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Manipulation of surface topography or chemistry has been a growing trend in 

efforts to enhance the properties of medical devices. Understanding the interactions of 

biomolecules with nanoengineered surfaces is vital to assess the safety and efficacy of 

devices that incorporate these structures. In this dissertation, a model block 

copolymer (BCP) system based on poly(styrene)-block-poly(1,2-butadiene) was 

systematically modified using photochemical thiol-ene chemistry. Poly(1,2-

butadiene) molecular weight and thiol-ene ratios were systematically varied based on 

a model monomer, boc-cysteamine, to determine the efficiency of the reaction.  

The results demonstrate the polydispersity index of modified BCPs significantly 

increased when low thiol-ene ratios were employed and sometimes induced gelation 

of the reacted polymers.  Using a tenfold excess of thiol, functionalizations between 

60-90% were obtained for an acid, amine, amide, and a pharmaceutical with a 



  

pendant thiol. Calorimetry showed a 30-60 °C increase in the glass transition 

temperature of the daughter polymers.  Subsequently, films were cast from solvents 

found suitable to forming self-assembled BCP thin films. The synthetic and 

processing approach allows for the formation of nanopatterned block copolymer films 

with controlled chemistries from a single source material. 

The BCPs were further characterized using water contact angle measurements and 

atomic force microscopy in liquid. Significantly decreased contact angles were 

caused by selective swelling of charged BCP domains. Protein (fibrinogen, albumin, 

cytochrome C, immunoglobulin G) adsorption experiments were conducted under 

static and dynamic conditions with a quartz crystal microbalance with dissipation. 

The results indicate that nanopatterned chemistry and experimental conditions 

strongly impact adsorption dynamics. Adsorption behavior was dependent both on 

protein structure and the characteristics of the surface. Depending on the structural 

stability of the protein, polyelectrolyte surfaces significantly increased adsorption 

over uncharged controls.  
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1 Introduction 
 

1.1 Significance 
 
 

Nanoengineered materials are increasingly investigated for use in biomedical 

devices, imaging, in-vitro diagnostics, and drug-delivery systems by the properties 

attributable to their dimensions.1 Engineered nanomaterials include nanoparticles, 

aggregates, nanotextured surfaces, and nanofibers. Chemical or topographical 

modification on the surface contacting the physiological environment is seen as a 

method to enhance the biocompatibility of blood contacting devices such as stents, 

grafts, oxygenators, pacemaker leads, and catheters.2 Some methods to fabricate or 

process nanotextured surfaces are chemical etching of metals, lithographic processes, 

or use of self-assembled systems such as block copolymers (BCPs).  

The difficulty of nanomaterial testing was highlighted in recent reviews and 

remains a concern for academics, industry, and regulators.3 While clinical data 

remains the biocompatibility gold standard as highlighted in ISO-10993, in vitro data 

is gaining traction due to cost economy and high throughput analytical methods. 

However, disagreements within the community concerning preliminary aspects of 

biocompatibility such as protein adsorption still persist. The comparison of results 

from dissimilar materials and proteins could explain ambiguous results from distinct 

studies. Therefore, the definition of a model system where chemistry can be 

systematically altered may contribute to this knowledge base and help in the 

development of standardized testing methods for nanomaterial analysis. 
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  In fact, BCP materials penetrated the interventional cardiovascular device market 

in 2002 with the approval of Taxus, which has a BCP coating used for the controlled 

release of a therapeutic. An analog to the poly(styrene)-block-poly(isobutylene)-

block-poly(styrene) (SIBS) biomedical polymer was used in this dissertation to 

develop a model system where the chemistry could be systematically varied within a 

BCP pattern. While chemical reactions on the styrene block of SIBS are possible, 

wide scoped synthetic schemes are not feasible and the reagents often present health 

or environmental concerns.  

This dissertation describes a modular synthetic approach using thiol-ene 

photochemistry, which resulted in the successful modification of poly(styrene)-block-

poly(1,2-butadiene) (PS/PB) with various functional groups, including an acid, 

amide, amine, and an anti-hypertensive pharmaceutical. This system was 

characterized with surface and bulk techniques to assess the reaction yields and 

resultant polymer properties after thiol addition. Subsequently, this model system was 

used to determine how BCP morphologies affected the adsorption of proteins with 

varying charge and structure. 

 

1.2  Project Goals 
 
 
The objectives of this research were: 
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1. The synthesis and characterization of a nanopatterned BCP library with 

systematically modified functional groups and description of how the 

synthesis process altered the properties of these polymers.    

2. The understanding of how chemically distinct BCP morphologies affect the 

adsorption of proteins with altered charge, size, and stability. 

 

The methods used to achieve these objectives: 

 

1. Systematic modification of PS/PB BCPs was completed using photochemical 

thiol-ene reactions to graft an acid, amide, amine, and an anti-hypertensive 

pharmaceutical to the side chains of PB. 1H nuclear magnetic resonance 

spectroscopy (NMR) and gel permeation chromatography (GPC) were utilized 

to obtain quantitative measurements of the degree of functionalization and the 

polydispersity index (PDI). Differential scanning calorimetry was employed 

to describe the resulting thermal properties of thiol grafted BCPs. The surface 

morphologies of the PS/PB BCPs were imaged using atomic force microscopy 

(AFM).  

2. Contact angle goniometry measurements were used to determine the role of 

grafted thiols on the surfaces’ wettability. Further AFM imaging was used to 

compliment contact angle measurements and evaluate the swelling of the 

surfaces after exposure to phosphate buffer. Finally, a quartz crystal 

microbalance with dissipation monitoring (QCM-D) was used to quantify 

protein adsorption and qualify the nature of the protein layer. Proteins with 
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varying charge, molecular weight (MW), and stability against denaturation 

were examined to understand whether nanopatterned BCPs surfaces affect 

protein adsorption.  Experiments were completed under both static and 

dynamic conditions to determine whether the testing method affected the 

nature of the protein adlayer. 

 

The results of these experiments indicated that: 

 

1. Preliminary experiments showed that low thiol-ene ratios on high MW BCPs 

increased the PDI and sometimes induced gelation, as confirmed by GPC. 

NMR spectra revealed that large amounts of excess thiol were required to 

obtain high functionalization degrees on high MW PS/PB BCPs. Using large 

excess thiol concentrations, high functionalization degrees were obtained and 

resulted in the modification of PS/PB with an acid, amide, amine, and a 

pharmaceutical compound. DSC indicated that large changes in the glass 

transition temperature (Tg) resulted from the modification process due to lost 

configurational entropy and free volume in the products. BCP nanostructures 

were successfully processed from spin coating and imaged using AFM using 

solvents found suitable through an iterative technique. 

2. Static contact angle measurements confirmed that the grafting process induced 

large wetting differences. Liquid AFM measurements corroborated that 

wetting differences occurred due to selective swelling of the BCPs grafted 

with charged monomers. The results from QCM-D experiments indicated that 
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significant differences were observed between static and dynamic adsorptions.  

The use of proteins with different charges, MW, and stability against 

denaturation confirmed that the interactions between proteins and BCP 

nanopatterns are dependent on protein properties and the surfaces.   

 

1.3  Background 
 

1.3.1 Blood Contacting Medical Devices 
 

Medical devices often contact blood and other physiologic fluids throughout their 

normal use. Short-term blood contacting devices include catheters, angioplasty 

balloons, and blood transfusion bags. Devices implanted for long periods in patients 

include vascular stents, grafts, oxygenators, pacemakers, and defibrillators. Despite 

hermetically sealed metal encasements for pacemakers and defibrillators, electric 

leads connect to the heart and involve incidental contact with blood.4 The fouling of 

blood contacting medical devices by proteins, small molecules, and various cellular 

phenotypes may result in diminished effectiveness or result in adverse events such as 

myocardial infarction.5  

The use of foreign materials may adversely affect patient health from contact during 

surgery or during a device’s regular lifetime in the case of long-term implants. In fact, 

the wide scope of blood contacting medical devices and varying conditions in which 

they are utilized suggests that a systematic study of biofouling is required. Since the 

aforementioned medical devices contact blood both under static and dynamic 
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conditions, evaluating these situations could aid in the development of risk 

assessments and in vitro methods for standard development. 

Material biocompatibility determination remains challenging despite numerous 

revisions to ISO-10993, owing to the wide scope of medical devices.6  The suggested 

tests for implanted blood contacting devices such as vascular stents and grafts include 

thrombosis and hematology studies using either in vitro or clinical in vivo methods. 

These may include, but are not limited to, thrombus gravimetry, percent occlusion 

from clinical studies, and optical/electron microscopy to examine the implant for 

leukocyte and platelet adhesion. 

Regardless of contact duration, an inflammatory response initiates when a device 

perturbs the physiological environment and causes injury. The host reaction to foreign 

materials proceeds as following: injury, acute inflammation, chronic inflammation, 

granulation tissue, foreign body reaction, and fibrosis.7 In the specific case of blood 

contacting materials, the interplay between plasma proteins, platelets, and surface 

characteristics will help determine the physiological response. Platelets are anuclear 

cells approximately 4 µm in diameter and disc shaped at rest. Upon activation, 

platelets change shape and extend pseudopodia that augment their ability to form a 

hemostatic clot, as shown in the scanning electron microgram Figure 1.1. Platelets 

require Ca2+, fibrinogen, and a conformational change in the GP IIb/IIIa receptor to 

form the aggregate making up a thrombus. Platelet adhesion or activation in response 

to a medical device can cause coagulation and may lead to an occlusion (blockage), 

ending in device failure and potential patient mortality.8  
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Figure 1.1. Scanning electron microgram of human platelets on a block copolymer 

surface. Scale bar: 10 µm.  (Silverstein J.S., unpublished data). 

 
 

Fibrinogen’s role in the coagulation cascade underlines the importance of 

understanding protein adsorption. After injury, protein adsorption is one of the 

primary events establishing the physiological response to implanted materials and is a 

major factor in determining either successful tissue integration or adverse reaction.9  

The fouling of foreign materials by proteins or small molecules may result in reduced 

or diminished effectiveness.10 For the case of electrical leads, lower signal strength 

may occur after biofouling .11 Additionally, adsorbed plasma proteins involved in the 

coagulation cascade such as fibrinogen or von Willebrand’s factor can increase 

platelet adhesion on synthetic polymeric surfaces.12 Platelet adhesion on implants 

may result in a thrombotic event, which may cause heart attacks, or myocardial 
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infarction.13 Cleavage of the fibrinogen chain by thrombin has been established as a 

major factor in the onset of coagulation.14 Considering that structural changes may 

occur when proteins adsorb to a surface, their study may serve as an indirect method 

for determining a material’s propensity to induce coagulation. 

 

1.3.2 Protein Adsorption 
 

Despite decades of research, there is disparity describing substrate effects on 

protein adsorption.9 Numerous methods have been developed or utilized to define 

protein adsorption on the surface of synthetic or natural substrates. Before assessing 

the merit of each approach, the structure and properties of proteins will be introduced 

with a consideration of the physical interactions arising as a protein contacts a 

synthetic surface. 

Proteins are biomacromolecules consisting of a subset of 20 different amino acid 

(AAs) linked by peptide bonds. The sequence of AAs within a protein is described as 

the primary structure, which is equivalent to the chain architecture described in 

Chapter 1.4.1.15 The AAs making up proteins have distinctive solution properties on 

their side chains, including polarity, charge, and hydrophobicity. The combination of 

weak non-covalent interactions and the hydrophobic effect induces the self-assembly 

of motifs into structures such as α–helices and  β–sheets, which are defined as 

secondary structures. The grouping of secondary structures from one polypeptide 

chain forms the tertiary structure. If a protein consists of more than one polypeptide 

chain, the assembly of tertiary structures is described as the quaternary structure.15 
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Proteins are often classified by their shape and aqueous solubility.15 Globular 

proteins, such as albumin, hemoglobin, and immunoglobulins are water soluble and 

found in circulation. Fibrous proteins such as actin, collagen, and keratin typically are 

insoluble in water and form connective tissues in the body. This discussion will be 

limited to globular proteins since they are primarily found in blood, unlike fibrous 

proteins. 

Proteins are also categorized by their isoelectric point (pI), which is the pH where 

the overall charge is neutral.15 When solution pH is above the pI, proteins have 

overall negative charge. Likewise, proteins with a pI larger than the solution pH are 

positively charged. For example, human fibrinogen has a pI of 5.5, thus at 

physiological pH 7.4 it is a negatively charged protein.16 Understanding the pI is vital 

to the determination of proteins interactions with surfaces, which often consist of 

heterogeneous polarities or charges themselves. However, charge anisotropy is 

present on proteins and the pI should only be considered an additive measure of 

charge patches.17 

When a protein solution contacts a surface, several events must be considered. 

Primarily, diffusion or convection of proteins occurs from the bulk solution towards 

the solid-liquid interface.18 Under diffusion controlled adsorption, the bulk 

concentration gradient in the solution drives protein diffusion towards the interface. 

Diffusion mediated adsorption is related to the square root of time.  

Following diffusion, protein adsorption occurs, which is historically described by 

the Langmuir isotherm model:18 
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𝑣𝑠 =
𝑘𝐴

1 + 𝑘𝐴
 

 

Where vs=mole/area of adsorbent, k=rate constant, and A=bulk solute concentration 

 

The Langmuir model has a number of preconditions, including a monolayer 

assumption, surface homogeneity, no competitive adsorption, dilute solution, and 

reversibility. While this model was useful for characterizing protein adlayer 

formation, adsorption processes are rarely reversible on the surface of hydrophobic 

polymers, such as those encompassing medical devices.18 

After the initial adsorption process structural changes within the protein adlayer 

may occur including partial denaturation. This is especially prevalent when 

investigating hydrophobic proteins such as serum albumin on hydrophobic 

polymers.18 Several mechanisms have been proposed that describe the physical 

processes driving adsorption induced conformational changes for hydrophobic 

polymer and protein systems. Dehydration may occur from bonding of 

complimentary hydrophobic domains on each respective structures.19 Dehydration 

increases protein’s entropy through the structural changes occurring during 

denaturation. These structural changes represent some degree of denaturation, which 

can induce coagulation in the case of fibrinogen.20 

Electrostatics certainly plays a role in the adsorption process, yet their contribution 

is still not well established. Results often conflict with electrostatic arguments of 

repulsion between a negatively charged protein and polymer. Several mechanisms for 

like-charged attraction between proteins and surfaces have been proposed. The 
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availability of anionic and cationic species in buffers may provide a counter ion 

bridge between like-charged proteins and surfaces.18 Additionally, the pI of a protein 

is a parameter that is the additive contribution of charged amino acids. Thus, there are 

distinct regions within a negatively charged protein consisting of cationic segments.19 

Electrostatics can play a decisive role in the adsorption of rigid proteins since their 

hydrophobic domains are less likely to become exposed upon adsorption.19 

 Considering the numerous parameters participating in protein adsorption, thorough 

studies include the use of proteins with dissimilar pI, MW, and stability against 

denaturation. Among the most relevant to the study of blood contacting polymers are 

proteins present in plasma, which is the acellular component of blood. Typically, 

these would include fibrinogen, serum albumin, and immunoglobulin G (IgG). 

 

1.3.2.1 Experimental Methods in Protein Adsorption 
 

Labeling, spectroscopy, enzyme linked immunosorbent assays (ELISAs), surface 

plasmon resonance sensors (SPR), and the quartz crystal microbalance (QCM) have 

been used to characterize protein adsorption to varying degrees of success.8, 21-25 

These methods confer varying amounts of both qualitative and quantitative analysis. 

In this discussion, an attempt will be made to impartially describe the strengths and 

shortcomings of each approach to protein measurement. 

Protein labeling using fluorophores such as fluorescein isothiocynate (FITC) is a 

facile method for investigating protein adlayers on material surfaces in a high 

throughput manner using a fluorescent plate reader. FITC tagged proteins are readily 

available from commercial chemical supply houses such as Sigma Aldrich or 
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Invitrogen. Additionally, kits for tagging proteins in-house with more stable 

fluorophores such as AlexaFluor are readily available from similar suppliers. 

However, fluorescent tags are frequently bulky conjugated Π-systems, which have 

significant hydrophobic properties. The hydrophobicity could potentially increase 

adsorption on hydrophobic polymers. Regardless, a protein’s properties may become 

significantly altered by fluorescent tags. While some studies have validated unaltered 

adsorption properties of fluorescently tagged proteins, separate studies concluded that 

fluorophores indeed change the solution properties of proteins.26, 27 

The use of radioactive isotopes such as 125I is another label-based technique used to 

measure adsorbed protein layers. Before the advent of quality and cost effective 

fluorophores, radioactive isotopes were common in biology laboratories. While low 

isotope concentrations are typical, the main concern is the safety of laboratory 

workers. Often, contamination issues are present in laboratories using radioactive 

isotope based methods and health concerns continue. Increasingly, scintillation 

counters are being phased out and replaced with non-radioactive protocols. 

ELISAs have been used to examine protein adlayers through established antibody-

antigen binding events.25 ELISAs for protein adsorption compare surfaces with 

unknown concentrations to a calibration curve from standardized serial dilutions of 

the antigen solution. In an iteration of ELISA, antibodies tagged with an enzyme such 

as horseradish peroxidase are developed with reagents such as hydrogen peroxide to 

provide colorimetric contrast read with a plate reader. ELISAs can be conducted in 

96-well plates that permit the high throughput analysis necessary for rapid material 

screening. ELISAs assume that the antibody binding site of the antigen is available, 
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which may be inaccurate due to conformation changes arising from protein 

adsorption on synthetic surfaces.28 

Spectroscopy techniques such as attenuated total reflectance Fourier transform 

infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and 

circular dichroic spectroscopy have been used to examine protein adlayers.29-31 The 

merits of spectroscopy techniques are that they confer conformational information 

about adsorbed protein layers, including the relative percentages of secondary motifs 

such as α-helices and β-sheets.29 A disadvantage of the various spectroscopy 

techniques versus the aforementioned labeling techniques is their low sample 

throughput and sometimes require ultra-high vacuum (UHV). The UHV requirement 

for many spectroscopic techniques forbids examination of adlayers in aqueous media, 

which may introduce artifacts after sample preparation. Additionally, many 

spectroscopy techniques are incapable of providing quantitative information about 

adsorbed layers.  

A surface plasmon resonance sensor (SPR) is a label-free technique to compare 

relative protein adsorption on surfaces. SPR works through the optical excitation of 

plasma waves on the surface of pristine noble metals such as gold or silver.32 

Transduction occurs through the altered refractive properties of the adsorbed layer. 

While SPR can detect infinitesimal chemisorption processes qualitatively, the pristine 

optical properties of the noble metal layer make their reusability difficult, especially 

in the case of polymer films. Additionally, an assumption of constant refractive 

indices is included with SPR experiments, which may not always be valid.21 
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1.3.2.2 Quartz Crystal Microbalance 
 

QCM is an attractive option due to its ability to quantify adsorbed layers and 

provide some conformational information, while providing reusability of substrates 

absent in the SPR technique. QCM works by the application of an external driving 

circuit to a quartz crystal. Alternating current application to a quartz crystal causes 

vibrations due to the piezoelectric effect. Commercially available quartz crystals 

typically oscillate at a fundamental resonant frequency of 5 MHz. Quartz oscillators 

are advantageous due to their high Q-factor, which is approximated as the ratio of 

energy stored and dissipated during one oscillation. A formal definition of the inverse 

Q-factor, or dissipation, is discussed later in this section. The high Q-factor of quartz 

ensures that vibrational frequency is not damped and thus is less subject to drift than 

other piezoelectric materials. 

Typical quartz crystal oscillators are AT-cut, which describes the orientation of the 

quartz crystal plane and are used to optimize manufacturing yield and performance. 

The AT-cut ensures that the mechanical shear induced during electric field 

application occurs in a central location on the crystal surface.33 The resonance 

frequency at which quartz vibrates is defined as:34 

 

𝑓 = 𝑛
𝑣𝑞
2𝑡𝑞

= 𝑛𝑓0 

 

Where vq=speed of sound, tq=thickness of quartz (typically 300 µm), n=overtone, and 

f0=fundamental frequency 
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Multiple resonance frequencies occur in quartz oscillators, which originate from the 

normal modes of vibration, also known as overtones. After replacement of the 

thickness, tq, with m/ρ (mass/density), differentiation with respect to mass, and 

rearrangement results in a linear relationship between frequency and mass change 

when the mass of quartz is much greater than the adsorbed layer. This relationship 

was first described by Sauerbrey:35 

 

∆𝑚 = −𝐶
∆𝑓
𝑛

 

 

Where C=constant (17.7 ng·cm-2·Hz-1), n=overtone, and ∆f=change in frequency 

(Hz) 

 

Conventional QCM with the Sauerbrey equation can be used for gravimetry with 

limitations less than 0.01 Hz in vacuum for the fundamental frequency, which 

corresponds to less than 1 ng/cm2.34 In liquid, the sensitivity is approximately 0.2 Hz, 

or ~20 ng/cm2 according to the Sauerbrey equation. The high sensitivity of QCM in 

vacuum was used to quantify industrially used processes such as atomic layer 

deposition.36 Outside of vacuum, QCM can be used to determine the thickness of 

films, assuming the coating is uniform and the crystal’s frequency is measured both 

before and after processing.37  

QCM measurements with the Sauerbrey equation provide thickness or mass 

quantities of solid films assuming uniform density. The sole use of frequency changes 

in conventional QCM limited the measurement of biological samples, which often 



 16 
 

contain large amounts of bound hydration layers.34 The reasons for reduced QCM 

performance in liquids are described in the succeeding paragraphs. Rodahl, Hook, and 

coworkers developed a novel QCM system in the 1990s introducing a dissipative 

measurement combined with the frequency changes typical of the QCM. This 

instrument was termed QCM with dissipative monitoring (QCM-D). The instrument 

used for this dissertation is shown in Figure 1.2 and consists of 4 distinct sample 

loops that can independently operate. 

 

 
Figure 1.2. Picture of the quartz crystal microbalance with dissipation. Combined 

with a multichannel peristaltic pump, 4 samples can be run simultaneously (Courtesy 

of Q-Sense). 
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Dissipation is the inverse of the aforementioned Q-factor and is defined as:38  

 

𝐷 =
𝐸𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑
2𝜋𝐸𝑠𝑡𝑜𝑟𝑒𝑑

 

 

This term is not merely the ratio of energy lost through gravimetric increases, but the 

sum of all contributions to acoustic dissipation. When switching from vacuum/air to 

aqueous media, the higher viscosity causes significant damping of the oscillations. 

While a formal definition of the frequency and dissipation change from air to water 

will not be described, briefly, they are both functions of the fluid viscosity, density, 

quartz density and thickness. 

Pertinent to this discussion of QCM-D is the data acquisition system used in this 

dissertation. The QCM-D used in this dissertation can rapidly open and close the 

driving circuit to measure frequency and dissipation. When the circuit is opened, 

frequency driving ceases, signal decay is measured, and fit to an exponentially 

damped sinusoid:39 

 

𝐴(𝑡) = 𝐴0𝑒𝑡/𝜏 sin(𝜔𝑡 + 𝜑) +C, for t≥0 

 

Where A0=Initial amplitude, t=time, τ=decay time constant, ω=angular frequency, 

 ϕ=phase shift 
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The QCM-D can determine ω and τ through an algorithm incorporated within its 

software package, Q-Soft. With these parameters, the total signal dissipation can be 

calculated as:39 

 

𝐷𝑡𝑜𝑡𝑎𝑙 =
2
𝜔𝜏

 

 

Now that the signal processing techniques for the QCM-D were described, the 

technique for converting the raw dissipation value into an interpretation of mass will 

be discussed. 

When considering an adlayer within a liquid medium on a crystal, there are several 

parameters that relate to structure. For the explicit case of an adsorbed protein, both 

the protein and its coupled hydration layer contribute to its structure. QCM without 

dissipative monitoring, as discussed previously, cannot recognize the hydration layer 

and translates the complex into a thickness. This would make QCM equivalent to an 

SPR technique despite dissimilar mechanisms of action (ie. vibrational vs. optical). 

Decoupling the dampening of quartz from the adlayer was a necessity for the 

development of QCM-D. 

The model describing viscoelastic adlayers on quartz surfaces was described by 

Voinova et al.40 The theory uses a Voigt viscoelastic model with a spring and dashpot 

operating in parallel. The Voigt model is shown schematically in Figure 1.3 with a 

generalized force/displacement versus time graph. The dissipation of the adlayer is 

described as a function of overtone, thickness, density, viscosity, and elasticity. 
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Figure 1.3. Spring and dashpot diagram of the Voigt model used to fit QCM-D data 

in this dissertation. The dashpot element causes non-linear deformation behavior 

upon force application and release 

 
This discussion will now shift to experimental results and QCM-D approaches from 

various research groups. QCM-D has been shown to more accurately estimate mass in 

liquids than the Sauerbrey relation due to consideration of adlayer viscoelastic 

properties.41 The constant switching of the drive circuit permits real-time 

measurement of adlayers and affords both frequency and dissipation data within short 

time scales (approximately 3 Hz).  

QCM-D has been used to describe the solution and mechanical properties of 

polyelectrolyte multilayers (PEM), polymer brushes, lipids, and nanoparticles.42, 43 

Specifically, QCM-D was able to determine the thickness and pH dependent swelling 

of PEM membranes.42 Through the Voigt model, the shear, loss, and complex moduli 

could be calculated and agreed with complimentary techniques. 

QCM-D permits the study of proteins under dynamic and static conditions, which is 

vital to the application to different medical device circumstances. The laminar flow 

dynamics of the QCM-D flow module were established through computational 

methods.44 Laminar flow is a precondition because turbulence without fully 
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developed flow can induce shear distortion of the crystal’s vibrations that may be 

decoupled from its motion. The Reynolds number (Re) is a dimensionless parameter 

describing the turbulence of a dynamic fluid, where Re>2000 are turbulent systems. 

Typical Re from the QCM-D range from 0.2-2 and are lower than typical physiologic 

conditions in large blood vessels.45  While the behavior of proteins such as fibrinogen 

or vWf are known to be shear dependent,46 the ability to conduct dynamic 

experiments is still more optimal when a medical device’s application involves 

flowing media.  

QCM-D has been used to describe protein adsorption on self-assembled 

monolayers, BCPs, metals, and biopolymers.9, 24, 47-50 Reduced protein adsorption 

under flow has been shown on many surfaces using QCM-D and complimentary 

techniques.51-53 The origin of flow reduced adsorption has been hypothesized to occur 

due to shorter contact times.51  Since the QCM-D is an acoustic technique, 

compositional information about adlayers cannot be determined in competitive 

adsorptions. However, antibodies that bind to proteins within a competitive system 

can yield information about relative binding and characterize the adlayer’s nature.54 

Qualitative information about the conformation of adsorbed protein layers can be 

afforded through the analysis of dissipation versus frequency plots (D-f plots).55 

Through these studies, a qualitative relationship between the slope of D-f plots and 

protein stability against denaturation was established. The increased dissipation of 

partially denatured adlayers originates from structural transitions from compact 

folded states to randomly coiled conformations.55, 56 D-f plots with large slopes may 
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be indicative of protein denaturation; however complimentary techniques are required 

to confirm these hypotheses. 

 

1.3.3 Patterning Surfaces 
 

Self-assembling systems are the prevailing technique for fabricating bulk or surface 

patterns. The top-down approach to self-assembly attempts to strip down larger 

components by using various stimuli, including milling, lithography, and other 

variations used mostly in the semiconductor industry. Electron-beam (e-beam) 

lithography is a high resolution technique with the ability to pattern single 

nanometers; however e-beam tools require large capital expenditures, making the cost 

of a silicon master exceedingly high. Whitesides developed soft lithography where 

masters are fabricated using e-beam lithography and made into reusable stamps for 

printing.57 The soft lithography technique was further improved by Desimone and 

coworkers to create nanoparticles with controlled shape and size using high 

throughput continuous mold manufacturing processes.58  

The bottom-up approach to self-assembly uses materials made of smaller individual 

components to form superstructures through a combination of weak non-covalent 

interactions such as Van der Waals forces, hydrogen bonding, and ionic bonds.59 The 

advantage of the bottom-up approach is the cost effectiveness of self-organizing 

systems. The bottom-up approach includes protein nanofibers, colloidal assemblies, 

liposomes, and BCPs, among numerous other systems.60, 61  The bottom-up 

approach’s strength is the tunable final properties of the assembled construct through 

intelligent molecular design.62 This dissertation will focus on synthetic BCPs to create 
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nanostructured surfaces. The principle reason for using BCPs to form nanostructures 

is their cost effectiveness and ability to pattern large area films with little material. 

 
1.3.3.1  Block Copolymers  
 

BCPs consist of at least two unique homopolymer sequences covalently bound to 

one another. BCPs encompass a portion of the bottom-up approach to self-assembly 

due to their inherent ability to organize into nanostructured materials. The miscibility 

of two homopolymers within each other is low, which typically results in phase 

separation when processing homopolymer blends.63 Two polymers are miscible if the 

change in Gibbs free energy, ΔG, is negative: 

 

ΔGmix = ΔHmix – TΔSmix     

 

The chemical linkage between BCP segments inhibits macrophase separation and 

results in the microphase separation phenomena when ΔGmix is positive .63  

Microphase separation in BCPs was predicted by theoretical calculations by 

Leibler.64 The BCP phase diagram developed by Leibler’s theory dictates that 

microphase separation occurs above a critical χN value known as the order-disorder 

transition (ODT). The Flory interaction parameter between the segments of a BCP, χ, 

can be approximated as:65  

 

χ ≈ α + 𝛽𝑇−1      
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Where α and β are experimentally determined enthalpic and enthalpic parameters for 

a given BCP system and T=temperature 

 

Below the ODT, BCPs exist in a disordered homogeneous state.  The ODT is defined 

by the spinodal line, where χNS the critical value of χN where the microphase 

separation phenomena occurs. When χN≈10 for the case of symmetric BCPs, a shift 

from a homogenous mixtures to microphase separated domains occurs.64 Mixed BCP 

domains are typically observed experimentally in low MW systems such as oligomers 

or with chemically similar blocks with low χ values. Figure 1.4 shows the 

experimentally determined phase diagram for poly(styrene)-block-poly(isoprene) 

BCPs and some of the morphologies possible from A-B diblock copolymer systems. 

 

Figure 1.4. Experimentally determined phase diagram for poly(styrene)-block-

poly(isoprene) diblock copolymers.  (Reproduced from Khandpur et al66) 
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BCP morphology depends on both χN and the volume fraction (φ) of each 

respective block as shown in the phase diagram. For an arbitrarily large χN value, 

lamellae, ordered bicontinuous double-diamond, hexagonal closed packed cylinders, 

and body centered cubic spherical morphologies can be obtained as φA shifts from 0.5 

to 0.85. Structure within structure morphologies such as spheres within lamellae and 

sphere, spheres within cylinders, and various other permutations of the basic 

morphologies are possible when  BCPs contain more than two distinct homopolymer 

sequences.67 However, this dissertation will focus on the properties of AB diblock or 

ABA triblock copolymers, which have similar properties to their diblock analogs. 

Leibler’s theory indicates that for χN=20 and φA=0.75, the BCP structure would 

consist of B-block cylinders within an A-block matrix. For the inverse situation, 

where χN=20 and φA=0.25, the BCP morphology would consist of A-block cylinders 

within a B-block matrix.  As φA approaches unity, χNS diverges towards infinity 

because the amount of the B-block approaches zero. 

BCP systems with large χN values are described with the strongly segregated limit 

(SSL) of BCP microphase separation.63 Likewise, small χN values are described by a 

weakly segregated limit (WSL). WSL BCPs are traditionally defined as systems with 

χN>>10, whereas SSL BCPs have χN≤10. The implications of each limit correspond 

to the sharpness of the phase boundary between adjacent BCP domains. Thus, WSL 

BCPs have sharp phase boundaries and SSL BCPs contain more diffuse composition 

transitions. While this dissertation did not experimentally determine χN values of the 

model system described, there is some evidence in the literature that some 

amphiphilic BCPs consist of strongly segregated.68 
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Typically, the MW of relative fraction of each segment in a BCP is targeted during 

the synthetic process. Reaction parameters can be adjusted by a polymer chemist to 

produce BCPs with desired morphologies and sizes. The prevailing technique for 

synthesizing BCPs is anionic polymerization.65 Anionic polymerization is a “living” 

reaction, where no termination steps exist until the addition of a terminating 

compound.69 When monomer initiation is much faster than chain propagation, 

polymers with narrow MW distributions can be obtained.  

Anionic polymerization can obtain polymers with low polydispersity, however this 

scheme is limited by the lack of reactivity with polar and charged species, such as 

carboxylic acid groups.70 A thorough treatment of polymer MW and polydispersity is 

included later in this text. Protecting groups can be used to synthesize BCPs with 

charged groups such as the case of poly(styrene)-block-poly(tert-butyl acrylate). After 

styrene monomer exhaustion during synthesis, the tert-butyl acrylate block is 

polymerized and subsequently hydrolyzed into poly(acrylic acid) post-

polymerization.71 

One of the primary difficulties with processing BCPs is aligning their domains, 

which are subject to interfacial effects with the substrate and air during film 

manufacture. BCP domains can be aligned or oriented by several methods, including 

but not limited to tuning film thickness, patterned substrates, and external fields.72 

Tuning the film thickness during casting is a simple way to control BCP domain 

orientation, as validated by both theory and experiments.73, 74  

Despite the numerous methods to process aligned BCP domains, this dissertation 

will concentrate on obtaining reasonably oriented films from spin coating. Spin 
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coating affords high throughput film casting, unlike other processing techniques. 

Biomedical materials and devices are often fabricated using spray or roll coating with 

a flash annealing process to dry solvent from the films. These methods are often used 

for their high throughput; however they require significantly more material than spin 

coating. 

 

1.3.3.2 Thiol-ene Chemistry 
 

Increasingly, polymers with tailored properties are required for a variety of 

applications, including surfactants, ionomers, and bioactivity.75, 76 These polymers are 

commonly defined as functional polymers, which contain chemical groups that can 

participate in a reaction or ligand binding without degradation.77 Functionalities 

typically exist at the polymer chain end, throughout side chains, or on the branches of 

dendrimers. End-functional polymers are typically synthesized either by the use of 

macroinitiators or by chain terminating molecules with an R-group of choice.78, 79 

Dendrimers have been traditionally synthesized by orthogonal coupling reactions, 

which often require long reaction times.80 More recently, techniques that involve a 

modular approach to synthetic chemistry, such as thiol-ene chemistry, were used to 

rapidly synthesize dendrimers.81 

A modular synthetic approach is imperative for creating functional polymers for 

several reasons. Manufacturing costs for monodisperse polymers can be high, thus the 

ability to create countless materials from one reaction stock would decrease the price 

of functional polymers.  For a reaction to be considered modular, it should efficiently 

proceed without functional group limitation. Several reaction schemes are modular in 
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nature, including the Huisgen cycloaddition, Diels-Alder, thiol-yne, and thiol-ene 

reactions.82 The thiol-ene reaction is the focus of this dissertation due to the 

commercial availability of unsaturated BCPs synthesized from diene monomers. 

Additionally, the PS/PB BCP system used is an analog of the SIBS triblock 

copolymer used in some blood contacting medical devices.  

Alkenes can be modified using several compounds, including but not limited to 

hydrogen halides, oxymercuration, and catalytic hydrogenation.83 These reagents are 

halogenated, toxic, or gaseous, which complicates reaction conditions and waste 

disposal. Free radical addition, including the thiol-ene reaction, is a method that 

permits the addition to alkenes without functional group limitations. Sulfur’s 

reactivity with double bonds was discovered in the 19th century by Goodyear to 

enhance the mechanical integrity of poly(isoprene), or natural rubber.84 The radically 

mediated vulcanization technique invented by Goodyear used gaseous sulfur and high 

temperature to cure rubber. The high temperatures used in vulcanization processes 

may be incompatible with pharmaceutical compounds. Additionally, the reactivity of 

unbound sulfur atoms with the disulfide bonds of proteins may cause denaturation.85 

Thus, a synthesis including the removal of unreacted sulfur compounds and 

processing without high temperatures are optimal for biomaterial coatings. 

Thiol-ene reactions involves the addition of functional thiols to unsaturated bonds.86 

These include the crosslinking reaction with multifunctional sulfur compounds, 

known as vulcanization, and the addition of monofunctional ω–thiols. Recently, thiol-

ene chemistry has been explored by several groups to synthesize polymer networks, 

BCPs, dendrimers, liquid crystals, end-functional and backbone modified polymers.81, 



 28 
 

87-90 Figure 1.5 schematically depicts some of the modification possibilities with thiol-

ene and other modular reaction schemes. These modifications include side groups, 

chain end, or telechelic functionalities. Thiol-ene chemistry can be employed for 

interfacial modifications, including solvent dispersed nanoparticles or the surfaces of 

thin films containing either unsaturated bonds or thiols.91-93 Photochemical or thermal 

initiation may be used to generate sulfenyl radicals, although photochemical 

strategies were found to be more effective.94 Low intensity ultraviolet sources are 

capable of generating radicals including renewable resources like sunlight.95  

After radical initiation, a second initiation step occurs where the radical transfers to 

the thiol by hydrogen abstraction.88 The thiol-ene reaction kinetics have been 

described by several groups and are summarized in Figure 1.6. After thiol addition to 

 

 

Figure 1.5. Depiction of some modifications possible with thiol-ene chemistry or the 

combination of two modular processes. These include backbone, end-functional, and 

telechelic modifications. 
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an alkene, radical propagation occurs either by initiating another sulfenyl radical or 

through transfer to the adjacent carbon atom. In the case of the thiol-ene reaction on 

poly(1,2-butadiene) (PB), radical propagation within the pendant chain can increase 

the probability of a cyclic reaction occurring, which is discussed later in this section. 

Termination reactions involve the recombination termination of two sulfenyl radicals, 

an additional thiol reaction, or reaction with another vinyl group. The latter case is the 

origin of cyclic group formation in PB. 

The thiol-ene reaction on PB is limited by the formation of cyclic groups when 

intermediate radicals react with adjacent unreacted double bonds. The fate of pendant 

vinyl groups during and after a thiol-ene reaction are shown schematically in Figure 

1.7 for the case PS/PB, such as the polymers synthesized in this dissertation. Possible 

reaction products are no reaction, thiol addition, and thiol addition followed 

 

Figure 1.6. Reaction kinetics of the photochemical thiol-ene reaction. A 2-step 

initiation process results in sulfenyl radical formation. Propagation occurs through 

radical transfer and termination occurs by recombination. (Reproduced from Cramer 

et al88) 
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Figure 1.7. Reaction scheme of the thiol-ene reaction on PS/PB block copolymers. 

Possible reaction routes include thiol addition, no reaction, and cyclic group 

formation 

 
by cyclic group formation. Although not shown, there is a possibility that the 

photoinitiator itself adds to the PB side chains; however this side reaction was not 

observed in any NMR spectra collected throughout this work. Previous studies 

confirmed that six-membered rings reduce the possible thiol addition yield despite 

full conversion of double bonds.96 In spite of cyclic formation in the thiol-ene 

reaction of PB, high yields were reported in the range of 75% modification, with near 

quantitative conversion of double bonds in most cases. Some limitations of thiol-ene 

chemistry were observed by several groups, including reduced efficiency and higher 

side product formation when using low thiol-ene ratios.89 Compared to low MW 

compounds such as monomeric olefins, polymeric starting materials exhibited large 

decreases in reactivity.89 

Poly(butadiene) based BCPs are used in this dissertation due to their widespread 

commercial availability. The diene nature of butadiene monomer feedstocks leads to 

the formation of both poly(1,4-butadiene) and PB products. Often, a combination of 

these two similar mers are targeted in the synthesis of poly(butadiene) to inhibit 

crystallization and maintain elastomeric properties. Previous research confirmed the 
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pendant vinyl groups of PB were over tenfold more reactive to thiols when compared 

to the backbone double bonds in poly(1,4-butadiene).97 The modular capability of 

thiol-ene chemistry was demonstrated for the synthesis of low MW ionomers without 

functional group limitations, including alcohols, amines, amino acids, carbohydrates, 

carboxylic acids, and fluorinated compounds.75, 76, 96, 98  

The low MW polymer systems previously investigated for the thiol-ene reaction 

cannot be used for coating applications, which require thin and bulk film processing. 

Styrene-butadiene BCPs synthesized by numerous manufacturers have MWs in the 

range of 100-150 kDa, whose mechanical properties and solution viscosity are 

optimal for film applications. Few studies have examined thiol-ene addition on high 

MW PB copolymers. Passaglia and Donati found significant issues with crosslinking 

and low functionalization using thermal initiation on styrene-butadiene random 

copolymers.99 In order to decrease crosslinking, lower concentrations of initiator were 

used at the expense of reduced functionalization. More recently, David and Kornfield 

were able to graft thiol groups to high hours.100 These polymers could be further 

reacted to create functionalities with potential optoelectronic or liquid crystalline 

properties. 

 

1.4 Analytical Techniques  
 

This section will attempt to concisely discuss the characterization techniques used 

in this dissertation. Most of this information is available in introductory graduate texts 

for polymer science and surface analysis; however a thorough background on these 

techniques would be beneficial to the reader. With that in mind, certain themes will 
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be emphasized to relate these analytical techniques to the subjects discussed in this 

text. 

 

1.4.1 Molecular Weight Determination 
 

Polymer MW is defined by several parameters, including the number-average MW 

(Mn) and the weight average MW (Mw) that are defined as: 

  

𝑀𝑛 = �𝑛𝑁𝑀𝑁 

 

𝑀𝑤 = �𝑤𝑁𝑀𝑁 

 

Where nN=number of chains with a degree of polymerization N, MN=Fw-monomer⋅N, Fw-

monomer=molar mass of the monomer and wN=the weight fraction of polymers with N 

repeat units 

 

The MW of polymers is typically determined by gel permeation chromatography 

(GPC), also known as size exclusion chromatography.101 GPC systems consist of a 

high performance liquid chromatography pump, size exclusive columns, and at least 

one concentration detector. GPC columns are packed with polymeric beads of defined 

pore sizes tuned by the manufacturer. During GPC separation, high MW chains can 

navigate through pore voids and elute in shorter times than low MW analogs. Low 

MW polymers become entrapped in column pores and require longer elution times 

than high MW components.  
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While absolute MWs can be obtained from GPC using a light scattering detector 

combined with a differential refractive index detector, equivalent values are often 

calculated due to the wide availability of internal polymer standards made from 

poly(styrene) (PS), poly(methyl methacrylate) (PMMA), and poly(ethylene oxide) 

(PEO). A representative GPC result is depicted in Figure 1.8 showing a 

chromatogram of a PS standard mixture used to relate the elution volume to polymer 

MW. GPC standards are typically chosen to closely match the repeat mer unit. GPC 

columns are demarcated with a MW range by their manufacturer. In this region, the 

relationship between log(MW) versus elution volume is nearly linear.101 Thus, 

calibration curves can be obtained using linear regressions to define the equivalent 

MW of an unknown sample, given that the unknown sample falls within the 

calibration curve. In this dissertation, PS standards were used due to the styrenic  

 

Figure 1.8. Representative GPC chromatogram of narrow molecular weight 

distribution poly(styrene) standards. Higher molecular weight polymers elute first and 

are followed by low molecular weight adducts.  
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nature of the polymers synthesized. 

As previously described, polymer MW is defined by several treatments, such as Mn 

and Mw. The population consistency of polymer MW within a given sample is 

described as the polydispersity index, PDI, which is defined as: 

 

𝑃𝐷𝐼 =
𝑀𝑤

𝑀𝑛
 

 

Polymers with large PDI are polydisperse and contain a broad MW distribution. For 

PDI<1.5, these polymers are generally considered monodisperse. The PDI and MW 

are significant parameters for the polymer chemist because they determine the final 

properties of a polymer sample. Large PDIs can produce variable mechanical, 

physical, or solution properties. 

 

1.4.2 Polymer Architecture by Nuclear Magnetic Resonance 
Spectroscopy  

 
Post synthesis, techniques are required to describe the chain architecture as part of 

the characterization process. Among the most powerful techniques is nuclear 

magnetic resonance spectroscopy (NMR). This discussion will be limited to 1H NMR, 

although the general concepts apply to 13C and 19F NMR. When electromagnetic 

radiation in the radiofrequency range is applied to nuclei with half integral spin 

quantum numbers, their magnetic moments align parallel or against the applied 

field.102 The radiation frequency required to flip the magnetic moment is defined as 

the resonance frequency.  
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Nuclear resonance frequencies in NMR are unique and sensitive to their local 

environment. Neighboring atoms can shield an atom by resisting its magnetic field 

and is described as shielding. Electron withdrawing nuclei, such as those with 

carbonyl bonds, are strongly deshielded. NMR is graphically represented by a 

dimensionless scale defined as:102 

 

𝛿 =
106(ν𝑠𝑎𝑚𝑝𝑙𝑒 − ν𝑟𝑒𝑓)

ν𝑟𝑒𝑓
 

 

Where νsample=resonance frequency of unknown peak, νref=resonance frequency of a 

known sample 

 
The technique of calibrating to the chemical shift (δ) of a known reference is 

designed into modern spectrometers. Due to the wide availability of analytical grade 

deuterated solvents, often they are used as νref.  

In this dissertation, characterization of the PS/PB starting materials by 1H NMR 

established the mole fraction of each respective polymer sequence. From these data, 

experimental recipes for the concentration of thiols were calculated to determine how 

reaction conditions affected the properties of the final products. After purification and 

drying, 1H NMR was used to assess whether impurities such as unreacted 

photoinitiator, monomer, or double bonds existed in the final product. NMR spectra 

were also used to calculate the addition yield, or functionalization degree of the final 

products.   
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1.4.3 Glass Transition Temperature  
 

 
At the temperature where a melting transition occurs the change in Gibbs free 

energy, ∆G, is zero, meaning the crystal’s free energy is equivalent to that of the melt. 

In thermodynamic terms, 
𝛿𝐺
𝛿𝑇

 is a discontinuous function at the melting temperature, 

making it a first order transition.69 The polymers synthesized in this dissertation are 

amorphous, meaning they do not form close packed structures such as crystals. While 

architectural order exists on the polymer chain itself, there are variable free volumes 

between chains in amorphous polymer films, which inhibit their crystallization. One 

reason is the inherent polydispersity of polymeric systems due to imperfect reaction 

kinetics and non-uniform stereochemistry from synthesis, or tacticity. Architectural 

effects such as branching or side chains also inhibit the crystallization of polymers 

and thorough treatment is included later in this section.   

Despite the lack of crystalline melting, amorphous polymers are temperature 

responsive at the glass transition. The glass transition temperature, Tg, is typically 

defined as the onset of segmental mobility in an amorphous polymer system.69 

Segmental mobility is referred as the ability for polymer chains to freely rotate and 

exchange across one another. At Tg, 
𝛿 𝐺2

𝛿𝑇2
 is a discontinuous function, making it a 

second order phase transition. Physically, there is a discontinuity between the specific 

volume of polymer chains and their free volumes.  

The implications of polymers with Tg above room temperature (RT) is they exist as 

glassy and sometimes brittle materials. Polymers with Tg below RT are flexible and 
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easily deformed by mechanical force. The Tg of classical amorphous commodity 

polymers such as PS, poly(1,4-butadiene), and poly(methyl methacrylate) are 

approximately 100, -88, and 90 °C, respectivefully.103 Thus, the measurement of the 

glass transition can provide qualitative information about a polymer’s mechanical 

properties. 

There are numerous architectural factors within a polymer chain that determines its 

Tg. Since high chain flexibility and rotation is characteristic of polymers above Tg, the 

primary factor determining Tg is the backbone of the polymer itself. Polymers with 

aliphatic backbones like poly(ethylene) can freely rotate and have low Tg’s in the 

range of -140 °C after discounting crystallinity.104 The addition of a backbone 

aromatic group in the case of poly(p-xylylene) causes an increase of Tg to 80 °C.105 

The aromatic ring in the backbone of poly(p-xylylene) significantly decreases the 

configurational entropy of the polymer, which requires more energy to induce 

segmental motion. Configurational entropy can be considered as the permutations 

where bond rotation in a chain can occur. While not entirely equivalent to poly(p-

xylylene), some of the PS/PB BCPs synthesized in this dissertation were subject to 

increased Tg due to this effect. 

Longer side chains off the backbone can also effectively increase a polymer’s Tg 

due to lost free volume.102 The free volume of a polymer, Vf, is defined as: 

 

𝑉𝑓 = 𝑉 − 𝑉𝑜 

 

Where V= sample volume and V0=the volume occupied by polymer chains 
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Linear polymers without side chains such as poly(1,4-butadiene) have high free 

volumes and readily permit the thermal expansion of chains when approaching Tg. 

Polymers with side chains like PB have lower free volumes and require higher 

temperatures for segmental motion to begin. 

The extent of heterogeneity within a polymer’s architecture governs glass transition 

properties. Discounting crystallinity, homopolymers exhibit a single glass transition 

due to phase uniformity.102 Random, alternating, and statistical copolymers also 

exhibit one glass transition since they form one uniform phase. Beyond the ODT of 

BCPs, their microphase separation properties induce two distinct glass transitions. 

A common method for Tg measurement is the differential scanning calorimeter 

(DSC).With two heat flow sensors, a reference pan and a container with an unknown 

sample are subjected to controlled heating ramps. When measuring the thermal 

properties of a dry polymer in air, the reference pan is empty and eliminates 

contributions from the DSC pan. While sinusoidal heating and cooling ramps are 

available from “modulated” DSC (MDSC), the experimental protocols used for this 

dissertation involve linear heating and cooling ramps. Often MDSC is used for hard 

to detect transitions, which were not the case for these studies. In the absence of a 

phase transition, DSC thermograms are relatively linear when plotting heat flow 

versus temperature. Upon the onset of a phase transition, such as the glass transition, 

a discontinuity in the thermogram occurs, which is defined as the onset. Using 

software packages available from vendors such as Perkin-Elmer or TA Instruments, 
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the onset, midpoint, and completion of the transitions are reported. In this 

dissertation, the midpoints of the glass transitions are reported. 

For simplification, polymers with Tg above RT will be referred to as hard polymers, 

whereas polymers with Tg below RT are deemed soft polymers. The SIBS triblock 

copolymer used in some medical devices is identified as a thermoplastic elastomer 

(TPE), which consists of both hard and soft polymer sequences with two distinct Tg’s, 

as discussed above.106 At RT, TPE BCPs perform like vulcanized rubbers. The hard 

PS segments of SIBS act like physical crosslinks and significantly enhance the 

mechanical properties of the soft elastomeric phase. The utility of TPEs is that unlike 

vulcanized rubbers, they can be heated above the PS hard block’s Tg and processed 

like a thermoplastic. 

Due to the wide availability and applicability of SIBS, SBS, and analogous Kraton-

like TPEs, considerable research was undertaken to explain their properties. Some 

interpenetration of the soft block’s chains into the hard PS blocks was hypothesized 

to be responsible for the decreased PS Tg when comparing to homopolymers. While 

the polymers synthesized in this dissertation are similar to SIBS/SBS and the like, the 

properties are slightly different. There is less data on PS/PB than the poly(1,4-

butadiene) analogs. However, the glass transition temperature is much higher in PB 

than poly(1,4-butadiene) and may decrease the amount of interpenetration between 

BCP domains.  
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1.4.4 Wetting by Contact Angle Measurement 

The surfaces prepared in this dissertation contact aqueous media, which necessitates 

characterization under these conditions. Surface wettability was previously 

established to be indicative of protein adsorption behavior.21 For a solid surface (A) 

contacting an aqueous environment (B) in a gaseous medium (C) the surface tensions 

(γ) between each respective phase contribute to surface wettability.107 assuming an 

inert air medium in the case of water contact angles on a polymer surface, the contact 

angle is related to γ of each phase in Young’s equation: 

 

𝛾𝐴𝐵 + 𝛾𝐵𝐶 cos𝜃0 = 𝛾𝐴𝐶 

 

Where θ0=contact angle, γij=surface tension between each interface 

 

The primary reason for measuring water contact angles on the BCP nanopatterns in 

this dissertation was to provide confirmation that the functional groups grafted to PB 

were present on the surface. Amphiphilic BCP systems have surfactant-like properties 

due to both hydrophilic and hydrophobic segments on a chain and often self-assemble 

into micelles or vesicles when dissolved in organic solvents. The resultant film may 

not present these groups on the surfaces without consideration of suitable processing 

solvents.108 

The water contact angle can also provide insight into protein adsorption behavior by 

obtaining a measure of a surface’s relative hydrophobicity. The chemistry paradigm 

“like dissolves like” also corresponds to the behavior of proteins on solid surfaces. 
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Globular proteins with significant hydrophobic cores adsorbed to hydrophobic 

polymers may rearrange or denature to reveal their hydrophobic motifs to maximize 

their entropy.  

 

1.4.5 Atomic Force Microscopy 
 

The proliferation of atomic force microscopy (AFM) has enabled scientists and 

engineers to image the surface of polymers, metals, cells, and proteins. Additionally, 

AFM confers the ability to make force measurements on these surfaces. The key 

advantage of AFM is the lack of radiation damage after sample imaging, unlike 

scanning electron microscopy (SEM). While some damage to samples occurs on a 

local scale, the areas are insignificant in comparison to the SEM. Advantages do not 

come without penalties; due to the scanning and vibrational nature of AFM, over-

estimation of feature sizes during imaging can be a factor. 

AFM in tapping mode works by the vibrational excitation of a cantilever with a 

laser, often made from silicon. The AFM probe vibrates at a resonance frequency 

which is related to its flexibility, defined as the spring constant. A piezoelectric 

scanner moves the AFM probe as it vibrates in a rastering pattern to scan a surface.109 

Through the scanning process, topographical information about a surface is recorded 

and the operating parameters can be altered in real-time. Height images are pictorially 

represented by a color scale with a defined vertical distance set by the user. Figure 1.9 

shows a prototypical image from a commercial SBS BCP with a height scale of 15 

nm. Depending on the tip used, x, y, and z dimensions can be resolved in the single 
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nanometer range. Recently, advanced operations of AFM under extremely low 

temperatures enabled the imaging of a single molecule.110 

In this dissertation, AFM imaging was used to determine the surface morphology of 

spin-coated BCP films. Initial experiments using AFM were during an iterative 

approach to obtain phase separated morphologies from the grafted amphiphilic BCPs. 

Subsequently, AFM imaging was conducted in both air and in phosphate buffered 

saline to determine how liquids affected the swelling properties of thiol grafted BCP 

films. 

 

 

Figure 1.9. Prototypical atomic force micrograph from a commercially available 

styrene butadiene block copolymer. The colors correspond to the height scale 

adjacent to the image. Scale bar: 500 nm.  
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2 : Rapid Modular Thiol-Ene Synthesis and 
Characterization of Styrene-Butadiene Block 
Copolymers  

 
In this study, modification of styrene-butadiene block copolymers of varying 

molecular weight by radical thiol addition is reported using a photochemical strategy 

that allows for reaction completion within one hour.  While alkylation of PB was 

shown to control the orientation of self-assembled butadiene-ethylene oxide block 

copolymers,111 this study seeks to synthesize and process a modular collection of 

highly functionalized BCP nanostructured films with similar morphologies. Low 

thiol-ene ratios increased the polydispersity index and in some cases, induced gelation 

of the modified or “daughter” polymers.  

Increased thiol concentrations allowed for efficient grafting of various functional 

groups, including amines, acids, amides, and a pharmaceutical with a pendant thiol. 

These polymers were characterized using NMR, GPC, and DSC. Additionally, 

microphase separation of the modified polymers into nanostructured domains from 

solution film casting is described and characterized using AFM. This work 

demonstrates the versatility of the thiol-ene reaction in creating a novel class of 

patterned block copolymers with tunable chemistry. 

 

2.1 Experimental Section 
 

2.1.1 Materials and Methods   
 
Captopril, thioglycolic acid, boc-cysteamine, thiosalicylic acid, 2-

diethylaminoethanethiol hydrochloride (DAET), anhydrous tetrahydrofuran (THF), 
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phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (BAPO), propylene glycol 

monomethyl ether acetate, dimethylformamide, and chloroform were all purchased 

from Sigma Aldrich (St. Louis, MO) and used as received.  Deuterated chloroform 

and tetrahydrofuran were purchased from Cambridge Isotopes (Andover, MA).  

EasiVial PS standards for gel permeation chromatography (GPC) calibration were 

purchased from Agilent Technologies (Santa Clara, CA). Various PS/PB diblock and 

a poly(styrene)-block-poly(1,2-butadiene)-block-poly(styrene) triblock copolymers 

were purchased from Polymer Source (Montreal, Canada).  The molecular weights 

and relative molar percentages, as determined by GPC and 1H nuclear magnetic 

resonance (NMR) spectroscopy, are summarized in Table 2.1. 

 

2.1.2 Synthesis  
 

PS/PB and PS/PB/PS were modified with various thiol compounds radically  

Molecular Weight (kDa)a PDIb Mol% PBc 

8.5-b-8.0 1.08 65 

19.3-b-18.9 1.06 65 

63.5-b-33.0 1.13 53 

14.1-b-67.0-b-24.0  1.13 71 
a As described by the manufacturer 

b Determined by GPC 
c Determined by NMR 

 

Table 2.1. Summary of the poly(styrene)-block-poly(1,2-butadiene) diblock and 

triblock copolymers used in this study.  Mole percentages were used to determine the 

thiol-ene ratio for reactions. 
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initiated using BAPO and UV irradiation.  The thiol compounds investigated in this 

study are summarized in Figure 2.1 and include boc-cysteamine, thioglycolic acid, 2-

diethylaminoethanethiol, thiosalicylic acid, and captopril.  In a typical procedure, 50 

mg of each respective block copolymer (BCP), 25 mg of BAPO photoinitiator, and a 

predefined concentration of thiol were pre-weighed into vials with Teflon septa and 

purged with nitrogen for 10 minutes.  During the purging process, a minimal amount 

of anhydrous THF was added via syringe, yielding an approximately 5 wt% solution 

with respect to polymer.  Due to the low solubility of captopril and 2-

diethylaminoethanethiol hydrochloride (DAET) in THF, a minimal amount of 

chloroform was used.  After purging, the vials were placed into an UltraLum 

photocrosslinking oven (λ=365 nm) and irradiated for 60 minutes to generate sulfenyl  

 

Figure 2.1. Summary of thiols investigated in this study.  (a) Boc-cysteamine. (b) 

Thioglycolic acid.  (c) 2-Diethylaminoethanethiol hydrochloride. (d) Thiosalicylic 

acid.  (e)  Captopril. 
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radicals. The distance between the UV lamps and the base of the vials was 

approximately 15 cm. After UV irradiation, the polymers were concentrated, and 

precipitated three times in hexane or acetone, followed by redissolution in THF or 

chloroform each time.  Finally, they were dried under vacuum at room temperature 

until reaching constant mass.  It is vital to note that applying heat during vacuum 

drying often yielded an insoluble product. 

For determination of the effects of PB molecular weight on the functionalization 

and/or gelation of styrene-butadiene BCPs, molar ratios of thiol to double bonds were 

systematically varied from 1:1 to 10:1.  The results reported were calculated from 1H 

NMR spectra.  After recognizing that excess amounts of thiols were required, 10-fold 

excess of thiol monomers were used to synthesize modified PS/PB block copolymers 

for calorimetry and thin film analysis. 

 

2.1.3 Characterization   
 

Gel permeation chromatography (GPC) confirmed molecular weight distribution 

and polydispersity of the stock and modified polymers using a Waters 515 HPLC 

pump, in-line degasser, Waters 2410 Refractive Index Detector and PolyPore 

columns in series.  PS/PB block copolymers were dissolved at 2 mg/mL in THF.  

THF was used as the eluent at a flow rate of 1 mL/min and the poly(styrene) 

equivalent molecular weights reported were determined by constructing a multipoint 

calibration curve using EasiVial standards (Agilent). 

1H NMR spectra were recorded with a Bruker AV-400 high resolution NMR 

operating at 400 MHz to assess reaction completion.  The stock polymers as received 
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and modified polymers were scanned using deuterated chloroform (d-chloroform), 

with the exception of the thioglycolic acid and captopril modified polymers, which 

required the use of deuterated tetrahydrofuran (d-THF).    Typically, polymers were 

dissolved at approximately 2 wt% and scanned 64 times. 

Differential scanning calorimetry (DSC) was used to determine the glass transition 

temperature of the polymers with a TA Instruments Q100 system.  The polymers 

were analyzed using a heat/cool/heat method to erase thermal history with heating 

rates of 10 °C/min followed by cooling at 5 °C/min.  The glass transition 

temperatures reported are the midpoint of the slope change as determined by the 

Universal Analysis software package provided by TA Instruments.  Prior to 

conducting DSC measurements, the calorimeter was calibrated with an indium 

standard. 

Block copolymer solutions were prepared at 0.5 wt% and spin coated at 2000 RPM 

onto silicon wafers with a native oxide layer.  Prior to spin coating, silicon wafers 

were cleaned with isopropyl alcohol, acetone, and dried with a nitrogen stream. 

Tapping mode atomic force microscopy (AFM) was used to image the surface 

topography of spin coated block copolymer films using an Asylum MFP-3D system.  

VistaProbe AFM tips were purchased from Nanoscience Instruments with a nominal 

tip radius less than 10 nm, spring constant of 48 N/m, and resonant frequency of 190 

KHz.  2 x 2 μm scans were completed at 1 Hz with a resolution of 512 x 512 pixels.  

Image analysis was performed using ImageJ, which is freeware offered by the 

National Institutes of Health.  Average domain sizes were determined in ImageJ with 
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a minimum of 20 measurements on three different areas and the error reported is the 

standard error of the mean. 

 

2.2  Results and Discussion 
 

2.2.1  Influence of Molecular Weight on Polydispersity and 
Functionalization 

 
The molecular weight and polydispersity index (PDI) of the stock polymers, as 

purchased, are summarized in Table 2.1.  NMR integrations were calibrated to the 

aromatic hydrogens of PS to determine the relative block ratios. The mole percentage 

of the butadiene block was determined by 1H NMR spectroscopy (NMR) and was 

further applied to calculate thiol-ene ratios for all subsequently described reactions.  

The reaction of boc-cysteamine with various butadiene molecular weights was 

employed as a model reaction to determine the efficiency of the thiol-ene reaction.   

BAPO is a cleavage type photoinitiator, whereby UV irradiation causes the 

formation of a benzoyl and phosphinoyl radical.112 As discussed in Chapter 1.3.3.2, 

hydrogen abstraction induces a second initiation step which forms a sulfenyl radical. 

The sulfenyl radicals attack the double bonds of PB in an anti-Markovnikov fashion. 

After successful thiol addition, the radical transfers to the adjacent carbon where it 

may initiate another sulfenyl radical, react with an adjacent mer’s pendant vinyl 

group, or terminate via a recombination termination process. The specifics of thiol-

ene reactions on PB using the BAPO photoinitiator are shown schematically in Figure 

2.2 for clarification. 
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Figure 2.2. Summary of the radical initiation of the BAPO photoinitiator and transfer 

to thiols by hydrogen abstraction (Adapted from Fisher et al113) 
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Radical addition of boc-cysteamine to the pendant vinyl groups of PS/PB block 

copolymers generally occurred in an efficient manner.  Modifications between 

approximately 50-90% were possible with the lowest molecular weight block 

copolymer. However, the range of functionalization narrowed to between 

approximately 70-90% when starting from higher molecular weight parent polymers.  

Less than quantitative thiol addition derives from the cyclic reaction between active 

radicals and adjacent, unreacted double bonds.  This reaction is confirmed by the lack 

of remaining double bonds in the modified polymers without quantitative thiol 

addition.  The cyclic reaction is unique to the thiol-ene reaction of PB and is 

thoroughly discussed in literature.98   

After UV irradiation, several of the higher molecular weight polymer products 

showed visible viscosity increases.  Despite the solubility of reaction stocks from 

equimolar concentrations of thiol and vinyl groups during purification, some of these 

polymers formed an insoluble gel with the exception of the lowest two molecular 

weight PS/PB polymers.  Thus, determinations of the PDI and functionalization 

degree were not possible for these polymers and are described in Table 2.2 as “gel”.  

GPC determination for the 8.5-b-8.0 and 19.3-b-18.9 kDa with equimolar thiol-ene 

concentrations show slight PDI increases on the order of 0.2-0.3 compared to their 

parent polymers. The PDI of polymer products generally decreases when higher 

excess of thiol are applied in the polymer modifications, regardless of molecular 

weight.  Specifically, a tenfold excess of boc-cysteamine increased the PDIs of 

daughter polymer by approximately 0.1, when compared to the high molecular weight 

parent polymer. In contrast, equimolar and five-fold excess concentrations of thiol led  
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Molecular  Weight (kDa) Thiol:ene PDIa f ± SEM (%)b 

8.5-b-8 Stock 1.08 N/A 

 1 1.45 51 ± 1 

 5 1.19 70 ± 3 

 10 1.12 87 ± 3 

19.3-b-18.9 Stock 1.06 N/A 

 1 1.23 58 ± 2 

 5 1.20 82 ± 2 

 10 1.16 93 ± 3 

63.3-b-33 Stock 1.13 N/A 

 1 Gel Gel 

 5 1.32 70 ± 2 

 10 1.25 79 ± 1 

14.1-b-67-b-24 Stock 1.13 N/A 

 1 Gel Gel 

 5 1.41 83 ± 2 

 10 1.28 88 ± 2 
 

a Determined by GPC 
b Determined by NMR 

 
Table 2.2. Effects of boc-cysteamine concentration on the polydispersity index and 

functionalization degree 
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to gelation or a 1.41 PDI, respectively. This indicated that the PDI of modified 

polymers increased due to low thiol-ene ratios; when using equimolar concentrations, 

this induced gelation of the daughter polymers. 

As shown in Table 2.2, the functionalization degree increased with higher thiol-ene 

ratios and saturated near 90% for the lowest molecular weight polymer.  As the 

molecular weight of the polymers increased, the efficiency of the thiol-ene reaction 

slightly decreased and resulted in modifications around 80%.  Despite the ability to 

control functionalization on low molecular weight PS/PB block copolymers, low 

thiol-ene ratios generally increased the PDI of high molecular weight polymers and in 

some cases induced gelation. Additionally, the potential range of functionalization 

was narrowed with high molecular weight BCPs. Assuming that all chains within a 

relatively monodisperse polymer solution have equal reactivity towards thiols, the 

PDI increase suggests a low density of crosslinks.   

Radicals remain active after thiol addition and there are several possibilities for 

their fate.  The active radical can undergo chain transfer and initiate another sulfenyl 

radical.89  Radicals can also react with adjacent and unreacted double bonds to form 

cyclic groups.96  Finally, two radicals can terminate through recombination and result 

in intrachain or interchain crosslinking.89  A combination of these processes may 

occur; however, recombination termination is most likely the culprit in increased 

PDIs and gelation products since neither chain transfer nor cyclic group formation 

would result in gelation. 

The observed results from PS/PB modification at low thiol-ene ratios with different 

molecular weights are supported by theory, where the critical cross-link density for 
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gelation scales inversely with the degree of polymerization (DP).103  Thus, higher 

molecular weight polymers are more susceptible to forming infinite networks.  The 

DP of the butadiene block of the BCPs investigated range from approximately 150-

1240 repeat units.  The critical crosslink densities for these molecular weights are 

approximately 0.6% and 0.08% of mer units, respectively.  For the highest molecular 

weight polymer, this corresponds approximately to one crosslinked mer unit per one 

thousand inducing gelation. These theoretical numbers support the observed 

experimental results in Table 2.2, which shows that higher molecular weight 

polymers have a higher propensity for gel formation. 

When the thiol-ene ratio was systematically increased, a trend of decreased 

polydispersity was observed.  The chromatogram for the triblock copolymer and the 

daughter polymer with a tenfold excess of boc-cysteamine is shown in Figure 2.3. 

The chromatogram shows a modest shift in the peak elution volume towards a higher 

molecular weight range when comparing the modified polymer to that of the stock.  

Additionally, a similar narrow molecular weight distribution is conserved between the 

stock and modified polymers. Various applications, including those for biomedical 

devices, require materials that can withstand cyclical loading. High molecular weight 

polymers are typically used for coatings due to their advantageous mechanical 

properties.  The experimental observations indicate a large excess of thiol is required 

to maintain narrow PS/PB molecular weight distribution and inhibit gelation.  While 

lower degrees of functionality were not presented in this study, perhaps the use of 

thiolated alkanes as co-monomers may allow for modifications of PS/PB BCPs on the  
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Figure 2.3. Gel permeation chromatography of 14.1 kDa-b-67.0 kDa-b-24.0 kDa 

PS/PB/PS triblock copolymer and another modified with a 10:1 thiol-ene ratio of boc-

cysteamine.  (Stock: dark dots, Modified: light dashes). 

 

order of 20-70%.  Despite these issues, the photoinitiated thiol-ene reaction presents 

an effective and facile route for rapid functionalization of butadiene BCPs. 

2.2.2 Synthesis of Functional Block Copolymers 
 
 

After investigating the molecular weight effects of thiol addition, block 

copolymers were synthesized with a wide set of functionalities.  The monomers used 

in this study were boc-cysteamine, thioglycolic acid, thiosalicylic acid, captopril, and 

2-diethylaminoethanethiol hydrochloride (DAET), whose structures are depicted in 

Figure 2.1.  Modified polymers were easily produced and obtained in yields of ~70%, 

with the exception of thiosalicyclic acid.  The PS/PB BCPs reacted with thiosalicylic 
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acid contained a similar amount of vinyl groups as the parent polymer.  Thus, thiol 

addition did not occur and was confirmed by NMR.  The steric constraints from the 

carboxylic acid group ortho to the thiol group may inhibit thiosalicyclic acid’s 

reactivity with the pendant vinyl groups on PB.114   

The results from the reaction of the 63.5-block-33.0 kDa stock BCP with various 

thiolated monomers are described in Table 2.3.  The NMR spectra of the unmodified 

PS/PB BCP as received from Polymer Source is depicted in Figure 2.4 with a 

summary of the chemical shifts included in Table 2.4. The molar ratio of butadiene to 

styrene was calculated from the NMR spectra and determined to be 53% PB, or 1.13 

PB protons for every PS proton.  The NMR spectra and peak assignments are shown 

for the PS/PB polymers modified with boc-cysteamine, thioglycolic acid, 2-

diethylaminoethanethiol, and captopril in Figure 2.4-Figure 2.8 and Table 2.4-Table 

2.8 respectively. Similar to previous studies, wide functional group tolerance was  

Monomer Thiol:ene f  ± SEM (%)a 

Boc-cysteamine 10 79 ± 1 

Thioglycolic Acid 10 78 ± 3 

2-(Diethylaminoethanethiol) hydrochloride 10 93 ± 2 

Captopril 10 69 ± 3 

Thiosalicyclic Acid 10 0 
 

a Determined by NMR 

 
Table 2.3. Functionalization degree of 63.5 kDa-b-33.0 kDa PS/PB polymers 

modified using 10:1 thiol-ene ratios on the monomers studied.  
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Figure 2.4. 1H NMR spectra of poly(styrene)-block-poly(1,2-butadiene) block 

copolymer as purchased from the manufacturer. 

 
 

Shift (ppm) Bond # Protons 

δ 1.0-2.4 Aliphatic 6H 

δ 4.8-5.2 CH2=CH 2H 

δ 5.3-5.7 CH=CH2 1H 

δ 6.3-6.9 Phenyl 2H 

δ 6.9-7.4 Phenyl 3H 

 
 
Table 2.4. NMR peak assignments of poly(styrene)-block-poly(1,2-butadiene) block 

copolymer as purchased 
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Figure 2.5. 1H NMR spectra of poly(styrene)-block-poly(1,2-butadiene) block 

copolymer modified with boc-cysteamine 

 
Shift (ppm) Bond # Protons 

δ 0.8-1 t-butyl 9H 

δ 1.2-2.2 Aliphatic 4H 

δ 2.4-2.8 CH2-S-CH2 4H 

δ 3.3-3.4 CH2-NH 2H 

δ 4.7-5.5 NH 1H 

δ 6.3-6.9 Phenyl 2H 

δ 6.9-7.4 Phenyl 3H 

 
Table 2.5. NMR peak assignments of poly(styrene)-block-poly(1,2-butadiene) block 

copolymer modified with boc-cysteamine 
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Figure 2.6. 1H NMR spectra of poly(styrene)-block-poly(1,2-butadiene) block 

copolymer modified with thioglycolic acid 

Shift (ppm) Bond # Protons 

δ 0.8-2.3 Aliphatic 7H 

δ 2.5-2.9 CH2-S 2H 

δ 3.1-3.3 S-CH2-COOH 2H 

δ 6.3-6.7 Phenyl 2H 

δ 6.8-7.2 Phenyl 3H 

δ 7.9-9.2 COOH 1H 

 
Table 2.6. NMR peak assignments of poly(styrene)-block-poly(1,2-butadiene) block 

copolymer modified with thioglycolic acid 
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Figure 2.7. 1H NMR spectra of poly(styrene)-block-poly(1,2-butadiene) block 

copolymer modified with 2-diethylaminoethanethiol hydrochloride. 

Shift (ppm) Bond # Protons 

δ 0.8-2.2 Aliphatic 12H 

δ 2.6-2.8 CH2-S 2H 

δ 2.9-3.1 N-CH2-CH2 2H 

δ 3.2-3.5 (CH2)3N 6H 

δ 6.3-6.8 Phenyl 3H 

δ 6.9-7.3 Phenyl 2H 

δ 11.2-11.8 HCl 1H 

 
Table 2.7. NMR peak assignments of poly(styrene)-block-poly(1,2-butadiene) block 

copolymer modified with 2-diethylaminoethanethiol hydrochloride 
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Figure 2.8. 1H NMR spectra of poly(styrene)-block-poly(1,2-butadiene) block 

copolymer modified with captopril 

Shift (ppm) Bond # Protons 

δ 0.8-2.1 Aliphatic 10H 

δ 2.1-2.4 CH2SH 2H 

δ 2.4-2.7 CH3-CH-C=O 3H 

δ 2.8-3.0 S-CH2-CH2-C=O 2H 

δ 3.6-3.8 CH2-N 2H 

δ 4.4-4.6 N-CH 1H 

δ 6.3-6.9 Phenyl 2H 

δ 6.9-7.4 Phenyl 3H 

δ 10.9 COOH 1H 

Table 2.8. NMR peak assignments of poly(styrene)-block-poly(1,2-butadiene) block 

copolymer modified with captopril 
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observed using a photochemical strategy for grafting various groups onto PS/PB 

block copolymers.  With the exception of thiosalicylic acid, PS/PB BCPs thiol 

addition yields were obtained in the range of 70-90%. Despite variable 

functionalizations, all products show full conversion of vinyl groups between 4.9-5.7 

ppm in NMR spectra. 

The lowest yield was 69 ± 3% from captopril.  As the bulkiness of the group 

increased, such as with captopril, the functionalization degree decreased.  The 

experimental conditions approach the solubility limit of captopril, thus steric 

hindrance cannot be explicitly confirmed as the cause of reduced functionalization. 

However, experiments completed on low MW PB demonstrated that larger R groups 

resulted in lower modification degrees, despite full conversion of double bonds.95  

Due to the cyclic reaction between active radicals on the PB backbone and adjacent, 

unreacted double bonds, less than quantitative addition occurred.  The appearance of 

a broad peak at 2.5-2.7 ppm, corresponding to the four protons at the thioether 

linkage shows the successful addition of thiols to the polymer side chains. 

2.2.3  Thermal Characterization 
 
 

Maintenance of elastomeric behavior is a vital property of styrene-butadiene block 

copolymers, which are used in a variety of applications, ranging from tires to 

biomedical devices.  The glass transition temperature (Tg) is a key material property 

to determine whether a polymer conforms to the requirements of a thermoplastic 

elastomer.  Using a heat/cool/heat method to erase thermal history, the Tg’s reported 

are from the PB block only, since the PS Tg remained unmodified during the thiol-ene 
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reactions.  The results from the second DSC heating cycle are shown in Figure 2.9.  

The glass transition temperature of the PS/PB parent polymer, 63 kDa-block-33.5 

kDa, was determined to be -16 °C.  The daughter polymers’ Tg’s increased between 

30-60 °C, depending on the specific monomer modification.  The glass transition 

temperatures for the polymers modified with boc-cysteamine, thioglycolic acid, 

DAET, and captopril were determined to be 15, 33, 43, and 46 °C, respectively.   

Large increases in the Tg of the daughter polymers may occur due to several 

reasons. The dominant driving force for increased Tg may result from the cyclic 

 

 

Figure 2.9. Differential scanning calorimetry of monomer dependency of glass 

transition temperature of functionalized block copolymers using a thiol−ene ratio of 

10:1 on PS/PB with a molecular weight of 63.5 kDa-b-33.0 kDa 
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reaction that exhausted the double bonds unreactive to thiols. As discussed in Chapter 

1.4.3, cyclic groups within the backbone of a polymer increase Tg due to lower 

configurational entropy than linear analogs. 115 In layman terms, the number of 

potential arrangements by which chains could freely rotate around one another was 

deceased by the formation of cyclic groups within the polymer backbone.  

Another potential mechanism for increased Tg derives from the lost free volume 

caused by the longer side chains after thiol grafting. Assuming that a polymer’s 

density is constant throughout the modification process, the volume occupied by 

polymer chains may have increased significantly. Since the free volume is the 

difference between the volume of a polymer sample and the volume occupied by its 

chains, less free volume is present to permit the thermal expansion of the polymers 

during heating. Thus, more energy or higher temperature is required for the onset of 

segmental motion. 

The introduction of polar or charged groups into the side chains may be another 

compounding factor in the increased Tg after thiol addition. The R groups used for the 

aforementioned grafting reactions all contain nitrogen and oxygen, which can form 

hydrogen bonds either within single or between distinct chains. In fact, the lost free 

volume from increased side chains may increase the probability of hydrogen bonding 

between distinct chains.  

2.2.4  Thin Film Processing 
 

After NMR, GPC, and DSC characterization, optimal conditions for processing the 

grafted block copolymers were determined.  Common solvents used for PS/PB BCPs 
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such as chlorinated solvents, tetrahydrofuran, and toluene yielded opaque solutions or 

dispersions which suggested micellar self-assembly. Dynamic light scattering 

analysis (DLS) indicated the formation of sub-micron particles and was confirmed by 

film spin coating and AFM analysis.   

Various solvents were used to process nanopatterns from each daughter polymer. 

Generally, the daughter polymers exhibited solubility in dimethylformamide (DMF), 

propylene glycol monomethyl ether acetate (PGMEA) or dimethyl sulfoxide (DMSO) 

yet were insoluble in water.  Thin films were spin coated from low humidity 

conditions (<40% RH) from a 0.5% solution at 2000 RPM.  The stock 63-block-33 

kDa PS/PB diblock copolymer was processed from dichloroethane and formed 

disordered cylindrical nanostructures after spin coating.  Both parallel and 

perpendicular cylindrical domains existed at the surface from AFM measurements.   

Typical results for AFM images are shown in Figure 2.10. The average center to 

center distance of the stock polymer microstructures was determined to be 65.7 ± 1.5 

nm. An iterative method was used to process similar nanopatterns from each daughter 

polymer using the solvents resulting in optically clear solutions, which were typically 

DMF, PGMEA or DMSO.  The boiling point of DMSO was too high for evaporation 

to occur during spin coating, even after longer times.  The center to center domain 

sizes are tabulated in Table 2.9. Spin coating yielded cylindrical microstructures from 

the boc-cysteamine, thioglycolic acid, and captopril modified polymers with center to 

center domain sizes of 66.3 ± 1.5, 74.1 ± 1.9, and 74.5 ± 2.13 nm, respectively.  The 

captopril modified polymer required the addition of approximately 25% (v/v) THF  
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Figure 2.10. Atomic force micrographs of 63 kDa-block-33.5 kDa stock and  

modified PS/PB block copolymers: (a) parent polymer, as received; (b) boc-

cysteamine; (c) thioglycolic acid; (d) 2-(diethylamino)ethanethiol hydrochloride;  e) 

captopril. Scale bars: 500 nm. 

 
 

for solubility in PGMEA.  The DAET modified polymer was spin coated from 

PGMEA/DMF (90/10 v/v%) due to insolubility in pure PGMEA.  The center to 

center domain sizes of the DAET modified polymer were 80.72 ± 2.72 nm. 

DLS showed monodisperse micelles on the order of 20-40 nm for the polymers in 

PGMEA (not shown).  However, the resultant films from spin coating displayed 

structures typical of microphase separated BCPs and not spherical micelle templates.  
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Monomer Center to center spacing ± SEM (nm) 

Stock 65.7 ± 1.5 

Boc-cysteamine 66.3 ± 1.5 

Thioglycolic acid 74.1 ± 1.9 

2-(Diethylaminoethanethiol) 
hydrochloride 

80.7 ± 2.7 

Captopril 74.5 ± 2.1 

 
Table 2.9. Domain size summary of 63-block-33.5 kDa stock and modified PS/PB 

block copolymers.  The results were calculated from AFM images. 

 
 
The majority solvent used for spin coating solutions was PGMEA, which has a 

boiling point of 145°C according to Sigma Aldrich. The Tg of the grafted PS/PB 

BCPs was demonstrated to range from 15-46 °C in the previous section. Additionally, 

the Tg of PS is approximately 105 °C, as discussed in Chapter 1.4.3.  

Spin casting is a processing method where rapid solvent evaporation can form 

uniform films. Due to the nature of spin coating, the structures obtained using this 

processing method are kinetically trapped configurations and not the equilibrium 

morphologies discussed in Chapter 1.3.3.1.116 Since the boiling point of PGMEA is 

much higher than the Tg of both the PB-grafted and PS segments, both blocks 

undergo their glass transition before solvent evaporation is complete. Despite the Tg 

of the boc-cysteamine modified polymer being slightly below room temperature, 

evaporative cooling may induce its glass transition during the spinning process. The 

remaining grafted PS/PB BCPs have Tg’s above room temperature and exist as 

glasses under ambient conditions. 
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PGMEA was suggested as a good solvent for aromatic polymers and a poor solvent 

for charged polymers, in the case of poly(2-vinylnapthalene)-block-poly(acrylic 

acid).117 In this particular case, micellar self-assembly was confirmed by small angle 

scattering, yet microphase separation occurred after spin coating. Sequential 

vitrification of the BCP blocks during spin coating may induce microphase separation 

in the resultant films. By this mechanism, micelle cores could first vitrify and provide 

a template for obtaining reasonably ordered BCP surfaces from merely spin coating.  

Despite the high modification degree of the daughter polymers, there was no visible 

shift into the lamellar region for symmetric block copolymers.  This may be due to 

the micellar template from solution.  Seemingly, as the functionalization degree 

increased, the level of parallel cylindrical domain formation also increased, most 

notably in the boc-cysteamine modified BCP films.  The parallel orientation of quasi-

cylindrical domains is in agreement with studies detailing alkylation of PB side 

chains.111 An additional factor in parallel domain orientation may be due to the nature 

of thin films. When film thicknesses are less than the equilibrium domain size of the 

block copolymers, parallel domains can form, as validated by theory and 

experimental data in other systems.73 

2.3 Conclusion 
 
We have described a photochemical thiol-ene strategy for creating a versatile set of 

functional styrene-butadiene block copolymers.  The polymers synthesized and 

characterized confer the ability to control chemistry at the nanoscale and contain 

precursors that are readily available as commodity polymers.  Amine, carboxylic acid, 

amide, and pharmaceutical compounds were successfully grafted onto the block 
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copolymers in reasonable yields. Although the polydispersity index increased with 

higher molecular weight polymers, high grafting yields were possible with excess 

thiol.   

These novel functional block copolymers maintained glass transition temperatures 

near or below room temperature, allowing for their application as elastomeric 

materials.  Despite the amphoteric nature of the daughter polymers, microphase 

separation of the individual polymer blocks was observed when the casting solvent 

used was polar with a high boiling point.  The highly functional polymers described 

can be used to make modular nanopatterns. 
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3 Protein Adsorption on Block Copolymer Nanopatterns 

In this study, the model system synthesized in Chapter 2 was further characterized 

using contact angle measurement and atomic force microscopy (AFM). A quartz 

crystal microbalance with dissipation monitoring (QCM-D) was used to measure the 

adsorption of proteins with distinct size, charge, and rigidity under both dynamic and 

static conditions. The wettability of the BCP surface patterns was significantly 

increased by thiol grafting, and AFM imaging suggested this originated from 

selective block swelling of charged BCP domains. Protein adsorption measurements 

by QCM-D confirmed that both the BCP nanopatterns and protein characteristics 

strongly influence the nature of adlayers. Disproportionate increase in protein 

adsorption under flow was observed for many nanopatterned surfaces containing 

polyelectrolyte moieties compared to experiments performed under static conditions.   

 

3.1 Experimental Section 

3.1.1 Materials and methods 

Poly(styrene)-block-(1,2-butadiene) (PS/PB) BCPs were purchased from Polymer 

Source (Montreal, Canada). Untreated poly(styrene) (PS) petri dishes, 30% 

ammonium hydroxide (NH4OH), tetrahydrofuran (THF), and dimethyl formamide 

(DMF) were purchased from Fisher Scientific (Pittsburgh, PA).  Poly(ethylene-co-

acrylic acid) (PEAA) was purchased from Allied Signal Advanced Materials  

(Sunnydale, CA). 1X phosphate buffered saline pH 7.4 (PBS), 30% hydrogen 

peroxide (H2O2), sodium dodecyl sulfate (SDS), propylene glycol monomethyl ether 
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acetate, immunoglobulin g (IgG) (human serum, 95%), bovine serum albumin (BSA) 

(protease free, 99%), cytochrome c (CytC) (bovine heart, 95%), and fibrinogen 

(human plasma, fraction I, type I, 65%, 85% clottable) were purchased from Sigma 

Aldrich. 

Stock protein solutions were prepared by dissolving each respective protein at 0.5 

mg/ml in PBS and were stored at 4 °C for no longer than one week, with the except of 

IgG, which was stored at -20 °C at 0.5 mg/ml, as suggested by the manufacturer. 

Working concentrations of protein were prepared by 10-fold dilutions of the stock 

solutions to 50 μg/mL in PBS pH 7.4 and stored at 4 °C prior to use.   

 

3.1.2 Nanopattern processing on QCM-D crystals 

The PS/PB BCPs were modified by thiol-ene photochemistry to include acid, 

amine, amide, or captopril moieties. The synthesis of these functionalized polymers is 

described elsewhere.118 Briefly, a 63 kDa-block-33 kDa PS/PB BCP was modified 

using various thiols and BAPO photoinitiator. These polymers are subsequently 

referred by the R-group grafted onto the PS/PB BCP, ie. PS/PB-Acid in the case of 

poly(styrene)-block-poly(butadiene-graft-thioglycolic acid). After purification and 

drying, the polymers were dissolved at 0.5 wt% in suitable solvents or solvent 

mixtures and spin coated at 2000 rpm onto either silicon wafers or gold coated QCM 

crystals. PS was dissolved at 0.5 wt% in toluene and PEAA was dissolved at 1 wt% in 

THF and spin coated at 2000 rpm. Films were dried overnight under house vacuum 

and baked at 80 °C for 30 minutes to promote film adhesion before protein adsorption 

experiments. 
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Tapping mode atomic force microscopy (AFM) was used to image the surface 

topography of spin coated BCP films using an Asylum MFP-3D system. VistaProbe 

AFM tips were purchased from Nanoscience Instruments with a nominal tip radius 

less than 10 nm, spring constant of 48 N/m, and resonant frequency of 190 kHz. 2 x 2 

μm scans were completed at 1 Hz with a resolution of 512 x 512 pixels.  AFM was 

performed with the same scanning parameters in PBS after equilibration for 2 hours, 

using Olympus PSA400 tips with a nominal radius less than 20 nm, 0.08 N/m spring 

constant, and resonant frequency of 11 kHz.  

 

3.1.3 Static contact angle measurement 

Water contact angles were measured with a Ramé Hart goniometer using 18.2 MΩ 

deionized water. Prior to experimentation, films were acclimated to PBS solutions for 

2 hours according to previous procedures for similar systems.119 After incubation, 

films were flash dried using compressed nitrogen before placing a ~1 μL deionized 

water drop onto the film via needle for measurement. At least 10 measurements were 

made on each polymer surface and water contact angles were quantified using 

DropImage software. The data represents the mean static contact angle and includes 

the standard error of the mean. 

 

3.1.4 Quartz crystal microbalance with dissipation  

QCM-D measurements were recorded using a QSense Auto E4. An Ismatec 

multichannel peristaltic pump dispersed buffer and protein solutions at 100 μL/min 

over AT-cut 4.95 MHz Au-coated quartz crystals obtained from QSense (Sweden). 
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An automated program was produced with the AutoE4 controller in the QSoft 

software to obtain a stable baseline in PBS, followed by a one hour adsorption, and 

completed with a 30 minute PBS wash to obtain a new baseline.    

Due to the experimental set-up for static adsorption, real-time monitoring was not 

feasible without submitting proteins to dynamic conditions.  Each run consisted of a 

30 minute PBS wash, one hour adsorption, and a final PBS rinse as in the dynamic 

experiments. Frequency and dissipation were measured before and after adsorption 

and data files were stitched together in the QTools software. QCM-D data was fit 

through the QTools software provided from QSense using a one layered Voigt 

viscoelastic model.  A minimum of 4 adsorption curves were recorded for proteins on 

each respective material.  Dissipation versus frequency changes are plotted every 30 

points.  Deviations from linear behavior were determined using regressions to 

determine the slope, intercept, and the R2 value.  

Gold QCM-D crystals were reused after each experiment using a cleaning technique 

recommended by the manufacturer. After a 2% SDS rinse within the sample loop, 

QCM-D crystals were washed with deionized water, dried with nitrogen, and exposed 

to ultraviolet light/ozone (UVO) for 20 minutes in a Bioforce Nanosciences 

Procleaner (Ames, IA). The crystals were cleaned with an NH4OH/H2O2/water (1/1/5 

v/v/v) piranha solution at 75 °C for 10 minutes. The crystals were again washed with 

deionized water, dried with a stream of nitrogen, and baked in UVO for 20 minutes. 

QCM-D flow cell modules were washed with 2% SDS, deionized water, and dried 

with nitrogen between experiments before starting a new experimental run. 
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3.1.5 Statistical Analysis 

Water contact angle and protein adsorption values were compared to determine 

statistical significance using ANOVA combined with Tukey’s multiple comparisons 

test. Statistically significant data are reported using 95% confidence intervals after 

inputting raw data into Origin software. Within each comparison test, the seven 

different polymers were compared and their significance as related to the PS, PS/PB 

and PEAA controls are reported. 

 

3.2 Results and Discussion 

3.2.1 Characterization 

As described previously, thiol-ene chemistry was used to graft functional groups 

onto the pendant vinyl group of PS/PB, including an acid, amide, amine, and 

captopril. Quasi-cylindrical BCP nanopatterns were formed on QCM crystals or 

silicon wafers using suitable solvents previously established.118  Figure 3.1 displays 

dry AFM images of the surfaces, not including the PS films due to insignificant 

topographical variation. These cylindrical patterns had average center to center 

distances in the range of 80 nm, with the PS/PB stock BCP having slightly smaller 

domains.  Films consisting of PS and a PEAA random copolymer served as 

unpatterned controls for determining the mechanism of protein adsorption on 

nanopatterns.   
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Figure 3.1. Atomic force micrographs of nanopatterned block copolymers and 

unpatterned controls.  (a) PS/PB. (b) PS/PB-Amide. (c) PS/PB-Acid. (d) PS/PB-

Amine. (e) PS/PB-Captopril. (f) PEAA.  Scale bars: 500 nm. 

 
Initial static measurements from dry films showed little contact angle differences 

between the thiol grafted BCPs and the control groups (not shown). Xu et. al has 

shown that buffer equilibration significantly decreased water contact angles for 

amphiphilic BCP systems after flash drying to vitrify microdomains.119 Since 

succeeding experiments conducted in this work were measured at pH 7.4 in PBS after 

swelling, determination of the contact angles under these conditions was deemed 

more relevant and conducted in this manner.   

Table 3.1 exhibits the water contact angles of the films used in this study. The 

contact angles of the hydrophobic polymers such as the PS, PEAA, and PS/PB BCP  
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Polymer Contact Angle ± SEM 
PS/PB-Amide 66.9 ± 1.4 
PS/PB-Acid 36.5 ± 1.5 
PS/PB-Captopril 30.1 ± 0.8 
PS/PB-Amine 56.0 ± 0.9 
PS/PB 98.3 ± 0.7 
PS 81.3 ± 0.5 
PEAA 98.1 ± 2.7 

 
Table 3.1. Static water contact angle measurements of the polymeric surfaces 

described in this study. 

 

were found to be 81, 98, and 98°, respectively. Despite PBS equilibration of these 

surfaces, contact angles remained generally unchanged and agreed with literature 

values.120-122  Contact angles for the amide, acid, captopril, and amine modified BCPs 

were 67, 37, 30, and 56°, respectively. The PBS equilibration of the BCPs and 

controls before contact angle measurement confirmed that only surfaces with polar or 

charged moieties were sensitive to this handling. Compared to unmodified PS/PB, the 

thiol grafted BCPs showed large decreases in the contact angle, suggesting increased 

hydrophilicity. The contact angle of the acid modified polymer resembled values 

obtained from a poly(styrene)-block-poly(acrylic acid) (PS/PAA) BCP described 

previously.119 While not strictly equivalent, plasma polymerized poly(allyl amine) 

films have also shown similar contact angles to the PS/PB-Amine surface.123  

Figure 3.2 shows AFM characterization of the patterned and unpatterned films after 

PBS equilibration. The PS/PB, PS/PB-Amide, and PS films generally maintained 

their structure after the introduction of buffer. In the case of PS/PB- 
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Figure 3.2. Atomic force micrographs of nanopatterned block copolymers and 

unpatterned controls imaged in PBS buffer . (a) PS/PB. (b) PS/PB-Amide. (c) PS/PB-

Acid. (d) PS/PB-Amine. (e) PS/PB-Captopril. (f) PEAA. Scale bars: 500 nm. 

 
Acid, Amine, and Captopril, varying degrees of swelling induced surface structure 

changes were observed after PBS incubation. The PS/PB-Acid surface swelled 

enough that little resemblance to the initial dry pattern remained. The contact angles 

previously mentioned confirmed that wettability was considerably enhanced after 

acid grafting. The decreased contact angles originate from selective block swelling 

that suggests the formation of an acid enriched surface layer after buffer 

equilibration.108 The possibility of an acid enriched surface layer may validate the 

disappearance of the microphase-separated morphology on PS/PB-Acid film surfaces 

after both lateral and vertical swelling.   
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The PS/PB-Captopril films showed swelling that somewhat distorted the initial 

quasi-cylindrical pattern and resulted in dimple-like structures. The degree of 

bidirectional swelling for the PS/PB-Captopril films may be smaller than PS/PB-

Acid, which could explain the retention of microphase-separated morphologies in 

swollen films. The PS/PB-Amine polymer displayed minor swelling from AFM 

despite a large decrease in the contact angle relative to the PS/PB BCP. Decreased 

swelling in PS/PB-Amine may originate from the hydrophobic alkyl groups 

surrounding the tertiary amine.  

 

3.2.2 Static Protein Adsorption 

The isoelectric point (pI) and molecular weight of the proteins used in this study are 

summarized in Table 3.2.  Proteins far from their isoelectric points typically exhibit 

charge-dependent behavior, which applies to BSA, fibrinogen, and CytC.124 BSA, 

fibrinogen, and IgG are negatively charged proteins at pH 7.4, while CytC is 

positively charged.  Based on electrostatic interactions, the PS/PB-Acid and Captopril 

surfaces would be expected to reduce BSA and fibrinogen adsorption, while the  

Protein 

 

Source 

 

pI 

 

MW (kDa) 
Serum Albumin Bovine 4.9 66 
Fibrinogen Human 5.5 340 
Cytochrome C Bovine 10.5 12.2 
Immunoglobulin G Human 6.5 150 

 
Table 3.2. Property summary of the proteins investigated in this study.  The 

isoelectric points (pI) and molecular weight (MW) are shown to distinguish between 

the large size and charge differences. 
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PS/PB-Amine polymer would strengthen deposition. Conversely, PS/PB-Acid and 

Captopril would electrostatically attract CytC, while the PS/PB-Amine surface would 

repel CytC. 

 The proteins in this work were chosen for a wide variety of charge, MW, and 

stability against denaturation.  Additionally, the presence of albumin, fibrinogen, and 

IgG in plasma makes their use relevant to the study of blood contacting biomaterials. 

Albumin can serve as a passivation layer that inhibits coagulation.125 As discussed in 

Chapter 1.3.2, fibrinogen adsorption on biomaterials can induce coagulation. Finally, 

IgG adsorption values can provide information about the immunological response and 

potential contact activation caused by the BCP surfaces. CytC was used in these 

studies to include a positively charged protein whose properties have been thoroughly 

characterized. 

 Figure 3.3 shows the average protein adsorption densities completed under static 

conditions. BSA adsorption on the various polymer surfaces was in the range of 

1000-2500 ng/cm2. PS/PB-Amine showed statistically increased BSA adsorption over 

the PS/PB, PS, and PEAA controls. Otherwise, BSA static adsorptions were fairly 

consistent between the various polymer surfaces. BSA adlayers on PS/PB-Amine 

increased relative to uncharged and negatively charged controls, potentially due to 

electrostatic attraction to the positively charged surface. Additionally, the PS/PB-

Amine surface adsorbed statistically higher amounts of BSA compared to the 

negatively charged PS/PB-Acid and Captopril. 

Fibrinogen adlayers were found to vary from approximately 2000-3000 ng/cm2. 

Statistically increased fibrinogen adsorption was observed for the PS/PB-Acid 
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polymer in comparison to PS/PB and PEAA. Fibrinogen adsorption statistically 

decreased on PS/PB-Captopril and PS/PB compared to PS. However, fibrinogen 

adsorption increased after contact with PS/PB-Acid, which contradicts the 

electrostatic repulsion expected between a negatively charged surface and protein.  

While there is no statistical variance between some of the negative and positively 

charged BCPs, electrostatic forces clearly influenced adsorption on the nanopatterned 

surfaces. Marginal differences were seen for both CytC and IgG adsorption, with 

ranges between 500-1200 ng/cm2 and 1200-2400 ng/cm2, respectively. The 

adsorption values for both CytC and IgG were similar between most of the surfaces.  

 

 

Figure 3.3. Protein densities for the polymeric surfaces completed under static 

conditions 

 

p<0.05 for n=4 (* - PS/PB; # - PS; † - PEAA) 
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The exception was statistically higher IgG adsorption on PS/PB-Amine compared to 

the captopril modified surface. 

The theoretical monolayer adsorption limit of BSA is 360 ng/cm2 for side-on type 

and 900 ng/cm2 for end-on adsorption.126 The theoretical limit of fibrinogen 

adsorption is approximately 180 ng/cm2 for side-on type and 1700 ng/cm2 for end-on 

type adsorption.127 The monolayer densities of IgG and CytC are both approximately 

300 ng/cm2.128, 129 The close-packed densities for BSA and fibrinogen are larger than 

IgG and CytC due to higher asymmetry in their spatial dimensions.   

The results from static adsorption experiments show that large concentrations of 

protein adsorbed to some of the polymer surfaces. Within experimental errors, BSA 

typically formed a monolayer on the polymer surfaces, with the exception of PS/PB-

Amine. Static adsorption of fibrinogen increased to multiple layers on PS/PB-Acid, 

Amide, and PS.  In the case of CytC, approximate monolayers were formed on all 

surfaces within experimental error. Finally, multiple layers of IgG were formed on all 

the surfaces investigated. 

Despite swelling of the polyelectrolytes, the extent is not significant enough to 

increase the close-packed density of a monolayer according to AFM measurements. 

However, often these polyelectrolyte BCPs adsorbed more protein than one 

monolayer. Polyelectrolyte chains have been hypothesized to repel one another and 

increase the porosity of the swollen polymer layer, which would not arise during 

AFM imaging.130 The porosity may allow for proteins to penetrate through interstitial 

spaces and increase adsorption beyond a monolayer. Additionally, large adsorption 
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values may suggest that proteins are forming multilayered aggregates with one 

another over an adsorbed monolayer on some surfaces. 

3.2.3 Adsorption under flow 

In order to describe protein adsorption on material surfaces that encounter blood 

flow, QCM-D experiments were conducted to investigate protein adlayers under 

dynamic conditions. Representative raw QCM-D data are shown in Figure 4 for BSA 

on the polymer surfaces. All overtones were utilized in the viscoelastic models with 

the exception of the 1st overtone. The frequency decreases upon mass deposition and 

the dissipation shifts depending on the viscoelastic properties of the adsorbed layer. 

The hydrophobic polymer surfaces (PS/PB, PS/PB-Amide, PS, PEAA) demonstrated 

exponential frequency decay that saturated within minutes of protein introduction, 

shown in Figure 3.4a. The polyelectrolytes (PS/PB-Acid, Captopril, Amine) exhibited 

an inflection in frequency reduction from an initial exponential decay to a linear 

decrease until the final PBS rinsing step.  

Large dissipative changes were observed for BSA adsorption on the 

polyelectrolytes, depicted in Figure 3.4b. The hydrophobic and uncharged polymers 

showed small dissipative changes along the order of 10-6. Dissipative changes on the 

BCP polyelectrolytes were an order of magnitude higher for BSA adsorption when 

compared to the hydrophobic surfaces. The exception for the polyelectrolytes was the 

PS/PB-Amine surface, which showed significantly decreased dissipation during the 

adsorption process. The data suggests that BSA adlayers on the hydrophobic  
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Figure 3.4. Raw QCM-D data from BSA adsorptions (5th overtone). a) Frequency 

changes show increased mass on the polymer surfaces. b) Dissipative element shows 

increased viscoelasticity for a majority of the surfaces 

 
polymers were fairly rigid in comparison to the highly viscoelastic BSA adlayers on 

PS/PB-Acid and Captopril. The physical mechanism and discussion of the adsorption 

induced dissipation shift will be discussed in the succeeding section.  

After collecting raw frequency and dissipation data, these data points were inputted 

into the Voigt viscoelastic models within the QTools software. Figure 3.5 displays the 

fitted results for the BCPs, PS, and PEAA for BSA, fibrinogen, CytC, and IgG 

experiments, respectively. BSA adsorption on PS/PB-Acid, Captopril and Amine  

BCPs were significantly increased to 1000-3000 ng/cm2, compared to ~300 ng/cm2 

for both PS and the stock BCP controls. The PS/PB-Amide, Captopril, PS/PB, PS, 

and PEAA surfaces consisted of a monolayer or less within experimental error. 

However, the PS/PB-Acid and Amine surfaces adsorbed in excess of a monolayer. 

Fibrinogen adsorption significantly increased for the acid modified polymer to a 
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Figure 3.5. Protein adsorption data from QCM-D completed at 100 µL/min on 

polymer surfaces. 

 
 
level of 5500 ng/cm2 compared to densities of 1500-2000 ng/cm2 for the stock BCP  

and PS. PS/PB-Amine and Captopril BCPs showed slight decreases in fibrinogen 

adsorption compared to controls and the amide BCP.  The surfaces consisted of 

fibrinogen monolayers with the exception of PS/PB-Acid, whose density was 

significantly higher. 

CytC adsorption remained fairly constant and was in the range of 175-300 ng/cm2. 

The exception was the aminated polymer, which showed a significant increase to 

~430 ng/cm2. Considering the experimental error, these densities fall within the range 

of CytC monolayers for all surfaces.  

p<0.05 for n=4 (* - PS/PB; # - PS; † - PEAA) 
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IgG adsorption on the polymer surfaces were in the range of 230-1750 ng/cm2. The 

aminated polymer exhibited the lowest density, which significantly varied from the 

PS/PB control. The PS/PB-Captopril, Amine, and PS control surfaces adsorbed IgG 

within a monolayer, while PS/PB-Amide, Acid, PS/PB, and PEAA all consisted of 

adlayers in excess of a monolayer. 

Now that the adsorption densities for each respective surface and protein pair were 

introduced, these data will be discussed along with potential implications of the 

results.  Thus far frequency and dissipation data were exclusively used to describe 

relative gravimetric differences between polymer surfaces for a given protein. 

However, these parameters can also provide qualitative information about adlayer 

structure. The succeeding section will describe some of the possible mechanisms 

occurring during the adsorption process. 

 

3.2.4 Dissipation versus Frequency plots  

Dissipation versus frequency plots (D-f plots) detail time independent processes 

and have been used to determine whether multiple kinetic regions occur during 

adsorption.55 The slope of D-f plots describes the relative rigidity or viscoelasticity of 

adlayers.  Large ∆D/∆f values suggest that the adsorbed layer is highly dissipative or 

viscoelastic, as described in Chapter 1.3.2.2. Likewise, small ∆D/∆f are indicative of 

rigid adlayers. Due to the non-specificity of QCM-D, these measurements could 

exclusively refer to the protein layer or contain some contribution from the polymer 

coatings.  
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Figure 3.6 depicts the D-f plots for the surfaces during BSA adsorptions. The 

hydrophobic polymers such as PS/PB, PS/PB-Amide, PS, and PEAA displayed linear 

relationships between dissipation and frequency. Regressions for these relations 

exhibited R2>0.95. Additionally the slope, or ∆D/∆f, for these three surfaces was 

similar, suggesting that the adlayers have similar properties. The PS/PB-Acid surface 

exhibited an exponential increase in dissipation during BSA adsorption. Conversely, 

PS/PB-Amine exhibited an exponential decrease in dissipation. 

Linear D-f plots are typical for BSA adsorptions on hydrophobic polymers. After 

 

 

Figure 3.6. Dissipation versus frequency plots of bovine serum albumin adsorption 

on the BCP patterns and controls. 
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the frequency saturated, marginal dissipation increases occurred which may be due to 

small conformational changes or denaturation of the adlayer. The partial denaturation  

of hydrophobic proteins such as BSA on hydrophobic surfaces has been confirmed by 

complimentary techniques, where protein subdomains become exposed.124 As 

discussed in Chapter 1.3.2, BSA dehydration and partial denaturation may occur from 

bonding of complimentary hydrophobic domains on each respective structure.19 

For the cases of the acid and amine modified PS/PB BCPs, the landscape becomes 

more complex due to the charged nature of the nanostructured surfaces. As the 

frequency of PS/PB-Acid decreased, an exponential increase in dissipation occurred.  

This suggests that the adlayer became more viscoelastic with time and may be caused 

by denaturation of BSA as adsorption occurs. While these are hypotheses, QCM-D 

cannot definitively discern whether either scenario is accurate.  

The PS/PB-Amine polymer exhibited an exponential decrease in dissipation as 

frequency decreased for BSA adsorption. Decreased dissipation during protein 

adsorption may suggest either dehydration of the adlayer, collapse of the swollen 

polymer, or some combination of the two. With a water contact angle of 56°, the 

PS/PB-Amine surface still maintains some hydrophobic character along with its 

positive charge. BSA is both sensitive to denaturation on hydrophobic surfaces and 

may be electrostatically attracted to the cationic surface. This attraction may induce 

collapse of the polymer-protein but requires a complimentary technique to confirm 

this. The D-f plots for fibrinogen are shown in Figure 3.7. Similar to BSA, linear 

relationships between dissipation and frequency were observed for fibrinogen 

adlayers on hydrophobic PS/PB, PS/PB-Amide, PS, and PEAA surfaces. An 
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Figure 3.7. Dissipation versus frequency plots of adsorbed fibrinogen on the BCP 

patterns and controls. 

 
 
 
inflection in the dissipation was present for these surfaces when frequency leveled, 

which is suggestive of partial denaturation.55 The stability of fibrinogen against 

denaturation is lower compared to BSA due to structural heterogeneity in the 

tripeptide. The preferential affinity of one chain for a surface has been suggested as 

the cause of lower fibrinogen stability during adsorption processes.131 
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Deviations from typical adsorption isotherms were also observed for the PS/PB-

Acid and PS/PB-Amine surfaces after fibrinogen adsorption. The PS/PB-Acid 

exhibited a sinusoidal like dissipation versus frequency relationship. The first phase 

of this adsorption mimics that of hydrophobic controls and may be approximated as a 

monolayer. Subsequently, either fibrinogen or PS/PB-Acid partially dehydrates 

before continuing to adsorb more protein with increased dissipation. PS/PB-Amine 

exhibited very similar behavior for fibrinogen as was discussed for BSA adsorption.  

The D-f plots for CytC demonstrated behavior more typical of rigid protein 

adlayers, as shown in Figure 3.8. The hydrophobic polymers had nearly linear 

 

Figure 3.8. Dissipation versus frequency plots of adsorbed cytochrome c on the BCP 

patterns and controls. 
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profiles that leveled around a monolayer. The PS/PB-Acid and Amine polymers both 

exhibited approximate monolayers, however both of their dissipations decreased 

during the adsorption process. For the negatively charged PS/PB-Acid, perhaps the 

opposite charge of CytC induces collapse of the protein-polymer complex, but this 

would require further experiments for confirmation. 

The dissipative versus frequency relationships for IgG were all generally linear, as 

shown in Figure 3.9, with the exception of PS/PB-Amine. PS/PB-Amine exhibited the 

dissipation loss observed with every protein with this surface. Despite the linear 

 

Figure 3.9. Dissipation versus frequency plots of adsorbed immunoglobulin g on the 

BCP patterns and controls. 
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relationships, densities greater than a monolayer adsorbed onto most of the surfaces 

under investigation. Since no inflection was present in the D-f plots, little can be 

inferred from these relationships in terms of qualitative discussions of its 

conformation. The mechanism of multilayered IgG adsorption is still under 

investigation. 

 

3.2.5 Implications of Protein Adsorption on BCPs 
 

The presence of charged groups significantly increased BSA and fibrinogen 

adsorption over uncharged polymers. BSA and fibrinogen values were especially high 

on the PS/PB-Acid polymer despite both the surface and proteins containing negative 

charges. Soft proteins such as BSA and fibrinogen can bind to polymer surfaces 

regardless of charge implications due to their low stability, even resisting electrostatic 

repulsion.19, 132 This behavior was hypothesized to result from protein secondary 

structure changes after irreversible binding that exposes motifs not typically present 

on the protein’s surface.133 Another theory about large depositions on like-charged 

polymer protein complexes focus on the charge anisotropy inherent in proteins.134 

Computational models from other studies indicated that uniformly charged surfaces 

could not predict the behavior of like-charged proteins and polymers and that charge 

on proteins most likely exists in patches.17  

From these data, some conclusions can be drawn about the role of electrostatic 

charge when confined within a BCP nanopattern. While electrostatic interactions did 

not necessarily guide protein adsorption, they certainly affected the formation of 
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protein layers. Under static conditions, protein adsorption often occurred in excess of 

monolayers without regard for electrostatics. Electrostatic interactions seemed to play 

a more significant role under dynamic conditions, where the polyelectrolyte BCPs 

adsorbed excess amounts of BSA and fibrinogen. 

The consequences of both albumin and fibrinogen adsorption on biomedical 

polymer surfaces are imperative to understand since they are the most abundant 

plasma proteins in circulation. Albumin coated surfaces are long known to act as 

thrombo-resistant passivation layers, which may be beneficial for biomedical 

coatings.125 Conversely, fibrinogen was previously discussed in Chapter 1.3.2 to be 

an essential component of the coagulation cascade. In fact, the denaturation of 

adsorbed fibrinogen may enhance the coagulation response, which could present 

safety hazards in the context of medical devices. 

3.3 Conclusion 

A model system for determining the effects of nanopatterned chemistries on protein 

adsorption was developed through modular thiol-ene chemistry. AFM 

characterization and water contact angle measurement showed the ability to control 

surface patterns while varying charge and hydrophobicity. The introduction of charge 

caused selective swelling of charged blocks and decreased water contact angles.  

QCM-D experiments suggested that some polyelectrolyte BCPs disproportionately 

increased protein adsorption of proteins with low stability when compared to 

uncharged and/or unpatterned controls. The mechanism of increased adsorption is 

believed to result from protein multilayer deposition due to either dehydration or 

collapse of both polymer and protein. Qualitative frequency and dissipation analysis 
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suggested that charged nanopatterns may have larger denaturing effects on proteins 

with low solution stability, such as BSA and fibrinogen, compared to more rigid 

proteins such as CytC. 
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4 : Contributions and Future Work 
 

4.1 Contributions 
 

This dissertation details the synthesis, characterization, and applications of a 

modular system of nanopatterned BCPs. Photochemical thiol-ene chemistry was used 

to modify poly(styrene)-block-poly(1,2-butadiene) (PS/PB) BCPs to develop a model 

system of nanopatterns where the chemistry could be tuned in a modular fashion.  

PS/PB was modified with a model monomer, boc-cysteamine, to determine the effect 

of PB molecular weight on the functionalization degree and PDI. This dissertation 

showed that as the MW of the PB block increased, the propensity for gelation also 

increased. After determination that high thiol excess was required, polymers with 

acid, amine, and captopril functionalizations were successfully synthesized. Modular 

BCP nanopatterns could be processed from solvents found suitable using an iterative 

approach. 

The second portion of this dissertation sought to demonstrate whether protein 

adsorption was affected by modular chemical nanopatterns. Liquid AFM imaging and 

contact angle measurements confirmed the large degree of swelling by the grafted 

BCPs despite their hydrophobic backbones. Experiments with a quartz crystal 

microbalance with dissipative monitoring showed that BCP nanopatterns often 

adsorbed disproportionate amounts of protein after modification with 

polyelectrolytes, often in excess of monolayers. Experiments done under static and 

flow conditions confirmed the nuances of testing protocol. This may suggest that 

medical device submissions undergo in vitro testing under simulated conditions. 
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While the synthesis was limited to a few representative groups, several other 

functional groups could be combined with this technique to further examine the 

interface between synthetic polymers and biomacromolecules. Previous thiol-ene 

reactions on PB polymers either took approximately 24 hours for thermal initiation or 

UV initiated reactions were limited to low molecular weight polymers. The 

photochemical thiol-ene reaction presented in this dissertation is complete within one 

hour and is capable of modifying high molecular weight polymers. The wide scope of 

the synthetic scheme permits the creation of several nanopatterns from one source 

material. Despite much work remaining to characterize the interface between 

synthetic polymers and proteins, this work is one of the first to use a label-free 

technique to observe the relationship between systematically varied modular 

nanopatterns surfaces and proteins.  

 

4.2 Future Work  
 

While long periods of time were required to develop this system, certainly there are 

numerous studies that could be completed after its characterization was described in 

this dissertation. Among them include the systematic variation of the 

functionalization degree, which was an elusive prospect in this research. Suggestions 

for controlling the grafting yield include the use of docile R-groups, such as thiolated 

alkanes, which could act as spacers for functional groups. With their use, successful 

conversion of double bonds could occur without inducing gelation.   

Additional suggested studies could involve the use of antibodies within the QCM-D 

adsorption setup to quantitatively determine the amount of proteins available for 
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binding.  In terms of primary protein solutions, this could provide some information 

about what percentage of protein maintains its biological activity. Competitive 

binding could be assessed using antibodies to determine the relative amount of a 

specific protein from a complex biofluid such as blood plasma or serum. 

After full characterization of the protein response to the BCP nanopatterns, in vitro 

cell culture would provide insightful data on the methods included in the 

biocompatibility ISO standard. Suggested future experiments should include a 

comparison of the viability of cells included in ISO-10993 to primary cell cultures 

like human umbilical vein endothelial cells, which may more accurately depict the 

cardiovascular environment. Portions of this work were proposed, but remain 

unfinished. 

Another suggestion for future work includes using more recent processing 

techniques, such as electrospinning. A shortcoming of block copolymer systems is 

their inability to reach beyond scales of 10-100 nm in terms of domain spacing to 

systematically vary the length scale of patterns beyond one order of magnitude. 

Electrospinning could permit the processing of BCP patterns that reach the several 

hundred nanometer scale with patterns also on the 10-100 nm scale. 
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