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Community assembly occurs through the complex interaction of local and 

regional processes which contribute to the differential colonization and extinction of 

species within a local site. Understanding these processes is of fundamental importance 

to ecology because it enables predictions for the trajectory of recovery in ecological 

systems following disturbance. In this dissertation I combined field studies of the Mount 

St. Helens bird community with historical and regional data to better understand the 

processes contributing to local assembly in a mainland community following large scale 

volcanic disturbance. 

First, I applied a novel spatial approach to examine avian colonization patterns at 

Mount St. Helens and approximate the geographic extent of the region influencing local 

community assembly in the first thirty years of recovery. Despite the prevalence of 

regional sources, avian colonization of Mount St. Helens has occurred slowly over thirty 

years. By approximating ‘minimum source regions’ for local communities across time, I 

developed a new approach for examining the spatiotemporal dynamics of colonization 

and found that species from a broad geographic area extending beyond the Cascade 

mountains have colonized Mount St Helens. I then focused on the primary successional 



 
 

habitat of the Mount St. Helens Pumice Plain to examine what ecological processes have 

contributed to avian community assembly. Testing multiple assembly hypotheses I 

found evidence of niche-based assembly through nestedness and habitat filtering but no 

support for competition-based assembly rules. Finally, I addressed the specific 

mechanism of local recruitment in maintaining populations of birds on the Pumice Plain 

by monitoring nest success across species. I found observed nest success lower than 

previously recorded in other habitats for several common ground-nesting and shrub-

nesting species. I determined that in the absence of sufficient local recruitment, repeated 

colonization from the surrounding region may contribute to the persistence of some 

species on the Pumice Plain. Overall, my results found evidence of habitat filtering 

rather than interspecific competition in limiting early assembly and supported the 

importance of continued colonization processes drawing from a range of regional 

habitats.   
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Chapter 1 : Introduction 

 

Community Assembly 

The process of local community assembly is a central theme in community 

ecology. The goal of community assembly research is to determine the underlying 

mechanisms for patterns observed in local species assemblages in order to better explain 

and predict patterns observed in local diversity and species composition (Weiher and 

Keddy 2001). Community assembly has often been studied in the context of equilibrium. 

However, species composition patterns develop over time (Fernández‐Juricic 2000) and 

the extent to which community assembly processes are detectable following disturbance 

is unclear (Drake et al. 1999, Stokes & Archer 2010). Understanding the structure of 

communities during ecological recovery is critical for biodiversity conservation efforts 

in the face of ongoing anthropogenic and natural disturbance (Cash et al. 2012).  

 

Volcanic Disturbance 

Though volcanic activity is an important source of natural disturbance around the 

world, few studies have examined the impact of volcanic disturbance on bird 

communities, particularly in a mainland context. Much of the existing work on avian 

responses to volcanic disturbance comes from Mount St. Helens following the 1980 

eruption (Butcher 1981, Hayward 1982, Andersen & MacMahon 1986, Manuwal et al. 

1987, Crisafulli and Hawkins 1998, Fairchild 2009). I am not aware of any other studies 

addressing longterm avian responses to eruptions in a mainland setting. However, there 
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are numerous examples of both short and long-term avian studies following volcanism 

from volcanic islands (e.g., Brattstrom 1956, Byrd 1980, Whittaker and Jones 1994, 

Dalsgaard et al. 2007, Petersen 2009, Drew et al. 2010, Bond 2012). Several studies 

have focused on impacts of tephra (solid material ranging from ash to pebble-sized rock) 

and tephra fall events and have demonstrated initial declines in avian diversity and 

abundance, and detrimental effects of tephra fall on waterbird nesting sites and breeding 

colonies. However, studies persisting multiple years have observed quick recovery of 

local breeding populations following these minor eruptive events. Long-term 

colonization patterns have also been studied in the context of volcanic islands with 

known historic eruptions, and led to Diamond’s (1975) community assembly rules.  

 

Mount St. Helens 

Prior to the eruption in 1980, the area around Mount St. Helens was 

predominantly forested, a matrix of old-growth and managed coniferous forest. The 

1980 eruption of Mount St. Helens was a major catastrophic disturbance comprising 

several processes which changed the local landscape. The major eruptive event began 

with a 5.1 magnitude earthquake on May 18, 1980 which caused the north face of the 

volcano to collapse (Swanson and Major 2005). The collapsed face of the volcano 

created the largest debris avalanche recorded, which flowed northeast and northwest and 

radically altered Spirit Lake and the North Fork Toutle River valley. The collapse of the 

north face of the volcano also released pressure on the volcano’s magma body leading to 

a blast of superheated gas, rock and ash directed laterally across the landscape to the 

north of the volcano. This blast toppled trees and scorched aboveground life over 570 
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km2 of land as well as depositing a layer of debris from sandy gravel to sandy silt, 

ranging in depth from 0.01 to 1.5 m. Following the blast, searing hot (300-850°C) 

pyroclastic flows surged from the crater for about four hours creating a vast sterile plain. 

In addition, tephra was ejected from the volcano in a vertical plume for approximately 

nine hours and deposited across the landscape, primarily to the east-northeast. 

Subsequent to the main May 18th event the area was influenced by additional pyroclastic 

flows, lahars (mudflows with volcanic debris) and tephra falls (Swanson and Major 

2005). At the time of the eruption any birds present in the Blast Area, which included 

bird communities of winter residents, permanent residents and early migrants were 

immediately killed.  

The 1980 eruption of Mount St. Helens created a patchwork of habitats which 

were identified by the types of disturbance they underwent during the eruption (Figure 

A1-1). The area identified as the Pumice Plain was most devastated by the eruption, 

being buried several tens to > 100m beneath the debris avalanche caused by collapse of 

the north face of the volcano, being hit by the laterally directed blast surge, and finally 

being buried under pyroclastic flows (Table A1-1). Though no life survived on the 

Pumice Plain, [non-avian] biological legacies were common in much of the Blast Area, 

where secondary succession ensued. The majority (approximately 370 km2) of about 570 

km2 along a 180˚ arc north of the mountain was designated as Blowdown Zone. In this 

area the lateral blast of the eruption removed, toppled, or scorched most aboveground 

vegetation, followed by tephra deposits typically 0.01-1m thick (Swanson and Major 

2005). Beyond the Blowdown Zone, the Scorch Zone designates areas where the heat of 

the lateral blast killed above-ground vegetation, leaving a forest of standing dead trees. 
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These areas received shallower tephra deposits (typically 0.01-0.1 m deep). Beyond the 

Scorch Zone, areas to the east and northeast of the volcano were impacted primarily by 

tephra fall, and were identified as the Tephra Fall Zone. The creation of these different 

disturbance zones in the resulting post-eruption landscape provided an outstanding 

opportunity to study avian community assembly in a mainland context.  

Previous Work 

 The majority of previous work on bird community responses  to  mainland 

volcanism have focused on secondary successional sites where there were residual 

components of the pre-disturbance community (although all birds present at the time 

may have perished), addressed short-term impacts of volcanic disturbance, and/or were 

conducted on volcanic islands. At Mount St. Helens, effects of volcanic disturbance on 

bird communities were primarily considered in terms of temporary effects in areas of 

tephra fall during the first fifteen years following the 1980 eruption (Butcher 1981, 

Hayward 1982). In the Blowdown Zone between 1981 and 1984, bird densities were low 

and only three to six species were observed annually, with the Dark-eyed Junco (Junco 

hyemalis) most common (Andersen and MacMahon 1986). Mountain Bluebirds (Sialia 

currucoides) and  Common Ravens (Corvus corax) were also observed. Manuwal et al. 

(1987) found an altered guild structure of birds in the Scorch Zone through reductions in 

the tree foliage-insectivore and tree seed foraging guilds and dominance of species 

associated with ground vegetation and the understory. Between 1980 and 1993, two 

waves of colonization were observed in the Blowdown Zone. Within one post-eruption 

year, ground nesters and cavity nesters that foraged on the ground, on tree boles, or from 

the air column colonized the area, followed in the late 1980s by a suite of foliage 
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gleaners and flycatchers (Crisafulli and Hawkins 1998). Colonization was far slower in 

the primary successional habitat of the Pumice Plain, where many different habitat 

affinities were represented in the colonist species in the first decade following the 

eruption. 

Dissertation Work 

In this dissertation, I considered three aspects of community development to 

better understand the community assembly processes at work in the bird community at 

Mount St. Helens. First, I looked at the spatiotemporal dynamics of colonization by 

approximating the geographic region from which colonist birds may originate. 

Colonization is the first critical step in community assembly, and relies on dispersal 

from an external population source. While many studies consider community assembly 

processes within a regional context, the definitions of “local” and “regional” vary among 

taxa and among studies within a given taxon. Using a novel spatial approach that 

leveraged regional bird observations from the U.S. Breeding Bird Survey (BBS) and 

Monitoring Avian Productivity and Survivorship (MAPS) programs, I estimated the 

extent of the geographic region contributing to community assembly processes at Mount 

St. Helens by mapping possible source locations for colonizing species. Using this 

approach I examined the change in the extent of the source region for different 

disturbance zones across time, quantifying the spatial patterns of colonization across 

time for Mount St. Helens bird communities. I considered each disturbance zone of 

Mount St. Helens separately to identify whether the degree of disturbance affected the 

colonization patterns observed during ecological recovery.  
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Although community assembly has been addressed in many contexts, few studies 

have addressed assembly processes in relation to disturbance or the assembly of 

mainland bird communities. I addressed post-disturbance avian community assembly in 

the primary successional habitat of the Pumice Plain in more detail, testing multiple 

assembly hypotheses against observations of the local bird community. Using historical 

data collected by the U.S. Forest Service and conducting additional bird surveys, I 

considered patterns in bird diversity and composition during two time periods within the 

first thirty years of ecological recovery following the 1980 eruption. For the more recent 

time period (2007-2010) I compared bird communities in sparsely vegetated upland 

habitats to those of more structurally complex wetland habitats. I examined the relative 

evidence for stochastic assembly and deterministic assembly through selective 

colonization (eg, habitat filtering) and extinction (eg, competition) processes. To 

determine the support for alternative assembly hypotheses I considered abundance 

distributions, consistency in rank abundance, and diversity partitioning for local bird 

communities. In addition, I tested these communities for body-size dispersion, 

nestedness, and guild proportionality. I compared my observations from the local bird 

communities to predictions from niche and neutral models using null models. 

In order to address the specific mechanism of local recruitment in maintaining 

populations of birds on the Pumice Plain, I conducted a nest monitoring study on the 

Pumice Plain across three breeding seasons. Though my sample sizes were small, I 

estimated nest success for ground-nesting and shrub-nesting birds and the effect of 

surrounding vegetation on nest success. I also calculated species-specific success rates 

for the most commonly observed species and compared them to published nest success 



7 
 

rates from other locations, in order to estimate the extent to which local recruitment 

contributed to maintaining local populations. These studies together combine a detailed 

mechanistic approach with rigorous testing of assembly hypotheses and interpretation of 

broad colonization patterns to assess community assembly processes of birds in the post-

eruption landscape of Mount St. Helens, WA. 

 

  



8 
 

Chapter 2 : Local and regional colonization in successional habitats at 

Mount St. Helens, WA 

Co-authored with: W. F. Fagan and C.M. Crisafulli 

Abstract 

The regional context of a local community is critical to assembly processes at 

both local and regional scales. However, defining the region for a local community is 

sometimes difficult, particularly in a mainland habitat. While several traditional 

approaches define static regional species pools (RSPs) for testing community assembly 

hypotheses, no standard approach adequately defines the geographic extent of the region 

in question or considers the dynamic nature of assembly processes. Here we developed a 

novel spatial technique to leverage regional species sightings as potential source 

locations of colonizing species and to define the physical ‘minimum source region’ of a 

focal community and its associated RSP. Using this new technique we examined the 

spatiotemporal patterns of colonization and determined the geographic extent of the 

region likely influencing local community assembly. For the Mount St Helens bird 

community this region comprised a large geographic area extending beyond the 

Cascades range. We further demonstrated that as local species richness increased across 

time, the geographic area necessary to account for possible source locations increased as 

well. In addition, more highly disturbed sites attracted species from across a larger 

geographic area than sites with less disturbance. Our results demonstrated the role of 

disturbance intensity and assembly time on the geographic region contributing to local 

community assembly. 
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Introduction 

Community ecology has long explored the contributions of local and regional 

processes to patterns of local occupancy and diversity. A large body of this work relies 

upon the concept of regional species pools (RSPs), which provide a way to study the 

ecological processes that lead to different patterns of diversity across a range of spatial 

and temporal scales (Cornell and Lawton 1992, Cam et al. 2000, Ricklefs 2000, Algar et 

al. 2005, Brotons 2005, Jung et al. 2010). RSPs are defined by biogeographic processes 

at large spatial scales and evolutionary processes at large temporal scales, while local 

occupancy is shaped by ecological processes at more immediate spatial and temporal 

scales (Cornell and Lawton 1992). As such, RSPs are an important tool for assessing the 

relative importance of ecological processes for local communities. In particular, RSPs 

often provide the means to test competing hypotheses in community assembly, such as 

the relative importance of (1) local versus regional processes and (2) neutral versus 

niche processes (Hubbell et al. 2001, Fargione et al. 2003, Algar et al. 2005, Weiher et 

al. 2011). RSPs also provide important context for studies addressing local diversity and 

richness, as any analysis of the saturation or completeness of local communities must 

address regional richness to be meaningful.  

The results of these studies depend on the composition of the respective RSPs 

and the rules used to define them (Graves and Gotelli 1983, Schoener 1988). Despite the 

broad use of RSPs in ecological studies, there is no consistently applied methodology for 

identifying RSPs (Butaye et al. 2002). Even within a given taxon, species pools are 

defined in a number of ways. Common approaches include the combined samples 

approach, the state atlas approach and the range-map approach. The combined samples 
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approach is commonly applied in studies with large sample sizes and experimental 

manipulations (e.g., Drake 1991, Butaye et al. 2002, Chase 2007). In this approach the 

RSP is assumed to be the compilation of all species observed in the study. This approach 

may be appropriate for many specific questions in community ecology, but can be 

problematic when species detection is imperfect. Additionally, in order to have an 

independent species pool, the sample in question should always be excluded from the 

species pool used to interpret the local condition (Cam et al. 2000).  

The state atlas approach defines a physical region, determined by geographic or 

political boundaries, and uses a compiled list of species for this area as the species pool 

(e.g., Algar et al. 2005, Blackburn and Gaston 2001). For this approach to be effective, 

the range of the atlas used should have some ecological meaning. However, many 

atlases are defined according to political boundaries, which are not ecologically 

significant (Gaston 1990). Thus, this approach is most effectively applied to island 

systems. State or country atlases commonly provide information about local occurrence 

patterns of species by counties or grid cells of a state or comparable entity, though 

advances in GIS have led to the availability of more detailed mapping in some cases 

(Smith et al. 1997). Similar species lists may be collated for a defined area from 

published data or long-term monitoring programs (Cam et al. 2000). Monitoring 

programs such as the North American Breeding Bird Survey have a network of sites 

where the presence of species have been observed and recorded, providing excellent data 

once an appropriate physical region is determined.  

The range map approach considers species presence on a broader scale. Rather 

than defining a physical region, this approach defines the RSP as the set of all species 
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whose range maps overlap the location of interest (e.g., Belmaker and Jetz 2012, 

Stevens and Willig 2002). This approach does not consider an actual physical region for 

a RSP, but instead identifies the species that may potentially be found at a particular 

location. However, the nature of range map information creates potential problems in 

RSPs. First, the limits of resolution on range maps place methodological constraints on 

the process of defining a regional pool for a given location. A buffer is often applied 

around the location of interest, due to the poor spatial resolution of species range maps 

(e.g., 100km buffer, Belmaker & Jetz 2011) Also, discrepancies in scale between local 

data and range maps may complicate this approach, leading to overestimation of species 

occurrence at local scales (Hurlbert and White 2005, Hurlbert and Jetz 2007). 

Cutting across all of these approaches are several commonalities. For any 

definition of a RSP, the spatial scale and resolution of the data should be appropriate for 

the study system in question. However it is constructed, the RSP should include all 

species capable of colonizing the local community. To limit species pools to species 

with a reasonable probability of colonization, the composition of the RSP is often 

restricted by guild, most commonly according to habitat use (see Zobel 1997, Brotons et 

al. 2005, Lessard et al. 2011). Limiting RSPs by habitat accounts for one aspect of the 

niche assembly hypotheses and increases the likelihood of detecting stochastic processes 

in assembly (Schoener 1988). RSPs following any of these traditional approaches 

generally provide a list of species that may be present in a focal community according to 

location, but the breadth of inclusiveness may vary significantly depending on the rules 

applied to define the RSP. Additionally, these RSPs provide no insight into the spatial 
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context of the community and the extent of an ecologically meaningful ‘region’ around 

it. 

The concept of the RSP is based in part on the ability of species to immigrate to 

the focal community via dispersal. Dispersal is a key mechanism that connects RSPs to 

local communities and shapes the local and regional contributions to local community 

assembly (Graves and Rahbek 2005). Given a RSP including all species capable of 

colonizing the local community, dispersal is a necessary step determining which species 

succeed and become a part of the community. Conversely, the limits on dispersal are 

important in determining local occurrence and may maintain beta diversity through 

spatial variation in local colonization and extinction (Vallecillo et al. 2009, Chase 2010). 

Colonization is limited by dispersal and appears to be a primarily local process in some 

post-disturbance bird communities (Brotons et al. 2005). 

 Using the concept of dispersal from a source region, we developed a novel 

spatial technique for defining the physical region of a focal community and its 

associated RSP. For many well-studied taxa, location-specific species information is 

becoming more readily available through monitoring programs. These data may be 

leveraged to develop new ways of addressing regional and local contributions in 

community ecology. Instead of imposing a predetermined region on the analysis, this 

approach uses spatially explicit species presence data to define a 'minimum source 

region' and construct its RSP. For each species in the focal community, a ‘nearest 

neighbor’ location for that species is identified as the nearest observation of that species 

from independent regional data. The collection of ‘nearest neighbor’ locations for all 

species from the focal community are used to define the spatial extent of the ‘minimum 
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source region.’ Combining potential source locations across species yields a minimum 

spatial extent of the source region for a local community. This region consists of some 

number of locations of species observations and may include sites that are not a ‘nearest 

neighbor’ site. All species observed within the geographic area of the ‘minimum source 

region’ comprise its corresponding species pool. The 'minimum source region' for a 

focal community thus has the potential to change with colonization by new species. 

Conceptually this approach provides an alternative framework to the RSP for studying 

dispersal, colonization and assembly patterns. By estimating possible source locations 

and directly considering the dispersal process, this approach is fundamentally different 

than defining an RSP through traditional methods and provides a tool to consider the 

patterns of dispersal and colonization to local communities in a spatially explicit 

context.  

The goal of this study was to determine to what extent post-disturbance bird 

communities at Mount St. Helens have been colonized from local and regional sources 

and to approximate the spatial extent of the region contributing colonist species to the 

local community (Figure 1). A further goal was to examine community assembly using 

the spatial patterns of colonization across a gradient of disturbance and through time 

during ecological recovery. Combining survey data with independent regional datasets 

of bird observations, we developed and applied a spatial approach to map source regions 

for local bird communities across thirty years of ecological recovery following volcanic 

disturbance (1981 – 2010) at Mount St. Helens, WA.  
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Methods 

1. Field Site 

The May 1980 volcanic eruption of Mount St. Helens (Washington, USA) 

caused dramatic and large-scale changes to the landscape, with the blast creating a series 

of disturbance zones that were determined primarily according to direction and distance 

from the volcano (Table 1-1). Closest to the volcano, the Pumice Plain was sterilized 

and buried under pyroclastic flows, killing everything above- and below-ground in the 

area. In the Blowdown and Scorch Zones, the vast majority of plants and animals were 

killed, but refugia created by topography and snowbanks allowed for the survival of 

some plants and animals, many of which were subterranean. While some migratory birds 

may not have arrived at Mount St. Helens for the breeding season at the time of the 

eruption, any birds present in the Pumice Plain, Blowdown Zone, or Scorch Zone would 

have been killed. No breeding birds were observed in these areas during the year 

following the eruption. We therefore assume that all bird species observed in this field 

study colonized after the eruption. Beyond the Scorch Zone is the Tephra Fall Zone in 

which tephra (solid material ranging from ash to pebble-sized rock) from the eruption, 

primarily in the form of ash, was the primary disturbance; in this zone, bird communities 

include legacy species that survived the eruption.  

Catastrophic disturbances such as volcanic eruptions have the capacity to create 

rare and ephemeral habitats which may attract unusual species combinations. Within the 

Mount St. Helens area, the interaction of the eruption, the topography, and the 

ecological recovery across thirty years has contributed to a spectrum of habitats that 

differ in many ways from the Cascade Mountains surrounding Mount St. Helens, which 
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are dominated by old-growth and managed forests. Each of these areas has been and 

continues to be modified by successional recovery processes since the 1980 eruption, 

creating a unique mosaic of habitats atypical for the Cascade Mountains. This mosaic of 

successional habitats provides opportunities for unusual species combinations within the 

local communities, which we analyze at the level of disturbance zones.  

 

2. Data Sources 

2.1 Field Data 

We sampled local breeding bird community at Mount St. Helens through 

distance-sampling using line transect surveys (Anderson et al. 1979) performed between 

1982 and 2010 throughout the disturbed areas at Mount St. Helens. Twenty five 

transects, stratified across the disturbance zones of the Mount St. Helens area, range 

from 250 m to 1 km in length, according to topographic constraints and habitat 

continuity. In addition, two reference sites are located approximately 40 km to the 

northwest of the volcano. We conducted repeated surveys of breeding birds along these 

transects between 1982 and 1993, and again between 2007 and 2010. Not all transects 

were surveyed all years. We surveyed active transects four or more times per year 

between 0600 and 1000 on mornings with moderate weather conditions during the late 

May to early August breeding season (Emlen 1977). We included all birds observed 

within 100 m of a transect in the surveys. 

We defined separate local community samples by aggregating across multiple 

transect locations within each disturbance zone at Mount St. Helens and for the entire 

Mount St. Helens area using available survey data. Combining species observations by 
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sample year across transect locations, we created 37 community samples specific to 

Mount St. Helens disturbance zones: 13 on the Pumice Plain, 10 in the Blowdown Zone, 

5 in the Scorch Zone, 7 in the Tephra Fall Zone and 6 in the Reference Area. Each 

community sample aggregates a list of species from all transect surveys for the 

disturbance zone, for the given year and all previous years, to focus on colonization 

processes. For example a 2010 community sample for the Pumice Plain includes all 

species observed in surveys at any Pumice Plain transect from 2010 and all prior years. 

The 2010 community samples therefore include all species which have colonized the 

Mount St. Helens landscape and been observed since the 1980 eruption. In addition, 

community samples were combined across disturbance zones for each year during which 

bird surveys were conducted to identify 17 years of community species lists for Mount 

St. Helens as a whole.  

 

2.2 Regional Data 

We used large-scale avian monitoring programs in the Pacific Northwest as 

independent sources of regional observation sites for breeding birds observed at Mount 

St. Helens. Spatially explicit records of bird species observations in the region were 

drawn from both the North American Breeding Bird Survey (BBS) and the Monitoring 

Avian Productivity and Survivorship (MAPS) program sites. We included sites within 

600 km of Mount St. Helens as regional observation sites, because this area included the 

entire political boundary of the Washington Breeding Bird atlas and was sufficient to 

observe the birds present in the field data from Mount St. Helens.  
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The BBS is the most extensive monitoring program for birds in North America. 

BBS monitoring efforts are well distributed throughout the Pacific Northwest region, 

with 190 sites located in Washington State (Figure A2-1 Panel A). BBS surveys take 

place as a series of roadside point counts, and surveys are conducted annually during the 

breeding season. Each site consists of 50 point counts along a 40 km route, which allows 

a single ‘site’ to include a variety of habitats. For our purpose, each BBS site is geo-

referenced by the midpoint of the route. Given the years of longitudinal data collection 

at each BBS site and the even distribution of BBS sites across the region, we consider 

the BBS dataset to be a reasonable proxy for actual species occurrence for a broad range 

of taxa, but recognize that some species are not well sampled (for example, nocturnal 

species and species utilizing wetlands) and the spatial resolution is coarse. The MAPS 

program consists of fewer sites that have a clumped spatial distribution, but are 

monitored more intensely than BBS and conduct mist netting and banding. Bird 

observations between 1992 and 2006 at 149 MAPS stations within 600 km of Mount St. 

Helens (Figure A2-1 Panel B) were included in the MAPS regional observation sites 

(Michel et al. 2006). From the BBS, we included bird observations from 1968 to 2010 

for 289 routes (Figure A2-1; PWRC 2012). Because detection is imperfect and varies 

across species and habitats, an individual survey year or even multiple survey years may 

not include all species present (Donovan and Flather 2002). Therefore we combined all 

observations across all years of sampling to create species lists for all BBS and MAPS 

sites, a conservative approach that does not account for effects of habitat or climate 

change. One BBS route was located within the disturbed area of Mount St. Helens. This 
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route was excluded from the regional dataset, and considered as a separate source of 

local community data.  

Regional monitoring programs do not necessarily provide unbiased reports of 

species locations. The roadside nature of BBS surveys is a source of bias in species 

observations that was not directly addressed (Keller & Scallan 1999). Another source of 

bias in regional data was poor representation of alpine specialists. In both MAPS and 

BBS data, alpine species were observed at few if any locations within 600 km of Mount 

St. Helens despite being present in the Cascades region. Because alpine species are 

common in the Mount St. Helens field data, it was important to account for this bias in 

the regional observations. To counteract this systematic bias, we identified Mount 

Rainier (75 kilometers away) as an additional regional observation site for the American 

Pipit, Gray-crowned Rosy-finch, Horned Lark and White-tailed Ptarmigan. These alpine 

birds have been consistently documented at Mount Rainier for over 90 years (Taylor 

1922, National Park Service 2011).  

 

3. RSPs 

3.1 Traditional RSPs 

We defined traditional RSPs for the Mount St. Helens area to provide context for 

interpretation of the minimum source region approach. We used two commonly 

accepted methods for RSPs, the state atlas approach and the range map approach. 

Because the Mount St. Helens area comprises a wide range of habitats, we did not limit 

the traditional RSPs according to habitat or other ecological factors. The state atlas RSP 

adopted the political boundaries approach and included all bird species with confirmed 
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evidence of breeding in Washington State, according to the 1987-1996 Washington 

Breeding Bird Atlas (Breeding Bird Atlas 2012). The range map RSP identified all 

species whose digitized range map overlapped a circle of 100 km radius centered on the 

Mount St. Helens Pumice Plain, using publically available geo-referenced range maps 

from NatureServ (Ridgely 2007). Maps overlays were performed in ArcGIS 10.1. 

 

3.2 Novel RSP: Minimum Source Regions 

By applying a spatial approach to source regions, we tested hypotheses about 

colonization and assembly processes. As species accumulate through colonization, the 

colonists may originate entirely from within the local area, or may draw upon a broader 

region (Figure 2-1A). The minimum source region protocol described here provides a 

measure of the physical extent of the region from which colonists may disperse, based 

on existing species occurrence data. The broader the region contributing colonizing 

individuals to the local community, the larger the minimum source region should be. 

When the regional observation sites provide a reasonable proxy for actual species 

occurrence across a landscape, we can glean more about colonization and dispersal from 

the set of minimum source regions. Moreover, if the minimum source region and the 

community are relatively stable over time, then the areal extent of the minimum source 

region quantifies the scale of the ‘region’ contributing to local colonization.  

If colonization is entirely through short distance dispersal from local populations, 

then the minimum source region may never expand beyond a small number of very local 

regional observation sites. In contrast, if colonization involves long distance dispersal 

either by drawing haphazardly from a large region or by attracting species to specific 
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habitats (e.g., supertramp species, Diamond 1974) then we expect the minimum source 

region to include a larger geographic area (Figure 2-1A). In the context of successional 

processes and community assembly, the distance between the focal community and 

species-specific ‘nearest neighbor’ locations represent an upper bound on the closest 

source for each colonist species. As time passes, averaging the proxy dispersal distance 

across species in a community indicates the relative contributions of short and long 

distance dispersal to the community. If assembly is neutral, the average proxy dispersal 

distance would be expected to stay constant or to increase with increasing size of the 

minimum source region (Figure 2-1B). However, if average proxy dispersal distance 

decreases as a function of minimum source region, this suggests a shift from long-

distance dispersal to short-distance dispersal, which may indicate niche assembly 

processes such as habitat filtering. 

We identified spatially explicit minimum source regions using spatially-

referenced species observations taken from large-scale monitoring programs. Using the 

species composition of a local community, we defined a minimum source region for 

each assemblage as follows (Figure 2-2). Independent data provided occurrence 

locations in the vicinity of the focal community (Figure 2-2A). Species observations 

were associated with location data and identified as species-specific regional observation 

sites. For each species within the focal community, the regional observation sites are 

identified (Figure 2-2B) and the nearest regional observation site was determined as its 

‘nearest neighbor’ location (Figure 2-2C). Obviously, this location represents only one 

possible source of colonist individuals to the focal community, but it is the closest one 

for which any data were available. The distance between each ‘nearest neighbor’ 
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location and the location of the community was termed the ‘proxy dispersal distance.’ 

The proxy dispersal distance denoted an upper limit on minimum dispersal distance for 

each colonizing species.  

The minimum source region is determined by the collection of all nearest 

neighbor source locations across species within a community (Figure 2-2D). These sites 

were used to define a convex polygon which contained all nearest neighbor locations, 

named the ‘minimum source region’ (Figure 2-2E) Each minimum source region 

included within its boundaries a small area around the geographic location of the local 

community, as represented by the black circle in Figure 2-2D. Including this area in 

every minimum source region addressed two concerns. First, it ensured that all 

minimum source regions include the geographic location of the local community. 

Second, it allowed a polygon to be constructed when fewer than three source locations 

were necessary to account for all species in the community, a consideration that was 

most relevant for species-poor local communities. These physically defined minimum 

source regions were quantified by their area and mapped. The species pool for each 

minimum source region comprised all species observations for all regional observation 

sites within the defined polygon (Figure 2-2F). The pattern of species colonization 

sources for a local community was characterized by the distribution of proxy dispersal 

distances, summarized by the mean and maximum distances across species within the 

community, and by the area of the minimum source region. 
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4. Data Analyses 

4.1 Test of the Minimum Source Region Protocol 

We tested the methods for defining minimum source regions using annual 

surveys from BBS sites within Washington State. Because locations of BBS sites were 

selected randomly and are distributed across the state, we considered them a good test of 

the minimum source region across a range of representative habitats. While some BBS 

sites may show significant change in local land use and community composition over 

time, others would have more stable composition. 

We defined a local community sample for a given BBS site and a given year as 

all species observed in any survey before or during the year in question. That is, for each 

survey year, we constructed the associated community sample by appending any newly 

observed species to the list of species observed in previous years. This provided an 

inclusive list of possible colonists which provided a more direct comparison to our 

Mount St. Helens work focused on colonization. In addition, studying BBS sites 

separately allowed us to consider the effects of sampling effort and species richness on 

the minimum source region outside of the context of successional change. 

Using the regional observation sites of all species observations at 462 BBS sites 

in Washington, Oregon, Idaho and Montana, excluding the BBS site of interest, we 

calculated 2000 minimum source regions. We applied the minimum source region to all 

Washington State BBS sites to test the feasibility of the spatial approach and to provide 

a baseline expectation for the minimum source region and how it changes over time. 
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4.2 Identification of Mount St. Helens Minimum Source Regions  

Spatially explicit minimum source regions for the Mount St. Helens community 

were identified using the regional observation sites from the BBS and MAPS datasets. 

For each of the 54 community samples collated from survey data a minimum source 

region was defined following the methods explained previously (Figure 2-1). In 

addition, minimum source regions were identified for 13 years of community samples 

drawn from the BBS route located within the Tephra Fall Zone of Mount St. Helens as 

an additional source of local community data. To ensure that a minimum source region 

could be calculated even for species-poor community samples and that Mount St. Helens 

was always within its bounds, each ‘minimum source region’ included within its 

boundaries an ellipsoidal area around Mount St. Helens approximately 20 km in radius 

and 1256 km2 in area (see Figure 2-2D). In order to test the differences in regional 

datasets, source regions were calculated using BBS data alone, MAPS data alone, and 

the combined dataset. We created 67 minimum source regions (i.e., the polygons 

generated for each of the 5 disturbance zones across 17 years with surveys, all Mount St. 

Helens field observations combined, plus 13 years of surveys on the Mount St. Helens 

BBS route). 

  

4.3 Comparison between Mount St. Helen communities and statewide community data 

We compared the spatially defined minimum source regions from Mount St. 

Helens field data to those calculated for the Washington State BBS sites. We only 

considered the first 17 annual surveys for each BBS community to allow for direct 

comparison of change over time with the 17 years of Mount St. Helens surveys. These 
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surveys were not from the same years at Mount St. Helens surveys, but selected to 

parallel the sampling effort and length of elapsed time of the Mount St. Helens surveys. 

From the minimum source regions we extracted the across-species mean and maximum 

of proxy dispersal distances, and the area of the minimum source region to characterize 

the pattern of species colonization sources for the Mount St. Helens community samples. 

To differentiate between changes in minimum source regions due to increased sampling 

from those due to changes in observed species, we used a generalized linear model to 

examine what variables affected metrics defining the minimum source region (mean 

distance, maximum distance, and area). Community identity (e.g., Pumice Plain) was 

included as a random effect. We estimated the direct fixed effects and interactions of 

observed species richness, number of sampling years, and community source (Mount St. 

Helens disturbance zone v. Washington BBS site. The best model was selected using the 

minimum AIC value. 

 

4.4 Comparison between Mount St. Helen communities and traditional RSPs 

Within each resulting minimum source region, we compiled a list of species for 

the corresponding RSP. All regional observation sites that were located within the 

geographic range of each minimum source region were identified, and the list of species 

observed at least once at those sites constituted the spatial RSP. The compositions of 

these spatial RSPs were compared to traditional RSPs. We identified the completeness 

of the RSPs for including all local species, the total number of species in each RSP, and 

the species absent from some RSPs.  
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Results 

RSPs 

Traditional and spatial RSPs were defined for the Mount St. Helens bird 

community as a whole. The species richness of RSPs determined by State Atlas, Range 

Map, and the spatial approach were similar but not identical (Table 2-1). The total 

species richness of the traditional RSPs was approximately 250 species in each case, 

though composition varied (Table A2-1). Among all traditional and spatial RSPs, 312 

bird species occurred in at least one RSP, but only 153 occurred in all RSPs. The State 

Atlas RSP included 118 passerines versus 108 for the Range Map approach. The spatial 

RSPs included a similar richness of passerine species compared to the Range Map RSP, 

but fewer non-passerines (Table 2-1). The Range Map also approach identified six 

additional species that were excluded from the RSP, as only their winter ranges 

overlapped with the Mount St. Helens area. The State Atlas and the Range Map 

approach both included all 62 passerine species observed at Mount St. Helens, but did 

not include all observed birds (Table 2-1). Of the species observed at Mount St. Helens, 

the State Atlas RSP did not include three raptors and one shorebird, and the Range Map 

RSP was missing one woodpecker species.  

In contrast, the spatial RSPs by definition included all species observed at Mount 

St. Helens, though the BBS dataset and the MAPS dataset each lacked one alpine 

species (Table 2-1). In the BBS, the closest observation of Gray Crowned Rosy-Finch 

(Leucosticte tephrocotis) was 686 km from Mount St. Helens in Alberta, Canada. In the 

MAPS regional data, the American Pipit was not observed. When the BBS and MAPS 

species observations were combined, both alpine species were observed at exactly one 
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location within 500 km of Mount St. Helens. By including Mount Rainier as an 

additional regional observation site for alpine specialists, we prevented this systematic 

bias from influencing the results of the minimum source regions. All other species from 

Mount St. Helens were observed in the regional datasets within 450 km.  

While the spatial extent of the “region” of traditional RSPs was ecologically 

arbitrary, the spatial RSPs define a region according to the species occurrence data in the 

local and regional datasets. The spatial minimum source regions differed according to 

the regional data used (Table 2-1). Higher data density in the BBS led to smaller 

minimum source regions, but this did not correspond to smaller RSPs. When both 

MAPS and BBS data were considered, the source region necessary to find all species 

observed at Mount St. Helens between 1982 and 2010 was 34,516 km2 in extent, with 

the maximum distance to a regional observation of 254 km. BBS and MAPS 

observations in this region yielded a total of 110 identified passerine species. When the 

spatial RSP approach was applied to only one of the regional datasets, the spatial extent 

of the minimum source region required was larger and fewer species were included in 

the associated RSP. 

The two regional sources resulted in very different source regions. The BBS 

minimum source region was 51,774 km2 in size and contained observations of 108 

passerine and 104 non-passerine species (Table 2-1). In the BBS RSP, the larger spatial 

area corresponded to more total species, though fewer passerines, than in the smaller 

spatial RSP when using both BBS and MAPS datasets. Due to its clustered site locations 

and fewer total sites, the MAPS data required a minimum source region over twice the 

size of the BBS minimum source region for the Mount St. Helens bird community 
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samples. Despite the large spatial extent, the MAPS RSP included fewer species than the 

combined Spatial RSP with 110 passerine and 86 non-passerine species. 

 

Minimum Source Regions 

Minimum source regions were used to quantify the potential extent of the 

ecological regions from which birds colonized Mount St. Helens bird communities. The 

spatial extent was determined by the species composition of local community samples 

and each species’ nearest neighbor location in the regional dataset. Because the 

qualitative patterns observed in the minimum source regions were similar for each 

regional dataset and the BBS provides a more consistent distribution of regional sites 

both for this study and across the U.S., we have limited further results to the BBS 

regional data. 

As expected, the accumulation of species across time within the disturbance 

zones of Mount St. Helens led to minimum source regions with increasing area. The 

minimum source regions across disturbance zones increased quickly within the first few 

years of surveys, plateaued within five years of the eruption, and showed little variation 

between 1985 and 1993. However, the minimum source regions for Blowdown Zone 

and Pumice Plain increased again after surveys were resumed in 2007 (Figure 2-3A). 

These disturbance zones were the most changed by the eruption, and showed the most 

successional change in habitat structure during the ecological recovery. The recent 

increase in the size of the minimum source region indicates that these habitats continue 

to be colonized by long-distance dispersal of regional species, as opposed to 

colonization strictly from local sources (Figure 2-4). Though the minimum source region 
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for the Pumice Plain includes the farthest nearest-neighbor location for Greater 

Yellowlegs (Tringa melanoleuca) 445 km from Mount St. Helens and is the largest 

region defined for a disturbance zone community at 11,175 km2, it does not quite 

include the entire region necessary for the Mount St. Helens bird community as a whole, 

whose minimum source region covers 12,996 km2 (Figures 2-3, 2-4). Also, the same 

‘nearest neighbor’ locations appear in the minimum source regions of different 

disturbance zones at different times during ecological recovery. The Scorch Zone, 

Tephra Fall Zone, and Reference Area show only small increases in minimum source 

region after 1985, indicating that they may have been primarily colonized through 

shorter-distance dispersal.  

Unlike the total area of the minimum source region, the mean of species-specific 

proxy dispersal distances may increase or decrease over time. The average distance to 

species-specific nearest neighbor locations is expected to increase when the minimum 

source region grows larger, but for a constant minimum source region, the average 

distance will depend on where within the minimum source region the species-specific 

nearest neighbor locations are distributed. The mean distances across species in the 

Scorch Zone, Tephra Fall Zone, and Reference Area tend to increase in the first years of 

surveys and remain consistent in later surveys. The mean distances across species in the 

Pumice Plain and Blowdown Zone of Mount St. Helens are non-monotonic across time 

(Figure 2-3B), consistent with the hypothesis of assembly processes including habitat 

filtering. The mean proxy dispersal distance for the Pumice Plain community was very 

high in 1983 followed by a decrease and consistent lower mean distance through the rest 

of the 1980s surveys. When surveying resumed in 2007, the distances show greater 
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variation and another increase corresponding to the increase in the extent of the 

minimum source region. In contrast, the mean proxy dispersal distance for the 

Blowdown Zone community shows a gradual increase and then decrease over 1982-

1993. When surveys were conducted again in 2007, the average dispersal distance 

within the community again increased. These fluctuations in the community-wide 

average of species’ proxy dispersal distances suggest that habitat selection may be 

contributing to assembly patterns in the local community. 

 

Comparison to statewide BBS 

The BBS communities showed a fast increase in minimum source region size 

during the first few years of surveys due to sampling effects, after which transects 

tended to reach an asymptotic minimum source region. Over the entire sampling period, 

the minimum source regions for the Mount St. Helens communities grew faster than for 

the BBS communities (Figure 2-5). In a generalized mixed-effect linear model, the best 

fit model for change in minimum source region across 17 sample years, as measured by 

mean proxy dispersal distance, maximum distance, and areal extent, was the full model 

that included the interaction between community source (Mount St. Helens disturbance 

zone v. BBS site), the number of years sampled, the species richness of the focal 

community, and community identity (e.g., Pumice Plain). Estimates for Mount St. 

Helens sites had large variances due to the very small number of disturbance zone 

communities at Mount St. Helens (Table 2-2). Notably, the relationships between 

observed richness of a community and the minimum source region metrics were 

significantly more positive for Mount St. Helens communities than for BBS 
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communities. For example, the effect of observed local richness on community-wide 

mean of proxy dispersal distances was not significantly different from zero (-1.6 ± 2.8 

standard error) for BBS communities but was highly positive (82.2 ± 9.8 standard error) 

for MSH communities. This indicates that the number of species in a local community at 

Mount St. Helens is more likely to correspond to the size of the minimum source region 

than the number of species in a BBS community. In total, 93 species were observed in 

the Mount St. Helens community, and the mean observed richness for community 

samples was 40 species, while the BBS community samples averaged 78 species and 

had up to 138 species observed in a single community. Thus, the high effect size for 

observed richness on the minimum source region size for Mount St. Helens communities 

may be due to the relatively low species richness in the these communities. 

 

Discussion 

Our spatial approach to defining source regions for a community provides a new 

way to consider community colonization and assembly from a spatiotemporal 

perspective. Though different in composition, the RSPs originating from this spatial 

approach were comparable in species richness to traditional approaches and satisfied the 

requirement that a good RSP must include all the species observed in the local 

community (after we had accounted for the lack of alpine sites in regional data ). This 

contrasts with the traditional Atlas and Range Map RSPs that failed to include all 

species observed in the local communities. Despite their widespread use, the traditional 

RSPs did not always satisfy the basic requirements for defining a species pool. 
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Spatially explicit source regions, embodied by the spatial RSP analyses, quantify 

the dynamics of colonization patterns for a community across time and space. Although 

RSPs determined by State Atlas and Range Map RSPs provided a standard, temporally 

constant context for species colonization, the minimum source region approach 

demonstrated spatiotemporal expansion of the area potentially influencing a focal 

community during colonization. As each disturbance zone accumulated species through 

colonizations, we observed the community minimum source region increase in areal 

extent as well (Figure 2-3). Assuming that the regional observation sites are a reasonable 

proxy for actual species occurrence across the landscape, this pattern demonstrates that 

long distance dispersal from a non-local region is contributing to assembly of the Mount 

St. Helens bird communities. Most colonist species occurred in independent 

communities within 100 km of the disturbed areas of MSH; however, some colonist 

species occurred only at a significant distance from Mount St. Helens, and required long 

distance dispersal. Some of these long distance colonists, such as Brewer’s Sparrow 

(Spizella breweri), are habitat specialists found regionally in specific locations (e.g., 

shrublands east of the Cascades) whose characteristics were replicated in the midst of 

the Cascade Mountains by the volcanic disturbance, or species typically migrating 

further north for the breeding season (Greater Yellowlegs). Within a given species, 

dispersal distances are often ‘long-tailed’ in which there are relatively few long-distance 

dispersal events (Kot et al. 1996). Thus, if colonization draws from a wide geographic 

region, dispersal limitations across species should constrain the temporal rate of increase 

in the spatial extent of the minimum source region. However, it is important to keep in 

mind that these results are limited by the locations of available data through monitoring 
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programs. In this case, the BBS provided a more complete sampling of regional bird 

observations than MAPS. As new location-specific species observations data and 

databases continue to become available, the precision and accuracy of these analyses 

will continue to improve. For birds, the eBird program (www.ebird.org) organized by 

the Cornell Lab of Ornithology is one such effort that is beginning to provide excellent 

location- and time- specific sightings data.  

Given the high dispersal ability of many birds across land and the prevalence of 

migratory populations (Clobert et al. 2001), it is not surprising that long distance 

dispersers have arrived  to Mount St. Helens. However, inhospitable environments or 

geographic features may still have acted as dispersal barriers for some species (Sharov 

and Liebhold 1998). Dispersal and gene flow between populations may be limited by 

habitat connectivity in some bird species (e.g., Segelbacher et al. 2003). Although this 

study considered only Euclidean distance between locations and selected the “nearest 

neighbor” sites as the most likely source of colonist species, incorporating ‘least cost’ 

paths and habitat connectivity into distance measurements could improve ecological 

realism and affect the shape and size of calculated minimum source regions (Moilanen 

and Nieminen 2002). However, such paths and connectivity measures are typically 

species specific (Tischendorf and Fahrig 2000, Calabrese and Fagan 2004), making 

them impractical in an analysis of whole communities as we have here. 

The thirty years of ecological recovery at Mount St. Helens discussed here are 

only the beginning of a lengthy successional process. However, it is enough time to 

begin to address how local communities are assembling and from where colonizing 

species may disperse. The disturbance zones of Mount St. Helens demonstrated a stark 
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contrast between areas with high levels of disturbance (Pumice Plain and Blowdown 

Zone) and areas with lower levels of disturbance (Scorch Zone, Tephra Fall Zone, and 

Reference Areas). Although the disturbance in the Scorch Zone was significant, it was 

more similar to wildfire disturbance, and these sites were in close proximity to the less 

highly disturbed tephra fall zone. The Scorch Zone and Tephra Fall Zone may have been 

largely colonized from the local surroundings, while the more highly disturbed 

Blowdown Zone and Pumice Plain drew colonist species from further afield. This may 

be due to the habitats created on the Pumice Plain and Blowdown Zone following the 

eruption, which were least like the habitat in the surrounding Cascade Mountains region, 

and had the highest potential for attracting long-distance colonists. The increase in mean 

source distance in the first ten years of surveys in the Blowdown Zone indicates the 

importance of long-distance dispersal events in bird community assembly (see Figure 

3B). However, as time passed and the minimum source region remained stable, the 

decrease in mean source distance indicates that short distance dispersal was a consistent 

contributor of new species to these communities. This may be due in part to plantations 

of Pseudotsuga menziesii and Abies procera planted soon after the 1980 eruption, which 

have attracted forest birds from the Cascades as they have developed a forest habitat at a 

much faster pace than the natural ecological recovery. The long distance dispersal made 

evident by the Mount St. Helens source regions is an important ecological process with 

the potential to feed back into regional diversity dynamics. Long distance dispersal, even 

when rare, is an important mechanism for gene flow, and can facilitate range shifts, 

expand geographic ranges, and enable invasion by exotic species (Nichols and Hewitt 

1994). Moreover, long distance dispersal of birds can have far-reaching community-
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level effects as birds are known vectors of dispersal for a wide variety of seeds and 

invertebrates (Green and Figuerola 2005, Merow et al. 2011, Gillespie et al. 2012). 

Both Pumice Plain and Blowdown Zone communities showed an increase in 

maximum distance to species-specific nearest neighbor locations and community-wide 

minimum source region area following repeated years of sampling (Figure 3). Future 

colonizations on the Pumice Plain, an area undergoing primary succession, will shed 

further light on the expected patterns in source regions over time. As ecological recovery 

continues, we expect the Blowdown Zone and Pumice Plain to continue to be colonized 

by a mix of short distance and long distance dispersers. Considering the recent 

expansion of the minimum source regions for the Blowdown Zone and Pumice Plain, 

there is no reason to expect these source regions have reached their maximum extent. 

We expect that these areas will continue to be colonized by a combination of short and 

long distance dispersers from throughout a broad geographic region and for the 

minimum source region around Mount St. Helens to grow further.  

Minimum source regions cannot identify where colonizing individuals actually 

originate. However, they can provide realistic proxies for source populations based on 

regional occurrence data. The minimum source region uses monitoring data to define a 

physical geographic area within which to address community ecology questions. 

Previously, the spatial geometry of regional source pools had only been characterized 

through overlaying species range maps. The union of the geographic ranges of species 

present in an assemblage defines that assemblage’s dispersion field (Graves and Rahbek 

2005). Because of their reliance on range maps, which overestimate local species 

occurrence, this approach only works at coarse spatial resolution, e.g., for continental 
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species pools and assemblages defined by 1º latitude/longitude quadrats. Consequently, 

the range map approach is valuable for studying large scale patterns in species richness, 

but not appropriate for examining colonization sources in local assembly. 

In this study, species were accumulated in community samples across years and 

the possibility of local extinctions was ignored. This was considered the best approach 

given the lack of data between 1993 and 2005, as well as limited sampling at Mount St. 

Helens since 2005. However, 11 species observed at Mount St. Helens before 2005 have 

not been observed since 2005. Additional surveys would be required to truly identify 

how many of these species are locally extinct versus how many are present but 

unobserved in the most recent surveys. Incorporating local extinction dynamics would 

be a beneficial extension of the minimum source region, particularly in studying 

heterogeneity and spatial patterning of habitats and communities in a spatiotemporal 

framework. Similarly, our approach could be modified to further restrict regional 

observations by the year of observation relative to local sampling to facilitate application 

to networks of interacting communities.  

Using minimum source regions we found evidence for both short- and long-

distance colonization in mainland post-disturbance habitats. In contrast to traditional 

RSPs, the spatial approach presented here addresses the spatiotemporal variation in 

colonization by explicitly identifying potential source locations for colonist species. By 

approximating the geographic area of interactions between a local community and its 

surroundings, the minimum source region explicitly examines the scale of the ecological 

“region” within which a local community is situated. Each measure of the source region 

(e.g., mean distance) provides additional information on colonization patterns. The 
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distribution of proxy dispersal distances, along with summary statistics such as those 

presented here, provide insight into the overall patterns of dispersal to a local 

community during colonization and characterize its overall similarity to the surrounding 

region. Maximum distance and source region area are dominated by the dynamics of the 

few species which appear to colonize a site via long distance dispersal, as evident in the 

contrast between the pattern for minimum source region area and across-species mean of 

proxy dispersal distances. By explicitly considering the spatial occurrence of species in 

the region, this approach allows researchers to address the dynamic features of 

colonization and the landscapes in which they occur. 
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Tables and Figures 

 

Table 2-1. Species inclusion in regional species pools using traditional and spatial 

approaches. 
 

Results of alternative approaches to determining regional species pools (RSPs), applied 

to survey data from Mount St. Helens, WA. For each RSP, the number of species (total 

and passerine) in the ‘region’ is given. Of the species observed at Mount St. Helens, the 

number of those species observed in the RSP, and the identities of any missing species, 

are provided. Note that for the BBS and MAPS datasets, missing alpine species (*) were 

accounted for by including Mount Rainier as a regional observation site for distance and 

area calculations. For the focal Mount St. Helens community, the across-species mean 

and maximum proxy dispersal distances and the area of the resulting ‘minimum source 

region’ [convex polygon] are given. 

 

 
State Atlas 

Range 

Map 

Spatial-

BBS 

Spatial-

MAPS 
Spatial-All 

# Species 249 245 212 196 206 

# Passerines 118 108 108 110 110 

# MSH Species 89 92 91* 91* 93 

# MSH Passerines 62 62 60* 60* 62 

Missing MSH 
Species 

Golden 
Eagle, 

Northern 
Goshawk, 

Prairie 
Falcon,    
Greater 

Yellowlegs 

Red-naped 
Sapsucker 

American 
Pipit, 
Gray-

crowned         
Rosy-finch* 

Horned 
Lark, 

American 
Pipit* 

N/A 

Mean Distance 
(km) 

N/A N/A 37 511 35 

Maximum 
Distance (km) 

N/A N/A 445 1075 254 

Area (km²) 184800 7854 51774 137183 34516 
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Table 2-2. Regression parameters for effects of year and species richness on 

minimum source region statistics.  
 

Estimates of slope of minimum source region parameters (across-species mean of proxy 

dispersal distances, across-species maximum of proxy dispersal distances, area of 

minimum source region) for longitudinal samples of up to 17 years of Mount St. Helens 

(MSH) communities (by disturbance zone) and Washington state BBS routes, according 

to best-fit generalized linear models. For each of the three metrics of the minimum 

source region, the best-fit model according to AIC included both number of years 

sampled (Year) and number of species in the local community (SR), with community 

location (Mount St. Helens disturbance zone or BBS route) as an interaction term for 

both Year and SR. Community identity (e.g., Pumice Plain) was included as a random 

effect.  

 

Metric Model Parameter Slope Estimate ± SE 

Mean Distance Year (MSH) -11.5 ± 45.9 

Mean Distance Year (BBS) 4.0 ± 8.5 

Mean Distance SR (MSH) 82.2 ± 9.8 

Mean Distance SR (BBS) -1.6 ± 2.8 

Max Distance Year (MSH) 626.3 ± 1139.7 

Max Distance Year (BBS) -186.1 ± 193.5 

Max Distance SR (MSH) 3094.3 ± 233.4 

Max Distance SR (BBS) 85.0 ± 59.6 

MSR Area Year (MSH) 9.9 ± 211.4 

MSR Area Year (BBS) 204.9 ± 37.4 

MSR Area SR (MSH) 265.2 ± 44.1 

MSR Area SR (BBS) 109.9 ± 12.0 
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Figure 2-1. Predicted patterns in minimum source region area over time. 
 
Predicted patterns in minimum source region for community samples across time. Panel 
A shows areal extent of minimum source regions. Colonization from either local or 
regional sources is expected to plateau within a given area that represents the 
ecologically significant region from which dispersal to the focal community occurs. The 
rate at which the minimum source region reaches its maximal extent will be determined 
by the dispersal limitation of the potential colonists. Panel B shows the across-species 
mean of proxy dispersal distances. Neutral assembly from either local or regional 
sources predicts a monotonic curve. Niche processes such as habitat filtering may lead to 
non-monotonic curves over time.  
 
 

 

 

 

 

 

 

 

 

  

A 

B 
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Figure 2-2. Diagram of methodology defining minimum source region. 
 
Method to define minimum source region and associated RSP. Panel A shows a map of 
the focal community (Mount St. Helens) represented by the triangle and surrounding 
regional source locations (BBS routes) as circles. From the regional source locations, the 
closest location for each species present in the focal community is identified. In panel B, 
the regional observations for Species X are identified (diamond outlines). Panel C 

identifies the closest source location for Species X (black diamond). Panel D shows the 
suite of closest sites which combined include all species in focal community, identified 
as black diamonds, and a minimum circle around the focal community. In panel E, the 
minimum convex polygon that includes all required source locations is defined as the 
minimum source region (denoted by black lines). In panel F, all the source locations 
within the minimum source region are identified (union set of black circles and black 
diamonds). The regional reference community comprises all the species observed at all 
source locations within the minimum source region. 



41 
 

 



42 
 

Figure 2-3. Observed patterns in minimum source regions across time. 
 
Observed patterns in minimum source region for community samples across disturbance 
zones and years. Panel A shows areal extent of minimum source regions (km2) on a log 
scale. Panel B shows the across-species mean of proxy dispersal distances (km) within 
each community sample. 
 

 
 

 

 

 

 

 

 

 

 

 

 

A 

B 

Year 

Year 
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Figure 2-4. Maps of Minimum Source Regions for Mount St. Helens birds. 
 

Maps of ‘Minimum Source Regions’ for data subsets at Mount St. Helens. Black 
triangle indicates Mount St. Helens. For each year, all species observed since the start of 
data collection are included. Each minimum source region is the minimum convex 
polygon that contains regional locations of all species observed in the community. Maps 
in the ‘All Zones’ column are based on species observed during field surveys at Mount 
St. Helens in all disturbance zones. Maps in the ‘Blowdown Zone’ column are based on 
species observed during field surveys at Mount St. Helens in the Blowdown disturbance 
zone. Maps in the ‘BBS Route’ column are based on species observed during 
independently conducted surveys along the Mount St Helens breeding bird survey route 
in the tephra fall zone of Mount St. Helens.  
 

Year Mount St. Helens:               

All Zones 

Mount St. Helens: 

Blowdown Zone 

Mount St. Helens:          

BBS Route 

1982  

1983  
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Figure 2.4 continued. 

1984  

1987  

1992 

1994   
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Figure 2.4 continued.   

1998   

2005 

2010 
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Figure 2-5. Temporal change in community-specific maximum of species’ proxy 

dispersal distances. 
 

The rate of increase in maximum distance across 17 years of surveys is typically higher 
in Mount St. Helens disturbance zone communities than in Washington State BBS site 
communities. 
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Chapter 3 : Evidence of assembly processes during primary succession 

at Mount St. Helens, WA 

Co-authored with: W. F. Fagan and C.M. Crisafulli 

Abstract 

Understanding what processes regulate the structure and composition of local 

communities is a critical question in community ecology. While the role of species’ 

responses to local conditions as determined by their niche have long been recognized, 

stochastic processes have more recently been included in the discussion of community 

assembly. In this study we considered community assembly in the bird communities of 

early primary successional habitats at Mount St. Helens following volcanic disturbance. 

We tested multiple niche-based assembly hypotheses against null models representing 

stochastic processes using relative abundance distributions, guild proportionality, 

nestedness, and body-size dispersion of birds during two time periods in early primary 

succession. While the bird communities present showed evidence of nestedness and 

habitat filtering, they did not support predictions based on assembly processes involving 

intraspecific competition. Our results suggest that the bird assemblages at Mount St. 

Helens have been shaped primarily by differential colonization according to classic 

environmental filtering models.  

 

Introduction 

Understanding community assembly processes is a fundamental component of 

community ecology, with ecologists long debating the roles of deterministic and 

stochastic processes. Historically, research has focused on environmental filters and 
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species interactions to explain deterministic patterns in community structure and 

composition. Models employing “assembly rules” identify patterns in community 

assembly and seek to explain the assembly processes underlying those patterns 

(Diamond 1975, Weiher and Keddy 2001, Weiher et al. 2011). In testing assembly rules, 

species are defined by traits influenced by environmental filtering, including ecological 

tolerances, habitat associations, and dietary guilds. These traits in turn influence the 

interactions among colonist species. Classic community ecological processes such as 

inhibition, facilitation, and priority effects all rely on species interactions consistent with 

niche processes.  

The development of the neutral theory of community ecology has enlivened the 

debate over assembly processes (Caswell 1976, Hubbell 1997, 2001). Neutral theory 

posits community assembly to depend purely upon stochastic processes of births and 

deaths, speciation and extinction, and dispersal. Neutral theory provides a striking 

contrast to niche assembly, emphasizing event probabilities instead of species 

differences. However, neutral theory has also been criticized for its limitations in 

predictive ability and for its assumption of species functional equivalence (Gaston and 

Chown 2005, Gotelli and McGill 2006, McGill 2003). In addition, parameterization of 

neutral models of community ecology is often troublesome because such models 

frequently depend on parameters that are hard to estimate, such as rate of migration and 

metacommunity population size (Gotelli and McGill 2006). Though the neutral model of 

Hubbell (2001) and its extensions (eg, Etienne and Olff 2004, Ulrich 2004, Rangel & 

Diniz‐Filho 2005) are often identified as a process-based description of community 
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assembly, such models are more correctly identified as specific forms of a null model 

(Gotelli and McGill 2006).  

Today, both neutral and niche processes are recognized as potential contributors 

to community assembly. Early studies that incorporated both neutral and niche theories 

of community assembly often presented them as two competing hypotheses (e.g., Algar 

et al. 2005). However, they are now accepted as two ends of a continuum, where 

communities may undergo both niche and neutral processes (Tilman 2004, Gaston and 

Chown 2005, Gravel et al. 2006, Yang et al. 2013). Recent research has applied niche 

process models in the context of null models and multiple hypothesis testing to develop 

a more robust understanding of both niche and neutral community assembly processes 

(Algar et al. 2011, Chase and Myers 2011, Mutshinda and OHara 2011).  

The use of neutral models and other robust null models for testing hypotheses 

has broadened our understanding of both neutral and niche processes in community 

assembly (Blackburn and Gaston 2001, Gotelli and McGill 2006). Neutral models of 

assembly are commonly tested based on patterns of species distributions, abundances, 

and species-area relations. Under neutral assembly processes, models predict both high 

β-diversity and low consistency of species rank abundance among local assemblages. 

Chance dispersal, particularly following disturbances is a key driver (Chase and Myers 

2011, Cash et al. 2012). Priority effects, in which early colonizers influence the success 

of later colonizers, may contribute to this pattern (Chase 2007). Nestedness patterns, in 

which the species present at species-poor sites are subsets of the species at species-rich 

sites, may indicate selective colonization or extinction, or may be a result of passive 

sampling (Wright et al. 1997, Wang et al. 2011). 
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Commonly identified niche assembly processes include habitat filtering and 

interspecific competition (e.g., Diamond 1975, Keddy 1992, Fargione et al. 2003,) 

which predict opposing patterns in species traits within a community. Habitat filtering 

presumes that species with shared ecological tolerances and habitat requirements should 

find the same habitats attractive for colonization. Thus habitat filtering leads to 

assemblages with more similar traits than would arise from neutral assembly. When 

either habitat filtering or interspecific competition related to niche overlap and body size 

similarity drives species local colonization success, observed assemblages should feature 

specific patterns of co-occurrence, guild proportionality, and trait dispersion (Driscoll 

and Lindenmayer 2010). For example, competition may limit co-occurrence of species 

pairs with overlapping resource bases, leading to proportional sampling across guilds 

(Wilson 1989). Habitat filtering processes should lead to co-occurrence of species with 

more similar character traits while competition-based assembly should lead to the 

opposite (i.e., overdispersion of traits within the assemblage). Under competition-based 

models, species pairs adjacent in ranking of body size should exhibit larger average 

body size ratios, larger minimum size ratios, and smaller standard deviation of size 

ratios within the community than stochastically assembled communities (Case et al. 

1983, Wang et al. 2011).  

 

Disturbance 

On the landscape scale, disturbance processes maintain overall landscape 

heterogeneity and related β-diversity (Swanson et al. 2010), and the intensity and 

frequency of disturbance should affect community dynamics (Pickett 1985). While the 
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1980 eruption of Mount St. Helens represents the less-studied extreme of high intensity 

– low frequency disturbance, lessons from lower intensity, higher frequency disturbance 

may still inform our understanding of assembly processes following this catastrophic 

disturbance. Disturbance is expected to increase “disorderliness” or stochasticity in 

community assembly (Fowler 1990), and this is particularly true under primary 

succession scenarios (del Moral and Grishin 1999). Frequent disturbance could obscure 

evidence of assembly rules if the disruptions occur on a timescale faster than the 

timescale of equilibration (Holdaway and Sparrow 2006, Driscoll and Lindenmayer 

2010). Thus following disturbance, the accumulated effects of assembly processes 

would be expected to become more evident as more time passes. However in a study of 

macroinvertebrate communities across a gradient of disturbance, Lepori and Malmqvist 

(2009) observed β diversity to be lowest at intermediate levels of disturbance and 

highest in sites without disturbance, suggesting stochastic processes were more 

important when disturbance was low and that the role of niche processes was most 

important at intermediate levels of disturbance. Community assembly processes may 

still be evident in non-equilibrial communities recovering from disturbance (Cash et al. 

2012), though few studies have addressed this topic.  

Here, I examined the roles of niche and neutral processes in avian community 

assembly within the context of an early primary successional landscape following 

volcanic disturbance. Applying null models of stochastic community assembly, I tested 

local bird communities from wetland and upland primary successional habitats at Mount 

St. Helens, WA, for evidence of alternative assembly hypotheses (guild proportionality, 

nestedness and size-structure) and for species abundance patterns consistent with neutral 
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or niche hypotheses testing the importance of habitat filtering, interspecific competition, 

and neutral processes in assembly. Because the Mount St. Helens avifauna is assembling 

in early primary successional habitat, I expect stochastic processes to play a major role 

in assembly processes (Belyea & Lancaster 1999, Drake et al. 1999, Stokes & Archer 

2010). Therefore I predict that niche-based assembly processes will not be detected in 

assembly patterns in the Mount St. Helens bird community. Examining assembly 

hypotheses in the context of the avian communities at Mount St. Helens offers a unique 

perspective of the role of assembly processes in recovery from large scale disturbance. 

 

Methods 

Field Site 

Previous research on bird community responses to volcanic disturbances has 

focused largely on secondary successional sites that featured residual components of the 

pre-disturbance community, addressed short-term impacts of the disturbance, and/or 

were conducted on volcanic islands. For example, several researchers have studied both 

short and long-term avian responses to disturbance on volcanic islands (e.g., Brattstrom 

1956, Byrd et al. 1980, Whittaker and Jones 1994, Dalsgaard et al. 2007, Petersen 2009, 

Drew et al. 2010, Bond 2012). Comparable studies, focusing on the impact of volcanic 

disturbance on bird communities in a mainland context, are largely absent from the 

literature. Much of what does exist in this area focuses on avian community recovery 

following the 1980 eruption of Mount St. Helens, WA, USA (Butcher 1981, Hayward 

1982, Andersen & MacMahon 1986, Manuwal et al. 1987, Crisafulli and Hawkins 1998, 

Fairchild 2009), and we build on this literature in several ways.  



53 
 

Field work was conducted in 1981-1990 and 2007-2010 on the Pumice Plain at 

Mount St. Helens, which, prior to the 1980 eruption, was predominantly forested, a 

matrix of old-growth and managed coniferous forest. During the 1980 eruption, the 

Pumice Plain area was affected by several types of disturbance. First it was buried 

several tens to > 100m beneath a debris avalanche caused by collapse of the north face 

of the volcano, followed by a laterally directed blast surge, and then culminated in 

searing hot (> 300 °C) pyroclastic flows that surged from the crater for about four hours 

creating a sterile plain approximately 600 ha in size. Subsequent to the main 18 May 

1980 volcanic eruption the area was influenced by additional pyroclastic flows, lahars, 

and tephra falls (Swanson and Major 2005). At the time of the eruption any birds 

present, including winter residents, permanent residents, and early migrants were 

immediately killed. The 1980 eruption and the resulting post-eruption landscape provide 

an outstanding opportunity to study avian community assembly in a mainland primary 

successional context. To the north, east and west, the Pumice Plain is surrounded by the 

Blast Area, which was severely impacted by the 1980 event; to the south the area was 

disturbed primarily by tephra fall although some areas were influenced by small lahars. 

Though no life survived on the Pumice Plain, remnants of the pre-eruption biota, 

identified as biological legacies, were common in much of the Blast Area, where 

secondary succession ensued.  

 At Mount St. Helens, impacts of volcanic disturbance on bird communities were 

addressed by a handful of investigators during the first fifteen years following the 1980 

eruption. Most of this work focused in areas receiving cool tephra deposits >20 cm thick 

and reported ephemeral effects such as temporary abandonment of territories and nesting 
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sites (Butcher 1981, Hayward 1982). However, Andersen and MacMahon (1986) in 

addition to working in the Tephra Fall zone, investigated sites subjected to intense blast 

forces that toppled late seral forest over 370km2 and deposited blast material and tephra 

several decimeters thick over the landscape. They reported a depauperate avifauna 

ranging from 3 to 6 species observed each year and low densities of species colonizing 

the blowdown zone during 1981-1984, dominated by the ground-nesting Dark-eyed 

Junco (Junco hyemalis). They found low depredation rates for artificial nests in the 

blowdown zone, where Mountain Bluebirds (Sialia currucoides) and possible nest 

predator Common Ravens (Corvus corax) were also observed. Manuwal et al. (1987) 

investigated avian responses in high-elevation forest on the south and southeast flanks of 

the volcano which received two levels of volcanic impact: tephra fall and scorch. Not 

surprisingly, they found that the effect of the eruption on bird communities was related 

to the extent of impact and that areas of shallow tephra supported communities similar to 

their reference sites, whereas in the scorched forest area they noted reductions in the tree 

foliage-insectivore and tree seed foraging guilds. Dominant species were associated with 

ground and understory vegetation. Crisafulli and Hawkins (1998) reported avian 

responses to the Mount St. Helens 1980 eruption in both secondary and primary 

successional sites over a 13 year period (1980-1993). In the Blowdown Zone they 

documented the establishment of seven bird species by the second post-eruption 

growing season (1981) that included ground nesters/foragers and cavity nesters that 

foraged on the ground, tree boles, or from the air column within one post-eruption year, 

followed by a second wave of colonization about six years later that included a suite of 

foliage gleaners and flycatchers. In the Pumice Plain, where all vestiges of the pre-
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eruption biota were eliminated, they documented a much slower colonization rate and an 

overall bizarre community composition that included species drawn from many different 

habitat affinities (Crisafulli and Hawkins 1998).  

During 2007-2010, the vast majority of the Pumice Plain was “upland” habitat in 

early stages of succession and dominated by low statured forbs and graminoids, Lupinus 

lepidus and sparse shrubby vegetation, primarily Alnus sp. and Salix sp. and occasional 

coniferous trees. For this study, four transects, 800-1000 m in length, were established 

running east-west through upland habitat, distributed uniformly across the Pumice Plain 

with 2 km separating parallel transects. Wetland habitat was dominated by dense 

thickets of Salix and Alnus with canopy height of 1.5 to 5m. Three transects 250-500m 

in length sampled the entire extent of wetland habitat that existed in 2007. Riparian 

habitat was also dominated by dense thickets of Salix and Alnus though canopy height 

did not exceed 4m. Two 500m transects were located along the eastern edge of thin 

riparian corridors, which provided the most effective method for surveying birds in these 

habitats. Wetland and riparian habitats occupied less than five percent of the total 

Pumice Plain landscape and were therefore more exhaustively sampled than upland 

habitats.  

 

Bird Surveys 

Between 1980 and 1990, initial colonization of the Pumice Plain was 

documented by the U.S. Forest Service conducting bird surveys along two transects on 

the Pumice Plain. In 1981 a 500m transect was surveyed twice. In 1982 the transect had 

been destroyed by a lahar, but surveys were conducted in the same area. In 1983 – 1990, 
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bird observations were recorded during multiple visits along one transect 3km in length 

on the Pumice Plain. Data available for this time period consisted only of the species 

identities observed each year. 

Between 2007 and 2010, bird surveys were resumed on the Pumice Plain using 

distance sampling along the nine transects described above. Each transect was surveyed 

4-7 times each year, 2007-2009. In 2010, only 5 of the 9 transects were surveyed. 

Surveys were conducted between 0600 and 1000 in the morning during June and July. 

Weather conditions were recorded at the start and end of each survey including the air 

temperature, cloud cover, precipitation, and wind. Based on habitat width (i.e., 

vegetation physiognomy) and post-hoc examination of survey results, bird observations 

were excluded if based on sightings beyond 100m perpendicular distance from a transect 

line in upland areas, and beyond 80m in wetland areas. Because of the narrow linear 

form of riparian habitats, only observations recorded between the transect line and 20 m 

west were included for riparian surveys. These limits in perpendicular distance were 

used to limit observations to the habitat targeted at that site. Bird observations included 

perpendicular distance to transect to allow these cut-offs to be made. 

At all sites, records of birds flying through habitat were excluded from the 

analysis, and raptors, waterbirds and shorebirds were excluded from the study, as survey 

sites and techniques did not target these species. Records of the three most commonly 

recorded species were examined for habitat overlap where species in one habitat were 

observed from a transect in a different habitat. Specifically, records for Horned Larks 

(Eremophila alpestris) in wetland transects were examined and eliminated if actually 

occurring in surrounding upland habitat. Similarly, records for Yellow Warbler 
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(Setophaga petechial) and Willow Flycatcher (Empidonax traillii) in upland habitat 

were examined and eliminated if occurring in encroaching wetland habitat. Species trait 

information including diet guild, foraging behavior, nest location, length (cm), and mass 

(grams) were collated for each species observed at Mount St. Helens using Birds of 

North America species accounts (Poole 2005).  

We stratified our study sites into “upland” or “wetland” habitats where 

“wetland” habitats included both riparian and wetland areas. For analysis, local sites 

were defined as 200m segments of each transect with ≥100m buffers between sites, 

resulting in 12 upland sites and 8 wetland sites.  

Detection and Occupancy 

To account for the presence of undetected birds, hierarchical occupancy models 

were used to estimate species-specific detection rates, site occupancy, and species 

richness within each habitat type (Zipkin et al. 2009). Initial occupancy was modeled as 

a Bernoulli random variable z�,�,� = 				
������(Ψ�,�,�)		with probability Ψ�,�,�   for 

species i at site j during year t	(MacKenzie et al. 2002, Ruiz‐Gutiérrez et al. 2010). For 

sampling in 2007 (t=1), we modeled species-specific occupancy by habitat type using 

the logit scale (Kéry & Royle 2009): 

logit (Ψ i,j,1) = �1i habitat j + �2i (1- habitat j ) 

where habitat = 1 for upland sites and habitat = 0 for wetland sites, such that �1i is the 

probability of occupancy in upland sites and �2i is the probability of occupancy in 

wetland sites. Because upland sites were larger in area than wetland sites, the occupancy 

values should not be directly compared. The larger area of upland sites was expected to 
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be balanced by the higher densities of birds in wetland sites,  For each subsequent 

survey year, occupancy was modeled by: 

logit (Ψ i,j,t>1) = (1 − �1i	)	z�,�,��� habitat j + (1 − �2i )	z�,�,��� (1- habitat j )  

+ �1i	(1 − z�,�,���) habitat j+ �2i	(1 − z�,�,���) (1-habitat j) 

where �1i and �2i represent probability of local extinction, such that (1-	�1i) gives the 

probability of continued occupancy in year t given presence in year t-1. Similarly �1i 

and �2i represent colonization probabilities for each habitat, or the probability of 

occupancy in year t given that the species was not present in year t-1.  

The detection of a given species in a survey was modeled as a Bernoulli random 

variable xi, j, t, k which denotes whether a species was recorded (x=1) or not recorded 

(x=0) for a given species i (i in 1-87; 37 observed species and 50 potential unobserved 

species ) during a given survey identified by site j (1-20), year t (2007-2010), and 

sampling replicate k (1-7). Detection depends on the true occupancy z such that ��,�,� 	=

	Bern!"�,�,�,#	$�,�,�	%	where & gives the probability of detection during sampling event k 

given that species i is present for species i at site j in year t. Probability of detection 

"�,�,�,# was assumed constant for a given species within a given habitat type:  

logit ("�,�,�,#) = '1i habitat j + v2i  (1- habitat j )  

This model used data regarding detection and non-detection for each survey and each of 

the 37 species observed on the Pumice Plain. Species richness for each habitat was also 

estimated within the community model by summing probabilities of occurrence by year. 

Species-specific parameters for initial occupancy, local colonization and extinction 

probabilities from 2007 to 2010 were assumed to come from a normal prior distribution 

for the community, the mean of which came from a uniform distribution between 0 and 
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1 (Zipkin et al. 2010). Separate distributions were used for each habitat. This approach 

allowed us to incorporate all observations, including poorly represented species, within 

the analyses without making assumptions about community structure. Model parameters 

were estimated using a Markov chain Monte Carlo (MCMC) simulations in a Bayesian 

analysis implemented in WinBUGS (Spiegelhalter et al. 2003) and AIC was used for 

model selection. 20,000 iterations of three MCMC were run, with a burn-in of 10,000 

discarded iterations and thinning the remainder to every fifth sample.  

Diversity Metrics 

Species diversity for the Pumice Plain was partitioned into α- and β- diversity. 

Observed species richness was the primary indicator of alpha diversity, due to the format 

of available 1981-1990 data. For 2007-2010, α-diversity was estimated using the 

nonparametric abundance-based jackknife1 estimator, which is robust to the scale of 

sample aggregation (Hortal et al. 2006). The jackknife estimator is precise across a range 

of spatial scales and allows an estimation of standard error. Additionally, the community 

occupancy models provided an additional estimate of α-diversity through the summed 

occupancy estimates of observed species and unobserved dummy species. Species 

accumulation curves were used only to demonstrate that sampling effort was sufficient 

in 2007-2010, and not to provide a formal estimate of specie richness. Raw relative 

abundances from the maximum number of individuals observed y site and year were 

fitted with broken-stick, log-normal, Zipf, and Mandelbrot-Zipf distributions. The best 

fit distribution for each habitat was determined using AIC. 

To examine temporal and spatial variation in the Pumice Plain bird community 

between 2007 and 2010, β-diversity was calculated using the additive model βAdd = γ- 
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α).	The variation among community samples was partitioned hierarchically across 

habitats, years, and sites. Considering the context of colonization during 1981-1990 and 

the community during 2005-2010, turnover in the Pumice Plain bird community across 

time was determined using the Raup-Crick approach to β-diversity (Raup and Crick 

1979), which uses species presence/absence data and a probabilistic null model to 

account for the effect of variation in α-diversity on the measurement of community 

similarity (Anderson et al. 2011, Chase et al. 2011). The Raup-Crick metric ranges from 

-1 (more similar) to 1 (more dissimilar), with 0 representing the dissimilarity expected 

by random chance. 

  

Community Metrics 

Community metrics were calculated for upland and wetland sites separately, and 

for the Pumice Plain as a whole. Metrics were compared to simulated assemblages from 

regional data (see below). Observations were aggregated across surveys and years for 

each site. Niche assembly processes are expected to increase the consistency of species 

identities in rank abundance distributions across sites. Consistency of rank abundance 

across sites within and among habitats was compared to the random expectation by an 

IV index: 

IV = 2 (  
+,-./

+,-./0	+,1233
  ) - 1  

which is greater than 0 when observed rank consistency (4�567) is greater than expected 

by random chance and is less than 0 when ranks are less consistent than random 

expectation (Watkins and Wilson 1994, Cash et al. 2012). Rank consistency was 

calculated for each habitat and Crnull was calculated as the mean rank consistency for 
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100 permutations of the rank abundance matrix in which the ranks of species with non-

zero abundances within each site were randomized. The Cr index ranges from 1 when 

rank abundances are identical among plots to -1 when they are as different as possible. 

One sample t-tests were used to determine if the mean rank consistency index for each 

habitat was significantly different than zero.  

Nestedness of assemblages present on the Pumice Plain was estimated following 

the BinMatNest approach which holds constant the row and column sums when 

randomizing the species-site occupancy matrix (Ulrich et al 2009). The temperature 

index of the community matrix, which ranges from 0 to 100 where 0 indicates perfectly 

nested communities and 100 indicates minimal nestedness, was calculated among sites 

within each habitat and across the Pumice Plain. The null expectations for nestedness 

temperature were calculated with fixed column and row marginal sums using the vegan 

package in R (R Core Development Team 2010). 

Community structure for species trait guilds was considered for foraging 

behavior, food type, and nest placement to assess the roles of habitat filtering and 

competition in assembly. For these analyses, null models were constructed from regional 

species pools compiled from the 1968-2009 surveys of USGS Breeding Bird Survey 

(BBS) routes within 500 km of the study site. Given the mainland nature of the study 

site, the extent of the region used here was selected because all birds observed at Mount 

St. Helens can be found within the BBS data at this radius. The number of individual 

BBS routes where each species has been observed was used as a proxy for species’ 

range size. The regional species pools were limited to the taxonomic orders and guilds 

observed at Mount St. Helens. Each species observed in the regional datasets was 
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classified according to diet guild, foraging guild, and nest placement using Birds of 

North America species accounts (Poole 2005). Null models used random sampling from 

a regional pool following Blackburn and Gaston (2001), where each species in the 

regional pool was weighted by the number of regional sites occupied to account for 

regional abundance. A distribution of values for the null expectation was drawn from 

1000 community simulations for each test. For null model predictions of diversity and 

guild structure, communities containing the same number of individuals as the target 

community were simulated. The proportion of individuals in each guild and the variance 

in guild proportionality were tested against null model expectations. The proportion of 

species in each guild in Pumice Plain assemblages and the variance in proportions 

among sites were compared to the probability distribution of null assemblages built from 

the regional species pool (eg, Blackburn and Gaston 2001, Algar et al. 2005). A 

Bonferroni correction was made to control for multiple comparisons of guild 

proportionality.  

The influence of interspecific competition on community assembly was also 

tested by comparison of species pair body size ratios within the community, using 

weight (grams) and length (cm). For each Pumice Plain habitat x guild combination, 

body size ratios (BSR) were calculated for species pairs adjacent in body size rank (Case 

et al. 1982, Etienne and Olff 2004). Body size ratios were only examined for diet guild 

assemblages with three or more species. Overall patterns in body-size overlap were 

tested by standardizing the observed BSR from each assemblage (	89567) to the null 

distribution using the standardized effect size (SES = 
:;<-./�	:;</=>

7?(:;</=>)
  ). Assembly 

patterns unaffected by interspecific competition predict on average, an SES not 
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significantly different from zero (Case et al. 1983, Wang et al. 2011). This hypothesis 

was tested using a one-sample t-test to determine whether SES values for the group of 

assemblages was different from 0; upland and wetland assemblages were considered 

separately. 

 

Results 

Bird Community and Occupancy 

Only seven landbird species were observed on the Pumice Plain in the first ten 

years following the 1980 eruption (Figure 3-1). The Common Raven was the first bird 

species observed on the Pumice Plain following the eruption, followed in 1983 by the 

Gray-crowned Rosy-finch (Leucosticte tephrocotis) and American Pipit (Anthus 

rubescens), both ground-foraging species commonly found in alpine barrens. By 1985 

three additional landbirds were present, including the aerial-foraging Barn Swallow 

(Hirundo rustica). Additional colonists were the ground-foraging Dark-eyed Junco and 

Rock Wren (Salpinctes obsoletus). In 1986 Tree Swallows (Tachycineta bicolor) were 

first observed, an aerial forager not reliant on vegetation for nesting habitat.  

By 2010, 37 landbird species were observed in surveys of the Pumice Plain. Of 

these, 18 were observed at upland sites and 27 were observed in wetlands. The species 

observed included 33 Passeriformes, two species of Apodiformes [Rufous Hummingbird 

(Selasphorus rufus) and Vaux’s Swift(Chaetura vauxi)], one Caprimulgiformes 

(Common Nighthawk - Chordeiles minor) and one Piciformes (Northern Flicker - 

Colaptes auratus). Species accumulation curves show that species richness approached 

an asymptote in each habitat (Figure 3-3), indicating that our sampling effort sufficiently 
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captured the species present at each site. The relative abundance distributions for the 

Pumice Plain assemblages were best fit by the Broken-Stick model (Table 3-1), which 

implies relatively high evenness across species (Wilson 1991). 

Overall species richness for the Pumice Plain was estimated at 42.6 ± 5.2 

species. In upland sites, the nonparametric abundance based estimate of α-diversity 

(jackknife 1) was 22.6 ± 3.1 species (mean ± SE). However, the hierarchical community 

model estimated species richness for the upland sites to be slightly higher, at 28.8 ± 8.7 

species. This is because the jackknide 1 estimate only considers the patterns of 

observation of observed species to predict unobserved species, while the hierarchical 

model incorporates dummy species for which it estimates unobserved occupancy using 

parameters drawn from the community distribution. In wetland sites, α-diversity was 

estimated at 32.6 ± 3.8 species, although the hierarchical community model estimated 

species richness for the wetland sites significantly higher, 58 ± 4.8 species. While 

wetland sites had higher α-diversity than upland sites, both habitats demonstrated lower 

α-diversity than predicted by random assemblage. 

Temporal turnover was significant, with Raup-Crick β-diversity across the first 

ten years of sampling consistent with expectations under randomization (0.79 ± .32). 

Also, between 2007 and 2010 β-diversity within each habitat did not differ from 

expectations under randomization (βsite = 10.08, p=1). However, additive β-diversity was 

significantly higher than expected between upland and wetland habitats and across years 

during 2007 - 2010 (βhabitat = 6.87, p=0.002; βyear = 15.25, p<0.002). Similarly, Raup-

Crick β-diversity was 0.00036 ± 0.0004 in upland sites and 0.0038 ± 0.0066 in wetland 
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sites, demonstrating spatial turnover within each habitat also did not differ from 

expectations. 

In upland sites, species-specific detection probabilities were estimated to be less 

than 0.15 with the exceptions of Horned Lark (0.731 ± 0.033), Dark-eyed Junco (0.223 ± 

0.057) and White-crowned sparrow (0.377 ± 0.054). Local site occupancy (within 200 m 

transects) ranged from 0.52 to 0.96 (Table A2-1). In wetland sites, 27 species were 

observed and α-diversity (jackknife 1) was 32.6 ± 3.8 species, although the hierarchical 

community model estimated species richness for the wetland sites significantly higher, 

58 ± 4.8 species. Detection rates from the occupancy models in wetland habitat were 

estimated to be less than 0.5 with the exceptions of White-crowned Sparrow (0.590 ± 

0.050), Willow Flycatcher (0.828 ± 0.039), Yellow Warbler (0.845 ± 0.034), and 

Lincoln’s Sparrow (0.862 ± 0.045). Estimated occupancy rates were also significantly 

higher than in upland sites (p<0.003) with Yellow Warbler demonstrating the highest 

estimated occupancy at 0.97. When considering the greater area of upland sites, this 

indicates a dramatic disparity in occupancy and bird densities between habitats. Equal 

occupancy of upland and wetland sites would indicate greater density in upland sites, 

because upland sites are larger in area. However, higher occupancy was observed in 

wetland areas due to the higher bird densities in these areas. 

 

Assembly Processes 

Species distributions across sites showed significant evidence of niche assembly 

processes, contrary to my predictions. For example, early colonization of the Pumice 

Plain shows clear patterns of habitat filtering. Early colonists were primarily 
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insectivorous or omnivorous, ground or cliff nesting, and less reliant on vegetation than 

later colonists. During 2007-2010, the consistency of rank abundances was very high for 

wetland sites at 0.686, while Cr for upland sites was equivalent to random expectation at 

0.07. However, the IV index for rank abundance consistency was significantly greater 

than zero for both habitats, indicating that rank abundances were more consistent across 

sites within each habitat than expected by chance (Table 3-2). The local Pumice Plain 

assemblages were also highly nested within each habitat. The temperature index was 

16.7 in upland habitats and 12.1 in wetland habitats, in both cases significantly lower 

than null model predictions for each occupancy matrix. 

In comparing guild structure in upland and wetland assemblages to null models 

of assembly, we found significant deviations from the expected pattern of guild 

proportionality. In upland habitats, significantly more omnivorous, granivorous and 

nectarivorous individuals and fewer insectivores were observed than expected (Table 3-

3). Unsurprisingly, ground foragers were overrepresented in upland habitats, as were 

aerial foragers and hovering foragers. Similarly, there were significantly more ground 

nesters than in the null model (Figure 3-5). In wetland habitats, slightly fewer 

insectivores and more nectarivores were observed than predicted by the null model. 

Ground foragers were still more prevalent than in the null model, though to a lesser 

degree than in upland sites. In addition, there were more shrub and ground nesters 

present in the wetland sites than in the null model. Overall, tests of guild proportionality 

repeatedly supported the hypothesis of habitat filtering. However, sample sizes were too 

small to test the variance of guild proportionality across sites. 
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Body size ratios of species within both wetland and upland sites were lower than 

expected based on previous studies (Case et al. 1983, Wang et al. 2011). Average body 

length ratios were less than 1.3 for every guild examined. Body mass ratios ranged from 

1.2 to 2.4, but the majority of values were less than 2.0. In addition, body size ratios of 

both mass and length demonstrated a standardized effect size significantly greater than 

zero, opposite the pattern predicted by interspecific competition (Table 3-4). 

 

Discussion 

 Our study examined bird assemblages in two primary successional habitats at 

Mount St. Helens, WA, for evidence of community assembly patterns. Such patterns, 

which include relative abundance distributions, guild proportionality, nestedness, and 

body-size dispersion, have been commonly studied separately. However, only recently 

have individual studies addressed the relative merits of these hypotheses (Algar et al. 

2005, Driscoll and Lindenmayer 2010, Cash et al. 2012), and the relative roles of niche 

and neutral assembly processes in shaping post-disturbance communities remain a topic 

of ecological discussion (Stokes & Archer 2010, Mutshinda and Ohara 2011, Rosindell 

et al. 2011). 

The avifauna on the Pumice Plain of Mount St. Helens demonstrated a higher α 

diversity of birds in wetlands than in uplands (Figures 3-2, 3-4). This is expected given 

the advanced development of vegetation in wetland areas relative to uplands, and the 

higher potential for niche differentiation (MacArthur 1965, Pianka 1966). Beta-diversity 

indicated turnover consistent with niche assembly processes between habitats and across 
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years. However, within each habitat, β-diversity was consistent with neutral assembly 

processes.  

Species compositions of local assemblages, particularly within each habitat type, 

were highly nested, possibly indicating that community assembly is shaped by selective 

colonization or extinction processes. In this mainland context, the observed nestedness 

may be due to frequent colonizations of regional species, due to the high dispersal 

ability of colonizing species (Cook and Quinn 1995). These results were consistent 

across both habitat types considered and are similar to patterns found in other 

assemblages (Wang et al. 2011). However, it’s important to note that nestedness alone 

may emerge from several mechanisms, including effects of passive sampling (Wright et 

al. 1997, Ulrich & Gotelli 2007).  

Some patterns identified in the Mount St. Helens community are contrary to 

what was expected given the early stage of ecological response or development 

(Magurran 2007, McGill et al. 2007). For example, the broken-stick distribution fit of 

relative abundances seen in Table 3-1 is surprising. The lognormal distribution, which 

would indicate lower species evenness than the broken-stick model, is more commonly 

fit to relative abundance distributions (Magurran 2007). Evenness is generally expected 

to increase with time and the Pumice Plain communities are in relatively early 

development. Also, while β-diversity was consistent with neutral processes in upland 

sites, the concordance of rank abundance distributions across sites suggests niche 

assembly processes, which suggests deterministic processes and could be attributed to 

habitat filtering or competitive interactions (Cash et al. 2012). In addition, the positive 
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species co-occurrence patterns between ecologically-similar species at Mount St. Helens 

suggest the importance of environmental filtering mechanisms in assembly processes.  

 The patterns of bird occupancy at Mount St. Helens are consistent with habitat 

filtering but do not show evidence of interspecific competition in assembly processes, as 

seen in the guild proportionality and body size dispersion analyses. Overall patterns of 

guild structure were not consistent between upland and wetland habitats. Upland habitats 

included more ground foragers and nesters, while wetland habitats with greater 

vegetation complexity supported more foliage-gleaners shrub-nesters (Table 3-3). These 

patterns show clear evidence of habitat filtering from the regional species pool in 

colonization of local sites.  

Under the influences of intraguild competition body size ratios should be 

approximately 1.3 for body length and 2.0 for body mass (Hutchinson 1959, Case et al. 

1983). For both measures of size, average body size ratios of Pumice Plain habitats were 

lower than these expected values and lower than predicted by null assemblages, arguing 

against competition as a driver in community assembly. Recent studies of species co-

occurrence patterns (Driscoll and Lindenmayer, 2010, Wang et al., 2011) likewise found 

little evidence of interspecies competition shaping assembly processes. In contrast to our 

work, however, Wang et al. emphasize the impact of local extinction processes 

(mediated by area effects) on local occupancy and community structure rather than 

colonization after disturbance. The lake island bird communities studied by Wang et al. 

have assembled over nearly twice as many years since disturbance as the Mount St. 

Helens communities studied here, yet show similar support for niche-based (habitat 

filtering) and neutral assembly processes. Likewise, Cash et al. (2012) tested the 
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assumption that community structure is stronger in undisturbed, equilibrium 

communities by testing several assembly patterns and hypotheses in avian communities 

in areas with varying levels of disturbance. The researchers found only limited support 

for the expectations that niche-based assembly rules would have larger impacts in 

undisturbed communities or that local assemblages at different sites would become more 

similar over time following disturbance.  

Community assembly occurs through a combination of niche and neutral 

processes, but how these processes change in importance over time since disturbance 

remains in question. Following disturbance, community assembly may be initiated by an 

early pioneer stage characterized by stochastic colonization, before transitioning to an 

intermediate building stage characterized by local spread of colonist species (Gitay and 

Wilson 1995). The role of disturbance has been typically examined through selection of 

study sites experiencing different disturbance regimes, and few studies have addressed 

systems in early assembly. 

Here we examined the evidence for neutral and niche processes in community 

assembly after thirty years of primary succession following intense large-scale forest 

disturbance. Overall, the structure of the avian community at Mount St. Helens shows 

evidence of habitat filtering during both periods of bird surveys, but little other 

indication of niche assembly processes. Patterns of diversity and nestedness observed on 

the Pumice Plain are better explained by selective colonization based on habitat 

suitability rather than competitive interactions. This suggests that in the context of post-

disturbance recovery of mainland habitat, niche-based processes may determine the 

trajectory of early community assembly.  
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Tables and Figures 

 

Table 3-1. Model fitting for species abundance distributions 
 

Model selection results for site-wide abundance distributions according to AIC. Number 
of sites for which each standard species abundance distribution model was the best fit is 
given, along with AIC values (site mean ± standard deviation) for Pumice Plain species 
abundance distributions for each habitat aggregated across 2007-2010, which 
demonstrate that the broken-stick model is consistently the best fit distribution.  
 

Model Fit in Upland Sites Fit in Wetland Sites 

Broken-Stick 
11sites 

 (17.46 ± 9.86) 
8 sites 

33.24 ± 20.38 

Zipf 
1 site 

19.53 ± 7.68 
0 sites 

34.97 ± 19.83 

Log-normal 
0 sites 

20.02 ± 8.58 
0 sites 

35.00 ± 19.69 

Mandelbrot-Zipf 
0 sites 

22.72 ± 7.54 
0 sites 

36.49 ± 19.13 

 

 

 

Table 3-2. Consistency of rank abundances for birds on the Pumice Plain 
 

Consistency of rank abundances of species across sites, within each Pumice Plain 

habitat. The IV Indices for rank abundances were more consistent than expected by 

random chance, as demonstrated by the students t-test. 

 

Habitat Cr 
IV Index            

(mean ± sd) 
Student’s t P value  

Upland 0.067 0.249 ± 0.209 13.9 <1x10-10 

Wetland 0.686 4.54 ± 3.26 11.9 <1x10-10 
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Table 3-3. Actual and expected guild proportions of birds on the Pumice Plain. 
 

Proportions of dietary, foraging, and nesting guilds observed on Pumice Plain compared 

to null model assembly from the regional species pool. Proportions of species observed 

within each guild were compared to corresponding null model results within each habitat 

of the Pumice Plain.  

 

Trait Guild Simulated Actual (Upland) Actual (Wetland) 

Dietary Insects 0.76 ± 0.03 0.59* 0.73* 

Dietary Nectar 0.01 ± 0.01 0.06* 0.07* 

Dietary Omnivore 0.07 ± 0.02 0.11* 0.07 

Dietary Seeds 0.16 ± 0.02 0.24* 0.13 

Nesting Burrow 0.01 ± 0.01 0.04* 0.01 

Nesting Cavity 0.31 ± 0.03 0.25* 0.17 

Nesting Cliff 0.04 ± 0.01 0.18* 0.05 

Nesting Ground 0.13 ± 0.02 0.34* 0.27* 

Nesting Shrub 0.15 ± 0.02 0.06 0.26* 

Nesting Tree 0.31 ± 0.03 0.12 0.21 

Foraging Aerial foraging 0.15 ± 0.02 0.17* 0.17* 

Foraging Flycatching 0.08 ± 0.02 0.04 0.05 

Foraging Foliage gleaning 0.28 ± 0.03 0.05* 0.17 

Foraging Ground foraging 0.48 ± 0.03 0.68* 0.55* 

Foraging Hovering 0.01 ± 0.01 0.06* 0.07* 

 

 

Table 3-4. Body size ratios for Pumice Plain assemblages. 

Overall body size ratios were smaller than expected according to interspecific 

competition assembly hypotheses.  

 

Habitat Size Measure Mean Ratio SES (Atlas pool) SES (BBS pool) 

Upland mass 1.7035 0.4515 0.3976 
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Wetland mass 1.4826 0.5029 0.2565 

Upland length 1.1119 0.8607 0.7658 

Wetland length 1.0969 0.8613 0.8693 

 

 

 

Figure 3-1. Satellite images of Pumice Plain bird transects. 
 

Satellite images of sections of Pumice Plain bird transects showing general vegetation 

patterns for wetland and upland habitats during 2007-2010 for the Mount St. Helens 

Pumice Plain. Black bars represent 50 m lengths to indicate scale. 
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Figure 3-2. Observed species richness on the Pumice Plain, 1981-1990 and 2007-

2010. 
 

Observed species richness on the Pumice Plain, 1981-1990 (A) and 2007-2010 (B). 

Heavy lines represent cumulative species observed across years, thin lines represent 

species observed in a given year. For 1981-2006, only upland habitats were surveyed. 

For 2007-2010, solid lines represent species richness combined for both upland and 

wetland habitats. Dashed lines represent species richness observed in upland habitats 

only. 

A.  

  
 

B.  
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Figure 3-3. Diversity partitioning of Pumice Plain species, 2007-2010. 
 

Partitioning of diversity across sites within each habitat, habitats, and years 2007-2010. 
The light gray bars (Alpha) shows the average species richness at each hierarchical 
level. The dark gray bars (Beta) shows the additive beta diversity at each level. 
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Figure 3-4. Species accumulation curves for Pumice Plain habitats, 2007-2010. 
 

Species accumulation curves across sites for wetland and upland habitats on the Pumice 

Plain during 2007-2010. 
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Figure 3-5. Observed richness of avian dietary guilds on the Pumice Plain. 
 

Observed species richness of avian dietary guilds present on the Pumice Plain, 1981-
1990 and 2007-2010. 
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Figure 3-6. Observed richness of avian foraging guilds on the Pumice Plain. 
 

Observed species richness of avian foraging guilds present on the Pumice Plain, 1981-
1990 and 2007-2010. 
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Figure 3-7. Observed richness of avian nesting guilds on the Pumice Plain. 
 

Observed species richness of avian nesting guilds present on the Pumice Plain, 1981-
1990 and 2007-2010. 
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Chapter 4 : Avian nesting success in primary successional habitat of 

Mount St. Helens, WA 

Co-authored with:  C.M. Crisafulli 

Abstract 

The persistence of species within a local community relies on local recruitment 

and/or colonization from outside the local community. In this study I examined nest 

success as one component of local recruitment, a specific mechanism of maintaining 

populations of birds that have colonized a primary successional habitat at Mount St. 

Helens, WA. I found no significant difference in nest success of ground nesters, which 

included early colonist species, and shrub nesters who have colonized more recently, 

following establishment of more complex vegetation. Through monitoring local 

breeding attempts, I found that observed nest success for several locally common 

species was lower than recorded in other systems. I propose that in the absence of 

adequate local recruitment, repeated colonization events from the surrounding region 

may contribute to the persistence of some species in the local community. 

 

Introduction 

The assembly of local communities following extirpation from disturbance 

events requires colonization and survival of immigrating individuals from source 

populations. Each species’ population may be maintained through some combination of 

colonization and extinction processes and repeated colonizations may “rescue” a 

population that would otherwise not survive (Brown & Kondric-Brown 1977). 

Successful reproduction is generally required for persistence of species within a 
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community. Population declines recorded for many species have been attributed to 

reproductive failure (Winter & Faaborg 1999, Herkert et al. 2003, Stephens et al. 2004), 

and can lead to extirpation from the local community. Reproduction allows for local 

recruitment within the community, potentially stabilizing the species composition and 

limiting species turnover. Thus, reproductive success is critical for determining not only 

the inter-annual and long-term occupancy of a species, but also the trajectory of 

community dynamics (Van Horne 1983, Martin 1988). 

Communities in early-successional habitats are of particular interest due to their 

ephemeral and dynamic nature (Swanson et al. 2010). Natural disturbance regimes are 

important drivers of spatial and temporal heterogeneity of habitats, maintaining some 

portion of land in early-successional states (Turner 1987). Many disturbance-dependent 

bird species are declining as land management limit the scope, intensity, and frequency 

of natural disturbances (Brawn et al. 2001, Degraaf & Yamasaki 2003) and numerous 

bird species attain their highest densities under early seral conditions though this does 

not necessarily indicate habitat quality, as the reasons for high densities may be complex 

(Betts et al. 2010). Consequently, understanding the interaction of changing disturbance 

regimes and local dynamics of disturbed habitats is integral to predicting future changes 

in bird communities at local and regional scales. 

In many regions of the world, volcanism is an important agent of natural 

disturbance (del Moral & Grishin 1999). Explosive eruptions involve complex 

geophysical processes that typically create several zones of different disturbance 

intensities and thus, a range of successional starting points (Dale et al. 2005). These 

areas of disturbance contribute to the patchwork of successional seres within a region. 
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Eruptions may be of varying intensity, but often consist of high intensity disturbances 

separated by long intervals, hundreds of years or more. The Mount St. Helens landscape, 

created by the May 18, 1980 eruption, provides a test bed for researching the effects of a 

high intensity, low frequency disturbance on the successional development and 

assembly of local communities. While previous studies have addressed the effects of 

volcanic eruption on breeding birds, few studies have directly addressed nesting success 

and those that have were conducted in island systems and focused on effects on 

waterbirds within 5 years of eruption (e.g., Ganter and Boyd 2000, Dalsgaard et al. 

2007, Drew et al. 2010, Williams et al. 2010, Bond et al. 2012). Previous work at Mount 

St. Helens examined the prevalence of nest predation across the disturbance zones 

created by the 1980 eruption using artificial nests (Andersen and MacMahon 1986). 

However, to our knowledge no other study has examined avian nesting success across a 

community during ecological recovery following eruption in a mainland context. 

In this study, we examined evidence of breeding and quantified reproductive 

success for colonizing bird species in an area undergoing primary successional recovery 

following volcanic disturbance. In the first study of avian nest success at Mount St. 

Helens following the 1980 eruption, we observed what bird species are utilizing this 

environment for reproduction, and examined how reproductive patterns in this early 

successional sere follow patterns seen in other contexts. We estimated nest success for 

ground-nesting and shrub-nesting birds, taking into account both the influence of nest 

location and the surrounding vegetation. For the most common species observed, we 

also compared the nest success in the early-successional habitat to published data so as 
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to better understand how local recruitment may contribute to the trajectory of bird 

community development in primary successional habitat at Mount St. Helens.  

 

Methods 

Study area 

Our study area was on the Pumice Plain of Mount St. Helens in Skamania 

County, Washington state (Figure A1-1 map), an area of approximately 600 hectares 

which has been undergoing primary succession since 1980. The Pumice Plain sits 

immediately to the north of Mount St. Helens, has a northerly aspect and ranges in 

elevation from 1030 to 1310 meters. Mount St. Helens is an active volcano which 

erupted in May 1980; during the eruption, the Pumice Plain was buried first by the 

landslide caused by the collapse of the north face of the volcano, then by a deposit of 

pumice from the eruption’s directed blast, and finally by pyroclastic flows. Additional 

pyroclastic deposits on the Pumice Plain in 1980 formed deposits over 40 m thick 

(Swanson and Major, 2005). Few migratory birds would have been present in the area at 

the time of the eruption, and any birds present were destroyed in the blast. All life on the 

Pumice Plain was destroyed by the eruption, though plants and animals survived the 

blast in nearby refugia (Adams et al. 1987). 

Our study was conducted between 2007 and 2009, after 27 years of primary 

successional recovery following the 1980 eruption. At the time of the study, over 90% of 

the Pumice Plain consisted of relatively xeric ‘upland’ areas, much of which has sparse 

plant cover and some expanses of which is entirely barren. The upland areas generally 

supported herbaceous plant communities with 22-78% plant cover dominated by 
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Lupinus lepidus and mosses alone with other herbaceous cover (forbs and graminoids), 

with sparse woody plants (del Moral & Lacher 2005). The most common woody plants 

were Penstemon cardwellii, Alnus sinuate, Salix sp. and Abies procera. Conifer density 

was low, roughly 41 trees per hectare, with few trees reaching 2m or taller (Birchfield 

2012). Shrub density was more variable but overall sparse. Bird densities were very low 

in upland areas of the Pumice Plain. Less than five percent of the Pumice Plain consisted 

of wetland areas and narrow (<10m width) riparian corridors. These areas were 

characterized with much higher density of woody plants, particularly Alnus sinuate and 

Salix sp. These wetland and riparian areas contain much higher density of breeding birds 

(Larsen & Crisafulli, unpublished).  

 

Nest monitoring 

Nests were located through opportunistic observation, systematic searches 

(2009-2010) and by observing behavioral cues of adult birds (e.g., carrying nesting 

material or food, alarm calls). Nest searches targeted both upland, riparian, and wetland 

areas, though we excluded 100 ha of the western Pumice Plain which was primarily 

barren of vegetation. Nests were marked with flagging tape 10 m from the nest and GPS 

locations were recorded. Nests were characterized by nest structure and materials, height 

off ground, and nest substrate. Nests were monitored every 2–5 days with few 

exceptions while active, following Martin and Geupel (1993) to limit disturbance caused 

by monitoring efforts. Nests were considered active until (1) all nestlings fledged, (2) all 

nest contents disappeared, or (3) no parental activity or change to nest contents was 

observed for at least 14 days (Cottam et al. 2009). Each nest that fledged at least one 
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chick was considered successful (Gentry et al. 2006, Rahmig et al. 2009). Nests were 

classified as successful based on recommendations in Martin and Geupel (1993) and 

Martin et al. (1997), as follows. Nests found empty on or after the expected fledge date 

were classified as successful unless there were direct indications of predation (e.g., 

nestling body parts, destroyed nest). For nests observed empty less than three days prior 

to the expected fledging date, if observations included fecal sacs in or near nests, 

fledglings nearby, or an adult bird carrying food near the nest, and if there were no 

compelling indications of predation, the nest was classified as successful. Empty nests 

found three or more days before the expected fledge date were classified as successful 

and right-censored at the last date of observation only if a fledgling was observed at or 

near the nest. Nests were aged using species-specific phenology from published sources 

(e.g., Poole 2005) and either known dates for the nest (date of egg laying, hatching, or 

fledging) or from visual estimation of nestling age. Indications of failed or predated 

nests included dead nestlings, disappearance of eggs or nestlings too young to fledge, 

fragments of eggshell, and physical damage to the nest.  

 

Vegetation 

The vegetation around nests was characterized in August of each year, after nests 

were no longer active. Foliage height diversity (FHD) was used as an index of the 

vegetation structure and complexity across several vertical strata. FHD was measured 

around each nest using a 3.5m polyvinyl chloride (PVC) pole marked at heights (10cm, 

20cm, 40cm, 60cm, 80cm, 100cm, 125cm, 150cm, 175cm, 200cm, 225cm, 250cm, 

300cm, and 350cm). For each height interval (0-10cm, 10-20cm, etc.), the presence or 
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absence of vegetation within a 12.5 cm radius of the PVC pole was recorded. These 

FHD data were collected at the nest location and at each meter along 5-meter transects to 

the North, South, East and West of the nest. For analyses, we considered both the 

maximum height interval in which foliage was present at the site of the nest, and FHD 

within five meters of the nest. FHD was calculated following MacArthur et al. (1966). 

 

Analysis 

We examined individual nest-site covariates for nest location and vegetation 

around the nest on daily survival rates and overall nest success. Although evidence of 

vegetation effects on nest success has been ambiguous (Stauffer et al. 2011), we 

predicted that nests with greater vegetative cover would have greater daily survival 

(Vukovich & Ritchison 2006) due to increased protection from nest predators. Nest 

success was estimated using a log-exposure model (Shaffer 2004) of survival probability 

(@) according to model covariates (�): 

@(��) = 	

AB0ACDC

1 + 
AB0ACDC
. 

We did not consider the effect of nest age on daily survival rates because of uncertainty 

in aging nests, although we suspected an effect of nest age on daily survival rates 

because of its significance in other studies (Dinsmore et al. 2002, Davis 2005). Nests 

that failed during the egg stage could not be accurately aged, and removing them from 

analyses would bias the resulting survival estimates and restricting sample sizes. Instead, 

we modeled a stage effect, characterizing nests by whether they contained eggs or 

nestlings. The best model was determined using Akaike’s Information Criterion 

(Burnham & Anderson 2002).  
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For all covariate analyses, nests were aggregated into ground nests and shrub 

nests. Because of small sample sizes, we pooled data across species, as has been done in 

previous analyses of nest success (e.g., Rogers 1994). Year was considered a random 

effect. The simplest model estimated overall nest survival across the period of 

observation, providing separate nest success estimates for ground nests and shrub nests. 

Separate analyses were run for selected common species for which data from 20 or more 

nests were available; this threshold is required for accurate estimation of species-specific 

nest success rates (Hensler and Nichols 1981). Nest density was estimated across the 

Pumice Plain and nearest neighbor distances were calculated for each sample year. All 

analyses were conducted in R (version 3.0.0). 

 

Results 

 Nests were observed for 19 species including 14 passerines, three shorebirds, one 

duck, and one nighthawk (Table 4-1). A total of 149 nests were observed over the three 

breeding seasons. Of these, 24 nests were either inactive throughout the monitoring 

period or already predated when found, leaving 125 nests known to be active and 

monitored. The majority of these nests (n = 71) were observed in 2010, with fewer nests 

observed in 2008 (n=20) and 2009 (n=34). Observed nest density across the Pumice 

Plain study area was 0.14 nests/ha in 2010, the year with the most observed nests. 

Though there was great variation in the nearest neighbor distance to another observed 

nest, ground nests were significantly farther from other nests than shrub nests (p =0.025 

in 2010). In 2010, ground nests were 125 ± 88 m from the closest nest of any type (mean 

± standard deviation) while shrub nests were 84 ± 115 m from the closest nest.  
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Average overall nest success ( ± s.d.) for ground nests (n=72) was 0.475 ± 0.074 

(mean  ± s.d.), while average success for shrub nests (n=53) was 0.464 ± 0.076 (Table 4-

2; survival curves in Figure 4-1). Willow Flycatchers (Empidonax traillii) and Yellow 

Warblers (Setophaga petechia) were the dominant shrub nesters, while most ground 

nests belonged to White-crowned Sparrows (Zonotrichia leucophrys) and Horned Larks 

(Eremophila alpestris). The best model as determined by AIC for overall nest success 

included nest stage, FHD, vegetation height at the nest, and a random effect of year 

(Table 4-3). Only FHD and year explained significant variance in the data, and their 

effects were small. As predicted, we observed increased nest success for nests with 

greater FHD and vegetation height at the nest, which we consider to be surrogates for 

nest concealment. Ground nests and shrub nests did not differ in overall nest success 

with or without the model covariates described above.  

 Species-specific nest success rates were calculated for the three most commonly 

observed species across all years: Yellow Warblers, White-crowned Sparrows, and 

Horned Larks (Table 4-2). White-crowned Sparrows averaged 3.5 eggs (range 2-5) per 

nesting attempt, with 38.0% nest success. Successful nests fledged an average of 2.9 

young. Horned Lark nests averaged 3.9 eggs (range 3-5), and had 42.1% nest success, 

with successful nests fledging an average of 3.6 young. Yellow Warblers averaged 3.2 

eggs per nesting attempt (range 2-5), and successful nests fledged an average of 2.8 

young. Nest success for Yellow Warblers was 30.3%. Only one instance of nest 

parasitism was observed; a brown-headed cowbird egg in a Yellow Warbler nest.  
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Discussion 

 Our results identified the bird species breeding on the Pumice Plain at Mount St. 

Helens during early primary succession, and quantified their reproductive success. Low 

nest density was observed across the study site, due primarily to very low nest densities 

in the upland areas which make up the majority of the Pumice Plain. However, nest 

density was much higher in the riparian and wetland areas of the Pumice Plain which 

acted as concentrators of biological activity and where both ground and shrub nests were 

observed. While these highly vegetated areas account for less than five percent of the 

Pumice Plain area, 62% of observed nests were in these areas. Ground nesters including 

Horned Larks, Dark-eyed Juncos, and Common Nighthawks were common in upland 

areas while shrub nesters such as Yellow Warblers and Willow Flycatchers were 

common in wetland areas, as well as ground nesters such as Spotted Sandpipers. White-

crowned sparrows were observed in both upland and wetland habitats. Overall nest 

densities for upland and wetland areas corresponded to low bird densities in upland 

areas and higher densities in wetland areas.  

Our best model supported our expectation that vegetation at and around the nest 

location would improve nest concealment and lead to higher nest success. Overall nest 

success for breeding birds on the Pumice Plain was slightly less than 50% (Table 4-2). 

We found that though the effect was small, vegetation around a nest benefitted nest 

success, in results similar to other studies of avian nest success (e.g. Norment 1993, 

Stauffer et al. 2011). However, the most common breeding birds also showed lower nest 

success than the community as a whole. Published estimates of nest success for Yellow 

Warblers ranged from 47% to 72% (Poole 2005), while nest success on the Pumice Plain 
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was substantially lower at roughly 30%. Similarly, White-crowned Sparrow nest success 

in the published literature ranged from 40% to 75%, higher than the 38% observed on 

the Pumice Plain in 2008-2010. Finally, the published literature for nest success in 

Horned Larks ranged from 53% to 76%, whereas we found nest success of 42% for the 

species. For each of these common inhabitants of Pumice Plain, estimates of nest 

success on the Pumice Plain were lower than their respective published ranges. Further 

work may allow published studies to be further restricted according to location and 

habitat, to provide a better comparison to the study site. These results suggest local 

recruitment within these populations was limited and may have negative consequences 

for the local population. The low reproductive success observed for these species at 

Mount St. Helens was unexpected considering their local abundance. Because overall 

nest densities were still low, it is unlikely that intraspecific competition was a main 

driver of nest failure. In the context of successional change and community assembly, 

species with low local recruitment may rely more heavily on immigration from the 

surrounding region, decline in local population size, or experience local extinction. The 

local abundance of species experiencing low local recruitment may be supported by 

repeated colonization from regional populations. Thus, colonization processes and the 

rescue effect may continue to be important in the development of the bird community in 

the MSH primary successional habitat.  

We observed no difference in nest success between ground & shrub nests. 

However, small sample sizes may have limited our ability to detect small differences. 

Further investigation would better elucidate whether there are consistent differences in 

the nest success of certain species on the Pumice Plain, and how the variation in local 
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recruitment may contribute to the dynamics of community assembly. This study did not 

examine the survival of fledglings nor their return rates as adults. Neither did it address 

immigration to this community from the surrounding region. Tracking individuals 

between years would provide greater insight into the relative roles of local processes and 

immigration/emigration for the population dynamics of birds on the Pumice Plain. 

In this study, nest success increased slightly with both height of vegetation at the 

nest site and foliage height diversity near the nest. Both of these contributed to nest 

concealment, an important factor for limiting discovery by nest predators. While we did 

not specifically model causes of nest failure, nest predation is the most common cause of 

nest failure for passerine birds (Martin 1992), and most failed nests in this study showed 

clear signs of predation. Also, 15 ground nests were found after being depredated; these 

nests were excluded from analysis because there the history of the nest was unknown. 

We speculated that nest predators may develop search images and strategies based on 

common species, which would result in higher predation on nests similar to those 

commonly found by nest predators, and allowing some less common nesting species on 

the Pumice Plain to experience lower predation pressure. Although we did not identify 

nest predators in this study, several small mammals and some avian predators are likely. 

A predation study using artificial nests in the Mount St. Helens area immediately 

following the eruption (1981-1984) suggested that at the time, nest predators were 

relatively rare in the more disturbed areas of Mount St. Helens but predicted increasing 

levels of nest predation as nest predators recolonized these areas following the eruption 

(Andersen and MacMahon 1986). The study identified the Common Raven (Corvus 

corax) and Gray Jay (Perisoreus canadensis) as likely avian nest predators; of these 
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only the Common Raven was regularly observed in the study site. Separate surveys in 

the same habitats on the Pumice Plain indicated that the most likely nest predators are 

small mammals, such as the Cascades Golden-mantled Ground Squirrel (Spermophilus 

saturatus), Yellow-pine Chipmunk (Tamias amoenus), Pacific Jumping Mouse (Zapus 

trinotatus), and several other possible small mammal species (see Crisafulli et al. 2005), 

and other bird species, such as the Common Raven.  

 This study considered community-wide avian nesting success in the context of 

ecological recovery following volcanic disturbance in a mainland system. We 

demonstrated what birds are using the Pumice Plain of Mount St. Helens as breeding 

habitat, and that the most commonly observed species exhibited low reproductive 

success relative to species-specific expectations, suggesting that colonization may play 

an important role in the maintenance of local populations on the Pumice Plain. 

Differential reproductive success may contribute to the overall trajectory of community 

assembly on the Pumice Plain. Specifically from this work, higher nest success of less 

common species on the Pumice Plain could be a mechanism that leads to changing 

relative abundances of species in the community. However, further analysis considering 

species groups likely to compete for resources would be needed to determine if this is 

occurring. We saw no significant difference between ground nests and shrub nests to 

suggest that differences in local recruitment were affecting the dynamics between 

ground-nesting and shrub-nesting species at this time. Nest densities were low across 

upland areas and concentrated in riparian and wetland areas with more complex 

vegetation. Because biological activity was concentrated in these small vegetated areas, 
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nests may have been at an increased risk of predation from small mammal and avian 

nest predators.  
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Tables and Figures 

 

Table 4-1. Species with active nests observed on the Pumice Plain. 
 

Species # Nests 

Common Nighthawk (Chordeiles minor) 7 

Dark-eyed Junco (Junco hyemalis) 6 

Green-winged Teal (Anas crecca) 1 

Horned Lark (Eremophila alpestris) 21 

Killdeer (Charadrius vociferous) 2 

Lazuli Bunting (Passerina amoena) 1 

Lincoln’s Sparrow (Melospiza lincolnii) 4 

Mountain Bluebird (Sialia currucoides) 1 

Northern Rough-winged Swallow (Stelgidopteryx serripennis) 1 

Savannah Sparrow (Passerculus sandwichensis) 1 

Song Sparrow (Melospiza melodia) 1 

Spotted Sandpiper (Actitis macularius) 3 

Swainson’s Thrush (Catharus ustulatus) 4 

Violet-green Swallow (Tachycineta thalassina) 1 

White-crowned Sparrow (Zonotrichia leucophrys) 22 

Western Meadowlark (Sturnella neglecta) 3 

Willow Flycatcher (Empidonax traillii) 13 

Wilson’s Snipe (Gallinago delicate) 2 

Yellow Warbler (Setophaga petechial) 33 
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Table 4-2. Estimated nest success 
 

Nest success estimates from log-exposure model (Shaffer 2004), for the four most 
commonly observed bird species and for ground nests and shrub nests overall, 
aggregating across all years (2008-2010).  
 

Species n 

Nest Success 

Estimate (%) 

Mean Height  (m) Mean FHD 

Yellow Warbler 33 30.3 1.52 ± 0.79 2.55 ± 0.13 

White-crowned 

Sparrow 22 38.0 

0.02 ± 0.11 2.21 ± 0.28 

Horned Lark 21 42.1 0 1.27 ± 0.20 

All Ground nests 72 47.5 0 1.77 ± 0.45 

All Shrub nests 53 46.4 1.32 ± 0.75 2.54 ± 0.19 

 

 

Table 4-3. Model selection criteria for nest survival models 

 

Model selection criteria for nest survival models for all nests on the Mount St. Helens 
Pumice Plain in 2008-2010.  
 

Model AICc ∆AICc 

Stage + FHD + Nest Vegetation Height + Year 204.72 0 

Stage + FHD + Nest Vegetation Height + Year + Nest Height 206.17 
1.45 

Stage + FHD + Year + Nest Height + Substrate 206.48 
1.76 

Stage + FHD + Nest Vegetation Height + Year + Nest Height + 

Substrate 206.61 

1.89 

Stage + Nest Vegetation Height + Year + Nest Height 206.88 
2.16 
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Figure 4-1. Nest failure curves 
 

Nest failure curves for ground and shrub nests on the Mount St. Helens Pumice Plain 
between 2007 and 2009. Thick black step-functions represent ground nests, whereas 
thick dotted step-functions represent shrub nests. Corresponding thin lines give upper 
and lower 95% confidence estimates on the means. 
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Appendix 1: Mount St. Helens study site. 

 

Figure A1-1. Map of Mount St. Helens disturbance zones. 
 

Map of Mount St. Helens showing the Pumice Plain (study site) and other disturbance 
zones created by the 1980 Mount St. Helens Eruptions. Inset: Washington State showing 
position of Mount St. Helens (triangle). From Sugg and Edwards 1998.   
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Figure A1-2. Satellite image of Mount St. Helens study site, transect locations, and 

surroundings. 
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Table A1-1. Disturbance zones of Mount St. Helens. 
 

Zone Disturbance 

Level 

1980 Eruption 

Processes 

Impact on Birds 

Pumice Plain High Buried by debris 
avalanche  
Lateral Blast 
Buried by 
Pyroclastic Flows 

No survival 
 
All new colonization 

Blowdown Moderate - 
High 

Lateral Blast 
Trees scorched and 
knocked over 

No survival 
 
All new colonization 

Scorch Moderate Edge of Lateral 
Blast area  
Trees scorched but 
remained standing 

No survival 
 
All new colonization 

Tephra Fall Low Beyond Lateral 
Blast 
Aerial deposits of 
tephra, varying 
depth 

Possible survival 
 
 

Reference None – Low Outside of 
disturbed area 
Minor ash (tephra) 
fall possible 

Expected survival 
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Appendix 2: Regional Source Pools and Minimum Source Regions 

 

Figure A2-1. Distribution of regional observation within 600 km of Mount St. 

Helens, WA. 
 

Maps of U.S. North American Breeding Bird Survey (BBS) routes (Panel A) and 
Monitoring Avian Productivity and Survivorship (MAPS) Program sites  (Panel B) 
within 600 km of Mount St. Helens, WA. BBS routes are mapped by start location, 
demonstrating their relatively uniform distribution, while MAPS sites have a clumped 
distribution. Triangle indicates Mount St. Helens field site.  
 
A. 

 
B.  
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Figure A2-2. Patterns in proxy dispersal distances (to ‘nearest neighbor’ locations) 

across species. 
 
Panel A combines all Mount St. Helens zones to show temporal pattern. Panel B 
combines all years to show differences across disturbance zones. 
 
A. 
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Table A2-1. Combined species list for Mount St. Helens RSPs. 
 

List of all species included in any RSP with ‘1’ indicating presence in a given dataset. 
Species complexes are used following data sources (eg for difficult to distinguish 
species). The Mount Rainier species are included in the Spatial (combined datasets) 
column but not included in either the BBS or MAPS RSP dataset columns unless they 
were present in another regional observation site within the RSP. 
 

Species MSH Atlas 
Range 
Map BBS MAPS 

Spatial 
(Combined) 

       

NON-PASSERINES       

Acorn Woodpecker 1 1 

Allen's Hummingbird 1 

American Avocet 1 1 

American Bittern 1 1 1 1 1 

American Black Duck 1 

American Coot 1 1 1 1 

American Golden-Plover 1 

American Kestrel 1 1 1 1 1 1 

American Three-toed 
Woodpecker 

1 1 1 1 1 

American White Pelican 1 1 1 1 

American Wigeon 1 1 1 1 1 

Ancient Murrelet 1 

Anna's Hummingbird 1 1 1 

Arctic Tern 1 

Bald Eagle 1 1 1 1 1 1 

Band-tailed Pigeon 1 1 1 1 1 1 

Barn Owl 1 1 1 1 1 

Barred Owl 1 1 1 1 1 

Barrow's Goldeneye 1 1 1 1 1 

Belted Kingfisher 1 1 1 1 1 

Black Oystercatcher 1 1 

Black Swift 1 1 1 1 1 

Black Tern 1 1 1 1 

Black-backed Woodpecker 1 1 1 1 1 1 

Black-bellied Plover 1 

Black-chinned Hummingbird 1 1 1 1 1 

Black-crowned Night-Heron 1 1 1 

Black-necked Stilt 1 1 

Blue Grouse (Dusky or Sooty) 1 1 1 1 1 1 

Blue-winged Teal 1 1 1 1 

Bonaparte's Gull 1 

Boreal Owl 1 1 
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Table A2-1 continued       

Species MSH Atlas 
Range 
Map BBS MAPS 

Spatial 
(Combined) 

Brandt's Cormorant 1 

Broad-tailed Hummingbird 1 

Bufflehead 1 1 1 1 

Burrowing Owl 1 1 

Cackling Goose 1 

California Condor 1 

California Gull 1 1 1 1 1 

California Quail 1 1 1 1 1 

Calliope Hummingbird 1 1 1 1 1 

Canada Goose 1 1 1 1 1 1 

Canvasback 1 1 1 1 1 

Caspian Tern 1 1 1 1 

Cassin's Auklet 1 

Cattle Egret 1 

Chukar 1 1 1 

Cinnamon Teal 1 1 1 1 

Clark's Grebe 1 

Clay-colored Sparrow 1 1 1 

Common Goldeneye 1 1 1 

Common Loon 1 1 1 1 1 1 

Common Merganser 1 1 1 1 1 

Common Murre 1 1 

Common Nighthawk 1 1 1 1 1 1 

Common Poorwill 1 1 1 1 

Common Tern 1 

Cooper's Hawk 1 1 1 1 1 

Double-crested Cormorant 1 1 1 1 1 

Downy Woodpecker 1 1 1 1 1 

Dunlin 1 1 

Eared Grebe 1 1 1 

Eurasian Collared-Dove 1 

Eurasian Wigeon 1 

Ferruginous Hawk 1 

Flammulated Owl 1 1 

Fork-tailed Storm-Petrel 1 

Forster's Tern 1 1 

Gadwall 1 1 1 1 1 

Glaucous-winged Gull 1 1 1 1 1 

Golden Eagle 1 1 1 1 1 

Gray Partridge 1 1 1 

Great Blue Heron 1 1 1 1 1 1 
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Table A2-1 continued       

Species MSH Atlas 
Range 
Map BBS MAPS 

Spatial 
(Combined) 

Great Egret 1 

Great Gray Owl 1 1 

Great Horned Owl 1 1 1 1 1 1 

Greater Sage-Grouse 1 

Greater White-fronted Goose 1 

Greater Yellowlegs 1 1 1 

Green Heron 1 1 1 1 1 

Green-winged Teal 1 1 1 1 1 1 

Gyrfalcon 1 

Hairy Woodpecker 1 1 1 1 1 1 

Harlequin Duck 1 1 1 1 1 

Herring Gull 1 

Hooded Merganser 1 1 1 1 1 

Horned Grebe 1 1 1 

Killdeer 1 1 1 1 1 1 

Leach's Storm-Petrel 1 

Least Sandpiper 1 

Lesser Scaup 1 1 1 1 

Lesser Yellowlegs 1 

Lewis's Woodpecker 1 1 1 1 1 1 

Long-billed Curlew 1 1 

Long-billed Dowitcher 1 

Long-eared Owl 1 1 

Mallard 1 1 1 1 1 1 

Marbled Murrelet 1 1 1 

Merlin 1 1 1 

Mountain Quail 1 1 1 1 1 

Mourning Dove 1 1 1 1 1 1 

Northern Flicker 1 1 1 1 1 1 

Northern Goshawk 1 1 1 1 1 

Northern Harrier 1 1 1 1 1 1 

Northern Long-eared Owl 1 

Northern Pintail 1 1 1 

Northern Pygmy-Owl 1 1 1 1 1 

Northern Saw-whet Owl 1 1 1 1 1 

Northern Shoveler 1 1 1 1 

Nuttall's Woodpecker 1 

Osprey 1 1 1 1 1 

Pacific Golden-Plover 1 

Pelagic Cormorant 1 1 

Peregrine Falcon 1 1 1 1 
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Table A2-1 continued       

Species MSH Atlas 
Range 
Map BBS MAPS 

Spatial 
(Combined) 

Pied-billed Grebe 1 1 1 1 1 

Pigeon Guillemot 1 1 

Pileated Woodpecker 1 1 1 1 1 1 

Prairie Falcon 1 1 1 1 1 

Red Knot 1 

Red-breasted Merganser 1 

Red-breasted Sapsucker 1 1 1 1 1 1 

Redhead 1 1 1 

Red-naped Sapsucker 1 1 1 1 1 

Red-necked Grebe 1 1 

Red-necked Phalarope 1 1 1 

Red-shouldered Hawk 1 

Red-tailed Hawk 1 1 1 1 1 1 

Rhinoceros Auklet 1 1 

Ring-billed Gull 1 1 1 1 1 

Ring-necked Duck 1 1 1 1 

Ring-necked Pheasant 1 1 1 1 1 

Rock Pigeon 1 1 1 1 1 

Rock Sandpiper 1 

Rough-legged Hawk 1 

Ruddy Duck 1 1 1 1 

Ruffed Grouse 1 1 1 1 1 

Rufous Hummingbird 1 1 1 1 1 1 

Sanderling 1 

Sandhill Crane 1 1 1 

Semipalmated Plover 1 

Semipalmated Sandpiper 1 

Sharp-shinned Hawk 1 1 1 1 1 1 

Sharp-tailed Grouse 1 

Short-billed Dowitcher 1 

Short-eared Owl 1 1 1 

Snow Goose 1 

Snowy Owl 1 

Snowy Plover 1 

Sora 1 1 1 1 1 

Spotted Owl 1 1 1 

Spotted Sandpiper 1 1 1 1 1 1 

Spruce Grouse 1 1 1 

Surfbird 1 

Swainson's Hawk 1 1 1 1 1 

Thayer's Gull 1 
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Table A2-1 continued       

Species MSH Atlas 
Range 
Map BBS MAPS 

Spatial 
(Combined) 

Trumpeter Swan 1 1 

Tufted Puffin 1 

Tundra Swan 1 

Turkey Vulture 1 1 1 1 1 

Upland Sandpiper 1 

Vaux's Swift 1 1 1 1 1 1 

Virginia Rail 1 1 1 1 1 

Wandering Tattler 1 

Western Grebe 1 1 1 

Western Gull 1 

Western Sandpiper 1 

Western Screech-Owl 1 1 1 1 1 

Whimbrel 1 

White-headed Woodpecker 1 1 1 1 1 

White-tailed Kite 1 1 

White-tailed Ptarmigan 1 1 1 

White-throated Swift 1 1 1 1 

Wild Turkey 1 1 1 1 1 

Williamson's Sapsucker 1 1 1 1 1 

Wilson's Phalarope 1 1 1 

Wilson's Snipe 1 1 1 1 1 1 

Wood Duck 1 1 1 1 1 

       

PASSERINES       

Alder Flycatcher 1 1 

American Crow 1 1 1 1 1 1 

American Dipper 1 1 1 1 1 1 

American Goldfinch 1 1 1 1 1 

American Pipit 1 1 1 1 

American Redstart 1 1 1 1 

American Robin 1 1 1 1 1 1 

American Tree Sparrow 1 

Ash-throated Flycatcher 1 1 

Audubon's Warbler 1 1 

Bank Swallow 1 1 1 1 1 

Barn Swallow 1 1 1 1 1 1 

Bewick's Wren 1 1 1 1 1 

Black Phoebe 1 

Black-and-white Warbler 1 1 

Black-billed Magpie 1 1 1 1 1 

Black-capped Chickadee 1 1 1 1 1 1 
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Table A2-1 continued       

Species MSH Atlas 
Range 
Map BBS MAPS 

Spatial 
(Combined) 

Black-headed Grosbeak 1 1 1 1 1 1 

Black-throated Gray Warbler 1 1 1 1 1 1 

Black-throated Sparrow 1 

Bobolink 1 

Bohemian Waxwing 1 1 

Boreal Chickadee 1 

Brewer's Blackbird 1 1 1 1 

Brewer's Sparrow 1 1 1 1 1 1 

Brown Creeper 1 1 1 1 1 1 

Brown-headed Cowbird 1 1 1 1 1 1 

Bullock's Oriole 1 1 1 1 1 1 

Bushtit 1 1 1 1 1 

California Thrasher 1 

California Towhee 1 

Canyon Wren 1 1 1 1 1 

Cassin's Finch 1 1 1 1 1 1 

Cassin's Vireo 1 1 1 1 1 

Cedar Waxwing 1 1 1 1 1 1 

Chestnut-backed Chickadee 1 1 1 1 1 1 

Chestnut-sided Warbler 1 

Chipping Sparrow 1 1 1 1 1 1 

Clark's Nutcracker 1 1 1 1 1 

Cliff Swallow 1 1 1 1 1 

Common Raven 1 1 1 1 1 1 

Common Yellowthroat 1 1 1 1 1 1 

Dark-eyed Junco 1 1 1 1 1 1 

Dusky Flycatcher 1 1 1 1 1 

Eastern Kingbird 1 1 1 1 

European Starling 1 1 1 1 1 1 

Evening Grosbeak 1 1 1 1 1 1 

Fox Sparrow 1 1 1 1 1 1 

Golden-crowned Kinglet 1 1 1 1 1 1 

Golden-crowned Sparrow 1 1 1 1 1 1 

Grasshopper Sparrow 1 1 1 1 

Gray Catbird 1 1 1 

Gray Flycatcher 1 1 1 1 

Gray Jay 1 1 1 1 1 1 

Gray-crowned Rosy-Finch 1 1 1 1 1 

Green-tailed Towhee 1 1 1 1 1 

Hammond's Flycatcher 1 1 1 1 1 

Hermit Thrush 1 1 1 1 1 1 
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Table A2-1 continued       

Species MSH Atlas 
Range 
Map BBS MAPS 

Spatial 
(Combined) 

Hermit Warbler 1 1 1 1 1 1 

Hoary Redpoll 1 

Horned Lark 1 1 1 1 1 

House Finch 1 1 1 1 1 

House Sparrow 1 1 1 1 

House Wren 1 1 1 1 1 1 

Hutton's Vireo 1 1 1 1 1 

Lapland Longspur 1 

Lark Sparrow 1 1 1 

Lazuli Bunting 1 1 1 1 1 

Least Flycatcher 1 1 1 

Lesser Goldfinch 1 1 1 

Lincoln's Sparrow 1 1 1 1 1 1 

Loggerhead Shrike 1 1 1 1 

MacGillivray's Warbler 1 1 1 1 1 1 

Magnolia Warbler 1 

Marsh Wren 1 1 1 1 1 

Mountain Bluebird 1 1 1 1 1 

Mountain Chickadee 1 1 1 1 1 

Nashville Warbler 1 1 1 1 1 

Northern Bobwhite 1 1 1 1 

Northern Mockingbird 1 1 

Northern Rough-winged 
Swallow 

1 1 1 1 1 1 

Northern Shrike 1 

Northern Waterthrush 1 1 1 1 

Northwestern Crow 1 1 1 

Olive-sided Flycatcher 1 1 1 1 1 1 

Orange-crowned Warbler 1 1 1 1 1 1 

Ovenbird 1 

Pine Grosbeak 1 1 1 1 

Pine Siskin 1 1 1 1 1 1 

Purple Finch 1 1 1 1 1 

Purple Martin 1 1 1 1 1 

Pygmy Nuthatch 1 1 1 1 1 

Red Crossbill 1 1 1 1 1 1 

Red-breasted Nuthatch 1 1 1 1 1 1 

Red-eyed Vireo 1 1 1 1 1 

Red-winged Blackbird 1 1 1 1 1 1 

Rock Wren 1 1 1 1 1 1 

Ruby-crowned Kinglet 1 1 1 1 1 1 

Sage Sparrow 1 1 1 
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Table A2-1 continued       

Species MSH Atlas 
Range 
Map BBS MAPS 

Spatial 
(Combined) 

Sage Thrasher 1 1 1 1 

Savannah Sparrow 1 1 1 1 1 1 

Say's Phoebe 1 1 1 1 

Sky Lark 1 

Snow Bunting 1 

Song Sparrow 1 1 1 1 1 1 

Spotted Towhee 1 1 1 1 1 1 

Steller's Jay 1 1 1 1 1 1 

Swainson's Thrush 1 1 1 1 1 1 

Townsend's Solitaire 1 1 1 1 1 1 

Townsend's Warbler 1 1 1 1 1 1 

Tree Swallow 1 1 1 1 1 1 

Tricolored Blackbird 1 

Varied Thrush 1 1 1 1 1 1 

Veery 1 1 1 1 1 

Vesper Sparrow 1 1 1 1 1 

Violet-green Swallow 1 1 1 1 1 1 

Warbling Vireo 1 1 1 1 1 1 

Western Bluebird 1 1 1 1 1 

Western Flycatcher (Cordilleran 
or Pacific-slope) 1 1 1 1 1 1 

Western Kingbird 1 1 1 1 1 

Western Meadowlark 1 1 1 1 1 1 

Western Scrub-Jay 1 1 1 1 1 

Western Tanager 1 1 1 1 1 1 

Western Wood-Pewee 1 1 1 1 1 1 

White-breasted Nuthatch 1 1 1 1 1 

White-crowned Sparrow 1 1 1 1 1 1 

White-winged Crossbill 1 1 

Willow Flycatcher 1 1 1 1 1 1 

Wilson's Warbler 1 1 1 1 1 1 

Winter Wren 1 1 1 1 1 

Wrentit 1 

Yellow Warbler 1 1 1 1 1 1 

Yellow-breasted Chat 1 1 1 1 1 

Yellow-headed Blackbird 1 1 1 1 1 

Yellow-rumped Warbler 1 1 1 1 1 1 
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Table A2-2. Summary statistics of Mount St. Helens minimum source regions. 
 

Summary statistics of minimum source regions for the entire Mount St. Helens bird 
community, the Blowdown Zone community, the Pumice Plain community, and the 
BBS site in the Tephra Fall Zone of Mounts St. Helens – table data for Figure 3. Only 
years in which the minimum source region changed for given Mount St. Helens bird 
communities are shown. Across-species mean and maximum proxy dispersal distances 
and total area of the minimum source region are given. 
 

 

Community Sample Year Mean 

Distance 

(km) 

Maximum 

Distance 

(km) 

Area 

(km²) 

MSH – All Zones 1982 22 52 1376 
MSH – All Zones 1983 25 75 3618 

MSH – All Zones 1984 31 134 5534 

MSH – All Zones 1987 30 134 5645 

MSH – All Zones 2007 30 134 8984 

MSH – All Zones 2008 35 445 12996 

MSH – Blowdown Zone 1982 25 34 1256 
MSH – Blowdown Zone 1983 26 75 1376 

MSH – Blowdown Zone 1984 29 75 2616 

MSH – Blowdown Zone 1987 30 75 2982 

MSH – Blowdown Zone 2005 24 75 4231 

MSH – Blowdown Zone 2010 28 134 8984 

MSH – Pumice Plain 1982 20 20 1256 
MSH – Pumice Plain 1983 48 75 2170 

MSH – Pumice Plain 2005 34 75 4231 

MSH – Pumice Plain 2007 33 134 7164 

MSH – Pumice Plain 2008 41 445 11175 

MSH BBS Route 1992 29 33 473 
MSH BBS Route 1994 30 61 1049 

MSH BBS Route 1998 32 61 2559 
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Appendix 3: Pumice Plain Occupancy and Detection. 

 

Table A3-1. Species occupancy and detection estimates. 
 

Species occupancy and detection estimates from community occupancy model for the 
Pumice Plain 2007-2010 avifauna. Predicted occupancy identifies the proportion of sites 
within each habitat predicted to be occupied by a given species and the associated 
standard deviation. Detection identifies the probability of detection given occupancy for 
a species within a given habitat with associated standard deviation. Note this includes 
pathological cases of species where the model fits high occupancy and low detection. 

 

Habitat Species Occupancy 

  
Detection  

Upland American Pipit 0.93 ± 0.15 0.03 ± 0.02 

Upland American Robin 0.88 ± 0.24 0.01 ± 0.01 

Upland Common Raven 0.96 ± 0.08 0.08 ± 0.03 

Upland Dark-eyed Junco 0.79 ± 0.21 0.22 ± 0.06 

Upland European Starling 0.87 ± 0.25 0.01 ± 0.02 

Upland Gray-crowned Rosy Finch 0.87 ± 0.21 0.05 ± 0.04 

Upland Horned Lark 0.93 ± 0.07 0.73 ± 0.03 

Upland Lincoln's Sparrow 0.71 ± 0.38 0.15 ± 0.17 

Upland Northern Rough-winged 
Swallow 

0.90 ± 0.20 0.01 ± 0.01 

Upland Rock Wren 0.90 ± 0.19 0.05 ± 0.03 

Upland Rufous Hummingbird 0.78 ± 0.30 0.06 ± 0.04 

Upland Savannah Sparrow 0.79 ± 0.28 0.11 ± 0.05 

Upland Song Sparrow 0.88 ± 0.23 0.01 ± 0.02 

Upland Vaux's Swift 0.87 ± 0.22 0.02 ± 0.02 

Upland White-crowned Sparrow 0.52 ± 0.16 0.38 ± 0.05 

Upland Western Meadowlark 0.91 ± 0.15 0.06 ± 0.03 

Wetland American Crow 0.88 ± 0.22 0.02 ± 0.02 

Wetland American Robin 0.43 ± 0.18 0.38 ± 0.09 

Wetland Barn Swallow 0.50 ± 0.44 0.03 ± 0.05 

Wetland Brown-headed Cowbird 0.80 ± 0.27 0.07 ± 0.06 

Wetland Black-headed Grosbeak 0.92 ± 0.16 0.04 ± 0.03 

Wetland Brewer's Sparrow 0.38 ± 0.43 0.07 ± 0.23 

Wetland Bullock's Oriole 0.83 ± 0.27 0.02 ± 0.03 

Wetland Common Raven 0.35 ± 0.42 0.05 ± 0.05 

Wetland Common Yellowthroat 0.83 ± 0.26 0.02 ± 0.02 

Wetland Dark-eyed Junco 0.28 ± 0.16 0.38 ± 0.08 

Wetland Fox Sparrow 0.22 ± 0.36 0.21 ± 0.12 
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Table A3-1 continued.       

Wetland Hermit Thrush 0.64 ± 0.33 0.13 ± 0.10 

Wetland Lincoln's Sparrow 0.50 ± 0.17 0.86 ± 0.04 

Wetland Northern Flicker 0.54 ± 0.44 0.03 ± 0.05 

Wetland Orange-crowned Warbler 0.86 ± 0.24 0.02 ± 0.03 

Wetland Rufous Hummingbird 0.73 ± 0.22 0.22 ± 0.06 

Wetland Red-winged Blackbird 0.81 ± 0.26 0.09 ± 0.06 

Wetland Savannah Sparrow 0.53 ± 0.18 0.44 ± 0.08 

Wetland Song Sparrow 0.74 ± 0.34 0.06 ± 0.09 

Wetland Swainson's Thrush 0.26 ± 0.14 0.44 ± 0.09 

Wetland Violet-green Swallow 0.83 ± 0.27 0.02 ± 0.03 

Wetland Warbling Vireo 0.14 ± 0.12 0.40 ± 0.12 

Wetland White-crowned Sparrow 0.89 ± 0.11 0.59 ± 0.05 

Wetland Western Meadowlark 0.61 ± 0.32 0.15 ± 0.07 

Wetland Willow Flycatcher 0.86 ± 0.11 0.83 ± 0.04 

Wetland Yellow Warbler 0.97 ± 0.05 0.84 ± 0.03 
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TA, Calculus for Life Sciences I & II, UMD 2008-2010, Fall 2012  

• Prepared teaching materials including biology modules and quizzes.  

• Instructed students in calculus and its applications in biology. 

• Facilitated student review sessions, tutoring. Graded coursework and exams. 



 
 

 
GA, Calculus for Life Sciences I & II, UMD 2007-2008  

• Developed course materials for biological applications of math skills 
 
Guest Lecturer, Integrative Biology II, W&M 2007  

• Topic: Embryogenesis in Plants. Wrote corresponding exam material. 
 
TA, Integrative Biology I and II, W&M 2005-2007  

• Prepared teaching materials including handouts, question sets, and quizzes.  

• Instructed and supervised animal identification, dissections, and other course 
material.  

• Responsible for course content and student evaluation for 40-50 students.  

• Facilitated student review sessions, tutoring. Graded coursework and exams. 
 
Small group and individual instruction, BEACON Program 2003-2005  

• Taught G.E.D. material [science, math, history], English as a second language 
 
 

OTHER PROFESSIONAL EXPERIENCE 

AIMS Coordinator, American Bird Conservancy                                          2002-2005 

• Supervised the Avian Pesticide Incident Network trial, which tested for pesticide 
residues and cholinesterase activity in birds from wildlife rehabilitation centers.  

• Constructed and managed the Avian Incident Monitoring System (AIMS) 
database of pesticide poisonings in wild birds in the U.S. 
(http://www.abcbirds.org/aims).  

• Managed USEPA cooperative agreement; prepared reports; built collaborative 
relationships with federal and state agencies, accessing previously unavailable 
data.  

 

 

GRANT, AWARDS, AND FELLOWSHIPS (awarded to E. Larsen unless otherwise stated) 

Jacob K. Goldhaber Travel Grant, UMD Graduate School.  2012 
Graduate Lilly Fellowship, UMD Center for Teaching Excellence.  2011-12 
DC Lilly Conference Grant, UMD Center for Teaching Excellence.  2011 
Exploration and Field Research Grant, Explorers Club Washington 
Group. For: Bird Community Responses to Disturbance and Succession at 
Mount St. Helens. $2400. 

2010 

Departmental Excellence & Innovation in Undergraduate Teaching 
Award, UMD Center for Teaching Excellence. Awarded to the 
Interdisciplinary Math 130/131 Team.  
Graduate Student Summer Research Fellowship, UMD.  

2008-
2009 

 
2009 

Eloise Gerry Fellowship, UMD Biology Dept.  2007 
Honorable Mention for Excellence in Scholarship, W&M Graduate 
Research Symposium - Natural and Computational Sciences.  

2007 

Bill Sheehan Ornithology Research Grant, Williamsburg Bird Club. For: 
The impacts of urbanizing landscapes on avian diversity in the Mid-Atlantic 

2007 



 
 

Coastal Plain: the role of avian dietary guild. $500. 
Student Conference Travel Grant, W&M Graduate Student Association. 
For: Travel to the 2007 Southeastern Ecology and Evolution Conference. 
$200.  

2007 

Outstanding Teaching Assistant Award, W&M Biology Dept.  2006 
Graduate Student Travel Grant, W&M Reves Center for International 
Studies. For: Travel to the 4th North American Ornithological Conference, 
October 2006. $500 

2006 

U.S. Environmental Protection Agency Cooperative Agreement. 
Awarded to American Bird Conservancy, Avian Incident Monitoring 
System. $61,104. 

2005 

U.S. Environmental Protection Agency Cooperative Agreement. 
Awarded to American Bird Conservancy, Avian Incident Monitoring 
System. $50,000.  

2004 

 

PRESENTATIONS AND INVITED TALKS (* indicates presenter) 

Larsen, E.A.*, A.H. Badaway*. "The Student-Faculty Chasm: Looking at where 
student and faculty expectations meet and diverge”. DC Lilly Conference, 
Bethesda, MD. 
 

2013 

Larsen, E.A.*, C. Crisafulli, and W.F. Fagan. “Avian community assembly 
processes during primary succession”. Talk, ESA Annual Meeting, Portland, OR. 
 

2012 

Larsen, E.*, K. Schmitt*, A. Andrew, A.H. Badawy, M. Dougherty, K.M. 

Hrapczynski, M. Walker Miller, B. Robertson, A. Taylor, A. Williams, S. 
Kramer, S. Benson. “From seed to STEM: Cultivating understanding of student 
and faculty classroom expectations” Invited Talk, UMD Center for Teaching 
Excellence Lilly Showcase, College Park, MD. 
 

2012 

Schmitt, K.*, A.H. Badawy*, B. Robertson*, A. Andrew, M. Dougherty, 

K.M. Hrapczynski, E. Larsen, M. Walker Miller, A. Taylor Sharma, S. 
Benson, S. Kramer, A, Williams. “What do students expect? Assessment of 
Student Expectations in the classroom and applications for faculty” Talk, 
Innovation in Teaching and Learning Conference, College Park, MD 
 

2012 

Andrew, A., A.H. Badawy, M. Dougherty*, K.M. Hrapczynski*, E. Larsen*, 

M. Walker Miller, B. Robertson, K. Schmitt, A. Taylor, A. Williams, S. 
Kramer, S. Benson. “Building a Tool for Pre-assessing Student Expectations” 
Poster, UMD Graduate Research Interaction Day, College Park, MD. [Best Poster 
Award] 
 

2012 

Larsen, E.A.*“What we can learn from birds at Mount St. Helens?” Invited Talk, 
Explorer’s Club Washington Group, Washington, D.C. 
 

2011 

E.A. Larsen*, W.F. Fagan, C. Cosner, and J.M. Calabrese. “Reproductive 
Asynchrony and Allee Effects in Spatial Population Models.”  Poster, Biology 

2009 



 
 

Graduate Student Research Day, UMD. 
 
E.A. Larsen* and W.F. Fagan. "Voltinism and the population dynamics of the 
pipevine swallowtail (Battus philenor).” Poster, Biology Graduate Student 
Research Day, UMD. 
 

2008 

E.A. Larsen* and B.D. Watts. "The impacts of urbanizing landscapes on bird 
diversity in the Mid-Atlantic Coastal Plain: the role of dietary guild."  Poster, 
ESA Annual Meeting, San Jose, CA. 
 

2007 

E.A. Larsen* and B.D. Watts. "The impacts of urbanizing landscapes on bird 
diversity in the Mid-Atlantic Coastal Plain: the role of dietary guild."  Talk, VA 
Academy of Science, Harrisonburg, VA. 
 

2007 

E.A. Larsen* and B.D. Watts. "Do birds like McDonalds? How diet affects bird 
diversity in the city."  Talk, College of William and Mary Graduate Research 
Symposium, Williamsburg, VA. 
 

2007 

E.A. Larsen* and P. Ostrom. "Characterization of sinking particles through 
Carbon and Nitrogen elemental abundances in Grand Traverse Bay, Lake 
Michigan."  Poster, MSU Undergraduate Research Forum, East Lansing, MI. 

2001 

 

PROFESSIONAL SERVICE 

Webmaster, Fagan Lab, University of Maryland 
Graduate Student Panelist, TA Training, University of Maryland 

2007 - 2013 
2012 

Representative, Graduate Student Government, UMD 2008 - 2010 
Graduate Student Representative, Conservation Biologist Search 
Committee, W&M 

2007 

Treasurer, Graduate Student Association, W&M 2006 - 2007 
Representative, Graduate Student Association, W&M 2005 - 2006 

 

 

PROFESSIONAL DEVELOPMENT 

Ontologies for Evolutionary Biology, NESCent Workshop (Attendee) 
University Teaching and Learning Program, UMD Center for Teaching 
Excellence 
Lilly Conference on College and University Teaching – D.C. (Attendee) 

2013 
2011 - 2013 

 
2011, 2013 

 

 

MEMBERSHIPS 

Ecological Society of America      
American Ornithological Union     
 


