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The connectivity between qubits is one of the many design aspects that go into

building a quantum computer. Better connectivity makes it easier to perform arbitrary

interacting operations in quantum algorithms, but it may also come with additional

noise and may be costly to manufacture. Therefore, many proposals for scalable

quantum computer architectures sacrifice connectivity to obtain better modularity

and suppress noise. This poses a challenge to running quantum algorithms because

simulating missing connectivity can come with significant overhead.

A natural stepping stone is permuting qubits on the architecture, a task we call

quantum routing. We first give a rigorous analysis for the special case of classical

routing using swap gates. Then we present a time-independent Hamiltonian protocol

that reverses a chain of qubits asymptotically 3 times faster than classical routing.

Using this protocol, we exhibit the first separation between classical and quantum

routing time. This leads us to lower bound unitary quantum routing to be inversely

proportional to the vertex expansion of the architecture graph in a gate model and

inversely proportional to the edge expansion in a Hamiltonian evolution model. We

rule out a superpolynomial separation between classical and quantum routing for

architectures with poor expansion properties.



We then show how to use routing to transform quantum circuits such that their

interactions respect the architecture constraints while attempting to minimize the

depth overhead. We benchmark the performance of our circuit transformations on

grid and modular architectures.

Finally, we give a circuit transformation for fault-tolerant quantum computation in

the surface code. We use a construction for parallel long-range operations in constant

logical time that allows us to avoid the need for routing altogether. Our benchmarks

show improved performance over our previous circuit transformations using classical

routing.
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Chapter 1

Introduction

Quantum algorithms promise to speed-up many useful problems in computer science,

physics, and chemistry. To achieve the feats promised by quantum algorithms, many

academic and industry players are currently rushing to build a scalable quantum

computer [Aru+19; Jur+21; Pin+21; Bom+21] with many qubits, low enough error

rates and good connectivity.

In addition to experimental developments, we find that running a quantum algo-

rithm on a quantum computer requires many levels of translation, or compilation. At

the lowest level, quantum computers can only manipulate the physical system by its

natural dynamics, which is not generally described by a circuit model. A first step is

to describe algorithms in a convenient, high-level circuit description. The circuit is

then broken down into some finite universal gate set, describing elementary operations

on a theoretical quantum computer. Since any universal gate set may be translated

into another universal gate set with only polylogarithmic overhead [Kit97], it is easy

to translate the chosen gate set into one that is more convenient for the quantum

computer at hand.

But even an elementary gate set can still require seemingly unphyisical operations.

Feynman [Fey82], in his famous keynote proposing quantum computing, postulated

1



“Can physics be simulated by a universal computer? I would like to have the elements

of this computer locally interconnected.” In the keynote, he required an efficient

simulation of physics at some point in space-time to depend only on systems in a local

region. A circuit described in an elementary gate set may still perform highly non-local

operations, thus we should not expect that this can be efficiently implemented on a

quantum computer.

Contemporary proposals for scalable quantum computers indeed constrain which

qubits can interact and employ modularity, building a larger quantum system by

connecting many smaller quantum computers. For example, superconducting qubits

are fabricated on a plane and coupled through microwave resonators [Ste+11]. Promi-

nent examples form a grid-like structure of qubits in their connectivity [Aru+19;

IBM21]. One way to scale up superconducting quantum computers further is by

constructing shielded modules of smaller quantum computers and connecting them

through superconducting transmission lines [Bre+16]. Each module can be connected

to other modules arbitrarily.

Ion traps are another paradigm for constructing a quantum computer and allow

arbitrary interactions but are limited in scaling to about 100 qubits [MK13]. By

interconnecting multiple ion trap modules, we can construct a scalable quantum

computer. For example, in a quantum charge-coupled device (QCCD), ions are

physically moved between traps using junctions [KMW02]. This also results in a

grid-like connectivity between modules [Mur+20; Web+20]. An alternative is to

entangle designated communication qubits in modules using photons sent through a

reconfigurable optical switch [MK13; Mon+14], which allows us to couple any two

arbitrary modules.

Translating elementary circuits to respect interaction constraints can cause signifi-

cant overhead. With L× L grid connectivity, a circuit of depth Ω(L) is required to

unitarily implement the longest-range operations. More generally, the overhead scales
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with the diameter of the graph representing the architecture connectivity.

More precisely, we consider an abstract representation of the interaction constraints

in the form of a connected simple graph, which we call the architecture graph1, GA.

The qubits of the quantum computer are modeled as the vertices of GA, which we

denote by V (GA). We will, therefore, interchangeably use the terms vertices and

qubits where it is clear from the context what we mean. We also let n := |V (GA)|.

In this dissertation, we only consider two-qubit interactions, so the set of qubit pairs

that are allowed to interact define the edges of GA, which we denote by E(GA).

Let us define an architecture-respecting evolution of our system to be, at all times

t ≥ 0, described by a time-dependent 2-local Hamiltonian H(t) respecting interactions

constraints. We say that H(t) respects the interactions of the architecture if it can be

written as a sum

H(t) =
∑

e∈E(GA)

He(t) (1.1)

of bounded-norm Hermitian operators He(t) supported only on qubits associated with

the allowed interaction e. Such Hamiltonians are universal for quantum computation

since we can implement arbitrary single-qubit gates and arbitrary two-qubit gates

between qubits that are allowed to interact.

In the circuit model, a circuit in a gate set of at most two-qubit interactions

respects the interaction constraints if there is a corresponding two-local Hamiltonian

evolution (given by the matrix logarithm) that is an architecture-respecting evolution.

This is the case if, for all its two-qubit gates acting on q1, q2 ∈ V (GA), we have that

(q1, q2) ∈ E(GA). We call such circuits architecture-respecting circuits and consider

them a special case of architecture-respecting evolutions.

We fix a time scale by making the normalization of the interactions explicit.

We allow arbitrarily fast single-qubit operations in our model, a common assump-
1In the electronic version of this dissertation, some definitions and references are highlighted, and

references hyperlink to the definition. In all versions, there is also an index to look up terms, symbols,
and abbreviations.
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tion [VHC02; Ben+02] that is well-motivated by the practical ease of implementing

single-qubit operations. Now, up to single-qubit unitaries, we can write He(t) in

canonical form [Ben+02]

Ke(t) :=
∑

j∈{x,y,z}

µjσj ⊗ σj, (1.2)

where σx, σy, and σz are the Pauli matrices and µx ≥ µy ≥ |µz| ≥ 0. Then we impose

a normalization condition that the spectral norm ‖Ke(t)‖ ≤ 1 for all e ∈ E(GA) at all

times. In this setting, a swap can be implemented by, e.g., the normalized canonical

Hamiltonian
1

3
(σx ⊗ σx + σy ⊗ σy + σz ⊗ σz) (1.3)

and local operations in time 3π/4. This is the minimum time for a swap [VHC02].

The primary motivation of this dissertation is to find efficient architecture-respecting

circuit transformations, which transform any given circuit C in a gate set of single and

two-qubit gates into an equivalent architecture-respecting evolution up to an initial

mapping of circuit qubits to V (GA).

We give a non-comprehensive overview of the relevant background of this disserta-

tion, and then give an overview of the contributions and chapters at the end of this

chapter.

1.1 Quantum routing

Operations not respecting the connectivity can be seen as a form of long-range quantum

communication. Fast protocols for transferring quantum information are likely to

play an important role in scalable quantum computers [DiV00], distributed quantum

computation [Kim08], and are useful in formulating architecture-respecting circuit

transformations. Unfortunately, there are limits on how fast a unitary evolution of a
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(non-relativistic) quantum system can transfer quantum information. In systems with

with nearest-neighbor interactions, quantum information cannot travel faster than

some constant velocity [LR72]. This holds even when we include sufficiently weak

long-range interactions in higher-dimensional systems [Fos+15].

Let us consider the more general task of implementing arbitrary permutations of

qubits, which we call (quantum) routing. In architecture-respecting circuit transforma-

tions, we can use routing to turn any non-local gate into a local gate by first routing

the involved qubits to be adjacent. We define quantum routing as follows:

Definition 1.1 (Quantum routing). Given a permutation of qubits π : V (GA) →

V (GA), find an architecture-respecting evolution that implements the mapping

|ψ1〉|ψ2〉 . . . |ψn〉 7→ |ψπ−1(1)〉 . . . |ψπ−1(n)〉 (1.4)

for any pure states |ψi〉, i ∈ [n], and [n] := {1, . . . , n}.

We will mostly consider minimizing the circuit depth and evolution time of quan-

tum routing. Let us focus on the depth for now. One type of system where minimizing

the depth of routing is useful, is on noisy intermediate-scale quantum (NISQ) com-

puters [Pre18]. Successful execution of algorithms on NISQ computers depends on

the infidelity introduced by noise in the computer and the operations. The depth

of a circuit bounds the infidelity that can be introduced by noisy operations so can

function as a suitable proxy for the infidelity. This already has immediate applications

in, e.g., demonstrations of quantum volume [Cro+19]. Optimizing for the fidelity

directly is more difficult. This optimization depends on the underlying hardware and

varying environmental conditions throughout the day [Mur+19].

For most of this dissertation, we will focus on unitary routing, that is, routing with-

out local operations and classical communication (LOCC). Adding ancilla resources for

LOCC requires more resources of the quantum computer, and intermediate measure-
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Hamiltonian
routing

gate-based
quantum
routing

classical
routing

Figure 1.1: The containment of routing models that are considered in this work with
regards to their routing time. Most prior work only considers using swap gates for
routing, which we call classical routing. We attempt to see what additional power using
genuinely quantum operations gives us in performing routing. We consider increasingly
more powerful unitary quantum computation models: allowing architecture-respecting
circuits in gate-based quantum routing, and normalized architecture-respecting evolu-
tion in Hamiltonian routing.

ments can be challenging for modern-day quantum computers [IBM21; Aru+19]. We

introduce and compare models of unitary routing of increasing strength: (i) Classical

routing only uses swap gates for routing. We use the term “classical” because swap

gates cannot entangle a separable state. It is a special case of (ii) gate-based quantum

routing, which considers unitary architecture-respecting circuits to implement routing.

And (iii) Hamiltonian (quantum) routing considers unitary architecture-respecting

evolutions for routing. We are mostly interested in minimizing the depth of routing in

classical and gate-based quantum routing models, and minimizing the time for routing

in the Hamiltonian routing model. By normalizing the time for a swap gate to 1,

any gate-based quantum routing protocol of depth k also gives a Hamiltonian routing

protocol in time at most k [VHC02]. This gives us a hierarchy of routing models,

depicted in Figure 1.1.

1.1.1 Classical routing

Classical routing is perhaps the most natural form of routing and ubiquitous in the

literature of architecture-respecting circuit transformations. A simple greedy algorithm
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for classical routing performs swaps along a shortest path. Since swaps (necessarily)

move information in two directions, a swap may move some qubits away from their

destination. To work around this, early algorithms follow the greedy algorithm and

move qubits (or pairs of qubits) to their destination one at a time [Met+06; LSJ15].

This does not use the potential parallelism of operations, so later algorithms assign

multiple disjoint exclusive regions, such as rectangles on a grid, where only one qubit

is allowed to be moved [Wil+16; Mur+19]. Modern quantum programming soft-

ware greedily performs randomized local optimization [ANI+21], performing parallel

swaps along edges that monotonically reduce the total distance of all qubits to their

destinations.

More structured approaches to classical routing are based on sorting networks [Knu98].

A sorting network is a fixed classical circuit of comparators, which order two inputs,

that can sort any sequence of comparable inputs. We can perform routing by preparing

a labelling that, when sorted, implements the permutation. The odd-even sorting net-

work then gives a particularly simple algorithm on path architecture graphs [KMS07],

resulting in a swap circuit of depth at most n that can implement any permutation

of qubits. Beals et al. [Bea+13] later showed how sorting networks for certain families

of graphs can be used to give classical routing algorithms of the same depth2, such as

2D grid graphs in depth O(
√
n) and hypercubes in depth O(log n) [AKS83].

Unfortunately, we are not aware of significant results in the more general setting

of gate-based quantum routing.
2Beals et al. [Bea+13] show a stronger result: How to perform routing of superpositions of

permutations, i.e., instead of a classical permutation π : V (GA) → V (GA), we are given an input
state

∑
π|π〉 which is a superposition of permutations π. One possible application is in quantum

parallel RAM for implementing quantum oracle lookups. A key component of their construction is a
quantum comparator, a reversible comparator. A quantum comparator requires one ancilla and a
more complicated construction than a swap gate. If the given permutation is classical however, the
comparator straightforwardly simplifies to a classically controlled swap gate.
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1.1.2 Hamiltonian routing

A task related to Hamiltonian routing that has received considerable attention is the

state transfer of a qubit across many ancilla in a spin chain with nearest-neighbor

interactions (see, e.g., the overview [Bos07]). More precisely, an initial state |ψ〉 is

transferred from site 1 to site n in a chain of n qubits initialized in |Ψ(0)〉 = |ψ〉|0〉n−1.

We consider an evolution of the state |Ψ(t)〉 = exp(−iHt)|Ψ(0)〉 for time t ≥ 0 by the

Hamiltonian

H =
n∑
k=1

Jxkσ
k
xσ

k+1
x + Jykσ

k
yσ

k+1
y + Jzkσ

k
zσ

k+1
z +

n∑
l=1

hlσ
l
z, (1.5)

where σkx, σky , σkz are the Pauli matrices acting on qubit k, and Jxk , J
y
k , J

z
k , hl ∈ R are

the coupling and magnetic field strengths. We now wish to maximize the fidelity F (t)

of the output state at site n with the input |ψ〉, i.e.

F (t) = 〈ψ|Tr[n−1](|Ψ(t)〉〈Ψ(t)|)|ψ〉, (1.6)

where we trace out qubits [n− 1]. Bose [Bos03] first showed that if Jxk = Jyk = Jzk = J

and hk = h for all k, then a numerical optimization can find a t ∝ n/J that maximizes

F (t) and has high fidelity. This show that an—albeit noisy—state transfer occurs

with uniform interactions and magnetic field.

Christandl et al. [Chr+05] subsequently showed a perfect state transfer protocol

where perfect fidelity F (t) = 1 is achieved with engineered interactions. By setting

Jzk = hk = 0 for all k and Jxk = Jyk = 2
√
k(n− k)/n, a normalized perfect state transfer

over chains of arbitrary length is achieved at time t = nπ/4. Later protocols remove

the restriction that ancilla sites 2 through n are initialized in the |0〉 state [FPK08;

Yao+11], but still perturb the state stored in the ancilla.

We can consider the harder task of state reversal (or state mirroring) [Alb+04]
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where there are no ancilla qubits in a spin chain. Specifically, we define state reversal

as implementing the unitary

R :=

bn
2
c∏

k=1

swapk,n+1−k (1.7)

up to a global phase which is independent of the state. State reversal is a form of

quantum routing restricted to the state reversal permutation and the path architecture

graph. It can be seen to “mirror” the state on a 1D system of n qubits around its

center and as the simultaneous state transfer of n qubits. The first state reversal

protocol [Alb+04] sets Jxk = Jyk =
√

(k − 1)(n− k)/n to implement state reversal at

time t = nπ/2.

However, the protocol in [Alb+04] and other early results [KS05; Shi+05] introduce

a relative phase dependent on the number of excitations M , i.e., qubits in the state

|1〉. These relative phases require non-local operations to correct. For example, the

protocol of [Alb+04] introduces a relative phase of (−1)M(M−1)/2, which maps an

initial state

|+〉|0〉n−2|b〉 7→ |b〉|0〉n−2(Zb|−〉), (1.8)

for bit b ∈ {0, 1}. Correcting the significant phase error Zb requires a non-local

controlled-Z (cz) gate on qubits 1 and n. By Lieb-Robinson bounds [LR72], we know

that this must take time at least linear in n in the Hamiltonian routing model.

Later state reversal protocols removed the relative phase but are time-dependent [Rau05;
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FT06; KD15]. For example, Raussendorf [Rau05] shows that

 ...
...

...

H

H

H



n+1

= R, (1.9)

where we have n input qubits in an arbitrary state, and n+ 1 iterations of cz gates

then Hadamard gates. The state reversal protocols in [Rau05; FT06] were shown to

be useful in implement translation-invariant universal quantum computation by, for

example, modelling a quantum cellular automaton [Rau05; Ste+19; DW18; Rau+19].

Interestingly, this gives an example of the difference between time in the Hamil-

tonian routing model and depth in the gate-based routing model. In the gate-based

model of routing, this would give a depth 2(n+ 1) circuit for implementing the state

reversal permutation by absorbing the Hadamard in preceding cz gates. (This is

not the lowest-depth circuit that we know of since classical routing can implement R

in depth n.) However, (1.9) corresponds to a time-dependent Hamiltonian of n+ 1

iterations of commuting ZZ interactions up to local rotations. Each such iteration

takes time π/4 to implement [VHC02], giving a protocol for state reversal in time

(n+ 1)π/4 in the Hamiltonian routing model.

1.2 Architecture-respecting circuit transformations

We now turn to related work in architecture-respecting circuit transformations. Some

algorithms are well-structured and amenable to an architecture-respecting circuit trans-

formation by hand. For example, on path architecture graphs, we know of architecture-

respecting circuits for the quantum Fourier transform in depth Θ(n) [Mas07] and Shor’s
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algorithm in depth O(n2) [Kut06]. And on 2D grid architecture graphs, we can imple-

ment quantum adders in depth Θ(
√
n) [CM11; CM12]. In the near-term, especially,

hand-optimized architecture-respecting circuits may remain important [CBC21].

It is much more difficult to find architecture-respecting circuit transformations that

minimize size or depth for general circuits. In fact, deciding the equivalence of a given

circuit to the identity circuit is complete for the class QMA [JWB03], which contains

NP. Given the complexity of the task, there are proposals for circuit transformations

with runtime exponential in n based on SAT solvers [SWD11; LWD15; Ven+18] and

hence can only be used for small instances. Here, we can even optimize for the fidelity

directly using calibration data [Mur+19]. Recent results include the commercial t|ket〉

compiler [Siv+20], the use of commutation rules for additional flexibility [Ito+19;

Ito+20], repeated circuit transformation to reach a better fixed-point [LDX19], and the

use of simulated annealing for finding suitable mappings of qubits to the architecture

graph [ZLF20].

Evaluating architecture-respecting circuit transformations is a complex task and

no single standard has emerged yet. Many papers use RevLib [Wil+08], a library of

reversible circuits of up to 20 qubits, a size where exponential time methods still work.

This is then supplemented [ZPW18; Sir+19] by larger-scale algorithms synthesized in

quantum programming languages such as Quipper [Gre+13] and Scaffold [Jav+12].

Tan and Cong [TC21b] also proposed a benchmark of circuits with a known optimal

solution given by a hidden intial qubit mapping.

1.3 Fault-tolerant quantum computation

For scalable quantum computing, we will need a fault-tolerant encoding of quantum

information to suppress noise. The surface code [Kit03; BK98] is the implementation of

fault-tolerant quantum computation (FTQC) that we will consider in this dissertation.
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Figure 1.2: Logical qubits (light and dark gray patches) encoded in the surface code
form a 2D grid. The logical operations can be applied on any lattice translations of
those shown. Their times in units of surface code logical time steps are as follows.
0 Logical time steps: Single-qubit preparation in the X basis (i), and the Z basis
(ii). Single-qubit measurement in the X basis (iii), and the Z basis (iv) take 0 steps.
1 Logical time step: Two-qubit measurement of XX (v) and ZZ (vi). A move of a
logical qubit from one patch to an unused patch (vii). Two-qubit preparation (viii)
and destructive measurement (ix) in the Bell basis. 3 Logical time steps: A Hadamard
gate, which uses three ancilla patches (x).

The surface code can be implemented using operations local in a 2D grid, a natural

setting for quantum computing implementation such as superconducting [Fow+12;

Cha+20a] and Majorana [Kar+17] qubits. By tiling the plane with surface code

patches, a 2D grid of logical qubits is formed where the set of logical operations is

local. The logical operations are different from the models that we have considered so

far, see Figure 1.2.

The final operations that complete our gate set with the surface code are T gates.

The T gates are not natural operations on the surface code, but can be implemented

fault-tolerantly by consuming specialized resource states, called magic states [Kni04].

These magic states can be produced using a highly-optimized process called magic

state distillation [BK05], which we assume occurs independently of our computation.

We assume that logical magic states are available at the boundary of the grid.

The goals of architecture-respecting circuit transformations in the FTQC setting
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are slightly different. Assuming quantum computers are large enough to perform

quantum algorithms fault-tolerantly, we would like to minimize the resources we use

and for how long we use them. More specifically, we would like to minimize the

physical space-time cost, which is the product of the number of physical qubits and the

time required to run the algorithm. But to avoid implementation details, we instead

minimize the more abstract logical space-time cost, which is the number of logical

qubits multiplied by the number of logical time steps of the architecture-respecting

circuit expressed in logical surface code operations. The logical and physical space-time

costs are expected to be 1-to-1 and monotonically related (see Appendix B.2), such

that minimizing the former should minimize the latter.

Previous architecture-respecting circuit transformations techniques straightfor-

wardly apply to the surface code at a logical level [LSJ15; Lao+18]. However, LOCC

is natural in FTQC and comes with additional opportunities. For example, we can

use LOCC to perform long-range cnot gates in constant depth [LO17]. Long-range

cnot gates allow architecture-respecting circuit transformations to avoid remapping

qubits at low overhead [Jav+17].

1.4 Contribution

We now give an overview of the contributions presented in this dissertation.

1.4.1 Quantum routing

We first give a rigorous analysis of minimal-depth and minimal-size classical routing

in Chapter 2. We show an equivalence between minimal-depth classical routing and

Routing via Matchings [ACG94], giving us access to a wealth of results. We obtain

protocols with depth 2 for complete graphs [ACG94], (d+ 2)n1/d for d-dimensional

grids [ACG94], and 3n/2 +O(log n) for tree graphs [Zha99] (see Table 2.1 for more
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details). We also give a novel efficient algorithm for minimal-depth classical routing on

generalized hierarchical products [Bar+09] of graphs. Our algorithm matches earlier

bounds in all known special cases, such as of Cartesian products of graphs (including

grid graphs of arbitrary dimension), and is tight up to constants on our model of

modular quantum architectures.

Similarly, we show an equivalence between minimizing the circuit size in classical

routing and Token Swapping [Yam+14]. Let us define a k-approximation algorithm,

for k ≥ 1, as a time-efficient algorithm that finds a solution to some problem with value

at most k ×OPT, where OPT ∈ R is the optimal solution value. By the equivalence,

we obtain a 4-approximation algorithm on general architecture graphs [Mil+16].

As we have seen, it is possible in the Hamiltonian routing model to route the

state reversal permutation induced by R (1.7) on the path architecture graph more

quickly than is possible using classical routing, whose circuit depth is lower bounded

by n− 1 on the path by a simple diameter lower bound. The time-dependent protocol

by Raussendorf [Rau05] and our novel time-independent protocol (Chapter 3) for state

reversal are asymptotically 3 times faster. We also show that this is nearly optimal,

up to a factor of at most 1.502(1 + 1/n), by showing a novel lower bound based on the

asymptotic entanglement capacity [Ben+03], which is related to the small incremental

entangling (SIE) theorem [Bra07; AMV13]. SIE shows that the rate at which any

interacting Hamiltonian H acting on subsystems A and B, with finite ancilla spaces,

can increase the entropy is at most

α‖H‖ log(min(dimA, dimB)), (1.10)

for the SIE constant 0 < α ≤ 4 [Aud14]. Routing can create entanglement across a

bipartition, e.g. by routing halves of Bell pairs, therefore giving a lower bound on the

evolution time by SIE.

14



We empirically compare state reversal protocols on their robustness, showing that

the specialized state reversal protocols have reduced error scaling from static disorder

compared to classical routing. Noise from static disorder can be caused by imperfect

fabrication. The time-independent protocol also only requires engineered couplings

and no dynamical control, so we expect it to be experimentally feasible on near-term

systems such as superconducting qubits [Kja+20]. The absence of dynamical control

could remove another source of noise.

Using fast state reversal as a primitive, we then construct a Hamiltonian routing

algorithm in Chapter 4 that is asymptotically strictly faster than classical routing in

the worst-case by a constant factor when GA is a path graph. This is, to our knowledge,

the first separation between classical routing and quantum routing. We also show that,

in the average case over uniformly random permutations, this algorithm asymptotically

performs routing in 2/3 the time of classical routing. These results imply improved

Hamiltonian routing on generalized hierarchical products involving path graphs by

our routing algorithm in Chapter 2.

Our separation between quantum and classical routing leads us to question how

much more powerful gate-based or Hamiltonian quantum routing can be than classical

routing. By bounding the entanglement generation across a bipartition [Mar+16],

we obtain lower bounds on routing in terms of the expansion properties of GA in

Chapter 5. We first obtain the lower bound 2/c(GA)− 1 on the depth of gate-based

quantum routing, where c(GA) is the vertex expansion of GA. Secondly, we use SIE to

prove a (weaker) lower bound of 2/(α · h(GA)) on the evolution time of Hamiltonian

routing, where h(GA) is the edge expansion of GA. On the converse side, we give

an example of a superconstant, Ω(
√
n), quantum-classical routing separation in a

strengthened Hamiltonian routing model with 1 ancilla per qubit and fast swaps

between the qubit and its ancilla.

We relate the lower bounds on our models of quantum routing to classical routing
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by giving a new classical routing algorithm on connected simple graphs that generalizes

an algorithm for regular graphs [ACG94] and is dependent on the spectral gap of

the Laplacian of GA. This allows us to rule out superpolynomial quantum-classical

routing separations under certain conditions. In particular, this excludes common

architecture graphs with poor expansion properties, i.e., small spectral gap, such as

grid graphs.

1.4.2 Architecture-respecting circuit transformations

We show how to apply quantum routing in architecture-respecting circuit transfor-

mations to convert nonlocal operations to local ones quickly. In some cases, this can

bound the overhead of the circuit transformation. For example, when we consider

sets of disjoint two-qubit gates acting on qubits corresponding to q1, q2 ∈ V (GA) of

sufficiently small size, then we can perform routing of each such pair to an edge in a

maximum matching M of GA. If |M | = Ω(n), then the overhead of an architecture-

respecting circuit transformation can easily be upper bounded by the routing cost

times the number of layers in the input circuit, which are sets of simultaneous gates

in the circuit.

In Chapter 2, we introduce heuristic algorithms that decide which permutation of

the qubits to implement so that many gates can be performed without too much over-

head of routing. By iteratively executing local gates, finding a new mapping of qubits

and routing, we construct efficient architecture-respecting circuit transformations.

We implement these circuit transformations and test them empirically on a set

of benchmarks on grid and modular graphs. We see that the weighted depth of the

architecture-respecting circuits produced by our algorithms with depth-minimized

classical routing improves on the state-of-the-art Qiskit architecture-respecting circuit

transformation [Abr+19]. Similarly, the weighted size of the architecture-respecting

circuits produced by our algorithms with size-minimized classical routing improve on
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Qiskit’s results. However, we see that using depth-minimized classical routing results

in circuits of large weighted size and using size-minimized classical routing results in

circuits of large weighted depth. This indicates that optimizing for depth or size are

two disjoint objectives that need to be carefully chosen for the quantum hardware.

1.4.3 Surface code circuit transformation

Finally, we show how architecture-respecting circuit transformations can be adapted to

FTQC in the lattice surgery surface code. In Chapter 6, we give a detailed space-time

cost analysis of operations and show that parallel long-range cnot operations at

the ends of vertex-disjoint paths can be performed in 2 logical time steps. We then

construct circuits to apply parallel long-range cnots at the ends of edge-disjoint paths

within 4 logical time steps.

Applying long-range cnot gates via edge-disjoint paths always allows us to perform

at least as many long-range operations as via vertex-disjoint paths. Moreover, no

2O(log1−ε n)-approximation algorithm, for constant ε > 0, can exist for finding maximum

sets of vertex-disjoint paths on grid graphs [CKN18], unless NP ⊆ RTIME(npoly logn).

But there exist O(log n) [AR95] and O(1)-approximation algorithms [KT95] for finding

maximum sets of edge-disjoint paths on grids. We similarly are able to apply T gates

and other rotations requiring magic states by finding large vertex-disjoint or edge-

disjoint sets of paths to the boundary of the surface code grid through a unit Max

Flow problem, which can be solved efficiently [FF56].

We use these constructions to propose the EDPC (Edge-Disjoint Paths Compilation)

architecture-respecting circuit transformation that only performs long-range gates

and does not route qubits. We implement EDPC and benchmark its space-time cost

against an architecture-respecting circuit transformation from Chapter 2 using classical

routing. EDPC results in significantly better performance on instances of 64 qubits

and higher where classical routing is inhibited by the diameter of the architecture
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graph.
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Chapter 2

Classical routing for

architecture-respecting circuit

transformations

This chapter is based on

[CSU19] Andrew M. Childs, Eddie Schoute, and Cem M. Unsal. “Circuit Transfor-

mations for Quantum Architectures”. In: 14th Conference on the Theory of

Quantum Computation, Communication and Cryptography (TQC 2019). Ed.

by Wim van Dam and Laura Mančinska. Vol. 135. Leibniz International

Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, 2019, 3:1–3:24. isbn: 978-3-95977-112-2. doi:

10.4230/LIPIcs.TQC.2019.3

2.1 Introduction

Several previous works use exhaustive approaches for architecture-respecting circuit

transformations with classical routing that take time exponential in the number of
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qubits (and hence can only be used for small instances). For example, Saeedi, Wille,

and Drechsler [SWD11] use SAT solvers to decompose circuits so they can be run on

the path architecture; [LWD15] finds an optimal circuit transformation on nearest-

neighbor architectures by formulating the problem as a pseudo-boolean optimization;

Venturelli et al. [Ven+18] use temporal planners to schedule gates; and [Mur+19] uses

satisfiability modulo theory solvers to find mappings of the circuit with high success

probability using calibration data. Other work has instead proposed minimizing the

distance between all qubits in groups of gates on specific architectures [SSP14; WLD14;

PS16], but this is also NP-hard in general.

A common subproblem in architecture-respecting circuit transformations is op-

timizing over mappings of qubits in the input circuit C to the architecture graph.

We call this task qubit placement (or qubit mapping). By choosing a suitable initial

placement of qubits, we can reduce overhead of the architecture-respecting circuit.

An exhaustive search of all n qubit placement takes time O(n!) but can work well

for small numbers of locations [Wil+16], or can be done selectively using A∗ heuris-

tic search [ZPW18; ZW19] or local search [MFM08; ANI+21]. Heuristic proposals

include local search [MFM08; ANI+21] and iterated architecture-respecting circuit

transformations forwards and then backwards [LDX19]. We can also view (optimal)

qubit placement as a subgraph isomorphism problem [Sir+19]. If an isomorphism

does not exist, we can consider smaller and smaller subcircuits of C.

To make architecture-respecting circuit transformations tractable for large instances,

we can consider the circuit not as a whole, but break it into sets of disjoint gates, which

we call layers. Between a layer of gates, we route the qubits. We can exhaustively

search for a good solution to qubit placement [Hir+09; TC20; Jur+21] or use heuristic

routines, e.g., by prioritizing gates with many dependents [Met+06]. Recent results

include the commercial t|ket〉 compiler [Siv+20], the use of commutation rules for

additional flexibility [Ito+19; Ito+20], and the use of simulated annealing for qubit
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placement [ZLF20].

Contribution In this chapter, we construct architecture-respecting circuit trans-

formations that attempt to minimize the circuit depth or size overhead and have

worst-case time complexity polynomial in the sizes of the circuit and architecture

graph. We model the connectivity of the underlying hardware as a simple graph where

vertices represent the qubits and edges represent places where a two-qubit gate can be

performed.

As a simple and fast approach, we propose the greedy swap circuit transformation

(Section 2.2.2). It inserts swaps on edges chosen to minimize the total distance

between qubits involved in two-qubit gates until some gate(s) can be executed.

We then propose building architecture-respecting circuit transformations (Sec-

tion 2.2.2) by combining algorithms for two basic subproblems: quantum routing

(addressed by permuters, for which we provide theoretical performance guarantees)

and qubit placement (addressed by mappers). For the latter, we specify a variety of

heuristic strategies (Section 2.4) to find suitable placement of qubits from the input cir-

cuit, attempting to optimize for circuit size or depth. We implement these algorithms

in software, which is publicly available under a free software license [SUC19].

Consider now the problem of routing qubits on a given architecture graph. A sorting

network sorts any fixed-length sequence of integers with a circuit of comparators,

which compare two inputs and output them in nondecreasing ordering. While sorting

networks can be used to route qubits [Bea+13], they achieve a more general task,

and the cost of routing can sometimes be lower with other methods. Specifically,

we suggest Routing via Matchings [ACG94] (introduced in Section 2.3.1) as

a more suitable framework for routing qubits in parallel. Deciding whether there

exists a depth-k circuit for Routing via Matchings is NP-complete in general for

k > 2 [BR17], but optimal or near-optimal protocols are known for specific graph
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families [ACG94; Zha99]. In some cases it is possible to implement any permutation

asymptotically more efficiently than a general sorting network (see Table 2.1). On

complete graphs, for example, any permutation can be implemented in a depth-2

circuit of transpositions [ACG94], whereas an optimal sorting network has depth

Θ(log n) [AKS83].

While it is common to consider only the worst-case routing performance, we also

wish to route efficiently in practice. To improve practical performance, we generalize

to partial permutations (permutations only defined on some subdomain) so that we

can also route subsets of qubits efficiently. The destinations of the remaining qubits

are unconstrained. In Section 2.3.1, we present routing algorithms for the path graph,

the complete graph, and the generalized hierarchical product of graphs [Bar+09],

which includes the Cartesian product of graphs and modular architectures as special

cases [Mon+14]. Graphs obtained as hierarchical products have many good properties

for quantum architectures [Bap+18]. We establish an upper bound on the routing

number of a hierarchical product (Theorem 2.4) that matches prior work for total

permutations on the Cartesian product of graphs [ACG94] and depends on easily

computable properties of the input partial permutation.

We also propose using Token Swapping [Yam+14] for minimizing the total

number of swaps, which is relevant when optimizing for total circuit size (Section 2.3.2).

We generalize this problem to partial permutations and obtain a 4-approximation

algorithm (Theorem 2.10).

Finally, we evaluate our circuit transformations on large quantum circuits (Sec-

tion 2.5) and compare their performance with the circuit transformation included

in the Qiskit software (Section 2.2.2) [Abr+19]. We find that the relative perfor-

mance varies significantly with the circuit type and architecture. When minimizing

circuit size, the greedy swap circuit transformation is one of the best, though some

improvement may be gained using some of our specialized circuit transformations.
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Worst-case circuit depth

Graph family Sorting (comparators) Routing nr. (transpositions)

path (Pn) n [Knu98] n [ACG94]
complete (Kn) Θ(log n) [AKS83] 2 [ACG94]
tree O(min (∆, log(n/D))n) [BRS19] 3n/2 +O(log n) [Zha99]

Πv(G1, G2) not known
⌈
|V (G2)|
ham(v)

⌉
(rt(G1) + rt(G2)) + rt(G2)

Π1(G1, G2) not known 2 rt(G1) + rt(G2) [ACG94](×r

i=1
Pni
)

n1 + 2
∑r

i=2 ni + o(·) [Kun87] n1 + 2
∑r

i=2 ni [ACG94]
Πe1(Kn1 , Kn2) not known 3n2 + 2

Table 2.1: Performance bounds for sorting networks versus routing via matchings
(the routing number, rt(G); see (2.10)) where |V (G)| = n for the graph G of interest.
The tree has maximum degree ∆ and diameter D. We give a new bound for the routing
number of the generalized hierarchical product (see Definition 2.2) between graphs G1

and G2, where v ∈ {0, 1}|V (G2)|; ham(v) is the Hamming weight of v, 1 := [1 . . . 1], and
e1 := [1 0 . . . 0]. We also list special cases of the generalized hierarchical product: the
Cartesian product of graphs G1 ×G2 = Π1(G1, G2), the r-dimensional grid of paths
of lengths ni ∈ N for i ∈ [r], and the modular graph Πe1(Kn1 , Kn2). See also [BRS19]
for a short overview of known lower and upper bounds for sorting networks restricted
to common topologies.

For depth, some of our specialized circuit transformations do best on random circuits

on grid architectures, whereas Qiskit’s circuit transformation does well on modular

architectures. For quantum signal processing circuits [LC17] we find that the depth is

best minimized by our greedy swap circuit transformation.

2.2 Constructing Circuit Transformations

Program transformations are algorithms that modify computer programs while retain-

ing functionality [NNH99]. In a similar vein, we define a circuit transformation as

an algorithm that modifies an input quantum circuit to produce an output quantum

circuit with the same functionality. We let Q denote the set of qubits of the input

circuit. A circuit transformation is architecture-respecting if it produces injective

initial and final mappings of the form p̂ : Q→ V (GA) with an architecture-respecting
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circuit. In this chapter, we only consider circuit transformations that are architecture-

respecting, and we refer to them simply as circuit transformations. We propose a

construction for a general circuit transformation that may use the properties of the

underlying architecture by relying on a specialized subroutine for classical routing

called a permuter (Section 2.3), and a subroutine determining where to place qubits,

called a mapper (Section 2.4).

To be able to transform a circuit, we must have |Q| ≤ |V (GA)|, and the output

circuit must contain a qubit for every vertex in the architecture. Throughout the

circuit transformation, we keep track of the injective current placement of qubits

p̂ : Q→ V (GA). The initial and final values of p̂ are also the initial and final mappings,

respectively, of qubits to the architecture. A gate is executed by appending it to the

output circuit. Two-qubit gates with qubits q1, q2 ∈ Q can only be executed when

(p̂(q1), p̂(q2)) ∈ E(GA). By adding swap gates to the output circuit, we can change p̂

and thereby unitarily transform quantum circuits for execution on an architecture.

2.2.1 Definitions

We define some terminology that will be used throughout the dissertation.

Partial Functions and Partial Permutations

For sets X and Y , a partial function f : X ⇀ Y is a mapping from dom(f) ⊆ X to

image(f) := {f(x) | x ∈ dom(f)} ⊆ Y . However, f(x) is undefined for x ∈ X\dom(f).

We consider such elements x unmapped. For x ∈ dom(f), we write x 7→ f(x) and

say that x is mapped to f(x). We can then define any partial function f as a set of

mappings, f := {x 7→ y | x ∈ X, y ∈ Y }, where all preimages must be distinct (i.e., if

x 7→ y ∈ f and x′ 7→ y′ ∈ f with y 6= y′, then x 6= x′). A total function f̂ is a partial

function where dom
(
f̂
)

= X and is denoted f̂ : X → Y . By the term “function” we

will mean a total function.
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A partial function f is injective iff ∀x, x′ ∈ dom(f) with x 6= x′, f(x) 6= f(x′). A

function f̂ : X → Y is surjective iff ∀y ∈ Y, ∃x ∈ X : f(x) = y. A bijective partial

function f is a partial function that is injective and is denoted f : X ↼⇀ Y (note that

such an f is necessarily surjective on its image). A bijective function f̂ is both injective

and surjective and is denoted by f̂ : X ↔ Y . For any bijective (partial) function f

there exists an inverse function f−1 : image(f)→ dom(f).

A partial permutation π is any bijective partial function with the same domain

and codomain, i.e., π : X ↼⇀ X. Similarly, a total permutation is any σ : X ↔ X. By

“permutation” we mean a total permutation.

We also define some notions specifically useful for this chapter. An unmapped

vertex is a vertex in V (GA) \ dom(π), for a graph G and π : V (G) ↼⇀ V (G). We define

the union of partial functions f : X ⇀ Y and g : X ⇀ Y when dom(f) ∩ dom(g) = ∅

as

(f ∪ g)(x) :=


f(x) if x ∈ dom(f) ,

g(x) if x ∈ dom(g) .
(2.1)

Furthermore, (f ∪ g) is a bijective partial function iff f and g are bijective partial

functions and image(f)∩ image(g) = ∅. A completion of π : X ↼⇀ X is a π̂ : X ↔ X =

(π∪σ) for some σ : X ↼⇀ X, where dom(σ) = X\dom(π) and image(σ) = X\image(π).

Directed Acyclic Graph Representation of a Circuit

A quantum circuit can be viewed as a directed acyclic graph (DAG), where vertices

represent gates and directed edges represent qubit dependencies. We define the first

layer of the DAG, L, to be the set of all vertices without predecessors. By removing L

and taking the first layer of the resulting DAG, we can define the second layer, and so

on.

The size of a circuit is the number of gates it contains (i.e., the number of vertices

in the DAG); the depth of a circuit is the number of layers. It is natural to minimize

25



either the depth (Section 2.4.1), corresponding to the execution time when gates

can be applied in parallel, or the the size (Section 2.4.2), corresponding to the total

number of operations that must be performed. We are mainly interested in two-qubit

gates and their qubits. Thus we define tg : VD → Q×Q, where VD is the set of DAG

vertices corresponding to two-qubit gates, that outputs the pair of qubits acted on by

a given gate. For simplicity, we denote tg(L) := {tg(g) | g ∈ L, g is a two-qubit gate}.

2.2.2 Architecture-Respecting Circuit Transformations

We now describe some specific architecture-respecting circuit transformations. We

first describe two basic circuit transformations, one provided by the Qiskit software

(Section 2.2.2) and another that uses a simple greedy approach (Section 2.2.2). Then,

in Section 2.2.2 we specify a family of circuit transformations that builds on specialized

procedures for qubit placement and routing.

Qiskit Circuit Transformation

The open-source quantum computing software framework Qiskit [Abr+19] contains a

circuit transformation1 that we build upon in one of our approaches (Section 2.4.2).

We specify this transformation here and compare it with our other approaches to

circuit transformations in Section 2.5.

We initialize p̂ arbitrarily. Fix a number of trials, k ∈ N, for each layer. We do

the following in trial i ∈ [k] where [k] := {1, . . . , k}: For all v, u ∈ V (GA), sample a

symmetric weight

di(v, u) = (1 +N (0, 1/N)) d(v, u)2 (2.2)

independently for (v, u) ∈ V (GA) × V (GA), where N (µ, σ) represents a sample

from the normal distribution with mean µ ∈ R and standard deviation σ ≥ 0, and

d(·, ·) : V (GA) × V (GA) → N is the shortest distance function on the architecture
1We base our description on qiskit.mapper.swap_mapper from Qiskit version 0.6.1.
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graph. We define an objective function as the sum of gate distances,

S :=
∑

(q1,q2)∈tg(L)

di(p̂(q1), p̂(q2)) . (2.3)

We now try to swap pairs of qubits to decrease S. Specifically, we construct a set of

swaps by iterating over all edges e ∈ E(GA) and greedily adding the corresponding

swap if it decreases S and neither endpoint of e is already involved in some swap.

We execute the set of swaps and update S. We then iterate this process until either

S = |tg(L)|; or there is no swap that decreases S; or we reach the upper bound of

2|V (GA)| iterations.

Now, if S = |tg(L)| then the algorithm has successfully found a sequence of swaps

and all gates in L can be executed. The result of trial i is then set to this sequence of

swaps. Otherwise, trial i is a failure. If there is at least one successful trial out of

k trials, we execute the swaps of a successful trial with the fewest swaps and then

execute all gates in L.

If no trial was successful, we apply the same routine for finding swaps that

minimize S, but taking only a single gate (q1, q2) ∈ tg(L) at a time. Note that this

results in a sequence of swaps along the shortest path between p̂(q1) and p̂(q2). After

each such step we execute the selected gate. We repeat this until all gates in tg(L)

have been executed and also execute all single-qubit gates in L. Finally, we remove

the vertices in L from the input circuit DAG and iterate this process until all gates in

the input circuit are executed.

Greedy Swap Circuit Transformation

We also describe a simple greedy approach to circuit transformations. Similar to the

Qiskit circuit transformation described above, we prioritize swaps that maximally

reduce the total distance between the qubits tg(L), but now using the simpler objective
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function

R :=
∑

(q1,q2)∈tg(L)

d(p̂(q1), p̂(q2)) . (2.4)

Note that this is different from (2.3), where a randomized distance di is used.

We construct an initial p̂ as follows. Let us consider the first layer L′ of the

circuit consisting of only two-qubit gates (i.e., single-qubit gates are ignored), initialize

p′ : Q ↼⇀ V (GA) as undefined everywhere, and set U ← ∅ ⊆ V (GA). We iteratively

construct

p′ ← p′ + {q1 7→ v1, q2 7→ v2 | (q1, q2) ∈ L′, (v1, v2) ∈M} , (2.5)

where M ⊆ E(G) is a maximum matching of G, remove (q1, q2) from L′, set U ←

U ∪ {v1, v2}, and recompute M on the subgraph of G with the vertices V (GA) \ U .2

The remaining qubits Q \ dom(p′) are arbitrarily mapped to the available vertices

V (GA) \ image(p′) to obtain p̂.

In every iteration, we construct a set of disjoint gates to execute. We first execute

as many gates from L as possible given p̂, and we remove these gates from the input

circuit. Second, let Ei ⊆ E(GA), for i ∈ [2], be the set of edges where executing a

swap would decrease R by i, excluding edges which already had a vertex involved

in a gate this iteration. We then greedily execute gates from E2 first and E1 second,

updating both Eis as we go. If we were not able to execute a gate from L and no

swaps were executed, then, as a fallback, we deterministically pick a two-qubit gate

(q1, q2) ∈ tg(L) and swap along the first edge on the shortest path between p̂(q1) and

p̂(q2). We update p̂ according to the inserted swaps, update L, and finally update R.

This process is repeated until the input circuit is empty.

The fallback routine ensures that this circuit transformation always produces

an output circuit. The value R strictly decreases in every iteration until a gate
2This is equivalent to runnning the greedy depth mapper (Section 2.4.1) on the input circuit with

only two-qubit gates, an arbitrary p̂, and free permutations of qubits. In other words, the greedy
depth mapper will pick a placement of qubits on the architecture unconstrained by routing, since
this is the initial placement.
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can be executed unless the fallback routine is performed, in which case R stays the

same. On repeated calls to the fallback routine, the same two-qubit gate is picked

deterministically until it is executed. This happens within diam(G) + 1 iterations,

where the diameter of a graph G is defined as

diam(G) := max
u,v∈V (G)

d(u, v). (2.6)

By induction we see that the whole circuit will be executed.

Let us analyze the time complexity of this circuit transformation. We ignore the

initial placement since it is insignificant for large circuits. A gate from L is executed

in at most diam(G) iterations, where diam(G) is the diameter of G. In every iteration,

O(|E(GA)|) edges are checked to determine gates that can be executed and swaps

that will decrease R. Therefore, the total time complexity is O(|C||E(GA)| diam(G)),

where |C| denotes the size of circuit C. There is a tighter bound in terms of output

circuit C ′ since every iteration creates a layer in the transformed circuit, the complexity

is O(depth(C ′)|E(GA)|), where depth(C ′) denotes the circuit depth of C ′.

Constructing Architecture-Respecting Circuit Transformations

We now present our construction for a general circuit transformation and make some

definitions more precise. Let a permuter (see also Section 2.3) be a subroutine that,

given π : V (GA) ↼⇀ V (GA), outputs a sequence of transpositions that implements π

while respecting the architecture constraints. Let a mapper (see also Section 2.4)

be a qubit placement subroutine that, given p̂, a permuter, and a quantum circuit,

computes a new placement of qubits, p : Q ↼⇀ V (GA), such that some gates of the

input circuit can be executed.

Initialize p̂ in the same way as the greedy swap circuit transformation. We repeat

the following steps until the entire circuit has been transformed:
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1. Use the given mapper to find a placement, p : Q ↼⇀ V (GA), for the remaining

input circuit;

2. Let “◦” denote partial function composition, i.e., given g : X ⇀ Y and f : Y ⇀ Z,

(f ◦ g)(x) := f(g(x)) , for x ∈ dom(g) and g(x) ∈ dom(f) . (2.7)

We use the permuter to find transpositions implementing p ◦ p̂−1 : V (GA) ↼⇀

V (GA) and replace the transpositions with swap gates to construct a permuta-

tion circuit to execute. We also update p̂ to reflect the new placement of qubits

after running the permutation circuit.

3. Execute all gates in L that can be executed in accordance with p̂, remove these

gates from the input circuit, and recompute L.

We note that the permuter used by the circuit transformation can be different from

the one used by the mapper. This can, for example, be useful if the permuter is

randomized and can be run multiple times in an attempt to obtain a better result.

The number of such trials can be set much higher for the circuit transformation since

only the permutation circuit for p ◦ p̂−1 needs to be computed in every iteration. We

make use of this flexibility in our implementation (Section 2.5).

Let us analyze the time complexity of this circuit transformation. We again ignore

the time complexity of computing the initial placement. Let tm be an upper bound

on the time complexity of the mapper, and let tp be an upper bound on the time

complexity of the permuter. Computing p ◦ p̂−1 takes time O(|V (GA)|). The number

of transpositions produced by the permuter is at most tp, so executing the associated

swaps takes time O(tp). Only one gate from L may be executed every iteration

so we upper bound the number of iterations by |C|. We find a time complexity of

O(|C| (tm + |V (GA)|+ tp)). Clearly, if tp, tm ∈ poly(|C|, |V (GA)|) then our circuit

transformation is also poly-time as desired.
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2.3 Partial Permutations via Transpositions

In this section we provide routing algorithms for implementing partial permutations

via transpositions constrained to edges of a graph. We call such algorithms permuters.

The Routing via Matchings and Token Swapping problems capture exactly our

optimization goals of implementing a permutation of qubits on a quantum architecture

while minimizing the circuit depth and size, respectively.

2.3.1 Partial Routing Via Matchings

The framework of Routing via Matchings captures how to permute qubits on

a graph using a circuit of the smallest possible depth [ACG94]. We first define a

generalization of Routing via Matchings that allows for partial permutations and

then provide permuters for implementing partial permutations for some architectures

of interest.

Definition 2.1 (Partial Routing via Matchings). Partial Routing via Matchings

is the following optimization problem. Given a simple graph G and partial permutation

π : V (G) ↼⇀ V (G), the objective is to find the smallest k ∈ N such that there exist

matchings M1, . . . ,Mk ⊆ E(E) on G, where each matching induces a permutation as

a product of disjoint transpositions

πMi
=

∏
(v,u)∈Mi

(v u) , (2.8)

such that

π̂ =
k∏
i=1

πMi
(2.9)

is a completion of π.

Routing via Matchings is the special case of Partial Routing via Matchings

where π is constrained to be a (total) permutation. The partial routing number of
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π : V (G) ↼⇀ V (G) on G is rt(G, π) := k, where k obtains the minimum in Definition 2.1.

The routing number [ACG94] is the special case of the partial routing number where π

is total. In this chapter, we simply refer to the partial routing number as the routing

number. The routing number of G is defined as

rt(G) := max
σ∈Sym(V (G))

rt(G, σ) , (2.10)

where we maximize over all permutations σ : V (G)↔ V (G) (here Sym(V (G)) denotes

the group of such permutations). Note that we only optimize over permutations, since

for any π : V (G) ↼⇀ V (G),

rt(G, π) = min
π̂

rt(G, π̂) , (2.11)

where we minimize over all completions π̂ of π.

The correspondence with minimal-depth classical routing is immediate by replacing

transpositions with swap gates.

An alternate way to interpret (Partial) Routing via Matchings is to assign

tokens to all v ∈ dom(π) and destinations π(v) for the tokens. A token can only by

moved through an exchange of tokens between adjacent vertices. The goal is to move

all tokens to their destinations in as few matchings (specifying exchange locations) as

possible. If a vertex does not hold a token at the time of an exchange with a neighbor,

as can be the case in Partial Routing via Matchings, then after the exchange

the neighbor will not hold a token.
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Complete Graph

We give a simple construction of a permuter for the n-vertex complete graph, Kn.

Given π : V (Kn) ↼⇀ V (Kn), do the following. If

|dom(π) ∪ image(π)| = 2|dom(π)|, (2.12)

all mappings are disjoint, so we return

{(v, π(v)) | v ∈ dom(π)} (2.13)

as a single matching that implements π. Otherwise, we construct an arbitrary

completion π̂ of π and run the standard algorithm for Routing via Matchings for

complete graphs on π̂ [ACG94]. This trivially achieves the same rt(Kn) ≤ 2 bound

for all π, but will obtain rt(Kn, π) = 1 for all π with disjoint domain and image.

The time complexity of the Routing via Matchings algorithm for Kn is

O(n) [ACG94]. The other operations described above also take time O(n), so we get

a time complexity of O(n) for the complete graph permuter.

Path Graph

We construct a permuter for the n-vertex path graph, Pn, by first giving a comple-

tion and then using the standard complete permuter for paths [ACG94]. Different

completions achieve different routing numbers. We give a heuristic for constructing a

completion that seems to result in a low routing number in practice.

We are given π : V (Pn) ↼⇀ V (Pn) and construct a completion π̂ of π as follows: Let

V (Pn) ∼= [n], ordered from one end of the path to the other (picking ends arbitrarily).
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Iterate through i ∈ V (Pn) in ascending order, setting

π̂(i) =


π(i) if i ∈ dom(π),

min (V (Pn) \ image(π̂)) otherwise.
(2.14)

It can easily be seen that π̂ is a completion of π. We have rt(Pn, π) ≤ rt(Pn, π̂) ≤ n

by the standard path routing algorithm [ACG94]. It remains open whether a tighter

bound can be proven as a function of some parameters of π.

Constructing the completion takes time O(n). The total complexity for running the

path permuter is O(n2), where the time complexity of the Routing via Matchings

algorithm [ACG94] dominates the construction of π̂.

Hierarchical Product

The generalized hierarchical product (henceforth hierarchical product) of graphs [Bar+09]

produces various subgraphs of the Cartesian product of graphs that include natural

models of quantum computer architectures [Bap+18].

Definition 2.2 (Hierarchical product [Bar+09]). For j ∈ {1, 2}, let Gj be a graph

with nj vertices and nj × nj boolean adjacency matrix Aj, the hierarchical product

Πv(G1, G2), for v ∈ {0, 1}n2 , has vertex set V (G1)× V (G2) and adjacency matrix

A1 ⊗ diag(v) + 11 ⊗ A2 ,

where 11 is the identity matrix in the vector space of A1 and diag(v) is the n2 × n2

diagonal matrix with the entries of v on the diagonal.

Intuitively, the hierarchical product Πv(G1, G2) consists of n1 copies of G2, where

the jth vertices in all copies of G2 are connected by a copy of G1 if vj = 1. We restrict

ourselves to connected simple graphs, so A1 and A2 are symmetric 0–1 matrices and
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v is nonzero. An example of the hierarchical product of two path graphs is

Π[1 0 1](P2, P3) = Π[1 0 1]


1

2
, 1 2 3

 =

1,1 1,2 1,3

2,1 2,2 2,3

(2.15)

The Cartesian product is Π1, where 1 := [1 . . . 1] (see Line 9). Furthermore, Πe1 is the

standard hierarchical product, and Πei is the rooted product of graphs, rooted at the

ith vertex of G2.

We define the induced subgraph G[U ] of any graph G for vertex set U ⊆ V (G) as

G[U ] := (U,E(G) ∩ (U × U)) . (2.16)

Now, let G = Πv(G1, G2) and denote the vertices of G by v = (v1, v2) ∈ V1 × V2 = V .

We define

Gi := G [{i} × V2] , (2.17)

for i ∈ V (G1). Note that each Gi is isomorphic to G2, so the permuter for G2 can be

used for Gi. We also define the communicator vertices of Gi as the vertices

{i} × {j ∈ V (G2) | vj = 1} ⊆ V (Gi) , (2.18)

and index them in ascending order (for some ordering of V (G)). Note that the jth

communicator vertex (of any Gi) also belongs to G[V (G1)× {j}], which is isomorphic

to G1.

A useful metric is

deg(π) := max

(
max
i∈V (G1)

Ai, max
i∈V (G1)

Bi

)
, (2.19)
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where

Ai = |{v ∈ dom(π) ∩ V (Gi) | π(v) 6∈ V (Gi)}|, (2.20)

Bi = |{v ∈ dom(π) \ V (Gi) | π(v) ∈ V (Gi)}|, (2.21)

which represents the maximum number of vertices that need to leave or enter any Gi

to implement π.

In every iteration of the routing algorithm, we route a set R = {v(i) ∈ Vi | i ∈ V1}

such that all π(v)1 are distinct, for v ∈ R and π(v) = (π(v)1, π(v)2) ∈ V . Undefined

values are always considered distinct. We call such R a set of representative vertices,

and we view v(i) as the representative vertex of Vi.

Lemma 2.3. For a graph G = Πv(G1, G2), π : V (G) ↼⇀ V (G), let d := deg(π). We

can find distinct sets of representative vertices Ri, for i ∈ [d], such that

{v ∈ dom(π) | v1 6= π(v)1} ⊆
⋃
i∈[d]

Ri .

Proof. Let H = (U, V,E) be a bipartite multi-graph, with U = V := [|V (G1)|] the left

and right vertex sets, and the edge multi-set

E = {(v1, π(v)1) | v ∈ dom(π)} . (2.22)

Each vertex k ∈ U belongs to at most d edges (k, l), for l ∈ V and k 6= l, and each

vertex l′ ∈ V belongs to at most d edges (k′, l′), for k′ ∈ U and k′ 6= l′. However, for

any k ∈ U there could be as many as |V (G2)| edges (k, k). For all k ∈ U we remove

as many (k, k) ∈ E as necessary to ensure that the maximum degree of any vertex in

H is d.

We make H d-regular by repeating the following: If @k ∈ U with deg(k) < d we
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input : π : V (G) ↼⇀ V (G); permuters on G1 and G2

1 Let Ri, for i ∈ [deg(π)], be given by Lemma 2.3

2 for i = 1, . . . ,
⌈

deg(π)
ham(v)

⌉
:

3 foreach j ∈ V (G1) :
4 on Gj, for all k ∈ [ham(v)], route the (unique) vertex

v ∈ R(i−1)·ham(v)+k ∩ V (Gj) to the k-th communicator vertex of Gj
// For R` with ` > deg(π), do nothing

5 foreach communicator vertex (v1, v2) of G1 : // All copies of G1

6 on G′ = G[V (G1)× {v2}], route each v ∈ V (G′) ∩ dom(π) to
(π(v)1, v2) ∈ V (G′)

7 foreach i ∈ V (G1) :
8 route all v ∈ dom(π) ∩ V (Gi) to π(v) within Gi
9 return the transpositions that implement this routing

Algorithm 2.3.1: Partial Routing via Matchings on the hierarchical
product of graphsG = Πv(G1, G2). In Lines 4 and 6, routing means constructing
a partial permutation σ on a subgraph (G1 or G2), using the applicable permuter
to find transpositions implementing σ, and applying those transpositions to
update π and each Ri.

are done. Otherwise, such a k exists and ∃k′ ∈ V with deg(k′) < d, since

∑
k∈U

deg(k) =
∑
k′∈V

deg(k′) . (2.23)

It follows that there exist vertices u ∈ Vk \ dom(π) and v ∈ Vk′ \ image(π). For the

purposes of this proof, we set π(u) = v, effectively adding an edge (k, k′) to E.

Now we have modified π so that H is d-regular. By Hall’s marriage theorem, there

exists a perfect matching in H, and removing it results in a (d − 1)-regular graph.

We iterate this to find d distinct perfect matchings in H. Each edge (k, k′) ∈ E

corresponds to some v ∈ V (Gk) and u ∈ V (Gk′), with π(v) = u. Therefore, each

perfect matching corresponds to a set of representative vertices, Ri. Since all perfect

matchings are distinct, and all e ∈ E are covered by some matching, the Lemma

follows.

Algorithm 2.3.1 specifies a permuter for the hierarchical product. We prove the
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following performance bounds for this algorithm.

Theorem 2.4. For a graph G = Πv(G1, G2), Algorithm 2.3.1 finds a sequence of

transpositions that implements π : V (G) ↼⇀ V (G) so that

rt(Πv(G1, G2), π) ≤
⌈

deg(π)

ham(v)

⌉
(rt(G1) + rt(G2)) + rt(G2) ,

where ham(v) is the Hamming weight of v, i.e., the number of ones in v.

Proof. In every round of routing, we route ham(v) sets Ri to their destination Gjs,

for j ∈ V (G1). In each round, we route on all copies of G2 in parallel and then

route on all copies of G1 in parallel. After routing all Ri in at most ddeg(π)/ ham(v)e

rounds, Lemma 2.3 ensures that only permutations local to each Gj remain. Finally,

we route vertices to their destinations, as given by π, in each Gj independently using

the permuter for G2.

Corollary 2.5.

rt(Πv(G1, G2)) ≤
⌈
|V (G2)|
ham(v)

⌉
(rt(G1) + rt(G2)) + rt(G2) .

Proof. We maximize Theorem 2.4 over π by definition (2.10), and bound deg(π) ≤

|V (G2)| to get the result.

As a possible optimization, we can remove some vertices from the partial per-

mutations in the routing steps. For each removed vertex, we must ensure that the

remaining steps of the routing algorithm remain valid. Specifically, let there be a

u ∈ Gi∩Rk for i ∈ V (G1) and k ∈ [deg(π)]. If u ∈ dom(π) and π(u) ∈ V (Gi), then we

remove it since it does not need to be routed outside of Gi. Otherwise, if u 6∈ dom(π),

we remove it unless

∃v ∈ {Rk ∩ dom(π) | π(v) ∈ Gi} (2.24)
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since an unmapped vertex is expected at the communicator vertex in the second

loop of the routing round. We apply this optimization in our implementation of the

permuter for modular graphs (Line 9).

Next, we analyze the time complexity of Algorithm 2.3.1. Let t1 and t2 upper

bound the time complexity of algorithms for Partial Routing via Matchings on

G1 and G2, respectively. We first find deg(π) distinct sets of representative vertices

by Lemma 2.3. The time to find one set of representative vertices is dominated

by the time to find the maximum bipartite matching, O(n2.5
1 ) [HK73]. Then, for

ddeg(π)/ ham(v)e iterations, we route on all copies of G2 and then G1 in parallel.

Overall, we get a time complexity of

O

(
deg(π) · n2.5

1 +

⌈
deg(π)

ham(v)

⌉
(ham(v)t1 + n1t2) + n1t2

)
. (2.25)

We show a lower bound on the routing number of hierarchical products of graphs

and prove that it is tight, up to constant factors.

Theorem 2.6. For a graph G = Πv(G1, G2) and any π : V (G) ↼⇀ V (G),

2

⌈
deg(π)

ham(v)

⌉
− 1 ≤ rt(Πv(G1, G2), π) .

Proof. Let us consider the token-based formulation of Partial Routing via Match-

ings. At most deg(π) tokens need to be moved out of any Gi, for i ∈ V (G1). Every

matching can move at most ham(v) tokens out of their original Gi. Once moved out, a

new set of tokens must be moved onto the ham(v) communicator vertices. Therefore,

it takes at least 2ddeg(π)/ ham(v)e − 1 matchings to move deg(π) tokens out of any

Gi.

We now show that Theorem 2.6 is tight up to constant factors by considering a

specific permutation on the path graph P2n, with n ∈ N+. We have P2n
∼= Πe1(P2, Pn)
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by a relabeling of vertices. We define π′ : V (P2n) ↔ V (P2n) as the product of

transpositions

π′ :=
n−1∏
i=0

(i (n+ i)) . (2.26)

Then,

2

⌈
deg(π′)

ham(e1)

⌉
− 1 = 2n− 1 ≤ rt(Πe1(P2, Pn), π′) = rt(P2n, π

′) ≤ rt(P2n) ≤ 2n , (2.27)

where we used Section 2.3.1 for the last inequality, and ei ∈ {0, 1}n is the ith standard

basis vector. This also matches the tightest known (diameter) lower bound for rt(P2n).

Modular Graphs

Large-scale quantum computation may benefit from a modular design, with many

interconnected subunits [MK13; Mon+14; Bre+16]. As a simple model of a modular

quantum processor consisting of n1 modules with n2 qubits each, we define the modular

graph,

Mod(n1, n2) := Πe1(Kn1 , Kn2). (2.28)

In this architecture, any two qubits in the same module can be directly coupled, and

any two modules can be coupled through their unique communicator qubits. With

one minor modification to Theorem 2.4, we get the following bounds on the routing

number of the modular graph.

Corollary 2.7. For n1, n2 ∈ N, G = Mod(n1, n2) and π : V (G) ↼⇀ V (G), we have

2 deg(π)− 1 ≤ rt(Mod(n1, n2), π) ≤ 3 deg(π) + 2 .

Proof. Directly applying Theorem 2.4 gives

rt(Mod(n1, n2), π) ≤ 4 deg(π) + 2 . (2.29)
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However, only one token needs to be routed to the communicator vertex in every

round of Algorithm 2.3.1 and this satisfies (2.12). Therefore, we can route with one

set of parallel transpositions, saving us one matching every round.

To show the lower bound, we apply Theorem 2.6 with ham(e1) = 1.

We evaluate the time complexity of this permuter using (2.25). Recall from

Section 2.3.1 that the time complexity of the permuter is O(n). Thus we have

t1 = O(n1) and t2 = O(n2), giving an overall time complexity of O(dn2.5
1 + n1n2),

where we noted that t2 = O(1) while doing the deg(π) rounds of routing.

Cartesian Product

The Cartesian product of graphs is a special case of the hierarchical product, namely

π1 for 1 := [1 . . . 1]. We refer to a copy of G1 in G1 × G2 (i.e., G[V (G1) × {v2}] for

some v2 ∈ V (G2)) as a row of G1 ×G2, and, vice versa, to a copy of G2 as a column.

Also, let n1 := |V (G1)| and n2 := |V (G2)|. Theorem 2.4 allows us to reprove an upper

bound on the routing number of a Cartesian product of graphs [ACG94].

Corollary 2.8. For any graphs G1 and G2,

rt(G1 ×G2) = rt(Π1(G1, G2)) ≤ rt(G1) + 2 rt(G2) .

Proof. Since ham(1) = n2, we get the result by Corollary 2.5.

Lemma 2.3 does not specify the order in which systems of distinct representatives

are picked, but this order matters in practice. Since ham(v) = n2, we can pick n2

distinct sets of representative vertices without incurring another round of routing

(in Algorithm 2.3.1). We propose a heuristic for picking these |V (G2)| sets that

seems to produce low-depth implementations of partial permutations in practice

(Algorithm 2.3.2).
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Algorithm 2.3.2 uses a modification of Lemma 2.3 to choose representative vertices.

The proof of Lemma 2.3 can be straightforwardly extended by not initially removing

edges of the form (k, k) and adding edges until an n2-regular bipartite multi-graph,

B, is constructed. Thus, by Hall’s marriage theorem, there exist n2 distinct perfect

matchings in B, enough for all the rows. We choose a perfect matching of minimum

weight for each row with respect to a heuristic cost function c : dom(π)× V (G2)→ N,

with the rows processed in a random order.

We add additional edges to B to allow for more options to minimize the weight.

We construct a bipartite multi-graph B′ that contains B, disregarding some duplicated

edges. Edge duplication does not change the minimum-weight perfect matching.

Instead of adding an edge for unmapped vertices as in Lemma 2.3, we add edges to

all possible destination columns for each column with an unmapped vertex.

Let σ : V (G1)× V (G2) ↼⇀ V (G1)× V (G2) be the partial permutation defined on

Line 1 of Algorithm 2.3.2. The cost function depends on the current value of σ and is

defined as

c(v, i) := rt(G2, π1)+rt(G2, {i 7→ π(v)2})−rt(G2, π2)−rt(G2, {v2 7→ π(v)2}) , (2.30)

where

π1 : u 7→


σ(v1, u)2 if (v1, u) ∈ dom(σ) ,

i if u = v2

(2.31)

is the partial permutation routing v to row i within its column, and π2 : u 7→ σ(v1, u)2

is the current partial permutation already planned for column v1. For simplicity, we

assume the routing time along rows is the same in both cases, so it cancels out. To

compute an upper bound on the routing number in (2.30) we use the given permuter

for G2.

To implement routing on the Cartesian product of graphs, we route σ obtained
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input : π : V (G) ↼⇀ V (G)
1 σ ← empty set of V (G) ↼⇀ V (G)
2 r ← |V (G2)| // #remaining rows
3 foreach row i ∈R V (G2) :
4 E ← {(v1, π(v)1, c(v, i)) | v ∈ dom(π) \ dom(σ)}

// Add edges for unmapped vertices
5 H = (U, V,E), with U = V := [n1]
6 foreach u ∈ U with degE(u) < r :
7 foreach v ∈ V with degE(v) < r :
8 Add (u, v, ε) to E(H)

9 Find a minimum-weight perfect matching Ematch in H
10 Vmatch ← the set of vertices associated with Ematch

11 σ ← σ + {v 7→ (v1, i) | v ∈ Vmatch} // Recall (2.1)
12 r ← r − 1

13 return σ

Algorithm 2.3.2: Heuristically choosing distinct sets of representative vertices
for the Cartesian product of graphs G = G1 ×G2, for graphs G1 and G2. We
modify Lemma 2.3 to pick n2 minimum-weight perfect matchings, with respect
to the heuristic cost function c ((2.30)). The notation ∈R indicates that we
select elements uniformly at random without replacement. The edges of the
weighted undirected bipartite multi-graph H are specified as a multi-set of
triples from V (G) × V (G) × R. We pick ε > 0 so that zero-cost edges for
mapped vertices are favored over edges for unmapped vertices.

from Algorithm 2.3.2 within each column independently, and proceed with Line 5 of

Algorithm 2.3.1.

Finally, we analyze the time complexity of the permuter for Cartesian products of

graphs. Assume the time complexity of computing rt(G1, σ) and rt(G2, σ
′) is upper

bounded by t1 and t2, respectively. Computing the cost function (2.30) then has time

complexity O(t2). In Algorithm 2.3.2 we construct a bipartite weighted graph with

2n2 vertices in time O(n2n1t2 + n2
2). On that graph we perform a maximum weighted

bipartite matching algorithm in O(n3
2) using the Hungarian algorithm [Kuh55].3 We

do this once for each row and route all vertices to their assigned rows. Then, we

continue with Line 5 of Algorithm 2.3.1, resulting in a total time complexity for
3A tighter bound of O(

√
nm log (nC)) is possible [GT89], for n,m,C the number of vertices, the

number of edges, and absolute maximum integer edge weight, respectively. Our edge weights can be
scaled to integers that are upper bounded by O(n2 (n1 + n2)).
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running the permuter of O(n1 (n2n1t2 + n3
2) + n2t1).

2.3.2 Partial Token Swapping

The Token Swapping problem is similar to Routing via Matchings, but mini-

mizes the total number of transpositions instead of the depth [Yam+14]. It follows

that the induced permutation circuit is optimized for circuit size. For ε > 0, a (1 + ε)-

approximation algorithm is an algorithm that produces a solution within a factor

(1 + ε) of optimal for all valid inputs. Here, we define a generalized version of Token

Swapping that allows for partial permutations, and then give a 4-approximation

algorithm for this problem on connected simple graphs that generalizes a previous

4-approximation algorithm for total permutations [Mil+16].

Definition 2.9 (Partial Token Swapping). We define Partial Token Swap-

ping as an optimization problem. Given are a graph G and partial permuta-

tion π : V (G) ↼⇀ V (G). The objective is to find the smallest k ∈ N such that

π̂ = (u1 v1)(u2 v2) . . . (uk vk), for π̂ some completion of π and (ui, vi) ∈ E(G) for

i ∈ [k].

Analogous to the routing number, we define the routing size of π : V (G) ↼⇀ V (G)

on G, rs(G, π), to be the minimum k in Definition 2.9, and the routing size of G as

rs(G) := max
σ∈Sym(V (G))

rs(G, σ) . (2.32)

Token Swapping is the special case of Partial Token Swapping where π is con-

strained to be a total permutation. Partial Token Swapping also has an equivalent

token-based formulation, similar to Partial Routing via Matchings.

The correspondence to minimal-size classical routing is immediate by replacing

transpositions with swap gates.
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The decision version of Token Swapping was first shown to be NP-complete [Mil+16]

and hard for a model of parametrized complexity, parametrized by the number of

swaps k [BMR17]. Furthermore, assuming the Exponential Time Hypothesis (ETH),

Token Swapping cannot be solved in time f(k)(|V (G)|+ |E(G)|)o(k/ log k) with f

any computable function [BMR17].

Approximation Algorithm for Partial Token Swapping

We now describe a permuter that aims to minimize the circuit size. Miltzow et

al. [Mil+16] gave a 4-approximation algorithm for Token Swapping. Here, we

generalize their results to Partial Token Swapping and prove that our generalized

algorithm is also a 4-approximation algorithm. For this section, we consider the

token-based formulation of Partial Token Swapping (recall the notion of tokens

introduced in Section 2.3.1).

The main idea of Miltzow et al. is to perform swaps that reduce the sum of all

distances of tokens to their destinations. We use the following definitions from [Mil+16]:

An unhappy swap is “an edge swap where one of the tokens swapped is already on its

target and the other token reduces its distance to its target vertex (by one)”, and a

happy swap chain is a path of `+ 1 distinct vertices v1v2 . . . v`, such that swapping all

(vi, vi+1), for i ∈ [`− 1], in increasing order strictly reduces the distances of all tokens

in the chain to their destinations.

When considering a partial permutation, not all vertices have a token assigned to

them. We add an extra step to the approximation algorithm for Token Swapping

to make use of this: Before considering an unhappy swap, we first try to swap a token

to a tokenless neighbor if it brings the token closer to its destination. We call this a

no-token swap.

The approximation algorithm for Partial Token Swapping is specified in full

in Algorithm 2.3.3.
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input : π : V (G) ↼⇀ V (G)
1 while π 6= id |dom(π) :
2 if there exists a happy swap chain v1v2 . . . v` then
3 Perform transpositions (v1 v2)(v2 v3) . . . (v`−1 v`)
4 else if ∃v ∈ dom(π),∃u ∈ N(v) \ dom(π) : d(u, π(v)) < d(v, π(v)) then
5 Perform no-token swap (v u) // u has no token
6 else
7 There exists an unhappy swap; perform it
8 Update π according to the transpositions that were performed
9 return The sequence of transpositions that was performed

Algorithm 2.3.3: Routing tokens on a connected simple graph G to their
destinations while minimizing the number of transpositions. We add an extra
step that performs no-token swaps to the algorithm of [Mil+16]. For v ∈ V (G),
N(v) ⊆ V (G) denotes the set of neighbors of v. The partial permutation
id |dom(π) : V (G) ↼⇀ V (G) is the restriction of the identity function id : V (G)↔
V (G) to dom(π) (so it is undefined outside of dom(π)).

Theorem 2.10. Given a simple connected graph G and π : V (G) ↼⇀ V (G), Algo-

rithm 2.3.3 uses at most 4 · rs(G, π) transpositions.

Proof. The proof is very similar to [Mil+16, Theorem 7] with some minor modifications

to account for no-token swaps. Let

S :=
∑

v∈dom(π)

d(v, π(v)) . (2.33)

We know that rs(G, π) ≥ S/2 since each swap can only reduce S by two. A no-token

swap reduces S by one. A happy swap chain of length ` reduces S by `+ 1. As such,

over the course of the algorithm,

#(happy swaps) + #(no-token swaps) ≤ S . (2.34)

For an unhappy swap, the token that is swapped away from its destination must next
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be involved in a happy swap or a no-token swap, so

#(unhappy swaps) ≤ #(happy swaps) + #(no-token swaps) . (2.35)

Overall, we have

#(unhappy swaps) + #(happy swaps) + #(no-token swaps) (2.36)

≤ 2#(happy swaps) + 2#(no-token swaps) (2.37)

≤ 2S ≤ 4 · rs(G, π) .

Miltzow et al. further showed that their algorithm for total permutations gives a

2-approximation algorithm when the graph is a tree. We now give an example showing

that this is not the case for our modified algorithm when the permutation is partial.

Consider the path graph Pn, for n > 2, and a partial permutation

π := {i 7→ i+ 1 | i ∈ [n− 2]} ∪ {n 7→ 1} . (2.38)

Trivially, the shortest product of transpositions implementing π is

n−2∏
i=0

((n− i) (n− 1− i)) (2.39)

of length n − 1. However, the algorithm selects no-token swaps arbitrarily. In the

worst case, it could select the sequence of transpositions

[
n−3∏
i=0

((n− 2− i) (n− 1− i))

]
·

[
n−2∏
i=0

((n− i) (n− 1− i))

]
·

[
n−3∏
i=0

((2 + i) (3 + i))

]
(2.40)

of length 3n−5. Therefore, in the limit we get an approximation ratio of limn→∞(3n−

5)/(n− 1) = 3.
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While (2.38) is only undefined on one input, we can modify π by removing k = o(n)

entries to make it harder to find an appropriate completion, since there are (k + 1)!

possibilities. Then the algorithm still asymptotically achieves an approximation ratio

of limn→∞(3n− 5− 2k)/(n− 1) = 3.

Of course, it is still possible that the algorithm could achieve better than a 4-approx-

imation. We leave the best approximation ratio of our Partial Token Swapping

algorithm (on trees and in general) as an open question.

Finally, we determine the time complexity of this permuter. Computing an all-to-all

distance matrix takes time Θ(|V (G)|3) using the Floyd-Warshall algorithm [Flo62], but

this cost needs only to be incurred once for a graph so we do not include it. A happy or

unhappy swap can be found in time O(|E(G)|) by finding cycles in an auxiliary directed

graph [Mil+16]. Similarly, finding no-token swaps has time complexity O(|E(G)|).

Therefore, we get a total time complexity of O(S|E(G)|) ≤ O(|V (G)|2|E(G)|).

2.4 Placing Qubits on the Architecture

A mapping algorithm (or mapper) finds an assignment of circuit qubits to architecture

vertices such that gates can be executed efficiently. We specify mappers in terms

of the routing number rt(GA, π) (2.10) and the routing size rs(GA, π) (2.32), for

π : V (GA) ↼⇀ V (GA). In practice, we replace these quantities with the upper bounds

that result from applying our permuters.

Mappers construct placements of circuit qubits onto qubits of the architecture.

A placement is a bijective partial function p : Q ↼⇀ V (GA). A mapper has access to

the current placement p̂ : Q→ V (GA) provided by the circuit transformation. Given

a placement p and the current placement p̂, we can compute a partial permutation

p ◦ p̂−1 : V (GA) ↼⇀ V (GA) that implements p. All our mappers construct a placement

p that is initially undefined everywhere and modify it until finished.
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In the remainder of this section, we describe several specific mappers that we

implement and evaluate. We describe mappers optimizing for circuit depth in Sec-

tion 2.4.1 and for circuit size in Section 2.4.2. We also give an upper bound on the

time complexity of the mappers as a function of the time complexity of the permuter,

tp.

2.4.1 Circuit Depth Mappers

In this section we discuss mappers that attempt to minimize the transformed circuit

depth. Let L be the first layer of gates of the input circuit, and let M be a maximum

matching in the architecture graph.

Greedy Depth Mapper

The greedy depth mapper iteratively places the highest-cost gate at its lowest-cost

location, where cost is measured in terms of the routing number to achieve the

placement. More precisely, we initialize the set of used vertices U ← ∅ and find a

placement p′ := {q1 7→ v1, q2 7→ v2} that attains the optimum

max
(q1,q2)∈tg(L)

min
(v1,v2)∈M

rt
(
GA, (p ∪ {q1 7→ v1, q2 7→ v2}) ◦ p̂−1

)
, (2.41)

where we consider both orderings of edges from M , (v, u), (u, v) ∈M , since edges are

undirected. Then, we update U ← U ∪ dom(p′) and recompute M for the induced

subgraph GA[V (GA) \ U ]; we remove the gate associated to (q1, q2) from L; we set

p← p∪ p′; and we iterate until tg(L) = ∅ or M = ∅. Finally, we return the placement

p.

In this procedure, we perform at most min{|L|, |M |} iterations to place gates. In

each iteration, we find a p′ according to (2.41) in time O(|L||M |tp). Thus, the time
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complexity for one call of the mapper is

O
(

min{|L|, |M |}
(
|L||M |tp +

√
|V (GA)||E(GA)|

))
, (2.42)

where O(
√
|V (GA)||E(GA)|) is the complexity of computing a maximum match-

ing [MV80].

Incremental Depth Mapper

Instead of trying to place (almost) all gates in L, the incremental depth mapper

guarantees placement of only the lowest-cost gate, as given by the routing number,

and incrementally improves the situation for the other gates. Specifically, we first find

a placement pmin := {q1 7→ v1, q2 7→ v2} that attains the optimum

c′min := min
(q1,q2)∈tg(L)

min
(v1,v2)∈E(GA)

rt(GA, (p ∪ {q1 7→ v1, q2 7→ v2}) ◦ p̂−1) , (2.43)

where we consider both orderings of E(GA), (u, v), (v, u) ∈ E(GA). We set p← pmin

and define U := {u, v}. Let cmin := max{c′min, 1}.

We find a placement for the remaining two-qubit gates that (individually) does not

exceed cmin. We iterate in arbitrary order over (q1, q2) ∈ tg(L) and do the following:

For i ∈ [2], we construct a set of eligible vertices

Ui :=
{
v ∈ V (GA) \ U | rt

(
GA, (p ∪ {qi 7→ v}) ◦ p̂−1

)
≤ cmin

}
. (2.44)

Now we try to find v∗1 6= v∗2 as

(v∗1, v
∗
2) := arg min

(v1,v2)∈U1×U2

d(v1, v2) . (2.45)

If such (v∗1, v
∗
2) does not exist, we do not include q1 and q2 in p; otherwise, we set

p ← p ∪ {q1 7→ v∗1, q2 7→ v∗2} and update U ← U ∪ {v∗1, v∗2}. After iterating over all
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gates in tg(L), we return p.

The time complexity of the incremental mapper is

O
(
|L|
(
|E(GA)|tp + |V (GA)|tp + |V (GA)|2

))
. (2.46)

This assumes we have access to the all-pairs distance matrix of the architecture graph,

which can be precomputed in time Θ(|V (GA)|3) [Flo62] (independent of the input

circuit).

2.4.2 Circuit Size Mappers

We now discuss mappers that optimize for circuit size. The behavior of such mappers

is somewhat different from mappers optimizing for circuit depth. If there is any gate

that can be performed without moving qubits, then there is no disadvantage to doing

that immediately since it will have to be performed eventually. If there is any such

gate, we simply return the empty placement. Thus we assume, for all mappers in this

section, that there are no gates to be performed in-place.

Greedy Size Mapper

The greedy size mapper the same as the greedy depth mapper (Section 2.4.1), except

that we replace rt(·) with rs(·) in (2.41).

Simple Size Mapper

The simple size mapper places only the lowest-cost gate at its lowest-cost location.

More precisely, we find a placement p := {q1 7→ v1, q2 7→ v2} that attains the optimum

min
(q1,q2)∈tg(L)

min
(v1,v2)∈E(GA)

rs
(
GA, (p ∪ {q1 7→ v1, q2 7→ v2}) ◦ p̂−1

)
(2.47)
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where we consider all orderings of the edges of E(GA), and return p. Note that we

have replaced rt(·) with rs(·) in (2.43). The time complexity of the simple size mapper

is O(|L||E(GA)|tp).

Extension Size Mapper

The extension size mapper first finds an initial placement p using (2.47). Let c′min be

the value attained at the optimum for (2.47). After finding the initial placement, we

try to only place another gate if it is cheaper to place now rather than in a later call

to the mapper.

Specifically, for the current p and p̂, we define p̂′ : Q→ V (GA) as the placement

after performing the permutation circuit constructed from transpositions achieving

rs(GA, p ◦ p̂−1). Let U ← ∅ and GU = GA[V (GA) \ U ]. Now we define a heuristic for

the number of saved transpositions, s : Q×Q→ N, as

s(q1, q2) := rs
(
GA, p ◦ p̂−1

)
+ min

(v1,v2)∈E(GA)
rs
(
GA, {q1 7→ v1, q2 7→ v2} ◦ (p̂′)

−1
)

− min
(u1,u2)∈E(GU )

rs
(
GA, (p ∪ {q1 7→ u1, q2 7→ u2}) ◦ p̂−1

)
,

(2.48)

and we consider all orderings of the edges of E(GA) and E(GU).

The extension size mapper iterates the following. We find the gate (q∗1, q
∗
2) ∈ tg(L)

attaining

smax := max
(q1,q2)∈tg(L)

s(q1, q2) , (2.49)

and let (u∗1, u
∗
2) ∈ E(GU) be the edge attaining smax. If smax ≥ 0, we set p ←

p ∪ {q∗1 7→ u∗1, q
∗
2 7→ u∗2}, remove the gate (q∗1, q

∗
2) from L, update U ← U ∪ {v∗1, v∗2},

and iterate; otherwise, we stop and return p.

Calculating s(q1, q2) for any q1, q2 ∈ Q takes time O(|E(GA)|tp). Therefore, the

52



total time complexity of the extension size mapper is

O
(
|L|2|E(GA)|tp

)
. (2.50)

Qiskit-based Mapper

Finally, we implement a mapper that is based on Qiskit’s circuit transformation

(described in Section 2.2.2). Since this is a mapper, we only execute one iteration of

the circuit transformation: for the first layer L. We also do not modify the output

circuit, but instead return the final p̂ that would be induced by executing all swaps

found during the mapping process.

We make three changes to Qiskit’s circuit transformation. The first is that when

minimizing S, instead of choosing a maximal set of swaps in every iteration, we

choose only one swap along an edge e ∈ E(GA) that minimizes S. The second is

that the upper bound on the number of iterations is raised to |V (GA)|2, since we only

apply one swap per iteration. Thirdly, if no trial is successful, we fall back to the

simple size mapper (Section 2.4.2) and return the placement it finds, which places

only one gate in this iteration.

We now give the time complexity of the Qiskit mapper. First, we compute an

all-to-all distance matrix in time Θ(|V (GA)|3) [Flo62], which we ignore since it is a

one-time cost dependent only on the architecture. Each of the O
(
|V (GA)|2

)
iterations

has a time complexity of O(|E(GA)||L|). Thus, the Qiskit mapper has time complexity

O
(
|V (GA)|2|E(GA)||L|

)
.

2.5 Results

We implement the architecture-respecting circuit transformations introduced in Sec-

tion 2.2.2 with a variety of mappers and appropriate permuters. We also implement
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the greedy swap transformation described in Section 2.2.2. We check the validity

of our implementations by testing closeness in fidelity of the original output state

and that of the transformed circuit for random input states of 11 qubits on random

circuits [SUC19] (described in the next section).

2.5.1 Evaluation Criteria

When testing the performance of these circuit transformations, each is allocated at

most 8GB of RAM and 2 days to transform all circuits of a data point. For each data

point we transform 10 random circuits and 1 QSP circuit. We consider a 2-day runtime

acceptable, given that classical computational resources are plentiful compared to

quantum ones. We generate the data on a heterogeneous cluster with Intel Opteron

2354 and Intel Xeon X5560 processors.

The Cartesian permuter (Line 9), the general size permuter (Section 2.3.2), and

Qiskit’s circuit transformation (Section 2.2.2) are randomized. We run multiple trials

of these permuters and take the best result. Most of the time, trials produce equally

good permutation circuits, although occasionally they deviate by a few swap gates.

Our mappers run permuters O(|L||E(GA)|) times, so we do only 4 trials to quickly

remove any bad outliers. In contrast, our circuit transformation only directly runs

a permuter once per layer of gates, so in this case we perform a slower 100 trials in

an attempt to save a few swaps. We leave the number of trials for Qiskit’s circuit

transformation at its default of 40.

We test the performance of circuit transformations for the grid, Pn1×Pn2 , using the

permuter from Line 9 and the modular architecture, Mod(n1, n2), with the permuter

from Line 9, for n1, n2 ∈ N. For an N -qubit circuit, we set n1 = n2 = d
√
Ne so that

there are enough qubits in the architecture to contain the circuit. By Corollary 2.8,

we know that taking n1 = n2 minimizes the routing time for our routing strategy

among all grids with the same number of qubits. It is less clear how to balance
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parameters for the modular architecture since Corollary 2.7 does not depend on n1

and n2. For n1 � n2 or n2 � n1, less routing is needed, since many qubits are

adjacent to one another. Thus, we take n1 = n2 in an attempt to consider a hard

case. For some values of N , it may also be possible to find parameters n′1 6= n′2 such

that N ≤ n′1n
′
2 < d

√
Ne2 = n1n2, requiring fewer qubits. However, this introduces

unwanted size-dependent behavior in our results when |n′1 − n′2| � 0 for one circuit

size and n′1 ≈ n′2 for the next, so we find it preferable to fix n1 = n2.

We compare the transformed circuits in terms of their weighted depth and weighted

size. For both trapped-ion and superconducting qubits, two-qubit gates typically have

longer execution times and lower fidelities than single-qubit gates [Lin+17]. Even

among two-qubit gates there is a difference between execution times. Assuming fast

local unitaries, the swap gate has 1–3 times the interaction cost of a cnot depending

on the physical interactions used to realize the gates [VHC02]. For simplicity, we

assign unit cost for one-qubit gates, cost 10 for cnot, and cost 30 for swap. We

define the weighted size of a circuit as the sum of all gate weights and the weighted

depth of a circuit as the maximum-weight path in the DAG of the circuit, where the

weight of a path is the sum of the weights of the gates along it.

We consider two circuit families: random circuits and quantum signal processing

(QSP) circuits [LC17]. Random circuits have been proposed for quantum computational

supremacy experiments on near-term quantum devices [Boi+18; Bou+18]. Such

proposals typically construct random circuits so that architecture constraints are

automatically obeyed. For our purposes, random circuits provide a class of examples

with little structure for circuit transformations to exploit, so we expect them to

represent a hard case with large overhead. We generate a fixed set of 10 random

circuits for various qubit counts. We set the number of circuit layers to 20. For

each layer, we bin the qubits into pairs uniformly at random and assign each pair of

qubits a Haar-random unitary from SU(4). Finally, we decompose each unitary into
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the smallest possible number of cnot + SU(2) gates [VW04]. This random circuit

generator is provided by Qiskit [Abr+19].

We consider QSP circuits for Hamiltonian simulation as an example of a realistic

quantum algorithm. We use the unoptimized circuits provided in [Chi+18], decomposed

into Z rotations, cnot gates, and single-qubit Clifford gates. The QSP algorithm

requires precise angles that turn out to be expensive to compute. Therefore, [Chi+18]

uses randomized angles instead, giving a circuit that does not correctly implement

the Hamiltonian simulation. Nevertheless, the circuit corresponds to an accurate

implementation of QSP, up to rotation angles, and can be used for benchmarking

resources. Furthermore, the circuit transformations we construct are unaffected by

those angles. We only consider one pair of phased iterates of the QSP algorithm

(V †φi+πVφi−1
as in [Chi+18, Eq. 31]). A full QSP circuit for the architecture can be

constructed by iterating the mapped circuit of such phased iterates, a permutation

circuit between iterations, state preparation, and state unpreparation. The cost of the

transformed phased iterates dominates all other costs of the construction, so the total

cost can be estimated by taking our result times the number of iterations.

The circuit transformations from Section 2.2.2 are constructed from a permuter

and a mapper. We denote such circuit transformations by tf : {d,s} ×M, whereM

is the set of all mappers (see Table 2.2), “d” denotes an appropriate depth permuter

(Section 2.3.1), and “s” denotes the general size permuter (Section 2.3.2). For example,

by tf(d,greedy depth) we denote an architecture-respecting circuit transformation with

a depth permuter for the architecture and the greedy depth mapper (Section 2.4.1).

2.5.2 Numerical Results

Figure 2.1 plots our results. We first consider the random circuit results. For the

grid, we find that tf(d,incremental) shows much slower growth of weighted depth

than circuit transformations that do not use depth-optimized permuters (Line 9). We
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Figure 2.1: The weighted depth and weighted size for architecture-respecting random
circuits (top two rows) and QSP circuits (bottom two rows) on the grid architecture
(left column) and the modular architecture (right column). We generate fixed sets
of 10 random circuits for increasing qubit counts and plot the mean and standard
deviation for each data point. One QSP circuit is considered for each data point.
The metrics for the original circuit are also given to make the overhead introduced
in circuit transformations explicit; note that the original circuit does not respect the
architecture constraints. The notation tf : {d,s}×M indicates a circuit transformation
constructed from either an appropriate depth (“d”) permuter or the size (“s”) permuter
and one of our mappers (Table 2.2).
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Abbreviation Mapper name Section

greedy depth greedy depth mapper 2.4.1
incremental incremental depth mapper 2.4.1
greedy size greedy size mapper 2.4.2
simple simple size mapper 2.4.2
extend extension size mapper 2.4.2
qiskit qiskit-based mapper 2.4.2

Table 2.2: The abbreviated names of the set of mappersM used to construct circuit
transformations tf : {d,s} ×M.

also note that tf(d,qiskit) performs much better than Qiskit’s circuit transformation

(Section 2.2.2), suggesting that depth-optimized permuters can offer a significant

advantage. On the modular graph, Qiskit’s circuit transformation is much better at

minimizing the weighted depth, but tf(d,qiskit) starts closing the gap for larger sizes.

Unfortunately, we do not know if tf(d,qiskit) performs better at larger sizes because

Qiskit’s circuit transformation is not fast enough to generate the relevant data. Up

to 100 qubits tf(s,qiskit) achieves the best weighted size on grid architectures, and

tf(s,simple) does best on modular architectures up to 121 qubits. For all sizes the

greedy swap circuit transformation (Section 2.2.2) performs as one of the best at

optimizing for weighted circuit size. The greedy swap circuit transformation is also

able transform larger circuits within the time limit as expected from its lower time

complexity.

For larger QSP circuits, the greedy circuit transformation (Section 2.2.2) is the

clear winner in both weighted depth and weighted size, suggesting that it may be a

good approach for practical quantum circuits. Surprisingly, tf(s,qiskit) also performs

fairly well at minimizing the depth despite targeting the circuit size.
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2.6 Conclusion and Future Work

We have specified various ways to efficiently transform general quantum circuits to

respect architecture constraints while attempting to minimize the overhead. We

investigated the classical routing problem and proposed Partial Routing via

Matchings and Partial Token Swapping as models of our optimization objectives

of minimizing the circuit depth and circuit size, respectively. We gave algorithms for

Partial Routing via Matchings for the path graph, the complete graph, and

for the generalized hierarchical products of graphs, and showed tighter bounds for

certain partial permutations. We then gave more detailed analyses of special cases

of the generalized hierarchical product that arise in proposed quantum architectures:

the Cartesian product (e.g., for grid architectures) and the modular architecture. We

also showed a 4-approximation algorithm for Partial Token Swapping on general

graphs.

We constructed architecture-respecting circuit transformations with a variety of

heuristic qubit placement strategies (called mappers). A mapper attempts to find

suitable qubit placements on the architecture to execute the circuit succinctly. Given

a permuter subroutine, our mappers can handle any connected simple graph. We also

showed how to construct a circuit transformation from a permuter and a mapper.

Finally, we tested our circuit transformations against Qiskit’s circuit transforma-

tion and a basic greedy strategy with large quantum circuits on a grid or modular

architecture. When optimizing for weighted circuit size, our greedy circuit transforma-

tion was one of the best in all cases, though using our circuit transformations with

algorithms for Partial Token Swapping sometimes gave a slight advantage. For

the weighted circuit depth, the picture was more nuanced. We found that algorithms

using Partial Routing via Matchings for classical routing could give good perfor-

mance for random circuits, but Qiskit’s circuit transformation and our greedy circuit

transformation also performed well and gave the best results in some cases.
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We would like to better understand what circuit transformations work best for

which architectures, quantum algorithms, and objective functions. We also would

like to use the tools of Partial Routing via Matchings and Partial Token

Swapping to establish bounds on the overhead of specific quantum architectures.

Ideally, we could use these tools and circuit transformations to design architectures

that offer good performance subject to realistic hardware constraints and to compute

realistic resource estimates for implementations of quantum algorithms.

Our mapper algorithms may be improved by including some form of lookahead

to consider later layers of the given circuit, or by specializing mappers to particular

architectures.

Modeling the architecture as a simple graph loses information about the underlying

hardware. For example, in the IBM system the architecture edges have directionality

indicating the control and target of cnots. In implementations of the modular

architecture, the interconnecting links are probably much noisier and slower than

local operations. In general, gate costs and times can vary significantly across a

hardware implementation and sometimes even vary over time [Mur+19]. Adapting to

variable costs and keeping track of operations performed asynchronously is challenging

but could be worthwhile for architectures that support a mixture of fast and slow

operations.

Finally, we hope that future progress on architecture-respecting circuit transforma-

tions will be facilitated by a suitable set of benchmarks of large quantum circuits. We

publicly make available and license our source code, benchmark circuits, and results

(in TSV format) [SUC19] and encourage others to do the same.
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Chapter 3

Nearly optimal time-independent

state reversal of a spin chain

This chapter is based on

[Bap+21b] Aniruddha Bapat, Eddie Schoute, Alexey V. Gorshkov, and Andrew M.

Childs. “Nearly optimal time-independent reversal of a spin chain”. In: Physical

Review Research (2021). arXiv: 2003.02843v1 [quant-ph]. Forthcoming

3.1 Introduction

Quantum information transfer is a fundamental operation in quantum physics, and fast,

accurate protocols for transferring quantum states across a physical system are likely

to play a key role in the design of quantum computers [DiV00; Kim08]. For example,

quantum information transfer can be used to establish long-range entanglement and

is also useful for quantum routing. Extensive work has studied the implementation

of various information transfer protocols, often via Hamiltonian dynamics on spin

chains [Bos07].

Information transfer in Hamiltonian systems is governed by the spread of en-
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tanglement and has close links to Lieb-Robinson bounds [LR72], entanglement area

laws [ECP10], and algorithms for quantum simulation [Haa+18]. Fundamental limits

to the rate of entanglement growth are set by bounds on the asymptotic entanglement

capacity [Dür+01; Chi+03; CLV04; Ben+03] and more recent small incremental en-

tangling theorems [Bra07; AMV13; Aud14; Mar+16]. We show that these limits can

also be used to obtain lower bounds on the execution time of Hamiltonian protocols

for information transfer. This raises the question of whether a protocol can achieve

optimality by saturating the bound.

In this chapter, we propose the first time-independent protocol for state rever-

sal using nearest-neighbor interactions that we expect has applications in noisy,

connectivity-limited quantum devices. We show that the execution time of our proto-

col is nearly optimal, comparable to the time-dependent protocol given in [Rau05].

We also find, through simulations, that these reversal protocols have reduced error

scaling in system size to noise due to static disorder caused by imperfect fabrication

when compared to a swap-based protocol (see Section 3.4). In addition, our protocol

does not require dynamical control but only engineered nearest-neighbor couplings, so

we expect it to be more experimentally feasible on near-term quantum systems such

as superconducting qubits [Kja+20] where dynamical control could be an additional

source of noise.

Before presenting our state reversal protocol in more detail, let us elaborate on

the claim that it is nearly optimal—specifically, that it has an evolution time within a

factor 1.502(1 + 1/n) of the shortest possible. Under the normalization condition of

interactions, our protocol achieves state reversal in time

tn := π
√

(n+ 1)2 − p(n)/4 , (3.1)

where p(n) := n (mod 2). This is equivalent in time to a swap gate circuit of depth
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∼n/3. As state reversal using only swaps requires depth at least n − 1 [ACG94],

our protocol is faster than any swap-based protocol by an asymptotic factor of 3.

Similarly, we can compare to other time-independent Hamiltonian protocols that use

nearest-neighbor interactions: [Chr+04] implements state transfer in time nπ/4 and

[Alb+04] implements state reversal in time nπ/2 but introduces relative phases in the

state. Our time-independent protocol (and some time-dependent protocols [Rau05;

FT06; KD15]) thus improve upon these previous protocols for state transfer and state

reversal except for a subleading term.

We lower-bound the time for state reversal, which can generate entanglement

across a bipartition, by using bounds on the asymptotic entanglement capacity in a

more general model [Ben+03; Chi+03]. The asymptotic entanglement capacity bounds

the rate at which entanglement can be generated by any evolution of a given bipartite

Hamiltonian interspersed with arbitrary LOCC and with arbitrary finite local ancilla

spaces. We give an explicit example of entanglement generated by state reversal and

lower-bound the time using the capacity of a normalized two-qubit interaction in

canonical form (1.2), even allowing for LOCC. Nonetheless, our state reversal protocol

is able to nearly saturate this bound without classical communication, without ancillas,

and with only nearest-neighbor interactions throughout the chain.

We propose a state reversal protocol with Hamiltonian of the form

H(J ,h) = J0σ
1
x +

n−1∑
k=1

Jkσ
k
xσ

k+1
x + Jnσ

n
x −

n∑
k=1

hkσ
k
z , (3.2)

where the coefficients J ,h are engineered as follows. Letting

ak := π
√

(n+ 1)2 − (n+ 1− k)2/(4tn) , (3.3)

for k ∈ N, our protocol is defined as (see also Figure 3.1)

Protocol 3.1. Let Jk = a2k+1, hk = a2k for all sites k, and let H := H(J ,h). Apply
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1.0

0.0

n− 1 n n+ 1. . . . . .(n− 1)/20 1 2

J, h

R ∼= e−iH(J,h)tn

Figure 3.1: The state reversal operation R (depicted by arrows) and an illustration of
our time-independent protocol to implement it. The nearest-neighbor σkxσk+1

x couplings
(Jk, dashes) and on-site σkz fields (hk, dots) are plotted on the y-axis. Sites 0, n+ 1 are
ancilla qubits, which are not part of the protocol and are used purely in the analysis.

U := e−itnH to the input state.

We show in the following sections that our protocol implements state reversal

exactly, up to a global phase (we denote this equivalence by ∼=). In other words,

Theorem 3.2. U ∼= R.

The rest of the chapter is organized as follows. In Section 3.2, we provide the proof

of Theorem 3.2. Next, in Section 3.3, we give lower bounds on the time required to

implement state reversal using normalized, local Hamiltonians. In Section 3.4, we

carry out an analysis of reversal protocols under a noise model given by static disorder.

3.2 Proof and analysis of the protocol

We prove the correctness of our protocol (i.e., Theorem 3.2) by mapping the spin

chain to a doubled chain of Majorana fermions via a Jordan-Wigner transformation,

describing the action in the Majorana picture, and then mapping back to the spin
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picture. To help with the analysis, we extend the chain with two ancillary sites

{0, n+ 1} called the edge, E, and refer to the sites {1, . . . , n} as the bulk, B. We

define the transverse-field Ising model (TFIM) Hamiltonian

H̃ :=
n∑
k=0

a2k+1σ
k
xσ

k+1
x −

n∑
k=1

a2kσ
k
z . (3.4)

on the extended chain that reduces to H when the edge is initialized to state |++〉.

Similarly, we define Ũ := e−iH̃tn . Note that the operator H̃ (and hence Ũ) acts trivially

on |++〉E, so this edge state does not change through the course of the evolution.

(Our results also hold using the edge state |−−〉E, which is equivalent to negating the

sign of the longitudinal fields in (3.2).) We then prove that in the Heisenberg picture,

Pauli matrices on site k map to the corresponding Pauli on site n+ 1− k for all sites

k in the chain.

First, we map to the doubled chain of Majorana fermionic operators by defining

γ2k := P[0,k−1] · σkx, γ2k+1 := P[0,k−1] · σky (3.5)

at each site, where we have used the notation P[a,b] :=
∏b

j=a(−σjz) for the Jordan-

Wigner parity string between sites a and b. The γk are Hermitian and satisfy the Ma-

jorana anti-commutation relations {γj, γk} = 2δjk. We also see that σkz = −iγ2kγ2k+1

and σkxσk+1
x = iγ2k+1γ2k+2, leading (3.4) to take the form

H̃ = i

2n+1∑
k=1

akγkγk+1 . (3.6)

The Majoranas γ0, γ2n+3 do not appear in the sum, since a0 = a2n+2 = 0. In the

following lemma, we show how Ũ transforms the Majorana operators. Our main

technique is an analogy with the dynamics of the y component of the spin operator for

a spin n+ 1
2
particle, similar to [Alb+04; Chr+04]. Here, the same analogy provides
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a protocol which gives state reversal on all spins in the chain without introducing

relative phases.

Lemma 3.3. The operation Ũ acts on the Majorana operators as

ŨγkŨ
† =


γk if k = 0, 2n+ 3,

(−1)k−1γ2n+3−k otherwise.
(3.7)

Proof. For the first case, H̃ has no overlap with operators γ0 and γ2n+3, so they are

stationary under evolution by H̃.

For the remaining cases, we use the analogy with a spin s = n+ 1
2
particle. The

Heisenberg evolution of γk corresponds to the rotation of the Sz eigenstate |s, k−s−1〉

of magnetization k − s− 1. Observing that

iπ

4tn
〈s,m|Sy|s,m′〉 = as+m+1(δm′(m+1) − δm(m′+1)) (3.8)

(with ~ = 1), we can express (3.6) in the bilinear form H̃ = 1
2
γ†Aγ, for the vector

γ :=

[
γ1 γ2 . . . γ2n+2

]
and the matrix A := −π/(2tn)Sy expressed in the Sz

basis. Using the Majorana commutation relations, we have γ̇ = i[H̃,γ] = 2iAγ,

so γ(t) = e2iAtγ(0). The Heisenberg evolution of γk under H̃ for time tn is exactly

analogous to the (Schrödinger) time evolution of the state |s, k − s− 1〉 under Sy for

time π. A π-rotation under Sy maps

|s,−s+ k − 1〉 7→ (−1)k−1|s, s− k + 1〉, (3.9)

and correspondingly, γk(tn) = (−1)k−1γ2n+3−k.

Note that (3.9) can easily be verified for a spin-1/2 particle. Similarly, a spin-s

particle may be viewed as a system of 2s spin-1
2
particles with maximal total spin. In

this picture, a π-rotation under Sy corresponds to independent π-rotations of each
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small spin. Since the state |s, k − s− 1〉 is represented by a permutation-symmetric

state with k − 1 up spins, the π-rotation maps it to a state with 2s− (k − 1) up spins

and introduces a phase (−1) for each up spin, which is precisely (3.9).

Due to the signed reversal of the Majoranas in Lemma 3.3, the parity string

P[0,k] = ib+1−a∏2b+1
j=2a γj is (with the exception of γ0) reflected about the center of the

chain with an overall phase that exactly cancels when the product is reordered by

increasing site index. The invariance of the edge Majoranas is crucial, as it provides

a phase factor that cancels the state-dependent phases when we revert to the spin

picture. In particular, we have the following lemma.

Lemma 3.4. The operation Ũ acts on the parity strings as ŨP[0,k]Ũ
† = iσ0

xσ
n+1
x P[0,n−k]

for all k.

Proof. Applying Lemma 3.3, we have

ŨP[0,k]Ũ
† = ik+1(−1)k(2k+1)γ0

2k+1∏
j=1

γ2n+3−j . (3.10)

= γ0P[0,n]P[0,n−k]γ2n+2 (3.11)

where we reordered the product and used P[n+1−k,n] = P[0,n]P[0,n−k]. From the Majorana

anti-commutation relations and (3.5), the result follows.

Now we prove the main theorem.

Proof of Theorem 3.2. U ∼= R holds iff all bulk observables on the chain transform

identically under U,R. For any operator Ok supported on bulk site k ∈ {1, . . . , n},

we show that UOkU † = 〈++|ŨOkŨ †|++〉E = On+1−k. (Henceforth we drop the edge
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subscript E.) By (3.5) and Lemmas 3.3 and 3.4, σkx is mapped to

UσkxU
† = 〈++|ŨP[0,k−1]γ2kŨ

†|++〉 (3.12)

= −i〈++|σ0
xσ

n+1
x P[0,n+1−k]γ2n+3−2k|++〉 (3.13)

= −iσn+1−k
z σn+1−k

y = σn+1−k
x . (3.14)

Next, we use Lemma 3.4 to show that σkz is mapped to

UσkzU
† = −〈++|ŨP[0,k−1]P[0,k]Ũ

†|++〉 (3.15)

= 〈++|σ0
xσ

n+1
x P[0,n+1−k]σ

0
xσ

n+1
x P[0,n−k]|++〉 (3.16)

= σn+1−k
z . (3.17)

All other observables can be written in terms of the on-site Pauli operators σkx, σkz , so

U is identical to R, up to global phase.

3.3 Time lower bound

We now prove a lower bound on the optimal time, t∗, to implement state reversal using

normalized local interactions. Let the entanglement entropy between systems A and B

of a bipartite state |ψ〉AB be E(|ψ〉), defined as the local von Neumann entropy S(ρ) :=

−Tr(ρ log2 ρ), for ρ = TrB(|ψ〉〈ψ|). Then, the asymptotic entanglement capacity of a

Hamiltonian H that couples systems A and B was shown to equal [Ben+03]

EH = sup
|ψ〉∈HAA′BB′

lim
t→0

E
(
e−iHt|ψ〉

)
− E(|ψ〉)

t
, (3.18)

where HAA′BB′ is the Hilbert space of the bipartite systems A and B with arbitrarily

large ancilla spaces A′ and B′, respectively. In particular, for a Hamiltonian of the
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form σx ⊗ σx, [Dür+01; Chi+03] showed that

αxx := Eσx⊗σx = 2 max
y

√
y(1− y) log2

y

1− y
≈ 1.912. (3.19)

This is tighter than the more general small incremental entangling bound EH ≤

α‖H‖ log2 d = 2 for the conjectured α = 2 [Bra07] (best known α = 4 [Aud14]) and

where the smallest dimension of A or B gives d = 2. Since E is invariant under local

unitaries, a direct corollary is that Eσy⊗σy = Eσz⊗σz = αxx.

We now show that Protocol 3.1 is close to the shortest time possible.

Theorem 3.5. It holds that tn
t∗(1+1/n)

≤ αxxπ/4 < 1.502.

Proof. We prove the time lower bound via an upper bound on the rate of increase of

entanglement across a cut in the center of the chain (allowing differences of one qubit

for odd n). Designate the left half of the cut as subsystem A and the right half as

subsystem B. A consists of subsystem A given by the qubit at site bn/2c adjacent to

the cut, and subsystem A′ consisting of the remaining qubits to the left of the cut

as well as a finite but arbitrary number of ancilla systems that are not part of the

chain. Similarly, B consists of subsystem B, the qubit at site bn/2c+ 1, and B′, the

remaining qubits in the right half with an arbitrary finite number of ancilla.

Consider Hamiltonians of the form H(t) = K(t) + K̄(t) specifying the evolution of

the AB system, where K(t) is a two-qubit Hamiltonian supported on systems AB (i.e.,

the cut edge), while K̄ contains terms supported on AA′ or BB′ but not the cut edge

AB. For brevity, we drop the time parameter t even though we allow the Hamiltonian

to be time-dependent. We assume that K is expressed in canonical form (1.2) due to

equivalence under local unitaries. Aside from its support, we make no assumptions

about the form of K̄ (so the resulting bound is more general than nearest-neighbor

interactions). We call H satisfying these conditions divisible and also call protocols

using divisible Hamiltonians divisible.
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Observing that EH is the supremum over a time derivative of the von Neumann

entropy of ρ = TrB(|ψ〉〈ψ|), we have

EH = sup
|ψ〉

Tr

(
−dρ
dt

log ρ− ρd log ρ

dt

)
(3.20)

= sup
|ψ〉

Tr

(
−dρ
dt

log ρ

)
. (3.21)

The reduced density matrix ρ has time evolution

dρ

dt
= −iTrB([H, |ψ〉〈ψ|]). (3.22)

We substitute H = K̄ +
∑

j∈{x,y,z} µjσj ⊗ σj in the commutator and substitute the

time-dependence of ρ into (3.21). By linearity of the trace and sublinearity of the

supremum, we get

EH ≤ EK̄ +
∑

j∈{x,y,z}

µjEσj⊗σj ≤ αxx , (3.23)

where we observe that EK̄ = 0 since K̄ does not have support across the cut, and

use the normalization condition
∑

j|µj| ≤ 1. This bound holds for all divisible

Hamiltonians H, with nearest-neighbor Hamiltonians as a special case.

The entanglement generated by any divisble protocol can now be bounded in

time. We observe that if the protocol contains local measurements then these cannot

increase entanglement E(|ψ〉) and that feedback may be viewed as a particular time-

dependence of H conditioned on measurement outcomes. Therefore, (3.23) bounds

the total increase in entanglement across bipartition AB over a time t∗ by

E(|ψ(t∗)〉)− E(|ψ(0)〉) ≤ αxxt
∗ (3.24)

for any initial state |ψ(0)〉 acted on by a divisible protocol and LOCC.

Finally, we give an explicit bound on the worst-case time of divisible state reversal
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protocols by specifying an initial state. Let the system start in the product state

|φ〉A ⊗ |φ〉B where each qubit forms a Bell state with a local ancilla not part of the

chain. Clearly, E(|φ〉A ⊗ |φ〉B) = 0. We perform a reversal R on the chain and get

the state |ψ〉AB := R(|φ〉A ⊗ |φ〉B), which is maximally entangled, i.e., E(|ψ〉AB) = n.

Then, (3.24) gives the bound

t∗ ≥ E(|ψ〉AB)− E(|φ〉A ⊗ |φ〉B)

αxx
≥ n

αxx
(3.25)

on any divisible state reversal protocol. Comparing this to our protocol time (3.1), we

have
tn
t∗
≤
αxxπ

√
(n+ 1)2 − p(n)

4n
≤ αxxπ(1 + 1/n)

4
.

3.4 Robustness of the protocol

Protocol 3.1 is exact, i.e., any input state |ψ〉 maps perfectly to the output R|ψ〉,

assuming the interaction coefficients are implemented exactly as prescribed. However,

inherent in experimental systems is noise, and the usefulness of a given state transfer

protocol is determined not only by the time of operation and fidelity under perfect

implementation, but also resilience to noise. Here, we model imperfect fabrication

as a static noise term on every coefficient in the Hamiltonian. We compare our

time-independent protocol with a swap-based protocol for reversal (odd-even sort)

and a gate-based protocol [Rau05].

Stochastic noise can be modeled as a perturbation to the Hamiltonian coefficients.

For the case of disorder, we draw a single noise term for every coefficient from the

normal distribution N . We assume that the noise is multiplicative, so that the

noise strength scales proportional to the magnitude of the coefficient. The perturbed
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Hamiltonian H ′ for our time-independent protocol then looks like

H ′ = J ′0σ
1
x +

n−1∑
k=1

J ′kσ
k
xσ

k+1
x + J ′nσ

n
x −

n∑
k=1

h′kσ
k
z , (3.26)

where J ′i = Ji · (1 + δJi), h
′
i = hi · (1 + δhi), where δhi ∼ N (δh), δJi ∼ N (δJ) for

specified standard deviations δh, δJ ≥ 0. Evolution under this Hamiltonian gives a

noisy reversal R′ := e−iH
′
itn that reduces to R when δh = δJ = 0. For swap and

gate-based protocols, we compute an equivalent Hamiltonian formulation and similarly

add noise terms.

A natural and widely used metric for the distinguishability of outputs of two

quantum channels is the completely bounded trace norm (or diamond norm) [AKN98].

The computation of the diamond norm can be efficiently expressed as the solution

to a semidefinite program [Wat09], making it a somewhat non-trivial quantity to

compute. We consider unitary noise models, where the diamond distance is equivalent

to a simpler notion of distinguishability, the spectral distance

∆ := ‖R′−R‖ , (3.27)

where we take the spectral norm of the difference between perfect and noisy state

reversals R and R′. In this case, the diamond distance is at most two times as large as

the spectral distance [Kit97]. The distance ∆ can be used to bound another common

figure of merit, the fidelity

F(ρ, σ) = Tr

(√√
ρσ
√
ρ

)
, (3.28)

for output states ρ and σ evolved by a perfect and noisy reversal, respectively.

We will prove a bound on the minimum fidelity for completeness here but do not

claim novelty of the result. First, we bound ∆ by the minimum fidelity over pure
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states as follows:

∆2 = ‖(R−R′)†(R−R′)‖ (3.29)

= max
|ψ〉
|〈ψ|(R−R′)†(R−R′)|ψ〉| (3.30)

= max
|ψ〉
|〈ψ|21− R†R′−R′†R|ψ〉| (3.31)

= max
|ψ〉
|2− 2 Re 〈ψ|R†R′|ψ〉| (3.32)

= 2−min
|ψ〉

2 Re 〈ψ|R†R′|ψ〉 (3.33)

≥ 2− 2 min
|ψ〉
|〈ψ|R†R′|ψ〉| , (3.34)

where we used the fact that for any unitary U , Re 〈ψ|U |ψ〉 ≤ 1, and Re [z] ≤ |z| for

any z ∈ C. Let Fmin denote the worst-case fidelity over all input states. By the joint

concavity of the fidelity [Wat18, Corollary 3.26], Fmin is attained for a pure state, thus

Fmin = min
|ψ〉

F(R′|ψ〉, R|ψ〉) = |〈ψ|R†R′|ψ〉| (3.35)

since F(|φ1〉, |φ2〉) = |〈φ2|φ1〉| for pure states |φ1〉 and |φ2〉. It then follows from (3.34)

that Fmin ≥ 1− 1
2
∆2. We estimate the spectral distance dependence on noise and system

size in the three candidate protocols [SB21]. For each protocol, we probe the distance

as a function of similar on-site and coupling disorder δ = δh = δJ , and increasing

number of spins n. The spectral distance is computed by exact diagonalization, taking

time exponential in n, and it is possible to probe system sizes up to n = 14 with

the resources available. At these sizes, we can already see differences between the

protocols, shown in Figure 3.2. At each error rate δ, the swap protocol has the

worst performance, the time-independent protocol performs better, and the gate-based

protocol has the best performance. We note that the gate-based and time-independent

protocols perform within a standard deviation of one another, but the swap protocol
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Figure 3.2: Spectral distance mean values with standard deviation (shaded region)
for different protocols under varying strengths of noise. We take 100 samples for each
data point and use a linear fit for a power law ∆ = exp(naδb) controlled on the protocol,
i.e., fitting log ∆ = a log n+b log δ+O(1), to find (standard error) a ≈ 1.66(0.012) and
b ≈ 0.994(0.0028) for the swap-based protocol. The b coefficient changes insignificantly
for time-independent and gate-based protocols but the a coefficient is reduced by
0.31(0.016) for gate-based and 0.23(0.016) for time-independent protocols, indicating
more robust scaling of these protocols in system size, relative to a swap-based protocol.

is significantly noisier. For example, at a threshold of ∆ ≤ 0.03, the swap can reverse

only up to 4 sites, while the time-independent protocol can successfully reverse 8 sites.

Therefore, the specialized protocols for reversal improve upon swap-based protocols

not only in runtime but also in accuracy.

The relative performance of time-independent and gate-based protocols (includ-

ing the swap protocol) may not be captured by our simulations. Since the time-

independent protocol is static, it derives its error primarily from imperfect engineering

of the coupling strengths and interactions with the environment. Gate-based protocols,

however, require dynamical control, which could be an additional source of noise.

Since this noise source is likely to worsen the performance of discrete protocols, we

cannot make a definite comparison between our protocol and gate-based protocols in

our noise model.
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3.5 Discussion

The time-dependent protocol in [Rau05] is closely related to our time-independent

protocol, and both can be described within the same framework. In the time-dependent

case, the state is evolved alternately under two restrictions of the Hamiltonian (3.2):

H(1,0) (uniform Ising) and H(0,1) (uniform transverse field), each for time π/4, for

a total of n + 1 rounds. In the Majorana picture, these Hamiltonians carry out a

simultaneous braiding of neighboring Majoranas along even (resp. odd) edges of the

doubled Majorana chain. The resulting map matches Lemma 3.3 exactly, implying

that the two protocols are identical at the level of Majorana operators. Indeed, any

protocol achieving the map in Lemma 3.3 is guaranteed to implement state reversal.

While a superconstant speedup is not possible in one dimension, our techniques

suggest that routing protocols for higher-dimensional systems might be found by

exploiting similar mappings between spins and fermions [YK07; Kit06; Che20]. While

state transfer in these systems has been studied [Yao+13], the more general questions

of upper and lower bounds on routing remain open, and our bounds based on the

entanglement capacity might yield new insights.
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Chapter 4

Quantum routing with fast reversals

This chapter is based on

[Bap+21a] Aniruddha Bapat, Andrew M. Childs, Alexey V. Gorshkov, Samuel King,

Eddie Schoute, and Hrishee Shastri. “Quantum routing with fast reversals”. In:

Quantum 5 (Aug. 2021), p. 533. doi: 10.22331/q-2021-08-31-533

4.1 Introduction

In this chapter, we give a Hamiltonian routing protocol for the path architecture

graph. We also give a protocol on general graphs for routing sparse permutations,

i.e. permutations with few non-trivial mappings. Rather than directly engineering

a quantum routing protocol, we consider a hybrid strategy that leverages fast state

reversal, R, (Chapter 3) to implement Hamiltonian quantum routing. The reversal

operation can be implemented in swap-normalized time (3.1)

T (R) ≤
√

(n+ 1)2 − p(n)

3
≤ n+ 1

3
, (4.1)

where p(n) ∈ {0, 1} is the parity of n. The Hamiltonian protocol of Chapter 3 can be

understood by looking at the time evolution of the site Majorana operators obtained by
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a Jordan-Wigner transformation of the spin chain. In this picture, the protocol can be

interpreted as the rotation of a fictitious particle of spin n+ 1/2 whose magnetization

components are in one-to-one correspondence with the Majoranas on the chain. A

reversal corresponds to a rotation of the large spin by an angle of π. The gate-based

reversal protocol [Rau05] is a special case of a quantum cellular automaton with a

transition function given by the (n+ 1)-fold product of nearest-neighbor controlled-Z

(cz) operations—an operation that can be done 3 times faster than a swap gate—and

Hadamard operations. In an open spin chain, this process spreads out local Pauli

observables at site i over the chain and “refocuses” them at site n+ 1− i in n+ 1 steps

for every i. The ability to spread local observables (which is present in the gate-based

and Hamiltonian protocols but not in swap-based protocols) may be key to obtaining

a speedup over swap-based algorithms.

Routing using reversals has been studied extensively due to its applications in

comparative genomics (where it is known as sorting by reversals) [BP93; KS95].

References [Ben+08; PS02; NNN05] present routing algorithms where, much like in

our case, reversals have length-weighted costs. However, these models assume reversals

are performed sequentially, while we assume independent reversals can be performed

in parallel, where the total cost is given by the evolution time, akin to circuit depth.

To our knowledge, results from the sequential case are not easily adaptable to the

parallel setting and require a different approach.

Routing on paths is a fundamental building block for routing on more general

graphs. For example, a two-dimensional grid graph is the Cartesian product of two

path graphs, and the best known routing routine applies a path routing subroutine

3 times [ACG94]. A Hamiltonian routing protocol on the path of time cn, for a

constant c > 0, would imply a Hamiltonian routing time of 3cn on the grid. A similar

speedup follows for higher-dimensional grids. More generally, routing algorithms for

the generalized hierarchical product of graphs can take advantage of faster routing of
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the path base graph (Theorem 2.4). For other graphs, it is open whether fast reversals

can be used to give faster routing protocols for general permutations.

In this chapter, we present the following results on quantum routing using fast

reversals. In Section 4.2, we give basic examples of using fast reversals to perform

routing on general graphs to indicate the extent of possible speedup over swap-based

routing, namely a graph for which routing can be sped up by a factor of 3, and

another for which no speedup is possible. Section 4.3 presents algorithms for routing

sparse permutations, where few qubits are routed, both for paths and for more general

graphs. Here, we obtain the full factor 3 speedup over swap-based routing. Then,

in Section 4.4, we prove the main result that there is a quantum routing algorithm

for the path with worst-case constant-factor advantage over any swap-based routing

scheme. Finally, in Section 4.5, we show that our algorithm has average-case routing

time 2n/3 + o(n) and any swap-based protocol has average-case routing time at least

n− o(n).

4.2 Simple bounds on routing using reversals

Given the ability to implement a fast reversal R with cost given by (4.1), the largest

possible asymptotic speedup of reversal-based routing over swap-based routing is a

factor of 3. This is because the reversal operation, which is a particular permutation,

cannot be performed faster than n/3+o(n), and can be performed in time n classically

using odd-even sort. As we now show, some graphs can saturate the factor of 3

speedup for general permutations, while other graphs do not admit any speedup over

swaps.

Maximal speedup: For n odd, letK∗n denote two complete graphs, each on (n+1)/2

vertices, joined at a single “junction" vertex for a total of n vertices (Figure 4.1a).

Consider a permutation on K∗n in which every vertex is sent to the other complete
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(a) Joined graph K∗9 . (b) Complete graph K5.

Figure 4.1: K∗9 admits the full factor of 3 speedup in the worst case when using
reversals over swaps, whereas K5 admits no speedup when using reversals over swaps.

subgraph, except that the junction vertex is sent to itself. To route with swaps, note

that each vertex (other than that at the junction) must be moved to the junction at

least once, and only one vertex can be moved there at any time. Because there are

(n+ 1)/2− 1 non-junction vertices on each subgraph, implementing this permutation

requires a swap-circuit depth of at least n− 1.

On the other hand, any permutation on K∗n can be implemented in time n/3+O(1)

using reversals. First, perform a reversal on a path that connects all vertices with

opposite-side destinations. After this reversal, every vertex is on the side of its

destination and the remainder can be routed in at most 2 steps [ACG94]. The total

time is at most (n+ 1)/3 + 2, exhibiting the maximal speedup by an asymptotic factor

of 3.

No speedup: Now, consider the complete graph on n vertices, Kn (Figure 4.1b).

Every permutation on Kn can be routed in at most time 2 using swaps [ACG94].

Consider implementing a 3-cycle on three vertices of Kn for n ≥ 3 using reversals.

Any reversal sequence that implements this permutation will take at least time 2.

Therefore, no speedup is gained over swaps in the worst case.

We have shown that there exists a family of graphs that allows a factor of 3 speedup

for any permutation when using fast reversals instead of swaps, and others where

reversals do not grant any improvement. The question remains as to where the path
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graph lies on this spectrum. Faster routing on the path is especially desirable since

this task is fundamental for routing in more complex graphs.

4.3 An algorithm for sparse permutations

We now consider routing sparse permutations, where only a small number k of qubits

are to be moved. For the path, we show that the routing time is at most n/3 +O(k2).

More generally, we show that for a graph G of radius

r = min
u∈V (G)

max
v∈V (G)

d(u, v), (4.2)

the routing time is at most 2r/3+O(k2). Our approach to routing sparse permutations

using reversals is based on the idea of bringing all k qubits to be permuted to the

center of the graph, rearranging them, and then sending them to their respective

destinations.

4.3.1 Paths

A description of the algorithm on the path, called MiddleExchange, appears in

Algorithm 4.3.1. Figure 4.2 presents an example of MiddleExchange for k = 6.

In Theorem 4.1, we prove that Algorithm 4.3.1 achieves a routing time of asymp-

totically n/3 when implementing a sparse permutation of k = o(
√
n) qubits on the

path graph. First, let Sn denote the set of permutations on {1, . . . , n}, so |Sn| = n!.

Then, for any permutation π ∈ Sn that acts on a set of labels {1, . . . , n}, let πi denote

the destination of label i under π. We may then write π = (π1, π2, . . . , πn). Let R̄

denote an ordered series of reversals R1, . . . ,Rm, and let R̄1 ++ R̄2 be the concatenation

of two reversal series. Finally, let S · R and S · R̄ denote the result of applying R and

R̄ to a sequence S, respectively, and let |R| denote the length of the reversal R, i.e.,

the number of vertices it acts on.
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Input : π, a permutation
1 function MiddleExchange(π):
2 identify the labels x1, . . . , xk ∈ [n] to be permuted, with xi < xi+1

3 let t be the largest index for which xt ≤ bn/2c, i.e. the last label xt left of
the median

4 for i = 1 to t− 1 :
5 join the labels x1, . . . , xi to xi+1 using at most one reversal Ri, not

containing xi+1

6 for j = k to t+ 2 :
7 join the labels xj, . . . , xk to xj−1 using at most one reversal Rj, not

containing xj
8 using at most two reversals Rt and Rt+1, move the labels x1, . . . , xt and

xt+1, . . . , xk to the median
9 R̄ := R1, . . . ,Rt−1,Rk, . . . ,Rt+2,Rt,Rt+1 // The reversals performed

so far, in order
10 route the labels x1, . . . , xk such that after performing R̄ in reverse order,

each label is at its destination
11 perform R̄ in reverse order

Algorithm 4.3.1: MiddleExchange algorithm to sort sparse permutations on
the path graph.

∗ ∗ ∗ ∗ 5 ∗ ∗ ∗ ∗ 3 ∗ ∗ ∗ ∗1 ∗ ∗ ∗ ∗
∣∣∣∣ ∗ ∗ ∗ ∗4 ∗ ∗ ∗ ∗6 ∗ ∗ ∗ ∗ 2 ∗ ∗ ∗∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 5 3 ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗
∣∣∣∣ ∗ ∗ ∗ ∗4 ∗ ∗ ∗ ∗ 6 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 3 5 1 ∗ ∗ ∗ ∗
∣∣∣∣ ∗ ∗ ∗ ∗ 4 2 6 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 5 3
∣∣∣∣ 6 2 4︸ ︷︷ ︸

rearrange

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 3 1 2
∣∣∣∣ 5 6 4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 2 1 3 ∗ ∗ ∗ ∗
∣∣∣∣ ∗ ∗ ∗ ∗4 6 5 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 2 ∗ ∗ ∗ ∗3 ∗ ∗ ∗ ∗
∣∣∣∣ ∗ ∗ ∗ ∗4 ∗ ∗ ∗ ∗5 6 ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗2 ∗ ∗ ∗ ∗3 ∗ ∗ ∗ ∗
∣∣∣∣ ∗ ∗ ∗ ∗4 ∗ ∗ ∗ ∗5 ∗ ∗ ∗ ∗6 ∗ ∗ ∗ ∗

Figure 4.2: Example of MiddleExchange (Algorithm 4.3.1) on the path for k = 6.
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Theorem 4.1. Let π ∈ Sn with k = |{x ∈ [n] | πx 6= x}| (i.e., k elements are to be

permuted, and n− k elements begin at their destination). Then Algorithm 4.3.1 routes

π in time at most n/3 +O(k2).

Proof. Algorithm 4.3.1 consists of three steps: compression (Line 4–Line 8), inner

permutation (Line 10), and dilation (Line 11). Notice that compression and dilation

are inverses of each other.

Let us first show that Algorithm 4.3.1 routes π correctly. Just as in the algorithm,

let x1, . . . , xk denote the labels x ∈ [n] with xi < xi+1 such that πx 6= x, that is,

the elements that do not begin at their destination and need to be permuted. It

is easy to see that these elements are permuted correctly: After compression, the

inner permutation step routes xi to the current location of the label πxi in the middle.

Because dilation is the inverse of compression, it will then route every xi to its correct

destination. For the non-permuting labels, notice that they lie in the support of either

no reversal or exactly two reversals, R1 in the compression step and R2 in the dilation

step. Therefore R1 reverses the segment containing the label and R2 re-reverses it

back into place (so R1 = R2). Therefore, the labels that are not to be permuted end

up exactly where they started once the algorithm is complete.

Now we analyze the routing time. Let di = xi+1 − xi − 1 for i ∈ [k − 1]. As in the

algorithm, let t be the largest index for which xt ≤ bn/2c. Then, for 1 ≤ i ≤ t− 1, we

have |Ri| = di + i, and, for t+ 2 ≤ j ≤ k, we have |Rj| = dj−1 + k − j. Moreover, we

have |Rt| = bn/2c − xt − 1 + t and |Rt+1| = xt+1 − bn/2c+ k − t. From all reversals

in the first part of Algorithm 4.3.1, R̄, consider those that are performed on the left
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side of the median (position bn/2c of the path). The routing time of these reversals is

1

3

t∑
i=1

|Ri|+ 1 =
1

3
(bn/2c − xt − 1) +

1

3

t∑
i=1

(di + i+ 1)

=
t(t+ 1)

6
+

1

3
(bn/2c − xt − 1) +

t∑
i=1

(xi+1 − xi)

= O(t2) +
1

3
(bn/2c − x1)

≤ n

6
+O(k2).

(4.3)

By a symmetric argument, the same bound holds for the compression step on the right

half of the median. Because both sides can be performed in parallel, the total cost for

the compression step is at most n/6 +O(k2). The inner permutation step can be done

in time at most k using odd-even sort. The cost to perform the dilation step is also

at most n/6 +O(k2) because dilation is the inverse of compression. Thus, the total

routing time for Algorithm 4.3.1 is at most 2(n/6 +O(k2)) + k = n/3 +O(k2).

It follows that sparse permutations on the path with k = o(
√
n) can be implemented

using reversals with a full asymptotic factor of 3 speedup.

4.3.2 General graphs

We now present a more general result for implementing sparse permutations on an

arbitrary graph.

Theorem 4.2. Let G = (V,E) be a graph with radius r and π a permutation of vertices.

Let S = {v ∈ V : πv 6= v}. Then π can be routed in time at most 2r/3 +O(|S|2).

Proof. We route π using a procedure similar to Algorithm 4.3.1, consisting of the same

three steps adapted to work on a spanning tree of G: compression, inner permutation,

and dilation. Dilation is the inverse of compression and the inner permutation step

can be performed on a subtree consisting of just k = |S| nodes by using the Routing
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c c

G T

Figure 4.3: Illustration of the token tree T in Theorem 4.2 for a case where G is
the 5× 5 grid graph. Blue circles represent vertices in S and orange circles represent
vertices not in S. Vertex c denotes the center of G. Red-outlined circles represent
intersection vertices. In particular, note that one of the blue vertices is an intersection
because it is the first common vertex on the path to c of two distinct blue vertices.

via Matchings algorithm for trees in 3k/2 +O(log k) time [Zha99]. It remains to

show that compression can be performed in r/3 +O(k2) time.

We construct a token tree T that reduces the compression step to routing on a

tree. Let c be a vertex in the center of G, i.e., a vertex with distance at most r to all

vertices. Construct a shortest-path tree T ′ of G rooted at c, say, using breadth-first

search. We assign a token to each vertex in S. Now T is the subtree of T ′ formed by

removing all vertices v ∈ V (T ′) for which the subtree rooted at v does not contain

any tokens, as depicted in Figure 4.3. In T , call the first common vertex between

paths to c from two distinct tokens an intersection vertex, and let I be the set of all

intersection vertices. Note that if a token t1 lies on the path from another token t2 to

c, then the vertex on which t1 lies is also an intersection vertex. Since T has at most

k leaves, |I| ≤ k − 1.

For any vertex v in T , let the descendants of v be the vertices u 6= v in T whose

path on T to c includes v. Now let Tv be the subtree of T rooted at v, i.e., the tree

composed of v and all of the descendants of v. We say that all tokens have been moved

up to a vertex v if for all vertices u in Tv without a token, Tu also does not contain a
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Input : A vertex v in tree T
1 function MoveUpTo(v):
2 if Tv contains only one token then
3 Perform a reversal on the segment starting at the leaf node of Tv and

ending at v.
4 return
5 for each child b of v :
6 w := The intersection vertex in Tb closest to b // includes b
7 MoveUpTo(w)
8 m := the number of tokens from S in Tb
9 l(p) := the length of the path p from w to b in Tv

10 if l(p) ≥ m then // Enough room on p, form a path of tokens
at b

11 Route the m tokens in Tb to the first m vertices of p using
Routing via Matchings.

12 Perform a reversal on the segment starting at w and ending at b.
13 else // Not enough room on p, form a tree of tokens rooted

at b
14 Route the m tokens in Tb as close as possible to b using Routing

via Matchings.
15 if v has no token then
16 Perform a reversal on the segment starting from v and ending at a

vertex u in Tv such that u has a token in S and no descendent of u
has a token in S, if such a u exists.

Algorithm 4.3.2: An algorithm that recursively moves all tokens from S that
lie on Tv up to an intersection vertex v.

token. The compression step can then be described as moving tokens up to c.

We describe a recursive algorithm for doing so in Algorithm 4.3.2. The base case

considers the trivial case of a subtree with only one token. Otherwise, we move all

tokens on the subtrees of descendant b up to the closest intersection w using recursive

calls as illustrated in Figure 4.4. Afterwards, we need to consider whether the path p

between v and w has enough room to store all tokens. If it does, we use a Routing

via Matchings algorithm for trees to route tokens from w onto p, followed by a

reversal to move these tokens up to v. Otherwise, the path is short enough to move

all tokens up to v by the same Routing via Matchings algorithm.

We now bound the routing time on Tw1 of MoveUpTo(w1), for any vertex w1 ∈ V (T ).
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w

routing via
matchings

v b

wv b

reverse segment
from b to w

wv b

(a) When l(p) ≥ m. In this case, l(p) = 7 ≥
5 = m.

w

routing via
matchings

v

b

b

wv

b

b

(b) When l(p) < m. In this case, l(p) = 3 <
5 = m.

Figure 4.4: An example of moving the m tokens in Tw up to b (Line 10–Line 14 in
Algorithm 4.3.2).
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First note that all operations on subtrees Tb of Tw1 are independent and can be

performed in parallel. Let w1, w2, . . . , wt be the sequence of intersection vertices that

MoveUpTo(·) is recursively called on that dominates the routing time of MoveUpTo(w1).

Let dw, for w ∈ V (Tw1), be the distance of w to the furthest leaf node in Tw. Assuming

that the base case on Line 3 has not been reached, we have a routing time of

T (w1) ≤ T (w2) +
dw1 − dw2

3
+O(k), (4.4)

where O(k) bounds the time required to route m ≤ k tokens on a tree of size at most

2m following the recursive MoveUpTo(w2) call [Zha99]. We expand the time cost T (wi)

of recursive calls until we reach the base case of wt to obtain

T (v) ≤ T (wt) +
t−1∑
i=1

(
dwi − dwi+1

3
+O(k)

)
= T (wt) +

dw1 − dwt
3

+ t ·O(k) (4.5)

≤ dw1

3
+ (t+ 1)O(k). (4.6)

Since dv ≤ r and t ≤ k, this shows that compression can be performed in r/3 +O(k2)

time.

In general, a graph with radius r and diameter d will have d/2 ≤ r ≤ d. Using

Theorem 4.2, this implies that for a graph G and a sparse permutation with k = o(
√
r),

the bound for the routing time will be between d/3 + o(d) and 2d/3 + o(d). Thus,

for such sparse permutations, using reversals will always asymptotically give us a

constant-factor worst-case speedup over any swap-only protocol since rt(G) ≥ d.

Furthermore, for graphs with r = d/2, we can asymptotically achieve the full factor of

3 speedup.
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Input : π, a permutation of a contiguous subset of [n].
1 function GenericDivideConquer(BinarySorter, π):
2 if |π| = 1 then
3 return ∅
4 B := BinaryLabeling(π)

5 R := BinarySorter(B)

6 π := π · R
7 R = R ++ GenericDivideConquer(BinarySorter, π[0,

⌊
n
2

⌋
])

8 R = R ++ GenericDivideConquer(BinarySorter, π[
⌊
n
2

⌋
+ 1, |π|])

9 return R

Algorithm 4.4.1: Divide-and-conquer algorithm for recursively sorting π.
BinaryLabeling(π) is a subroutine that uses (4.7) to transform π into a
bitstring, and BinarySorter is a subroutine that takes as input the resulting
binary string and returns an ordered reversal sequence R̄ that sorts it.

4.4 Algorithms for routing on the path

Our general approach to implementing permutations on the path relies on the divide-

and-conquer strategy described in Algorithm 4.4.1. It uses a correspondence between

implementing permutations and sorting binary strings, where the former can be

performed at twice the cost of the latter. This approach is inspired by [PS02] and

[Ben+08] who use the same method for routing by reversals in the sequential case.

First, we introduce a binary labeling using the indicator function

I(v) =


0 if v < n/2,

1 otherwise.
(4.7)

This function labels any permutation π ∈ Sn by a binary string

I(π) := (I(π1), I(π2), . . . , I(πn)). (4.8)

Let π be the target permutation, and σ any permutation such that I(πσ−1) =

(0bn/2c1dn/2e). Then it follows that σ divides π into permutations πL, πR acting only
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on the left and right halves of the path, respectively, i.e., π = πL · πR · σ. We find and

implement σ via a binary sorting subroutine, thereby reducing the problem into two

subproblems of length at most dn/2e that can be solved in parallel on disjoint sections

of the path. Proceeding by recursion until all subproblems are on sections of length at

most 1, the only possible permutation is the identity and π has been implemented.

Because disjoint permutations are implemented in parallel, the total routing time is

T (π) = T (σ) + max(T (πL), T (πR)).

We illustrate Algorithm 4.4.1 with an example, where the binary labels are indicated

below the corresponding destination indices:

7 6 0 2 5 1 3 4 label−−−→ 7 6 0 2 5 1 3 4
1 1 0 0 1 0 0 1

sort−−→ 0 3 1 2 5 7 6 4
0 0 0 0 1 1 1 1

label−−−→ 0 3 1 2 5 7 6 4
0 1 0 1 0 1 1 0

↓ sort

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

sort←−− 0 1 3 2 5 4 6 7
0 1 1 0 1 0 0 1

label←−−− 0 1 3 2 5 4 6 7
0 0 1 1 0 0 1 1

(4.9)

Each labeling and sorting step corresponds to an application of (4.7) and BinarySorter,

respectively, to each subproblem. Specifically, in (4.9), we use TBS (Algorithm 4.4.2)

to sort binary strings.

We present two algorithms for BinarySorter, which perform the work in our

sorting algorithm. The first of these binary sorting subroutines is Tripartite Binary

Sort (TBS, Algorithm 4.4.2). TBS works by splitting the binary string into nearly

equal (contiguous) thirds, recursively sorting these thirds, and merging the three

sorted thirds into one sorted sequence. We sort the outer thirds forwards and the

middle third backwards which allows us to merge the three segments using at most
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Input : B, a binary string
1 function TripartiteBinarySort(B):
2 if |B| = 1 then
3 return ∅
4 m1 :=

⌊
|B|
3

⌋
5 m2 :=

⌊
2|B|

3

⌋
6 R := TripartiteBinarySort(B[0,m1])

7 R := R ++ TripartiteBinarySort(B[m1 + 1,m2]⊕ 11 . . . 11) // ⊕
being bitwise-XOR, so we sort the middle third backwards

8 R := R ++ TripartiteBinarySort(B[m2 + 1, |B|])
9 i := index of first 1 in B

10 j := index of last 0 in B
11 B := B · R(i, j)

12 return R ++ R(i, j)

Algorithm 4.4.2: Tripartite Binary Sort (TBS). We let R(i, j) denote a
reversal on the subsequence S[i, j], i, j inclusive.

one reversal. For example, we can sort a binary string as follows:

010011100011010011110111001

010011100 011010011 110111001

TBS ↓ TBS ↓ backwards ↓ TBS

000001111 111110000 000111111

00000 1111111110000000 11111

00000000000011111111111111,

(4.10)

where the arrows with TBS indicate recursive calls to TBS and the bracket indicates

the reversal to merge the segments. Let GDC(TBS) denote Algorithm 4.4.1 when using

TBS to sort binary strings, where GDC stands for GenericDivideConquer.

The second algorithm is an adaptive version of TBS (Algorithm 4.4.3) that, instead

of using equal thirds, adaptively chooses the segments’ length. Adaptive TBS considers

every pair of partition points, 0 ≤ i ≤ j < n− 1, that would split the binary sequence
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Input :B, a binary string
1 function AdaptiveTripartiteBinarySort(B):
2 R := ∅
3 for i = 0 to n− 2 :
4 for j = i to n− 2 :
5 R0 = AdaptiveTripartiteBinarySort(B[0, i])

6 c0 := cost(R0)

7 R1 = AdaptiveTripartiteBinarySort(B[i+ 1, j])

8 c1 := cost(R1)

9 R2 = AdaptiveTripartiteBinarySort(B[j + 1, n− 1])

10 c2 := cost(R2)
11 r := cost of merging reversal using i and j as partition points
12 if R = ∅ or max{c0, c1, c2}+ r < cost(R) then
13 R := R0 ++ R1 ++ R2

14 return R

Algorithm 4.4.3: Adaptive TBS. For the sake of clarity, we implement an
exhaustive search over all possible ways to choose the partition points. However,
we note that the optimal partition points can be found in polynomial time by
using a dynamic programming method [Ben+08].

into two or three sections: B[0, i], B[i + 1, j], and B[j + 1, n − 1] (where i = j

corresponds to no middle section). For each pair, it calculates the minimum cost to

recursively sort the sequence using these partition points. Since each section can be

sorted in parallel, the total sorting time depends on the maximum time needed to sort

one of the three sections and the cost of the final merging reversal. Let GDC(ATBS)

denote Algorithm 4.4.1 when using Adaptive TBS to sort binary strings.

Notice that the partition points selected by TBS are considered by the Adaptive

TBS algorithm and are selected by Adaptive TBS only if no other pair of partition

points yields a faster sorting time. Thus, for any permutation, the sequence of reversals

found by Adaptive TBS costs no more than that found by TBS. However, TBS is

simpler to implement and will be faster than Adaptive TBS in finding the sorting

sequence of reversals.
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4.4.1 Worst-case bounds

In this section, we prove that all permutations of sufficiently large length n can be

sorted in time strictly less than n using reversals. Let nx(b) denote the number of

times character x ∈ {0, 1} appears in a binary string b, and let T (b) (resp., T (π))

denote the best possible sorting time to sort b (resp., implement π) with reversals.

Assume all logarithms are base 2 unless specified otherwise.

Lemma 4.3. Let b ∈ {0, 1}n such that nx(b) < cn+O(log n), where c ∈ [0, 1/3] and

x ∈ {0, 1}. Then, T (b) ≤ (c/3 + 7/18)n+O(log n).

Proof. To achieve this upper bound, we use TBS (Algorithm 4.4.2). There are

blog3 nc steps in the recursion, which we index by j ∈ {0, 1, . . . , blog3 nc}, with step 0

corresponding to the final merging step. Let |Rj| denote the size of the longest reversal

in recursive step j that merges the three sorted subsequences of size n/3j+1. The

size of the final merging reversal R0 can be bounded above by (c+ 2/3)n+O(log n)

because |R0| is maximized when every x is contained in the leftmost third if x = 1 or

the rightmost third if x = 0. So we have

T (b) ≤

(
log3 n∑
j=0

|Rj|
3

)
+O(log n) ≤

(
c

3
+

2

9

)
n+O(log n) +

(
log3 n∑
j=1

|Rj|
3

)
+O(log n)

(4.11)

≤
(
c

3
+

7

18

)
n+O(log n), (4.12)

where we used |Rj| ≤ n/3j for j ≥ 1.

Now we can prove a bound on the cost of a sorting series found by Adaptive TBS

for any binary string of length n.

Theorem 4.4. For all bit strings b ∈ {0, 1}n of arbitrary length n ∈ N, T (b) ≤

(1/2− ε)n+O(log n) ≈ 0.483n+O(log n), where ε = 1/3− 1/
√

10.
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n/3 2n/3

2εn

3− 6ε

2εn

3− 6ε

n0(b1) < 2εn n1(b3) < 2εn

Figure 4.5: Case 2 of Theorem 4.4. If there are few zeros and ones in the leftmost
and rightmost thirds, respectively, we can shorten the middle section so that it can be
sorted quickly. Then, because each of the outer thirds contain far more zeros than
ones (or vice versa), they can both can be sorted quickly as well.

Proof. Let b ∈ {0, 1}n for some n ∈ N. Partition b into three sections b = b1b2b3

such that |b1| = |b3| = bn/3c and |b2| = n − 2bn/3c. Since bn/3c = n/3 − d where

d ∈ {0, 1/3, 2/3}, we write |b1| = |b2| = |b3| = n/3 + O(1) for the purposes of this

proof. Recall that if segments b1 and b3 are sorted forwards and segment b2 is sorted

backwards, the resulting segment can be sorted using a single reversal, R (see the

example in (4.10)). Then we have

T (b) ≤ max(T (b1), T ′(b2), T (b3)) +
|R|+ 1

3
, (4.13)

where T ′(b2) is the time to sort b2 backwards using reversals.

We proceed by induction on n. For the base case, it suffices to note that every

binary string can be sorted using reversals and, for finitely many values of n ∈ N, any

time needed to sort a binary string of length n exceeding (1/2− ε)n can be absorbed

into the O(log n) term. Now assume T (b) ≤ (1/2− ε) k + O(log k) for all k < n,

b ∈ {0, 1}k.

Case 1: n0(b1) ≥ 2εn or n1(b3) ≥ 2εn. In this case, |R| ≤ n− 2εn, so

T (b) ≤ n− 2εn+ 1

3
+ max(T (b1), T ′(b2), T (b3)) ≤

(
1

2
− ε
)
n+O(log n) (4.14)

by the induction hypothesis.

Case 2: n0(b1) < 2εn and n1(b3) < 2εn. In this case, adjust the partition such that
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|b1| = |b3| = n/3+2εn/(3−6ε)−O(1) and consequently |b2| = n/3−4εn/(3−6ε)+O(1),

as depicted in Figure 4.5. In this adjustment, at most 2εn/(3− 6ε) zeros are added

to the segment b1 and likewise with ones to b3. Thus, n1(b3) ≤ 2εn+ 2εn/(3− 6ε) =

(1 + 1/(3− 6ε)) 2εn. Since n = (3− 6ε)|b1| −O(1), we have

n1(b3) ≤
(

1 +
1

3− 6ε

)
2ε((3− 6ε)|b1| −O(1)) = (2− 3ε)4ε|b1| −O(1). (4.15)

Let c = (2− 3ε)4ε = 2/15. Applying Lemma 4.3 with this value of c yields

T (b3) ≤
(

2

45
+

7

18

)
|b1|+O(log (|b1|)) =

(
1√
10
− 1

6

)
n+O(log n). (4.16)

Since |b1| = |b3|, we obtain the same bound T (b1) ≤ (1/
√

10 − 1/6)n + O(log n) by

applying Lemma 4.3 with the same value of c.

By the inductive hypothesis, T ′(b2) can be bounded above by

T ′(b2) ≤
(

1

2
− ε
)(

n

3
− 4ε

3− 6ε
n+O(1)

)
+O(log n) =

(
1√
10
− 1

6

)
n+O(log n).

(4.17)

Using (4.13) and the fact that |R| ≤ n, we get the bound

T (b) ≤
(

1√
10
− 1

6

)
n+O(log n) +

n+ 1

3
=

(
1

2
− ε
)
n+O(log n)

as claimed.

This bound on the cost of a sorting series found by Adaptive TBS for binary

sequences can easily be extended to a bound on the minimum sorting sequence for

any permutation of length n.

Corollary 4.5. For a length-n permutation π, T (π) ≤
(
1/3 +

√
2/5
)
n+O(log2 n) ≈

0.9658n+O(log2 n).
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Proof. To sort π, we turn it into a binary string b using (4.7). Then let R1,R2, . . . ,Rm

be a sequence of reversals to sort b. If we apply the sequence to get π′ = πR1 R2 · · ·Rm,

every element of π′ will be on the same half as its destination. We can then recursively

perform the same procedure on each half of π′, continuing down until every pair of

elements has been sorted.

This process requires blog nc steps, and at step i, there are 2i binary strings of

length n
2i

being sorted in parallel. This gives us the following bound to implement π:

T (π) ≤
logn∑
i=0

T (bi), (4.18)

where bi ∈ {0, 1}n/2
i . Applying the bound from Theorem 4.4, we obtain

T (π) ≤
logn∑
i=0

T (bi) ≤
logn∑
i=0

((
1

6
+

1√
10

)
n

2i
+O(log(n/2i))

)
=

(
1

3
+

√
2

5

)
n+O(log2 n).

4.5 Average-case performance

So far we have presented worst-case bounds that provide a theoretical guarantee on

the speedup of quantum routing over classical routing. However, the bounds are not

known to be tight, and may not accurately capture the performance of the algorithm

in practice.

In this section we show better performance for the average-case routing time, the

expected routing time of the algorithm on a permutation chosen uniformly at random

from Sn. We present both theoretical and numerical results on the average routing

time of swap-based routing (such as odd-even sort) and quantum routing using TBS

and ATBS. We show that on average, GDC(TBS) (and GDC(ATBS), whose sorting time

on any instance is at least as fast) beats swap-based routing by a constant factor 2/3.

We have the following two theorems, whose proofs can be found in Appendices A.1
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Figure 4.6: The mean routing time and fit of the mean routing time for odd-even
sort (OES), and routing algorithms using Tripartite Binary Sort (GDC(TBS)) and
Adaptive TBS (GDC(ATBS)). We exhaustively search for n < 12 and sample 1000
permutations uniformly at random otherwise. We show data for GDC(ATBS) only for
n ≤ 207 because it becomes too slow after that point. We find that the fit function
µn = an+ b

√
n+ c fits the data with an R2 > 99.99% (all three algorithms). For OES,

the fit gives a ≈ 0.9999; for GDC(TBS), a ≈ 0.6599; and for GDC(ATBS), a ≈ 0.6513.
Similarly, for the standard deviation, we find that the fit function σ2

n = an+ b
√
n+ c

fits the data with R2 ≈ 99% (all three algorithms), suggesting that the normalized
deviation of the performance about mean scales as σn/n = Θ(n−0.5) asymptotically.
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and A.2, respectively.

Theorem 4.6. The average routing time of any swap-based procedure is lower bounded

by n− o(n).

Theorem 4.7. The average routing time of GDC(TBS) is 2n/3 +O(nβ) for a constant

β ∈
(

1
2
, 1
)
.

These theorems provide average-case guarantees, yet do not give information

about the non-asymptotic behavior. Therefore, we test our algorithms on random

permutations for instances of intermediate size.

Our numerics [KSS21] show that Algorithm 4.4.1 has an average routing time that

is well-approximated by c · n+ o(n), where 2/3 . c < 1, using TBS or Adaptive TBS

as the binary sorting subroutine, for permutations generated uniformly at random.

Similarly, the performance of odd-even sort (OES) is well-approximated by n+ o(n).

Furthermore, the advantage of quantum routing is evident even for fairly short

paths. We demonstrate this by sampling 1000 permutations uniformly from Sn

for n ∈ [12, 512], and running OES and GDC(TBS) on each permutation. Due to

computational constraints, GDC(ATBS) was run on sample permutations for lengths

n ∈ [12, 206]. On an Intel i7-6700HQ processor with a clock speed of 2.60 GHz, OES

took about 0.04 seconds to implement each permutation of length 512; GDC(TBS)

took about 0.3 seconds; and, for permutations of length 200, GDC(ATBS) took about 6

seconds.

The results of our experiments are summarized in Figure 4.6. We find that the

mean normalized time costs for OES, GDC(TBS), and GDC(ATBS) are similar for small

n, but the latter two decrease steadily as the lengths of the permutations increase

while the former steadily increases. Furthermore, the average costs for GDC(TBS) and

GDC(ATBS) diverge from that of OES rather quickly, suggesting that GDC(TBS) and

GDC(ATBS) perform better on average for somewhat small permutations (n ≈ 50) as

well as asymptotically.
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The linear coefficient a of the fit of µn for OES is a ≈ 0.9999 ≈ 1, which is

consistent with the asymptotic bound proven in Theorems 4.6 and 4.7. For the

fit of the mean time costs for GDC(TBS) and GDC(ATBS), we have a ≈ 0.6599 and

a ≈ 0.6513 respectively. The numerics suggest that the algorithm routing times agree

with our analytics, and are fast for instances of realistic size. For example, at n = 100,

GDC(TBS) and GDC(ATBS) have routing times of ∼ 0.75n and 0.72n, respectively.

On the other hand, OES routes in average time > 0.9n. For larger instances, the

speedup approaches the full factor of 2/3 monotonically. Moreover, the fits of the

standard deviations suggest σn/n = Θ(1/
√
n) asymptotically, which implies that as

permutation length increases, the distribution of routing times gets relatively tighter

for all three algorithms. This suggests that the average-case routing time may indeed

be representative of typical performance for our algorithms for permutations selected

uniformly at random.

4.6 Conclusion

We have shown that our algorithm, GDC(ATBS) (i.e., Generic Divide-and-Conquer

with Adaptive TBS to sort binary strings), uses the fast state reversal primitive to

outperform any swap-based protocol when routing on the path in the worst and

average case. Recent work shows a lower bound on the time to perform a reversal

on the path graph of n/β, where β ≈ 4.5 (Theorem 3.5). Thus we know that the

Hamiltonian routing time in the cannot be improved by more than a factor β over

swaps, even with new techniques for implementing reversals. However, it remains to

understand the fastest possible routing time on the path. Clearly, this is also lower

bounded by n/β. Our work could be improved by addressing the following two open

questions: (i) how fast can state reversal be implemented, and (ii) what is the fastest

way of implementing a general permutation using state reversal?
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We believe that the upper bound in Corollary 4.5 can likely be decreased. For

example, in the proof of Lemma 4.3, we use a simple bound to show that the reversal

sequence found by GDC(TBS) sorts binary strings with fewer than cn ones sufficiently

fast for our purposes. It is possible that this bound can be decreased if we consider

the reversal sequence found by GDC(ATBS) instead. Additionally, in the proof of

Theorem 4.4, we only consider two pairs of partition points: one pair in each case of

the proof. This suggests that the bound in Theorem 4.4 might be decreased if the full

power of GDC(ATBS) could be analyzed.

Improving the algorithm itself is also a potential avenue to decrease the upper

bound in Corollary 4.5. For example, the generic divide-and-conquer approach in

Algorithm 4.4.1 focused on splitting the path exactly in half and recursing. An obvious

improvement would be to create an adaptive version of Algorithm 4.4.1 in a manner

similar to GDC(ATBS) where instead of splitting the path in half, the partition point

would be placed in the optimal spot. It is also possible that by going beyond the

divide-and-conquer approach, we could find faster reversal sequences and reduce the

upper bound even further.
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Chapter 5

Bounding the quantum-classical

routing separation

This chapter is based on work in

[Bap+] Aniruddha Bapat, Andrew Childs, Alexey Gorshkov, and Eddie Schoute.

“Bounding the quantum routing advantage”. In preparation

5.1 Introduction

In this chapter, we explore the extent to which genuinely quantum operations can

accelerate quantum routing, as opposed to swap gates in classical routing. The relative

power in routing of the models we explore is depicted in Figure 1.1. We investigate gate-

based quantum routing with arbitrary two-qubit unitaries and Hamiltonian (quantum)

routing by Hamiltonian evolution with norm-bounded interactions in Section 5.2.

We first explore the limits of these more powerful models by lower bounding the

gate-based routing depth by 2/c(G)− 1, where c(G) is the vertex expansion of the

graph G, which is the smallest number of vertices adjacent to a vertex set relative

its size. This confirms the intuition that a small vertex cut negatively impacts the
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routing circuit depth. Second, we show a looser lower bound on the routing time in

the Hamiltonian model of 2/(α · h(G))− 1, where 0 < α ≤ 4 is the constant of small

incremental entangling [Aud14] and h(G) is the edge expansion of G, which is the

smallest edge boundary size of a vertex set relative to the number of vertices. The

edge expansion is generally related to small edge cuts in the graph. Along the way,

we show time lower bounds on state preparation reminiscent of area laws [ECP10;

Gon+17]. Third, in Section 5.3, we prove a general upper bound on (classical) routing

on simple connected graphs, allowing us to prove conditions on the spectral gap of the

Laplacian of G that rule out a superpolynomial separation between the (worst-case)

classical and Hamiltonian routing times. This excludes interaction graphs with poor

expansion properties. Finally, we give an example of superconstant, (Ω(
√
n) for n the

number of vertices) quantum-classical separation for routing in a strengthened model

of (non-adaptive) Hamiltonian routing with constant ancilla resources in Section 5.4.

5.2 Quantum Routing

In this section, we introduce quantum routing and prove lower bounds dependent on

graph expansion properties. We model the architecture constraints by the architecture

graph G.

5.2.1 Gate-based Quantum Routing

First, we consider routing in the gate model of quantum computation, which we call

gate-based quantum routing. We define the gate-based quantum routing number qrt(G)

as

qrt(G) := max
π

qrt(G, π), (5.1)

where π is a permutation of the qubits and qrt(G, π) is the minimum depth of

an architecture-respecting circuit that implements the permutation π. We do not

101



X
X̄

δX̄
δX

∂X

Figure 5.1: A graph can be partitioned into two sets of vertices X and X̄. The
vertex boundary δX of X is the set of vertices outside of X directly connected to X,
and similarly for δX̄ and X̄. The edge boundary ∂X (red) of X (and X̄) is the set of
edges that connect X to X̄.

limit routing circuits to a particular gate set. If necessary, any such circuit may be

approximated by a universal gate set at a polylogarithmic overhead by the Solovay-

Kitaev theorem. This implies that single-qubit gates are free since they can be

absorbed into adjacent two-qubit gates.

We briefly prove a diameter lower bound on gate-based quantum routing.

Theorem 5.1.

qrt(G) ≥ diam(G). (5.2)

Proof. Consider two vertices u, v ∈ V (G) at a distance diam(G) and a circuit C of

two-qubit unitaries with depth D acting on G. Any local operator acting on u evolved

in the Heisenberg picture under C will have no support on vertices further than distance

D. In order to swap u and v, all of the support of that Heisenberg-evolved operator

must be on v, which implies D ≥ diam(G). Therefore, qrt(G) ≥ diam(G).

We will see that the gate-based quantum routing number can, just like classical

routing, be bounded by a vertex bottleneck in the interaction graph. A vertex

bottleneck naturally partitions the graph G into two distinct subgraphs of G. We

can define a partition of G by a vertex subset X ⊆ V (G) and its vertex complement
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X̄ := V (G) \X; see Figure 5.1. The set X neighbors a set of vertices which we define

as the vertex boundary of X,

δX := {v ∈ X̄ | {u, v} ∈ E(G), u ∈ X} (5.3)

and are a vertex cut in G. Now we define the vertex expansion (or vertex isoperimetric

number) as [Chu]

c(G) := min
X⊆V (G):|V (G)|/2

|δX|
|X|

. (5.4)

Intuitively, this lower bounds how many vertices neighbor any small enough set X.

Therefore, the number of vertices in the induced subgraph G[X ∪N(X)], for N(X)

the neighborhood of X, grows (or “expands”) by at least a factor of 1 + c(G).

To prove a lower bound on quantum gate-based routing, we relate routing to the

task of generating entanglement. We can quantify the entanglement of pure state ρ on

a bipartite joint system XX̄, consisting of the subsystems X and X̄, by the Neumann

entropy of the reduced density operator ρX := TrX̄(ρ), defined as

S(ρX) := −Tr(ρX log ρX). (5.5)

(The function log(x) denotes the logarithm base 2 unless specified and we denote the

natural logarithm by ln(x).) We will refer to the von Neumann entropy as “the entropy”

and denote SX(ρ) := S(ρX). For completeness, we list some elementary properties of

the von Neumann entropy that will be useful later and can be easily verified.

Lemma 5.2. For a state ρ on a joint system XX̄, the following statements about the

entropy hold:

1. If ρ is a pure state, then the entropy is symmetric, i.e.

SX(ρ) = SX̄(ρ). (5.6)
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2. The entropy is invariant under change of basis, i.e.

S(UρU †) = S(ρ). (5.7)

3. The entropy is invariant under local unitaries UX on X and UX̄ on X̄, i.e.

SX((UX ⊗ UX̄)ρ(UX ⊗ UX̄)†) = SX(ρ). (5.8)

The maximum change in entropy for any unitary respecting the interaction con-

straints of an interaction graph G is bounded by the smallest vertex boundary size for

each partitioning. We need only consider the unitary acting across the partitioning by

the invariance of the entropy under local unitaries (Lemma 5.2). We formalize this in

the following Lemma derived from small total entangling (STE) [Mar+16].

Lemma 5.3 (Small Total Entangling (STE)). Let U be a unitary acting nontrivially

only the joint subsystem δXδX̄, then the change in the entropy can be bounded by

∣∣SX(UρU †)− SX(ρ)
∣∣ ≤ 2 min(|δX|, |δX̄|). (5.9)

Proof. The unitary U is a local unitary on the joint subsystem XδX; Lemma 5.2

implies

SXδX(UρU †) = SXδX(ρ). (5.10)
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Now, assume w.l.o.g. that |δX̄| ≤ |δX|, then

|SX(UρU †)− SX(ρ)| (5.11)

= |SX(UρU †)− SXδX(UρU †) + SXδX(ρ)− SX(ρ)| (5.12)

≤ |SX(UρU †)− SXδX(UρU †)|+ |SXδX(ρ)− SX(ρ)| (5.13)

≤ SδX(UρU †) + SδX(ρ) (5.14)

≤ 2|δX|, (5.15)

where we used the triangle inequality; subadditivity of the entropy; and S(ρ) ≤ |δX|

for any state ρ on system δX consisting of qubits. The case where |δX| ≤ |δX̄| is

analogous.

We can saturate this bound in several special cases. A swap gate can saturate

this bound when the subsystems δX and δX̄ are single qubits that are maximally

entangled with the remainder of X̄ and X, respectively. Furthermore, if we assume

there is sufficient connectivity, then we can saturate this bound in higher dimensions

too: Let

|δX| = |δX̄| ≤ min(|X|, |X̄|)/2 (5.16)

and be maximally entangled with the remainder of X̄ and X, respectively. Then, if

we exchange δX with δX̄ through swaps, the entropy will have increased by 2|δX|,

saturating the bound.

We now prove a lower bound on the time required for state preparation of entangled

states. We define state preparation as the task of preparing some target state ρ given

an initial state ρ0. A special case of state preparation is routing a particular state.

Intuitively, if the change in entanglement between initial state ρ0 and final state ρ

is |SX(ρ) − SX(ρ0)|, then a simple argument from STE gives a circuit depth lower

bound of |SX(ρ)− SX(ρ0)|/(2|δX|), and similar arguments have been used with the
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entanglement capacity [Ben+03; Eld+20]. However, this does not account for the

time required to entangle the boundary subsystem with the bulk subsystem. A careful

accounting gives us the following Lemma, which we show can be saturated in some

cases later.

Lemma 5.4. Given an initial state ρ0 and a target state ρ on the bipartite system

consisting of X and X̄, let us define the entanglement entropy increase

∆SZ := |SZ(ρ)− SZ(ρ0)|, (5.17)

for any subsystem Z. Then any gate-based unitary circuit C for preparing ρ from ρ0

restricted by an interaction graph G must have depth

d ≥ ∆SX + ∆SX̄
2 min(|δX|, |δX̄|)

− 1 (5.18)

for any X ( V (G).

Proof. Assume w.l.o.g. |δX| ≤ |δX̄|. The change in entropy ∆SX̄ is closely related

to that of its bulk system Y := X̄ \ δX. We claim that ∆SX̄ ≤ ∆SY + 2|δX|.

First, the entropy of the target state can be upper bounded using subadditivity and

SδX(·) ≤ |δX| as

∆SX̄ = SX̄(ρ)− SX̄(ρ0) ≤ SY (ρ)− SX̄(ρ0) + |δX|. (5.19)

The triangle inequality SX̄(ρ0) ≥ |SY (ρ0)− SδX(ρ0)| then gives

∆SX̄ ≤ SY (ρ)− SX̄(ρ0) + |δX| ≤ ∆SY + 2|δX| (5.20)

as claimed.

We can decompose C into a sequence of disjoint unitaries Ui on the boundary
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between X and δX and unitaries Vi on the boundary between Y and δX, where

i ∈ N. For operations Ui and Vi to be simultaneous, they must act on disjoint subsets

δXi, δX
′
i ⊆ δX, respectively. Between each application of UiVi, there are local unitary

operations within X, δX, and X̄ \ δX, labelled as Oi, that we allow to be performed

instantaneously. The circuit can thus be decomposed as

C = OdUdVd . . . O1U1V1O0. (5.21)

We lower bound d by using the change in entropy and STE. First, we note that the

operations Oi cannot change the entropy of the respective subsystems. By Lemma 5.3,

Ui can change the entropy of X by at most 2|δXi| and Vi can change the entropy of

Y by at most 2|δX ′i|. Therefore, we have two inequalities that must be satisfied:

∆SX ≤ 2
d∑
i=1

|δXi| (5.22)

and ∆SY ≤ 2
d∑
i=1

|δX ′i|. (5.23)

Summing these together and noting |δXi|+ |δX ′i| ≤ |δX| we get

∆SX + ∆SY ≤ 2
d∑
i=1

|δXi|+ |δX ′i| ≤ 2d|δX|. (5.24)

Now, by (5.20), we get

d ≥ ∆SX + ∆SY
2|δX|

≥ ∆SX + ∆SX̄
2|δX|

− 1 (5.25)

as claimed.

The proof when |δX| > |δX̄| follows analogously by considering δX̄ instead of δX

and X \ δX̄ instead of Y .
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Figure 5.2: For the proof of Theorem 5.5, we consider a bipartite system consisting
of X and X̄ with |X| ≤ |X̄|. The subsystems X and X̄ consist of qubits (represented
by vertices) augmented with one ancilla each in ancilla spaces x and x′, respectively.
We initialize each qubit-ancilla pair in a Bell state (wavy line). Now, the entropy of
subsystem Xx is 0. We then perform routing, exchanging X with a subset of X̄ (in
red), and increase the entropy of Xx to 2|X|. Lemma 5.3 shows that the entanglement
increase for each layer of gates is bounded by the vertex boundary size |δX|, therefore
lower-bounding the circuit depth and qrt(G).

We can saturate the Lemma up to the additive −1 constant when there is sufficient

connectivity within X̄, and between X and δX. A sufficient condition is that it is

maximally connected within X̄, and between X and δX. Let the initial state ρ0 be

|X|/2 Bell pairs in X and |X̄|/2 Bell pairs in X̄. The ends of 2|δX| Bell pairs prepared

in X and X̄ can be exchanged by concurrent swaps between X and δX. This will

increase the entropy of X by 2|δX| as expected. However, we now spend one time step

to swap δX with ends of fresh Bell pairs in Y using concurrent swaps. This does not

increase the entanglement in X or X̄, just within Y . Iterating, first, swaps between

X and δX then, second, between δX and Y , we saturate the bound as claimed.

The lower bound on the gate-based quantum routing number is a simple corollary of

Lemma 5.4 by preparing an appropriate initial state. See Figure 5.2 for an illustration

of the proof concept.

Theorem 5.5. For any architecture graph G,

qrt(G) ≥ max
X⊆V (G):|V (G)|/2

2|X|
min(|δX|, |δX̄|)

− 1 ≥ 2

c(G)
− 1. (5.26)
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Proof. Let us augment the graph G with one ancilla qubit for each qubit v ∈ V (G),

initialized in a Bell pair with v. Since these ancilla are not connected with the main

graph, they cannot help with routing. When describing sets X in the following, we

consider the original qubits and their ancilla together. Then the entropy SX(ρ0) =

SX̄(ρ0) = 0 for any X since the reduced state is pure.

The gate-based quantum routing number qrt(G) maximizes over all permutations

of the vertices. To show a lower bound, it suffices to pick a permutation π that routes

all vertices v ∈ X to X̄ arbitrarily and routes |X| vertices u ∈ X̄ to X arbitrarily.

Let the resulting state be our target state ρ. This gives SX(ρ) = SX̄(ρ) = 2|X|. By

Lemma 5.4, the depth of any circuit performing this state preparation and routing

task is lower bounded by

qrt(G, π) ≥ ∆SX + ∆SX̄
2 min(|δX|, |δX̄|)

− 1 =
2|X|

min(|δX|, |δX̄|)
− 1. (5.27)

We now maximize over all X with |X| ≤ V (G)/2 to lower bound the gate-based

quantum routing number

qrt(G) ≥ qrt(G, π) ≥ max
X⊆V (G)

2|X|
min(|δX|, |δX̄|)

− 1 ≥ 2

c(G)
− 1, (5.28)

where we used that min(|δX|, |δX̄|) ≤ |δX|.

One simple consequence is that gate-based quantum routing on the star graph,

Sn := K1,n, the complete bipartite graph, is no faster than classical routing up to a

constant factor. A trivial classical routing strategy has a depth upper bounded by

3n/2, whereas we have c(Sn) ≤ 2/n so that qrt(Sn) ≥ n− 1 This is a consequence of

the small vertex cut in the star graph.
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5.2.2 Hamiltonian Routing

In this section, we will consider a stronger model for quantum routing, namely using

two-qubit Hamiltonians with fast local operations. We define the Hamiltonian routing

time, hqrt(G), as

hqrt(G) := max
π

hqrt(G, π), (5.29)

where π is a permutation of qubits and hqrt(G, π) is the minimum evolution time of an

architecture-respecting evolution under our normalization condition for the canonical

form (1.2). The shortest cnot time in this model is π/4 and the shortest swap time is

3π/4 [VHC02]. Any two-qubit unitary takes at most 3π/4 since any such gate can be

decomposed into at most 3 cnot gates and single-qubit rotations [VW04]. Therefore,

we renormalize by the swap time so that hqrt(G, π) ≤ qrt(G, π) for any permutation

π.

We will see that the Hamiltonian routing time can be lower bounded by an edge

cut in the graph G. An edge cut partitions G given by two vertex subsets X ⊆ V (G)

and X̄. The edges leaving X form the edge boundary of X

∂X := {(x, x̄) ∈ E | x ∈ X, x̄ ∈ δX} = ∂X̄ (5.30)

and are an edge cut. Now we define the edge expansion (or edge isoperimetric number

or Cheeger constant) as

h(G) := min
X⊆V (G):|X|≤|V (G)|/2

|∂X|
|X|

. (5.31)

Intuitively, this corresponds to a lower bound on how many edges leave any small

enough set X. Therefore, the number of edges in the induced subgraph G[X ∪N(X)],

for N(X) the neighborhood of X, grows (or “expands”) by at least 1 + h(G).

We show a lower bound of hqrt(G) = Ω(1/h(G)). The edge expansion is always
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larger than the vertex expansion, i.e. h(G) ≥ c(G), giving a weaker lower bound than

on gate-based quantum routing. In particular, the star graph has h(Sn) = Θ(1) so

our lower bound gives hqrt(Sn) = Ω(1/h(Sn)) = Ω(1). Given that qrt(Sn) = Ω(n), a

large separation is still possible between Hamiltonian routing and gate-based quantum

routing.

To prove the lower bound on Hamiltonian routing, we use the continuous analogue

of STE, the small incremental entangling (SIE) theorem adapted to our setting,

conjectured by Kitaev [Bra07] and first proven in [AMV13].

Lemma 5.6 (Small Incremental Entangling (SIE)). Given a finite joint system XX̄,

any Hamiltonian H with support only on δXδX̄ and any initial pure state ρ, then the

entanglement capacity, Γ(H, ρ), is bounded by

Γ(H, ρ) :=
dSX(ρ(t))

dt
≤ α‖H‖ log d, (5.32)

where ρ(t) = U(t)ρU(t)† for U(t) = e−iHt, 0 < α ≤ 4 is a constant, and d =

min(|δX|, |δX̄|).

It is conjectured that α = 2 [Bra07] but the best known bound has reached

α = 4 [Aud14]. No generality is lost by assuming pure states: We can add a

purification system C as ancilla system w.l.o.g. to X. The resulting state on the joint

system XX̄C is pure and bounded by SIE. Since including C as ancilla system can

only increase the rate of entanglement growth (we can always ignore it), we have that

the entanglement growth is also bounded for mixed states on XX̄.
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We can derive another expression for Γ(H, ρ) by defining ρX(t) := TrX̄(ρ(t)) and

Γ(H, ρ) = − d

dt
Tr(ρX(t) log ρX(t)) (5.33)

= −Tr

(
dρX(t)

dt
log ρX(t)

)
(5.34)

= −iTr(TrX̄([H, ρ]) log ρX(t)), (5.35)

where we used the Schrödinger equation idρ
dt

= [H, ρ] (setting ~ = 1). It is easy to see

that (5.35) is linear in H.

The evolution of a system with interaction graph G, for any X ⊆ V (G), can be

described by a Hamiltonian H = HX +HX̄ +HδXδX̄ , where HY only has support on

the subsystem of vertices Y ⊆ V (G). Operations local to X or X̄ do not generate

entanglement, therefore we have that

Γ(H, ρ) = Γ(HδXδX̄ , ρ). (5.36)

We can see that this is true by first explicitly computing

TrX̄([HX̄ , ρ]) = 0 (5.37)

because the partial trace is cyclic on the X̄ subsystem. Second,

Γ(HX , ρ) = −Tr([HX , ρX(t)] log ρX(t)) = 0 (5.38)

because log ρX(t) commutes with ρX(t) and using the cyclic property of the trace. By

linearity, (5.36) holds and we can restrict ourselves to consider only Hamiltonians of

the form HδXδX̄ .

Now we can bound the entanglement capacity of any edge cut in the graph as

given by the edge boundary for a vertex subset X.
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Theorem 5.7. Given any X ⊆ V (G), and any pure initial state ρ, the entanglement

capacity of a Hamiltonian H with support only on the joint subsystem δXδX̄ can by

bounded by

Γ(H, ρ) =
dSX(ρ(t))

dt
≤ α|∂X|, (5.39)

for α the constant of SIE.

Proof. We write H =
∑

e∈∂X H
(e), for H(e) two-qubit Hamiltonian interactions acting

only on the endpoints of e. By linearity,

Γ(H, ρ) = Γ

(∑
e∈∂X

H(e), ρ

)
=
∑
e∈∂X

Γ
(
H(e), ρ

)
. (5.40)

We bound each term by SIE (Lemma 5.6)

∑
e∈∂X

Γ
(
H(e), ρ

)
≤ α

∑
e∈∂X

∥∥H(e)
∥∥. (5.41)

By unitary similarity (which the norm is invariant under), we can rewrite each term in

canonical form (1.2) and apply our normalization condition such that
∑

e∈∂X‖H(e)‖ ≤

|∂X|.

Given this relation of entanglement capacity to edge cuts in the graph, we show

a lower bound on the time to perform state preparation in the Hamiltonian model

dependent on the edge cut.

Corollary 5.8. Given an initial pure state ρ0 and target pure state ρ on a bipartite

system XX̄, let us define the entanglement entropy increase ∆SX := SX(ρ)− SX(ρ0).

Then any Hamiltonian unitary evolution from ρ0 to ρ restricted by interaction graph

G must have evolution time

t ≥ ∆SX
α|∂X|

. (5.42)

Proof. Follows from Theorem 5.7.
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A lower bound on Hamiltonian routing is then easy since routing a particular state

is a special case of state preparation.

Theorem 5.9. For any graph G,

hqrt(G) ≥ 8

3π

1

α · h(G)
. (5.43)

Proof. We prepare the same initial state as in Theorem 5.5, where we have one half

of a Bell pair at each vertex v ∈ V (G). To show a lower bound, it suffices to pick a

permutation π that routes all vertices v ∈ X to X̄ arbitrarily and routes |X| vertices

u ∈ X̄ to X arbitrarily. Let the resulting state be our target state ρ. This gives

∆SX = SX(ρ) = 2|X|. Corollary 5.8 and swap time normalization imply that the

time to implement this state preparation and routing task is lower bounded by

hqrt(G, π) ≥ 4

3π

∆SX
α|∂X|

=
8

3π

|X|
α|∂X|

. (5.44)

We now maximize over all X to lower bound the Hamiltonian routing time

hqrt(G) ≥ hqrt(G, π) ≥ max
X

8

3π

|X|
α|∂X|

=
8

3π

1

α · h(G)
(5.45)

as claimed.

We match previous results on entanglement area laws for dynamics [Gon+17,

Theorem 1] on lattices, which also have a dependency on the edge cut. For example, the

distinction between edge cut and vertex cut is significant for lattices of superconstant

dimension. Generally, it holds that |∂X| ≤ maxv dv|δX|, for dv the degree of v ∈ V (G).

It remains an open question whether Hamiltonian routing can be lower bounded by

Ω(1/c(G)). We show in Chapter 5 that is not the case for a stronger model of

Hamiltonian routing.

Another case that has been well-studied is the path graph, Pn. Here, odd-even
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sort [Knu98] gives a simple classical routing algorithm that upper bounds the circuit

depth by n. It is easy to see that c(Pn) ≤ 2/n so that qrt(Pn) ≥ n− 1, matching the

diameter lower bound (Theorem 5.1). Thus, significant improvement over classical

routing on the path is only possible in the Hamiltonian routing model: We have

h(Pn) ≤ 2/n, giving hqrt(Pn) ≥ 4n/(3πα), slightly weaker (even if α = 2) than a

specialized bound of 4n/(3πα0) ≈ 0.222n, for α0 ≈ 1.912, based on the entanglement

capacity (Theorem 3.5) Indeed, Chapter 4 shows hqrt(Pn) ≤ (1− ε)n+O(log2 n), for

constant ε ≈ 0.034, so that hqrt(Pn) < qrt(Pn) for large enough n.

5.3 Comparison with Classical Routing

For some graph families fast classical routing algorithms are already known [ACG94;

CSU19]. An example are grid graphs PL × PL with side length L× L, where we know

rt(PL × PL) ≤ 3L and we can exclude a superconstant quantum advantage simply by

hqrt(G) = Ω(diam(G)) from Lieb-Robinson bounds [LR72].

In this section, we compare our quantum routing results with general bounds on

classical routing. This will allow us to obtain more conditions for a superpolynomial

separation. Our results and proofs are generalizations of results in [ACG94] from

regular graphs to irregular graphs.

In classical routing we route a permutation π in multiple time steps. We first

assign to each vertex v a token labeled π(v). Then, in each time step, we may perform

swap gates on neighboring vertices to exchange their tokens with the constraint that

each vertex participates in at most one swap. Routing terminates when each token

has been moved to its destination vertex. The difficulty of classical routing on G is

characterized by the routing number (Chapter 2)

rt(G) := max
π

rt(G, π), (5.46)
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where rt(G, π) is defined as the minimal number of time steps needed to implement

permutation π. It follows that qrt(G, π) ≤ rt(G, π) for any permutation π.

5.3.1 General Classical Routing

Our classical routing algorithm consists of performing swaps along a number of special

random walks. We upper bound how many swaps along these walks act on the same

subspace at the same time, leading to high parallelism on graphs with a large first

non-zero eigenvalue of the (normalized) graph Laplacian.

Let the adjacency matrix of a simple graph G be

A(u, v) =


1 if (v, u) ∈ E(G)

0 otherwise,
(5.47)

for v, u ∈ V (G), and let the diagonal matrix T (v, v) = dv, for dv = ‖Av‖1 the

degree of v, and 0 otherwise. Then the (normalized) graph Laplacian is defined as

L = 1− T 1/2AT 1/2 or, explicitly, [Chu]

L(u, v) =


1 if u = v and dv 6= 0,

− 1√
dudv

if u and v are adjacent,

0 otherwise.

(5.48)

The Laplacian L is symmetric and positive semidefinite [Chu]. The stationary dis-

tribution T 1/21, for 1 the constant one function, is the zero eigenfunction of L, i.e.,

LT 1/21 = 0. Let the eigenvalues of L be ordered 0 = λ0 ≤ λ1 = λ(G) ≤ · · · ≤ λn,

then the following holds for λ(G) [Chu, Lemmas 1.7 and 1.9]:

Lemma 5.10. We have:

1. For n ≥ 2,

λ(Kn) ≤ n

n− 1
. (5.49)
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2. For a graph G that is not the complete graph, we have λ(G) ≤ 1.

3. If G is connected, then

λ(G) ≥ 1

2 diam(G)|E(G)|
. (5.50)

We assume n ≥ 2 and show a general bound on the (classical) routing number In

this section without attempting to minimize the constants. We will use random walks

X = v1v2 . . . , for vi ∈ V , with transition probabilities P (u, v) = P[xi+1 = v | xi = u].

These probabilities form the transition matrix P of the simple random walk on G, so

that P = AT−1, i.e.,

P (u, v) =


1/du if u and v are adjacent,

0 otherwise.
(5.51)

Note that we default to right multiplication with the transition matrix so that

our probability distributions can be interpreted as column vectors. Therefore, the

probability that a random walk starting at u is at v after i ∈ N steps is given by

P[xi = v | x0 = u] = e(v)TP ie(u), (5.52)

where e(v) is the column vector with a 1 in position v and 0 otherwise.

Now, consider the probability that, with a random walk starting at each vertex, too

many walks will visit the same vertex around the same time. We illustrate this with

Figure 5.3, where two walks W (u) and W (v), starting at vertices u and v, visit a red

vertex W (v)i = W (u)j too close to one another if |i− j| < 5. We show that with high

probability, this does not occur too often for random walks of length l ≥ ln(n)/λ(G).

This is a generalization of [ACG94, Lemma 2] to irregular graphs, where we explicitly

bound the dependence on the degree for walks to intersect. In particular, the entries
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v

π(v)
π(u)

u

W (v)i
W (u)j

G

W (v)

W (u)

Figure 5.3: Drawn are two walks: the walk W (v) from v to π(v) and the walk W (u)
from u to π(u), for some permutation π of the vertices. Walks may intersect at a
vertex (red) such that the i-th step of W (v) and the j-th step of W (u) are the same,
i.e., W (v)i = W (v)j . When we perform transpositions along random walks to perform
routing, these may interfere when they intersect at similar times. We bound the total
number of walk intersecting where |i− j| < 5 for any vertex when considering random
walks of sufficient length. Given that random walks do not intersect too much, we can
use them to route simultaneously on arbitrary graphs.

of T/minv dv in (5.60) are bounded by the degree ratio

d∗ :=
maxv dv
minv dv

. (5.53)

Lemma 5.11. Let G be a connected simple graph on n vertices and suppose l ≥

ln(n)/λ(G). For every v ∈ V (G), let W (v) denote a random walk of length l starting

at vertex v. Let I(v) denote the total number of other walks W (u) such that there

exist indices 0 ≤ i, j ≤ l, |i− j| < 5, so that W (v)i = W (u)j. Then, with probability

at most n−125 there is no vertex v ∈ V (G) with I(v) > 90ld∗.

Proof. We wish to bound I(v) for any v ∈ V (G). Let us introduce the indicator

random variable depending on the random walks W (v)

Xuv =


1 if W (u) intersects W (v),

0 otherwise,
(5.54)
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where we define thatW (u) intersectsW (v) if there exist indices 0 ≤ i, j ≤ l, |i−j| < 5,

such that W (v)i = W (u)j. We include the random walk starting at v in the total

which only increases the expectation of I(v), then the expected value of I(v) over

random walks is

E[I(v)] ≤ E

[∑
u

Xuv

]
=
∑
u

P[Xuv = 1] (5.55)

=
∑
u

P

∨
i∈[l]

∨
j:|i−j|<5

W (v)i = W (u)j

 (5.56)

≤
∑
u

∑
i∈[l]

∑
j:|i−j|<5

P
[
W (v)i = W (u)j

]
. (5.57)

Recall (5.52), then

∑
u,i,j

P
[
W (v)i = W (u)j

]
=
∑
u

∑
i∈[l]

e(W (v)i)
T
∑

j:|i−j|<5

P je(u) (5.58)

=
∑
i∈[l]

e(W (v)i)
T
∑

j:|i−j|<5

P j1, (5.59)

where we note the inequality xT1 =
∑

` x` ≤
∑

` c`x`, for x` ≥ 0, when we scale by

c` ≥ 1, so

∑
i∈[l]

e(W (v)i)
T
∑

j:|i−j|<5

P j1 ≤
∑
i∈[l]

e(W (v)i)
T
∑

j:|i−j|<5

P j T1

minv dv
(5.60)

≤ 9
∑
i∈[l]

e(W (v)i)
T T1

minv dv
(5.61)

≤ 9ld∗, (5.62)

since PT1 = T1 and T (i, i) ≤ maxv dv.

We now bound the tail probablity of I(v). We use the multiplicative Chernoff

bound, which states that for random variable Y =
∑

i Yi, where Yi are independent
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random variables, and mean µ, P[X > (1 + δ)µ] ≤
(
eδ/(1 + δ)1+δ

)µ for any δ > 0.

We can identify I(v) =
∑

u6=vXuv and see that the Chernoff bound applies since walks

are independent (note that they may depend on v). Setting δ = 9, we have

P[I(v) > 90ld∗] ≤ P[I(v) > 10E[I(v)]] <

(
e9

1010

)9ld∗

(5.63)

≤ n9 ln(e9/1010)d∗/λ(G) (5.64)

≤ n−126 (5.65)

by the Chernoff bound, d∗ ≥ 1, and λ(G) ≤ n/(n− 1) with n−1/(n−1) ≤ 1. Since there

are n vertices, the probability that there exists a vertex with I(v) > 90ld∗ is at most

n−125. The Lemma follows from the contrapositive.

Now we show that if we “glue” together random walks starting at the vertices at

opposite ends of a permutation of order two then these two walks will, with high

probability, have few intersections. This is an adaptation of [ACG94, Lemma 3] to

irregular graphs, using our previous Lemma.

Lemma 5.12. Let G denote a simple connected graph on n vertices and let σ be a

permutation of order two on V (G). Put l = 10
λ(G)

lnn. Then there is a set of n walks

W (v), one for each v ∈ V (G) and of length 2l, where both W (v) and W (σ(v)) have,

as endpoints, v and σ(v) and traverse the same set of edges (in opposite directions)

satisfying the following: If I(v) denotes the total number of other walks W (u) such

that there exist two indices 0 ≤ i, j ≤ l, |i − j| < 5, for which W (v)i = W (u)j or

W (v)i = W (u)2l−j, then I(v) ≤ 400ld∗ for all v with high probability.

Proof. We first prove that it is possible to construct n walks satisfying the conditions

of the Lemma and that are close to random [BFU94]. Let us define the probablity

of a random walk starting at v ∈ V (G) ending at a vertex w ∈ V (G), where w is a
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random variable, after t ∈ N steps, then

P (t)
v (w) := P[W (v)t = w] (5.66)

=
∑

v2,...,vt−1∈V (G)

P[W (v) = v, v2, . . . , vt−1, w]. (5.67)

We now define the relative pointwise distance, ∆: N→ R, of P (t)
v (w) to the stationary

distribution as [Chu]

∆(t) := max
v,w

∣∣∣P (t)
v (w)− π(w)

∣∣∣
π(w)

. (5.68)

By [Chu, Theorem 1.16] we have that all paths of length l are close to stationary, i.e.,

∆(l) ≤ 2 exp

(
−2lλ(G)

2 + λ(G)

)
|E(G)|
minx dx

< 2n−10 |E(G)|
minx dx

≤ 2n−8, (5.69)

where we used λ(G) > 0 and minx dx ≥ 1. Then, we can compare the statistics of a

truly random walk W (v) of length l to a random walk where we condition on the last

vertex being w ∈ V , which is sampled according to the stationary distribution. Let us

call this a conditioned walk. The probability of a particular random walk W (v) can

be related to the conditioned walk by

P[W (v)] =
∑
w

P[W (v) |W (v)l = w]P (l)
v (w) (5.70)

≤
∑
w

P[W (v) |W (v)l = w](1 + 2n−8)π(w) (5.71)

= 2n−8 +
∑
w

P[W (v) |W (v)l = w]π(w) (5.72)

and the corresponding lower bound can be derived similarly. Therefore, a conditioned

walk has vanishing deviation in n from a random walk.

By putting such a conditioned walk from v to w back to back with a conditioned

walk from σ(v) to w, in reverse order, we have shown the existence of walks from each
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v to σ(v) that are close to random walks. Given that Lemma 5.11 holds for any W (v),

we have that I(v) > 180ld∗ for no walk W (v) with high probability. The result follows

from the contrapositive.

The existence of walks between opposite ends of an order-two permutation with

few intersections leads to a classical routing algorithm that divides the walks into

disjoint sets that do not intersect. This adapts [Chu, Theorem 4.10] to the irregular

graph setting using our previous Lemmas.

Theorem 5.13. Let σ denote a permutation of order two on the vertex set of a

connected graph G. Then

rt(G, σ) ≤ 80 000d∗
λ(G)2

ln2 n = O

(
d∗

λ(G)2
log2 n

)
. (5.73)

Proof. Let l = 10
λ(G)

lnn. We want to show rt(G, σ) = O(l2d∗). Let W (v) be a system

of walks of length 2l satisfying Lemma 5.12. Let H be the graph whose vertices

are the walks W (v) and in which W (v) and W (u) are adjacent if there exist two

indices 0 ≤ i, j ≤ l, |i − j| < 5, so that W (v)i = W (u)j or W (v)i = W (u)2l−j. By

Lemma 5.12, the maximum degree of H is at most 400ld∗ with high probability, hence

it is (400ld∗)-colorable. We can therefore divide the walks W (v) into 400ld∗ sets of

independent walks of length 2l.

We now present the routing algorithm. For each set of independent walks we

sequentially do the following. For step i, with 1 ≤ i ≤ l, we flip tokens along the edges

numbered i and 2l − 1− i in each of the walks. After l steps the tokens at either end

of the walk will have been exchanged and the tokens not involved in any walk have

not moved. After repeating this for all independent sets, all tokens have reached their

destinations.

Now it is easy to generalize to all permutations.
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Corollary 5.14. For every connected simple graph G,

rt(G) ≤ 160 000d∗
λ(G)2

ln2 n = O

(
d∗

λ(G)2
log2 n

)
. (5.74)

Proof. Any permutation of V (G) can be written as a product of two permutations of

order two. Use Theorem 5.13 to route each sequentially and obtain the result.

Corollary 5.14 provides novel upper bounds in certain special cases of graphs. Of

particular interest are irregular graphs where d∗/λ(G)2 = o(n). One such example is an

Erdös-Rényi graph Gn,p, which is an n-vertex graph where each edge is independently

present with some probability p. Hoffman, Kahle, and Paquette [HKP19] showed that

for p ≥ (1 + δ) log n/n, for constant δ > 0, there is a constant C(δ) such that

|1− λ(G)| < C(δ)√
p(n− 1)

= O

(
1√
n

)
(5.75)

with high probability. Thus, we have that λ(G) = Ω(1) with high probability for

such p and large enough n. Moreover, the degree ratio d∗ → 1 for n→∞ with high

probability, though it does not exactly equal 1 for finite n, giving some irregularity.

Under these conditions, Corollary 5.14 shows that rt(Gn,p) = O(log2 n) with high

probability.

5.3.2 Conditions for a Superpolynomial Separation

To compare our upper bound on the classical routing number and the Hamiltonian

routing time lower bound, we bound the Hamiltonian routing time in terms of the

spectral gap λ(G). To do so, we use the Cheeger inequality [Che71; Chu] that we state

here without proof.
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Lemma 5.15 (Cheeger inequality). For any connected graph G,

2hG ≥ λ(G) >
h2
G

2
, (5.76)

where the Cheeger constant, hG, is defined as

hG := min
X⊆V (G):|X|≤|V (G)|/2

|∂X|∑
x∈X dx

. (5.77)

The edge expansion h(G) relates to hG as

h(G) = min
X

|∂X|
|X|

≤ min
X

|∂X|∑
x∈X dx

max
v
dv = hG max

v
dv, (5.78)

where X ⊆ V (G) and |X| ≤ |V (G)|/2. We now rewrite the Hamiltonian routing lower

bound, Theorem 5.5, in terms of spectral properties.

Lemma 5.16. For a connected graph G, we have that

hqrt(G) ≥ 8

3παmaxv dv

√
1

2λ(G)
. (5.79)

Proof. Given Theorem 5.9, (5.78), and Lemma 5.15, we have

hqrt(G) ≥ 8

3πα · h(G)
(5.80)

≥ 8

3πα · hG maxv dv
(5.81)

>
8

3παmaxv dv

√
1

2λ(G)
(5.82)

as claimed.

Interaction graphsG of common quantum architectures have bounded degree [IBM18;

Aru+19; KMW02]. We have that Corollary 5.14 gives rt(G) = O(log2(n)/λ(G)2) and
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Lemma 5.16 gives hqrt(G) = Ω(1/
√
λ(G)). Therefore, the Hamiltonian routing time

and classical routing number are polynomially related up to log factors in this case.

A simple way to bound the slowdown when a classical routing algorithm is used

instead of a Hamiltonian routing algorithm is the ratio of the routing times. By

Corollary 5.14 and Lemma 5.16, we have that

rt(G)

hqrt(G)
= O

(
d∗maxv dv
λ(G)3/2

log2 n

)
. (5.83)

By performing routing on the spanning tree of G, we have that rt(G) = O(n) [ACG94],

and, trivially, hqrt(G) = Ω(1). Therefore, (5.83) is nontrivial if

d∗max
v
dv = o

(
n

log2 n
λ(G)3/2

)
. (5.84)

Moreover, it is possible to bound the classical routing number by a polynomial in

the Hamiltonian routing time when λ(G) is sufficiently small.

Theorem 5.17. For a simple connected graph G, rt(G) = O(poly(hqrt(G))) if

1

λ(G)
= Ω

(
poly(d∗, log n) max

v
dv

)
. (5.85)

Proof. We wish to show when rt(G) is some polynomial of qrt(G), i.e. rt(G) =

O(hqrt(G)k) for constant k ≥ 1. By Corollary 5.14 and Lemma 5.16, this happens

when
log rt(G)

log hqrt(G)
= O

(
log d∗ + log log n

log 1
λ(G) maxv dv

+ 1

)
(5.86)

can be upper bounded by a constant. A sufficient condition is

1

λ(G) maxv dv
= Ω(poly(d∗, log n)) (5.87)

as claimed.
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vc

GL GR

Figure 5.4: The vertex barbell graph B2n, for n = 5, that consists of two complete
graphs connected on a vertex. We have that λ(G) ≤ 2/n by Lemma 5.15.

We call the type of function that bounds rt(G) depending on hqrt(G) the separation.

Theorem 5.17 does not rule out a superpolynomial separation between classical and

Hamiltonian routing on, for example, expander graphs with λ(G) = Ω(1). We note

some cases of expander graphs where still no superpolynomial separation is possible.

Graphs G of bounded degree have a diameter diam(G) = Ω(log n), giving a lower

bound of hqrt(G) = Ω(log n). So, for constant λ(G), we have rt(G) = O(log2 n) and

only a quadratic separation is possible between Hamiltonian and classical routing.

Additionally, some expander graphs with small diameter are unsuitable for sep-

arating gate-based quantum routing from classical routing. The star graph, Sn,

has λ(Sn) = 1 [Chu] but is a poor vertex expander since c(Sn) = O(n−1), giving

qrt(Sn) = Θ(n). Hamiltonian quantum routing, however, could still provide an advan-

tage in this case, since our lower bound on hqrt(Sn) is trivial. We take a first step in

resolving this question in the next section.

5.4 Toward a Separation

We have given necessary conditions for a superpolynomial separation between Hamilto-

nian and classical routing, but we are not even aware of any super-constant separation.

In this section we will show that such a separation is possible in Hamiltonian routing

with ancilla by considering a vertex bottleneck. This also shows that the Hamiltonian

routing with ancilla cannot be lower bounded by Ω(1/c(G)).

We show a separation on a graph B2n, for n ∈ N, that we call the vertex barbell
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graph (see Figure 5.4). It consists of two complete graphs GL, GR, of n vertices each

and a central vertex vc where each complete graph is fully connected with vc, forming

two complete graphs of size n+ 1 joined at a vertex. We have that qrt(B2n) = Θ(()n)

since Theorem 5.5 with c(B2n) ≤ 1/n implies the lower bound and a trivial swap

routing strategy implies the upper bound.

Toward the separation, we consider the stronger model of Hamiltonian routing with

ancilla. This model is based on Hamiltonian routing with two additional assumptions:

(i) each qubit has one associated ancilla qubit available, and (ii) the ancilla can only

perform a swap with its associated qubit in negligible time cost1. Let us denote the

Hamiltonian routing time with ancilla as

hqrta(G) := max
π

hqrta(G, π), (5.88)

where hqrta(G, π) is the routing time in the Hamiltonian routing with ancilla model

of π on graph G. As a point of comparison, we may define a modified gate-based

quantum routing number qrta(G) analogously. Due to the vertex bottleneck, we still

have that qrta(B2n) = Θ(n).

In Hamiltonian routing with ancilla, we can use a protocol for fast state trans-

fer [Guo+19] to implement a routing protocol for the hard case on B2n.

Theorem 5.18. Given a vertex barbell graph B2n and a permutation π that permutes

all vertices from GL to GR and vice versa, we have

hqrta(B2n, π) = O(
√
n). (5.89)

1Instead of fast swaps, we could consider the graph B4n, where half the qubits in GL and GR are
ancilla. In Hamiltonian routing with ancilla, the ancilla are only connected locally.
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|ψ〉 = v

|0〉⊗|S| = S

...

W (v,S)

|0〉 = u

W (u,S)†

Figure 5.5: In our routing protocol for the vertex barbell graph, we transfer the
state |ψ〉 on qubit v to u by using the intermediate qubits S as ancilla (in the |0〉⊗|S|
state). The operation W (v,S) creates a W-state dependent on |ψ〉 over S in time
π/(2

√
|S|) [Guo+19]. Since it is unitary, we can use its inverse to transfer the state

to u. We repeat this procedure in GR to transfer the state to its destination.

Proof. We define a Hamiltonian to construct a W-state [Guo+19]

W (x,S) :=
∑
v∈S

c†xcv + h.c., (5.90)

where S ⊆ V (B2n), x ∈ V (B2n) \ S, and cy = |0〉y〈1|y (resp. c†y), for y ∈ V (B2n),

are annihilation (resp. creation) operators. For a time T = π/(2
√
|S|) and state

|ψ〉 = a0|0〉+ a1|1〉 on x, we have that

e−iW (x,S)T (a0|0〉x + a1|1〉x)|0〉S = |0〉x(a0|0〉S + a1|W 〉S), (5.91)

where |W 〉 := 1√
|S|

∑
v∈S c

†
v|0〉S is the W-state over the qubits S (an equal superposition

over Hamming weight 1 strings).

The protocol is then as follows. We first use (fast) swaps between each qubit and

its ancilla so all vertices in the graph are in the initial state |0〉. We now pick some

vertex v ∈ V (GL) and show how to route the qubit to π(v). We swap the qubit at

v with its ancilla to return to initial state at v. Then, we use W (v, V (GL) \ {v}) to

construct a W-state on GL, followed by the inverse operation W (vc, V (GL) \ {v})†,

which sends the state from v to the central vertex vc in total time 2T . We repeat this

process to transfer the qubit from vc to π(v). Then, we swap the qubit at π(v) with
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its ancilla. If the qubit that is now at π(v) needs to be routied, we follow an analogous

procedure and send it to π(π(v)). If it does not (it was an ancilla qubit), we pick some

other vertex in V (GL) that still needs to be routed. We iterate in this way, alternating

a vertex from GR, then GL, until all vertices are routed to their destination ancilla.

Finally, we simultaneously swap all qubits with their ancilla to finish the routing.

The total time is 4T · 2n = O(
√
n).

We can now generalize the algorithm to all permutations on B2n.

Corollary 5.19. Given a vertex barbell graph B2n, we have

hqrta(B2n) = O(
√
n) (5.92)

Proof. Let π be any permutation of the vertices V (G). First, we trivially route vc

to π(vc) and π−1(vc) to vc in O(1) time using swaps. Then we route all vertices

that are permuted only within GL or GR in O(1) time using swaps since rt(Kn) ≤

2 [ACG94]. Finally, consider the vertex barbell subgraph of the remaining vertices

that need to route between GL and GR plus vc. This can be routed in O(
√
n) time by

Theorem 5.18.

This shows a quadratic separation

qrt(B2n) ≥ qrta(B2n) = Ω(hqrta(B2n)2) (5.93)

and hqrta(B2n) /∈ Ω(c(B2n))−1) = Ω(n).

5.5 Conclusion

In this chapter we have extended the scope of routing from classical routing and

introduced gate-based and Hamiltonian models of routing, investigated lower bounds,

129



and also separations. We showed some conditions on the spectrum for when a

superpolynomial separation can be excluded, in particular for graphs with poor

expansion. Another case that can be excluded are expander graphs with λ(G) = Ω(1)

but bounded degree since these can exhibit at most a quadratic separation between

Hamiltonian and classical routing.

One prominent open question is whether the star graph Sn, which has λ(Sn) = 1,

can exhibit a separation. We showed qrt(Sn) ≥ n − 1, whereas we are only able to

show that a trivial lower bound on Hamiltonian routing, hqrt(Sn) = Ω(1), holds. We

showed an Ω(
√
n) separation for a strengthened model of Hamiltonian routing with

ancilla. Therefore, the star graph seems like a good first case to investigate whether a

superconstant separation exists between gate-based quantum routing and Hamiltonian

routing.

Along the way, we showed bounds on the depth and time required to perform state

preparation tasks through entropic arguments. Piroli, Styliaris, and Cirac [PSC21]

showed LOCC circuit lower bounds on state preparation and inspired us to show

similar state preparation results to lower bound routing. In fact, since the entropy is

non-increasing under LOCC, we have that STE, SIE, our state preparation bounds,

and thus our routing bounds generalize to models including LOCC. These models

give a stronger class of quantum routing (see Figure 1.1) and would allow, e.g.,

teleportation to bridge long distances. Trivially, this can exceed the Lieb-Robinson

velocity [LR72] and would invalidate simple lower bounds based on the diameter of

the graph (Theorem 5.1). It is an open question how much stronger these models of

routing are.
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Chapter 6

Surface code compilation via

edge-disjoint paths

This chapter is based on

[BKS21] Michael Beverland, Vadym Kliuchnikov, and Eddie Schoute. Surface

code compilation via edge-disjoint paths. Oct. 21, 2021. arXiv: 2110.11493

[quant-ph]

6.1 Introduction

Quantum hardware will always be somewhat faulty and subject to decoherence, due

to inevitable fabrication imperfections and the impossibility of completely isolating

physical systems. For large computations it becomes a certainty that faults will occur

among the many qubits and operations involved. Fault-tolerant quantum computation

(FTQC) can be implemented despite this by encoding the information in a quantum

error correcting code and applying logical operations which are carefully designed to

process the encoded information with an acceptably low effective error rate.

The surface code [Kit03; BK98] provides a promising approach to implement FTQC.
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Firstly, it can be implemented using geometrically local operations on a patch of qubits

in a 2D grid, which is the natural setting for many hardware platforms including

superconducting [Fow+12; Cha+20a] and Majorana [Kar+17] qubits. Secondly, the

logical qubits it encodes remain protected even for relatively high noise rates, with

a threshold of around 1% [WFH11]. Thirdly, a sufficiently general set of elementary

logical operations can be performed fault tolerantly on qubits encoded in the surface

code using lattice surgery [Hor+12]. By tiling the plane with surface code patches, a

2D grid of logical qubits is formed, where the elementary operations are geometrically

local; see Figure 1.2. When combined with magic state distillation [BK05] these

operations become universal for quantum computing. Indeed this approach, which

we will refer to as the surface code architecture, is seen as among the most promising

by many research groups and companies working in quantum computing [Fow+12;

Cha+20b; YK17; FC16].

In this work, we seek to minimize the resources required to fault-tolerantly imple-

ment a quantum algorithm using the surface code architecture, which we will refer to

as the surface code compilation problem. For concreteness, we will assume that the

input quantum algorithm is expressed as a quantum circuit composed of preparations

and destructive measurements of individual qubits in the Z or X basis, controlled-not

(cnot), Pauli-X, -Y , and -Z, Hadamard (H), Phase (S) and T gates. Our results

can be easily generalized to broader classes of input quantum circuits. The output is

the quantum algorithm executed using the elementary logical surface code operations

shown in Figure 1.2. Ultimately, we would like to minimize the physical space-time

cost, which is the product of the number of physical qubits and the time required to

run an algorithm. To avoid implementation details, we instead minimize the more

abstract logical space-time cost, which is the number of logical qubits (the circuit width)

multiplied by the number of logical time steps (the circuit depth) of the algorithm

expressed in elementary surface code operations. The logical and physical space-time
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(a) With swap operations
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|0⟩
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|ψ⟩

|0⟩

|0⟩

|0⟩

(b) With Bell pair

Figure 6.1: Application of a cnot(q0, q1) on distant qubits using surface code
operations in two ways. (a) Using a swap-based approach requires Ω(n) depth using
operations from Figure 1.2, while (b) generating and consuming a Bell pair [LO17] can
be implemented in constant depth. The classical function f computes Pauli corrections
on the output qubits.

costs are expected to be 1-to-1 and monotonically related (see Appendix B.2), such

that minimizing the former should minimize the latter.

A well-established approach to implement surface code compilation is known as

sequential Pauli-based computation [Lit19], where non-Clifford operations are imple-

mented by injection using Pauli measurements, and Clifford operations are conjugated

through the circuit until the end. The circuit that is run in this approach then

consists of a sequence of high-weight Pauli measurements which can have overlapping

support leading them to be measured one after the other. For large input circuits this

can be problematic because highly parallel input circuits can become serialized with

prohibitive runtimes.

A major challenge to solve the surface code compilation problem is that quantum

algorithms typically involve operations between logical qubits that are far apart when

laid out in a 2D grid. One approach to deal with a long-range gate is to perform

classical routing around until the pair of interacting qubits are next to one-another

(Chapter 2). However, this can result in a deep circuit, see Figure 6.1a. A more
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efficient approach is to create long-range entanglement by producing Bell pairs, which

for example can be used to implement a long-range cnot with a constant-depth

circuit [Bri+98; LO17; Jav+17] (see Figure 6.1b). Both of these approaches can be

implemented with the elementary operations of the surface code.

Moreover, algorithms typically consist of many long-range operations that can

ideally be performed in parallel. For architecture-respecting circuit transformations

based on classical routing, this can be done by considering a permutation of the logical

qubits which is implemented by a sequence of swaps [Lao+18; Mur+19; ZW19].

Finding these swap circuits reduces to a routing problem on graphs (Chapter 2

and [SHT19]). There are efficient classical routing algorithms that solve this problem

for certain families of graphs, however finding the minimal depth solution for a general

graph is NP-hard [BR17].

In this chapter, we provide a solution to the surface code compilation problem

which generalizes the use of entanglement for long-range cnots discussed above to the

implementation of many long-range operations in parallel. In particular, we propose

Edge-Disjoint Paths Compilation (EDPC), which is a computationally efficient classical

algorithm tailored to the elementary operations of the surface code. We find evidence

that our EDPC algorithm significantly outperforms other approaches by performing a

detailed cost analysis for the execution of a set of quantum circuits benchmarks.

EDPC reduces the problem of executing quantum circuits to problems in graph

theory. Logical qubits correspond to graph vertices, and there is an edge between

qubits if the elementary surface code operation can be applied between them. We

show how to perform multiple long-range cnots in constant depth along a set of

edge-disjoint paths (EDP) in the graph. In other words, long-range cnots can be

performed simultaneously, in one round, if their controls and targets are connected by

edge-disjoint paths. This leads to the well-studied problem of finding maximum EDP

sets between pairs of vertices [Kle96]. Therefore, this implementation of long-range
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cnots along with the elementary operations allow compilation of Clifford operations.

The final operations that complete our gate set for universal quantum computation

with the surface code are T gates. The T gates are not natural operations on the surface

code, but can be implemented fault-tolerantly by consuming specialized resource states,

called “magic states”. These magic states can be produced using a highly-optimized

process called magic state distillation, which we assume occurs independently of the

computation on our code. We assume that logical magic states are available in a

specified region of the grid. EDPC reduces magic state delivery to simple Max Flow

instances that have known efficient algorithm [FF56].

The outline of the chapter is as follows. In Section 6.2, we construct key higher-level

components from the basic surface code operations in Figure 1.2 including simple

long-range operations. These long-range operations allow us to perform many parallel

cnot operations given vertex-disjoint and edge-disjoint paths that connect the data

qubits in Section 6.3. Because of its importance to the algorithms, there we also

compare the state of the art graph algorithms for finding vertex-disjoint or edge-disjoint

sets of paths and analyze their relation to our algorithms. We complete our gate set by

giving an algorithm for efficient remote rotations using magic states at the boundary

in Section 6.4. Putting parallel long-range cnot and remote rotations together, we

construct our circuit compilation algorithm, EDPC, in Section 6.5. Finally, we compare

the performance of EDPC to prior surface code compilation work in Section 6.6, note

its connections to network coding [BH20], and give numerical results comparing the

space-time performance with a swap-based compilation algorithm.
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6.2 Key circuit components from surface code opera-

tions

Recall that our goal in this work is to develop an efficient classical compilation

algorithm which re-expresses a quantum algorithm into one that uses the elementary

operations of the surface code with a low logical space-time cost. In Appendix B.1 we

give an overview of the surface code and justify the resource costs of the elementary

operations shown in Figure 1.2. The initial quantum algorithm is assumed to be

expressed as a circuit diagram involving preparations and measurements of individual

qubits in the computational basis, controlled-not (cnot), Pauli-X, -Y , and -Z,

Hadamard (H), Phase (S) and T gates. In this section we build and calculate the

cost of some key circuit components from the elementary surface code operations in

Figure 1.2. The contents of this section are reproductions or straightforward extensions

of previously-known circuits.

6.2.1 Single-qubit operations

Some of the operations of the input circuit can be implemented directly with elementary

surface code operations, namely the preparation and measurement of individual qubits

in the measurement basis, and the Hadamard gate (provided three neighboring ancillary

patches are available as ancillas, see Figure 1.2). Pauli operations do not need to be

implemented at all since they can be commuted through Clifford gates and arbitrary

Pauli gates [Kni05] and can therefore be tracked classically and merged with the

final measurements. For this reason, while we occasionally explicitly provide the

Pauli corrections where instructive, we often show equivalence of two circuits only

up to Pauli corrections. The remaining single-qubit operations in the input circuit,

namely the S and T gates, can be implemented using magic states and is addressed

in Section 6.4.
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6.2.2 Local cnot and swap gates

An important circuit component is the cnot gate, which can be implemented as

shown in Figure 6.2a [ZBL08]. The qubits involved in this example are stored in

adjacent patches, i.e., it is local. Another useful operation is a swap of a pair of qubits

stored in nearby patches. The surface code’s move operation shown in Figure 1.2

gives a straightforward way to implement this as shown in Figure 6.2b. With these

implementations, the cnot requires one ancilla patch, while swap requires two. Both

are depth 2.

(a) cnot gate (b) swap gate

Figure 6.2: A cnot gate can be implemented in depth 2 using ZZ and XX
joint measurements with a |+〉 ancilla state, followed by classically controlled Pauli
corrections. The swap gate can be implemented using four move operations and two
ancillas in depth 2.

6.2.3 Long-range cnot using swap gates

1 12 233

k-1

k+1

k-1
2

2

2
P P

Figure 6.3: A non-local cnot can be implemented using swaps which takes depth
2dk−1

2
e using a zig-zag of ancilla patches along the path P of length k. The figure

shows the case when k is odd and swaps depth is 2(k − 1). The patches on the path
can store other logical information, which will simply be moved during the swap
gates. The patches adjacent to the path are ancillas which are used to implemented
the swap gates.
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Typical input circuits for surface code compilation will involve cnot operations

on pairs of qubits that are far apart after layout. A very intuitive approach to apply

a long-range cnot(q1, q2) gate is shown in Figure 6.3. This involves making use of

swap gates to first move the qubits q1 and q2 so that they are near one another, and

then use the local cnot gate in Figure 6.2a. Let the path P = v1v2 . . . vk, for k ∈ N,

where v1 = q1 and vk = q2. As each swap has depth 2, we get a circuit of depth 2dk−1
2
e

since we can perform swaps on either end simultaneously. Afterwards, the two qubits

are adjacent and we simply perform a cnot in depth 2.

A lower bound on the depth it takes to perform a long-range cnot gate using

swaps is proportional to the length of the shortest q1-q2 path. To move a qubit k

patches using swaps takes depth exactly 2k. Therefore, to move control and target to

the middle of the shortest path connecting them, it must take time proportional to at

least half the length of the path.

6.2.4 Long-range cnot using a Bell pair

A circuit component that we make extensive use of in this chapter is the long-range

cnot using a Bell pair [LO17]. This allows us to apply cnots in depth 2 between

any pair of qubits (provided there is a path of ancilla qubits which connects them).

To understand the construction, we first show in Figure 6.4a how to prepare a

longer-range Bell pair from two Bell pairs. By iterating this construction one can

form a circuit to prepare a long-range Bell pair at the ends of any path of adjacent

ancilla patches in depth 2. Next, we show in Figure 6.4b how to implement a cnot

operation between qubits stored in patches neighboring a pair of patches storing a

Bell pair. Putting these together, using a path of ancilla patches between a pair of

qubits, a long-range cnot can be implemented in depth 2 in a two-step circuit shown

in Figure 6.4c and Figure 6.4d respectively. This approach can be used to implement

the cnot in depth 2 circuit using any path from the control to the target qubit which
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(a) Preparing a longer-range Bell pair (b) cnot by consuming a Bell pair

B B B

B

B
P

(c) Preparing and consuming a Bell pair for
long-range cnot I

B B B
P

Z

Z

X X

(d) Preparing and consuming a Bell pair for
long-range cnot II

Figure 6.4: A long-range cnot can be implemented in depth 2 by first preparing
a Bell pair. (a) Joining Bell-pairs with Bell measurements. This can be iterated to
form a long-range Bell pair along any path of ancillas in depth 2. (b) A Bell pair can
be used to apply a cnot. (c,d) The first and second steps of a depth-2 circuit that
implements a cnot between a pair of patches at the end of a path of ancilla patches
by preparing and consuming a Bell pair.

starts with a vertical edge and ends with a horizontal edge. There is also flexibility in

the precise arrangement of the Bell pairs and Bell measurements along the path using

the circuits in Appendix B.3.

Note that here we have focused on implementing a long-range cnot by constructing

and consuming a Bell pair. However a similar strategy (of first preparing a long-range

Bell pair in the patches at the ends of a path of ancillas) can be used to implement

other long-range operations such as teleportation.

6.3 Parallel long-range cnots using Bell pairs

Here, we generalize the use of Bell pairs from the setting of compiling an individual

non-local cnot gate into surface code operations to the setting in which a set of

parallel non-local cnot gates are compiled. In Figure 1.2 and the circuit components

in Section 6.2, ancilla qubits are used to perform some operations on data qubits. To
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consider the compilation on large sets of qubits, we must specify the location of data

and ancilla qubits: here we assume a 1 data to 3 ancilla qubit ratio, as illustrated in

Figure 6.6.

In Section 6.3.1 we discuss some relevant background on sets of vertex-disjoint

paths (VDP) and sets of edge-disjoint paths (EDP) in graphs. Then in Section 6.3.2

we define the VDP subroutine and the EDP subroutine that apply parallel cnot

gates at the ends of a particular type of VDP or EDP set. In Section 6.3.3, we show

how to use the EDP subroutines to compile a parallel cnot circuit, consisting of

disjoint cnot operations, to the surface code architecture and prove bounds on the

performance of this approach.

6.3.1 Vertex-disjoint paths (VDP) and edge-disjoint paths

(EDP)

In Section 6.2.4 we saw that a long-range cnot could be implemented with the use of

a Bell pair produced with a path of ancilla qubits connecting the control and target of

the cnot. A barrier to implement multiple cnots simultaneously can arise when an

ancilla resides in the paths associated with multiple different cnots. This motivates

us to review some relevant theoretical background concerning sets of paths on graphs.

Given a graph G, a set of paths P is said to be a vertex-disjoint-path (VDP) set

if no pair of paths in P share a vertex, and an edge-disjoint-path (EDP) set if no

pair of paths in P share an edge. Note that a set of vertex-disjoint paths is also

edge-disjoint. Further consider a set of terminal pairs T = {(s1, t1), . . . , (sk, tk)} for

terminals si, ti ∈ V (G), the vertices of G, and i ∈ [k]. We then say that a set of paths

P is a VDP set for T (respectively an EDP set for T ) if P is a VDP set (respectively

an EDP set), and each path in P connects a distinct pair in T . These path sets do

not necessarily connect all pairs in T . In what follows, we pay special attention to

the square grid graph (see Figure 6.8a). The grid graph is relevant for qubits in the
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surface code as shown in Figure 1.2, where the vertices correspond to code patches

and edge connect vertices associated with adjacent patchs1.

The problems of finding a maximum (cardinality) VDP set for T or a maximum

EDP set for T have been well-studied and there are known efficient algorithms capable

of finding approximate solutions to each. Unfortunately, on grids it is particularly

hard to approximate the maximum VDP set. In particular, for N := |V (G)| there

exist terminal sets for which no efficient algorithm can find an approximate solution

to within a 2O(log1−εN) factor of the maximum set size for any ε > 0, unless NP ⊆

RTIME(Npoly logN) [CKN18]. However, efficient algorithms are available if one is

willing to accept a looser approximation to the optimal solution. For example, a simple

greedy algorithm is an O(
√
N)-approximation algorithm for finding the maximum

VDP set [KS04; KT06a], i.e., it produces a VDP set to within an O(
√
N) multiplicative

factor of the optimal solution for any graph, not just the grid. For grids, the best

efficient algorithm that is known is an Õ(N1/4)-approximation algorithm [CK15],

where Õ(·) hides logarithmic factors of O(·).

The situation is better for approximation algorithms of the maximum EDP set:

There is a Θ(
√
N)-approximation algorithm [CKS06] for any graph, and on grids

Aumann and Rabani [AR95] showed an O(logN)-approximation algorithm that was

later improved to an O(1)-approximation algorithm [KT95; Kle96]. In practice, these

algorithms can be technical to implement and can have large constant prefactors in

their solutions that can be prohibitive for the instance sizes that we consider. A

simple greedy algorithm forms a O(
√
N)-approximation algorithm [KS04] for finding

a maximum EDP set on the two-dimensional grid and does not suffer from the

constant prefactors of the asymptotically superior alternatives. The dominant runtime

complexity of this greedy algorithm is mainly in finding shortest paths for each terminal
1Later we will consider a modification of the square grid graph because our algorithms require

some further restrictions on the paths, for example preventing them from passing through those
vertices associated with data qubits. It is unclear if all of the results in this section also apply for
these modified graphs.
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pair, giving a O(|T |N logN), runtime upper bound by Dijkstra’s algorithm2.

It is informative to consider the comparative size of the maximum EDP and VDP

sets for the same terminal set T . Since any VDP set is also an EDP set, the size

of the maximum VDP set for T cannot be larger than the maximum EDP set for

T . Moreover, one can construct some cases of T on the grid [Kle96] in which the

maximum EDP set is a factor
√
N larger than the maximum VDP set [Kle96]. For

example, consider the set of terminal pairs T = {((i, 1), (L, i)) | i ∈ [L]} of an L× L

grid graph, where vertex (i, j) denotes the vertex in row i and column j. All terminals

can be connected by edge-disjoint paths but the maximum VDP set is of size one.

In Section 6.3.2, we show that both VDP and EDP sets for T can be used to form

constant-depth compilation subroutines for disjoint cnot circuits. Ultimately, as will

become clear in Section 6.3.2, each path in the EDP or VDP sets for T allows us to

implement one more cnot gate in parallel by a compilation subroutine. In this work,

we focus on EDPs rather than VDPs for two main reasons. Firstly, as mentioned

above, better approximation algorithms exist for finding maximum EDP sets than for

finding maximum VDP sets on the grid. Although, in practice, we make use of the

greedy O(
√
N)-approximation algorithm for finding maximum EDP sets in this work.

Secondly, as was also mentioned above, the maximum EDP set is at least as large as

the maximum VDP set.

An important open problem that could ultimately influence the performance of the

surface code compilation algorithm we present in this work is whether an alternative

approximation algorithm for finding maximum EDP sets can be used that performs

better in practical instances.
2It may be possible to improve the runtime by using a decremental dynamic all-pair shortest path

algorithm; it may be quicker to maintain a data structure for all shortest paths that can quickly be
updated when edges are removed.
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6.3.2 Long-range cnot subroutines using VDP and EDP

Here we present one of our main technical contributions, namely a description of how

to implement a set of long-range cnots at the end of VDP and EDP sets using surface

code operations. This is central to our overall surface code compilation algorithm

presented in Section 6.5.

Consider the L×L square grid graph G (see Figure 6.8a), which consists of vertices

V (G) = [L]× [L], for [L] := {1, . . . , L} and undirected edges

E(G) = {((i, j), (i, j + 1)) | i ∈ [L], j ∈ [L− 1]}

∪ {((i, j), (i+ 1, j)) | i ∈ [L− 1], j ∈ [L]}. (6.1)

Here, vertices correspond to qubits stored in surface code patches, and edges connect

qubits on adjacent patches (see Figure 1.2). We color the vertices of G with three

colors: black, grey, and white (see Figure 6.6). All vertices with both even row and

even column index are colored black and correspond to data qubits (where data qubits

correspond to qubits in the input circuit). The vertices (corresponding to ancilla

qubits) with both odd row and odd column index are colored white, and all remaining

vertices are colored grey. This gives us a 1 : 3 data qubit to ancilla qubit ratio. We

set n to equal the number of black vertices, i.e., the number of data qubits.

Due to the designation of some vertices as data qubits and others as ancilla vertices

in our layout, and due to the asymmetry of two-qubit operations along horizontal and

vertical edges in Figure 1.2, we add some restrictions to the paths we consider. We

define an operator path to be a path P = v1v2 . . . vk, for k ∈ N, such that v1 and vk

correspond to data qubits and its interior v2 . . . vk−1 are all ancilla qubits. Moreover,

v1 to v2 must be a vertical edge, and vk−1 to vk must be a horizontal edge. Then an

operator VDP (resp. EDP) set is a set of vertex-disjoint (resp. edge-disjoint) operator

paths. In addition, we require that the ends of the paths in the operator EDP set do
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(a) Long-range Bell pair preparation (b) Long-range Bell measurement

(c) Two-stage Bell preparation using segments

Figure 6.5: (a) For segments marked in white, we use long-range Bell pair preparation
in depth 2. (b) For segments marked in black, we then use long-range Bell pair
measurement in depth 2. (c) The Bell measurements in stage 2 stitch together the
Bell pairs made in phase 1, resulting in a Bell pair in the qubits at the ends of the full
path.

not overlap. With the coloring assignments of the grid graph G, it is easy to see that

the first and last vertex of an operator path are colored black. In what follows, we

show how we can implement cnots between the data qubits at the ends of the paths

in an operator VDP (EDP) set in constant depth.

First consider an operator VDP set P. It is straightforward to see that we can

simultaneously apply long-range cnots along each P ∈ P as in Figure 6.4 in depth 2.

We call this the vertex-disjoint paths subroutine (VDP subroutine).

Now consider an operator EDP set P. An EDP set can have intersecting paths,

and the ancilla qubits at intersections appear in multiple paths, preventing us from

simultaneously producing Bell pairs at their ends. We circumvent this by producing

Bell pairs across a path in two stages by splitting the path into segments; see Figure 6.5.
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We will show that P can be fragmented into two VDP sets P1 and P2 that, together,

form P . More precisely, each path P ∈ P can be built by composing paths contained

in P1 and P2 such that each path in either P1 or P2 appears in precisely one path in

P. We say that the paths in P1 and P2 are segments of paths in P. This forms the

basis of the edge-disjoint paths subroutine (EDP subroutine), which is presented in

Algorithm 6.3.1 and illustrated with an example in Figure 6.6.

Input :An operator EDP set P
1 P1,P2 ← fragment P in two VDP sets of segments // Theorem 6.2
2 for segment P ∈ P1 :
3 if P connects two data qubits then
4 execute long-range cnot along P
5 else
6 execute phase 1 operation along P (Figure 6.5a, or 6.7b, or 6.7c)
7 for segment P ∈ P2 :
8 if P connects two data qubits then
9 execute long-range cnot along P

10 else
11 execute phase 2 operation along P (Figure 6.5b, or 6.7d, or 6.7e)

Algorithm 6.3.1: EDP subroutine: to apply cnots to the data qubits at the
endpoints of a set of edge-disjoint paths P , where the interior of each path is
supported on ancilla qubits. The depth is at most 4.

We show the following Lemma, which restricts the adjacency of crossing vertices.

As will become clear later, the adjacent crossing vertices impose systems of constraints

on fragmenting P , and their restricted adjacency of any operator EDP set ensures a

fragmentation into two VDP sets always exists.

Lemma 6.1. Given an operator EDP set P, a crossing vertex is a vertex contained

in more than one path in P. Let the set of crossing vertices be Vc, then the induced

subgraph G[Vc] contains only three kinds of connected components:

1. Isolated vertices.

2. A horizontal path, where each vertex (i, j) in the connected component can only

be adjacent to (i− 1, j) and (i+ 1, j).
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(a) cnot gates and edge-disjoint paths. (b) Execution stages assignment

(c) First stage. State preparation. (d) Second stage. Measurements.

Figure 6.6: The EDP subroutine implements a set of parallel cnots connected by
an operator EDP set. We assume a qubit ratio of 1 to 3 of data (black) to ancilla
(gray and white). (a) The input to the EDP subroutine is a set of cnots and an
associated EDP set. (b) We fragment the EDP set into two VDP sets consisting of
segments of the original paths, and implement the compiled circuit over two depth-2
stages, one for each of these sets. (c) During the first stage we prepare a Bell pair
between the ends of the segments in the first VDP set. (d) During the second stage we
perform joint Bell measurements between the ends of segments in the second VDP set,
producing long-range Bell pairs on ancillas adjacent to the control and target of each
cnot. Then, long-range cnots can easily be applied by using the long-range Bell
pairs (Section 6.2.4). See Figure 6.7 for further details of the long-range operations
used here.
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(a) Long-range cnot in two stages

(b) Long-range X prep. with ZZ meas. (c) Long-range Z prep. with XX meas.

(d) Long-range teleport with ZZ meas. (e) Long-range teleport with XX meas.

Figure 6.7: Detailed implementation of the steps in Figure 6.6. For each segment
that is scheduled in phase 1, we use (b) and (c); and for each supbath that is scheduled
in phase 2, we use (d) and (e). In (d) variables x0 and z0 equal to the total parity of
all long-range Bell measurements applied during stage 2 on the cnot path. Each of
these operations takes depth 2. (d) and (e) share the variables a and c.
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3. A vertical path, where each vertex (i, j) in the connected component can only be

adjacent to (i, j − 1) and (i, j + 1).

Proof. We consider all possible colors of a vertex (i, j) in a connected component of

G[Vc]. Black vertices cannot be crossing vertices by definition of an operator EDP set

so cannot be contained in Vc. It is then easy to see that white vertices in Vc satisfy

the Lemma.

Therefore, the only relevant case is when (i, j) is a grey vertex. The vertices

(i + 1, j) and (i, j + 1) are white and (i + 1, j + 1) is black. We show that these

white vertices cannot both be crossing vertices. Suppose that they are, then both

edges between the white vertices and the black vertex, ((i+ 1, j), (i+ 1, j + 1)) and

((i, j+1), (i+1, j+1)), are in P . This is a contradiction with the fact that the interior

of operator EDP paths cannot contain a black vertex so it must be at the end of two

paths, but an operator EDP set cannot contain two paths ending at the same vertex.

By the same argument applied to the other white neighbors of (i, j) we see that only

(i− 1, j) and (i+ 1, j) or (i, j − 1) and (i, j + 1) can both be crossing vertices, and

the claim follows.

We now prove that P can be fragmented.

Theorem 6.2. We can fragment an operator EDP set P to produce vertex-disjoint

sets of segments P1 and P2. If P is vertex-disjoint, then P1 = P and P2 = ∅.

Proof. We assign edges for inclusion in segments in P1 or P2 by an edge labelling

l(e) : E(G)→ {1, 2}. Given a labelling of all edges e in the paths of P , we can assign

edges l(e) = b to segments in Pb. Therefore, given a labelling of all edges in paths in

P, it is easy to construct P1 and P2. We now label all edge in the paths in P and

prove that their labelling guarantees the vertex-disjointness property of P1 and P2.

We constrain the labeling around every crossing vertex v so that the VDP property

is satisfied. Clearly, v is contained in the interior of exactly two paths, P1 and P2. Let
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v be contained in edges e1 and e′1 of P1, and edges e2 and e′2 of P2, then we impose

the constraints

l(e1) = l(e′1) (6.2)

l(e2) = l(e′2) (6.3)

l(e1) 6= l(e2) (6.4)

guaranteeing the vertex-disjointness of segments at v since a segment of P1 must span

both e1 and e′1, and a segment of P2 must span both e2 and e′2 with a different label.

We show there always exists a feasible solution given these constraints. If we

consider the graph G[Vc] induced by crossing vertices Vc, then we see that every

connected component in G[Vc] gives a system of constraints. The adjacency of G[Vc],

by Lemma 6.1, is such that each system has one degree of freedom, which we decide

arbitrarily.

Finally, for every vertex disjoint path P ∈ P, assign l(e) = 1 to all edges e in P .

All remaining edges can be labeled arbitrarily.

The depth of a cnot circuit produced by the EDP subroutine for an operator

EDP set P is at most 4. If P happens to be vertex-disjoint, then the depth is 2 since

all paths are assigned to phase 1 by Theorem 6.2.

6.3.3 Compiling parallel cnot circuits with the EDP subrou-

tine

In this section we consider how to compile input parallel cnot circuits using the EDP

subroutine. We define the terminal pairs T ⊆ V (G)× V (G) to be the pairs of control

and target qubits for each cnot gate in the parallel cnot circuit. To use the EDP

subroutine, we need to find operator EDP sets P1, . . . ,Pk that connect all terminal
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pairs in T . We will refer to any such set {P1, . . . ,Pk} as a T -operator set. The depth

of the compiled implementation is minimized when the size k of the T -operator set is

minimized.

There are reasons to believe that the compilation strategy for parallel cnot-circuits

formed by finding a minimal T -operator set and applying the EDP subroutine should

produce low-depth output circuits. For sparse input circuits, i.e. those with a small

number of cnots, one can expected a small T operator set to exist, giving a low

depth output. On the other hand, we prove in Theorem 6.3 that there are dense cnot

circuits for which the EDP subroutine with a minimal size T -operator set produces a

compiled circuit with optimal depth (up to a constant multiplicative factor).

Theorem 6.3. Let a parallel input cnot circuit with corresponding terminal pairs

T be given such that |T | = n/2. Furthermore, let the n qubits of the input circuit be

embedded in a grid among 3n ancilla qubits according to the layout in Figure 6.6. For

simplicity, we assume n is both even and the square of an integer. Then the following

holds:

1. For all such T we can find T -operator set of size 2
√
n− 1 in polynomial time.

2. There exists a parallel cnot circuit with corresponding T that needs depth

Ω(
√
n) to be implemented on the surface code architecture.

Proof. To show (1), for each cnot we construct an operator path and argue that

all such paths can be grouped into O(
√
n) disjoint EDP sets. For simplicity, in the

following, we specify paths by a sequence of key vertices, with each consecutive pair of

key vertices connected by the shortest path (which is a horizontal or a vertical line).

We now construct an operator path for each cnot, where the associated control

vertex is v = (vx, vy) ∈ V (G) and the target vertex is u = (ux, uy) ∈ V (G). We can

always form an operator path to connect u and v given by the following sequence of

five key vertices v, (vx, vy − 1), (ux − 1, vy − 1), (ux − 1, uy), u. The path consists of
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one horizontal end segment, one vertical end segment, one horizontal interior segment,

and one vertical interior segment.

Having assigned n/2 such paths, one to each cnot, we now claim that any of these

operator paths can share an edge with at most 2(
√
n − 1) of the others. Since the

operator paths have distinct endpoints, two different paths cannot collide on either

of their end segments v, (vx, vy − 1) and on (ux − 1, uy), u. Therefore pairs of these

operator paths can only share an edge on their interior segments. The vertical interior

segment of the operator path from v to u can share an edge with at most
√
n− 1 other

paths. To see this, consider an operator path from v′ to u′ which shares at least one

vertical edge with the operator path from v to u. Explicitly, the segment (vx, vy − 1),

(ux − 1, vy − 1) shares an edge with the segment (v′x, v
′
y − 1), (u′x − 1, v′y − 1), which

implies that vy = v′y. Since the terminals are unique, there can only be
√
n− 1 other

cnots with target in the control vy where the control of the given cnot is. An

analogous argument applies for horizontal segments, such that the operator path from

u to v can share an edge with at most 2
√
n− 2 other operator paths.

Let us construct a graph H where each vertex represents an operator path as

constructed above. We connect two vertices in H if the associated paths share an edge.

Every vertex in H has degree at most 2
√
n − 2, therefore, H is 2

√
n − 1-colorable

using the greedy polynomial time coloring algorithm. Each set of paths associated

with vertices of a given color allow us to construct an edge-disjoint set of operator

paths P . We perform the EDP subroutine using P in turn for each color to implement

all cnots in C in O(
√
n) depth for any cnot circuit.

For the purposes of showing the lower bound (2) in the theorem statement, we

give an example of an input cnot circuit that on a particular initial state generates a

lot of entanglement between the left and right half of the grid. Let the black vertices

on the left of the grid be XC = {(2i, 2j) | i ∈ [L/4], j ∈ [L/2]} and let XT be the

remaining black vertices on the right of the grid, then we set T to be an arbitrary
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pairing of all vertices from XC and XT . It is easy to see that T corresponds to a

cnot circuit, with controls in XC and targets in XT . We initialize the data qubits

to a product state |+〉n/2|0〉n/2, where the |+〉 states are on qubits corresponding to

controls XC and the |0〉 states are on targets XT . After applying the cnots to each

qubit, we obtain a state where each qubit in XC forms a Bell pair with a qubit in XT .

Therefore, the von Neumann entropy of the reduced state on X is increased by the

circuit from 0 to n/2.

The lower bound follows an approach similar to that in Delfosse, Beverland, and

Tremblay [DBT21] from a bound on the entanglement entropy generation of operations

across a cut in the grid. Let VL = {(i, j) | i ∈ [L/2], j ∈ [L]} be the set of vertices on

the left of the grid, and let V̄L = V (G)\VL be its complement. Since the entanglement

entropy is nonincreasing under local operations and classical communication (LOCC),

we allow arbitrary LOCC in 0 depth on the subsystems corresponding VL and V̄L. The

subsystems of VL and V̄L can only interact on a boundary subsystem corresponding

to the vertices neighboring V̄L or, respectively, VL. We can simulate any elementary

surface code operation acting on the boundary subsystem by a cnot followed by

LOCC in constant depth, so it suffices to lower bound the depth for unitary operations.

Since the vertex boundary is of size O(
√
n), the entanglement entropy generated by

any unitary U acting on the boundary subsystem is bounded by O(
√
n) [Ben+03,

Lemma 1], so a circuit depth of Ω(
√
n) is required to prepare the Bell pairs, as

claimed.

In practice, it can be difficult to find minimal-size T -operator sets. However,

when the minimal size T -operator set is k, in the following theorem we show that

a T -operator set {P1, . . . ,Pl} with size at most l = O(k log|T |) can be found by

a greedy algorithm that finds iteratively finds the maximum operator EDP set for

remaining terminals in T .

Theorem 6.4. On the grid of n vertices, the greedy algorithm for finding T -operator
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(a) Grid graph (b) Operator graph

Figure 6.8: The graphs used in this chapter. (a) The grid graph where each surface
code patch corresponds to a vertex and is connected to its neighbors. (b) The operator
graph for a set of terminal pairs T that correspond with a parallel cnot circuit. EDP
sets for T on this graph are also operator EDP sets.

sets repeats the following two steps , for i = 1, . . . , until there are no more terminal

pairs to connect:

1. find a maximum operator EDP set Pi,

2. remove all terminal pairs in Pi from T .

The set {P1, . . . ,Pk} is a T -operator set and is an O(log|T |)-approximation algorithm

for finding minimum-size T -operator sets.

Proof. We base our proof on [AR95]. Assume that the minimum-size T -operator

set is {Q1, . . . ,QK} for some size K. Then there is an operator EDP set Qi, for

i ∈ [K], such that |Qi| ≥ |T |/K. Therefore, the number of unconnected terminal

pairs is reduced by at least a factor (1 − 1/K) each iteration and it will require at

most O(K log|T |) iterations to connect all terminal pairs [Joh74].

To make use of Theorem 6.4 we would ideally like to have an algorithm to find

maximum operator EDP sets on the grid, however the efficient algorithms we discussed

in Section 6.3.1 are to find approximate maximum EDP sets on the grid. Fortunately,
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we find an equivalence between operator EDP sets on the grid and EDP sets on a

graph that we call the T -operator graph (see Figure 6.8b). The T -operator graph is a

copy of the grid graph but with all vertices corresponding to control qubits in T only

having vertical outgoing edges, and with all vertices corresponding to target qubits in

T only having horizontal incoming edges, and all remaining vertices corresponding to

data qubits are removed. An EDP set for terminal pairs T on the T -operator graph

is an operator EDP set on the grid. It is easy to see that a maximum operator EDP

set for T on the grid is equivalent to a maximum EDP set for T on the T -operator

graph. Using an approximation algorithm for finding the maximum operator EDP set

also still gives approximation guarantees for minimizing the T -operator set, as shown

in the following Corollary.

Corollary 6.5. The greedy algorithm for finding minimum T -operator sets, but

with a κ-approximation algorithm for finding maximum operator EDP sets, gives an

O(κ log|T |)-approximation algorithm for finding minimum T -operator sets.

Proof. We modify the proof of Theorem 6.4 such that every iteration we connect a (1−

κ/K) fraction of unconnected terminal pairs using the κ-approximation algorithm for

finding maximum operator EDP sets. Therefore we obtain aO(κ log|T |)-approximation

algorithm for findining minimum T -operator sets.

The equivalence between operator EDP sets on the grid and EDP sets on the

T -operator graph motivates us to seek an efficient algorithm to find approximate

maximum EDP sets on the T -operator graph as a key part of our EDPC algorithm.

The algorithms we discussed in Section 6.3.1 come close to doing this, but some of

them are intended for finding approximate maximum EDP sets on the grid rather

than on the T -operator graph and even if they are adapted, the guarantees of the

size of the approximate minimum EDP sets they produce may not apply in the

case of the T -operator graph. The algorithms described in Refs. [AR95; KT95] for
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finding approximate maximum EDP sets on the grid do not directly apply to the

operator graph. While it seems straightforward to adapt the O(log n)-approximation

algorithm [AR95], the algorithms in [AR95; KT95] are complex to implement and have

large constant-factor overheads, which can make them impractical on small instance

sizes. In our EDPC algorithm implementation, we instead use the simple greedy

algorithm [KS04], which applies to any graph and approximates the maximum EDP

set size up to a factor O(
√
n) and does not have a large constant overhead. We leave

it as an open question to find better approximation algorithms for finding maximum

operator EDP sets.

6.4 Remote rotations with magic states

Thus far we have discussed the surface code compilation of all the input circuit

operations listed in Section 6.1 except for the single-qubit rotation gates S = Z(π/4)

and T = Z(π/8). In this section we design a subroutine for the compilation of parallel

rotation circuits. The S and T gates can be implemented by using specially prepared

magic states |S〉 and |T 〉, respectively. Magic states can be prepared using a highly-

optimized process known as magic state distillation [Kni04], which distills many faulty

magic states that are easy to prepare into fewer robust states. Still, producing both

|S〉 and |T 〉 involves considerable overhead. The |S〉 state is used to apply the S-gate

in a ‘catalytic’ fashion, whereby the state |S〉 is returned afterwards. On the other

hand, the state |T 〉 is consumed to apply the T -gate. The reason for this distinction

is rooted in the fact that the S-gate is Clifford but the T -gate is non-Clifford.

In this work, we do not address the mechanism by which magic states are produced,

but instead assume that these states are provided at specific locations where they

can be used to implement gates. More specifically, we assume rotation gates S and

T (and also Clifford variations of these such as X(π/8) = Tx and X(π/4) = Sx) can
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(a) Long-range cnots for diagonal gates (b) Remote Z(θ) and X(θ)

Figure 6.9: We assume the capability of performing S and T gates at the boundary
qubits (red) where it is easy for us to supply the requisite S and T magic states. We
can then execute S or T gates in the Z or X basis for our circuit by using long range
cnots and the circuits in Figure 6.9b. For example, to execute S or T on qubits G3,
E7 and HTH on G7, we apply long-range cnots between pairs (G3,G1), (E7,A7),
(A5,G7) and then execute S or T on G1, A7, HTH on A5. We can continue applying
other Clifford gates to qubits G3, E7, and G7 right after performing the long-range
cnot, without waiting for the Z correction, since we can propagate the correction
through Clifford operations.

be applied as a resource on specific ancilla qubits B ⊆ V (GA) at the boundary of a

large array of logical qubits (Figure 6.9a). This will allow sufficient space outside the

boundary where highly-optimized magic state distillation and synthesis circuits can be

implemented. Because a large number of magic states are used in the computation, we

consider having magic state distillation adjacent to and concurrent with computation

we are concerned with in this chapter to be a reasonable allocation of resources.

We need a technique to apply remote rotations to data qubits which can be far

from the boundary making use of the rotations that can be performed at the boundary.

We make use of the property that any Z rotation (including T or S) has the same

action when applied to either qubit in the state α|00〉+ β|11〉. In particular, these

two qubits need not be close to one another, so we can apply Z rotations remotely.

A similar notion holds for X-rotations (including Tx = HTH or Sx = HSH) and

α|++〉 + β|−−〉. Given a qubit q that needs to perform a Z rotation requiring a
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magic state, we apply a remote Z-rotation (Figure 6.9b): by performing a long-range

cnot(q, q′) to a boundary ancilla q′ ∈ B prepared in |0〉. Therefore we can apply the

Z rotation remotely and use an X measurement on q′ to collapse the state back to one

logical qubit. Similarly, for a qubit q that needs to perform an X rotation requiring a

magic state, we apply a long-range cnot(q′, q) to an ancilla q′ prepared in |+〉 on the

boundary, giving

cnot|+〉(α|+〉+ β|−〉) = α|++〉+ β|−−〉 . (6.5)

Therefore we apply the X rotation remotely and collapse the state back by a single-

qubit Z measurement of q′.

The task of compiling a parallel rotation circuit therefore reduces to applying a

set of cnot gates from the boundary to the sites of the rotation gates. This can

be achieved by finding an appropriate EDP set and running the EDP subroutine of

Algorithm 6.3.1. Compared to the task of finding an EDP set for parallel cnot gates

of Section 6.3, there is one simplifying condition here: Any boundary qubit can be

used for each cnot when applying remote rotations. As we explain below, we can

find the maximum EDP set for the compilation of remote rotations by solving the

following (unit) Max Flow problem [KT06b].

Definition 6.6 (Max Flow). Given a directed graph G and source and sink vertices

s, t ∈ V (G), we wish to find a flow for all edges of G, f(e) : E(G) → R, that is

skew symmetric, f((u, v)) = −f((v, u)), and, for v ∈ V (G) \ {s, t}, must respect the

constraints

f(e) ≤ 1 (6.6)

and
∑

u:(v,u)∈E(G)

f((v, u)) = 0 (6.7)
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such that the outgoing source flow |f | :=
∑

u:(s,u)∈E(G) f((s, u)) is maximized.

To understand why this yields a maximum EDP, we first point out that a solution

for which f has binary values provides an EDP set by building paths from those edges

e for which f(e) = 1. Moreover, this EDP set must be maximum, because a larger

EDP set would imply a larger flow than f , which is the maximum flow by definition.

Indeed the Ford-Fulkerson algorithm [FF56] solves Max Flow in runtime bounded

by O(|E(G)||f |) and finds flow values f(e) ∈ {0, 1} on all e ∈ E(G) because of the

unit capacity constraints, f(e) ≤ 1. Therefore, f corresponds to a maximum EDP

set [KT06b, Section 7.6].

The remote rotation subroutine in Algorithm 6.4.1 finds subsets of parallel single-

qubit rotations that can be performed in depth 4. If only a subset of the given gates

is executed, this subroutine may need to be iterated to execute all gates.

Input :A set of data qubits W ⊆ V (GA) that wish to perform gates
requiring magic states

1 Create virtual vertices s and t
2 G′ = (V (GA) ∪ {s, t}, {(s, s′) | s′ ∈ W} ∪ {(t′, t) | t′ ∈ B})
3 f ← solve Max Flow on G′ using the Ford-Fulkerson algorithm
4 P ← construct edge-disjoint set of s–t paths from f
5 remove s and t from each P ∈ P
6 execute remote rotations at boundary with EDP subroutine given P

Algorithm 6.4.1: Remote rotation subroutine: executes a subset of single
qubit rotations that require magic states at the boundary. For the set of
qubits W ⊆ V (GA) that wish to perform a rotation, we find a maximum set of
edge-disjoint paths P connecting W to the boundary data qubits B ⊆ V (GA)
by a Max Flow reduction. Using the EDP subroutine (Algorithm 6.3.1), we
can perform remote rotations (Figure 6.9) on the subset of qubits connected to
the boundary by P in depth 4.

One could consider a number of generalizations and variations of this compilation

subroutine for parallel rotation circuits. For instance, when the number of rotation

gates is small, it may be useful to find VDP sets rather than EDP sets so that the

VDP subroutine rather than the EDP subroutine can be applied. There is a different
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reduction to Max Flow in this case which can be obtained by replacing each vertex

with two vertices, one with incoming edge and one with outgoing edges, connected by

a directed edge with capacity 1. This guarantees only one flow can pass through every

vertex.

Although we do not consider other single-qubit rotations in our input circuit

for compilation, it is worth noting that any single-qubit rotation gate Z(θ) can be

approximately synthesized to arbitrary precision [RS16] using |S〉 and |T 〉 states along

with the surface code operations shown in Figure 1.2. The approach used to apply S

and T gates shown in Figure 6.9a can also be used to apply any rotation Z(θ) within

the grid of surface codes by synthesizing the rotation at the boundary. However, if one

considers more general rotations in the input circuit, the time needed for synthesis at

the boundary will need to be accounted for and accommodated by other aspects of the

overall surface code compilation algorithm. Another extension that can be considered

is if multi-qubit diagonal gates are allowed in the input circuit. We show how X and

Z rotations generalize to multi-qubit diagonal gates in Appendix B.4, although we do

not use this in our surface code compilation algorithm.

6.5 EDPC surface code compilation algorithm

In this section we construct the EDPC algorithm for compiling universal input

circuits into surface code operations by combining subroutines Algorithm 6.3.1 and

Algorithm 6.4.1 for compiling long-range cnots and Z/X rotations respectively. First

we provide a more formal definition of surface code compilation:

Definition 6.7 (Surface code compilation). Consider an input quantum circuit of

operations C = g1g2 . . . g`, which is a list of length ` of operations gi for i ∈ [`],

consisting of: state preparation in X or Z basis; the single-qubit operators X, Y , Z,

H, S, T , Sx = HSH, Tx = HTH; cnot operations; and X,Z-measurements. Then a
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Input :Circuit C with Paulis commuted to the end and merged with
measurement

1 while available operations in C :
2 execute all available state preparation, measurement, and Hadamard
3 Gm ← {available operations g ∈ C | g is S, T, Sx, or Tx}
4 Gc ← {available operations g ∈ C | g is cnot}
5 while Gm ∪ Gc 6= ∅ :
6 G← surface code grid graph
7 Paths Pm ← from Algorithm 6.4.1 on G with operations Gm
8 Remove edges in Pm from G
9 Pc ← approximate max operator EDP set on G with operations Gc

10 execute remote rotations along Pm and long-range cnots along Pc
using EDP subroutine

11 Remove executed rotations from Gm and cnots from Gc

Algorithm 6.5.1: The EDPC algorithm for surface code compilation of a
circuit C = g1 . . . g`. An operation gi is available if it has not been executed
and all operations gj with overlapping support, for j < i, are executed.

surface code compilation produces an equivalent output circuit O in terms of surface

code operations (Figure 1.2) on a grid of surface codes with S, T , Sx, and Tx rotations

applied only at the grid’s boundary.

We specify our surface code compilation algorithm EDPC in Algorithm 6.5.1,

which attempts to minimize the space-time cost of a circuit expressed in surface code

operations. Note that the input circuit is considered to be a sequence of operations

rather than a series of time steps that specify the operations in each time step, such

that l is the number of operations of the input circuit, not the depth.

In what follows, we find upper bounds on both the classical runtime and on the

depth of the output circuits of EDPC given an input circuit with depth D acting on

n qubits. It is useful to note that each of the D layers of the input circuit can be

decomposed into a set of parallel cnots followed by a set of parallel rotations, each

acting on at most n qubits. First we address the set of parallel cnots.

To compile a set of parallel cnots, our implementation of EDPC uses a greedy

O(
√
n)-approximation algorithm for finding maximum operator EDP sets, and then
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applies the EDP subroutine. The greedy algorithm has a runtime bounded by

O(n2 log n) (Section 6.3.1) and the EDP subroutine contributes a O(1)-depth portion

to the output circuit. The number of iterations the EDP subroutine is used is upper

bounded by O(n) for any set of parallel cnots because at least one cnot is compiled

every time. Therefore, the cnots in all D layers of the input circuit contribute at

most O(Dn3 log n) to the runtime and O(Dn) to the depth of the output circuit. Note

that this is a trivial upper bound on the depth of the output circuit that would be

achieved by a compilation algorithm that simply sequentially implemented long-range

cnot gates.

To compile a set of parallel rotations, EDPC finds the max-flow using the Ford-

Fulkerson algorithm, which has a runtime bounded by O(n2) [FF56], and contributes

a O(1)-depth portion to the output circuit. We show that at most O(
√
n) iterations

of this max-flow algorithm are needed to compile any set of parallel rotations.

Lemma 6.8. Given a circuit of k parallel rotations, EDPC outputs a circuit of depth

at most O(
√
k).

Proof. The remote rotation subroutine finds a maximum flow connecting the data

qubits performing rotations to the boundary where every additional unit of flow is

one more rotation executed. This maximum flow is equal to the minimum edge-cut

separating the data qubits from the boundary [FF56]. The boundary of a rectangle

containing k vertices on the grid is of size at least Ω(
√
k), giving a minimum cut size

of Ω(
√
k). Thus, at most O(

√
k) iterations are necessary to implement all remote

rotations, as claimed.

Using this Lemma, we see that the parallel rotations in all D layers of the input

circuit contribute at most O(Dn5/2 log n) to the runtime and O(D
√
n) to the depth of

the output circuit. Overall, the cnot compilation dominates both of these costs such

that EDPC runs in time O(Dn3 log n) and produces a depth O(Dn) output circuit.
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There are various modifications of EDPC that are worth considering. If the

O(
√
n)-approximation greedy algorithm for finding maximum operator EDP sets was

improved to a κ-approximation algorithm, for κ = o(
√
n), then the bound on the

compiled circuit depth improves to O(Dκ
√
n). Another point of consideration is

that EDPC leans heavily on finding operator EDP paths and the EDP subroutine,

but a similar surface code compilation algorithm could be constructed from operator

VDP paths and the VDP subroutine instead. We believe that the larger maximum

EDP sets should allow EDPC to apply more gates simultaneously (see Section 6.3.1),

especially if the improved approximation algorithms on grids can be adapted to

finding approximately maximum operator EDP sets. Both of these features can give

asymptotic improvements at only a 2× depth increase over the VDP subroutine.

However, it is not difficult to construct instances where a VDP-based approach would

give a lower depth, motivating a more nuanced trade-off between our EDP-based

approach and a VDP-based approach. Another modification that could be beneficial

would be to relax the requirement to execute all available gates before moving on to

the next set. This could increase the number of long-range gates that are performed

in parallel but would require careful scheduling with Hadamard gate execution, which

may block some paths.

6.6 Comparison of EDPC with existing approaches

In this section, we compare EDPC with other approaches in the literature. We first

mention some of the features and short-comings of the well-established approach of

Pauli-based computation Section 6.6.1. Then we address a more recently proposed

compilation approach based on network coding in Section 6.6.2. In Section 6.6.3 we

specify a swap-based compilation algorithm based on Chapter 2 and use this as a

benchmark for numerical studies of the performance of EDPC in Section 6.6.4.
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6.6.1 Surface code compilation by Pauli-based computation

One well-established surface code compilation approach is known as Pauli-based

computation, which is described in [Lit19]. For an algorithm expressed in terms of

Clifford and T gates, Pauli-based computation first involves re-expressing the algorithm

as a sequence of joint multi-qubit Pauli measurements along with additional ancilla

qubits prepared in T states. This re-expressed circuit has no Clifford operations, and

the circuit depth can be straight-forwardly deduced from the input circuit since each T

gate results in two [CC21] joint Pauli measurements3. This re-expression of the circuit

essentially comes from first replacing each T gate by a small gate teleportation circuit

consisting of an ancilla in a T state and a two-qubit joint Pauli measurement, and

then commuting all Clifford operations to the end of the circuit. The main advantage

of the Pauli-based computation approach is that all Cliffords are removed from the

input circuit.

That said, this approach has a major drawback. When a Clifford circuit is

commuted through a two-qubit joint Pauli measurement, it is transformed into Pauli

measurements which can have support on all logical qubits. Therefore, the resulting

circuit may contain measurements with large overlapping support that need to be

performed sequentially (even when the T gates in the input circuit were acting

on disjoint qubits during the same time step). The sequential nature of the joint

measurements causes a fixed rate of T -state consumption that does not grow with the

number of logical qubits. A limited rate of T -state consumption can lead to a large

space-time cost for circuits with many T gates per time step.

A modified version of this Pauli-based computation compilation algorithm can

be used to implement more T gates in parallel [Lit19, Section 5.1]. However, as

highlighted in [CC21, Section V.A], this results in a significant increase of total logical
3In the scheme presented in [Lit19] only one joint Pauli measurement is needed per T gate, but

additional features are required of the surface code such as twist defects which were avoided in [CC21],
and which we have avoided in this chapter.
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space-time cost when compared to the standard Pauli-based computation compilation

algorithm, even when disregarding the increased T -factory costs that would be needed

to achieve a higher T state production rate.

In contrast with Pauli-based computation, one of our goals when designing the

EDPC algorithm was to maintain the parallelism present in the input circuit, such

that input circuits with higher numbers of T gates per time step are compiled to

circuits with a higher T -state consumption rate.

6.6.2 Surface code compilation by network coding

Another approach to surface code compilation, based on the field known as linear

network coding [Ahl+00], can be built from the framework put forward in Beaudrap

and Herbert [BH20]. Similar to our EDPC algorithm, the essential idea in this

compilation scheme is to generate sets of Bell pairs in order to implement operations

acting on pairs of distant qubits.

In the abstract setting of network coding [LL04], one is given a directed graph GNC

and a set of terminal pairs T = {(s1, t1), . . . , (sk, tk)} for source terminals si ∈ V (GNC)

and target terminals ti ∈ V (GNC) for i ∈ [k]. Messages are passed through edges

according to a linear rule. Namely, the value of the message associated with an edge

is given as a specific linear combination of the values of those edges which are directed

at the edge’s head. One can consider the task of “designing a linear network code” by

specifying the linear function at each edge in the graph such that when any messages

are input via the source vertices s1, . . . , sk, then those same messages are copied over

to the corresponding output via the target vertices t1, . . . , tk.

A number of works have considered how linear network coding theory can be applied

to the quantum setting [LOW10; Kob+09; Kob+11; SGI12; HPE19]. Beaudrap and

Herbert [BH20] gives a construction for a constant-depth circuit to generate Bell pairs

across the terminal pairs T on a set of ancilla qubits corresponding to the vertices of
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GNC with cnots allowed on the edges of GNC. This is similar to, but not precisely the

same scenario as we consider for surface code compilation in this chapter since the basic

operations are cnots rather than the elementary operations of the surface code, and

since only ancilla qubits are considered without any data qubits. However, it should

be quite straightforward to modify the approach in Beaudrap and Herbert [BH20] to

form a surface code compilation algorithm. For example, one could use a layout similar

to that which we use for EDPC in Figure 6.6, with GNC corresponding to a connected

subset of ancilla qubits among a set of data qubits. The Bell-pairs produced by the

linear network coding approach could then be used to compile long-range operations

between data qubits.

In such a network coding based compilation algorithm, the task of compiling an

input circuit into surface code operations would largely rely on subroutines for (1)

identifying T to implement the circuit’s long-range gates, and (2) designing a linear

network code for T . A major barrier to forming a usable compilation algorithm with

linear network coding is that we are unaware of the existence of any efficient algorithm

to design linear network codes, or even to identify if a given terminal pair set admits

any linear network code. If such linear network code can be found efficiently, then it

is yet unclear if a surface code compilation algorithm based on network coding would

outperform EDPC.

6.6.3 Surface code compilation by swap

Here we specify a swap-based compilation algorithm, stated in Algorithm 6.6.1, which

we use to benchmark our EDPC against in Section 6.6.4. We assume the 1-to-1

ancilla-to-data qubit ratio as illustrated in Figure 6.10. This is more qubit-efficient

than the 3-to-1 ratio we use for EDPC, and it allows the swap gadget in Figure 6.2b

to be implemented between diagonally neighboring data qubits.

The first step of the swap-based compilation algorithm is to assign each of the
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Figure 6.10: On a rotated L1×L2 grid (here, 4× 5), we can implement an odd-even
pattern of swaps on data qubits (gray) using ancillas (white). Row-wise and column-
wise swaps used in swap routing on a grid [ACG94] can be modified as shown above
so that ancilla used for swaps do not overlap. Therefore, any arbitrary permutation
on a rotated grid of can be implemented in depth 4(L1 + 1) + 2(L2 + 1).

input circuit’s qubits to a data qubit in the layout. Then, the gates in the input circuit

are collected together into sets of disjoint gates. Before each set of gates, a permutation

built from swap-gates is applied, which re-positions the qubits so that the gates in

the set can be applied locally. We assume that the available local operations are the

same as for our EDPC algorithm. In particular, we assume that the rotation gates (S,

T , Sx and Tx) can only be implemented at the boundary and that other single-qubit

operations are performed as described in Section 6.2.1. One exception is that we make

the simplifying assumption that the Hadamard can be performed without the need

of three ancilla patches to simplify our analysis – this assumption could lead to an

underestimate of the resources required for this swap-based compilation algorithm.

There are two main components of our swap-based algorithm which remain to

be specified: how the permutations are implemented, and how we choose to separate

the input circuit into a sequence of sets of disjoint gates. To permute the positions of

data qubits, sequences of swap operations are used. As was shown in Ref. [SHT19],

any permutation of the n vertices in a square grid can be achieved in at most 3
√
n

rounds of nearest-neighbor swaps. To do this involves three stages, with the first and
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Input :A circuit C with all Paulis commuted to the end and merged with
measurement

1 function cost(mapping π, vertices v1, v2):
2 return depth and edge attaining

mine∈M depth(route(π + {v1 7→ e1, v2 7→ e2}))
3 while available gates in C :
4 G ← available gates in C
5 execute all Hadamards and measurements in G
6 G← surface code grid graph
7 π ← empty mapping of V (G)→ V (G)

// Start modification for operations requiring magic states
8 Set B ⊆ V (G) as the set of boundary vertices
9 Gm ← {g ∈ G | g is S, T, Sx, Tx}

10 while Gm 6= ∅ and B 6= ∅ :
11 g ← pop random gate from Gm
12 π ← π + {v 7→ u}, for closest u ∈ B to v
13 remove u from B and G

// End modification
14 M← maximum matching of G
15 Gc = {g ∈ G | g is cnot}
16 while Gc 6= ∅ andM 6= ∅ :
17 g∗, e∗ ← maxg∈Gc cost(π + {v1 7→ e1, v2 7→ e2}) for v1, v2 current

location of g
18 π ← π + {v1 7→ e1, v2 7→ e2}, for v1, v2 current location of g∗
19 remove g∗ from Gc
20 remove e∗ fromM
21 execute the swaps found by route(π)
22 execute gates on qubits mapped by π since they are now local

Algorithm 6.6.1: swap compilation: We construct an algorithm based on
the greedy depth mapper algorithm from [CSU19]. Let us implicitly define
route(π), for mapping π, which finds a swap circuit for implementing partial
permutations [CSU19]. We can compute the required partial permutation from
the current mapping of qubits, and the given future mapping π.
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third stages each involving rounds of swap-gates within rows only, and the second

stage involving rounds of swap-gates within columns only. A round of swap-gates

within either rows only or within columns only are implemented with surface code

operations as shown in Figure 6.10.

There is considerable freedom in how to collect together gates from the input

circuit into sets of disjoint gates. In our implementation in Algorithm 6.6.1, we use

the greedy depth mapper algorithm from [CSU19], with a small modification to ensure

that S and T gates are performed at the boundary. This algorithm also incorporates

some further optimizations as described in Ref. [CSU19], including a partial mapping

of qubits to locations, leaving the remaining qubits to go anywhere in an attempt to

minimize the swap circuit depth.

6.6.4 Numerical results

Here we compare our EDPC compilation algorithm (Algorithm 6.5.1) and the swap-

based compilation algorithm (Algorithm 6.6.1) when applied to a number of different

input circuits.

We first consider randomly generated circuits of different gate densities. Our

random circuits are built up of sequential sets of disjoint cnots that act on randomly

selected pairs of data qubits. The density ncnot of a circuit is how many of the data

qubits are involved in a cnot gate in any such set. Therefore, ncnot = 0.1n means

that 10% of all qubits (n) are performing a cnot gate in each set. Our random circuits

consist of a sequence of 20 sets of randomly selected disjoint cnots at various densities.

For each data point, we sample 10 random circuits and plot the mean space-time

cost in Figure 6.11 with the standard error of the mean in the shaded region. The

runtime of the swap protocol was bounded by 2 days, which was insufficient for larger

instances of these random circuits at high densities.

We also consider a more structured input circuit, namely implementing half of a
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Figure 6.11: Space-time cost of a randomly sampled set of disjoint cnots with
standard error of the mean (shaded region) compiled to the surface code using EDPC
and swap compilation. We generate 10 random circuits for each number of qubits
(n) consisting of a set of disjoint cnots of varying density; the number of randomly
selected qubits involved in a cnot is given by ncnot. At all densities we see improved
performance and scaling using EDPC.

multi-controlled-X gate, cknot. We consider decompositions of cknot for k integer

powers of 2, but only compile the first half of the circuit, given in Figure 6.12a.

A T -efficient implementation of cknot uses measurement and feedback for uncom-

putation [Jon13], which are not captured in our model (see Section 6.7). We plot

the space-time cost of compiling the half cknot in Figure 6.12b. We see that the

dependence on the number of qubits k is worse for swap-based compilation, and

results in a larger space-time cost starting at 64 qubits. Unfortunately, the swap-based

compilation is quite slow: we ran the algorithm for at most 3 days and 9 hours at

each data point and were only able to obtain results up to 128 qubits. However, the

data we were able to obtain indicates a cross-over for compiling cknot circuits. The

swap-based compilation has better space-time performance for small instances, while

EDPC has a better space-time performance for compiling large cknot circuits.
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Figure 6.12: We compare the space-time cost of compiling a T -gate optimized circuit
decomposition for a half cknot circuit to the surface code using EDPC and swap
compilation. We see in the log-log plot (b) that dependence of the space-time cost
on n gives a higher scaling dependence in the case of swap compilation than EDPC.
This results a lower space-time cost for EDPC starting from 64 qubits.

6.7 Conclusion

In this chapter, we have introduced the EDPC algorithm for the compilation of input

quantum circuits into operations which can be implemented fault-tolerantly with

the surface code. At the heart of this algorithm is the EDP subroutine, which can

implement both sets of parallel long-range cnot gates and sets of parallel rotations in

constant depth, using existing efficient graph algorithms to find sets of edge-disjoint

paths. EDPC has advantages over other compilation approaches including Pauli-based

computation, network coding based compilation, and swap-based compilation. We

find numerically that EDPC significantly outperforms swap-based circuit compilation

in the space-time cost of random cnot circuits for a broad range of instances, and for

larger cknot gates. However, many details of EDPC can be improved, as it is only a

first step towards using long-range operations for surface code compilation.

We have argued how the EDP subroutine of the EDPC algorithm can benefit from

a rigorous understanding of maximum EDP sets on paths. It seems likely that the
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O(log n)-approximation algorithm for finding maximum EDP sets on grids [AR95] can

be modified to give an algorithm that restricts to those paths which are needed for the

EDP subroutine (which we call operator paths). In our implementation, we have used

a simple greedy O(
√
n)-approximation algorithm for this task. Any O(poly log n)-

approximation algorithm for finding maximum operator EDP sets would show optimal

compilation of worst-case dense parallel cnot circuits up to logarithmic factors, i.e. a

depth bounded by Õ(
√
n). A more practical issue is to find approximation algorithms

with improved asymptotic performance and reasonable constant prefactors.

The runtime complexity of EDPC for an input circuit of depth D acting on n qubits

is O(Dn3 log n). This is much lower than the known upper bound for the swap-based

compilation in Section 6.6.3, which was found to be O(Dn5) in Childs, Schoute, and

Unsal [CSU19]. We found that our implementation of the swap-based compilation

implementation runtime is much slower than that of EDPC on small instances, and

found that the swap-based algorithm had impractically long runtimes when applied

to circuits beyond a few hundred qubits, the regime of large-scale applications of

quantum algorithms[Rei+17; GE21]. Potential ways to further improve EDPC’s

runtime include using a dynamical decremental all-pair shortest path algorithm in the

greedy approximation of the maximum EDP set, or by finding faster approximation

algorithms for finding the maximum EDP set.

Any diagonal gates in the Z (or X) basis can be performed remotely on the

boundary, including CCZ gates [GF19] (see Appendix B.4). Therefore, our results on

applying Z(θ) rotations can be extended to diagonal gates, which will benefit circuit

depth.

Even with the capability to perform long-range operations it may still be helpful

to localize the quantum information on some part of the architecture such as by

permuting the data qubits. In particular, the size of the EDP set is bounded above

by the minimum edge cut separating the terminals. Therefore, it may be beneficial
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to first redistribute quantum information where it is needed to ensure large EDP

solutions exist. It is straightforward to construct a long-range move of a data qubit to

an ancilla in depth 2 from a long-range cnot, by performing the cnot targeting a |0〉

ancilla state and measuring the source in the X basis up to Pauli corrections. It also is

straightforward to adapt the EDP subroutine to perform sets of these long-range moves

along operator paths, now ending at the ancilla, in depth 4. The depth to permute

only a few qubits a long distance can be improved significantly by this technique. For

example, a swap of the two corners of an L× L grid architecture takes O(1) depth

using long-range moves, as opposed to Ω(L) depth classical routing. It remains an

open question how to trade off permuting data qubits (using swaps or long-range

moves) and directly using long-range cnots.

We have assumed that classical feedback is not present in the input circuit for

clarity of presentation. The EDPC algorithm we have described could be readily

extended to the setting of classical feedback in the input circuit to form a “just-in-

time” surface code compilation algorithm. To do so, a larger computation would be

broken up into a sequence of circuit executions without classical feedback, where prior

measurement results specify the next circuit to compile and execute.
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Chapter 7

Conclusion

We showed bounds on the depth and time for increasingly stronger models of quantum

routing (see Table 7.1 for an overview) and we showed how routing can be used to

construct efficient architecture-respecting circuit transformations. One major open

question is if there is a superconstant routing separation between Hamiltonian or gate-

based quantum routing and classical routing. We only exhibited an Ω(
√
n) separation

on the vertex barbell graph in the stronger Hamiltonian routing with ancilla model.

The gap between our lower bounds on Hamiltonian routing and classical routing are

notably large in some simple examples. The star graph, Sn, is one example where

we only obtain a lower bound of hqrt(Sn) = Ω(1) but have qrt(Sn) = Ω(n). Another

path toward showing a separation is to investigate generalizations of state reversal to

higher dimensional grids.

We have also seen how the ability to perform LOCC on surface codes significantly

affect what circuit transformations are possible. We showed that it is not necessary to

perform routing for long-range operations on the lattice surgery surface code since

parallel long-range operations can be implemented in constant depth, if they can be

connected by an edge-disjoint set of operator paths. However, performance of EDPC,

which solely uses long-range operations and no routing, does not rule out that an
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Model Routing Bound Reference

Classical rt(Πv(G1, G2), σ) ≤
⌈

deg(π)
ham(v)

⌉
(rt(G1) + rt(G2)) + rt(G2) Theorem 2.4

4-approximation algorithm of rs(G, σ) Theorem 2.10

rt(G) = O
(
d∗
λ21

log2|V (G)|
)

Corollary 5.14

Gate-based qrt(G) ≥ 2

c(G)
− 1 Theorem 5.5

=⇒ qrt(B2n) = Θ(n) Section 5.4

Hamiltonian hqrt(Pn, reversal) ≤
n+ 1

3
Chapter 3

hqrt(Pn) ≥ 4

3π

n

α
Theorem 3.5

hqrt(Pn) ≤ (1− ε)n+O(log2 n), for ε ≈ 0.034 Corollary 4.5

hqrt(G) ≥ 8

3π

1

α · h(G)
Theorem 5.9

Ham.+ancilla hqrta(B2n) = O(
√
n) Corollary 5.19

Table 7.1: Summarized results on increasingly stronger models of routing bounding
the depth and time (and one entry for the size, rs(G, π)). In some cases, the routing
bound is dependent on σ, which is an arbitrary permutations of V (G). Special cases
are the hierarchical product of graphs G1 and G2 with boolean vector v, Πv(G1, G2),
the path graph, Pn, and the vertex barbell graph, B2n. We reference where these
results were shown in this dissertation. A time-dependent state reversal protocol was
known [Rau05], Chapter 3 presents a novel time-independent protocol. The strongest
model we consider is Hamiltonian routing with ancilla (denoted “Ham.+ancilla”),
which shows an Ω(

√
n) separation from qrt(B2n).
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approach which intermingles long-range operations with routing, e.g. for clusters of

operations, would give improved performance on realistic circuits.

It is an open question how much stronger quantum routing using LOCC is. By

distributing Bell pairs, we can implement routing through teleportation. This model

seems quite strong since measurement-based computation [Bri+09], whose graph

states can be constructed in constant depth, is possible in this setting. However,

distributing entanglement using graph states can be challenging [HPE19; Adc+20]. If

linear network coding is possible on the architecture graph, we also obtain improved

entanglement distribution [LOW10; Kob+09; BH20].

Our architecture-respecting circuit transformations in Chapter 2 rely on intelligent

qubit mapping that decides where to route qubits. We gave heuristics for qubit

mapping that are informed by the classical routing depth, but these heuristics only

perform local optimization. Even though the general task is NP-hard [MFM08], it is

an open question whether efficient (approximation) algorithms can be designed for

specific architectures that will take more of the structure of the circuit into account

and are able to improve on benchmarks such as [TC21b].

Another ongoing area of research is circuit optimization and how it can be used

in conjunction with architecture-respecting circuit transformations. A common op-

timization is combining swaps from classical routing with preceding gates [ZW19;

Siv+20; TC21a; LB21]. Entire cnot+Rz circuits can also efficiently be resynthe-

sized to architecture-respecting circuits [KG20; NGM20]. And the ZX-calculus has

shown promise in circuit optimization [KW20; Dun+20] and can find optimized

architecture-respecting circuits [Cow+20].

Optimization can even be applied over the choice of gate set. This is in apparent

disregard of the Solovay-Kitaev theorem [Kit97], which tells us that elementary gate

sets are equivalent up to polylogarithmic factors. But the (even constant) factors in

overhead matter in the non-asymptotic regime, such that optimizing pulse sequences
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directly can give large improvements [Shi+19; Lao+21; Jur+21]. In some cases,

quantum computers naturally have access to powerful operations. For example, ion

trap quantum computer can perform global operations that can implement multi-

controlled-not gates with k controls in depth 3k/2 [Grz+21].
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Appendix A

Average Hamiltonian routing time on

paths

A.1 Average routing time using only swaps

In this section, we prove Theorem 4.6. First, define the infinity distance d∞ : Sn → N

to be d∞(π) = max1≤i≤n |πi− i|. Note that 0 ≤ d∞(π) ≤ n− 1. Finally, define the set

of permutations of length n with infinity distance at most k to be Bk,n = {π ∈ Sn :

d∞(π) ≤ k}.

The infinity distance is crucially tied to the performance of odd-even sort, and

indeed, any classical routing algorithm. For any permutation π of length n, the

routing number is bounded below by d∞(π), since the element furthest from its

destination must be swapped at least d∞(π) times, and each of those swaps must

occur sequentially. To show that the average routing time of any swap-based protocol

is asymptotically at least n, we first show that |B(1−ε)n,n|/n!→ 0 for all 0 < ε ≤ 1/2.

Schwartz and Vontobel [SV17] present an upper bound on |Bk,n| that was proved

in [Klø08] and [TS10]:
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Lemma A.1. For all 0 < r < 1, |Brn,n| ≤ Φ(rn, n), where

Φ(k, n) =


((2k + 1)!)

n−2k
2k+1

∏2k
i=k+1(i!)2/i if 0 < k/n ≤ 1

2

(n!)
2k+2−n

n

∏n−1
i=k+1(i!)2/i if 1

2
≤ k/n < 1.

(A.1)

Proof. Note that r = k/n. For the case of 0 < r ≤ 1/2, refer to [Klø08] for a proof.

For the case of 1/2 ≤ r < 1, refer to [TS10] for a proof.

Lemma A.2.

n! = Θ
(√

n
(n
e

)n)
(A.2)

Proof. This follows from well-known precise bounds for Stirling’s formula:

√
2πn

(n
e

)n
e

1
12n+1 ≤ n! ≤

√
2πn

(n
e

)n
e

1
12n (A.3)

√
2πn

(n
e

)n
≤ n! ≤

√
2πn

(n
e

)n
e (A.4)

(see for example [Rob55]).

With Lemmas A.1 and A.2 in hand, we proceed with the following theorem:

Theorem A.3. For all 0 < ε ≤ 1/2, limn→∞ |B(1−ε)n,n|/n! = 0. In other words, the

proportion of permutations of length n with infinity distance less than (1− ε)n vanishes

asymptotically.

Proof. Lemma A.1 implies that |B(1−ε)n,n|/n! ≤ Φ((1 − ε)n, n)/n!. The constraint

0 < ε ≤ 1/2 stipulates that we are in the regime where 1/2 ≤ r < 1, since r = 1− ε.

Then we use Lemma A.2 to simplify any factorials that appear. Substituting (A.1)

and simplifying, we have

Φ ((1− ε)n, n)

n!
=

∏n−1
i=(1−ε)n+1(i!)2/i

(n!)2ε−2/n
= O

 e2εn−2

n2εn−2

n−1∏
i=(1−ε)n+1

i2+1/i

e2

 . (A.5)
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We note that i1/i terms can be bounded by

n−1∏
i=(1−ε)n+1

i
1
i ≤

n−1∏
i=(1−ε)n+1

n
1

(1−ε)n ≤ n
ε

1−ε ≤ n (A.6)

since ε ≤ 1/2. Now we have

O

 e2εn−2

n2εn−2

n−1∏
i=(1−ε)n+1

i2+1/i

e2

 = O

 n

n2εn−2

n−1∏
i=(1−ε)n+1

i2

 (A.7)

= O

(
n

n2εn−2

(
(n− 1)!

((1− ε)n+ 1)!

)2
)

(A.8)

= O

(
n

n2εn−2e2εn

(n− 1)2n−1

((1− ε)n+ 1)2(1−ε)n+2

)
(A.9)

= O

(
n

n2εn−2e2εn

n2n

((1− ε)n)2(1−ε)n

)
(A.10)

= O

(
n3

exp ((ln(1− ε)(1− ε) + ε)2n)

)
. (A.11)

Since ln(1− ε)(1− ε) + ε > 0 for ε > 0, this vanishes in the limit of large n.

Now we prove the theorem.

Proof of Theorem 4.6. Let T̄ denote the average routing time of any swap-based

protocol. Consider a random permutation π drawn uniformly from Sn. Due to

Theorem A.3, π will belong in B(1−ε)n,n with vanishing probability, for all 0 < ε ≤ 1/2.

Therefore, for any fixed 0 < ε ≤ 1/2 as n→∞, (1− ε)n < E [d∞(π)]. This translates

to an average routing time of at least n − o(n) because we have, asymptotically,

(1− ε)n ≤ T̄ for all such ε.

A.2 Average routing time using TBS

In this section, we prove Theorem 4.7, which characterizes the average-case performance

of TBS (Algorithm 4.4.2). This approach consists of two steps: a recursive call on
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three equal partitions of the path (of length n/3 each), and a merge step involving a

single reversal.

We denote the uniform distribution over a set S as U(S). The set of all n-bit

strings is denoted Bn, where B = {0, 1}. Similarly, the set of all n-bit strings with

Hamming weight k is denoted Bnk . For simplicity, assume that n is even. We denote

the runtime of TBS on b ∈ Bn by T (b).

When running GDC(TBS) on a given permutation π, the input bit string for TBS

is b = I(π), where the indicator function I is defined in (4.7). We wish to show that,

in expectation over all permutations π, the corresponding bit strings are quick to sort.

First, we show that it suffices to consider uniformly random sequences from Bnn/2.

Lemma A.4. If π ∼ U(Sn), then I(π) ∼ U(Bnn/2).

Proof. We use a counting argument. The number of permutations π such that

I(π) ∈ Bnn/2 is (n/2)!(n/2)!, since we can freely assign index labels from {1, 2, . . . , n/2}

to the 0 bits of I(π), and from {n/2 + 1, . . . , n} to the 1 bits of I(π). Therefore, for a

uniformly random π and arbitrary b ∈ Bnn/2,

P[I(π) = b] =
(n/2)!(n/2)!

n!
=

1(
n
n/2

) =
1

|Bnn/2|
. (A.12)

Therefore, I(π) ∼ U(Bnn/2).

While Bnn/2 is easier to work with than Sn, the constraint on the Hamming weight

still poses an issue when we try to analyze the runtime recursively. To address

this, Lemma A.5 below shows that relaxing from U(Bnn/2) to U(Bn) does not affect

expectation values significantly.

We give a recursive form for the runtime of TBS. We use the following convention

for the substrings of an arbitrary n-bit string a: if a is divided into 3 segments, we

label the segments a0.0, a0.1, a0.2 from left to right. Subsequent thirds are labeled
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analogously by ternary fractions. For example, the leftmost third of the middle third

is denoted a0.10, and so on. Then, the runtime of TBS on string a can be bounded by

T (a) ≤ max
i∈{0,1,2}

T (a0.i) +
n1(a0.0) + n1(a0.2) + n/3 + 1

3
, (A.13)

where a is the bitwise complement of bit string a and n1(a) denotes the Hamming

weight of a. Logically, the first term on the right-hand side is a recursive call to sort

the thirds, while the second term is the time taken to merge the sorted subsequences

on the thirds using a reversal. Each term T (a0.i) can be broken down recursively until

all subsequences are of length 1. This yields the general formula

T (b) ≤ 1

3

dlog3(n)e∑
r=1

max
i∈{0,1,2}r−1

{n1(a0.i0) + n1(a0.i2)}+ n/3r + 1

 , (A.14)

where i ∈ ∅ indicates the empty string.

Lemma A.5. Let a ∼ U(Bn) and b ∼ U(Bnn/2). Then

E[T (b)] ≤ E[T (a)] + Õ(nα) (A.15)

where α ∈ (1
2
, 1) is a constant.

The intuition behind this lemma is that by the law of large numbers, the deviation

of the Hamming weight from n/2 is subleading in n, and the TBS runtime does not

change significantly if the input string is altered in a subleading number of places.

Proof. Consider an arbitrary bit string a, and apply the following transformation.

If n1(a) = k ≥ n/2, then flip k − n/2 ones chosen uniformly randomly to zero. If

k < n/2, flip n/2− k zeros to ones. Call this stochastic function f(a). Then, for all a,

f(a) ∈ Bnn/2, and for a random string a ∼ U(Bn), we claim that f(a) ∼ U(Bnn/2). In

other words, f maps the uniform distribution on Bn to the uniform distribution on
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Bnn/2.

We show this by calculating the probability P[f(a) = b], for arbitrary b ∈ Bnn/2. A

string a can map to b under f only if a and b disagree in the same direction: if, WLOG,

n1(a) ≥ n1(b), then a must take value 1 wherever a, b disagree (and 0 if n1(a) ≤ n1(b)).

We denote this property by a � b. The probability of picking a uniformly random a

such that a � b with x disagreements between them is
(
n/2
x

)
, since n0(b) = n/2. Next,

the probability that f maps a to b is
(
n/2+x
x

)
. Combining these, we have

P[f(a) = b] =

n/2∑
x=−n/2

P
[
a � b and n1(a) =

n

2
+ x
]
· P
[
f(a) = b | a � b and n1(a) =

n

2
+ x
]
,

(A.16)

=

n/2∑
x=−n/2

(
n/2
|x|

)
2n
· 1(

n/2+|x|
|x|

) , (A.17)

=
1(
n
n/2

) n/2∑
x=−n/2

(
n

n/2−x

)
2n

, (A.18)

=
1(
n
n/2

) =
1

|Bnn/2|
. (A.19)

Therefore, f(a) ∼ U(Bnn/2). Thus, f allows us to simulate the uniform distribution on

Bnn/2 starting from the uniform distribution on Bn.

Now we bound the runtime of TBS on f(a) in terms of the runtime on a fixed a.

Fix some α ∈ (1
2
, 1). We know that n1(f(a)) = n/2, and suppose |n1(a)− n/2| ≤ nα.

Since f(a) differs from a in at most nα places, then at level r of the TBS recursion

(see (A.14)), the runtimes of a and f(a) differ by at most 1/3 ·min{2n/3r, nα}. This

is because the runtimes can differ by at most two times the length of the subsequence.
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Therefore, the total runtime difference is bounded by

∆T ≤ 1

3

dlog3(n)e∑
r=1

min
{2n

3r
, nα
}
, (A.20)

=
1

3

dlog3(2n1−α)e∑
r=1

nα + 2

dlog3(n)e∑
r=dlog3(2n1−α)e+1

n

3r

 , (A.21)

=
1

3

nα log(2nα/3) + 2

blog3(nα/2)c−1∑
s=0

3s

 (A.22)

=
1

3
(nα log(2nα/3) + nα/2− 1) = Õ(nα). (A.23)

On the other hand, if |n1(a)− n/2| ≥ nα/2, we simply bound the runtime by that of

OES, which is at most n.

Now consider a ∼ U(Bn) and b = f(a) ∼ U(Bnn/2). Since n1(a) has the binomial

distribution B(n, 1/2), where B(k, p) is the sum of k Bernoulli random variables with

success probability p, the Chernoff bound shows that deviation from the mean is

exponentially suppressed, i.e.,

P[|n1(a)− n/2| ≥ nα] = exp(−O(n2α−1)). (A.24)

Therefore, the deviation in the expectation values is bounded by

|E[T (f(a))]− E[T (a)]| ≤ n exp(−O(n2α−1))+c(1−exp(−O(n2α−1)))nα log(n) = Õ(nα),

(A.25)

where c is a constant. Finally, we conclude that

E[T (b)] ≤ E[T (a)] + Õ(nα) (A.26)

as claimed.
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Next, we prove the main result of this section, namely, that the runtime of GDC(TBS)

is 2n/3 up to additive subleading terms.

Proof of Theorem 4.7. We first prove properties for sorting a random n-bit string

a ∼ U(Bn) and then apply this to the problem of sorting b ∼ U(Bnn/2) using Lemmas A.4

and A.5.

The expected runtime for TBS can be calculated using the recursive formula

in (A.14):

E[T (a)] ≤ 1

3

log3(n)∑
r=1

E

[
max

i∈{0,1,2}r−1
{n1(a0.i0) + n1(a0.i2)}

]
+ n/3r + 1

 . (A.27)

The summand contains an expectation of a maximum over Hamming weights of

i.i.d. uniformly random substrings of length n/3r, which is equivalent to a binomial

distribution B(n/3r, 1/2) where we have n/3r Bernoulli trials with success probability

1/2. Because of independence, if we sample X1, X2 ∼ B(n/3r, 1/2), then X1 +X2 ∼

B(2n/3r, 1/2). Using Lemma A.6 with m = 3r−1, the expected maximum can be

bounded by

n

3r
+O

(√
(n/3r) log(3r−1n/3r)

)
=

n

3r
+ Õ

(
n1/2

)
(A.28)

since the second term is largest when r = O(1). Therefore,

E[T (a)] ≤ 1

3

log3(n)∑
r=1

2n

3r

+ Õ
(
n1/2

)
=
n

3
+ Õ

(
n1/2

)
. (A.29)

Lemma A.5 then gives E[T (b)] ≤ n
3

+ Õ(nα).

The routing algorithm GDC(TBS) proceeds by calling TBS on the full path, and

then in parallel on the two disjoint sub-paths of length n/2. We show that the

distributions of the left and right halves are uniform if the input permutation is
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sampled uniformly as π ∼ U(Sn). There exists a bijective mapping g such that

g(π) = (b, πL, πR) ∈ Bnn/2 × Sn/2 × Sn/2 for any π ∈ Sn since

|Sn| = n! =

(
n

n/2

)(n
2

)
!
(n

2

)
! =

∣∣Bnn/2 × Sn/2 × Sn/2∣∣. (A.30)

In particular, g can be defined so that b specifies which entries are taken to the first n/2

positions—say, without changing the relative ordering of the entries mapped to the first

n/2 positions or the entries mapped to the last n/2 positions—and πL and πR specify

the residual permutations on the first and last n/2 positions, respectively. Given

g(π) = (b, πL, πR), TBS only has access to b. After sorting, TBS can only perform

deterministic permutations µL(b), µR(b) ∈ Sn/2 on the left and right halves, respectively,

that depend only on b. Thus TBS performs the mappings πL 7→ πL ◦ (µL(b)) and

πR 7→ πR ◦ (µR(b)) on the output. Now it is easy to see that when πL, πR ∼ U(Sn/2),

the output is also uniform because the TBS mapping is independent of the relative

permutations on the left and right halves.

More generally, we see that a uniform distribution over permutations U(Sn) is

mapped to two uniform permutations on the left and right half, respectively. Symboli-

cally, for, π ∼ U(Sn), we have that

g(π) = (b, πL, πR) ∼ U(Bnn/2 × Sn/2 × Sn/2) = U(Bnn/2)× U(Sn/2)× U(Sn/2). (A.31)

As shown earlier, given uniform distributions over left and right permutations, the

output is also uniform. By induction, all permutations in the recursive steps are

uniform.

We therefore get a sum of expected TBS runtime on bit strings of lengths n/3r,

i.e.,
log2 n∑
r=1

E[T (br)] ≤
log2 n∑
r=1

E[T (ar)] + Õ
(( n

2r−1

)α)
≤ 2n

3
+ Õ(nα) (A.32)
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where, by Lemma A.4 and the uniformity of permutations in recursive calls, we need

only consider br ∼ U(Bn/2
r

n/2r−1) and we bound the expected runtime using Lemma A.5

with ar ∼ U(Bn/2r−1
).

We end with a lemma about the order statistics of binomial random variables used

in the proof of the main theorem.

Lemma A.6. Given m i.i.d. samples from the binomial distribution Xi ∼ B(n, p)

with i ∈ [m], and p ∈ [0, 1], the maximum Y = maxiXi satisfies

E[Y ] < pn+O
(√

n log(mn)
)
. (A.33)

Proof. We use Hoeffding’s inequality for the Bernoulli random variable X ∼ B(n, p),

which states that

P[X ≥ (p+ ε)n] ≤ exp(−2nε2) ∀ε ≥ 0. (A.34)

Pick ε =
√

c
2n

log(mn), where c > 0 is a constant. For this choice, we have

P[Xi ≥ (p+ ε)n] ≤
(

1

mn

)c
(A.35)

for every i = 1, . . . ,m. Then the probability that Y < (p + ε)n is identical to the

probability that Xi < (p+ ε)n for every i, which for i.i.d Xi is given by

P[Y < (p+ ε)n] = P[X < (p+ ε)n]m >

(
1− 1

(mn)c

)m
. (A.36)

Using Bernoulli’s inequality ((1 + x)r ≥ 1 + rx for x ≥ −1), we can simplify the above

bound to

P[Y < (p+ ε)n]m > 1−m1−cn−c. (A.37)
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Finally, we bound the expected value of Y by an explicit weighted sum over its range:

E[Y ] =
n∑
k=0

P[Y = k] · k (A.38)

=

b(p+ε)nc∑
k=0

P[Y = k] · k +
n∑

k=b(p+ε)nc+1

P[Y = k] · k (A.39)

≤
b(p+ε)nc∑
k=0

P[Y = k]) · k + n ·
n∑

k=b(p+ε)nc+1

P[Y = k] (A.40)

≤
b(p+ε)nc∑
k=0

P[Y = k] · k + (mn)1−c (A.41)

≤ (p+ ε)n+ (mn)1−c. (A.42)

Since (mn)1−c < 1 for c > 1,

E[Y ] <

⌈
pn+ 1 +

√
cn

2
log(mn)

⌉
= pn+O(

√
n log(mn)) (A.43)

as claimed.
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Appendix B

Surface code compilation

B.1 Surface code architecture

Here we review some basic details of the surface code focusing on the elementary

logical operations shown in Figure 1.2. This is intended as a high-level overview to

provide some intuition of how the logical operations in Figure 1.2 arise and what

their resource costs are. For more thorough reviews of surface codes see Refs. [Bom13;

Fow+12; Bro+17].

To implement the surface code, we assume physical qubits are laid out on the

vertices of a 2D grid, with nearest-neighbor interactions allowed. A single surface

code patch encodes a single logical qubit in 2d2 − 1 physical qubits, where the odd

parameter d is known as the code distance which corresponds to the level of noise

protection; see Figure B.1(a). For clarity, within this section of the appendix we refer

to physical qubits and logical qubits explicitly, however in other sections we often

drop the word “logical” when referring to logical qubits for brevity.

We designate every odd physical qubit as a data physical qubit in the patch,

and every even physical qubit as an ancilla physical qubit to facilitate a stabilizer

measurement; see Figure B.1(a). The code space of a surface code consists of those

188



(a) Surface code patch (b) X-Stabilizer decoding graph

Figure B.1: (a) A d = 5 surface code patch implemented in a grid of data physical
qubits (black disks), and ancilla physical qubits (white disks). Error correction is
implemented with single-qubit operations and cnot between pairs of qubits connected
by a dashed edge. Z and X type stabilizers are associated with alternating red and
blue faces. (b) A decoding graph that is defined by associating an edge with each
qubit and a vertex for each stabilizer. If stabilizers are measured perfectly, Z errors on
data qubits (marked in red) can be corrected by finding a minimum weight matching
(green edges) of vertices associated with unsatisfied X stabilizers (yellow disks).

states of the data physical qubits which are simultaneous +1 eigenstates of the set

of stabilizer generators. The stabilizer generators can be associated with faces and

are either X ⊗X ⊗X ⊗X or Z ⊗ Z ⊗ Z ⊗ Z operators for the bulk (interior) of the

code or X ⊗ X or Z ⊗ Z operators on the boundary. We can see that the logical

Z operator, ZL, defined as any path of single-qubit Z operators on physical qubits

connecting the rough boundaries, commutes with all stabilizers. Similarly, the logical

X operator, XL, is a path of X operators connecting the smooth boundaries.

For quantum error correction, it is necessary to repeatedly measure stabilizer

generators. Stabilizer generators can be measured by running small circuits consisting

of the preparation of the ancilla physical qubit, cnots between the ancilla physical

qubit and the data physical qubits, followed by measurement of the ancilla physical

qubit. Error correction can be performed by associating qubits with edges and stabilizer

generators with vertices of a so-called decoding graph; see Figure B.1b. A classical
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(a) Logical ZL ⊗ ZL measurement (b) Patches tiling the plane

Figure B.2: (a) A logical ZL ⊗ ZL measurement is performed by lattice surgery in
the following steps: (i) Stop measuring the weight-two stabilizers along the horizontal
boundary between the patches. (ii) Reliably measure the bulk faces for a single
vertically-extended patch. Note that ZL ⊗ ZL can be inferred from the product of
the outcomes of the newly measured red faces. This temporarily merges the patches
to form a single extended surface code patch. (iii) Reliably measure once more the
weight-two faces along the horizontal boundary between the patches. This separates
the pair of patches. (b) Two types of patches tile the plane, with ZL⊗ZL measurements
possible between vertically neighboring patches, and XL ⊗XL measurements possible
between horizontally neighboring patches.

algorithm known as a decoder is used to infer a set of edges (specifying the support of

the X or Z correction) given a subset of vertices (corresponding to unsatisfied Z or X

stabilizers, that is stabilizer generators with measurement outcome -1). Figure B.1b

shows an example of this in the setting of perfect stabilizer measurements, although

this can be generalized to handle faulty measurements by repeating measurements.

Logical operations can be implemented fault-tolerantly on logical qubits encoded

in surface codes. For example, a destructive logical X measurement of a patch is

implemented by measuring all data qubits in the X basis, and then using a decoder to

process the physical outcomes and reliably identify the logical measurement outcome.

Another important logical operation is the non-destructive measurement of a logical
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Figure B.3: The move operation can be implemented in depth 1 by local and
neighboring Pauli measurements. A horizontal move can be implemented by preparing
a single-qubit patch in |0〉, applying joint XX measurement, and then measuring the
original patch in the Z basis (up to Pauli corrections). The vertical move follows
from applying a Hadamard to the source qubit |φ〉 and a Hadamard on the output.
Simplifying the circuit gives the right-hand side in the Figure, with a ZZ measurement
that is available vertically.

joint Pauli operator using an approach known as lattice surgery [Hor+12] as shown

in Figure B.2a. To simplify lattice surgery by lining up the boundary stabilizers of

neighboring patches, we consider a tiling of the plane using two versions of distance

d surface code patches as shown in Figure B.2b which forms a grid of logical qubits.

Logical ZL ⊗ ZL can be measured between vertical neighbor patches while XL ⊗XL

can be measured between horizontal neighbor patches.

The allowed fault-tolerant logical operations that we assume throughout Chapter 6

and the resources they require are listed in Figure 1.2. These are largely based on

the rules specified in [Lit19]. Here we justify the resource requirements for the logical

operations in Figure 1.2 not covered in [Lit19] on a distance-d surface code. For space

analysis, we work in units of full surface code patches such that if any qubits from a

patch are needed to implement an operation the full patch is counted. We show how

to implement the operations in terms of more elementary Pauli measurements. The

move operation can be implemented in depth 1 with the target qubit as ancilla, as

shown in Figure B.3. The Hadamard can be implemented in depth three with three

ancilla patched along with the move operation as shown in Figure B.4. Finally, Bell

measurement and preparation can be implemented in depth 1 as shown in Figure B.5.

There are alternatives to these implementations of logical operations which can lead to

lower space-time cost. For example the Hadamard could be performed using just one
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(a) Transversal Hadamard (b) Extended patch (c) Shrunk patch

Figure B.4: Implementation of a Hadamard operation in depth 3 with three ancilla
patches. (a) A transverse Hadamard is applied in depth 0 to each physical data
qubit, which switches the arrangement of X and Z stabilizer generators compared to
the standard configuration. (b) The patch is extended in depth 1 so that a segment
of the standard boundary type is introduced on the right. (c) The patch is shrunk
into a standard surface code patch of the form of the top-left corner of the region
(see Figure B.2b) in depth 1, but with its location shifted by a (code distance) d-
independent amount. This allows us to shift the patch into the top-left corner in 0
depth (not shown). Then we move the logical qubit to the bottom-left corner in depth
1.

(a) Bell pair preparation

(b) Bell measurement

Figure B.5: We can implement Bell preparation and measurement in terms of single
and two-qubit Pauli measurements in depth 1 as given in Figure B.5 [Lit19]. (a) A Bell
pair can be prepare from a (horizontal) joint XX measurement of |00〉 or a (vertical)
joint ZZ measurement of |++〉, up to Pauli corrections. (b) A destructive Bell
measurement can be implemented by a joint XX measurement followed by individual
Z basis measurements, or by a joint ZZ measurement followed by individual X basis
measurements.
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logical ancilla patch if each patch was padded with extra qubits. We do not explore

these alternatives here, but note that our EDPC algorithm can still be applied if these

alternatives are used.

B.2 Logical space time cost as a proxy for physical

space time cost

Here we provide a justification for our use of logical space time cost as a proxy for

physical space time cost. As we have seen in Figure 1.2 and Appendix B.1, logical

operations implemented with the surface code require physical time that scales as d

and physical space that scales as d2. For a logical circuit written in terms of a total of

Alogical elementary logical operations implemented using surface codes of distance d,

the physical space-time cost Aphysical is approximately

Aphysical ∼ Alogicald
3. (B.1)

The probability of any of these elementary operations resulting in a logical failure

scales as pfail ∼ (p/p∗)d/2, where the fixed system parameters are the physical error

rate p, and the fault-tolerant threshold for the surface code p∗. Moreover, we assume

pfail ∼ 1/Alogical to ensure that the logical circuit is reliable with as small a code

distance as possible. This suggests that the code distance behaves as

d ∼ 2 logAlogical

log p∗ − log p
. (B.2)

Therefore we see that the physical and logical space time costs are monotonically

related, i.e.,

Aphysical ∼ Alogical(logAlogical)
3. (B.3)
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B.3 cnot via Bell operations

We list more variations of the standard cnot gate (Figure 6.2a) that use intermediate

Bell preparation and measurements on ancillas in Figure B.6. By choosing the right

subcircuit, we see that the long-range operations in Figure 6.7 implement a cnot

gate.

(a) cnot via Bell preparation (b) cnot via Bell measure

(c) cnot with control first (d) cnot with target first

Figure B.6: Various implementations of a cnot gate with intermediate ancilla qubits
and Bell operations. In particular, we are able to apply the control and the target
either before (green) or after (teal) Bell preparation and measurement steps, while
keeping the depth at 2.

B.4 Remote execution of diagonal gates

A gate D diagonal on k source qubits in the computational basis can be executed on

k ancilla by first entangling these ancilla qubits using cnots. We call this remote

execution. Let the computational basis be |`〉, for ` ∈ [2k], then D|`〉 = exp(iφ`)|`〉.

We saw one use for remote gates in applying rotations at the boundary requiring

magic states (Section 6.4).
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(a) Diagonal gate in computational basis (b) Diagonal gate in Hadamard basis

Figure B.7: (a) Any k-qubit gate diagonal in the computational basis can be remotely
executed on k dedicated ancilla by first using cnots. We use this technique to apply
remote Z(θ) rotations (Figure 6.9b) with magic states at the boundary. (b) Similarly,
gates diagonal in the Hadamard basis also have a remote implementation. Since the
Pauli corrections can be commuted through Clifford circuits, Clifford circuits can be
executed immediately after executing the cnot operations with no need to wait on
the remote operations.

We execute D remotely as follows (see Figure B.7). First, we initialize the ancilla

in the state |0〉⊗k. Let the source qubits be in some pure state
∑

` α`|`〉, for α` ∈ C.

then we apply k transversal cnot gates controlled on source qubits so that the overal

state becomes
∑

` α`|`〉 ⊗ |`〉. We now apply D to the ancilla instead

(1⊗D)
∑
`

α`|`〉 ⊗ |`〉 =
∑
`

α` exp(iφ`)|`〉 ⊗ |`〉. (B.4)

We now disentangle the ancilla by measuring them in theX basis. Let the measurement

give outcomes x ∈ {0, 1}k, then the state on the source qubits is mapped to

∑
`

α` exp(iφ`)(−1)(x,`)|`〉, (B.5)

where (x, `) is the inner product modulo 2 between x and the binary representation

of `. Applying a Z correction to each qubit j ∈ [k] controlled on measurement result

xj maps the state to
∑

` α` exp(iφ`)|`〉 as required.
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This technique can be extended to any unitary operator U since it can be unitarily

diagonalized as U = V DV † by the spectral theorem, for V unitary and D diagonal

operators. A particularly simple case are unitary operators that are diagonal in the

Hadamard basis, where V = H⊗k. We write U = H⊗kDH⊗k on the source qubits and

apply remote execution of D using our techniques above. We then simplify the circuit

to obtain Figure B.7b.
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