, and Kenjiro Taura. "An empirical performance study of Chapel

programming language." Parallel and Distributed Processing Symposium Workshops

& Ph.D. Forum (IPDPSW), 2012 IEEE 26th International. IEEE, 2012.

[47] Kayraklioglu, Engin, et al. "PGAS Access Overhead Characterization in

Chapel." Parallel and Distributed Processing Symposium Workshops, 2016 IEEE

International. IEEE, 2016.

 [48] Lattner, Chris, and Vikram Adve. "LLVM: A compilation framework for

lifelong program analysis & transformation." Proceedings of the international

 138

symposium on Code generation and optimization: feedback-directed and runtime

optimization. IEEE Computer Society, 2004.

 [49] Dean J, Hicks JE, Waldspurger CA, Weihl WE, Chrysos G. ProfileMe:

Hardware support for instruction-level profiling on out-of-order processors.

InProceedings of the 30th annual ACM/IEEE international symposium on

Microarchitecture 1997 Dec 1 (pp. 292-302). IEEE Computer Society.

[50] GPGPU, https://devblogs.nvidia.com/author/mharris/

[51] Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC. GPU

computing. Proceedings of the IEEE. 2008 May;96(5):879-99.

[52] Nickolls J, Dally WJ. The GPU computing era. IEEE micro. 2010 Mar;30(2).

[53] AI computing, NVIDIA Corp. https://www.nvidia.com/en-us/about-nvidia/ai-

computing/

[54] Nvidia CU. Nvidia cuda c programming guide. Nvidia Corporation.

2011;120(18):8.

[55] Haque, Riyaz, and David Richards. "Optimizing PGAS overhead in a multi-

locale Chapel implementation of CoMD." PGAS Applications Workshop (PAW).

IEEE, 2016.

[56] https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

[57] NVIDIA Corp. Nvidia Visual Profiler. https://developer.nvidia.com/nvidia-

visual-profiler, Jan 2013

[58] Baghsorkhi SS, Gelado I, Delahaye M, Hwu WM. Efficient performance

evaluation of memory hierarchy for highly multithreaded graphics processors. In

ACM SIGPLAN Notices 2012 Feb 25 (Vol. 47, No. 8, pp. 23-34). ACM.

https://devblogs.nvidia.com/author/mharris/
https://www.nvidia.com/en-us/about-nvidia/ai-computing/
https://www.nvidia.com/en-us/about-nvidia/ai-computing/
https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler

 139

[59] Pennycook SJ, Hammond SD, Jarvis SA, Mudalige GR. Performance analysis of

a hybrid MPI/CUDA implementation of the NASLU benchmark. ACM

SIGMETRICS Performance Evaluation Review. 2011 Mar 29;38(4):23-9.

[60] D. Bailey et al. The NAS Parallel Benchmarks. Technical Report RNR-94-007,

NASA Ames Research Center, March 1994

[61] G. R. Mudalige, M. K. Vernon, and S. A. Jarvis. A Plug-and-Play Model for

Evaluating Wavefront Computations on Parallel Architectures. In Proceedings of the

IEEE International Parallel and Distributed Processing Symposium, April 2008.

[62] Sim J, Dasgupta A, Kim H, Vuduc R. A performance analysis framework for

identifying potential benefits in GPGPU applications. In ACM SIGPLAN Notices

2012 Feb 25 (Vol. 47, No. 8, pp. 11-22). ACM.

[63] Hong S, Kim H. An analytical model for a GPU architecture with memory-level

and thread-level parallelism awareness. In ACM SIGARCH Computer Architecture

News 2009 Jun 20 (Vol. 37, No. 3, pp. 152-163). ACM.

[64] Chabbi M, Murthy K, Fagan M, Mellor-Crummey J. Effective sampling-driven

performance tools for GPU-accelerated supercomputers. In Proceedings of the

International Conference on High Performance Computing, Networking, Storage and

Analysis 2013 Nov 17 (p. 43). ACM.

[65] GPU energy efficiency, NVIDIA Corp. http://www.nvidia.com/object/gcr-

energy-efficiency.html

[66] CUPTI, NVIDIA Corp. https://docs.nvidia.com/cuda/cupti/index.html

 140

[67] Lim R, Malony A, Norris B, Chaimov N. Identifying optimization opportunities

within kernel execution in GPU codes. In European Conference on Parallel

Processing 2015 Aug 24 (pp. 185-196). Springer, Cham.

[68] Zhang H, Hollingsworth JK. Data Centric Performance Measurement

Techniques for Chapel Programs. InParallel and Distributed Processing Symposium

(IPDPS), 2017 IEEE International 2017 May 29 (pp. 377-386). IEEE.

[69] Hui Zhang, Jeffrey K. Hollingsworth. 2018. ChplBlamer: A Data-centric and

Code-centric Combined Profiler for Multi-locale Chapel Programs. In Proceedings of

ACM International Conference on Supercomputing, Beijing, China, June 2018

(ICS’18), 11 pages. https://doi.org/10.1145/3205289.3205314

[70] LLVM. The Often Misunderstood GEP Instruction .

http://llvm.org/docs/GetElementPtr.html.

[71] “CORAL Collaboration Benchmark Codes,” Oak Ridge, Argonne, Livermore.

[Online]. Available: https://asc.llnl.gov/CORAL-benchmarks/

[72] B. L. Chamberlain, S. J. Deitz, D. Iten, and S.-E. Choi. HPC Challenge

Benchmarks in Chapel. Technical report, Cray, Inc., 2009.

[73] Hanebutte, Ulf, and Jacob Hemstad. "ISx: a scalable integer sort for co-design in

the exascale era." Partitioned Global Address Space Programming Models (PGAS),

2015 9th International Conference on. IEEE, 2015.

[74] Hornung, R. D., J. A. Keasler, and M. B. Gokhale. Hydrodynamics challenge

problem. No. LLNL-TR-490254. Lawrence Livermore National Laboratory (LLNL),

Livermore, CA, 2011.Tavel, P. 2007. Modeling and Simulation Design. AK Peters

Ltd., Natick, MA.

 141

[75] Malony AD, Biersdorff S, Spear W, Mayanglambam S. An experimental

approach to performance measurement of heterogeneous parallel applications using

cuda. InProceedings of the 24th ACM International Conference on Supercomputing

2010 Jun 2 (pp. 127-136). ACM.

[76] Drongowski PJ. Instruction-based sampling: A new performance analysis

technique for AMD family 10h processors. Advanced Micro Devices. 2007 Nov 16.

[77] CUPTI developer, NVIDIA Corp. https://developer.nvidia.com/cuda-profiling-

tools-interface

[78] Stone JE, Gohara D, Shi G. OpenCL: A parallel programming standard for

heterogeneous computing systems. Computing in science & engineering. 2010

May;12(3):66-73.

[79] NVIDIA Corp. User guide for NVPTX back-end.

http://llvm.org/docs/NVPXUsage.html, Sept. 2015

[80] Wu J, Belevich A, Bendersky E, Heffernan M, Leary C, Pienaar J, Roune B,

Springer R, Weng X, Hundt R. gpucc: an open-source GPGPU compiler. In

Proceedings of the 2016 International Symposium on Code Generation and

Optimization 2016 Feb 29 (pp. 105-116). ACM.

[81] Compiling CUDA with clang

https://llvm.org/docs/CompileCudaWithLLVM.html

[82] Mosberger, David. "The libunwind project." (2011).

https://www.nongnu.org/libunwind/

[83] Depth first search, https://en.wikipedia.org/wiki/Depth-first_search

http://llvm.org/docs/NVPXUsage.html
https://llvm.org/docs/CompileCudaWithLLVM.html
https://www.nongnu.org/libunwind/
https://en.wikipedia.org/wiki/Depth-first_search

 142

[84] Danalis A, Marin G, McCurdy C, Meredith JS, Roth PC, Spafford K, Tipparaju

V, Vetter JS. The scalable heterogeneous computing (SHOC) benchmark suite.

InProceedings of the 3rd Workshop on General-Purpose Computation on Graphics

Processing Units 2010 Mar 14 (pp. 63-74). ACM.

[85] Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Lee SH, Skadron K. Rodinia:

A benchmark suite for heterogeneous computing. In Workload Characterization,

2009. IISWC 2009. IEEE International Symposium on 2009 Oct 4 (pp. 44-54). Ieee.

[86] Asanovic K, Bodik R, Catanzaro BC, Gebis JJ, Husbands P, Keutzer K,

Patterson DA, Plishker WL, Shalf J, Williams SW, Yelick KA. The landscape of

parallel computing research: A view from berkeley. Technical Report UCB/EECS-

2006-183, EECS Department, University of California, Berkeley; 2006 Dec 18.

[87] Luszczek PR, Bailey DH, Dongarra JJ, Kepner J, Lucas RF, Rabenseifner R,

Takahashi D. The HPC Challenge (HPCC) benchmark suite. InProceedings of the

2006 ACM/IEEE conference on Supercomputing 2006 Nov 11 (Vol. 213).

[88] Intel Corporation, Intel R 64 and IA-32 Architectures Software Developer’s

Manual Volume 3: System Programming Guide, June 2015.

 [89] GP100, NVIDIA Corp. https://www.nvidia.com/en-us/data-center/tesla-p100/

https://www.nvidia.com/en-us/data-center/tesla-p100/

	List of Tables
	List of Figures
	Chapter 1 Introduction
	Chapter 2 Background
	2.1 PGAS Language
	2.2 Chapel
	2.3 Existing HPC Performance Tools
	2.3.1 HPC Profiling Tools
	2.3.2 PGAS Profiling
	2.3.3 Chapel Performance Analysis

	2.4 GPU-accelerated Computing
	2.4.1 GPU
	2.4.2 CUDA
	2.4.3 GPU Profiling

	Chapter 3 Blame Definition
	3.1 Blame Calculus
	3.1.1 Explicit Blame Transfer
	3.1.2 Implicit Blame Transfer
	3.1.3 Transfer Function and Exit Variable

	3.2 Simple Example

	Chapter 4 Data-centric Profiling for Single-locale Chapel Programs
	4.1 Implementing the Tool
	4.1.1 Debug Information Support for Chapel LLVM Frontend
	4.1.2 Static Analysis
	4.1.3 Runtime Information Acquisition
	4.1.4 Postmortem Analysis
	4.1.5 GUI Display
	4.1.6 Exclusive Blame

	4.2 Case Studies
	4.2.1 MiniMD
	4.2.2 CLOMP
	4.2.3 LULESH

	4.3 Discussion and Summary

	Chapter 5 Data-centric Profiling for Multi-locale Chapel Programs
	5.1 Challenges and Solutions
	5.1.1 1st Challenge and Solution
	5.1.2 2nd Challenge and Solution
	5.1.3 3rd Challenge and Solution

	5.2 Inter-node Load imbalance Examination
	5.3 Case Studies
	5.3.1 HPL
	5.3.2 ISx
	5.3.3 LULESH

	5.4 Discussion and Summary

	Chapter 6 Data-centric Profiling for GPGPU Applications
	6.1 Introduction
	6.2 Tool Design and Implementation
	6.2.1 Language-specific LLVM Handling in Static Analysis
	6.2.2 Calling Context Construction for CPU-GPU Hybrid Framework
	6.2.2.1 CPU Stack for Kernel Launch
	6.2.2.2 GPU Sampling
	6.2.2.3 Reconstruct the Calling Context
	6.2.2.4 Evaluation

	6.3 Case Studies
	6.3.1 Particlefilter
	6.3.2 Triad

	6.4 Discussion and Summary

	Chapter 7 Conclusions
	7.1 Summary of Contributions
	7.2 Open Problems
	7.2.1 Finer Blame Attribution
	7.2.2 Blame Combined with Auto-tuning
	7.2.3 GPU Read-only memory Identification
	7.2.4 Blame Used in Taint Analysis

	Bibliography

