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Measuring continuous change or growth in individual students’ academic abilities 

over time currently uses several statistical models or transformations to move from 

data representing a student’s correct or incorrect responses on individual test items to 

inferences about the form and quantity of changes in the student’s underlying ability. 

This study proposed and investigated a single integrated model of underlying growth 

within an Item Response Theory framework as a potential alternative to this 

approach. A Monte Carlo investigation explored parameter recovery for marginal 

maximum likelihood estimates via the Expectation-Maximization algorithm under 

variations of several conditions, including the form of the underlying growth 

trajectory, the amount of inter-individual variation in the rate(s) of growth, the sample 

size, the number of items at each time point, and the selection of items administered 

across time points. A real data illustration with mathematics assessment data from the 

Early Childhood Longitudinal Study showed the practical use of this integrated model 



  

for measuring gains in academic achievement. Overall, this exploration of an 

integrated model approach contributed to a better understanding of the appropriate 

use of growth models to draw valid inferences about students’ academic growth over 

time.  
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Chapter 1: Background and Justification 

As the fundamental goal of the educational enterprise, learning is often 

defined in terms of a gain in knowledge, understanding, or skill.  Thus, the study of 

change in the quantity and quality of individual students’ knowledge and abilities 

over time is at the heart of research in education.  The measured change along a 

continuum of progress in a domain is often called growth.   

In recent years there has been an increasing opportunity and great need to 

appropriately model individual growth over time in educational research, not only in 

nationally representative longitudinal studies but also increasingly to track and 

promote educational program improvements in states and large school districts.  Most 

of these applications are focused on change as measured by individual assessments of 

academic achievement, primarily measures of cognitive knowledge, skills, or 

abilities.  Further, educational accountability legislation has been enacted in the last 

ten years that demands the tracking of organizational growth over time to judge the 

effectiveness of education systems. Thus, the growth of individuals can have 

important implications for the status or growth of an organization as well.   

However, historically the research methodology for studying growth and 

change has been plagued with paradoxes and inadequacies (for an overview see 

Harris, 1963; Rogosa, 1995), and methodological challenges in modeling growth 

have continued to the present day.  The need for increased rigor in assessing 

individual growth over time in education exists independent of legislative initiatives, 

but it has been viewed with greater urgency in recent years due to greater demand for 

growth modeling to meet the requirements of educational accountability policy.   
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Methodological Background 

Many methods have been proposed to model growth and change over time at 

the levels of populations and individuals.  The growth modeling method and the 

alternatives considered in this dissertation are for repeated measurements made on the 

same individuals over time, some times called a panel design to distinguish it from 

other longitudinal designs.  Repeated surveys where different samples of respondents 

from the same population are surveyed at regular intervals and methods for analyzing 

this type of data are outside the scope of this work. Rather, all methods described here 

assume that multiple measurements are made on individuals over time. 

The major characteristics of these methods reflect the underlying theory about 

the nature of the construct that is changing.  In some methods the focus is on a latent 

construct that is hypothesized to be categorical.  This leads to approaches, such as 

latent transition analysis, in which the focus is on the probability of an individual 

transitioning from one latent category to another.  Other methods focus growth in a 

latent construct that is hypothesized to be continuous.  It is these latter methods and 

the consideration of how they handle both continuous and categorical observed 

indicators that will be covered in detail in this section on methodological background.  

Most reviews and didactic approaches to modeling continuous growth begin 

with the simple case involving two time points.  When two time points are considered 

in isolation, a gain score (the difference in scores between the two measurements) 

may be computed when comparable assessments are used to produce scores at an 

interval level of measurement at each individual time point.  Despite its conceptual 

and computational simplicity, the use of gain scores has traditionally been noted as 
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highly problematic in the psychometric literature (Harris, 1963; Rogosa, 1995).  First, 

many authors have noted that under certain circumstances the higher the correlation 

between the measures at the two time points, the lower the reliability vs. accuracy of 

the gain scores (Bereiter, 1963).  Measures at two time points may often be highly 

correlated if the underlying process is slow, if the two measurements are taken close 

together, or if individuals tend to grow at the same rate.  Second, the true amount of 

underlying change does not necessarily have a linear relationship with gain scores.  

Gains in the extremes of the score distribution may represent a greater amount of true 

change than gains near the middle of the score scale, particularly when number 

correct scores are used to compute the gain scores.  Bereiter (1963) showed that a 

change in the observed score could mean different things depending on the initial 

score level.  Lord (1963) likewise showed that it is necessary to look at predictors of 

gain scores after partialling out the effect of the initial measurement.  Finally, gain 

scores have been shown to have a negative correlation with initial scores, even when 

there was no underlying relation.  Lord (1963) showed that this was due to the 

regression effect.  Psychometric problems with measuring change were so great that 

Cronbach and Furby (1970) even recommended abandoning change measurement 

altogether.  Other researchers subsequently revised this viewpoint, concluding instead 

that “two time points provide an inadequate basis for studying change” (Bryk & 

Raudenbush, 1987, p.147 ) and that “investigations of growth that rely upon a two-

wave design are particularly weak approaches to the study of individual change” 

(Willett, 1988, p. 371). 
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From an early date, however, approaches have also been pursued for handling 

interval-level measurements at three or more time points simultaneously.  Many of 

the earliest methods were focused on modeling changes over time in groups rather 

than in individuals (Bollen & Curran, 2006).  The focus was on the mathematical 

form of the trajectory that best summarized growth for the entire group (Bollen & 

Curran, 2006).  Over time methods were developed for studying interindividual 

differences in individual trajectories over time, and the focus of these methods shifted 

to the study of deviations from the group trajectory (Bollen & Curran, 2006).  The 

1930’s gave rise to some of the first growth modeling work fitting unique trajectories 

to individuals and then using a separate analysis to summarize these individual 

trajectories for a group of individuals using analysis of variance-type approaches 

(e.g., Wishart, 1938).   

Developments for modeling individual growth trajectories progressively 

moved toward more integrated models within latent variable frameworks.  Bollen and 

Curran (2006) in their review of the historical developments of growth modeling 

using structural equation models noted that developments by Baker (1954) and 

Tucker (1958) first used exploratory factor analysis to model trajectories of growth.  

It was the seminal work by Meredith and Tisak (1990), however, that proposed 

growth modeling using confirmatory factor models and gave rise to current methods 

for Latent Growth Curve Modeling using structural equation models.     

Current Approaches to Modeling Growth in Continuous Constructs over Time 

Numerous overviews of the Latent Growth Curve Modeling approach for 

modeling growth have been published in recent years (Bollen & Curran, 2006; 
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Duncan, Duncan, & Strycker, 2006; Hancock & Lawrence, 2006).  In this approach 

latent (unobserved) variables are defined to postulate the form of a latent trajectory 

for a given individual’s observed measurements over time.  A commonly chosen 

latent trajectory is a linear model for growth in which a latent variable α (intercept 

factor) represents individuals' true status at the initial measured time point and a latent 

variable β (slope factor) represents individuals' true rate of change per unit time.  

Loadings for the measured variables at each time point on the slope factor define the 

amount of change (amount of β) that is added to an individual’s initial status to arrive 

at that individual’s subsequent level.  In the linear model these loadings are fixed to 

the amount of time that has elapsed since the initial (or reference) point.  Additional 

forms for the trajectory can be accommodated either by changing the values of the 

loadings on β or by incorporating additional latent growth factors into the model to 

describe the rate of change.  Loadings for the latent intercept α are typically fixed to 

unity, and the latent growth factors are typically allowed to correlate.  Individuals 

typically must be measured at defined time points (certain patterns of missing data 

can be accommodated, however) since the fixed values of the loadings do not vary 

across individuals.  As in other structural equation models, the structural relations 

among latent and observed variables are used to define model-implied mean and 

covariance matrices among the observed measures at different time points. 

The means and covariances of the observed measurements at each time point 

are calculated and parameters are estimated using an optimization routine that 

iteratively works toward finding values of the parameter estimates that cause the 

model-implied correlation matrix to most closely mimic the values in the observed 
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correlation matrix.  The estimated mean values of the latent growth factors provide 

insight into the mean trajectory for the group, whereas the estimated variances of the 

latent growth factors reflect the interindividual variability in both initial status and 

rate of change.  In latent growth curve modeling it is also possible to accommodate 

multiple measures (indicators) of a latent construct at each time point.  A curve-of-

factors model, or second-order latent growth curve model (Hancock, Kuo, & 

Lawrence, 2001; Sayer & Cumsille, 2001), can be postulated to explain growth in 

several indicators of a latent construct over time.  In this model a factor is formed for 

each time point to represent the latent construct measured without error.  Growth in 

the factors at each time point is then modeled using second-order growth factors to 

define the trajectory.  

Concurrent developments have also occurred for modeling growth using 

Linear Mixed Effects Models.  These models and their variants are also called by a 

number of other names, including: multilevel linear models, random coefficients 

models, random effects models, and hierarchical linear models (Fitzmaurice, Laird, & 

Ware, 2004; Raudenbush & Bryk, 2002).  In this approach a regression-style model is 

postulated to define each observed outcome as a function of a growth trajectory for 

each individual (Level 1 model).  The terms in the model (e.g., linear or quadratic) 

are functions of the time that has elapsed since the initial or baseline measurement.  

The terms entered into the model to define the form of the trajectory are the same 

over individuals. The coefficients for these terms, however, are random variables that 

may take on different values for different individuals.  In the most basic construction 

the coefficients are then further defined in terms of a mean value for the population 
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and a deviation from that mean for the individual (Level 2 model).    A researcher-

defined covariance structure is imposed on the residuals in the Level 1 model and on 

the deviations in the Level 2 model.  This approach has the advantage of allowing for 

individuals to be measured at very different time points throughout the study, but in 

practice often imposes a quite restrictive covariance structure on the observations.  

Multiple measurements at each time point can be incorporated by using a design 

matrix to define which terms in the Level 1 model are to be applied in explaining a 

particular observation.  It is important to note that although nonlinear trajectories 

(e.g., quadratic) are accommodated in the Linear Mixed Effects Modeling framework, 

the model is still called “linear” because it is intrinsically linear in its terms. 

Developments for modeling individual growth trajectories using latent 

variable methods, such as Latent Growth Curve Modeling and Linear Mixed Effects 

Modeling, have overcome some historical methodological difficulties but have also 

raised new questions and avenues for studying change over time (Collins & Horn, 

1991; Collins & Sayer, 2001; Gottman, 1995).  Willett (1988) argued, “Many of the 

problems that appear to beset the measurement of change are, in fact, artifacts of an 

inappropriate perspective” (p. 353).  Indeed, Willet demonstrated that the difference 

score can be highly reliable when interindividual variability in underlying growth is 

large.  Both Latent Growth Curve Modeling and Linear Mixed Effects Modeling 

provide a perspective that allows the underlying growth to be differentiated from 

measurement error and the interindividual variability in this growth to be explicitly 

modeled.   
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Among other advantages, growth models in both the Latent Growth Curve 

Model and Linear Mixed Effects Model frameworks provide an integrated approach 

for studying multiple aspects of change, including its structure, group trend, 

interindividual differences, and predictors of individual change (Bollen & Curran, 

2006; Raudenbush & Bryk, 2002).  Further, a number of researchers are currently 

investigating links to bridge the differences between the two so that the advantages of 

both frameworks can be leveraged for modeling growth.  

Growth Models for Categorical Data 

Both the Latent Growth Curve Model and Linear Mixed Effects Model 

frameworks for modeling growth or change over time were originally developed to 

model data at an interval level of measurement.  More recently both methods have 

been extended to better accommodate ordinal level measurements.   

In Latent Growth Curve Modeling, the growth model is typically fit to the 

means and covariances or correlations of observed interval variables.  To extend this 

framework to ordinal measurements, it is necessary to use methods for obtaining 

means and correlations from ordinal data (e.g., Olsson, 1979).  This is accomplished 

by assuming that each manifest ordinal indicator corresponds to a latent continuous 

response variable.  In this latent response variable formulation, each underlying 

continuous variable is considered to have a univariate normal distribution.  A 

monotonic transformation matches the density of the observed categorical distribution 

to the density of the continuous distribution:   

     y = c if τc−1 < y* ≤ τc  .    
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That is, an ordinal variable y is equal to some category c if the underlying continuous 

variable y* is greater than a lower threshold τc−1 and less than or equal to the next 

threshold τc.   

The underlying variable y* is assumed to have a range from negative infinity 

to positive infinity, but its scale is arbitrary.   Several options are available for fixing 

the metric(s) of the underlying response variables (Jöreskog, 1990; B. O. Muthén, 

1984, 1996; B. O. Muthén & Asparouhov, 2002).  In growth modeling applications 

with variables having three or more categories, this is most often accomplished by 

setting the first threshold equal to zero and the second threshold equal to one.  By 

fixing the values of two thresholds equal to two different constants, both the location 

and the scale of the metric are defined.  When binary variables are used, there is only 

a single threshold, and fixing a single threshold will not fully define the underlying 

scale.  In growth modeling applications with binary data, the scale can be defined 

instead by fixing the variance of the error terms to a constant (theta method) or using 

a scaling factor on the variance of the error terms (delta method, B. O. Muthén, 1984, 

1996; B. O. Muthén & Asparouhov, 2002). 

Once the scale has been defined, the values of any remaining free thresholds 

must be estimated, as well as the mean and variance of the underlying variable(s).  

First, standardized values of the thresholds are typically estimated from the data by 

considering a threshold τc to be the point on the underlying standard normal 

distribution (mean = 0 and variance = 1) that has the same cumulative probability for 

a response of c or below.  The value of the standardized threshold estimate, denoted 

cẑ , is found by using the inverse cumulative standard normal distribution: 
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( )Cc pppz +++Φ= − ...ˆ 21
1 ,     

where pc is the observed proportion of responses in category c.  Then the 

polychoric correlation between any two underlying variables y1* and y2* is estimated 

by maximizing the log-likelihood of the multinomial distribution for the standardized 

threshold estimates from the first step: 

 ( )∑∑ ∫ ∫
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where C1 and C2 are the number of categories in the two respective items and dy* is 

the variable of integration representing the difference in the integration over both 

latent continua.  The function 2Φ is the bivariate normal distribution:  
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where Y* is the vector [y1* y2*]', Ρ is the correlation matrix of the unobserved 

continuous variables, and μ is [0  0]'. 

The standardized thresholds, mean, and variance for each variable are then 

converted to the defined scale.  For example, for variables with three or more ordered 

categories, fixed values for the first two thresholds τ1 and τ2 are used as the basis for 

establishing the value of the mean and variance of the underlying variables on this 

scale using the following transformations: 
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These values for the mean and variance can then be used to transform the remaining 

standardized threshold estimates to the scale determined by the fixed thresholds.   
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Finally, typically one of several varieties of weighted least squares (WLS) 

estimation (Jöreskog, 1990; B. O. Muthén, 1993; B. O. Muthén, du Toit, & Spisic, 

1997) is used to fit the Latent Growth Curve Model to the means and polychoric 

correlations.  In WLS estimation the model parameters are estimated by minimizing a 

fit function that incorporates a weight matrix W as in Browne's (1984) asymptotic 

distribution free estimation technique, 

( ) ( )∑ −−= − ρrWρr ˆ'ˆ 1
WLSF , 

where the vector r contains the nonduplicated elements of the polychoric correlation 

matrix,1 the vector ρ̂  contains the nonduplicated elements of the model-implied 

correlations among the underlying y* variables, and the weight matrix W is the 

asymptotic covariance matrix, which needs to be inverted during each iteration of the 

estimation process.  Variations on this procedure include diagonally weighted least 

squares (DWLS) estimation (Jöreskog, 1990) and WLSM (Mean) and WLSMV 

(Mean, Variance) estimation (B. O. Muthén, 1993).  Maximum likelihood estimation 

methods for categorical data also exist (see Jöreskog & Moustaki, 2001; S. Lee, Poon, 

& Bentler, 1990, 1992; Mehta, Neale, & Flay, 2004), but have limitations due to the 

computational intensity of the estimation algorithms.   

The Linear Mixed Effects Model framework has likewise been extended to 

Generalized Linear Mixed Effects Models (Breslow & Clayton, 1993; Schall, 1991).  

Here the notable addition to the model that allows for categorical data is the 

introduction of a logit link function in the Level 1 model that transforms the metric of 

the categorical outcome to a continuous logit metric, whose trajectory can be modeled 

                                                 
1 Some methods also include the threshold values in the r vector (Muthén, 1984). 
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using the same terms as in the traditional Linear Mixed Effects Model.   A binary 

outcome variable is assumed to have a Bernoulli distribution with probability π for 

the occurrence of a value of one and probability 1-π for the occurrence of a value of 

zero.  The log odds of π, 

logit(π) = ⎟
⎠
⎞

⎜
⎝
⎛

− π
π

1
log  , 

is used in place of the dependent variable in the Level 1 model.  The Level 2 model 

remains the same as in the Linear Mixed Effects Model. 

Although the concept of this model is relatively straightforward, ongoing 

technical developments have been necessary to extend methods for estimating the 

model parameters.  Lee and Nelder (1996) proposed a hierarchical likelihood method 

for estimating the parameters of this model.  Other recent developments in estimation 

methods have added to the practicality of using these models (Coull, Houseman, & 

Betensky, 2006).  Some authors have noted the capacity of this model for modeling 

categorical variables over time (Raudenbush & Bryk, 2002).  Other authors have 

noted the correspondence between this model and the Rasch item response model 

(Kamata, 2001; Raudenbush, Johnson, & Sampson, 2003).  However, few authors 

have used this model as a means for combining data from multiple categorical 

response variables (e.g., responses to multiple items) at each time point (McArdle, 

Grimm, Hamagami, Bowles, & Meredith, in press). 

Timing of Measurements in Longitudinal Study Design 

In the most common scenario measures of academic achievement are 

collected on a yearly basis.  In the era of individual assessment-supported 
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accountability, it is becoming more common to have interim assessments, that is, to 

assess students at two to three additional occasions leading up to the end of the year 

assessment.  In some national longitudinal studies conduced by the National Center 

for Education Statistics (NCES), measurements at subsequent time points may be as 

far as two years apart.  In a rapidly-growing population this may indeed strain the 

measurement of growth.  One potential solution that was implemented in one NCES 

study, the Early Childhood Longitudinal Study – Kingergarten Cohort 1998-1999 

(Tourangeau, Nord, Lê, Pollack, & Atkins-Burnett, 2006), was the use of a “bridge” 

sample in the skipped year.  It is anticipated that this type of longitudinal design leads 

to stronger vertical scaling. 

 

Problem Statement 

Both Latent Growth Curve Modeling and growth models within the Linear 

Mixed Effects Modeling framework are techniques originally intended to model 

growth with interval level observed variables that have been extended to 

accommodate ordinal level observed variables.  Most growth modeling applications 

in these frameworks give little consideration to the measurement model for the 

ordinal item responses.  Some applications of these methods can be considered to use 

a limited measurement model where there are multiple indicators at each time point, 

as in cases where multiple test items (either polytomous or binary) are administered at 

each time.  However, this is not generally how these methods are used currently.  

Typically, a separate measurement model is used.  On the other hand one particularly 

well-developed and flexible measurement model framework is the Item Response 
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Theory framework.  This model framework includes measurement models that are 

more sophisticated than those used in Latent Growth Curve Models or Linear Mixed 

Effects Models.  What is more, this modeling framework was originally developed 

for categorical responses to test items, and so it incorporates ordinal data quite 

naturally.  Although this framework also makes use of transformations as used in 

Generalized Linear Mixed Effects Models, such as the logit transformation, this 

transformation is used to produce a non-linear model, and a well-developed lexicon 

exists for interpreting the model parameters and communicating the meaning of these 

nonlinear model parameters to others in ways that are somewhat intuitive. 

The great irony is that although categorical data have been viewed as a 

complication in other frameworks used to model growth, one of the best-developed 

frameworks for categorical data has practically been ignored when it comes to growth 

modeling.  Item response theory has not traditionally been used to model growth.  

Further, the few developments that would allow for the modeling of growth in this 

framework have occurred exclusively within the Rasch family of IRT models 

(Embretson, 1991; te Marvelde, Glas, Van Landeghem, & Van Damme, 2006; Wang, 

Wilson, & Adams, 1998).  This family of models, however, is limited in its 

appropriateness for applications in education.  This is because these models may not 

appropriately describe data where items differ in their discrimination among 

examinees or where the probability of answering an item correctly may be affected by 

the possibility of the examinee guessing.  Thus, despite the greater measurement 

model sophistication in the Item Response Theory framework, this level of 

development has not been leveraged in modeling growth.  Latent Growth Curve 
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Modeling and growth models within the Linear Mixed Effects Model framework 

remain further developed in this regard. 

Current practice in modeling growth in education often begins by estimating 

measures of overall performance for a student at several specific time points using an 

IRT model and then treating these estimates as known values in a separate Latent 

Growth Curve Model or Linear Mixed Effects Model for the growth or change in 

each student’s knowledge or ability over time.  The consequences of taking an 

estimated value and using it as a known value in a growth model are not well 

understood.  Indeed, some research studies suggest that growth models can be 

sensitive to the scale that is used to measure the growth (Goldschmidt, Choi, & 

Martinez, 2004; Seltzer, Frank, & Bryk, 1994), but few studies have systematically 

studied this phenomenon.   

Current practice with separate models often involves several manipulations or 

transformations of the score scale: first an IRT model to estimate scores, then a 

vertical scaling transformation to put the scores from increasingly difficult tests on a 

developmental scale, and finally a model of the change or growth in the 

developmental scale scores for individual students over time.   

A single integrated IRT growth model that can handle all these aspects 

simultaneously holds the potential to keep the determination of the growth scale close 

to the data.  Indeed, McArdle, Grimm, Hamagami, Bowles, and Meredith (in press) 

found that longitudinal models within the IRT framework exhibited more robust 

performance than other methods for analyzing latent growth curves using different 

age-appropriate measures of the same construct over time.  How would such a model 
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be developed and estimated outside of the Rasch family of models, and under what 

circumstances will the parameter estimates be accurate in their recovery of both item 

characteristics and growth characteristics underlying the item response data? 

An Integrated Model 

This study proposes and investigates parameter recovery for an integrated IRT 

model that is appropriate for modeling individual growth in educational achievement 

data.  There are two types of item parameters and two types of person parameters in 

the proposed model.  The two item parameters are typically found in item response 

models in education.  The first is the item location parameter, represented by the letter 

b, which models the difficulty of the item.  The second is the item discrimination 

parameter, represented by the letter a, which models the extent to which the item 

clearly discriminates between examinees who have the requisite skill(s) or ability to 

answer the item correctly and those who do not.   The Rasch model is the simplest 

IRT model because it excludes the item discrimination parameter and instead assumes 

that all items have equal discrimination. The proposed model builds upon prior IRT 

longitudinal model research with Rasch models by expanding the two-parameter 

logistic model to model growth in latent ability over time.   

Typically in item response models there is a single person parameter, 

represented by the Greek letter θ, which models the level of skill or ability of the 

examinee.  There may be multiple person parameters if multiple skills or abilities are 

being assessed in the same test, as in Multidimensional IRT.  In the proposed model θ 

represents the examinee’s level of skill or ability at the initial time of assessment.  An 

additional person parameter, represented by the Greek letter δ, models the change in 



 

 17 
 

this ability as an increment (or decrement) over time.  It should be clarified that the 

person parameters θ and δ are both random variables in the model.  That is, their 

values vary across individuals so that not all individuals need start with the same level 

of ability θ nor increase at the same rate δ.  However, the proposed model of linear 

growth may be too simplistic in some applications.  Indeed, growth in areas such as 

elementary reading may be characterized by a change in the rate of growth over time 

at some critical transition point(s).  This can be modeled using a piecewise linear 

growth trajectory.  Other more gradual changes in the rate may be modeled by instead 

extending the model to include a quadratic term.   

Because the observed item response data have only two discrete categories (1 

or 0, right or wrong), it is necessary to transform the data onto a continuous scale.  

This is achieved using the logit transformation.  This transformation divides the 

probability of observing a “1” by the probability of observing a “0” and then takes the 

natural logarithm of the result.  The proposed model may be viewed as a member of 

the family of nonlinear mixed models (De Boeck & Wilson, 2004).  Within the 

nonlinear mixed model framework a version of the model expressing linear growth 

would be denoted as: 

( ) ∑∑∑
===

−+==
I

1i
piti

I

1i
pitpi

I

1i
pitpipitpit XβXatXθaηylogit δ  

where ypit is the observed binary response of zero or one from person p = 1, 2, …, N 

on indicator i = 1, 2, …, Ipt at a duration of time t since the first measurement, ai is the 

item discrimination parameter for item i, θp represents the examinee’s level of skill or 

ability at the initial time of assessment, Xpit is an item indicator that takes the value 

one if person p was administered item i at time t and zero otherwise, δp models the 
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change in examinee ability as an increment per unit of time, and iii baβ = , where bi is 

the item location parameter.  The notation ηpit represents the expected value of a 

latent continuous variable underlying the observed response ypit.  This expected value 

is predicted by the systematic component of the model, which is a function of the 

item indicator variables Xpit as well as the latent item and person parameters.  

A symbolic representation of this model is shown in Figure 1.  In this 

representation random variables are represented by circles drawn with broken lines.  

Fixed variables are represented by circles drawn with solid lines.  The curved 

connecting line between ypit and πpit represents the Bernouli distribution.  πpit 

represents the probability that the observed response ypit is one.  The straight 

connecting line represents the logit transformation of πpit to the linear predictor ηpit.  

The arrows represent additive portions composing the linear predictor.  Two such 

additive components are depicted: one containing the item location within the 

parameter β and the other containing the structural parameters for the growth 

trajectory, depicted here for the linear model as including the parameters θp and δp. 
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Figure 1: Symbolic Model for the Two-Parameter Logistic Item Response Growth 

Model 

 
 
Note: The convention used in this diagram closely follows that used in De Boeck and 

Wilson (2004). 

 

The person parameters θ and δ are normally distributed random variables with 

mean vector [0, μδ]’ and variance/covariance matrix T = ⎥
⎦

⎤
⎢
⎣

⎡
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1
ττ

.  The mean and 

variance of θ are fixed to 0 and 1, respectively, to identify the model.  In addition, the 

variance of the residuals is assumed to be normally distributed with mean zero and 

variance one. It should be noted that the linear version of the model has been 
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presented here and that a nonlinear version will also be investigated as part of the 

proposed Monte Carlo study and real data illustration discussed below.       

Environmental Context and Significance 

In January of 2002 the No Child Left Behind Act of 2001 (NCLB) was 

enacted by Congress and became a dramatic force in the development of school 

accountability systems across the nation.  As education agencies have sought to meet 

the provisions of this legislation and as Congress has considered the reauthorization 

of this bill in 2007, there has been a great surge of interest in identifying appropriate 

methods for measuring student progress in academic achievement, particularly as it 

applies to the adequate yearly progress provisions of the law.  A number of 

alternative approaches have been suggested for measuring student progress and 

carrying out adequate yearly progress calculations, and limitations of cross-sectional 

methods for measuring adequate yearly progress have been discussed in technical 

reports and education journals (Arce-Ferrer, Frisbie, & Kolen, 2002).  Some authors 

argue that the adequate yearly progress provision be modified to focus exclusively on 

growth (Peterson, 2007) or at least to include growth with other considerations 

(Thum, 2003).  The fundamental argument for modeling growth in school 

accountability is that the student’s own performance is the most appropriate baseline 

against which to judge whether effective learning is occurring.  When growth over 

time for many individual students is combined in a single model, a pattern of growth 

for a larger entity, such as a school or district, can be readily observed.  Recognizing 

the desire to incorporate growth into adequate yearly progress calculations, the U.S. 
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Department of Education has solicited and accepted proposals from several state 

education agencies to conduct pilot studies using growth models (2007, July 3).   

Historically the research methodology for studying individual growth and 

change has been plagued with paradoxes and apparent dilemmas (Harris, 1963; 

Rogosa, 1995). Attempts to measure change at the aggregate level, such as a school 

or district, are particularly sensitive to unintended influences when the methodology 

does not have an appropriate basis in modeling changes in the individuals that make 

up the aggregate. Growth models are likely to continue to be sought after as an 

important tool for monitoring educational systems by tracking changes in individual 

students’ academic achievement.  At the same time, however, more work is needed 

on methodologies for modeling growth, and these methodological issues are 

inherently tied to the psychometric scale(s) used to measure change over time.  These 

issues are particularly critical in situations where there is a great deal of variability 

across students and a great deal of growth occurring between measurements, as 

occurs when modeling student growth across grades in an inclusive testing program. 

Despite ongoing developments in growth modeling methodology, however, 

modeling growth in individual students’ academic abilities over time currently 

typically uses several statistical models or transformations to move from data 

representing a student’s correct or incorrect responses on individual test items to 

inferences about changes in the student’s underlying ability.  First, a measurement 

model, typically from the IRT family of models, is used to move from a student’s 

responses to many individual items to a single test score that provides an estimate of 

the student’s proficiency at the time he or she answered the items.  Then a vertical 
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scaling transformation may be needed to put scores from increasingly difficult tests 

on a developmental scale.  Finally, a trajectory for the individual scaled estimates of 

proficiency may be estimated in a growth model, typically from the Latent Growth 

Curve Model or Linear Mixed Effects Model frameworks.   

Each of these steps has received a great deal of focused research attention 

isolated from the other steps.  Indeed, many dissertations in the psychometrics field 

and its related disciplines focus on a specific problem or issue involved in item 

response models, or vertical scaling, or longitudinal models of growth or change.  

However, more research is needed to address the limitations that yet exist because of 

the relative isolation of these topics from one another.  All three are important for 

effective and reliable interpretation of results arising from studies of growth.  There 

are two important reasons why this research is needed.   

First, the choice of metric used for growth modeling can make an important 

difference in the policy implication of the results of a growth study.  This is especially 

critical given the movement toward using growth models to meet the requirements for 

educational accountability (e.g., NCLB).  The misallocation of educational resources 

can have tremendous consequences for communities.  Decisions regarding the 

allocation of educational resources are sufficiently contentious without compounding 

the situation with methodological ambiguity.  Seltzer, Frank, and Bryk (1994) 

provided a concrete example of the problem in their fitting of a two piece growth 

model to grade equivalent scores and IRT scores from Iowa Test of Basic Skills data 

for children in grades 1-6 in the Chicago Public Schools.  The model with the grade 

equivalent scores suggested that resources should be focused on grades 4-6; the 
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model with the IRT-based scores suggested that resources should be focused on 

grades 1-3.  Goldschmidt, Choi, and Martinez (2004) likewise compared growth 

models using normal curve equivalents and IRT scale scores for the purposes of 

evaluating school performance and program effectiveness.   Goldschmidt et al. found 

that although several statistical inferences were unaffected by the difference in metric, 

conclusions about the magnitude of growth were greatly affected. Goldschmidt et al. 

did not investigate inferences regarding the shape of the growth pattern, however.  

Both the Goldschmidt et al. and the Seltzer et al. studies used existing data and 

psychometric scales to demonstrate their points.  Both studies are subject to the 

limitation of not knowing with certainty what the true underlying mechanism was in 

each case.  However, a simulation study by Leite (2007) investigating growth models 

in the Latent Growth Curve Modeling framework controlled the underlying growth 

mechanism and found that a latent growth curve approach fit to the composite means 

of  groups of five point Likert items resulted in positively biased estimates of the 

mean of the latent intercept.  Decisions about latent scaling affect the growth model 

results and the interpretation of those results.  Thus, the implications of these 

decisions need to be thoroughly researched and understood so that conscious 

decisions may be made in the context of a growth study. 

If the choice of the score scale can make such a difference in the interpretation 

of growth model results, how much more of an influence might there be in other 

aspects of the multi-step process of moving from item responses to growth model 

parameters?  In addition to the observed differences due to the choice of score scale, 

other factors may affect the resulting parameter estimates from a growth model.  For 
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example, the consequences of taking an estimated scale score value and using it as a 

known value in a growth model are not well understood, and few studies have 

systematically studied this phenomenon.   

Second, whereas a great deal of development has taken place in modeling 

frameworks such as Latent Growth Curve Modeling and Linear Mixed Effects 

Modeling to model growth over time, the IRT framework has not traditionally been 

used to model growth.  Some limited research has shown, however, that it is possible 

to use an IRT growth model to model growth directly from the item response data 

(e.g.,  Embretson, 1991).  Published research studies of longitudinal item response 

models seem to be rare with little systematic development over the past 20 years.  

Further, developments that would allow for the modeling of growth in this framework 

have occurred almost exclusively within the Rasch family of IRT models (Embretson, 

1991; te Marvelde, et al., 2006; Wang, et al., 1998).  The Rasch family of models, 

however, is limited in its appropriateness for applications in education, as 

achievement test items often differ in the extent to which they discriminate among 

examinees at different levels of achievement.  Expansions of the IRT growth model 

concept to the two-parameter and three-parameter models would expand the potential 

applicability of these models in education.   

A single integrated IRT growth model that can handle item response 

modeling, vertical scale transformation, and growth modeling simultaneously is 

worth further investigation.  Such a model holds the potential to keep the 

determination of the growth scale close to the data, and an understanding of the 

consequences of this option may yield further insight into the issues surrounding 
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vertical scaling and the choice of growth metric.  The value of the proposed study is 

its ability to contribute to the growth modeling literature from the standpoint of an 

underdeveloped framework for growth.  Further it approaches the problem of growth 

modeling with categorical data from the opposite standpoint than the bulk of the 

research on this topic, which occurs primarily in the Latent Growth Curve Model and 

Linear Mixed Effects Model frameworks.   
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Chapter 2: Literature Review 
 

Item Response Models for Longitudinal Data 

Early models for repeated measures in the IRT framework 

Fischer’s (1976) linear logistic latent trait model with relaxed assumptions and 

Andersen’s (1985) multidimensional Rasch model are often acknowledged as 

presenting some of the first IRT models to accommodate repeated measures data.  

Fischer’s approach models a different theta for each item as well as each person and 

incorporates one or more treatment effects, which could include the effect of time to 

create a growth model.  However, Embretson (1991) noted that since the treatment 

effects are assumed to be the same for all individuals measured at the same time 

intervals, this model is not appropriate for measuring individual differences in change 

over time.  This is limitation shows that the level of development of this model is 

analogous to early growth model developments in other frameworks that focused on 

the mean trajectories for groups of individuals.   

Andersen (1985) included a different θ for each person at each time point but 

maintained the same item difficulty value over repeated administrations of the same 

items.  The model accommodates correlation among the thetas at the different time 

points.  Anderson’s multidimensional model parameterizes ability at each time point 

as a different dimension, rather than parameterizing change at each subsequent time 

point.  Thus, change scores are computed outside of the model, leaving them 

vulnerable to some of the same limitations as traditional difference scores.   Roberts 
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and Ma (2006) noted that when the difference scores are computed using this model 

there is a negative relationship between the reliability of the difference score and the 

correlation between the two measures used to construct it.  Thus, authors, such as 

Embretson (1991), have noted that this model too is inappropriate for measuring 

individual differences in change over time.  Andersen’s model is also restricted to 

situations in which all examinees are measured at the same time points.   

The multidimensional IRT approach for longitudinal data 

Proposed methods for handling longitudinal data within an IRT framework 

have generally drawn upon the literature for Multidimensional IRT models.  In fact, 

Andersen’s (1985) model is one such example.  More recent attempts to take this 

approach have drawn from the multidimensional random coefficients multinomial 

logit model framework as outlined by Adams, Wilson, and Wang (1997).  Adams et 

al. (1997) focused on what they call a “between-item” multidimensional model, 

where a test can be divided into groups of items with each group represented by a 

unidimensional IRT model.  However, performances on these dimensions measured 

by different latent variables were correlated.  This was contrasted with a “within-

item” multidimensional test, where individual items measured multiple dimensions. 

In applying the former type of multidimensional model to longitudinal data, Wang, 

Wilson, and Adams (1998) considered measurements at different time points to be 

different dimensions in the multidimensional model.  te Marvelde, Glas, Van 

Landeghem, and Van Damme (2006) likewise showed the application of the 

multidimensional generalized partial credit model for repeated measures.  Unlike 

Anderson’s model, the Wang et al. and te Marvelde et al. approaches did not require 
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that item parameters be constant over time.  However, the restriction remained that all 

examinees be measured at the same time points.   

The latent change model approach for longitudinal data 

Embretson’s (1991) multidimensional Rasch model for learning and change 

presented perhaps the first IRT growth model consistent with major advances in 

growth modeling in other frameworks (i.e., Latent Growth Curve Modeling and 

Generalized Linear Mixed Modeling).  As with the Fischer (1976), Andersen (1985), 

and Wang, Wilson, and Adams (1998) models, Embretson’s model was developed 

within the Rasch family of IRT models.  Rather than model separate abilities at each 

time point, however, Embretson proposed modeling a latent ability at the initial time 

point and the change score, or modifiability, at each subsequent time point.  This 

overcame a limitation of the multidimensional IRT approach for longitudinal data, 

namely that the change scores are computed within the model, and thus avoided an 

inverse relationship between the reliability of the change score and the correlation 

between the two measures.  Embretson demonstrated that model parameters were 

accurately recovered when estimating this model using maximum likelihood 

estimation and showed that the standard error of the change estimates did not depend 

on the correlation between theta estimates at adjacent time points.  A design matrix 

was used to match the correct modifiability to the specified time point for the 

observed item response. Roberts and Ma (2006) likewise followed Embretson’s 

(1991) approach to extend the generalized partial credit model for multiple 

measurements over time. Unlike the te Marvelde et al. (2006) model, which was also 

a multivariate extension of the generalized partial credit model, this model was 
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parameterized in terms of difference scores.  Person parameters were parameterized 

as an initial theta and change scores between adjacent time points.    

Roberts and Ma (2006) noted the advantages of using IRT for measuring 

change over the gain score method.  In IRT the reliability of the gain score is of less 

interest than the precision, as represented by the standard error, of the estimate of 

change in the IRT model.  This overcame the reliability paradox of the gain score.  

Roberts and Ma (2006) showed that the test characteristic curve modeled the 

nonlinear relationship between changes in expected observed score and changes in 

latent trait (true) scores.  This overcame the limitation that true change was not 

necessarily linearly related to gain scores.   

When contrasted against the most recent growth modeling developments in 

other frameworks, however, the IRT models presented by Embretson (1991) and 

Roberts and Ma (2006) have two notable limitations.   First, these models are 

restricted to circumstances in which all examinees are measured at the same time 

points. They cannot be used in situations in which examinees are tested at different 

points in time, as in some formative or embedded assessment programs.  Second, they 

do not impose a functional form on the growth.  Thus, they do not allow for model-

based testing of a particular functional form for growth, as might be desired for 

studies in education and human development.  Both models employ a piecewise-

defined trajectory, in which each measured time point defines its own piece in the 

model.  It is ironic that IRT authors, such as Embretson (1991) and Roberts and Ma 

(2006), have extolled the virtues of using IRT to measure change, and yet so little 

systematic development has taken place for growth models in this framework!   
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Explanatory item response model approach 

In 2004 DeBoeck and Wilson edited a book on explanatory item response 

models.  They reframed Rasch and two-parameter logistic IRT models as members of 

the family of nonlinear mixed models and showed how covariates could be 

incorporated to explain item parameters, person parameters, or both. Wilson, Zheng, 

and Walker (2007) built upon this conception of IRT within the nonlinear mixed 

model framework by proposing an extension of the Rasch item response model to 

incorporate growth parameters in a manner similar to multilevel model approaches 

for growth.  Wilson et al. called this a Latent Growth Item Response Model (LG-

IRM).  They showed that parameters were successfully recovered in this model using 

standard Rasch model software (ConQuest) and illustrated the application of the 

model with NELS data.  By positing relationships among latent person parameters, 

IRT growth models are one manifestation of explanatory item response models, 

although DeBoeck and Wilson did not explicitly include growth models in their book.   

As with the multilevel approach for modeling growth, these models allowed 

examinees to be measured at different time points and allow an a priori hypothesized 

model for growth to be imposed on the data.   

Table 1 summarizes the three different approaches for longitudinal item 

response models by listing the most salient papers representing each approach. 
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Table 1: Summary of Longitudinal IRT Models 

Correlated abilities over 
time 

Latent difference scores Functional form for 
growth 

Andersen’s (1985) 
multidimensional Rasch 
model 

Embretson’s (1991) 
multidimensional Rasch 
model for learning and 
change 

Fischer’s (1976) linear 
logistic latent trait model 
with relaxed assumptions 

Wang, Wilson, & Adams 

(1998) 

Roberts & Ma (2006) Wilson, Zheng, & Walker 
(2007) 

te Marvelde, Glas, Van 
Landeghem, & Van 
Damme (2006) 

  

 

Connections with Multidimensionality and Vertical Scaling 

Conceptually, the proposed IRT model (and its predecessors discussed here) is 

a unidimensional model.  However, the formulation of this model draws upon prior 

work in Multidimensional IRT (MIRT).  True IRT growth models (those that impose 

a functional form for growth on the data) actually create a distinct category of MIRT 

models.  Here the vector of thetas can be reduced to a vector containing a 

(potentially) smaller number of parameters that define a functional relationship 

among the elements of the original vector.   

 

Estimation in Longitudinal IRT Models 

By far the most common estimation method for longitudinal item response 

models previously reviewed is marginal maximum likelihood estimation.  This 

estimation method was adopted in the longitudinal item response models of Wang, 

Wilson, & Adams (1998), te Marvelde, et al., and Wilson, Zheng, and Walker (2007).  
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One notable exception is Embretson (1991), who used a two step procedure 

estimating item parameters first using conditional maximum likelihood and then 

estimating the person parameters using the estimates of the item parameters as known 

values.  The next several sections describe marginal maximum likelihood estimation 

in greater detail. 

The Marginal Likelihood Function 

In the linear trajectory version of the proposed model, the likelihood of 

response for an individual person p is the product of the model-implied probability of 

each observed item response given the unobserved values of the person parameters θ 

and δ.  Thus, the likelihood function for an individual person p is constructed as: 
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(Hambleton, Swaminathan, & Rogers, 1991), where Ξ is the inverse logit 

transformation.  Recall that ηpit represents the expected value of a latent continuous 

variable that is predicted by the systematic component of the model.  For the linear 

trajectory version of the model, this systematic component is defined as: 

1 1 1

I I I

pit i p pit i p pit i pit
i i i

a X t a X Xη θ δ β
= = =

= + −∑ ∑ ∑ . 

To obtain the marginal maximum likelihood the likelihoods of response for all 

of the individuals in the sample are multiplied.  The joint likelihood  
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is marginalized by integrating over the values of person parameters: 
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where ( )Σ,|, 0pp δθφ  is the bivariate normal probability density function 

for the random effects (Tuerlinckx et al., 2004).   

The estimation algorithm then seeks parameter estimates that will maximize 

the value of this marginal likelihood expression.  There are several estimation 

algorithms that may be used (for an overview see Tuerlinckx et al., 2004).  

Maximization of the likelihood can be achieved indirectly using the Expectation-

Maximization (EM) algorithm with Gauss-Hermite quadrature. This full-information 

approach, which iteratively alternates between computing and maximizing the 

expected value of the marginal log likelihood, will be explained in detail in the 

following section. 

Indirect Maximization of the Marginal Likelihood 

In the EM algorithm estimation approach the values of the fixed and random 

effects are considered to be missing data and the item responses are considered to be 

observed data.  Given some potential values for the missing parameter values, a 

likelihood for the complete (missing and observed) data can be constructed as shown 

in the previous section.  The expected value of the complete data loglikelihood is: 

( )( ) ( )( ) ( )( )( ){ } ( )( )∑ ∫ ∫
=
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y
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y
pit ddhpitpit

1
11011101

1 ,,,|,,,1,,0|,log1log δθττμδθττμδθφηη δδ βy,

(Tuerlinckx et al., 2004; Tuerlinckx, Rijmen, Verbeke, & De Boeck, 2006) where 

( )1101,,1,,0|, ττμδθφ δpp  is the bivariate normal probability density function for the 

random effects and ( )1101,,,,|, ττμδθ δβypph  is the marginal posterior density of the 
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random effects (growth) parameters given the item responses (y), as well as the 

current proposed values of the item parameters (β; fixed effects) and the parameters 

defining the mean and covariance structure of the random effects (Adams, et al., 

1997).  This is what Tuerlinckx et al. (2004) refer to as the conditional density of the 

random effects given the observed data. 

The expected value of the complete data log likelihood can be divided into 

two major parts, which can be tackled separately in the maximization step.  The first 

part is the fixed effect (item parameter) component 

( )( ) ( )( ) ( )( )( )∑∫ ∫
=

−Ξ−Ξ
N

p
pp

y
pit

y
pit ddhpitpit

1
1101

1 ,,,|,1log δθττμδθηη δβy, , 

which can be further divided by item and maximized separately for each item due to 

the conditional independence assumption of the item response model.  This quantity 

reflects the expected proportion of observed values of 1 on each item at each level of 

the latent propensity θ (Wirth & Edwards, 2007).  The second part is the random 

effect (growth) component 

( ) ( )( )( )∑∫ ∫
=

N

p
pppp ddh

1
11011101 ,,,|,,,1,,0|,log δθττμδθττμδθφ δδ βy, , 

(Adams, et al., 1997).  This quantity reflects the expected proportion of people at each 

level of the latent propensity θ (Wirth & Edwards, 2007).   

In the maximization step the individual components of the expected likelihood 

for the fixed- and random-effects parameters are maximized to obtain estimates of the 

item parameters (also called structural parameters; Wirth & Edwards, 2007) and the 

random effects (growth) parameters.  The optimization, or maximization, is carried 

out using a quasi-Newton approach, which begins by using initial values of the 
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parameter estimates to generate first-order and estimates of second-order derivatives 

of the expected log likelihood. Then, a system of equations based on setting these 

first-order and estimates of second-order derivatives of the expected log likelihood 

equal to zero is solved to obtain closer estimates of the parameter values.  These new 

estimates are used to repeat the step of generating the first-order and estimates of 

second-order derivatives of the expected log likelihood function.  The process is 

repeated until the new estimates are not very different from the previous estimates. 

A numerical approximation is used to approximate the integrand before 

integrating or approximate the integral itself in the expected log likelihood 

(Tuerlinckx et al., 2004; Wirth & Edwards, 2007).  Several numerical approximation 

approaches have been suggested.  Investigating estimation from the perspective of the 

nonlinear mixed effects model framework, Pinheiro and Bates (1995) examined four 

numerical approximation approaches for dealing with the integral and found that 

three methods: linear mixed-effects approximation, Laplacian approximation, and 

Gaussian quadrature centered at the conditional modes of the random effects, to be 

both accurate and computationally efficient. The Gauss-Hermite quadrature method 

will be described here (Tuerlinckx et al., 2004; Wirth & Edwards, 2007).  This 

method specifies a number of quadrature points, and a rectangular area is estimated at 

each point.  The areas of the rectangles are summed over all the quadrature points to 

approximate the area under the distribution.  For multidimensional integrals, such as 

in this model, which has two dimensions for the linear trajectory, the number of 

quadrature points must be specified for both dimensions, and quadrature is used to 

estimate the multidimensional integral.  The estimated values of the item parameters 
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are then used to repeat the expectation step and the whole process begins again and 

continues until there is very little change in the values of the parameters (Wirth & 

Edwards, 2007).  

Estimation of Person Parameters 

The EM algorithm does not result in estimated values for the person 

parameters defining individual growth patterns. However, empirical Bayes estimates, 

also sometimes called predictions, for these values may be computed using the results 

of the Marginal Maximum Likelihood Estimation.  The empirical Bayes estimates of  

θp and δp (in the case of a linear trajectory model) are the values which maximize the 

log likelihood   

( )Σ,0|,),,ˆ,ˆ,ˆ,ˆ|y( 1101p ppppL δθφδθττμδβ , 

where the previously-obtained estimates of the fixed effects for the item parameters 

and of the parameters defining the random effects distribution from the marginal 

maximum likelihood estimation are substituted as known values.   

Estimation Alternatives 

Fully Bayesian estimation approaches, including those implemented with 

Markov Chain Monte Carlo (MCMC) methods, have also been gaining popularity in 

the literature (Roberts & Ma, 2006; Tuerlinckx et al., 2004; Wirth & Edwards, 2007).  

Roberts and Ma (2006) used a fully Bayesian estimation procedure to estimate 

parameters for their model.  Wirth and Edwards (2007) particularly note the potential 

for MCMC because it avoids instances of multiple integration.  Multiple integration is 

a particular issue in longitudinal IRT models because the dimension of the integration 
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is increased for each person parameter (random effect) added to the model.  In this 

model Bayesian estimation via MCMC is computationally intensive, but may be 

considered as a viable alternative where traditional estimation approaches break down 

for more complex models.  

The generalized estimating equations (GEE) approach, as found in available 

programs such as Proc Genmod in SAS, may sometimes be considered as an 

alternative to marginal maximum likelihood estimation.  This estimation approach 

iteratively solves a system of equations based on the partial derivatives of the log 

likelihood with respect to the linear predictor ηpit to obtain estimates of the fixed 

effects.  These partial derivatives are weighted by the deviations of the observations 

from their predicted value, and these predicted values are initially generated by 

assuming all observations are independent (even if they were responses by the same 

examinee at the same point in time).  For more details and a gentle introduction to 

GEE, see Hanley, Negassa, Edwardes, and Forrester (2003).  This approach has the 

advantage of allowing for correlated data as found in panel studies without specifying 

an explicit model for the covariance structure of the random effects.  Rather, a 

“working” correlation matrix of the manifest observations is created and used in the 

estimation.  However, there are two limitations to this approach for the item response 

model in this study.   

First, the GEE approach cannot be used to fit random effects models.  The 

application of GEE leads to a situation in which only the mean structure for the 

growth model is estimated, and inferences are only made for the mean growth in the 

population.  For this reason this approach is sometimes called a population-averaged 
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approach (Dmitrienko, Molenberghs, Chuang-Stein, & Offen, 2005).  Thus, some of 

the parameters of interest in the proposed model, such as the variances and 

covariances of the random person effects, will not be estimated.  Second, in order for 

the model to be identified, constraints are needed to identify the latent scale.  

Typically in item response theory this is handled by fixing the mean and variance of 

the person parameters, in other words, the random effect.  In the absence of this 

random effect, an alternative means of imposing this constraint would need to be 

applied, such as constraining the average of the discrimination parameters to one.  

Due to these limitations the model that would be specified and estimated in Proc 

Genmod would not be comparable to the item response growth model proposed in 

this study. 

Marginal maximum likelihood estimation with 2I item parameters, where I is 

the number of items, is quite computationally intensive because each of these item 

parameters adds one more fixed effect to be estimated.  Could the two different item 

parameters (item location and item discrimination) instead be incorporated into the 

model as random effects?  Unfortunately, the currently available program Proc 

Nlmixed in SAS does not support estimation with random effects at multiple levels.  

This prohibits the specification of a model in which both person and item parameters 

are treated as random effects in a nonlinear mixed effects model. 

Hypotheses 

The goal of this research project was not only to propose a new model but also 

to explore the effects of examinee population and item characteristics on the 

estimation of model parameters.  These examinee population and item characteristics 
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determine the context for a longitudinal study design.  Two broad research questions 

were asked.  First, which characteristics in a longitudinal study design affect the 

variability in the estimates that are produced for the item parameters and the means, 

variances, and covariances of the random effect distributions?  Second, under what 

conditions does the proposed model and estimation algorithm produce unbiased 

estimates for the item parameters and the means, variances, and covariances of the 

random effect distributions? 

In addition a real data illustration was introduced to show that the utility of the 

model generalizes beyond a tightly controlled laboratory experiment. 
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Chapter 3: Monte Carlo Investigations of Parameter Recovery 

 

Rationale 

The goal of this research project was not only to propose a new model but also 

to explore the effects of examinee population and item characteristics on the 

estimation of model parameters.  These examinee population and item characteristics 

determine the context for a longitudinal study design.  Two broad research questions 

were asked.  First, which characteristics in a longitudinal study design affect the 

variability in the estimates that are produced for the item parameters and the means, 

variances, and covariances of the random effect distributions?  Second, under what 

conditions does the proposed model and estimation algorithm produce unbiased 

estimates for the item parameters and the means, variances, and covariances of the 

random effect distributions? 

What might these characteristics be and what answers to these questions may 

be anticipated?  Based on previous research with IRT growth models within the 

Rasch family (Embretson, 1991), it was expected that under reasonable conditions the 

item parameters in the model will be accurately recovered.  However, it was also 

anticipated that item and growth model parameters may not be as robust under more 

extreme combinations of conditions.  The series of three related Monte Carlo studies 

to follow investigated the effects of a total of five factors that could influence 

parameter recovery: the form of the growth trajectory, the variance of the rate of 

growth, sample size, test length, and the item selection design.  It was anticipated that 
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variability in the item and growth model parameters would be reduced as sample size 

was increased.  Item parameter estimates for items with extremely high or extremely 

low item location parameters would be recovered with less bias when item selection 

overlaps across time points.  The form of the trajectory itself should not directly 

influence parameter recovery, but it was anticipated that the difference in the number 

of random effects that comes with differing trajectories may have an effect due to the 

increase in information needed to estimate additional parameter values.   

Manipulated Factors 

To explore the quality of parameter recovery in the new model, longitudinal 

data was simulated for examinee responses to sets of items at five time points.  By 

knowing the true values of all person and item parameters used to generate the data, a 

clear baseline was established for judging the parameter estimates produced by the 

model that are used to make inferences about individual growth.  

It will be helpful here to clarify the meanings of some terms that will be used 

frequently in describing the analysis and results.  Factors are the experimental 

variables being directly manipulated in the generation of data for the study: form of 

growth trajectory, sample size, test length, etc.  A level refers to a particular 

manifestation of a specific factor, such as a linear or nonlinear form of the growth 

trajectory.  A condition refers to a unique combination of levels of the factors, such as 

the linear trajectory with rate variance 0.20, sample size 500, eight item test length, 

and a full100 item selection design. 

A total of five factors were manipulated in the study.  However, a full factorial 

design incorporating all combinations of the levels of all five factors was not feasible.  
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Some levels of some of the factors were particularly intensive to compute, and 

combining two or more such levels in the same condition led to a particularly 

intensive situation that could not be accommodated in this exploratory study.  Thus, 

the results will be reported in terms of three studies that isolated and investigated 

different combinations of the five factors.  Each of these five factors and their levels 

are summarized in Table 2 and then each factor is explained in more detail below.   

Table 2: The Five Factors and Their Levels in the Monte Carlo Studies 

Form of 

trajectory 

Variance 

of δ 

Sample size Number of 

items 

Item selection 

Linear (θ, δ) 

 

Piecewise 

linear  

(θ, δ1, δ2) 

τ11=0.20 

 

τ11=0.50 

n=500 

 

n=1000 

 

n=2000 

I=8 

 

I=16 

Full range & 100% 

constrained 

 

Full range & 50% 

constrained 

 

Targeted & 50% 

constrained 

 

Adapted & 50% 

constrained 

Form of the Growth Trajectory 

The first three factors to be discussed relate directly to persons in the study.  

The first factor is the form of the growth trajectory: a linear model with two random 
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effects defining the growth trajectory (as described when the integrated model was 

introduced in Chapter 1) or a piecewise linear model with three random effects 

defining the growth trajectory.  The additional random effect in the piecewise linear 

model comes from the addition of a second rate parameter δ2.  In the piecewise linear 

model the first rate parameter δ1 represents the linear growth rate from time points 

one through three and the second rate parameter δ2 represents the linear growth rate 

from time points three through five.   

Although somewhat limited, the choice of the linear and piecewise linear 

forms for the growth trajectory reflects the current state of estimation development in 

the nonlinear mixed model framework, which will currently accommodate only 

intrinsically linear trajectories while allowing for random effects in the model 

parameters.  Nonlinear mixed models with intrinsically nonlinear trajectories do not 

have closed-form solutions for the parameters, and this currently presents an 

estimation challenge.  A polynomial trajectory, such as a quadratic, could also have 

been chosen as a trajectory form for this study.  However, the piecewise linear 

trajectory was chosen over the quadratic form because this parameterization is easier 

to interpret.    

The generating distribution for all person parameters (random effects) was a 

normal distribution.  An underlying normal distribution is a common assumption in 

parametric IRT models.  The mean and variance of the θ parameter distribution were 

fixed to 0 and 1, respectively, as described when the model was introduced in Chapter 

1.  These are common choices for fixing parameters to identify IRT models.  The 

mean of the generating δ parameter distribution was 0.50 in the linear growth 
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condition.  This was also the value for δ1 in the piecewise linear model.  The mean of 

the generating δ2 distribution was 0.25 in the piecewise linear growth condition.  In 

considering a context of annual achievement testing, a mean annual growth rate of 0.5 

of a standard deviation reflects modest growth.   The lower value for the generating 

mean for the second piece in the piecewise linear condition reflects a situation in 

which growth in a domain slows after an initial period of rapid growth.  Further, these 

values straddle the value of 0.385, which was used by Embretson (1991) in 

simulating a pretest/posttest design for a similar growth model in the Rasch model 

family. 

Variance of the Growth Rate 

The variance of the δ distribution(s) was controlled as a second factor.  The 

first level of the variance for all δ parameter distributions was 0.20 (low variance 

condition).  The second level was 0.50 (high variance condition).  Although there is 

little guidance regarding the values of growth parameter variances in the IRT 

literature, Muthén and Muthén (2002) note that it is common in applied growth 

models in the Structural Equation Modeling framework to observe a five to one ratio 

between the variance of the intercept and the variance of the slope.  In this study the 

variance of the intercept was fixed to one, so the generating variance of 0.20 for the 

underlying slope reflects a reasonable amount of variance according to the five-to-one 

ratio.  The generating variance of 0.50 for the underlying slope reflects an unusually 

high level of variability.   

In practice fitting growth models with real data, each of three scenarios can 

occur.  The covariance between the initial status and the rate of growth can be 
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positive, negative, or zero.  For linear or piecewise linear trajectories which of the 

three relations is observed in the data depends on the time frame in which 

measurements are taken for the purpose of fitting the growth model.  Unless there is 

zero variability in the rate of growth in the population of interest, extrapolated linear 

growth trajectories will cross at some point. If study measurements are taken before 

the time period in which the trajectories cross, then a negative covariance will be 

observed.  If study measurements are taken in the time period in which trajectories 

cross, then a (nearly) zero covariance will be observed.  If study measurements are 

taken after the time period in which the trajectories cross, then a positive covariance 

will be observed.  In this study a generating value of zero was chosen out of 

convenience to help control the effects of censoring on the modeling of growth. 

The amount of shared variance (r2) between θ and δ was held constant at zero 

percent.  That is, the intercept and slope did not covary.  Thus, the ability level at 

which individuals start at the first time point had no systematic relationship with the 

rate at which they grow according to the mechanism used to generate the data.  This 

also applied to δ1 in the piecewise model.  In the piecewise model the amount of 

shared variance between the δ1 and δ2 was held constant at 0 percent.  In the 

piecewise model θ and δ2 were also statistically independent according to the 

generating mechanism. 

Sample Size 

The third factor was the sample size to be generated.  Three levels were used: 

500, 1000, and 2000.  Roberts and Ma (2006) encountered less than desirable 

parameter recovery for 500 cases despite using an MCMC estimation approach in a 
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fully Bayesian model with their multivariate extension of the Generalized Partial 

Credit Model.  The value of 1000 cases matches the value used by Embretson (1991) 

in her Monte Carlo study with a similar growth model in the Rasch framework.  

Embretson found adequate parameter recovery in her study but did not explore 

parameter estimation with smaller samples and did not produce sample size 

recommendations for her growth model.  It is possible that a smaller sample size 

would also produce adequate parameter estimates for the Rasch growth model.  The 

model under investigation in the present study was more sophisticated, as it is an 

outgrowth of the two-parameter logistic model.  It was possible that 1000 cases would 

be adequate for this model, but it was also necessary to test the smaller sample size of 

500 in order to draw a conclusion about the adequacy of smaller sample sizes for 

parameter recovery. The sample size of 2000 was included to verify parameter 

recovery with larger sample sizes in the event that 1000 cases was not sufficient for 

adequate parameter recovery. 

Test Length 

The last two factors focused on the items in the study.  The first of these two 

factors was the number of item responses observed at each time point, set at either 

eight or 16.  The value of 16 items reflects a fairly short subject matter test.  The 

value of eight items is substantially less and may be closer to representing a scenario 

of embedded assessment where only a few items are embedded in the student’s 

regular activities at any given assessment point.     

In each condition three values for the item discrimination, 0.85, 1.10, and 

1.35, were used in the ratio 3:4:1 items, respectively. These values were loosely based 
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on the academic achievement application that was intended for the proposed model.  

Although a direct comparison  could not be made due to differences in the calibration, 

the chosen values are modest when compared to previously estimated item 

discrimination values for items in the Early Childhood Longitudinal Study – 

Kindergarten Cohort, which was used for the real data illustration of this model.  

These values also appear to be reasonable because they are situated around the 

approximate value of 1.0, which is considered a customary value for the item 

discrimination parameter in item response models.  

The item difficulty parameters were distributed across a range that was 

defined by the values of the mean(s) and standard deviation(s) of the person 

parameter distribution(s), which will be described in more detail shortly.  The item 

location parameters were evenly distributed within the defined range. This reflected 

an achievement test that was constructed to provide a reasonably uniform amount of 

information across a desired range.  The definition of this desired range was 

manipulated in the final factor under investigation.  

Item Selection Design 

The final factor in the design systematically defined how items are selected to 

build the test at each time point.  Three aspects of item selection were manipulated to 

create the distinct levels of this factor.  The first was the proportion of items whose 

parameters were constrained to be equal across time points (i.e., the proportion of 

common items across tests at different time points).  The second had to do with 

whether the difficulty of the items on the test was adjusted over time to account for 

the general anticipated growth in ability within the population of examinees.  The 
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third was whether the difficulty of the items on the test was adjusted over time to 

account for the ability level of each individual examinee at each time of testing.  In 

this scenario, the number correct score on a routing test consisting of 50 percent of 

the test items was used to determine the difficulty level of the remaining 50 percent of 

the test items for the individual examinee.  These three variables were manipulated 

together since shifting difficulty values of the items affects the proportion of 

overlapping items that can be accommodated across tests at different time points.  

Combinations were selected that imitated real-life designs with vertical scales and 

facilitated meaningful comparisons between manipulated conditions. 

The difficulty of the items comprising the test at each time point was 

controlled by defining a range for the item location parameters. The distribution of 

item difficulties with respect to this range is discussed in more detail below.  

Although variability in the population is changing over time as described earlier, the 

standard deviation of the initial score distribution was used to set the target ranges for 

the item difficulties for simplicity and consistency in the design.  Conditions were 

further distinguished by specifying which items would have their item parameters 

constrained across tests at different time points in the model-fitting process to 

simulate a common item design.  The four levels of the item selection factor are 

briefly outlined in Table 3.   
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Table 3: Brief Descriptions of Four Item Selection Schemes 

Level Common item constraints Range of generating values of 

item difficulty parameters 

Adapted to 

the 

individual  

Full100 All items constrained across 

all time points 

From 2.5 units below initial 

population mean to 2.5 units 

above final population mean 

No 

Full50 50 percent of items 

constrained across pairs of 

tests at adjacent time points 

From 2.5 units below initial 

population mean to 2.5 units 

above final population mean 

No 

Target50 50 percent of items 

constrained across pairs of 

tests at adjacent time points 

From 2.5 units below to 2.5 

points above the population mean 

at the given time point 

No 

Adapt50 50 percent of items 

constrained across pairs of 

tests at adjacent time points 

From 2.5 units below to 2.5 

points above the population mean 

at the given time point for the 

routing test.  High, medium, and 

low difficulty tests covered the 

range from 2.5 units below to 2.5 

points above the population mean 

at the given time point 

Yes 

 

In the “full100” level the same set of items were administered at each time 

point.  The generating values of the item location parameters in this condition were 

within the range from 2.0 points (2.0 standard deviations of initial scores) below the 
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mean θ level to 2.0 points above the mean θ level plus four times the mean δ level 

(linear condition) or 2.0 points above the mean θ level plus two times the mean of the 

δ1 level plus two times the mean of the δ2 level (piecewise condition).  The estimated 

values of the item parameters were then constrained to be equal across all time points.   

In the “full50” level different tests were administered at each time point with a 

set of 50 percent common items constrained across adjacent test forms.  Item 

difficulty parameters for each test continued to cover the full range of difficulty for 

the entire study.  Thus, the generating values of the item location parameters in this 

condition were the same values as in the previous level.   The estimated values of the 

item parameters for the common items would be constrained to be equal by the 

model.  Common items were selected in such a way as to avoid having any item 

constrained across three adjacent time points. 

In the “target50” level different tests were administered at each time point, but 

the values of the item location parameters were tailored for the general ability level of 

the population at each time point with 50 percent of the items common to tests at 

adjacent time points.  Thus, the range of item locations at the first time point was 2.0 

points below the mean θ level to 2.0 points above the mean θ level.  The range of 

item locations at the second time point was 2.0 points below to 2.0 points above the 

mean of θ plus the mean of δ.  The range for the third time point was 2.0 points above 

and below the mean of θ plus two times the mean of δ, and so on as appropriate 

depending on whether the model is linear or piecewise linear.   

 The adapt50 level was designed to mimic the adaptive procedure that was used 

in the Early Childhood Longitudinal Study – Kindergarten Cohort. For the design used 
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in the simulation, 50 percent of the items were administered to all examinees as a 

routing test at each time point.  The routing test was designed much as in the target50 

level, except with only half as many items, including the 50 percent overlap (25 

percent of the full test length) across test forms at adjacent time points.  The 

remaining 50 percent of the items were selected from either a high, medium, or low 

difficulty test form individually for each examinee based on the examinee’s number 

correct score on the routing test.   

The specific values marking the boundaries of the ranges and the distribution 

of item location parameters within each range under each combination of conditions 

and at each time point will be given in more detail next.     

Tables 4 and 5 display the generating item parameter values for the linear and 

piecewise models, respectively, in the conditions with eight items.  The column 

labeled “Disc” contains the item discrimination values.  The column labeled “Loc” 

contains the item location values.  These are the generating values for the level in 

which the same items are administered at each time point (full100) as well as for the 

level in which different items are administered but the test is not targeted at each time 

point (full50).  In both of these levels the generated item parameters for items at each 

time point are expected to nearly cover the full range of latent abilities anticipated to 

be encountered over the duration of the panel study.  In the full50 design the 

unshaded item parameter values in Table 4 were used for the common items across 

the tests at time one and time two.  The shaded item parameter values were used for 

the common items across the tests at times two and three.  The unshaded item 

parameter values were used for the common items across the tests at times three and 
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four, and so on.  However, the model did not constrain the parameter estimates for the 

set of common items for the test forms at times one and two to be equal to the 

parameter estimates for the set of common items for the test forms at times three and 

four.  To control the feasibility of the design of the Monte Carlo studies, the full50 

level was not tested in combination with the nonlinear trajectory.  

Table 4: Generating Item Parameter Values for Full Range Item Selection Designs 

with Eight Items and Linear Model 

Item Disc Loc  

Upper bound -2.000 

1 1.10 -1.625 

2 0.85 -0.875 

3 1.35 -0.125 

4 1.10 0.625 

5 1.10 1.375 

6 0.85 2.125 

7 1.10 2.875 

8 0.85 3.625 

Lower bound 4.000 
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Table 5: Generating Item Parameter Values for Eight Item Condition with Piecewise 

Model 

Item Disc Loc  

Upper bound -2.000 

1 1.10 -1.656 

2 0.85 -0.969 

3 1.35 -0.281 

4 1.10 0.406 

5 1.10 1.094 

6 0.85 1.781 

7 1.10 2.469 

8 0.85 3.156 

Lower bound 3.500 

 

For the level in which test difficulty is targeted at each time point (target50), 

Table 6 shows five columns – one containing the generating item parameter values 

for each time point.  In this level the tests at each time point contain an overlapping 

set of anchor items common to two adjacent tests.  The item parameters for items that 

were common with items in the test preceding the given time point are shaded.   
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Table 6: Generating Item Parameter Values for Targeted Item Selection Design with 

Eight Items and Linear Model 

 Time  1 Time  2 Time  3 Time 4 Time  5 

Item Disc Loc  Disc Loc  Disc Loc  Disc Loc  Disc Loc  

Upper bound -2.00  -1.50   -1.00  -0.50  0.00

1 0.85 -1.75 0.85 -1.25 1.10 -0.75 1.10 -0.25 0.85 0.25

2 0.85 -1.25 1.10 -0.75 1.10 -0.25 0.85 0.25 1.35 0.75

3 1.10 -0.75 1.10 -0.25 0.85 0.25 1.35 0.75 1.10 1.25

4 1.10 -0.25 0.85 0.25 1.35 0.75 1.10 1.25 1.10 1.75

5 0.85 0.25 1.35 0.75 1.10 1.25 1.10 1.75 0.85 2.25

6 1.35 0.75 1.10 1.25 1.10 1.75 0.85 2.25 0.85 2.75

7 1.10 1.25 1.10 1.75 0.85 2.25 0.85 2.75 1.10 3.25

8 1.10 1.75 0.85 2.25 0.85 2.75 1.10 3.25 1.10 3.75

Lower bound 2.00  2.50   3.00  3.50  4.00

 
 

Table 7 displays the generating item parameter values for the linear model 

with a test length of eight items for the level in which item selection was adapted to 

the individual examinee at each time point (adapt50).  However, in this level there are 

four sets of items at each time point.  Routing items were administered to all 

examinees at each time point.  Low, medium, and high items were administered to 

examinees who answered 0-1, 2, and 3-4 items correctly, respectively, on the routing 

test form.  As in Table 6 the item parameters for items that were common with items 

in the test preceding the given time point are shaded. 
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Table 7: Generating Item Parameter Values for Adapted Item Selection Design with 

Eight Items and Linear Model 

 Time  1 Time  2 Time  3 Time 4 Time  5 

Item Disc Loc  Disc Loc  Disc Loc  Disc Loc  Disc Loc  

Upper bound -2.000  -1.500   -1.000  -0.500  0.000 

Routing items 

1 1.10 -0.840 0.85 -0.280 0.85 0.280 1.10 0.840 1.10 1.400 

2 0.85 -0.280 0.85 0.280 1.10 0.840 1.10 1.400 0.85 1.960 

3 0.85 0.280 1.10 0.840 1.10 1.400 0.85 1.960 0.85 2.520 

4 1.10 0.840 1.10 1.400 0.85 1.960 0.85 2.520 1.10 3.080 

Low items 

1 1.10 -1.717 0.85 -1.217 1.35 -0.717 1.10 -0.217 1.10 0.283 

2 0.85 -1.217 1.35 -0.717 1.10 -0.217 1.10 0.283 0.85 0.783 

3 1.35 -0.717 1.10 -0.217 1.10 0.2826 0.85 0.783 1.35 1.283 

4 1.10 -0.217 1.10 0.282 0.85 0.7826 1.35 1.283 1.10 1.783 

Medium items 

1 1.10 -0.750 0.85 -0.250 1.35 0.250 1.10 0.750 1.10 1.250 

2 0.85 -0.250 1.35 0.250 1.10 0.750 1.10 1.250 0.85 1.750 

3 1.35 0.250 1.10 0.750 1.10 1.250 0.85 1.750 1.35 2.250 

4 1.10 0.750 1.10 1.250 0.85 1.750 1.35 2.250 1.10 2.750 

High items 

1 1.10 0.217 0.85 0.717 1.35 1.217 1.10 1.717 1.10 2.217 

2 0.85 0.717 1.35 1.217 1.10 1.717 1.10 2.217 0.85 2.717 

3 1.35 1.217 1.10 1.717 1.10 2.217 0.85 2.717 1.35 3.217 

4 1.10 1.717 1.10 2.217 0.85 2.717 1.35 3.217 1.10 3.717 

Lower bound 2.000  2.500   3.000  3.500  4.000 
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Table 8 displays the generating item parameter values for the linear model 

with a test length of 16 items.  For feasibility the test length of 16 items was only 

estimated for the level in which the same items are administered at each time point 

(full100).  Thus, all items are common across all time points. 
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Table 8: Generating Item Parameter Values for 16 Item Condition with Linear Model 

Item Disc Loc 

Upper bound -2.000 

1 1.10 -1.812 

2 0.85 -1.438 

3 1.35 -1.062 

4 1.10 -0.688 

5 1.10 -0.312 

6 0.85 0.062 

7 1.10 0.438 

8 0.85 0.812 

9 1.10 1.188 

10 0.85 1.562 

11 1.10 1.938 

12 0.85 2.312 

13 1.10 2.688 

14 0.85 3.062 

15 1.35 3.438 

16 1.10 3.812 

Lower bound 4.000 

 

The four levels of this item selection design factor were carefully chosen to 

investigate three specific comparisons.  The distinction between the first two levels, 
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full100 and full50, was the proportion of common items across time points, either 100 

percent or 50 percent.  The distinction between the full50 and target50 levels of this 

factor was whether the difficulty of the items on the test was adjusted over time to 

account for the general anticipated growth in the population of examinees.  The 

distinction between the target50 and adapt50 levels was whether the test was targeted 

for the population only or whether an additional attempt was made to target the exam 

for each individual examinee at each time point.   

Design  

This was essentially an exploratory study with a new model.  Thus, some 

levels of some factors were specifically chosen to potentially strain the model to see 

where it would break down. As the combination of extreme levels of multiple 

conditions could possibly lead to low convergence rates in these cells, all levels of the 

five factors were not fully crossed in the research design.  Instead, conditions were 

designed that would be examined in three separate but related analyses such that the 

levels of some factors would be held constant while others were varied. 

Study 1 

In Study 1 all conditions included eight items with a linear growth trajectory 

and a moderate (0.20) rate variance.  Three levels of sample size (500, 1000, and 

2000 examinees) were crossed with four levels of item selection design (full100, 

full50, target50, and adapt50) for a total of 12 cells in this study. 
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Study 2 

In Study 2 all conditions included a linear growth trajectory with a sample 

size of 500 examinees, a moderate (0.20) rate variance, and an item selection design 

in which all examinees were administered all items at all time points (full100).  

Varied in this study was the test length, either eight or 16 items, for a total of two 

cells.   

Study 3 

In Study 3 all conditions included eight items where all items were 

administered at all five time points (full100 item selection design).  Two levels of 

form of trajectory (linear or nonlinear), two levels of sample size (500 or 1000 

examinees), and two levels of variance of the growth rate (0.20 or 0.50) were crossed 

for a total of eight cells in this study. 

Methods of Analysis 

The simulated data sets were generated using SAS commands.  One hundred 

replications were carried out for each condition.  The proposed model was estimated 

using SAS Proc NLMIXED (SAS Institute, 1999).  The estimation algorithm 

followed a marginal maximum likelihood approach, a common estimation approach 

for item response theory models (Tuerlinckx et al., 2004).  The Expectation-

Maximization (EM) algorithm was used to carry out the marginal maximum 

likelihood estimation of the model parameters.   

To address the two research questions described earlier, two dependent 

variables were computed from the recovered parameter estimates and their generating 
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values: bias and error of the estimate.  Bias was computed as the difference between 

the parameter estimate and the generating value of the parameter.  Error of the 

estimate was computed as the absolute value of the difference between the parameter 

estimate and the mean of the estimated values across replications.   

For each of the two dependent variables, three general linear models were fit, 

one for each of the three types of model parameters: item location, item 

discrimination, and random effect (growth) parameters.  The effects of each of the 

manipulated factors in each study and their interactions were included in the models. 

In addition the models for the item parameters included as a continuous covariate the 

generating value of the item location since a potential trend by item location was 

suspected based on plots of the data.  For random effects (growth) parameters the 

general linear model included the effect of the specific random effect parameter 

(nested within the type of trajectory in Study 3).  Type III sums of squares were used 

in all analyses to account for potential differences in cell size in the case of cells 

where some replications did not converge.  The cell means that were compared in the 

general linear models are provided in tables in the Appendix. 

In addition, the standardized effect size index partial eta-squared (η2) was 

used to clarify the practical meaning of statistically significant effects.  Partial eta-

squared is the proportion of effect plus error variance that can be attributed to the 

effect for which the effect size is calculated.  Partial eta-squared was chosen due to 

different error sums of squares for the different effects in the model due to the 

clustering by item.  In addition, partial eta-squared has the advantage that its value for 

any given effect is independent of the other effects in the model. 
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The reporting of the results for each of the studies below begins with a report 

of the convergence rates for each of the conditions in the study.  As the Monte Carlo 

investigation was conducted, convergence behavior for the conditions was closely 

observed.  Any condition that failed to converge in the first three replications had its 

remaining 97 replications suspended. This decision was made in light of the 

computational intensity of many of the conditions and the time commitment of 

running each replication to the maximum number of iterations without obtaining valid 

parameter estimates for the investigation of parameter recovery. 

Convergence behavior was also evaluated at the individual replication level.  

For the individual replications that failed to converge, this data was excluded from 

subsequent analysis.  Generally, replications that failed to converge had multiple item 

parameter estimates at boundary values.  Thus, it would be inappropriate to include 

these boundary values in subsequent analysis because they would inappropriately 

reduce the variability associated with the estimates.   

Recall that the simulation is divided into three studies.  In Study 1 the sample 

size and item selection design were analyzed.  In Study 2 the test length was studied.  

In Study 3 the variance of the growth rate, the form of the trajectory, and the sample 

size were investigated. Results are presented here separately for each study.   

Study 1 

Results of Study 1 

In Study 1 all conditions included eight items with a linear growth trajectory 

and a moderate (0.20) rate variance.  The number of completed replications in each 

cell and their convergence behavior are reported in Table 9.  All conditions involving 
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the full100 item selection design converged.  The conditions involving the full50 and 

adapt50 item selection designs were suspended after the first three replications in 

each condition failed to converge.  The convergence rate for the target50 condition 

was affected by the sample size.  A little more than half of the replications with 500 

examinees converged, but the convergence rate improved with 1000 examinees and 

continued to improve with 2000 examinees.  Results from analysis of the converged 

replications are provided in this section. 
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Table 9: Number of Replications and Convergence Behavior by Condition for Study 

1 

Factors Number of replications 

Sample size Item selection Converged Not converged Total  

500 adapt50 0 3 3 

1000 adapt50 0 3 3 

2000 adapt50 0 3 3 

500 full50 0 3 3 

1000 full50 0 3 3 

2000 full50 0 3 3 

500 full100 100 0 100 

500 target50 52 48 100 

1000 full100 100 0 100 

1000 target50 81 19 100 

2000 full100 100 0 100 

2000 target50 92 8 100 

 

Item Location Parameter Recovery for Study 1 

The results of the analysis of bias in the item location parameters are reported 

in Table 10.  The generating value for the item location parameter was used as an 
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item level covariate.  This continuous covariate was statistically significant (F(1, 

7268) = 2422.64, p < 0.0001) with the trend reflecting a gradual transition from 

negative bias for easy items to positive bias for difficult items. The partial eta-squared 

value of 0.25 suggests that there is enough variability attributable to this effect for it 

to be practically meaningful.  The effect of the item selection design was statistically 

significant (F(1, 1898.6) = 1146.00, p < 0.0001), reflecting a the difference between a 

substantial positive average bias in the target50 item selection design and a small 

positive average bias in the full100 item selection design.  The partial eta-squared 

value of 0.38 suggests that a great deal of variability in the bias of the item location 

parameter estimates is attributable to this effect.   None of the other effects were 

significant. 

Table 10: Bias of Item Location Parameter Estimates for Study 1 

Source df F η2 p 

Sample size 2 0.8500 0.0009 0.4281 

Error 1965.3 (1.5198)     

Item selection 1 1146.0000 0.3764 <.0001 

Error 1898.6 (1.4971)     

Sample size x Item 

selection 2 2.4900 0.0026 0.0835 

Error 1934.7 (1.5094)     

Location 1 2422.6400 0.2500 <.0001 

Error 7268 (6.2359)     

Note: Values enclosed in parentheses represent mean square errors. 
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The results of the analysis of error of estimate in the item location parameters 

are reported in Table 11.  There was a fourth degree polynomial effect of item 

location with all four terms statistically significant (in order of decreasing degree F(1, 

7265) = 383.55, p < 0.0001; F(1, 7265) = 176.03, p < 0.0001; F(1, 7265) = 574.38, p 

< 0.0001; F(1, 7265) = 251.16, p < 0.0001) with the trend reflecting greater error of 

estimate for items with extreme locations, particularly for difficult items.  The linear 

and the quadratic terms are the most meaningful, however, as suggested by partial 

eta-squared values of 0.40 and 0.07, respectively.  Clearly, the linear influence of 

generating item location is dominant over the contribution of the remaining 

polynomial terms in the trend. The interaction of item selection design x sample size 

was statistically significant (F(2, 605.86) = 22.06, p < 0.0001).  While the target50 

item selection design had greater average error of estimate than the full100 item 

selection design and this error of estimate decreased with increasing sample size, the 

interaction appears to be due to a more dramatic difference in the error of the estimate 

between the target50 and full100 designs as the sample size increases.  That is, the 

error of the estimate decreases faster with increasing sample size in the full100 design 

than in the target50 design.  The value of 0.07 for partial eta-squared suggests that 

this interaction has practical meaning, but is far less influential than the main effects 

of sample size and item selection (eta-squared values 0.22 and 0.49, respectively) in 

accounting for differences in the amount of error in the estimates.  The main effects 

of the item selection design (F(1, 96) = 144.41, p < 0.0001) and the sample size (F(2, 

96) = 32.07, p < 0.0001) were also statistically significant. 
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Table 11: Error of Estimate of Item Location Parameter Estimates for Study 1 

Source df F η2 p 

Sample size 2 84.7800 0.2182 <.0001

Error 607.54 (0.3803)     

Item selection 1 605.7500 0.4893 <.0001

Error 632.27 (0.3760)     

Sample size x Item selection 2 22.0600 0.0679 <.0001

Error 605.86 (0.3806)     

Location 1 251.1600 0.3957 <.0001

Location x Location 1 574.3800 0.0733 <.0001

Location x Location x Location 1 176.0300 0.0237 <.0001

Location x Location x Location x 

Location 1 383.5500 0.0501 <.0001

Error 7265 (0.2402)     

Note: Values enclosed in parentheses represent mean square errors. 

Item Discrimination Parameter Recovery for Study 1 

The results of the analysis of bias in the item discrimination parameters are 

reported in Table 12.  The covariate item location was statistically significant (F(1, 

7268) = 341.74, p < 0.0001) with a slight trend reflecting a gradual transition from 

negative bias of lesser magnitude for easy items to negative bias of greater magnitude 

for difficult items.  The partial eta-squared  value of 0.04 reinforces the fact that this 

trend is not nearly as dramatic as the generating item location trend for the bias in the 

item location parameter estimates described previously. A statistically significant 
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interaction between the item selection design and the sample size was found (F(2, 

687.74) = 12.1500, p <0.0001).  However, the partial eta-squared value of 0.03 

suggests that this is not a very substantial effect.  The average magnitude of the bias 

decreased with increasing sample size in the full100 item selection design but 

increased with increasing sample size for the target50 item selection design.  This 

result should be interpreted with extreme caution due to the differences in 

convergence rates not only between the two item selection designs but also across 

sample sizes within the target50 item selection design.  The main effect of the item 

selection design (F(1, 683.83) = 8033.5200, p < 0.0001) was also statistically 

significant, and with a very large eta-squared value of 0.92 should be considered a 

much more important influence on the bias in the item discrimination parameter 

estimates. 

Table 12: Bias of Item Discrimination Parameter Estimates for Study 1 

Source df F η2 p 

Sample size 2 2.9800 0.0086 0.0514 

Error 691.05 (0.0633)     

Item selection 1 8033.5200 0.9216 <.0001 

Error 683.83 (0.0633)     

Sample size x Item selection 2 12.1500 0.0341 <.0001 

Error 687.74 (0.0633)     

Location 1 341.7400 0.0449 <.0001 

Error 7268 (0.0699)     

Note: Values enclosed in parentheses represent mean square errors. 
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The results of the analysis of error of estimate in the item discrimination parameters 

are reported in Table 13.   There was a fourth degree polynomial effect of item 

location with three of the four terms statistically significant (in order of decreasing 

degree F(1, 7265) = 301.84, p < 0.0001; F(1, 7265) = 28.26, p < 0.0001; F(1, 7265) = 

56.70, p < 0.0001; F(1, 7265) = 44.87, p < 0.0001) with the trend reflecting greater 

error of estimate for items with extreme locations, particularly for easy items.  Again, 

the linear influence in this trend predominates with an eta-squared value of 0.87.  A 

statistically significant effect of sample size was found (F(2, 559.46) = 110.44, p < 

0.0001).  This appears to be due to lower average error of estimate with increasing 

sample size, and the partial eta-squared value of 0.28 suggests that a great deal of 

variability in the bias of the item discrimination parameter estimates can be attributed 

to this effect. 
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Table 13: Error of Estimate of Item Discrimination Parameter Estimates for Study 1 

Source df F η2 p 

Sample size 2 110.4400 0.2831 <.0001

Error 559.46 (0.0195)     

Item selection 1 7.1200 0.0123 0.0078

Error 570.8 (0.0191)     

Sample size x Item selection 2 0.7600 0.0027 0.4676

Error 558.68 (0.0196)     

Location 1 301.8400 0.8706 <.0001

Location x Location 1 28.2600 0.0039 <.0001

Location x Location x Location 1 56.7000 0.0077 <.0001

Location x Location x Location x Location 1 44.8700 0.0061 <.0001

Error 7265 (0.2758)     

Note: Values enclosed in parentheses represent mean square errors. 

 

Random Effect (Growth) Parameter Recovery for Study 1 

The results of the analysis of bias in the random effect (growth) parameters 

are reported in Table 14.  A statistically significant interaction was found between the 

sample size and the item selection design (F(2, 1554) = 22.54, p <0.0001).  However, 

this interaction accounted for only a small amount of variance as suggested by the 

partial eta-squared value of 0.03.  The main effects of sample size (F(2, 1554) = 

16.91, p <0.0001) and item selection design (F(1, 1554) = 6050.34, p < 0.0001) were 

also statistically significant. The partial eta-squared value of 0.80 suggests that the 
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item selection design accounts for a very large proportion of the variability in the bias 

in the estimates of the random effects (growth) parameters.   

The average bias also differed according to the specific random effect 

(growth) model parameter (F(2, 1554) = 1195.35, p < 0.0001), accounting for a large 

proportion of the variability in the bias as suggested by the partial eta-squared value 

of 0.61. All of the significant effects reported in the previous paragraph also 

interacted with the effect of the individual parameter.  The interaction among sample 

size, item selection design, and parameter was statistically significant (F(4, 1554) = 

6.70, p < 0.0001).  However, the partial eta-squared value of 0.02 suggests that this 

effect is not very meaningful.  For the full100 item selection design the average bias 

was generally quite small but was especially small for the covariance between the 

initial ability level and the rate of growth.  For this design average bias decreased as 

sample size increased, especially between 500 and 1000 examinees.  For the target50 

item selection design the average bias increased as sample size increased for the 

variance of the growth rate.  However, for the covariance and the mean of the growth 

rate, the bias was largest in the 1000 examinee condition and smaller in the conditions 

with larger and smaller sample sizes.  The results for conditions with a target50 item 

selection design should be interpreted with extreme caution since the convergence 

rate was a function of sample size in the target50 item selection design.     
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Table 14: Bias of Random Effect (Growth) Parameter Estimates for Study 1 

Source df F η2 p 

Sample size 2 16.9100 0.0213 <.0001

Item selection 1 6050.3400 0.7956 <.0001

Sample size x Item selection 2 22.5400 0.0282 <.0001

Parameter 2 1195.3500 0.6061 <.0001

Sample size x Parameter 4 6.2500 0.0158 <.0001

Item selection x Parameter 2 1208.9700 0.6088 <.0001

Sample size x Item selection x Parameter 4 6.7000 0.0170 <.0001

Error 1554 (0.0571)     

Corrected total 1571       

Note: Values enclosed in parentheses represent mean square errors. 

The results of the analysis of error of estimate in the random effect (growth) 

parameters are reported in Table 15.  A statistically significant interaction was found 

between the sample size and the item selection design (F(2, 1554) = 40.17, p < 

0.0001).  This interaction accounted for a modest amount of the variability in the 

average error of the estimate as suggested by the partial eta-squared value of 0.05.  In 

the target50 item selection design average error of estimate decreased as sample size 

increased.  In the full100 item selection design the average error of estimate 

decreased as sample size increased from 500 examinees to 1000 examinees but did 

not increase substantially from 1000 examinees to 2000 examinees. The main effects 

of sample size (F(2, 1554) = 13.40, p < 0.0001) and item selection design (F(1, 1554) 

= 112.45, p < 0.0001) were also statistically significant and accounted for larger 



 

 72 
 

amounts of variability as suggested by their partial eta-squared values of 0.08 and 

0.29, respectively.   

The average error of estimate also differed according to the specific random 

effect (growth) model parameter (F(2, 1554) = 229.34, p < 0.0001), which also 

accounted for a substantial amount of variability as suggested by the eta-squared 

value of 0.23. The statistically significant effects reported in the previous paragraph 

also interacted with the effect of the individual parameter.  The sample size x 

parameter interaction was statistically significant (F(4, 1554) = 15.31, p < 0.0001) but 

accounted for a small amount of variability in the error of the estimate as suggested 

by the eta-squared value of 0.04.  The item selection design x parameter interaction 

was also statistically significant (F(4, 1554) = 2.66, p < 0.0001), and the partial eta-

squared value of 0.22 suggests that this interaction accounts for substantial variability 

in the error of estimate of the random effects (growth) model parameters.  Although 

the error of estimate was generally larger for the target50 item selection design than 

for the full100 item selection design, the average error of estimate for the variance of 

the growth rate was unusually large.  The sample size x item selection design x 

parameter interaction was statistically significant (F(4, 1554) = 13.74, p < 0.0001), 

but the partial eta-squared value of 0.03 suggests that this interaction is not practically 

meaningful.     
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Table 15: Error of Estimate of Random Effect (Growth) Parameter Estimates for 

Study 1 

Source df F η2 P 

Sample size 2 72.1700 0.0850 <.0001 

Item selection 1 622.3600 0.2860 <.0001 

Sample size x Item selection 2 40.1700 0.0492 <.0001 

Parameter 2 229.3400 0.2279 <.0001 

Sample size x Parameter 4 15.3100 0.0379 <.0001 

Item selection x Parameter 2 220.5500 0.2211 <.0001 

Sample size x Item selection x Parameter 4 13.7400 0.0342 <.0001 

Error 1554 0.0232     

Corrected total 1571       

Note: Values enclosed in parentheses represent mean square errors. 

Commentary on Study 1 

Study 1 attempted to examine the interaction of various item selection designs 

with differing numbers of examinees on parameter recovery in the item response 

growth model.  From the results it appears that model estimation is extremely 

sensitive to the item selection design.  The estimation readily converged in the case of 

a very simple item selection design in which the same items are administered at all 

time points.  Convergence rates decreased as the arrangement of selected items and 

the sample size resulted in inadequate information for estimation of model 

parameters, particularly item parameters.  An arrangement in which items at each 

time point were targeted to the ability distribution of the population and 50 percent of 
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the items were common across adjacent time points exhibited fairly high convergence 

rates when the sample size was 1000 examinees or more.  The poor convergence rate 

for this design with 500 examinees suggests that convergence is not strictly a function 

of the item selection design but is rather a matter of the amount of information 

available to estimate model parameters.  There were two item selection designs in 

which item information was so poor that the estimation failed to converge with as 

many as 2000 examinees.  A design in which 50 percent of the items were common 

across time points but the difficulty level of the items was not targeted to the ability 

level of the population at each time point failed to converge. This appears to be due to 

insufficient information to estimate parameters for items that were too easy or too 

difficult for the population at the specific time point(s) in which they were 

administered.  An adaptive design attempted not only to target the difficulty level to 

the population but also to the individual student.  However, because some items were 

administered to only a portion of the examinees at any given time point, this model 

too failed to converge with as many as 2000 examinees overall.   

Due to the issues with convergence behavior, the parameter recovery results 

of Study 1 can only be interpreted with great caution.  Because convergence rates 

were very different for the two item selection designs, perhaps it would be most 

enlightening to discuss each item selection design separately.  Results differed 

noticeably for the two item selection designs, particularly with regard to the effects on 

bias in the parameter estimates. 

In the simpler of the two item selection designs, all items were administered at 

all time points, and convergence rates were quite high.  Thus, the results pertaining to 
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this item selection design can be interpreted with confidence.  The average bias of 

0.06 for the item location parameter estimates was small enough to perhaps be 

acceptable for some applications.  The average bias decreased with increasing sample 

size, particularly as sample size increased from 500 examinees to 1000 examinees.  

Error of estimate for the item location parameters decreased notably with increasing 

sample size.  For item discrimination parameters the average magnitude of bias 

decreased with increasing sample size, and there was lower average error of estimate 

with increasing sample size.  For the random effects (growth) parameters the average 

bias was generally quite small but was especially small for the covariance between 

the initial ability level and the rate of growth.  For this design average bias decreased 

as sample size increased, especially between 500 and 1000 examinees.  The error of 

estimate likewise was quite small, especially for the covariance parameter, and 

decreased steadily with increasing sample size.   

In the more complex targeted item selection design items increased in 

difficulty over time with 50 percent of the items overlapping across adjacent time 

points.  The convergence rate was poor for the condition with 500 examinees but 

increased with increasing sample size.    There was substantial positive bias in the 

item location parameters on the magnitude of 1.10 on average, which is unacceptable 

in any application.  Error of estimate decreased somewhat with increasing sample 

size, but not as much as it decreased for the simpler item selection design.  Unlike in 

the simpler item selection design, the average magnitude of the bias for the item 

discrimination parameters increased with increasing sample size for the targeted item 

selection design.  This apparent increase in the bias with increasing sample size may 
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be attributed to a selection effect from the substantially lower convergence rate with 

lesser sample size.  Indeed, had convergence been achieved in the replications that 

failed to converge, the bias for these particular replications may have been large 

enough for the average bias to decrease with increasing sample size.  As in the 

simpler item selection design, there was lower average error of estimate with 

increasing sample size for the item discrimination parameters in the targeted item 

selection design. 

For the targeted item selection design the average bias for the random effects 

(growth) parameters increased as sample size increased for the variance of the growth 

rate.  However, for the covariance and the mean of the growth rate, the bias was 

largest in the 1000 examinee condition and smaller in the conditions with larger and 

smaller sample sizes.  The effect of sample size in the covariance and mean of the 

growth rate for the targeted item selection design is likely a complex combination of 

the true pattern and the influence of lack of convergence.  It is quite possible that bias 

would have decreased with sample size had more of the replications in the condition 

with 500 examinees had converged, as these replications may have exhibited the 

largest bias. The average error of estimate steadily decreased as sample size 

increased. 

Study 2 

Results of Study 2 

In Study 2 all conditions included a linear growth trajectory with a sample 

size of 500 examinees, a moderate (0.20) rate variance, and an item selection design 

in which all examinees were administered all items at all time points.  The number of 
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completed replications in each cell and their convergence behavior are reported in 

Table 16.  All replications of the condition involving eight items converged.  Nearly 

one-quarter of the replications involving 16 items did not converge.  Results from 

analysis of the converged replications are provided in this section. 

Table 16: Number of Replications and Convergence Behavior by Condition for Study 

2 

Factor Number of replications 

Test length Converged Not converged Total  

8 100 0 100 

16 76 24 100 

 

Item Location Parameter Recovery for Study 2 

 
The results of the analysis of bias in the item location parameters are reported 

in Table 17.  The generating value for the item location parameter was used as an 

item level covariate.  This continuous covariate was statistically significant (F(1, 

1847) = 1733.44, p < 0.0001) with the trend reflecting a gradual transition from 

negative bias for easy items to positive bias for difficult items.  This trend accounted 

for a substantial amount of the variability in the bias in the item location parameter 

estimates as supported by a partial eta-squared value of 0.48.  The effect of test length 

on average bias of the item location parameters was statistically significant (F(1, 

176.47) = 16.78, p < 0.0001), but accounted for a relatively smaller proportion of 

bias.  The partial eta-squared value for this effect was 0.08. 
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Table 17: Bias of Item Location Parameter Estimates for Study 2 

Source df F η2 p 

Test length 1 16.7800 0.0868 <.0001 

Error 176.47 (0.2114)     
Location 1 1733.4400 0.4841 <.0001 

Error 1847 (0.0600)     

Note: Values enclosed in parentheses represent mean square errors. 

 

The results of the analysis of error of estimate in the item location parameters 

are reported in Table 18.  There was a third degree polynomial effect of item location 

with all three terms statistically significant (in order of decreasing degree F(1, 1845) 

= 30.17, p < 0.0001; F(1, 1845) = 224.09, p < 0.0001; F(1, 1845) = 8.26, p = 0.0041) 

with the trend reflecting greater error of estimate for items with extreme locations, 

particularly for difficult items.  The quadratic term was important in driving this 

trend.  The corresponding partial eta-squared value for the quadratic term was 0.10, 

the only substantial value for the three terms in the trend.  The effect of test length on 

average error of estimate was statistically significant (F(1, 175.09) = 5.27, p = 

0.0228), accounting for a rather small proportion of the variability as suggested by the 

partial eta-squared value of 0.03.  The eight item level reflected somewhat larger 

error of estimate on average than the 16 item level. 
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Table 18: Error of Estimate of Item Location Parameter Estimates for Study 2 

Source df F η2 p 

Test length 1 5.2700 0.0292 0.0228 

Error 175.09 (0.1480)     
Location 1 8.2600 0.0045 0.0041 

Location x Location 1 224.0900 0.1083 <.0001 

Location x Location x Location 1 30.1700 0.0161 <.0001 

Error 1845 (0.1513)     

Note: Values enclosed in parentheses represent mean square errors. 

 

Item Discrimination Parameter Recovery for Study 2 

The results of the analysis of bias in the item discrimination parameters are 

reported in Table 19.  The covariate item location was statistically significant (F(1, 

1847) = 12.13, p = 0.0005), but did not account for any meaningful amount of 

variability in the bias as suggested by the partial eta-squared value of 0.01.  The effect 

of test length on average bias of the item discrimination parameters was significant 

(F(1, 174.53) = 24.60, p < 0.0001).  This accounted for a more substantial proportion 

of the variability in the bias as suggested by the partial eta-squared value of 0.12.  

This effect reflected a negative bias of larger magnitude for the 16 item level than for 

the eight item level. 
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Table 19: Bias of Item Discrimination Parameter Estimates for Study 2 

Source df F η2 p 

Test length 1 24.6000 0.1236 <.0001

Error 174.53 (0.0948)     

Location 1 12.1300 0.0065 0.0005

Error 1847 (0.0058)     

Note: Values enclosed in parentheses represent mean square errors. 

 

The results of the analysis of error of estimate in the item discrimination 

parameters are reported in Table 20.   There was a statistically significant quadratic 

polynomial effect of item location (in order of decreasing degree F(1, 1846) = 34.68, 

p < 0.0001; F(1, 1846) = 24.16, p < 0.0001).  However, the partial eta-squared values 

of 0.02 for the quadratic term and 0.01 for the linear term suggest that this is not a 

meaningful trend.  The effect of test length on average error of estimate was 

statistically significant (F(1, 175.15) = 14.71, p = 0.0002), reflecting slightly higher 

error of estimate for the item discrimination parameters in the eight item level than in 

the 16 item level.  This accounted for a modest proportion of variability as suggested 

by the partial eta-squared value of 0.08. 
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Table 20: Error of Estimate of Item Discrimination Parameter Estimates for Study 2 

Source df F η2 p 

Test length 1 14.7100 0.0775 0.0002

Error 175.15 (0.0247)     

Location 1 24.1600 0.0129 <.0001

Location x Location 1 34.6800 0.0184 <.0001

Error 1846 (0.0033)     

Note: Values enclosed in parentheses represent mean square errors. 

 

Random Effect (Growth) Parameter Recovery for Study 2 

The results of the analysis of bias in the random effect (growth) parameters are 

reported in Table 21.  The test length x parameter interaction was statistically significant 

(F(1, 105) = 6.13, p = 0.0057).  However, this interaction accounted for a small proportion of 

variability in the bias as suggested by the partial eta-squared value of 0.02.  The main effects 

of test length (F(1, 105) = 6.13, p < 0.0001) and parameter (F(2, 105) = 7.27, p < 0.0001) 

were also statistically significant.  Both accounted for small to modest proportions of 

variability with partial eta-squared values of 0.04 and 0.06, respectively.  Overall, the 

average bias for the mean and variance of the growth rate parameters was larger than for the 

covariance parameter, and this effect was more pronounced in the 16 item level than in the 

eight item level.  
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Table 21: Bias of Random Effect (Growth) Parameter Estimates for Study 2 

Source df F η2 p 

Test length 1 21.0300 0.0385 <.0001

Parameter 2 17.1000 0.0612 <.0001

Test length x Parameter 2 5.2100 0.0195 0.0057

Error 525 (0.0036)     

Corrected total 530       

Note: Values enclosed in parentheses represent mean square errors. 

 

The results of the analysis of error of estimate in the random effect (growth) 

parameters are reported in Table 22.  The effect of test length was statistically 

significant (F(1, 525) = 8.62, p = 0.0035), but was not practically meaningful as 

suggested by the small partial eta-squared value of 0.02. The effect of parameter on 

error of estimate was also statistically significant (F(1, 525) = 11.90, p < 0.0001).  

This was due to a smaller magnitude of average error of estimate for the covariance 

parameter than for the variance or mean of the growth rate parameters and accounted 

for a small proportion of variability in the error of estimate as suggested by the partial 

eta-squared value of 0.04.  The test length x parameter interaction was not statistically 

significant.   
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Table 22: Error of Estimate of Random Effect (Growth) Parameter Estimates for 

Study 2 

Source df F η2 p 

Test length 1 8.6200 0.0162 0.0035

Parameter 2 11.9000 0.0434 <.0001

Test length x Parameter 2 0.1100 0.0004 0.8931

Error 525 (0.0017)     

Corrected total 530       

Note: Values enclosed in parentheses represent mean square errors. 

Commentary on Study 2 

Study 2 examined the effect of differing numbers of items on parameter 

recovery in the growth model.  All replications in the eight item condition converged 

properly.  However, a modest number on the magnitude of 24 percent of the 

replications for the 16 item condition failed to converge.  Generally, there was bias of 

greater magnitude for the item parameter estimates for the condition with 16 items 

than for the condition with 8 items.  However, there was greater average error of 

estimate for the condition with eight items than for the condition with 16 items.  This 

latter pattern may not have held had all replications converged in the 16 item 

condition as the replications that failed to converge may have otherwise produced 

estimates far from the mean value.  Whereas the covariance parameter estimates had 

similar average bias in both conditions, the parameter estimates for the mean and 

variance of the growth rate exhibited substantially larger bias in the 16 item 
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condition.  The average error of estimate displayed differences among the random 

effect (growth) parameters and also differed according to the number of items. 

Indeed, the greater bias for the item parameters in the 16 item condition is 

puzzling.  Figure 2 shows the bias in the item location parameter estimates by the 

generating item location.  Although the range of the generating item location 

parameters for the 16 item condition is slightly broader than for the 8 item condition, 

the graph clearly shows that excluding these items would not account for the 

difference in average bias.  The distinction between the two conditions is particularly 

pronounced for the more difficult items.  The greater bias in the estimates of the mean 

and variance of the growth rate for the 16 item condition reflects this same 

phenomenon.  The greater positive bias in the more difficult item location parameter 

estimates essentially leads to a stretching of the underlying vertical scale.  Thus, the 

estimates of the mean and variance of the growth rate are likewise inflated. 
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Figure 2: Bias of the Item Location Parameter Estimates by Location 

 

Study 3 

Results of Study 3 

In Study 3 all conditions included eight items and an item selection design in 

which all examinees were administered all items at all time points.  Three factors 

were manipulated simultaneously: the form of the growth trajectory, the sample size, 

and the variance of the growth rate.  The number of completed replications in each 

cell and their convergence behavior are reported in Table 23.  Almost all replications 

converged properly.  An occasional non-converging replication can be found in three 

of the cells, but there is no discernible pattern in the lack of convergence.    
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Table 23: Number of Replications and Convergence Behavior by Condition for Study 

3 

Factors Number of replications 

Trajectory Rate variance Sample size Converged Not converged Total 

Linear 0.20 500 100 0 100 

Linear 0.20 1000 100 0 100 

Linear 0.50 500 98 2 100 

Linear 0.50 1000 100 0 100 

Non-linear 0.20 500 99 1 100 

Non-linear 0.20 1000 99 1 100 

Non-linear 0.50 500 100 0 100 

Non-linear 0.50 1000 100 0 100 

 

Item Location Parameter Recovery for Study 3 

The results of the analysis of bias in the item location parameters are reported 

in Table 24.  The generating value for the item location parameter was used as an 

item level covariate.  This continuous covariate was statistically significant (F(1, 

5587) = 1450.49, p < 0.0001) with the trend reflecting a gradual transition from 

negative bias for easy items to positive bias for difficult items.  This trend accounts 

for substantial variability in the average bias as suggested by the partial eta-squared 

value of 0.21.  A statistically significant interaction effect between growth trajectory 

and sample size was found (F(1, 788.78) = 3.89, p = 0. 0489).  However, the partial 

eta-squared value of less than 0.01 reveals that this interaction is not practically 
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meaningful.  A statistically significant interaction between trajectory and the variance 

of the growth rate was found (F(1, 788.78) = 7.73, p = 0.0056), but this too was not 

practically meaningful as the partial eta-squared was less than 0.01.  There were 

statistically significant main effects of trajectory (F(1, 792.49) = 15.38, p < 0.0001), 

sample size (F(1, 788.78) = 6.58, p = 0.0105), and rate variance (F(1, 788.78) = 

12.15, p = 0.0005).  Again, however, none of these effects had any practical 

significance since their corresponding partial eta-squared values were all less than 

0.02.   
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Table 24: Bias of Item Location Parameter Estimates for Study 3 

Source df F η2 p 

Trajectory 1 15.3800 0.0190 <.0001

Error 792.49 (0.2583)     

Sample size   1 6.5800 0.0083 0.0105

Error 788.78 (0.2591)     

Trajectory x Sample size 1 3.8900 0.0049 0.0489

Trajectory x Sample size x Rate variance 1 1.3000 0.0016 0.2555

Error 788.78 (0.2591)     

Rate variance 1 12.1500 0.0152 0.0005

Error 788.78 (0.2591)     

Trajectory x Rate variance 1 7.7300 0.0097 0.0056
Error 788.78 (0.2591)     

Sample size x Rate variance  1 2.3300 0.0029 0.1273

Error 788.78 (0.2591)     

Location 1 1450.4900 0.2061 <.0001

Error 5587 (0.1060)     

Note: Values enclosed in parentheses represent mean square errors. 

 

The results of the analysis of error of estimate in the item location parameters 

are reported in Table 25.  There was a statistically significant cubic polynomial effect 

of item location (in order of decreasing degree F(1, 5585) = 15.39, p < 0.0001; F(1, 

5585) = 326.12, p < 0.0001; F(1, 5585) = 2.49, p = 0.1147) with the trend reflecting 

greater error of estimate for items with extreme locations, particularly for difficult 
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items.  The quadratic term had a partial eta-squared value of 0.06, suggesting a small 

but practically meaningful effect on the error of the estimate.  The three-way 

interaction of trajectory x sample size x variance of the growth rate was statistically 

significant (F(1, 788.2) = 4.48, p = 0. 0345).  However, the partial eta-squared value 

of 0.02 suggests that this interaction is not practically meaningful.  Statistically 

significant two-way interactions were also found between the growth trajectory and 

the sample size (F(1, 788.2) = 9.75, p = 0.0019), between the growth trajectory and 

the growth rate variance (F(1, 788.2) = 12.31, p = 0.0005), and  between the sample 

size and the growth rate variance (F(1, 788.2) = 7.99, p = 0.0048).  However, the 

partial eta-squared values for all of the two-way interactions were less than 0.02, and 

thus they are not practically meaningful. The main effects of trajectory (F(1, 792.85) 

= 17.67, p < 0.0001) and growth rate variance  (F(1, 788.20) = 24.89, p < 0.0001) 

were statistically significant  but were of little practical value with partial eta-squared 

values of 0.02 and 0.03, respectively.  The main effect of sample size (F(1, 788.20) = 

51.51, p < 0.0001) was statistically significant, and its partial eta-squared value of 

0.06 suggests that it may have some practical value.  As sample size increased, the 

average error of estimate in the item location parameters decreased. 
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Table 25: Error of Estimate of Item Location Parameter Estimates for Study 3 

Source df F η2 p 

Trajectory 1 17.6700 0.0218 <.0001

Error 792.85 (0.3115)     
Sample size   1 51.5100 0.0613 <.0001

Error 788.2 (0.3192)     

Trajectory x Sample size 1 9.7500 0.0122 0.0019

Trajectory x Sample size x Rate variance 1 4.4800 0.0057 0.0345

Error 788.2 (0.3192)     

Rate variance 1 24.8900 0.0306 <.0001

Error 788.2 (0.3192)     

Trajectory x Rate variance 1 12.3100 0.0154 0.0005

Error 788.2 (0.3192)     

Sample size x Rate variance  1 7.9900 0.0100 0.0048

Error 788.2 (0.3192)     

Location 1 2.4900 0.0004 0.1147

Location x Location 1 326.1200 0.0552 <.0001

Location x Location x Location 1 15.3900 0.0027 <.0001

Error 5585 (0.0339)     

Note: Values enclosed in parentheses represent mean square errors. 

 

Item Discrimination Parameter Recovery for Study 3 

The results of the analysis of bias in the item discrimination parameters are 

reported in Table 26.  The linear effect of the covariate item location was statistically 
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significant (F(1, 5587) = 18.33, p < 0.0001).  However, this accounted for very little 

of the variability in bias as the partial eta-squared value was less than 0.01.  A 

statistically significant interaction between trajectory and the variance of the growth 

rate was found (F(1, 788.08) = 7.24, p = 0.0073).  However, the partial eta-squared 

value of 0.01 suggests that the interaction is not practically significant.  The main 

effects of trajectory (F(1, 788.46) = 9.73, p = 0.0019), sample size (F(1, 788.08) = 

5.89, p = 0.0154), and growth rate variance (F(1, 788.08) = 9.35, p = 0.0023) were 

statistically significant.  However, each of these effects had a corresponding partial 

eta-squared value that was less than 0.02, and thus these three factors do not seem to 

have any practically meaningful influence on the bias in the item discrimination 

parameter estimates.   
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Table 26: Bias of Item Discrimination Parameter Estimates for Study 3 

Source df F η2 p 

Trajectory 1 9.7300 0.0122 0.0019

Error 788.46 (0.0985)     
Sample size   1 5.8900 0.0074 0.0154

Error 788.08 (0.0990)     

Trajectory x Sample size 1 0.3600 0.0005 0.5505

Trajectory x Sample size x Rate variance 1 0.1500 0.0002 0.697

Error 788.08 (0.0990)     

Rate variance 1 9.3500 0.0117 0.0023

Error 788.08 (0.0990)     

Trajectory x Rate variance 1 7.2400 0.0091 0.0073
Error 788.08 (0.0990)     

Sample size x Rate variance  1 0.8900 0.0011 0.3451

Error 788.08 (0.0990)     

Location 1 18.3300 0.0033 <.0001

Error 5587 (0.0042)     

Note: Values enclosed in parentheses represent mean square errors. 

 

The results of the analysis of error of estimate in the item discrimination 

parameters are reported in Table 27.   The effect of item location was statistically 

significant (F(1, 5587) = 10.79, p = 0.0010).  However, the nature of this trend was 

not discernible from graphs of the data, and the corresponding partial eta-squared 

value less than 0.01 suggests that the trend is not practically meaningful.  Statistically 
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significant interactions between the growth trajectory and the sample size (F(1, 

788.18) = 7.52, p = 0.0062), between the growth trajectory and the growth rate 

variance (F(1, 788.18) = 6.05, p < 0.0001), and between the sample size and the 

growth rate variance (F(1, 788.18) = 5.21, p = 0.0228).  However, the corresponding 

effect size partial eta-squared was less than 0.01 for each of these effects, suggesting 

that they have no practical influence on the error of the estimate.  The main effects of 

trajectory (F(1, 789.02) = 19.63, p < 0.0001) and growth rate variance (F(1, 788.18) = 

29.76, p < 0.0001) were likewise statistically significant but had only very small 

partial eta-squared values on the magnitude of 0.02 to 0.03.  The main effect of 

sample size was statistically significant (F(1, 788.18) = 88.70, p < 0.0001), but also 

had a modest partial eta-squared value of 0.10.  Thus, as sample size increased, the 

average error of the estimate decreased. 
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Table 27: Error of Estimate of Item Discrimination Parameter Estimates for Study 3 

Source df F η2 p 

Trajectory 1 19.6300 0.0243 <.0001 

Error 789.02 (0.0300)     

Sample size   1 88.7000 0.1012 <.0001 

Error 788.18 (0.0301)     

Trajectory x Sample size 1 7.5200 0.0095 0.0062 

Trajectory x Sample size x Rate 

variance 1 1.9900 0.0025 0.1592 

Error 788.18 (0.0301)     

Rate variance 1 29.7600 0.0364 <.0001 

Error 788.18 (0.0301)     

Trajectory x Rate variance 1 6.0500 0.0076 0.0142 
Error 788.18 (0.0301)     

Sample size x Rate variance  1 5.2100 0.0066 0.0228 

Error 788.18 (0.0301)     

Location 1 10.7900 0.0019 0.001 

Error 5587 (0.0028)     

Note: Values enclosed in parentheses represent mean square errors. 

 

Random Effect (Growth) Parameter Recovery   

The results of the analysis of bias in the random effect (growth) parameters 

are reported in Table 28.  The three way interaction among the three factors, 

trajectory, sample size, and rate variance, was statistically significant (F(1, 3943) = 
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8.58, p = 0.0034) but not practically meaningful since the corresponding partial eta-

squared value was less than 0.01.  All of the two-way interactions between trajectory 

and sample size (F(1, 3943) = 13.56, p = 0.0002), between sample size and parameter 

(F(8, 3943) = 2.28, p = 0.0199), between trajectory and rate variance (F(1, 3943) = 

45.19, p <0.0001), between rate variance and parameter (F(8, 3943) = 9.42, p 

<0.0001), and between sample size and rate variance (F(1, 3943) = 14.28, p = 0.0002) 

were likewise statistically significant but not practically meaningful with partial eta-

squared values less than 0.01.  The main effect of sample size was statistically 

significant (F(1, 3943) = 25.66, p <0.0001) but, again, not practically meaningful due 

to a partial eta-squared value less than 0.01.  The main effects of trajectory (F(1, 

3943) = 98.26, p < 0.0001) and variance of the growth rate (F(1, 3943) = 92.75, p < 

0.0001) were statistically significant.  Both effects had eta-squared values of 0.02 

suggesting that the practical influence of these effects on bias is quite small.   
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Table 28: Bias of Random Effect (Growth) Parameter Estimates for Study 3 

Source df F η2 p 

Trajectory 1 98.2600 0.0243 <.0001

Parameter(trajectory) 8 11.2800 0.0224 <.0001

Sample size  1 25.6600 0.0065 <.0001

Trajectory x Sample size  1 13.5600 0.0034 0.0002

Sample size x Parameter(trajectory) 8 2.2800 0.0046 0.0199

Rate variance 1 92.7500 0.0230 <.0001

Trajectory x Rate variance 1 45.1900 0.0113 <.0001

Rate variance x Parameter(trajectory) 8 9.4200 0.0188 <.0001

Sample size x Rate variance 1 14.2800 0.0036 0.0002

Trajectory x Sample size x Rate variance  1 8.5800 0.0022 0.0034

Sample size x Rate variance x 

Parameter(trajectory) 8 1.8400 0.0037 0.0657

Error 3943 (0.0222)     

Corrected total 3982       

Note: Values enclosed in parentheses represent mean square errors. 

The results of the analysis of error of estimate in the random effect (growth) 

parameters are reported in Table 29.  The three-way interaction of trajectory x sample 

size x variance of the growth rate was statistically significant (F(1, 3943) = 25.05, p < 

0.0001) but not practically meaningful with partial eta-squared equal to 0.01.  

Likewise, the three-way interaction of trajectory x sample size x parameter was 

statistically significant (F(8, 3943) = 5.33, p < 0.0001) but not practically meaningful 
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with partial eta-squared equal to 0.01.  The two-way interactions between trajectory 

and sample size (F(1, 3943) = 33.57, p <0.0001), between sample size and parameter 

(F(8, 3943) = 6.19, p <0.0001), between trajectory and rate variance (F(1, 3943) = 

63.14, p <0.0001), and between sample size and rate variance (F(1, 3943) = 42.90, p 

<0.0001) were likewise statistically significant but not practically meaningful with 

partial eta-squared values 0.02 or less.  However, the rate variance x parameter 

interaction was statistically significant (F(8, 3943) = 20.81, p <0.0001), and the 

partial eta-squared value of 0.05 suggested that this interaction may have a small but 

meaningful effect.   Overall, the error of estimate for the random effects (growth) 

parameters was higher for the extreme 0.50 generating rate variance than for the more 

moderate 0.20 rate variance.  Also, the error of estimate appears to be higher on 

average for the variance of the growth rate parameter(s) in the 0.50 level. However, 

the interaction can be seen in the error of estimate for the mean and variance of the 

growth rate parameters with the linear growth trajectory with the 0.50 rate variance 

level, which are particularly large on average.  The main effect of trajectory was 

statistically significant (F(1, 3943) = 71.52, p <0.0001) but having very little practical 

meaning with a partial eta-squared of 0.02.  The main effect of parameter was 

statistically significant (F(8, 3943) = 25.71, p <0.0001) and also showed a small 

practical meaning with a partial eta-squared value of 0.05.  Generally, this was due to 

estimates for variances of the growth rates having larger average error of the estimate 

than for the other random effects (growth) parameters.  The main effect of sample 

size was statistically significant (F(1, 3943) = 104.23, p <0.0001) with a small partial 

eta-squared value of 0.03.. This was due to the sample size of 500 examinees having 
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greater average error of estimate for the random effects (growth) parameter estimates  

than 1000 examinees.  The main effect of variance of growth rate was statistically 

significant (F(1, 3943) = 199.02, p <0.0001) with a small partial eta-squared value of 

0.05.  This effect is due to the high rate variance (0.50) having greater average error 

of estimate than the low rate variance (0.20) condition. 

Table 29: Error of Estimate of Random Effect (Growth) Parameter Estimates for 

Study 3 

Source df F η2 p 

Trajectory 1 71.5200 0.0178 <.0001

Parameter(trajectory) 8 25.7100 0.0496 <.0001

Sample size  1 104.2300 0.0258 <.0001

Trajectory x Sample size  1 33.5700 0.0084 <.0001

Sample size x Parameter(trajectory) 8 6.1900 0.0124 <.0001

Rate variance 1 199.0200 0.0480 <.0001

Trajectory x Rate variance 1 63.1400 0.0158 <.0001

Rate variance x Parameter(trajectory) 8 20.8100 0.0405 <.0001

Sample size x Rate variance 1 42.9000 0.0108 <.0001

Trajectory x Sample size x Rate variance  1 25.0500 0.0063 <.0001

Sample size x Rate variance x 

Parameter(trajectory) 8 5.3300 0.0107 <.0001

Error 3943 (0.0152)     

Corrected total 3982       

Note: Values enclosed in parentheses represent mean square errors. 
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Commentary on Study 3 

Study 3 examined three factors simultaneously: the form of the trajectory of 

growth, sample size, and the variance of the growth rate in the examinee population.  

Although there were many effects under consideration in this study and many 

statistically significant results were found, few of these effects were large enough to 

suggest any practical significance.  As could be anticipated, the sample size 

influenced the error of the estimate in the item location and item discrimination 

parameters.  As sample size increased, the average error of estimate in the item 

parameters decreased.  However, none of the three factors had any meaningful 

influence on the bias of the parameter estimates and that factors that would not be 

expected to influence the error of the estimate, such as the form of the trajectory and 

the population variance in the growth rate, indeed have no meaningful effect.  

The generating value of the variance of the growth rate played a small role in 

influencing the error of the estimate for the random effects (growth) parameters.  

Overall, the error of estimate for the random effects (growth) parameters was higher 

for the extreme 0.50 generating rate variance than for the more moderate 0.20 rate 

variance.  Also, the error of estimate appeared to be higher on average for the 

variance of the growth rate parameter(s) in the 0.50 level. A small but meaningful 

interaction was seen in the error of estimate for the mean and variance of the growth 

rate parameters with the linear growth trajectory with the 0.50 rate variance level, 

which was particularly large on average.   

Upon examination of the mean rates of bias and error of estimate, it is 

apparent that parameter recovery in the item response growth model is generally 
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acceptable under reasonable conditions, such as with adequate sample size.  The 

effect of variability in the growth trajectory may in fact be a reflection of the extreme 

value of 0.50 setting up a situation in which the growth of many individuals is not 

adequately measured by the items selected due to censoring effects. 
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Chapter 4: Illustration Using ECLS-K Data 

The Monte Carlo simulation approach has particular usefulness in its ability to 

demonstrate the characteristics of the model in light of the true patterns in the data.  

However, the sole presentation of simulated results can raise suspicion about whether 

the advocated technique will work in the world of messy “real life” data.  To offer 

some perspective on the use of the item response growth model in practice, this 

chapter provides an illustration of the model with item response data from the Early 

Childhood Longitudinal Study – Kindergarten Cohort (Tourangeau, et al., 2006) 2 3.   

ECLS-K is one of several nationally-representative longitudinal studies 

conducted by the National Center for Education Statistics (NCES).  The primary 

purpose of this study was to provide researchers with data for investigating children’s 

transition from their early childhood environments into school.  The kindergarten 

cohort contributed to this purpose by following a nationally representative sample of 

American school children from the start of their formal schooling in kindergarten.4  

Both cognitive and non-cognitive measures were collected.  Children were tested 

directly; their parents were interviewed; and their teachers completed questionnaires.  

This data is made available to researchers to conduct research in education at a scale 

that would be difficult for any individual researcher to coordinate.  Thus, ECLS-K is 

one of the most readily-available sources of longitudinal data for illustrating the item 

                                                 
2 Used with permission.  Reid, Hresko, Hammill, ProEd, Inc. International, 2008, 
TERA-3. 

3 Used with permission.  Ginsburg, Baroody, ProEd, Inc. International, 2008, tema-3. 

4 A separate cohort was followed from birth through early childhood. 
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response growth model.   Of the longitudinal data sets compiled by NCES, ECLS-K 

is one of the more recent as well as one of the more complete studies offering 

measurements at several time points to allow for modeling alternative trajectories for 

growth.  The existence of measurements at more than two time points is especially 

important to demonstrate the utility of the item response growth model distinct from 

other longitudinal item response models that parameterize growth differently.  With 

only two time points, the item response growth model proposed here cannot be 

distinguished from other longitudinal item response models. 

The illustration models growth in math achievement in a sample from a cohort 

of elementary children from the beginning of kindergarten through the end of fifth 

grade.  Although the ECLS-K cognitive battery included math, reading, and general 

knowledge assessments, the math assessment was chosen for this illustration due to 

the recent interest and push for more emphasis on STEM (science, technology, 

engineering, and mathematics) education across the United States’ educational 

systems. 

With this real life data set two research questions were investigated using the 

item response growth model.  The first two questions relate directly to factors that 

were investigated in the Monte Carlo simulation study.  First, is an item response 

growth model based on Rasch measurement or based on two-parameter logistic 

measurement a better fit to the data?  Second, is an item response growth model with 

a linear or nonlinear trajectory of growth a better fit to the data?   
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Methods 

Participants 

The data for this illustration consisted of a random subsample of 2000 

examines from ECLS-K.  The decision to fit the model to a subsample of examinees 

was driven by concerns about the computational intensity of the model arising from 

the simulation study and the extreme amount of time it would likely take to estimate 

the model with the full sample of approximately 22,000 children.  A random sample 

was chosen to reflect the composition, including patterns of missing data, as found in 

the full data set. 

Data Collection Design 

The children in the study’s primary cohort were tested in what was for most of 

them the fall of kindergarten, spring of kindergarten, spring of first grade, spring of 

third grade, and spring of fifth grade5.  In addition, item responses were collected 

from a supplementary “bridge” sample of second grade children.  Fall first grade 

testing included only a subsample of the original primary sample.  However, these 

differences in the sampling design were easily absorbed by the model since the model 

accommodates students who take different items at different time points.  ECLS-K 

also uses a complex sampling design. However, information about this design, such 

as sampling and replication weights, was not included in the item response data file 

and thus was not incorporated in the results described here.  Thus, the conclusions 

                                                 
5 After being recruited as kindergarteners, the children continued to be tested at the 
same intervals even if they skipped a grade or were held back a grade.  Thus, not all 
children were in the anticipated grade for their cohort at subsequent assessments. 
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about growth in this sample should not be generalized to the national population of 

school children. 

Instruments 

The cognitive assessments in ECLS-K were specially assembled for the study 

because shelf tests did not meet the desired content standards for the study (Rock & 

Pollack, 2002).  Mathematics items in the cognitive assessment are from an 

individually-administered adaptive test (Rock & Pollack, 2002).  Thus, items given to 

the student at each time point were selected to match the student’s approximate level 

of achievement.  Performance on a short routing test was used to determine if the 

student would complete items from a low, middle, or high achievement form of the 

math assessment (Rock & Pollack, 2002).  Adjacent level forms of the test contained 

a block of items common to both tests (anchor items).  Due to the poor results with a 

similar design in the simulation study, for this illustration only the 14 common items 

were used. These items were only used through third grade so there are no fifth grade 

responses to the items in this particular set.  All items were dichotomously scored, 

short answer items from the mathematics assessments in grades K-5.   

Procedures 

The proportion of subsample examinees who were part of the bridge sample 

was calculated.  In addition the proportions of examinees responding to each item at 

each time point were calculated to demonstrate the item selection design for the 

common item set.  Four different versions of the model were fit to the item response 

data, which included the bridge sample: a Rasch linear trajectory model, a Rasch 
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nonlinear trajectory model, a two-parameter logistic linear trajectory model, and a 

two-parameter logistic nonlinear trajectory model.   

In all cases the model was fit using the same estimation procedure used in the 

simulation study and described previously in Chapter 2.  For the item response 

growth model comparison, the -2 log likelihood, AIC, and BIC model fit statistics 

were compared to decide on the best fitting model.   Empirical Bayes estimates of the 

parameters for individual growth trajectories were computed for the best fitting 

model.  These growth trajectories are interpreted few examples of individual cases. 

Results 

Descriptive Statistics 

Of the 2000 examinees in the selected subsample, 85 examinees, or 4.25 

percent of them, were members of the second-grade bridge sample.  The use of only 

the common items from the mathematics assessment resulted in a design that was 

similar to the targeted design used in the simulation study. Table 30 shows the 

proportion of the sample that took each of the 14 items at each of the time points.  

The distributions of the proportions at each time point suggest that fewer students 

were given difficult items in the lower grades and easy items in the higher grades.  

Proportions are lower overall for the Fall 1 and Spring 2 time points because only a 

fraction of the full sample was tested at these time points.   
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Table 30: Proportion of Examinees Responding to Each of the Common Items at 

Each Time Point 

Item Fall K Spring K Fall 1 Spring 1 Spring 2 Spring 3 

1 0.84 0.89 0.24 0.76 0.02 0.19 

2 0.84 0.88 0.24 0.76 0.02 0.18 

3 0.84 0.89 0.24 0.76 0.02 0.19 

4 0.84 0.89 0.24 0.76 0.02 0.19 

5 0.21 0.52 0.18 0.71 0.04 0.65 

6 0.20 0.52 0.18 0.71 0.04 0.65 

7 0.21 0.52 0.18 0.71 0.04 0.65 

8 0.21 0.52 0.18 0.71 0.04 0.65 

9 0.21 0.52 0.18 0.71 0.02 0.19 

10 0.07 0.24 0.11 0.60 0.02 0.18 

11 0.07 0.24 0.11 0.60 0.02 0.19 

12 0.07 0.24 0.11 0.60 0.02 0.18 

13 0.07 0.24 0.11 0.60 0.04 0.65 

14 0.07 0.24 0.11 0.60 0.02 0.19 

Model Comparisons 

Model fit statistics from fitting four different item response growth models to 

the random subsample are shown in Table 31.  The two-parameter logistic versions of 

the item response model fit this data better than the Rasch version as suggested by 

lower values of the AIC and BIC for the two-parameter logistic models.  The 
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piecewise linear trajectory fit the data better than the linear trajectory as suggested by 

lower values of the AIC and BIC for the piecewise-linear models.   

Table 31: Model Fit Statistics for Four Item Response Growth Models fit to ECLS-K 

Data 

Measurement 

model 

Growth 

trajectory 

Parameters -2 log 

likelihood 

AIC BIC 

Rasch Linear 17 63051 63085 63107

Rasch Piecewise 

linear 

21 62835 62877 62904

Two-parameter 

logistic 

Linear 31 56842 56904 56944

Two-parameter 

logistic 

Piecewise 

linear 

35 56313 56383 56429

 

Individual Growth Trajectories 

Figure 3 shows graphed individual trajectories from a subsample of 20 of the 

2000 examinees in the real data illustration for the two-parameter logistic item 

response model with a piecewise linear growth trajectory form.  Notice that in general 

the lines were not as steep for the period from 1.5 to 3.5 years (late growth period) as 

they were for the period from zero to 1.5 years (early growth period).  This reflects 

the population mean rates of change that were estimated to be 2.09 for the early 

growth period and 1.31 for the late growth period.  Notice that there is modest 

variability in the examinees’ initial levels of math achievement θ, as suggested in the 
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plot by the vertical spread in the individual points at zero years and represented by a 

fixed variance value of one in the model. However, there is less variability in their 

rates of growth, as suggested in the plot by the nearly parallel lines for most 

individuals during both growth periods and reflected in the estimated growth rate 

variances of 0.18 and less than 0.01, respectively.  The covariances of the growth 

rates with the initial status θ in math achievement were 0.26 and 0.15, respectively, 

reflected in Figure 3 as a slight fanning of the individual trajectories from left to right.  

Examinees that started out with higher initial status in math achievement tended to 

have somewhat higher growth rates than average; examinees that started out with 

lower initial status in math achievement tended to have somewhat lower growth rates 

than average.  The covariance between the growth rates was 0.01, suggesting that 

examinees who grew at a faster than average rate in the first growth period tended to 

also grow at a faster than average rate in the second growth period. 

Figure 3: Trajectories for a Random Sample of 20 Examinees 
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Conclusions can also be drawn for individual examinees depicted in Figure 3.  

Student 1, whose trajectory can be seen at the top of the figure, had an estimated 

initial math achievement of 2.62 standard deviations above the mean initial math 

achievement of the subsample of 2000 examinees.  Student 1 also grew at a 

tremendous rate estimated to be 2.78 units per year during the first growth period and 

1.34 units per year during the second growth period.  Student 2, whose trajectory is 

also shown in the figure at the top of the large cluster of trajectories, started with an 

estimated initial math achievement level that was substantially lower at 0.61.  

However, Student 2 grew at similar estimated rates of 2.67 units per year and 1.10 

units per year during the first and second growth periods, respectively, as can be 

noted by a trajectory that is nearly parallel to Student 1’s trajectory in Figure 3.  Thus, 

despite differences in math achievement status at any single point in time, these two 

students are exhibiting similar growth in math achievement. 

Student 3 has a trajectory that is embedded in the large cluster of trajectories 

in Figure 3.  Student 3 had an initial estimated math achievement level of 0.28, about 

average.  This student also had an estimated early period growth rate of 2.09 units per 

year, which perfectly matched the average for the full sample of 2000 examinees.  

However, a clear change is noted in Student 3’s trajectory during the second growth 

period, where the growth rate is a mere 0.51 units per year, less than half of the 

average for the full sample of 200 examinees.  Indeed, this can be seen in Figure 3 

where Student 3’s trajectory crosses those of the other examinees during the second 

growth period.  This student has clearly experienced a dramatic change in growth rate 

that is causing him or her to fall behind the other students, and thus Student 3 would 
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likely be identified as struggling and in need of educational intervention despite 

having a math achievement status at 3.5 years that is not readily distinguished from 

the math achievement of the other students at this point in time.  Student 3’s 

trajectory may be contrasted with that of Student 4, whose trajectory is at the bottom 

of Figure 3.  Student 4 started with an initial math achievement of 1.47 standard 

deviations below average and at 3.5 years is at a lower level of math achievement 

than Student 3.  However, it is clear from Student 4’s estimated growth rates of 1.52 

and 1.28, respectively, that this student is growing steadily and is probably already 

benefiting from successful educational intervention. 

Discussion 

Overall, the real data illustration suggests that the model estimation performs 

similarly when fit to real data as when fit to simulated data.  It also shows the value of 

the two-parameter logistic item response model over the Rasch version, as the two-

parameter logistic version was a better fit to the real-life empirical data in this 

illustration.    It can also be observed from this illustration that a linear trajectory for 

growth may not be the most appropriate trajectory for math achievement growth in 

the early elementary years.  In this example the item selection design, which was 

similar to the targeted design used in the simulation study, was realistic for annual 

testing, where students may be expected to forget the specifics of test items between 

assessments.  For assessments that are spaced less than several months apart, 

however, a more sophisticated item selection design would be needed. 
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Chapter 5:  Concluding Remarks 
 

Discussion 

In recent years there has been an increasing opportunity and great need to 

appropriately model individual growth trajectories in educational research. This study 

proposed and explored the technical adequacy of an integrated IRT growth model that 

combined the typically separate data transformations involved in applying item 

response model(s), vertical scaling (where appropriate) of scores from tests at 

different levels, and growth model components.  The general motive for undertaking 

the present study was to lay a foundation for future research on IRT growth models 

by means of a broad investigation of the performance of the two-parameter logistic 

version of the model in a variety of situations.  Indeed, this research has shown that 

parameter recovery in this model is sensitive to some important considerations in the 

process of modeling growth.  This section is organized into subsections addressing 

lessons learned about the estimation of the model, its convergence behavior, the 

inflation of the underlying vertical scale, the effects of the five manipulated factors on 

parameter recovery, and the application of the model to real data. 

Model Estimation 

Although a thorough investigation of estimation methods was not proposed as 

part of this study, an unsolicited result of carrying out this study has been some 

insight into the demands of estimating this model.  In the original research proposal 

the plan was to implement marginal maximum likelihood estimation to 
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simultaneously obtain estimates for all model parameters in a single run of SAS Proc 

NLMIXED.   Although it was known that the model would be computationally 

intensive to estimate using this approach, the full extent of this intensive demand was 

not known prior to commencing the research.  After starting to carry out the study, it 

quickly became clear that the computational intensity of the estimation approach 

rendered it practically infeasible for use with IRT growth models.  As a result of this 

finding, the original SAS code for the study was modified to implement marginal 

maximum likelihood estimation via the Expectation-Maximization (EM) algorithm.  

This approach, described in detail in Chapter 2, estimated model parameters using an 

iterative approach that incorporated strategic isolation of portions of the model for the 

purposes of updating estimated values of the parameters to reduce unnecessary 

computational demand and speed the estimation process.   

Case study trials suggested that on average the new estimation approach 

produced parameter estimates that were about as close to the generating values as the 

originally proposed approach.  However, it was noted through observation of the 

patterns of the difference of the estimate from the true value across items that the two 

estimation approaches displayed different patterns.  For example, estimation in a 

single run of SAS Proc NLMIXED appeared to produce better estimates of 

discrimination parameters for items in the middle of the ability distribution.  

However, the EM algorithm appeared to produce better estimates of discrimination 

parameters for items located at the extremes of the ability distribution. 

In addition to a more thorough investigation comparing different estimation 

approaches, there are many factors within the EM algorithm estimation approach that 
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remain to be formally investigated.  Since this was not a proposed goal of the present 

research study, these issues received only superficial investigation to quickly assess 

adequately performing and reasonable approaches for the present study.  These issues 

include further study of stopping rule alternatives for the EM cycles, stopping rules 

for updating the parameter estimates for parts of the model for internal cycles within 

the EM cycle, different value updating approaches for the fixed effects and random 

effects parts of the model, different numbers and approaches for establishing the 

number of internal iterations in the internal cycles to update the parameters, and the 

potential use of a Bayesian framework to incorporate prior distributions for the 

structural parameters.  Further, it is recognized that SAS is not a very effective 

platform for algorithms involving looping structures, and future research in this area 

should proceed with this estimation approach on a different platform.  

Convergence Behavior 

Some of the best lessons to be learned from this study have been in the areas 

where the model has not performed according to expectation.  No where is this more 

true than in the observed convergence behavior for different conditions in the study.  

Convergence in this model is most strongly influenced by the number and 

arrangement of items and the number of examinees providing item responses.  In 

short some item selection designs failed to converge at all.  One item selection design 

had a convergence rate that depended on the sample size.  In addition there was a 

lowered convergence rate as the number of items increased.  The implications of each 

of these situations will be discussed in turn. 
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First, the location of the items selected must be appropriately targeted to the 

population ability distribution at any given point in time.  In this study one item 

selection design was attempted in which some items were generated with locations 

that were not a good match to the ability distribution in the population at the time(s) 

the item was administered.  For example, a very difficult item was administered at the 

first time point when virtually none of the examinees would generate a correct 

response to such an item, and then this item was not included on any of the test forms 

at the remaining time points.  The opposite situation also occurred where a new very 

easy item was introduced on the test form at the final time point when virtually none 

of the examinees would generate an incorrect response.  This led to a situation where 

the model failed to converge because there was little empirical basis for pinpointing 

precise item locations.  In addition item discrimination values for such items tended 

toward infinity due to an extreme imbalance between numbers of correct and 

incorrect responses on a particular item.  Items of equal generating difficulty that 

were administered at a time when the generating difficulty was a good match for the 

population ability distribution generally maintained values within the established 

boundary values, even while the item parameter estimates for poorly matched items 

hit the boundary values. 

Second, it is not sufficient to simply target the item location.  Scale inflation 

and lack of convergence also tends to occur where there are more items to be 

estimated.  An adaptive design was attempted in which some items served as a 

routing test to determine whether an examinee would be best match to items at the 

low, medium, or high locations on the latent ability continuum.  At the point at which 
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the estimation algorithm was stopped for this adaptive item design, some 

discrimination parameters and many item location parameters were at the established 

boundary values.  Easy items, whose generating values were always greater than -2, 

had item location estimates at the boundary value of -4; difficult items, whose 

generating values were always less than four, had item location estimates a the 

boundary value of ten.  The most instances for item locations at boundary values were 

observed in the “low” and “high” ability test forms, which contained the easiest and 

most difficult items, respectively, which naturally would be most likely to reach the 

boundaries in the case of scale inflation.  Discrimination values were generally 

underestimated in the adaptive design, further reflecting the tendency toward scale 

inflation. 

Third, the number of examinees relative to the number of item parameters to 

be estimated in the model may also play a role in convergence.  The lowered 

convergence rate with 16 items compared to eight items may be attributable to a need 

for a larger number of examinee responses to estimate a larger number of item 

parameters.  The estimation with 16 items was only attempted in this study with 500 

examinees, which was found to be insufficient for satisfactory parameter recovery in 

other components of this study.  This suggests a need for balance between the 

parameters to be estimated and the number of examinees providing item responses. 

Bias by Item Location and Stretching of the Vertical Scale 

The magnitude and direction of bias in item location parameter estimates was 

directly influenced by the generating value of the item location.  Thus, bias was more 

extreme for items with extreme locations on the underlying scale, and the direction of 
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bias was related to the end of the scale where the item was located.  Concurrent with 

this phenomenon was the tendency for item discrimination parameters to be 

underestimated and for random effects (growth) parameters estimates to be 

overestimated, particularly the mean and variance of the growth rate.  These results 

point to a general tendency for inflation in the underlying vertical scale that should be 

further studied to better understand the impact of the unified growth modeling 

approach on the characteristics of the underlying vertical scale.   

Effect of Item Selection Design on Parameter Recovery 

In order for the IRT growth model estimation to converge and the parameter 

estimates be accurate, it is necessary that items be well-suited to the difficulty levels 

of the examinees at each of the time points.  This is more critical in item response 

models that include a discrimination parameter than it is in the Rasch family of item 

response models.  This can be explained as what may be termed the Discrimination-

Censoring Paradox. 

The Discrimination-Censoring Paradox: 

To properly estimate item discrimination, we need sufficient numbers of 

responses from persons located above and below the item location.   In order to 

properly estimate the person’s location, we need sufficient items (with adequate 

discrimination) above and below the person’s location at each time point to avoid the 

effects of censoring on the estimation of the growth parameters.  The effect of 

censoring is generally to decrease the spread of person locations, leading to greater 

difficulty estimating item discrimination parameters.     
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In this study the spread of the generating item locations was chosen to be quite 

broad in an attempt to avoid the well-known effect of censored item response data in 

contributing to the underestimation of the growth rate and the covariance between the 

growth rate and initial status.  Due to a lack of full information about the true growth, 

in censoring there is a shrinking or contracting of the underlying vertical scale.  

However, an opposite effect, an overestimation of the growth rate and covariance 

between the growth rate and initial status, a “stretching,” or inflation of the 

underlying vertical scale was instead observed in this study, as described in the 

previous section.  Thus, an effect opposite to the effect of censoring is observed. 

Effect of Number of Items on Parameter Recovery 

The effect of the number of items on parameter recovery will require further 

investigation.  No difference in item parameter bias was anticipated, although it was 

thought that the error of estimate of the random effects (growth) parameters might 

decrease as the number of item responses available to estimate each individual’s 

growth trajectory increased.  In fact, meaningful differences in the bias were 

observed, suggesting again that test construction has an important role to play in the 

performance of the item response growth model, particularly when item 

discrimination parameters are included.   

Effect of Variance of the Growth Rate on Parameter Recovery 

The extreme variability in the growth rate in the population has the potential 

to trigger the effect of the Discrimination-Censoring Paradox. As the variance of the 

growth rate was increased from a typical rate of 0.20 to an extreme rate of 0.50, the 
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average error of estimate in the random effects (growth) parameters increased.  

Fortunately, however, the magnitude of this effect as observed in this study suggested 

only a small effect for a level of population growth variability that was intended to be 

quite extreme.  The error of the estimate in the random effects (growth) parameters 

may be influenced when variability in the growth rate produces a situation in which 

the growth of many individuals is not adequately measured by the items selected.  

Thus, it may be necessary to include more items covering a broader range of item 

locations if there is dramatic heterogeneity in the rate of growth in the examinee 

population. 

Effect of Growth Trajectory on Parameter Recovery 

Although there were statistically significant differences between the linear 

growth trajectory and the nonlinear (piecewise) growth trajectory, the magnitude of 

these effects was too small to have practical meaning.  It is possible that the 

statistically significant differences found can be attributed to the effect of the variance 

of the growth rate discussed in the preceding section, as this should have been more 

prevalent for the linear trajectory in this study than in the nonlinear trajectory due to 

the way in which the generating parameters for the items were controlled.  A more 

sophisticated design that accounts for the variability in the growth rate in arranging 

the spread of generating item locations would be needed to test whether this is the 

case. 

There are also some possible explanations that stem from the relationship 

between the form of the growth trajectory and the number of time points used to 

measure the growth.  It is possible that the bias in the parameter estimates is related to 
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the ratio between the number of time points and the number of random effects 

defining the growth trajectory.  For example in the linear trajectory level in the 

present study, there are five time points and two random effect (growth) parameters.  

In the nonlinear trajectory level, there are five time points and three random effect 

(growth) parameters.  Additional levels of trajectory and different numbers of time 

points could be used to further investigate potential associations with differences in 

bias.  It is also possible that the bias in the item location parameters is related to the 

number of time points per segment of the piecewise trajectory.  Perhaps as fewer 

points are used to define each linear segment in the trajectory, there is less room for 

bias in the item location estimates.  These theories may be checked by evaluating the 

performance of the model with additional forms of growth trajectory that are not 

piecewise defined, such as a quadratic trajectory. 

Effect of Sample Size on Parameter Recovery 

Both Studies 1 and 3 investigated the effect of differing sample sizes on 

parameter recovery in the item response growth model.  Both studies found a 

substantial drop in the average magnitude of bias as sample size increased from 500 

examinees to 1000 examinees.  However, Study 1 also examined a condition with 

2000 examinees and did not find a significant further decrease in the average 

magnitude of bias.  This suggests that the sample size of 500 is too small in that it 

produces estimates with substantially more bias.  This also suggests that the bias in 

the item location parameter estimates may be influenced by the amount of 

information available to estimate each item’s location.  As items become more 

extreme in their difficulty, there is less information in the data to estimate that item 
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parameter.  This could potentially lead to items having estimated locations that are 

even more extreme than the generating values.   

Application of the Model in Practice 

The application of the model with real data supported the validity of the 

claims made on the basis of the simulated data.   Overall, the real data illustration 

suggested that the computational intensity of the model estimation is similar when 

fitting real data as when fitting simulated data.  Fitting the model with real data 

reflected a proportional level of computational intensity to the estimation with 

simulated data.   

With 14 items and 2000 examinees only four models were fit to the data.  

Thus, this illustration is quite limited.  However, the two conclusions that it does 

support are important for demonstrating the value of exploring the new model 

proposed in this study.   First, the empirical illustration showed the value of the two-

parameter logistic item response model over the Rasch version, as the two-parameter 

logistic version was a better fit to the real-life empirical data in this illustration.    It 

can also be observed from this illustration that a linear trajectory for growth may not 

be the most appropriate trajectory for math achievement growth in the early 

elementary years.   

Scope and Limitations 

To understand the results of this study in context, consider current practice in 

modeling growth in individual students’ academic abilities over time. This process 

typically uses several statistical models or transformations to move from data 
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representing a student’s correct or incorrect responses on individual test items to 

inferences about changes in the student’s underlying ability.  First, a measurement 

model, typically from the IRT family of models, is used to move from a student’s 

responses to many individual items to a single test score that provides an estimate of 

the student’s proficiency at the time he or she answered the items.  Then a vertical 

scaling transformation may be needed to put scores from increasingly difficult tests 

on a developmental scale.  Finally, a trajectory for the individual scaled estimates of 

proficiency may be estimated in a growth model, typically from the Latent Growth 

Curve Model or Linear Mixed Effects Model frameworks.   

 Each of these steps has received a great deal of focused research attention 

isolated from the other steps.  For example much measurement research focuses on 

the estimation and fit of item response models.  Researchers concerned with vertical 

scaling are working to address substantive concerns regarding the vertical alignment 

of content in a way that makes a vertical scale meaningful.  Likewise, growth 

modeling researchers study issues such as the effect of misspecification of the growth 

trajectory.  Issues such as these that are focused on isolated steps in the process are 

outside the scope of the present study.  This study attempts to draw connections 

among these steps by investigating a unified model that conducts all three steps 

simultaneously.   

The proposed integrated model extends beyond previous item response 

models for longitudinal data by specifying a functional form for the growth of 

individual examinees.  In addition this model includes item discrimination 
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parameters, thus extending the item response growth model beyond similar models in 

the Rasch family that are currently being investigated by other researchers. 

Although this study expands item response growth models outside of the 

Rasch family of models, there do remain some limitations on the model used in this 

study.  The model under consideration is limited to binary item responses.  However, 

extension of this approach to models with polytomous data should be fairly 

straightforward.  Although it includes the item discrimination parameter, the model 

under consideration is also limited to two item parameters.  It is theoretically possible 

to extend this model to accommodate three item parameters.  However, the estimation 

of such a model becomes much more difficult.   

In addition to possible extensions of the measurement portion of the integrated 

model, it is also possible to extend the growth component.  The use of a piecewise 

trajectory may be used to test the effectiveness of an intervention by strategic 

placement of the point at which one growth rate ends and the next growth rate begins 

at the point at which the intervention began following baseline observations.  The 

model may also be expanded to include observed variables, or covariates, that help 

predict or explain the parameters of the growth trajectory.  Extended work with the 

model could also further develop the methodology for making individual projections 

of growth, including potentially linking these projections to normative patterns of 

growth (Betebenner, 2008).  However, the use of this approach to make such 

inferences would require more research to identify the inferences that are robust to 

monotonic transformations of the vertical scale.  The model could also be extended to 

model the effects of schools on the means and standard deviations of the initial 
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measurement and trajectory parameters by adding a third level.  However, because 

this is primarily a methodological investigation of a new approach for analyzing 

longitudinal growth, a simpler model was investigated in this study. 

There is one limitation of the longitudinal study design that can be overcome 

in practice.  The characteristics of the items that are administered repeatedly may 

change over time due to memory effects, practice, and influences that are separate 

from changes in the underlying latent construct of interest.  There are two proposed 

strategies for overcoming this problem.  One is to avoid administering the same item 

to the same examinee at multiple time points.  This can be accomplished by 

incorporating a more sophisticated vertical linking design involving multiple forms of 

the test at a single measurement occasion and randomly equivalent groups.  An 

alternative strategy is to incorporate within the model some additional item 

parameters that account for changes in the characteristics of the items over time 

(Wang, et al., 1998).  Both strategies, however, were originally intended for situations 

in which examinees are tested at fixed time points.  These two approaches may 

require further development or modification to accommodate situations in which 

examinees are tested at varying time points. 

Areas for  Future Research 

In the immediate future the computational intensity of the model will be 

further addressed by transferring the estimation algorithm to a more efficient 

platform.  SAS was used for convenience in this study, but this is not necessarily an 

efficient environment for carrying out the EM algorithm. 
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Since the item selection design has such a dramatic influence on the 

convergence behavior in this model, future research should more closely investigate 

the more precise effects of modifying different aspects of the item selection design.  

In this study a wide variety of characteristics of the item selection design were varied, 

including whether the design is adaptive to the latent abilities of individuals, targeted 

to the population ability at each time point, and the proportion of common items 

across tests administered at adjacent time points.   However, other aspects that were 

held constant in this study, such as the spread of the locations of the items on the 

latent continuum, should also be considered for experimental manipulation.  In 

combination these aspects of the item selection design provide an important 

component in controlling the amount of empirical information available to estimate 

the item parameters.   

The other critical component of information is related to the examinees who 

provide responses to the items that are selected. This includes the sample size, the 

spread in the parameters of latent growth in the population, as well as the 

consideration of potential missing data (planned or unplanned) in which there is 

variability among individual examinees in the number of measurement occasions.  

More focused examination of the effect of manipulating these characteristics is also 

needed.  Clearly, this interacts with the item characteristics in that proper alignment 

between the item characteristics and examinee characteristics produces a situation in 

which optimal information is available to estimate the parameters of the item 

response growth model. 
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As this study has demonstrated, parameter recovery in the item response 

growth model is very sensitive to the alignment between the items selected and the 

parameters of latent growth in the examinee population.  However, it is not known 

whether this model is any more sensitive to this alignment than competing methods in 

other frameworks, such as latent growth curve modeling in the SEM framework or 

mixed effects models.  Presently, other researchers are investigating a closely-related 

Rasch version of this model.  However, a comparative study focusing on the 

specification of item discrimination parameters in the model is needed to gain a better 

understanding of how much more information is needed to estimate the IRT growth 

model item discrimination parameters.  It would be interesting to observe the 

differences in bias between the Rasch growth model and the two-parameter logistic 

growth model to see what effect including the discrimination parameters has on the 

bias in the estimation of the location parameters.  An additional point of investigation 

relevant to the role of the discrimination parameter may be role of the magnitude of 

the discrimination of the items with extreme item locations in influencing the bias in 

the item location parameter estimates. 

 

Broader Relevance and Conclusion 

The integrated model investigated in this study addresses the entire growth 

modeling process that currently involves several transformations to move from 

student responses to individual test items to implications about growth in a student 

body.  Thus it ties together several distinct areas of active research in the 

psychometric literature that deal with issues in each transformation in isolation from 
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the others.  The integrated approach provides a leverage point for consideration of the 

quality of the interaction among multiple components in the process. The further 

investigation of some of the results of this study may be key to understanding this 

interaction.  For example, the effects of the Discrimination-Censoring Paradox 

suggest a particular relationship between the characteristics of measurement at the 

item level and the resulting quantification of growth, as mediated by the latent 

vertical scale.   Thus, continued research of the item response growth model concept 

will have implications for ongoing research in item response modeling, vertical 

scaling, and growth modeling in other frameworks.   

The present study answered two small but important questions regarding the 

quality of the estimates produced using an integrated model approach.  The resolution 

of these questions lays a necessary foundation for future studies to follow.  By 

providing a foundation for research addressing the entire growth modeling process, 

this study presents yet another step toward resolving nagging questions about the 

source of methodological ambiguity in the use of growth modeling for educational 

accountability.   

Subsequent research would compare the integrated approach, which 

incorporates the measurement model and the growth model in a single model, with 

the current approach used in practice, which separates the measurement model 

estimation from the growth model estimation.  One important point of comparison, 

for example, will be to compare the two different approaches under less than ideal 

conditions to evaluate their relative robustness.  By avoiding multiple transformations 

it is anticipated that the integrated approach will provide more accurate estimates of 
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the variability in students’ academic growth over time.  If this suggestion is supported 

by the research results, then practical outcomes of applying an integrated item 

response growth model would include more accurate reports of individual students’ 

academic growth as well as more accurate results of research studies examining the 

effects of additional variables on learning.   Increased understanding of how to draw 

valid inferences about students’ academic growth and change over time lends greater 

credibility to the study of initiatives intended to affect learning and has direct 

implications for discussions of educational accountability. 
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 Appendix: Means and Standard Deviations for Bias and Error 
of Estimate 

 

This appendix provides tables of means and standard deviations for the bias 

and error of estimate for the item response growth model parameters in the Monte 

Carlo investigation of parameter recovery.  The mean values provided in the tables 

support reported conclusions about the direction of statistically significant effects and 

the nature of statistically significant interactions in the general linear model analyses. 

 Study 1 

Table A1: Means and Standard Deviations (SD) for Bias of Item Location Parameter 

Estimates for Study 1 

Sample size Item selection Mean SD 

500   0.65 2.60

1000   0.82 2.88

2000   0.85 2.94

  full100 0.07 0.25

  target50 1.11 3.35

500 full100 0.09 0.35

500 target50 1.01 3.27

1000 full100 0.06 0.21

1000 target50 1.12 3.37

2000 full100 0.05 0.14

2000 target50 1.14 3.39
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Table A2: Means and Standard Deviations (SD) for Error of Estimate of Item 

Location Parameter Estimates for Study 1 

Sample size Item selection Mean SD 

500   0.49 0.72

1000   0.34 0.53

2000   0.25 0.42

  full100 0.13 0.17

  target50 0.44 0.64

500 full100 0.20 0.24

500 target50 0.68 0.85

1000 full100 0.12 0.13

1000 target50 0.43 0.60

2000 full100 0.08 0.08

2000 target50 0.31 0.48
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Table A3: Means and Standard Deviations (SD) for Bias of Item Discrimination 

Parameter Estimates for Study 1 

Sample size Item selection Mean SD 

500   -0.39 0.37

1000   -0.47 0.37

2000   -0.48 0.37

  full100 -0.06 0.10

  target50 -0.63 0.32

500 full100 -0.07 0.13

500 target50 -0.59 0.34

1000 full100 -0.06 0.09

1000 target50 -0.63 0.31

2000 full100 -0.05 0.06

2000 target50 -0.64 0.31
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Table A4: Means and Standard Deviations (SD) for Error of Estimate of Item 

Discrimination Parameter Estimates for Study 1 

Sample size Item selection Mean SD 

500   0.11 0.12

1000   0.07 0.08

2000   0.05 0.07

  full100 0.07 0.07

  target50 0.07 0.10

500 full100 0.10 0.08

500 target50 0.11 0.14

1000 full100 0.07 0.05

1000 target50 0.07 0.09

2000 full100 0.04 0.04

2000 target50 0.05 0.08
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Table A5: Means and Standard Deviations (SD) for Bias of Random Effects (Growth) 

Parameter Estimates for Study 1 

Sample size Item selection Parameter Mean SD 

500     0.32 0.59 

1000     0.49 0.72 

2000     0.51 0.70 

  full100   0.03 0.05 

  target50   1.01 0.72 

500 full100   0.04 0.07 

500 target50   0.88 0.73 

1000 full100   0.03 0.04 

1000 target50   1.05 0.75 

2000 full100   0.02 0.02 

2000 target50   1.05 0.69 

    TauD 0.82 1.01 

    TauTD 0.24 0.26 

    mudelta 0.29 0.31 

500   TauD 0.57 0.90 

500   TauTD 0.17 0.24 

500   mudelta 0.23 0.29 

1000   TauD 0.90 1.06 

1000   TauTD 0.26 0.27 

1000   mudelta 0.30 0.31 
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2000   TauD 0.95 1.01 

2000   TauTD 0.27 0.27 

2000   mudelta 0.32 0.32 

  full100 TauD 0.03 0.05 

  full100 TauTD 0.02 0.03 

  full100 mudelta 0.03 0.05 

  target50 TauD 1.89 0.61 

  target50 TauTD 0.52 0.14 

  target50 mudelta 0.62 0.14 

500 full100 TauD 0.04 0.08 

500 full100 TauTD 0.03 0.04 

500 full100 mudelta 0.05 0.08 

500 target50 TauD 1.60 0.86 

500 target50 TauTD 0.45 0.20 

500 target50 mudelta 0.57 0.22 

1000 full100 TauD 0.02 0.04 

1000 full100 TauTD 0.02 0.03 

1000 full100 mudelta 0.03 0.05 

1000 target50 TauD 1.98 0.59 

1000 target50 TauTD 0.54 0.13 

1000 target50 mudelta 0.63 0.12 

2000 full100 TauD 0.02 0.02 

2000 full100 TauTD 0.02 0.02 
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2000 full100 mudelta 0.03 0.03 

2000 target50 TauD 1.96 0.38 

2000 target50 TauTD 0.54 0.09 

2000 target50 mudelta 0.64 0.10 
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Table A6: Means and Standard Deviations (SD) for Error of Estimate of Random 

Effects (Growth) Parameter Estimates for Study 1 

Sample size Item selection Parameter Mean SD 

500     0.15 0.27 

1000     0.11 0.21 

2000     0.07 0.14 

  full100   0.03 0.04 

  target50   0.21 0.29 

500 full100   0.05 0.05 

500 target50   0.34 0.39 

1000 full100   0.03 0.03 

1000 target50   0.21 0.29 

2000 full100   0.02 0.02 

2000 target50   0.13 0.19 

    TauD 0.20 0.33 

    TauTD 0.06 0.07 

    mudelta 0.06 0.08 

500   TauD 0.27 0.42 

500   TauTD 0.08 0.09 

500   mudelta 0.09 0.11 

1000   TauD 0.21 0.33 

1000   TauTD 0.06 0.07 

1000   mudelta 0.06 0.06 
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2000   TauD 0.14 0.22 

2000   TauTD 0.04 0.05 

2000   mudelta 0.04 0.06 

  full100 TauD 0.03 0.04 

  full100 TauTD 0.02 0.02 

  full100 mudelta 0.04 0.04 

  target50 TauD 0.43 0.41 

  target50 TauTD 0.10 0.09 

  target50 mudelta 0.10 0.10 

500 full100 TauD 0.05 0.06 

500 full100 TauTD 0.03 0.03 

500 full100 mudelta 0.05 0.05 

500 target50 TauD 0.69 0.50 

500 target50 TauTD 0.17 0.11 

500 target50 mudelta 0.16 0.14 

1000 full100 TauD 0.03 0.03 

1000 full100 TauTD 0.02 0.02 

1000 full100 mudelta 0.03 0.03 

1000 target50 TauD 0.43 0.40 

1000 target50 TauTD 0.10 0.08 

1000 target50 mudelta 0.09 0.08 

2000 full100 TauD 0.02 0.01 

2000 full100 TauTD 0.02 0.01 
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2000 full100 mudelta 0.02 0.02 

2000 target50 TauD 0.27 0.26 

2000 target50 TauTD 0.06 0.07 

2000 target50 mudelta 0.07 0.07 
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Study 2 

Table A7: Means and Standard Deviations (SD) for Bias of Item Location Parameter 

Estimates for Study 2 

Test length Mean SD 

8 0.08 0.35

16 0.17 0.36

 

Table A8: Means and Standard Deviations (SD) for Error of Estimate of Item 

Location Parameter Estimates for Study 2 

Test length Mean SD 

8 0.20 0.24

16 0.16 0.16

 

Table A9: Means and Standard Deviations (SD) for Bias of Item Discrimination 

Parameter Estimates for Study 2 

Test length Mean SD 

8 -0.07 0.13

16 -0.14 0.10
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Table A10: Means and Standard Deviations (SD) for Error of Estimate of Item 

Discrimination Parameter Estimates for Study 2 

Test length Mean SD 

8 0.10 0.08

16 0.08 0.06

 

Table A11: Means and Standard Deviations (SD) for Bias of Random Effects 

(Growth) Parameter Estimates for Study 2 

Test length Parameter Mean SD 

8   0.04 0.07 

16   0.06 0.05 

  TauD 0.05 0.07 

  TauTD 0.03 0.04 

  mudelta 0.06 0.07 

8 TauD 0.04 0.08 

8 TauTD 0.03 0.04 

8 mudelta 0.05 0.08 

1000 TauD 0.07 0.05 

2000 TauTD 0.03 0.03 

2000 mudelta 0.08 0.05 
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Table A12: Means and Standard Deviations (SD) for Error of Estimate of Random 

Effects (Growth) Parameter Estimates for Study 2 

Test length Parameter Mean SD 

8   0.05 0.05 

16   0.04 0.03 

  TauD 0.05 0.05 

  TauTD 0.03 0.02 

  mudelta 0.05 0.04 

8 TauD 0.05 0.06 

8 TauTD 0.03 0.03 

8 mudelta 0.05 0.05 

1000 TauD 0.04 0.03 

2000 TauTD 0.02 0.02 

2000 mudelta 0.04 0.03 
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Study 3 

Table A13: Means and Standard Deviations (SD) for Bias of Item Location Parameter 

Estimates for Study 3 

Trajectory Sample size Rate variance Mean SD 

Linear     0.11 0.49

Non-linear     0.04 0.24

  500   0.09 0.48

  1000   0.06 0.26

Linear 500   0.14 0.62

Linear 1000   0.08 0.32

Non-linear 500   0.04 0.28

Non-linear 1000   0.03 0.18

    0.20 0.05 0.26

    0.50 0.10 0.49

Linear   0.20 0.07 0.29

Linear   0.50 0.15 0.64

Non-linear   0.20 0.03 0.22

Non-linear   0.50 0.04 0.26

  500 0.20 0.06 0.31

  500 0.50 0.12 0.61

  1000 0.20 0.05 0.19

  1000 0.50 0.07 0.31

Linear 500 0.20 0.08 0.35
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Linear 500 0.50 0.20 0.80

Linear 1000 0.20 0.06 0.21

Linear 1000 0.50 0.11 0.40

Non-linear 500 0.20 0.04 0.25

Non-linear 500 0.50 0.05 0.31

Non-linear 1000 0.20 0.03 0.18

Non-linear 1000 0.50 0.04 0.19
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Table A14: Means and Standard Deviations (SD) for Error of Estimate of Item 

Location Parameter Estimates for Study 3 

Trajectory Sample size Rate variance Mean SD 

Linear     0.22 0.38

Non-linear     0.14 0.16

  500   0.23 0.36

  1000   0.13 0.19

Linear 500   0.29 0.47

Linear 1000   0.15 0.24

Non-linear 500   0.17 0.18

Non-linear 1000   0.11 0.12

    0.20 0.14 0.17

    0.50 0.21 0.38

Linear   0.20 0.16 0.20

Linear   0.50 0.28 0.50

Non-linear   0.20 0.13 0.14

Non-linear   0.50 0.15 0.17

  500 0.20 0.18 0.20

  500 0.50 0.29 0.47

  1000 0.20 0.11 0.12

  1000 0.50 0.14 0.24

Linear 500 0.20 0.20 0.24

Linear 500 0.50 0.39 0.61
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Linear 1000 0.20 0.12 0.13

Linear 1000 0.50 0.17 0.31

Non-linear 500 0.20 0.15 0.16

Non-linear 500 0.50 0.18 0.20

Non-linear 1000 0.20 0.10 0.11

Non-linear 1000 0.50 0.12 0.12
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Table A15: Means and Standard Deviations (SD) for Bias of Item Discrimination 

Parameter Estimates for Study 3 

Trajectory Sample size Rate variance Mean SD 

Linear     -0.09 0.14

Non-linear     -0.06 0.11

  500   -0.08 0.15

  1000   -0.06 0.10

Linear 500   -0.10 0.17

Linear 1000   -0.07 0.10

Non-linear 500   -0.07 0.13

Non-linear 1000   -0.05 0.09

    0.20 -0.06 0.11

    0.50 -0.09 0.14

Linear   0.20 -0.06 0.11

Linear   0.50 -0.11 0.16

Non-linear   0.20 -0.06 0.10

Non-linear   0.50 -0.06 0.12

  500 0.20 -0.07 0.13

  500 0.50 -0.10 0.17

  1000 0.20 -0.06 0.09

  1000 0.50 -0.07 0.11

Linear 500 0.20 -0.07 0.13

Linear 500 0.50 -0.13 0.20
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Linear 1000 0.20 -0.06 0.09

Linear 1000 0.50 -0.09 0.12

Non-linear 500 0.20 -0.07 0.12

Non-linear 500 0.50 -0.07 0.14

Non-linear 1000 0.20 -0.06 0.08

Non-linear 1000 0.50 -0.05 0.10
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Table A16: Means and Standard Deviations (SD) for Error of Estimate of Item 

Discrimination Parameter Estimates for Study 3 

Trajectory Sample size Rate variance Mean SD 

Linear     0.10 0.09

Non-linear     0.08 0.07

  500   0.11 0.10

  1000   0.07 0.06

Linear 500   0.13 0.11

Linear 1000   0.08 0.07

Non-linear 500   0.10 0.08

Non-linear 1000   0.07 0.06

    0.20 0.08 0.07

    0.50 0.11 0.09

Linear   0.20 0.09 0.07

Linear   0.50 0.12 0.11

Non-linear   0.20 0.08 0.06

Non-linear   0.50 0.09 0.07

  500 0.20 0.10 0.08

  500 0.50 0.13 0.11

  1000 0.20 0.07 0.05

  1000 0.50 0.08 0.07

Linear 500 0.20 0.10 0.08

Linear 500 0.50 0.16 0.13
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Linear 1000 0.20 0.07 0.05

Linear 1000 0.50 0.09 0.08

Non-linear 500 0.20 0.09 0.07

Non-linear 500 0.50 0.11 0.08

Non-linear 1000 0.20 0.07 0.05

Non-linear 1000 0.50 0.07 0.06
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Table A17: Means and Standard Deviations (SD) for Bias of Random Effects 

(Growth) Parameter Estimates for Study 3 

Trajectory Sample size Rate variance Parameter Mean SD 

Linear       0.07 0.26 

Non-linear       0.02 0.07 

Linear     TauD 0.12 0.42 

Linear     TauTD 0.04 0.08 

Linear     mudelta 0.06 0.12 

Non-linear     TauD1 0.03 0.10 

Non-linear     TauD2 0.02 0.11 

Non-linear     TauDD 0.02 0.05 

Non-linear     TauTD1 0.05 0.07 

Non-linear     TauTD2 0.00 0.05 

Non-linear     mudelt1 0.03 0.06 

Non-linear     mudelt2 0.01 0.05 

  500     0.05 0.20 

  1000     0.03 0.10 

Linear 500     0.10 0.33 

Linear 1000     0.05 0.15 

Non-linear 500     0.03 0.09 

Non-linear 1000     0.02 0.06 

Linear 500   TauD 0.17 0.54 

Linear 500   TauTD 0.05 0.09 
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Linear 500   mudelta 0.08 0.15 

Linear 1000   TauD 0.07 0.24 

Linear 1000   TauTD 0.03 0.06 

Linear 1000   mudelta 0.04 0.08 

Non-linear 500   TauD1 0.04 0.12 

Non-linear 500   TauD2 0.03 0.13 

Non-linear 500   TauDD 0.02 0.05 

Non-linear 500   TauTD1 0.05 0.08 

Non-linear 500   TauTD2 0.00 0.05 

Non-linear 500   mudelt1 0.04 0.08 

Non-linear 500   mudelt2 0.02 0.05 

Non-linear 1000   TauD1 0.02 0.07 

Non-linear 1000   TauD2 0.02 0.08 

Non-linear 1000   TauDD 0.01 0.04 

Non-linear 1000   TauTD1 0.04 0.06 

Non-linear 1000   TauTD2 0.00 0.04 

Non-linear 1000   mudelt1 0.03 0.05 

Non-linear 1000   mudelt2 0.01 0.04 

    0.20   0.02 0.05 

    0.50   0.06 0.21 

Linear   0.20   0.03 0.06 

Linear   0.50   0.12 0.36 

Non-linear   0.20   0.01 0.05 
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Non-linear   0.50   0.03 0.09 

Linear   0.20 TauD 0.03 0.06 

Linear   0.20 TauTD 0.03 0.04 

Linear   0.20 mudelta 0.04 0.06 

Linear   0.50 TauD 0.21 0.58 

Linear   0.50 TauTD 0.05 0.10 

Linear   0.50 mudelta 0.08 0.15 

Non-linear   0.20 TauD1 0.01 0.04 

Non-linear   0.20 TauD2 0.00 0.05 

Non-linear   0.20 TauDD 0.01 0.03 

Non-linear   0.20 TauTD1 0.04 0.06 

Non-linear   0.20 TauTD2 0.00 0.04 

Non-linear   0.20 mudelt1 0.03 0.05 

Non-linear   0.20 mudelt2 0.01 0.04 

Non-linear   0.50 TauD1 0.05 0.13 

Non-linear   0.50 TauD2 0.04 0.14 

Non-linear   0.50 TauDD 0.02 0.06 

Non-linear   0.50 TauTD1 0.05 0.08 

Non-linear   0.50 TauTD2 0.00 0.05 

Non-linear   0.50 mudelt1 0.03 0.07 

Non-linear   0.50 mudelt2 0.02 0.05 

  500 0.20   0.02 0.06 

  500 0.50   0.07 0.27 
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  1000 0.20   0.02 0.04 

  1000 0.50   0.04 0.13 

Linear 500 0.20 TauD 0.04 0.08 

Linear 500 0.20 TauTD 0.03 0.04 

Linear 500 0.20 mudelta 0.05 0.08 

Linear 500 0.50 TauD 0.30 0.75 

Linear 500 0.50 TauTD 0.06 0.12 

Linear 500 0.50 mudelta 0.11 0.19 

Linear 1000 0.20 TauD 0.02 0.04 

Linear 1000 0.20 TauTD 0.02 0.03 

Linear 1000 0.20 mudelta 0.03 0.05 

Linear 1000 0.50 TauD 0.13 0.33 

Linear 1000 0.50 TauTD 0.04 0.08 

Linear 1000 0.50 mudelta 0.06 0.09 

Non-linear 500 0.20 TauD1 0.01 0.05 

Non-linear 500 0.20 TauD2 0.00 0.06 

Non-linear 500 0.20 TauDD 0.01 0.03 

Non-linear 500 0.20 TauTD1 0.05 0.06 

Non-linear 500 0.20 TauTD2 -0.01 0.05 

Non-linear 500 0.20 mudelt1 0.03 0.07 

Non-linear 500 0.20 mudelt2 0.01 0.04 

Non-linear 500 0.50 TauD1 0.06 0.15 

Non-linear 500 0.50 TauD2 0.06 0.18 
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Non-linear 500 0.50 TauDD 0.02 0.07 

Non-linear 500 0.50 TauTD1 0.06 0.09 

Non-linear 500 0.50 TauTD2 0.00 0.06 

Non-linear 500 0.50 mudelt1 0.04 0.09 

Non-linear 500 0.50 mudelt2 0.02 0.06 

Non-linear 1000 0.20 TauD1 0.00 0.03 

Non-linear 1000 0.20 TauD2 0.00 0.04 

Non-linear 1000 0.20 TauDD 0.01 0.03 

Non-linear 1000 0.20 TauTD1 0.04 0.05 

Non-linear 1000 0.20 TauTD2 0.00 0.04 

Non-linear 1000 0.20 mudelt1 0.03 0.04 

Non-linear 1000 0.20 mudelt2 0.01 0.03 

Non-linear 1000 0.50 TauD1 0.03 0.09 

Non-linear 1000 0.50 TauD2 0.03 0.10 

Non-linear 1000 0.50 TauDD 0.02 0.04 

Non-linear 1000 0.50 TauTD1 0.04 0.06 

Non-linear 1000 0.50 TauTD2 0.00 0.05 

Non-linear 1000 0.50 mudelt1 0.03 0.05 

Non-linear 1000 0.50 mudelt2 0.01 0.04 
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Table A18: Means and Standard Deviations (SD) for Error of Estimate of Random 

Effects (Growth) Parameter Estimates for Study 3 

Trajectory Sample size Rate variance Parameter Mean SD 

Linear       0.08 0.23 

Non-linear       0.05 0.05 

Linear     TauD 0.15 0.38 

Linear     TauTD 0.04 0.06 

Linear     mudelta 0.06 0.09 

Non-linear     TauD1 0.06 0.07 

Non-linear     TauD2 0.07 0.08 

Non-linear     TauDD 0.03 0.03 

Non-linear     TauTD1 0.05 0.04 

Non-linear     TauTD2 0.04 0.03 

Non-linear     mudelt1 0.05 0.04 

Non-linear     mudelt2 0.04 0.03 

  500     0.08 0.17 

  1000     0.04 0.08 

Linear 500     0.12 0.30 

Linear 1000     0.05 0.14 

Non-linear 500     0.06 0.06 

Non-linear 1000     0.04 0.04 

Linear 500   TauD 0.22 0.48 

Linear 500   TauTD 0.05 0.07 
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Linear 500   mudelta 0.09 0.11 

Linear 1000   TauD 0.08 0.22 

Linear 1000   TauTD 0.03 0.05 

Linear 1000   mudelta 0.04 0.06 

Non-linear 500   TauD1 0.08 0.08 

Non-linear 500   TauD2 0.09 0.09 

Non-linear 500   TauDD 0.04 0.04 

Non-linear 500   TauTD1 0.06 0.05 

Non-linear 500   TauTD2 0.04 0.03 

Non-linear 500   mudelt1 0.06 0.05 

Non-linear 500   mudelt2 0.04 0.03 

Non-linear 1000   TauD1 0.05 0.05 

Non-linear 1000   TauD2 0.06 0.05 

Non-linear 1000   TauDD 0.03 0.02 

Non-linear 1000   TauTD1 0.04 0.04 

Non-linear 1000   TauTD2 0.03 0.03 

Non-linear 1000   mudelt1 0.04 0.03 

Non-linear 1000   mudelt2 0.03 0.02 

    0.20   0.04 0.03 

    0.50   0.08 0.19 

Linear   0.20   0.04 0.04 

Linear   0.50   0.13 0.32 

Non-linear   0.20   0.04 0.03 
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Non-linear   0.50   0.06 0.06 

Linear   0.20 TauD 0.04 0.05 

Linear   0.20 TauTD 0.03 0.03 

Linear   0.20 mudelta 0.04 0.04 

Linear   0.50 TauD 0.26 0.51 

Linear   0.50 TauTD 0.05 0.08 

Linear   0.50 mudelta 0.09 0.12 

Non-linear   0.20 TauD1 0.03 0.03 

Non-linear   0.20 TauD2 0.04 0.03 

Non-linear   0.20 TauDD 0.02 0.02 

Non-linear   0.20 TauTD1 0.04 0.03 

Non-linear   0.20 TauTD2 0.03 0.03 

Non-linear   0.20 mudelt1 0.04 0.04 

Non-linear   0.20 mudelt2 0.03 0.02 

Non-linear   0.50 TauD1 0.09 0.08 

Non-linear   0.50 TauD2 0.11 0.10 

Non-linear   0.50 TauDD 0.04 0.04 

Non-linear   0.50 TauTD1 0.06 0.05 

Non-linear   0.50 TauTD2 0.04 0.03 

Non-linear   0.50 mudelt1 0.05 0.05 

Non-linear   0.50 mudelt2 0.04 0.03 

  500 0.20   0.04 0.04 

  500 0.50   0.11 0.24 
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  1000 0.20   0.03 0.02 

  1000 0.50   0.06 0.11 

Linear 500 0.20 TauD 0.05 0.06 

Linear 500 0.20 TauTD 0.03 0.03 

Linear 500 0.20 mudelta 0.05 0.05 

Linear 500 0.50 TauD 0.38 0.64 

Linear 500 0.50 TauTD 0.08 0.09 

Linear 500 0.50 mudelta 0.12 0.15 

Linear 1000 0.20 TauD 0.03 0.03 

Linear 1000 0.20 TauTD 0.02 0.02 

Linear 1000 0.20 mudelta 0.03 0.03 

Linear 1000 0.50 TauD 0.13 0.30 

Linear 1000 0.50 TauTD 0.03 0.07 

Linear 1000 0.50 mudelta 0.05 0.08 

Non-linear 500 0.20 TauD1 0.04 0.03 

Non-linear 500 0.20 TauD2 0.05 0.03 

Non-linear 500 0.20 TauDD 0.03 0.02 

Non-linear 500 0.20 TauTD1 0.05 0.04 

Non-linear 500 0.20 TauTD2 0.04 0.03 

Non-linear 500 0.20 mudelt1 0.05 0.04 

Non-linear 500 0.20 mudelt2 0.04 0.03 

Non-linear 500 0.50 TauD1 0.12 0.10 

Non-linear 500 0.50 TauD2 0.13 0.11 
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Non-linear 500 0.50 TauDD 0.05 0.04 

Non-linear 500 0.50 TauTD1 0.07 0.06 

Non-linear 500 0.50 TauTD2 0.05 0.04 

Non-linear 500 0.50 mudelt1 0.07 0.06 

Non-linear 500 0.50 mudelt2 0.05 0.04 

Non-linear 1000 0.20 TauD1 0.03 0.02 

Non-linear 1000 0.20 TauD2 0.03 0.02 

Non-linear 1000 0.20 TauDD 0.02 0.02 

Non-linear 1000 0.20 TauTD1 0.04 0.03 

Non-linear 1000 0.20 TauTD2 0.03 0.02 

Non-linear 1000 0.20 mudelt1 0.03 0.03 

Non-linear 1000 0.20 mudelt2 0.03 0.02 

Non-linear 1000 0.50 TauD1 0.07 0.06 

Non-linear 1000 0.50 TauD2 0.08 0.07 

Non-linear 1000 0.50 TauDD 0.03 0.03 

Non-linear 1000 0.50 TauTD1 0.05 0.04 

Non-linear 1000 0.50 TauTD2 0.04 0.03 

Non-linear 1000 0.50 mudelt1 0.04 0.03 

Non-linear 1000 0.50 mudelt2 0.03 0.02 
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Glossary 

 

Achievement: describes a measure of knowledge, skills, or abilities at the time of an 

assessment, as opposed to measures of academic aptitude or non-cognitive areas, 

such as attitude. 

Change: a difference in the quantity or quality of a measurement in a domain 

Common item design: an item selection scheme in which a subset of items on one test 

is incorporated into another test for the purpose of linking scores on the tests.  The 

common items are also sometimes called anchor items. 

Growth: movement or change along a continuum on which progress in a domain can 

be measured.   

Item discrimination parameter: parameterizes the item’s capacity to distinguish 

between examinees of ability below and above the difficulty level of the item. 

Item location parameter: parameterizes the relative difficulty of an item; the higher 

the value, the more difficult the item; also sometimes called the item difficulty. 

Latent variable: any variable that is not directly observed but is hypothesized as part 

of a structural model. 

Nonlinear mixed effects model: a multilevel model wherein effects may have both a 

fixed and a random component.  Random components vary over units in the 

study. 

Repeated measures data: data that are measured on the same examinees across time 

points; also known as panel data 
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Trajectory: Raudenbush (2001) provides an excellent definition: “Whereas a person’s 

history can capture many domains of change – for example, changes in cognitive 

skill, emotional self-regulation, mood, and social behavior – a trajectory 

describes a person’s development in one well-defined domain” (italics added; p. 

502). 
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