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Accelerated imaging is an active research area in medical imaging. The most intuitive 

way of image acceleration is to reconstruct images from only a subset of the whole raw 

data space so that the acquisition time can be shortened. This concept has been formalized 

in recent years and is known as Compressed Sensing (CS).  

In this dissertation, we develop a new image reconstruction method, Partial Fourier 

Compressed Sensing (PFCS), which combines the advantages of partial Fourier domain 

acquisition and compressed sensing techniques. Then, we explore its application on two 

imaging modalities.  

First, we apply PFCS to Electron Paramagnetic Resonance Imaging (EPRI) recon-

struction for the purpose of imaging the cycling hypoxia phenomenon. We begin with val-

idating PFCS with the prevailing medical acceleration techniques using CS. Then, we fur-

ther explore its capability of imaging the oxygen distribution in the tumor tissue. Our re-

sults show that PFCS is able to accelerate the imaging process by at least 4 times with 

minimal loss of resolution in comparison to conventional CS. Further, the oxygen map 



 
 

given by PFCS precisely captures the oxygen change inside the tumor tissue.  

In the second part, we apply PFCS to 3D diffusion tensor image (DTI) acquisition. 

We develop a new sampling strategy tailored for diffusion weighted imaging and use the 

PFCS algorithm for image reconstruction. The results show that PFCS can reconstruct the 

accurate color fractional anisotropy (FA) map using only 30% of the k-space data. Moreo-

ver, PFCS can be further combined with Echo-Planar Imaging (EPI) to achieve an even 

faster acquisition speed. 
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Preface 

 Magnetic Resonance Imaging (MRI) is a very important tool in clinical appli-

cation nowadays. A precise medical image can help doctors to distinguish the patho-

logical tissue from the normal one and make more precise diagnoses. However, MRI 

technique suffers from its long acquisition time, especially Diffusion MRI (dMRI) and 

functional MRI. In this dissertation, we develop a new technique which is aimed at 

dMRI acceleration. We apply the technique to dMRI and another nuclear magnetic 

resonance technique, Electron Paramagnetic Resonance Imaging (EPRI). We demon-

strated with this new technique, the acquisition time can be shortened to 25-50% com-

pared to the original without losing too much image quality.  

 In Chapter 1, we introduce the motivation and the basic introduction of this 

dissertation. Chapter 2 offers background knowledge and related work. Chapter 3 is the 

explanation of the proposed new technique- PFCS. Chapter 4 and the Chapter 5 reveal 

two aspects of the application: EPRI acceleration and dMRI acceleration. The detailed 

sampling strategy, experiment settings, results and discussions are all included. 

Finally, in Chapter 6 we conclude the research and raise several possible 

directions for further research and improvements. 
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Chapter 1: Introduction and Motivation 

When protons or electrons are subjected to the magnetic field, they spin at differ-

ent precessional frequencies based on the field strength and the magnetic moment of 

the specific nuclei or electrons, which induce signals by the absorption of electromag-

netic radiation. This phenomenon of nuclear induction and electron resonance were 

respectively discovered around the same time [1] [2] [3] and widely used in spectro-

scopic and imaging techniques. For example, magnetic resonance imaging (MRI) de-

tect signals from the nuclei of water protons, and Electron Paramagnetic Resonance 

Imaging (EPRI) detects signals from electrons in free radical compounds infused into 

the body for imaging. A pulsed EPRI imager capable of in vivo studies was developed 

in 2002 [4]. 

Accelerated imaging is an active research area in both MRI and EPRI, especially 

for dynamic imaging where high temporal resolution is needed. The most intuitive way 

of image acceleration is to reconstruct images from only the subset instead of the whole 

k-space so that acquisition time can be shortened. In 1993, McGibneyG et al. exploited 

the conjugate symmetry property of k-space and introduced an image reconstruction 

method called Partial Fourier transform [5]. In Partial Fourier, the acceleration is ac-

complished by acquiring slightly more than half of the k-space. The missing points are 

filled with the corresponding conjugate pair of the acquired points after phase correc-

tion. In 2007, an application of compressed sensing for imaging was proposed to re-

construct images from significantly fewer measurements than traditional sampling 

methods with the exploitation of the so-called signal sparsity taking advantage of the 
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fact that the majority of the image information is available in only a fraction of the 

entire data [6] [7].  Due to the natural sparsity of medical images, compressed sensing 

is gaining popularity in many image acceleration techniques [8] [9]. 

Although traditional compressed sensing can significantly reduce the image ac-

quisition time, it is still limited in clinical application since it may produce unne-

glectable artifacts due to the down-sampling below Nyquist rate. On the other hand, 

Partial Fourier is able to reconstruct the image in good quality as long as the phase 

correction is accurate. However, Partial Fourier can only accelerate the imaging speed 

by a factor of 2, which is not enough for certain clinical application such as imaging 

cycling hypoxia. Hence the question is: Is it possible to significantly increase the tem-

poral resolution but meanwhile, maintain the spatial resolution? 

In this dissertation, we aim at developing a new image reconstruction method that 

is capable of higher imaging acceleration in the application of EPRI and MRI, with 

minimal loss of image information. This dissertation consists of three parts:  First, we 

present our development of an improved technique that combines the advantages of 

partial Fourier transform and compressed sensing to arrive at a new image reconstruc-

tion algorithm ﹣Partial Fourier Compressed Sensing (PFCS). Second, we apply PFCS 

on EPRI reconstruction for the purpose of imaging the cycling hypoxia phenomenon. 

We validate the reconstructed images and linewidth maps on phantom as well as in 

vivo tumor tissue data and shown satisfactory PFCS reconstruction with an acceleration 

factor of 4. This study led to two conference abstracts at ISMRM (International Society 

of Magnetic Resonance in Medicine) [10] [11], and our journal article was recently 

accepted by the journal of Magnetic Resonance Imaging, 2016 [12]. Finally, we explore 
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the feasibility of applying PFCS on 3D Diffusion-weighted MRI acceleration on ex 

vivo brain sample. Results indicate that we can further reduce data sampling by a factor 

of 2 on already partial Fourier acquired dataset (totally acceleration rate of 1.6) with 

minimal loss of data accuracy. This study is submitted as a conference abstract to 

ISMRM 2017. 
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Chapter 2: Background 
 

2.1: k-Space and spatial encoding in MRI and EPRI 

Regardless of the detection of nucleus or electron, the basic principles of forming 

an image using MRI or EPRI remain the same. Both require the acquisition of fre-

quency domain data, the so-called k-space, which is then inverse Fourier Transformed 

to form the desired images. The concept of spatial encoding of the data is also the same 

in both techniques, which uses magnetic gradients to achieve spatial localization. The 

basic idea of spatial encoding is to apply different magnetic fields along the encoding 

direction so that each nucleus will have specific frequency and phase depending on its 

spatial location. The concept is shown in Fig. 1: 

 

Fig.1 [13]: Concept of spatial encoding 
In (a), the spins are all under the same magnetic field and cannot be distinguished. 
In (b), the spatial encoding magnetic gradient is applied so that the signal is com-
posed of different frequencies which can be then differentiated by Fourier transform 

 

(a) (b) 



5 
 

In Fig. 1(a), the two imaging objects are under identical magnetic fields and thus 

give out signals at the same frequency, which cannot be differentiated. After applying 

spatial encoding as shown in Fig. 1(b), the signal is composed of different frequencies 

coming from the two cylinders respectively and can be distinguished by Fourier trans-

form. 

After the spatial encoding, a raw signal which is spatially encoded are sampled 

and populated to the raw data space, or the k-space, with the following formula [14]: 

( ) ( ) ( ) ( )
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Here s(t) is the raw signal we acquire. m(x,y) is the image pixel (or voxel in 3D) 

in coordinates (x,y). kx and ky are the coordinates along x and y-direction in k-space. γ 

is the gyromagnetic ratio.  

Fig. 2(a) gives an illustration of k-space. Each yellow dot within the k-space rep-

resents the sampling of raw signals. The magnitudes of the gradients range from -Gx to 

Gx in x-direction and –Gy to Gy in y direction. From the gradient settings we can easily 

find that the low frequency components gather around the center of the k-space (the 

center of the k-space is in zero frequency, which represents DC component), while the 

high frequency components is in the peripheral region, which is shown in Fig. 2(b). 

After the whole k-space is filled, the images can be reconstructed through the inverse 

Fourier transform of the k-space. Fig. 2(c) displays the images derived from different 
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partitions of the k-space. The right column is the image from the full k-space. In the 

middle column, only the points in the peripheral region are acquired. We can see that 

only the boundaries of the image feature are preserved. The left column in Fig.2(c) is 

the image from only the points near the center of k-space. The overall contrast of the 

image is retained, but the resolution information is lost.  
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Fig.2:  The overview of k-space  
In (a). The magnitude of the gradients ranges from -Gx to Gx in x-direction and –Gy 
to Gy in y-direction so that the low and high-frequency components are distributed 
at the center and peripheral respectively, which is shown in (b). The images from 
different components of k-space are displayed in (c) [13]. 

 

+Gx 

+Gy 

-Gx 
0 

-Gy 

0 

(a) k-Space (b) The frequency components 
of k-space 

(c) Images from different k-space components 
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The field of view (FOV) refers to the distance over which an image is displayed. 

The smaller the FOV is, the higher the resolution of the image. The FOV is inversely 

proportional to the line spacing in k-space. This means that if we decrease FOV, we're 

actually increasing the spacing between the lines in k-space. If the matrix size stays the 

same, this means the lines at the edges of k-space are pushed "further out" in k-space. 

In clinical application, the FOV can be adjusted through the manipulation of the mag-

nitude of the spatial encoding gradients. 

 

2.2: Imaging acceleration techniques - Partial Fourier Transform 

Theoretically, k-space is conjugate symmetric. Partial Fourier transform exploits 

this symmetric property and accelerates the MRI measurements by acquiring slightly 

more than half of the k-space. The basic acquisition strategy is shown in Fig. 3: 
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Fig.3 [15]: Conventional Partial Fourier sampling pattern 
The actual acquisition contains the region from ky,max  to –ky,s . The missing points 
from –ky,s to –ky,max are filled by applying conjugate symmetry property from the 
asymmetrically sampled data after phase correction. The phase correction is derived 
from the low-resolution image which is made from the points between ky,s and –ky,s 

 

 

In this figure ky is the phase encoding direction, and kx is the frequency encoding 

direction. However, the k-space is not perfectly symmetric in actual acquisition due to 

inhomogeneity of the magnetic field or noise interference. Therefore, the phase correc-

tion is required before the reconstruction. Traditionally, this phase correction comes 

from the low-resolution image which is the inverse Fourier transform of the 

symmetrically sampled partition ky,s to –ky,s. The missing points from –ky,s to –ky,max 

can then be filled by applying conjugate symmetry property from the asymmetrically 

sampled data after phase correction.  
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2.3: Imaging acceleration techniques – Compressed Sensing 

Compressed sensing utilizes the natural sparsity of the MR image itself or its lin-

ear transformable domain and is able to reconstruct the image from highly down-sam-

pled k-space with the sampling frequency far below the Nyquist rate. Thus, compressed 

sensing is able to achieve impressive acceleration and has received much attention [6] 

[7] [8] [9]. The objective function can be briefly described as follows: Let Ψ denotes 

the linear operator that transforms from pixel Cartesian representation into sparse rep-

resentation. I denotes the reconstructed image. M is the incoherent sparse-sampling 

operator. y denotes the actual measurements. FT denotes Fourier transform operator.

1
⋅ and ⋅ represents  1l -norm and 2l -norm respectively. λdenotes the optimization 

parameter. The objective function of compressed sensing can be written as: 

 

( ) ( )( )2

1I
minimize I Iy M FTλ ⋅ Ψ + − ⋅ ⋅  

 

In this optimization, ( )
1

IΨ guarantees the image sparsity and ( )
2

Iy M FT− ⋅ ⋅

promotes the data integrity [7]. For medical imaging such as MRI, the image is natu-

rally compressible by the sparsity of the image itself or in an appropriate linear trans-

formable domain (e.g., total variation or Wavelet). Thus the application of CS can sig-

nificantly accelerate the imaging process and has gained much interest in MRI [9] as 

well as EPRI [8].  Fig. 4 gives the conventional sampling strategy of compressed sens-

ing in MRI: 

(2) 
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Fig.4 [16]: Conventional sampling strategy of compressed sensing in MRI 
The fully sampled center is a region in the middle of the phase encoding direction, 
while the peripheral is the region other than center and is pseudo-random sparsely sam-
pled.  

 

 

A fully acquired center is applied to secure image contrast with sparsely sampled 

otherwise. The size of this fully acquired region is usually 10% to 20% of the matrix 

size. After down-sampling, the image can be reconstructed through the optimization of 

the objective function. 

Fig. 5 and 6 give some examples of CS reconstruction. Fig. 5 demonstrates the 

performance of CS on phantom images. Acceleration ratio (AC) 1, 8, 12, 20 represents 

reconstructed image from 1/1 (full acquisition), 1/8, 1/12, 1/20 of k-space points re-

spectively. 

 

Fully sampled center 

Sparsely sampled peripheral 
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Fig.5 [6]: Reconstruction artifacts as a function of acceleration.  
The low-resolution (LR) sampling are images from only the center of k-space and 
exhibits diffused boundaries and loss of small features. The zero-fill (ZF) is from the 
k-space with zero-filling missing points and displays apparent noise. In contrary, CS 
demonstrates good reconstruction at AC =8 and 12. 
 
 

 

The low-resolution (LR) sampling images are those from only the center of k-

space. Zero-fill (ZF) is from the k-space with zero-filling missing points. The LR re-

constructions exhibit diffused boundaries and loss of small features. The ZF recon-

structions exhibit a significant increase of apparent noise due to incoherent aliasing. 

The CS reconstructions exhibit good reconstruction at AC= 8 and 12. 
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Fig. 6 is the CS reconstruction on angiography on AC = 10. We can see clear 

resolution improvements compared to the low-resolution centric k-space acquisition. 

 

 

Fig. 6 [17]: Contrast enhanced angiography with AC =10 under-sampling.  
CS can recover most blood vessel information revealed by Full Acquisition image. 
There are significant resolution improvements compared to a low-resolution centric k-
space acquisition.  

 

 

2.4: Tumor Cycling Hypoxia 

Hypoxia in tumor tissue is mainly caused by the imbalance in oxygen supply due 

to poorly organized vasculature [18]. In 1955, Thonlinson and Gray [19] first postu-

lated the existence of tumor hypoxia and its role in conventional treatment. It was later 

verified in rodent tumors as well as humans [20]. Compared to chronic hypoxia, which 

is induced naturally by unreachable distance for oxygen distribution, some regions in 

the tumor show acute or intermittent hypoxia, which is now known as cycling hypoxia 

[21]. The relationship between cycling hypoxia and tumor chemical/radio resistance 

has been studied for decades. In 2004, Dewhirst and his research team investigated 

Full Acquisition Low resolution CS 
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cycling hypoxia by letting tumor and endothelial cells be subject to periods of hypoxia 

followed by periods of reoxygenation [22]. They discovered that the reoxygenation of 

tumor cells after radiation increased vascular endothelial growing rate and helped the 

tumor resist the damage caused by radiation. They also found that reoxygenation in-

duced the release of hypoxia-inducible transcription factor-1α (HIF-1α), which is later 

proved to cause radio resistance by stimulating endothelial cell survival pathways 

which is dependent on treatment sequencing [22]. In 2006, Martinive imposed cycles 

of hypoxia followed by reoxygenation on endothelial cells and found them to be re-

sistant to radiation and also increased their ability of metastasis [23]. The resistance 

was often accompanied with accumulation of HIF-1α during the period of cycling hy-

poxia. The frequency of the cycling hypoxia is verified to be a hallmark of aggressive-

ness of the tumor [18]. Research suggests the cycling frequency can range between a 

few cycles/minute to hours or even days. The shorter the period, the faster the accumu-

lation speed of HIF-1α which accelerates the regrowth of the tumor [18] [24]. Hence, 

a non-invasive imaging technique with high temporal resolution is highly preferred for 

cycling hypoxia observation.  

 

2.5: Electron Paramagnetic Resonance Imaging (EPRI)  

EPRI is a low field magnetic resonance technique which is suitable for cycling 

hypoxia observation. Compared to MRI which deals with signals from magnetic nuclei 

such as 1H, EPRI excites unpaired electron bins instead. The phenomena of nuclear 

electron resonance were first discovered in the 1940s [2] [3] and soon became one of 

the most widely practiced spectroscopic techniques. Examples include the studies of 
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catalysis and surface chemistry of metal oxides [25] [26], and various other areas in 

physics, chemistry, and biology [27, 28, 29, 30, 31, 32]. However, the absence of rela-

tively long-lived free radicals of detectable range of concentration in living systems 

made in vivo EPRI not practical. Thus, it became essential to introduce a stable bio-

compatible imaging probe to make in vivo EPRI possible. In 1998, Larsen et al. pre-

sented Oxo63, which is a kind of stable paramagnetic probes based on the triaryl me-

thyl(TAM) skeleton [33]. It possesses the following property which is suitable for EPR 

imaging:  

1. Oxo63 has single line EPR spectra. This avoids redundant information in the image 

and increases the sensitivity. 

2. Oxo63 is relatively stable in in vivo system. Its half-life is longer than 15 mins, 

which allows 3D EPRI collection. 

3. Oxo63 is water soluble so that it can be easily distributed all over the living tissue. 

Also, the toxicity of Oxo63 is not obvious at the doses required for EPRI. 

4. The linewidth of Oxo63 is proportional with pO2, which permits the estimation of 

in vivo tissue oxygenation concentration from the EPRI data. 

Hence, through the injection of Oxo63, we are able to extract the 3D pO2 map from in 

vivo EPRI. 

However, the very fast dynamics of electrons with relaxation times on the order 

of microseconds precluded the common acquisition method used in MRI, that is, per-

forming frequency encoding and acquiring the k-space line by line is not possible. In-

stead, single point imaging (SPI) is applied in EPRI acquisition. In SPI, a single Free 
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Induction Decay (FID) is sampled at each single k-space point following every excita-

tion [4] [34] [35]. k-Space is sampled by stepping the encoding gradients one by one 

through the Cartesian space. The principle of 1D-SPI is showed in Fig. 7. The principle 

can also be used for 2D and 3D SPI without loss of generosity. 

 

 

 

Fig.7 [36]: Illustration of the 1D-SPI in EPRI. 
In (a), a single FID is sampled at each single k-space point following each excitation. 
Then the FIDs assembled a set of k-spaces with a different time (b). The data at any 
given time point τp in a set of FIDs at various gradients resembles a 1D k-space as 
shown in (c) and (d). The principle can also be used for 2D and 3D SPI without loss of 
generosity. 
 

2 



17 
 

In Fig. 7(a), The FID following the excitation pulse is sampled with 200MHz (5ns 

per interval) after the dead time. FIDs are collected through the stepping of gradients 

from -max to +max. During the acquisition of each FID, the gradient remains static and 

continuous active as shown in Fig. 7(b). Each FID represents a temporal signal at one 

k-space point, which have a signal intensity that decays with the longitudinal relaxation 

(T2
*
 relaxation [14]) of the electron. Essentially, rather than acquiring a single k-space, 

in SPI we acquire kx x ky x kz x t signal (Fig. 7(c)), where each time point represents a 

separate k-space (Fig. 7(d)). The signal decay can be fitted to generate the T2* value of 

electrons, which is reflective of oxygen concentration within the tissue. 

 

2.6: Scaling Factor and Multi Gradients  

 In SPI, since the gradient remains active during data acquisition, the correspond-

ing frequency for one specific point in the k-space along time will keep on increasing 

and lead to decreasing FOV. In other words, the resolution of the images increases 

albeit with reduced signal to noise due to reduced voxel size and T2
* decay. In order to 

obtain image sets with identical FOV, the method of reference scaling factor is applied. 

The schematic procedure of 2D-SPI rescaling is displayed in Fig. 8: 
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Fig.8 [36]: The schematic procedure of 2D-SPI rescaling. 
The k-spaces from earlier time slot are filled with zeros based on the scaling factor. 
After Fourier Transform, the images are rescaled (b) and truncated into identical 
FOV(c). 
 

A set of FIDs measured under 2D field gradients is placed on k-space in (a). Recall 

that there is one k-space for each specific temporal point. In order to obtain images 

with identical FOV, the k-spaces from earlier time slot are filled with zeros, which is 

shown in Fig. 8(a). The amount of zeros being filled is decided by the ratio between 

the FOV of the image and the objective FOV (which is usually the smallest FOV in the 

image set). The FOV of the image can be calculated by [36]: 

max

2

e p

NFOV
G

π
γ τ

⋅
=

⋅ ⋅
       (3) 

Where N is the number of samples in k-space, γe is the gyromagnetic ratio of the 

electron, Gmax is the maximum field gradient, and τp is the time after RF pulse. 

The images are rescaled through zero filling, which is shown in Fig. 8(b). Ulti-

mately, the images are truncated into the same size with identical FOV, as shown in 

Fig.8(c). 

In order to extract an accurate pO2 map, images with a wide range of delay times 

should be included in the T2
* mapping. However, the usable time range in FIDs is lim-
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ited by the extent of FOV scaling required. Otherwise, large ringing artifacts in lin-

ewidth images will be observed [37]. To limit the artifacts, one should avoid large FOV 

changes induced by rescaling. In 2003, Halse et al. suggested that errors associated with 

the FOV rescaling could be avoided by collecting several SPI datasets with multiple 

Gmax values so that the FOV is maintained identical [38]. Several images with the same 

FOV from multiple Gmax data sets can be reassembled as a single SPI data set. The 

concept is shown in Fig. 9: 

 

 

Fig.9 [36]: The illustration of multi gradients 
Several images with the same FOV from multiple Gmax data sets can be reassembled as 
a single SPI data set. The images of later/intermediate/earlier time slots were from 
0.8/1.2/1.6G/cm data respectively and resemble the SPI data set for T2

* mapping. 
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Three different Gmax of 0.8/1.2/1.6G/cm are used in Fig. 9. We take the images 

of later/intermediate/earlier time points from 0.8/1.2/1.6G/cm data respectively (shown 

in red arrow) and assemble the SPI data set for T2
* mapping. The FOV differences 

between each image in the assembled image set are therefore attenuated through dif-

ferent Gmax. Once we have the image set with identical FOV, the T2
*map can be calcu-

lated by [36]: 

( )( ) ( )( )
2

0*

1ln ln
T pI k I kτ= − ⋅ +         (4) 

Where I denotes image magnitude, I0 denotes the image magnitude when the delay time, 

τp, is equal to 0. The linewidth map is inversely proportional to T2
* and is calculated 

by [39]: 

*
2

1Linewidth
Tπ

=         (5) 

 

2.7: Magnetic Resonance Imaging (MRI)  

MRI is a medical imaging technique used in radiology that provides super soft 

tissue contrast [40]. In MRI, a strong homogeneous magnetic field B0 is used to align 

the spins of each atom (1H in MRI) inside the human body. Then a radio frequency 

pulse (RF) synchronized to the Larmor frequency of hydrogen is applied and forces the 

protons in 1H to spin in the direction aligning with the high-energy state. When the RF 

pulse ceases, the hydrogen spins return to their original native state and meanwhile 



21 
 

induces magnetic field changes. This change is detected by the receiver coils and forms 

the raw data space (k-space) of MRI. 

Spatial encoding is applied during the acquisition in order to distinguish signals 

coming from different partitions of the imaging object. The detailed process is shown 

in Fig. 10: 

 

 

 

Fig.10 [40]: Spatial Encoding in MRI 
In (a), the phase encoding gradient GPE is turned on and off first and gave the protons 
different phases along the phase encoding direction (kPE). During data acquisition, the 
frequency encoding gradient GFE is switched on so that protons along the frequency 
encoding direction (kFE) have different frequency depending on their FE location. Then 
the acquired signal is sampled and filled to the k-space one line at a time along the 
phase encoding direction based on the magnitude of GPE as in (b). 
 

At the beginning, all the proton spins with the Lamour frequency corresponding 

to B0 (point A in Fig. 10). Then the phase encoding gradient GPE is applied and gave 

the protons different phases along the phase encoding direction (kPE). During the data 

(a) The acquisition (b) k-space 

FI
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acquisition (section from B to D in Fig. 10), the frequency encoding gradient GFE along 

frequency encoding direction (kPE) is switched on so that protons along the frequency 

encoding direction precess at different frequencies depending on their location. Then 

the acquired FID is sampled and filled to the k-space one line at a time along phase 

encoding direction. After the whole k-space is filled, the image can be reconstructed 

through the inverse Fourier transform of the k-space. 

 

2.8: Diffusion Magnetic Resonance Imaging  

Conventional MRI mostly offers information about the anatomy. Diffusion-

weighted MRI can capture information about the random motion of water molecules 

within the tissue, and provide additional insight into the tissue microstructures.  Diffu-

sion Tensor Imaging (DTI) models diffusion within tissue using a tensor model, with 

three eigenvectors pointing to the three principal axes of diffusion, whereas the 

eigenvalues represent the diffusivity along each principal axis. The fractional anisot-

ropy (FA) is the ratio between the magnitudes of the anisotropic components and can 

be calculated by the following equation [41]: 

( ) ( ) ( )2 2 2
1 2 3

2 2 2
1 2 3

3FA=
2

λ λ λ λ λ λ

λ λ λ

− + − + −

+ +
      (6) 

Where 1λ , 2λ , and 3λ  are the eigenvalues representing the diffusivity along each 

principal axis, andλ is the mean value of the three. FA expresses the anisotropy of the 

tensor ranging from 0 when the tensor is completely isotropic to 1 when diffusion is 

bound to a single axis. 



23 
 

Within the brain where there are white matter axons, water molecules diffuse most 

freely along the direction aligning with the axons. Therefore DTI is able to map the 

orientation of axon fiber bundles, which cannot otherwise be distinguished using tradi-

tional MRI techniques [41]. Fig 11(a) shows the traditional T1-weighted image. The 

white matter (shown in orange arrow) appears to be bright on T1-weighted images but 

shows no differentiation among them. However, in DTI generated diffusion anisotropy 

(FA) map, we can clearly see the differences of fiber directions which are color coded 

according to the principal direction of diffusion. 

 

Fig.11 [41]: The traditional T1-weighted image and DEC FA map 
In (a), the traditional T1-weighted image shows no differences within the white matter, 
while in (b), the DTI generated diffusion anisotropy (FA) map displays different fiber 
orientations which are color coded according to the principal direction of diffusion 
 
 

Currently, the Pulsed Gradient Spin Echo (PGSE) method is the most commonly 

used diffusion encoding method in DTI. PGSE sequences comprise a spin echo se-

quence with magnetic field gradients (Diffusion Gradient) before and after the refocus-

ing pulse followed by an image acquisition module, which is shown in Fig. 12: 
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Fig 12 [41]: Schematic of a PGSE pulse sequence.  
Here δ is the gradient duration, Δ is the time between the start of each gradient, and G 
is the gradient strength 

 

From stage (a) to (b) in Fig. 12, the net magnetization is rotated onto the traverse 

plane. From (b) to (c), the spins are dephased due to the different strength of magnetic 

field along the diffusion gradient direction. From (c) to (d), a refocusing pulse is applied 

and rotates the magnetization 180 degree, followed by the second diffusion gradient 

(stage (d) to (e)). If there is no diffusion, magnetization is completely rephased after 

the second diffusion gradient since the field experienced by the molecules has not 

changed. However, if molecules change their position due to diffusion between the 

applications of the two diffusion gradients, the magnetic field they experienced in the 

second diffusion gradient is no longer the same as the first one. Therefore, when there 

is diffusion, the motion of molecules is incoherent and hence their magnetization con-

sists of sum of vectors with highly variable phases, leading to attenuated MR signal. 

The more the molecules diffuse along the diffusion gradient direction, the lower the 

diffusion weighted signal. The acquired images are called Diffusion Weighted Images 

(DWI). 

G 
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The diffusion weighting of a DWI pulse sequence is quantified by “b-value”, which 

is defined as [41]: 

2 2 2

3
b G δγ δ  = ∆ − 

              (7) 

Where δ is the diffusion gradient duration, Δ is the time between the start of each 

diffusion gradient, G is the diffusion gradient strength, γ is the gyromagnetic ratio (Fig. 

12). High b-value represents higher sensitivity to water molecule diffusion as well as 

more signal attenuation. The signal of a PFSE scan is given by the Stejskal-Tanner 

equation [42]: 

0
bS S e−=

Tg Dg
                 (8) 

Here S and S0 is the DWI intensity with and without diffusion gradients (b = 0), 

respectively. g is a three-element column vector representing the direction of the 

diffusion gradient. D is a 3x3 symmetric matrix of the apparent diffusion tensor. In 

order to generate a reliable diffusion tensor map, a minimum of 6 diffusion directions 

is required. However, for a more reliable estimation of the diffusion tensor, tens or even 

hundreds of DWIs in different diffusion direction are acquired in one single DTI ac-

quisition, leading to very long image acquisition time. Therefore, accelerated DWI ac-

quisition is highly desirable. 

 

2.9: Echo-Planar Imaging (EPI) 

EPI is an acquisition technique commonly used in DWI, which is capable of sig-

nificantly shortening magnetic resonance imaging times [43]. In echo-planar imaging, 
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multiple k-space lines are acquired after one single RF excitation. As shown in Fig.13 

for a spin-echo EPI, imaging sequence begins with 90° and 180° RF pulses where dif-

fusion gradients are applied. However, after the 180° RF pulse, the frequency encoding 

gradient oscillates rapidly from a positive to a negative amplitude, forming a train of 

gradient echoes which is shown in Fig. 13: 

 

 

Fig. 13 [43]: Acquisition of echo-planar imaging.  
Within each TR period, multiple lines of imaging data are collected. Gx is the 
frequency-encoding gradient. Gy is the phase encoding gradient, Gz is the slide selec-
tion gradient. 

 

Each transition of the frequency-encoding gradient is also accompanied by a small 

phase encoding gradient, which serves the purpose of stepping from one phase-encod-

ing line or one k-space line to the next. Each oscillation of the frequency encoding 

gradient corresponds to one line of imaging data in k-space with a different acquisition 

direction based on the sign of the frequency encoding gradient.  
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The major advantage of EPI is that multiple k-space lines are acquired after one 

single RF excitation, and thus reduce the image acquisition time. However, there are 

also several disadvantages: a) the positive/negative oscillation of frequency encoding 

induces phase shifting. Therefore, a phase correction is necessary before filling in k-

space; b) during the acquisition, a small blip of phase encoding gradient is applied in 

order to switch the k-space line from one to the next; c) strong diffusion encoding gra-

dients cause eddy current artifact, where residual induced electrical field distorts the 

imaging gradient and cause image distortion. As diffusion gradients are applied on dif-

ferent imaging axes with different gradient strengths, the distortion also varies from 

one diffusion direction to the next. Moreover, the limitation of EPI where frequency 

encoding direction is fully acquired and phase encoding lines are acquired in a regular 

stepping fashion, limits the application of compressed sensing to EPI, which requires 

the sampling to be incoherent. 
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Chapter 3: Partial Fourier Compressed sensing Reconstruction 
Method (PFCS) 
 

In this dissertation, we present a new image reconstruction method called Partial 

Fourier Compressed Sensing (PFCS). First, we formulate the concept of Partial Fourier 

transform through the virtual coils, which was first introduced by M. Blaimer et.al in 

2009 [44]. Here the conjugate symmetry of k-space is applied to improve the recon-

struction quality by finding an optimal estimate of the image that satisfies both the real 

measurements and their corresponding conjugate pairs. That is, finding an optimal im-

age by: 

2

* *I
minimize .* I

y p
H FT

y p
    

− ⋅ ⋅    
    

 

Where H is the partial sampling operator that samples slightly more than half of 

the k-space. y* denotes the corresponding conjugate pair of y. p and p * is the phase 

map of image I and its corresponding conjugate pair. 

  Theoretically, the image should be real valued, so the phase map p should be 

equal to 1. However, the actual value of each voxel in the image is complex due to 

background interference and magnetic field inhomogeneity. In this case, the lower half 

of equation (2) can be viewed as a set of virtual coils, which provides additional infor-

mation regarding the image. Knowledge of this information can potentially lead to a 

more precise estimation. The advantage of this framework is that partial Fourier recon-

struction can be formulated as a typical linear system, which can easily incorporate a 

regularization term, such as total variation or wavelet sparsity. 

(9) 
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    Then, the advantages of virtual coils and compressed sensing are combined for 

better image quality. Total variation is used to promote sparsity of the reconstructed 

image. Thus, the new objective function, after combining the objective function of 

compressed sensing and virtual coils (formulas (1) and (2)) and replacing the sparsity 

term with total variation, becomes: 

( )
2

* *1I
minimize I I

y p
M FT

y p
λ
      Ψ + − ⋅ ⋅ ⋅          

 

 The reconstructed image is denoted as I. M is the incoherent sparse-sampling 

operator. y denotes the actual measurements. FT is Fourier transform operator. 
1

⋅ and 

⋅  represent the  1l -norm and 2l -norm, respectively. λ denotes the regularization pa-

rameter, and Ψ  stands for the total variation operator. In EPRI, we used total variation 

operator as our sparsity operator since EPRI is usually smooth and low resolution. In 

contrast, for DTI acceleration, a wavelet-domain operator is used as the sparsity-pro-

moting operator since it is proved to be efficient in brain MRI [6]. 

 In PFCS reconstruction, the sampling strategy M and the phase map correction 

p are two important parameters that largely affect reconstruction quality. Different M 

and p may result in totally different outcomes even with identical objective functions.  

In Chapters 4 and 5, we will introduce our sampling strategies and techniques 

for estimating phase map specified to EPRI and dMRI acceleration, respectively.  

  

(10) 
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Chapter 4: Application to EPRI acceleration 
 

4.1:  k-Space Sampling Strategy for EPRI reconstruction 

In PFCS, an incoherent random sampling in k-space is necessary to diffuse noise 

from coherent aliasing. Meanwhile, due to the smaller matrix size of EPRI, more center 

points should be secured to retain the outlines of the imaging object. For this purpose, 

we designed a spherical sampling mask to effectively sample k-space in the under-

sampled acquisition. The sampling pattern consists of (1) center with the full acquisi-

tion, and (2) peripheral with random sparse sampling, as shown in Fig. 14: 

 

 

Fig.14: Spherical sampling mask for EPRI.  
The spherical sampling mask is divided into (1) the center with the full acquisition, and 
(2) peripheral with randomly sparsely sampling. In this trajectory, the center is a sphere 
with half amount of applicable k-space points. In this example (AC = 4), the size of the 
center contains 12.5% of k-space. 
 
 

The center region is a sphere containing half of all the possible k-space points. For 

example, for a 10x10x10 image, using a k-space matrix with an acceleration factor of 

 

 

Peripheral (sparsely sampled): 
50% 
 

Spherical Center (fully sampled): 
50% 
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4 (only 25% k-space points are acquired), the size of the k-space center would be 

10*10*10*0.25*0.5 = 125 points, that is, 12.5% of k-space. The peripheral region con-

sisting of the rest of 875 points is then sparsely sampled using uniform spatial distribu-

tion. Moreover, the Hermitian symmetry of k-space is exploited here by avoiding all 

conjugate symmetric points. In this study, we will verify the performance of PFCS and 

CS respectively using this spherical sampling mask.  

 

4.2: Phase Map Estimation for EPRI reconstruction 

The phase map estimation needed in PFCS, which is denoted as p in formula (10), 

is given by POCS reconstruction technique [45]. In POCS, the images are estimated 

iteratively between phase correction and actual measurements. In the image domain, 

the image phase is constrained to be that of the low-resolution estimate, while in the 

frequency domain, the k-space data points are constrained to match the acquired data. 

The procedures are listed as follow: 

1) Find the largest symmetrically acquired area at the center of k-space. In this 

section, the symmetrically acquired area is the spherical center depicted in Fig. 

14. 

2) Use the symmetrically acquired area to produce low-resolution estimates of 

the image phase. 

3) Apply iFFT to the partially acquired raw k-space to get the raw image, apply 

the low-resolution phase estimation on this raw image, and then perform FFT 

to generate the new k-space. 
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4) Fill the missing points in partially acquired raw k-space with the correspond-

ing points in the new k-space (This is the first iteration). 

5) Iteratively produce image estimates until convergence. 

6) The image phase of the last iteration is used as the phase map estimate used in 

PFCS reconstruction. 

The detailed flow chart of the algorithm is depicted in Fig. 15:  
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Fig.15 [15]: A simple version of POCS on spherical-sampling.  
The new estimated image, ( ),nm x y , is obtained from the multiplication of the magnitude 
of image ( ),im x y  from sparsely sampled k-space and the phase constraint deducted 
from the image of symmetric center data ( ),sm x y . The missing points in the original 
down-sampled k-space ( ),iM x y are filled with the corresponding points from new esti-
mated k-space ( ),nM x y and start a new iteration. After the iteration (100 times), the phase 
map of the output image ( ),i lastm x y−

 will be served as the phase map estimation for PFCS. 
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As mentioned above, the algorithm operates by iteratively applying phase correc-

tion for each estimate. In each iteration, the estimated k-space must match the acquired 

data under the limitation that the image phase is constrained to be that of the low-

resolution estimate, that is, the image phase coming from merely the center portion of 

the k-space. In spherical single point imaging, the low resolution images are obtained 

using the points from the spherical mask in the fully sampled k-space. In the first loop, 

the estimated image magnitude is that of the under-sampled image ( ),sm x y . The phase 

constraint, which is the phase of the low resolution image ( ),sm x y , is applied to produce 

the new estimated image ( ),nm x y  by ( ) ( ) ( )( )( ), , exp arg ,n i sm x y m x y m x y= ⋅ . Then the 

corresponding Fourier data, ( ),nM x y  , is computed as the Fourier transform of ( ),nm x y  . 

Finally, the entries corresponding to the uncollected data in ( ),nM x y   are propagated 

to ( )1 ,iM x y+  . This loop is continued over 100 iterations. In each iteration, the phase of 

the new estimated image is constrained to be that of  ( ),sm x y  to prevent increased 

phase errors. After the final iteration, the phase map of the output image, ( ),i lastm x y− , 

serves as the phase map estimate for PFCS. Fig. 16 shows the phase map of a fully 

acquired image (True phase map) and POCS estimation from one representative under-

sampled datum. The phase differences within the imaging object are also displayed. As 

shown, the estimation errors within the imaging object are quite small (< 0.3 rad). 
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Fig.16: Phase maps of fully acquired and POCS reconstructed resolution phantom im-
age. 
Phase maps of fully acquired and POCS reconstructed resolution phantom image. The 
size of the images is 61x61. The differences within the imaging object are also dis-
played. Please note that the differences between the full acquisition and the POCS 
phase map estimation within the imaging object is quite small compared to the 
background. 
 

4.3: Experiment 

4.3.1: EPRI spectrometer 

Fig. 17 shows the EPRI spectrometer used in this study. 

   

Fig.17: The resonant cavity is shown in (a). The gradient coils are set in mutually or-
thogonal directions along the cavity. The power supply of gradients coils is shown in 
(b). The modulator is shown in (c) 
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The essential parts of the spectrometer consist of [46]:  

• A radiation source 

• A RF bridge, a circulator that isolates transmit and detector arms of the bridge, 

and a diode detector. 

• A resonant cavity to house the imaging object. 

• Stable magnetic field with good homogeneity. 

• A modulation unit that can sinusoidally modulate the DC field at frequencies of a 

few tens of kHz. 

• Signal receiver with amplifier and phase sensitive detector. 

• Three mutually orthogonal gradient coils for spatial encoding. 

The spectrometer is operated on 300MHz. The TAM probe Oxo63 (GE Healthcare, 

Waukesha, WI) is used as the spin probes. For each FID in the k-space, 581 points were 

sampled with a sampling rate of 5 ns after a minimum RF recovery dead time of 350ns. 

A set of 3D EPRI data were obtained with three different maximum gradients settings 

to perform multi-gradients technique for T2
* curve fitting and linewidth map calcula-

tion 

4.3.2: EPRI phantom experiment 

For the phantom experiment, a resolution phantom and a vial phantom are used in 

this study. The vial phantom comprised of three vials containing 3 mMOxo63 which 

were saturated with 0, 2, and 5% oxygen respectively were used (Please refer to Fig. 

18). The oxygen concentration in the vials matches the oxygen range found in regular 

tumor tissues [35, 39, 47, 48, 49]. 
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Fig.18: The resolution phantom is shown in (a). The vial phantom comprised of three 
vials containing 3 mM Oxo63 which were saturated with 0, 2 and 5% oxygen is shown 
in (b)(c) 

 

 

3D EPRI images were obtained with a 2.5 cm diameter resonator. For resolution 

phantom, the data were encoded using three orthogonal phase encoding gradients ramp-

ing in 61 equal steps yielding to a 2D 61x61 k-space matrix. 4000 averages for each 

phase encoding point were used. The data are then down-sampled to a spherical sam-

pling mask with acceleration ratio of 4 (25% k-space, 930 points) to simulate partial 

acquisition. For vial phantom, data were encoded using three orthogonal phase encod-

ing gradients ramping in 21 equal steps yielding to a 21x21x21 k-space matrix. The 

three different gradient maximums for multi-gradients technique were set to 0.96/1.14 

/1.4 G/cm respectively. 10000 averages for each phase encoding point were used. Three 

consecutive full data sets were acquired and down-sampled to a spherical sampling 

mask with acceleration ratio of 4 (25% k-space, 2315 points) to the simulate partial 

acquisition. The center spherical region consisted of 1157 points (12.5% k-space). Fif-

0% 

2% 5% 

Vials 
 

(a) (b) (c) 
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teen images ranging from 600ns to 1350ns with identical time intervals were recon-

structed by PFCS and CS respectively. These images were used for image validation 

and linewidth calculation. 

 

4.3.3: EPRI in vivo experiment 

 

Female C3H mice were used for tumor EPR imaging (Fig. 19(a)). The animals 

were received at 6 weeks of age and housed five per cage in a climate controlled room 

with food and water supply. SCC7 tumor cells were implanted in the right hind leg and 

grown to 1.5cm in diameter (~ 2 weeks, Fig.19(c)). Body weights of the mice were 

approximately 25g. For the EPRI experiment, the mouse remained still in a 2.5cm res-

onator and subjected to an alternating breathing cycle of 10m air →10m carbogen (95% 

O2 plus 5% CO2)→10m air to induce oxygen change in the tumor. Oxo63 was injected 

as a 75mMol/100ul bolus into its tail vein followed by continuous injection to avoid 

pharmacologic decrease of the tracer [50].  
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Fig.19: The tumor and the relative position of the animal and resonator. 
SCC7 tumor cells were implanted into the right hind leg of the mouse (a). The mouse 
was fixed in a 1.7cm resonator (b)(c) and subjected to an alternating breathing cycle of 
10mins air→10mins carbogen→10mins air during the imaging process. Oxo63 was 
continuously injected during the acquisition 
 

 1000 averages for each encoding step were used. The scan time for each multi 

gradients full acquisition is roughly 3.5mins. Nine consecutive images with 19x19x19 

phase encoding steps along with 0.9/1.125/1.35G/cm multi gradients were imaged in 

full acquisition within one breathing cycle then down-sampled by spherical sampling 

with acceleration ratio of 4 (25% k-space, 1714 points).The size of the center region is 

857 points (12.5% k-space). Fifteen images ranging from 600ns to 1050ns with identi-

cal time intervals were reconstructed by PFCS and CS respectively. These images were 

used for image validation and linewidth calculation.  

 
 
 
 
 
 
 
 

Tumor 
 

(c) Continus injec-
tion of Oxo63 
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4.3.4: Data Analysis  

 The comparison is made between fully acquired images (noted as True), PFCS 

reconstructed images, and CS reconstructed images. The sampling strategies and ob-

jective function used to estimate images are summarized in the table below: 

 Sampling 
Mask Estimator 

True 
(Full Acqui-

sition) 

 

 
Full Acquisition 

-1I = FT (raw data)  

CS 

 

 
spherical sparse 

sampling 

( ) ( )( )2

1I
minimize I Iy M FTλ ⋅ Ψ + − ⋅ ⋅  

PFCS 

 

 
spherical sparse 

sampling 

( )
2

* *1I
minimize I I

y p
M FT

y p
λ
      Ψ + − ⋅ ⋅ ⋅          

 

 

 

 The performance of each reconstruction method (PFCS vs. CS) is quantified by 

normalized mean square error (nMSE) calculated as: 

 

         (11) 
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Where x and x̂  represent fully and partially acquired image reconstructions, respec-

tively.  

    There are other methods which can be used as a metric for the quality assessment, 

for example, SNR or error histogram. However, nMSE is the most commonly used and 

sufficient to display and quantify the performance gain provided by PFCS. 

4.4: Results 

4.4.1: Phantom experiment of EPRI 

 
The results of the resolution phantom are shown in Fig. 20: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



42 
 

 

 

 

 

 

 

 

 

 

 

Fig.20: The results of image reconstruction on resolution phantom using 4-fold accel-
eration (AC = 4).  
The first column is the fully acquired image of the resolution phantom. The second and 
the third column is the images reconstructed by CS and PFCS, respectively. The dif-
ference maps between the two reconstructed images and the fully acquired image are 
also displayed for comparison. PFCS reconstructed image retained most of the details 
of the resolution phantom. The improvement can also be seen in the difference map as 
well as the lower nMSE. The blurring caused by the under-sampling was attenuated 
and reached a better image fidelity in PFCS reconstructed image 
 
 

The spherical sampling mask is applied in both reconstruction methods. The dif-

ferences between the two images are also displayed to facilitate comparison. The spa-

tial resolution is 0.06cm. From the figures, we can see that PFCS reconstructed image 

showed better image fidelity than traditional compressed sensing. The blurring caused 

by the down-sampling was attenuated, and the outline of the object was better preserved. 

The images and linewidth maps of one representative vial phantom datum recon-

structed by CS and PFCS are shown in Fig.21. As the figures demonstrate, PFCS im-

ages provided higher compatibility in the reconstruction of image details at the center 

True image CS PFCS 

CS Diff PFCS Diff 

nMSE = 0.2223 
 

nMSE = 0.1479 
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of each tube (Red arrow). PFCS also achieved a lower nMSE than CS. The linewidths 

of the tube phantoms fell in the range of 200-350 a.u., which matched the expected 

linewidth for 0~5% oxygen concentration [36].  
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Vial Phantom 

 True image CS PFCS 

Image 

 

 

 

nMSE=0.0703 

 

nMSE=0.0389 

Difference   

  

Linewidth 

 

 

 

nMSE=0.2075 

 

nMSE=0.1383 

Difference  

  

Fig. 21: The images and linewidth maps of one representative tube phantom datum 
reconstructed by CS and PFCS using 4-fold acceleration 
PFCS images provided higher compatibility in the reconstruction of image details at 
the center of each tube (shown in red arrow). The lower nMSE also indicated the im-
provements. 
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The figure of the nMSE of all fifteen images with different delay times used to pro-

duce linewidth maps is shown in Fig. 22. PFCS outperformed CS in images for all 

time slots and displayed a better fitting. 

 

Fig. 22: the mean and std of the nMSE of the three phantom data.  
X-axis represents the images of the 21 different time slots which are used to calculate 
linewidth maps. The y-axis is nMSE. The blue circles in the figure denote PFCS, while 
the reds denote CS. PFCS outperformed CS for images for every time slot. The 
hierarchical differences which are indicated by green arrows are caused by the switch 
of different spatial encoding gradient magnitudes in multi-gradients acquisition. 
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4.4.2: In vivo experiment of EPRI 

Fig. 23 shows the representative in vivo images and linewidth maps reconstructed 

from CS and PFCS respectively. Differences of images and linewidths are also dis-

played for the purpose of comparison. PFCS displayed less error compared to the gold 

standard than the CS reconstruction especially at the tumor tissue, which is shown by 

the red arrow in difference maps. The green arrow on the linewidth maps indicates a 

small hypoxic band across the center of the tumor. In PFCS linewidth map, the artifacts 

caused by the down-sampling were reduced compared to the conventional CS. This can 

be seen by the fact that the outline of the band was retained and able to be distinguished 

by PFCS reconstructed linewidth maps. But in CS, the structure was blurred and almost 

disappeared. The improvement made by PFCS was also shown by lower nMSE. 
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Mouse Tumor 

 True image CS PFCS 

Image 
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Fig.23: The images and linewidths reconstructed by CS and PFCS for in vivo data. 
using 4-fold acceleration 
The differences are also shown in the figure. Please note that PFCS gave a more accu-
rate estimation at the center of tumor tissue (red arrow). The detailed structure in lin-
ewidths is also better retained by PFCS (indicated by green arrow). 
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Fig. 24 displayed the nMSE of the fifteen images used to produce linewidth maps. 

Both CS and PFCS had increased error at long delays as expected with T2 decay and 

low SNR. However, PFCS offered lower error than CS for all the images even when 

the SNR was lower 

 

Fig.24: the mean and std of nMSE of all 9 in vivo data in one alternative breathing 
cycle.  
The x-axis represents fifteen time slots used to produce linewidths. PFCS outperformed 
CS for images for every time slot. Please note nMSE increases at the later delay time 
due to extremely low SNR  
 

Fig.25 showed six representative fully acquired and PFCS reconstructed images 

in one alternating breathing cycle (air→carbogen→air). Anatomical information was 

shown in the MRI of the tissue (shown in (a)). The linewidth maps produced by true 
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images and PFCS reconstructed images were shown in (b) and (c) respectively. The 

relative position of the masked region in the linewidth maps was outlined in red con-

touring in (a). The linewidth variation curves of two specific regions, which is denoted 

as ○1  and ○2 , are depicted in(d). The diamonds and circles recorded the linewidths 

variation from the region ○1  and ○2  respectively. The curves from true images are 

shown as a solid line, and PFCS is shown as a dashed line. The curves from PFCS 

showed good correspondence to that from true images no matter in region ○1  or ○2 . For 

the region ○1 , which is the region with fluctuated oxygen level, the curve demonstrated 

an increase in oxygen level while the mouse is breathing carbogen. After the breathing 

cycle, the oxygenation returned to its original state. For the region ○2 , in which the 

oxygen concentration is relatively stable, the linewidth curve slightly increased during 

the carbogen interval, then slowly decreased after the air was supplied. The fluctuation 

of the linewidth curves in both areas was captured by the PFCS reconstructed linewidth 

maps. 
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Fig.25: Linewidth maps and pO2 curve within the tumor tissue in one breathing cycle 
The anatomical information is shown in MRI image (a). The red contour indicates the 
position of linewidth maps shown in (b) and (c). The linewidth variation curve along 
the time of the two areas depicted in (a) is shown in (d). The area ○1  corresponds to the 
region with fluctuating oxygen level, while the area ○2  is the region with stable oxy-
genation. 
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4.5: Discussion 

We demonstrated that PFCS provides a better image reconstruction than CS on 

EPRI acceleration at the acceleration ratio of 4. We demonstrated the oxygen variation 

induced by carbogen inhalation could be captured by PFCS estimated linewidths. The 

outlines of the regions with fluctuating and stable oxygen level were able to be distin-

guished. The aliasing artifacts caused by down-sampling are also suppressed in PFCS 

reconstructed images.  

The proposed PFCS reconstruction method allows significant improvement in the 

temporal resolution achievable by SP-EPRI. For example, for a raw data matrix with 

19x19x19 encoding step, the total scan time is approximately 3.5mins (in multi gradi-

ents, 1000 avgs). With PFCS, one could achieve the same with a scan time less than 

one minute with minimal loss of information. Moreover, due to the limited scan time 

of in vivo experiment (typically less than 1 hour for mouse scan time), fewer averages 

(1000 avgs) is often applied to SP-EPRI leading to low SNR and smaller matrix size 

which is not suitable for higher under-sampling. With the acceleration achievable by 

PFCS, shorter scan time will allow more averages and more encoding steps, and hence 

higher acceleration ratio can be expected. 

Due to a smaller matrix size in SP-EPRI acquisition, the image information is usu-

ally more widely distributed within the whole k-space than conventional MRI. With 

the proposed spherical-sampling, the center of k-space is better secured than conven-

tional cube sampling pattern used in compressed sensing MRI due to a larger size of 

the center region (12.5% vs 4-6% of k-space for the fully acquired center region). The 

loss of the spatial resolution is compensated by the additional measurements offered by 
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the virtual coil. Hence the PFCS reconstructed images demonstrated more explicit out-

lines of the imaging objects than the CS.  

PFCS requires phase map estimation from under-sampled k-space. POCS recon-

structed image is suitable to serve as the phase map estimation since it prevents esti-

mation errors from exaggeration by continuously applying phase constraint derived 

from low-resolution images. One concern is that the estimated phase map would be 

smoother and may lose the detailed variation existing in the true phase map. Neverthe-

less, the phase within the imaging object is usually stable and smooth in EPRI. Bene-

fitting from this phase consistency, POCS estimated phase map can provide reasonable 

PFCS image reconstruction. From the nMSE curves from phantom and in vivo recon-

structed images, we can find that in vivo data, the nMSE increased for later delay time 

slots. But for phantom, the nMSE was relatively stable. This is likely due to the higher 

SNR in phantom compared to in vivo data (10000 Avgs for each FID in phantom im-

ages and 1000 Avgs for in vivo). For the later time slots in in vivo images, the signal 

intensity is too weak for a successful reconstruction and thus caused relatively large 

estimation errors.  
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Chapter 5: Application of PFCS to DTI Acceleration 

5.1: Introduction 

Diffusion MRI (dMRI) is a powerful technique for imaging brain white matter 

fiber orientation and connection [41]. When used on ex vivo brain samples, dMRI can 

achieve high spatial resolution with 3D acquisition sequence and reveal very fine ana-

tomical details [51] [52] [53]. The drawback of a 3D sequence is its long acquisition 

time. While 6 images of different diffusion directions are sufficient to define a diffusion 

tensor, tens or even hundreds of diffusion directions are needed to better define the 

diffusion orientation profiles and to resolve crossing fibers. When combined with 3D 

acquisition, the total dMRI acquisition time in an ex vivo brain study can be up to a 

few days. In this section, we explore the extension of PFCS to accelerate 3D DTI ac-

quisition. 

 

5.2: Adaptation of Sampling Strategy for 3D DTI reconstruction 

To test the efficacy of the PFCS reconstruction on the 3D-EPIDTI dataset, we 

further under-sampled the k-space in the slice direction. We divided the data into two 

partitions: a large fully-sampled area in the center (30% of matrix size) with the rest 

sparsely sampled with Poisson disc random sampling in a manner that resulted in 50% 

and 70% under-sampling (see Fig 26). The frequency encoding dimension is fully ac-

quired. The phase encoding direction was acquired with 60% Partial Fourier down-

sampling.  
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Fig. 26: The sampling mask specified for DTI. For the frequency encoding direction 
(shown in orange dash arrow), the data are fully acquired. For the phase encoding di-
mension, we apply Partial Fourier down-sampling (~60% of matrix size). For the slice 
dimension, the data points are divided into fully acquired center and Poisson disc 
sparsely sampling peripheral.  

 

5.3: Phase map estimation for DTI reconstruction 

POCS is still applied for phase map estimation here. The low-resolution image 

phase estimation which is needed in each POCS iteration is calculated from the fully 

acquired center shown in red rectangle in Fig. 27(b). The number of POCS iterations 

is reduced from 100 to 1 in order to attenuate the Gibbs ringing artifact induced by the 

incoherent sampling pattern along the slice selection dimension. 
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(~30% of matrix size) 
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Fig. 27: POCS for DWI acceleration 
(a) The down-sampling mask for DTI reconstruction and (b) the fully acquired center 
region which is used to derive the phase estimation. The acquired center region is sym-
metric with respect to the k-space center 

 

5.4: Experiment 

The brain of one healthy adult male macaque monkey was included in this study. 

The animal was sedated using ketamine (10 mg/kg i.m.), and put to death with an over-

dose of anesthetic (60 mg/kg i.v.; Beuthanasia-D; Merck & Co), and then was perfused 

transcardially, initially with 0.9% buffered saline followed by 3%  paraformaldehyde 

in phosphate buffer (PB; pH 7.4). The brain was extracted and immersed for 12–24 h 

in 3% paraformaldehyde fixation solution. Gd-DTPA (Magnevist; Berlex Laboratories) 

was added at 0.1% volume into the fixation solution. After the fixation, the brain was 

incubated for 35–40 d in PBS mixed with Gd-DTPA to reduce the longitudinal T1 [51, 

52] and transferred from the Gd-DTPA–doped PBS into a sealable container con-

structed from a Plexiglas tube (60-mm i.d.) for scanning, which is shown in Fig. 

28(a)(b). The container was filled with Fomblin, a perfluorocarbon liquid, to closely 

 

 

Center of k-space 

(a) Sampling Mask for 
DTI Reconstruction 

(b)The fully acquired center  
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match the susceptibility of the brain tissue [51]. The brain was held in place tightly by 

plastic rods and medical gauze.  

Scanning was performed using a 30-cm 7-T scanner (Bruker) in Fig. 28(c) and 

a standard linear birdcage volume coil (72 mm i.d.), which is shown in Fig. 28(d). A 

custom-designed gradient coil (Resonance Research Inc.) allowed a maximum gradient 

strength of 440 mT/m on each axis with a 120-μs ramp time. The diffusion data were 

acquired with a standard spin-echo EPI DTI sequence available in Bruker Paravision 

software. Twenty-six diffusion directions were acquired at b = 4800 s/mm2 and along 

with 3 b0 volumes at b=0. The 3D DTI image had an isotropic spatial resolution of 

0.25mm (320 × 278 × 256). The images were acquired with 60% Partial Fourier sam-

pling in the phase encoding direction (In which EPI is applied) and full sampling in 

read and slice directions. The EPI sequence was used in 3D acquisition mode to obtain 

isotropic high-resolution images with high SNR [51]. To reduce echo time, the seg-

mented EPI was used here with the echo train acquired in 16 segments.  

We compared the performance of PFCS with conventional PF and CS using the 

sampling mask described in section 5.2 (Fig. 26) with under-sampling on the slice se-

lection direction. The ground truth was taken as the standard Partial Fourier recon-

structed images from the fully sampled slice-encoding direction, and 60% sampled 

phase-encoding direction.  

 

 

 

 
(a) (b) 
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Fig. 28: Experimental setup for ex-vivo macaque monkey brain imaging on a Bruker 
7T scanner.  
(a) and (b) shows a sealable container constructed from Plexiglas holding the brain 
sample. The 30-cm 7-T Bruker scanner is shown in (c). The standard linear birdcage 
volume coil used in this experiment is displayed in (d). 
 
 

5.5: Data Analysis 

 The comparison is made between fully acquired images, partial Fourier recon-

structed images, PFCS reconstructed images, and CS reconstructed images on the slice-

selection direction respectively. The sampling strategies and algorithm/objective func-

tion used to reconstruct images are in the form bellow: 

 

 

 Sampling 
Mask Algorithm/Objective Function 

(c) (d) 
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 nMSE is still used as the metric of quality assessment. The definition is given 

in 4.3.4: 

 

 

Where x and x̂  represent the fully and partially acquired reconstructed images, respec-

tively.  
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5.6: Results 

5.6.1: Comparison of PFCS and PF 

 

Fig. 29 showed the images reconstructed by PF and PFCS respectively. “PFCS” 

represents the image which is reconstructed from the data down-sampled by the sam-

pling mask shown in Fig. 26, and “PF” denotes the image from conventional Partial 

Fourier reconstruction [15]. Please note that 60% of partial sampling is included in the 

phase encoding direction in both masks. The acceleration ratio (AC) is 1(Full acquisi-

tion, also the “ground truth”), 1.4 (~70% of k-space) in Fig. 29(a) and 2 (~50% of k-

space) in Fig. 29(b) on slice selection direction. With an AC of 1.4, both PF and PFCS 

can reconstruct the image with good quality. PFCS image is smoother because of the 

natural denoising property [7] of the compressed sensing reconstruction. However, 

when it comes to AC of 2, obvious aliasing is observed in the area, while the PFCS 

reconstructed images retain good image quality. 

 

 

 

 

 

 

 

 

 (a)AC = 1.4 

PF  PFCS Full acquisition  
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Fig. 29: Reconstructed image of PF and PFCS under AC = 1.4 in (a) and AC = 2 in (b). 
Both PF and PFCS can reconstruct the image with good quality when AC = 1.4. How-
ever, when AC increases to 2, aliasing shows up in PF images due to under-sampling, 
while PFCS maintain a reasonable reconstruction.  

 

 

 Fig. 30 displayed the normalized mean square error (nMSE) for different k-

space acquisition rate along the slice dimension. As expected, the nMSE of both PFCS 

and PF decreases as more k-space points are acquired. However, the error of PF in-

creases dramatically as the k-space acquisition ratio approaches 50%, which is indi-

cated by the blue arrow. Meanwhile, the nMSE of PFCS is more stable toward lower 

acquisition rate and always outperforms PF even if the acquisition ratio reaches 0.7 

(70% of k-space points are acquired). 
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Fig.30: Normalized mean square error (nMSE) vs. acquired k-space rate (full acquisi-
tion = 1).  
The nMSE of both PFCS and PF decreases as more k-space points are acquired. As the 
acquisition approaches nearly 0.5, the nMSE of PF increases dramatically, which is 
indicated by the blue arrow.  
 

 

5.6.2: Comparison of PFCS and CS 

Fig. 31 shows the reconstructed images with PFCS and CS on several representa-

tive diffusion weighted images (one b=0, and two b=4800 s/mm2) at two different dif-

fusion directions). The data were down-sampled by the mask shown in Fig. 26, then 

reconstructed by PFCS and CS, respectively. The b-value is shown on the top of the 

figures. The difference maps of CS and PFCS vs. ground truth are displayed in Fig. 32. 

We can see clearly the improvement of PFCS compared to CS, especially when the 

diffusion gradient is applied. The tiny features in the thalamus as well as white matter 
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are also better preserved in the PFCS reconstructed images, which are indicated by the 

red arrow. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31: The reconstructed images on several representative diffusion weighted data. 
The PFCS images are less blurring and able to preserve more details than CS 
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Fig. 32: The difference map of conventional CS and PFCS on DWIs.  
we can easily observe the improvement of PFCS reconstructed images, especially in 
some boundary areas (red arrow). 

 

 The nMSE of DWIs of all the 29 diffusion gradient directions is shown in Fig. 

33. The comparison is made between PFCS vs. ground truth and CS vs. ground truth, 

respectively. From the figure, PFCS outperforms CS in every DWI. 
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Fig. 33: The nMSE of DWIs of all the 29 diffusion gradient directions. The comparison 
is made between PFCS vs. ground truth and CS vs. ground truth, respectively 

 

 The fractional anisotropy (FA) maps generated by PFCS reconstructed images 

and Full Acquisition are displayed in Fig. 34.  PFCS reconstructed FA map basically 

captured all the details in True FA map, including the tiny fiber that is pinpointed by 

the blue arrow. The PFCS reconstruction produced a more smoothed FA map.  Fig. 35 

gives the Directional Encoded Color (DEC) FA map generated by Full Acquisition and 

PFCS respectively. The two DEC maps are almost identical except the smoothness in-

troduced by PFCS. This represents that PFCS FA map accurately captures the principal 

diffusion direction. 
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Fig. 34: The fractional anisotropy (FA) maps generated by PFCS reconstructed images 
and True.  
PFCS reconstructed FA map preserves most of the tiny feature in Full Acquisition, The 
blue arrow indicates a tiny fiber in white matter which is also captured by PFCS recon-
structed FA map. 
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Fig. 35: The Directional Encoded Color (DEC) FA map generated from PFCS recon-
structed DWIs and True respectively.  
The two DEC maps are almost identical except the smoothness introduced by PFCS. 
This represents that PFCS FA map accurately capture the principal diffusion direction 
 

 
 
 
 
 
 
 
 

PFCS Full Acquisition  



67 
 

5.7: Discussion 

For DTI acceleration, EPI has been proved to be an efficient technique to accel-

erate the image process [51, 52]. However, the blips on the phase encoding gradient 

must be consistent during the acquisition in order to avoid the artifact induced by the 

eddy current. This makes the incoherent random sampling impossible along the phase 

encoding direction, so it is not surprising that the performance of CS is limited because 

of the 60% Partial Fourier down-sampling along the phase encoding direction. Never-

theless, PFCS utilizes the conjugate symmetry in the k-space to compensate for the data 

loss along that dimension. Hence, PFCS reconstructed image is still able to reconstruct 

the image with reasonable quality. Moreover, compared to EPRI, MRI usually acquires 

larger imaging matrix size. Therefore the energy of the image is more concentrated at 

the center of the k-space, which allows us to decrease the size of the fully acquired 

center and put more points in the peripheral area to secure the resolution without losing 

image contrast. 

 For the phase estimation, PFCS apply POCS reconstructed image phase as the 

phase estimation in DTI reconstruction, which is identical to that in EPRI acceleration. 

However, unlike EPRI, the error of POCS phase map increases as the iteration rises. 

This is depicted in Fig. 36.  
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Fig. 36: The nMSE of image magnitude and phase of POCS reconstructed the 
image. The nMSE increases as the iteration number increases. 
 

The possible reason behind this phenomenon is potentially due to the incoherent 

down-sampling along the slide selection direction. In POCS, the missing points are 

filled in by the estimated values from the last iteration. This causes discontinuity be-

tween the estimated points and the originally acquired points and thus induces ringing 

artifacts. As the iteration increases, the discontinuity accumulates and the ringing be-

comes more prominent. Fig. 37 shows the POCS reconstructed images with 1 and 100 

iterations respectively. We can see the obvious ripples in the image with 100 iterations. 

That is the reason why 1 iteration of POCS is used for reconstructing the phase map in 

PFCS DTI acceleration. For EPRI, although the discontinuity still exists, the resolution 
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is too low that post-processing filters are often used to smooth the image [4, 36, 37]. 

Hence the effect of the ringing is attenuated. 

 

 

Fig. 37: POCS reconstructed images with 1 and 100 iterations.  
A lot of ripples are shown in the image with 100 iterations and cause reconstruction 
error in PFCS reconstruction. 

 

 

nMSE of Partial Fourier increases dramatically as the k-space acquisition ratio 

approaches nearly 50%. This is expected since the phase correction derived from the 

symmetrically acquired center of k-space is needed before actually filling in the miss-

ing points. In practice, 60% k-space points are required for a reliable PF reconstruction 

[15]. However, PFCS can achieve a higher acceleration rate because it can secure more 

points at the center through adjusting the size of the fully acquired region, and com-

pensate the resolution loss with an augmented cost function. 

 From Fig. 34, we may find PFCS is less noisy than the Full Acquisition FA map. 

This is to be expected, given the inherent smoothing property of compressed sensing 

reconstructions. Although denoising usually comes with the cost of loss of resolution, 

1 iteration 100 iterations 
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the loss is tolerable in FA map estimation. The principal direction of diffusion can also 

be captured accurately. 
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Chapter 6: Conclusions and Future Works 
 
 

In this dissertation, we developed a new medical imaging acceleration tech-

nique - Partial Fourier Compressed Sensing (PFCS). By combining the advantage of 

Partial Fourier acquisition with the virtual coil concept, we improved compressed sens-

ing by constructing a new augmented cost function, which fully exploits the conjugate 

symmetry property of the k-space. We explored its application in two imaging modal-

ities: 1. EPRI acceleration and 2. DTI acceleration. In EPRI acceleration, we designed 

a new sampling strategy and phase map estimation for EPRI reconstruction. The results 

showed that PFCS is able to accelerate EPRI imaging process by at least 4 times with 

minimal image degradation. The fluctuation of the oxygen inside the tumor tissue could 

be captured faithfully by the PFCS reconstructed linewidth map. In DTI acceleration, 

we showed that PFCS is able to further reduce the acquisition time by a factor of two 

over the already down-sampled EPI DTI images. And the PFCS reconstructed direc-

tional color encoded FA map is capable of capturing the detailed white matter structures 

and the principal diffusion directions. 

 The performance of PFCS is largely dependent on the quality of the phase map 

estimation. In this dissertation, we used POCS reconstructed image phase as the phase 

estimation, which resulted in significant performance gains. However, POCS might not 

be the best technique to estimate the phase for all applications. For example, in DTI 

acquisition, the phase of each DWI is different because of the application of diffusion 

gradients. This is shown in Fig. 38. We can see that the phase of each DWI is different 

except for b0 images. However, if we calculate the phase differences with respect to 

the low-resolution version of each DWIs, that is, the images derived from the fully 
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acquired center region in k-space, the residues are roughly the same [54]. This means 

that we may be able to estimate correct phase maps for each of the DTIs with the initial 

b0 images, which has the potential to further improve the reconstruction results of 

PFCS.  

  

 

Fig. 38: The Phase of each image with different diffusion gradient direction.  
The phase is quite different except the b0 images, which is surrounded by the red rec-
tangular. However, the phase difference between each DWIs and its low-resolution 
version is limited, which might be able to produce more accurate phase map estimation. 
 

 

 The reconstruction model, which includes the sampling strategy, sparsity-pro-

moting regularization, and the optimization problem, depends on the imaging applica-
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tion. In this dissertation, we found efficient PFCS reconstruction models which outper-

form the existing acceleration techniques for EPRI and dMRI, respectively. However, 

finding an optimal reconstruction model is still an open question. Moreover, finding 

criteria for determining the best reconstruction model for a given modality is an im-

portant question.  For example, how could one incorporate different resolution and 

SNR requirements in this criteria? We consider exploring these questions in our future 

work. 
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