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Abstract

The orbit of any one planet depends on the
combined motion of all the planets, not to men-
tion the actions of all these on each other. To
consider simultaneously all these causes of motion
and to define these motions by exact laws allow-
ing of convenient calculation exceeds, unless I am
mistaken, the forces of the entire human intellect.
—TIsaac Newton 1687

Epochal surveys are throwing down the gauntlet for cosmo-
logical simulation. We describe three keys to meeting the
challenge of N-body simulation: adaptive potential solvers,
adaptive integrators and volume renormalization. With
these techniques and a dedicated Teraflop facility, simula-
tion can stay even with observation of the Universe.

We also describe some problems in the formation and
stability of planetary systems. Here, the challenge is to per-
form accurate integrations that retain Hamiltonian proper-

ties for 10'® timesteps.

1 The Scientific Importance of Cosmological
N-body Simulation.

Simulations are required to calculate the nonlinear fi-
nal states of theories of structure formation as well as
to design and analyze observational programs. Galaxies
have six coordinates of velocity and position, but obser-
vations determine just two coordinates of position and
the line-of-sight velocity that bundles the expansion of
the Universe (the distance via Hubble’s Law) together
with random velocities created by the mass concentra-
tions (see Figure 1). To determine the underlying struc-
ture and masses, we must use simulations. If we want
to determine the structure of a cluster of galaxies, how
large must the survey volume be? Without using simu-
lations to define observing programs, the scarce resource
of observing time on $2 billion space observatories may
be mispent. Finally, to test theories for the formation
of structure, we must simulate the nonlinear evolution
to the present epoch.

This relationship to observational surveys defines
our goal for the next decade. The Sloan Digital Sky
Survey (SDSS)[18] will produce fluxes and sky positions
for 5 x 107 galaxies with redshifts for the brightest
10. Our ambitious observational colleagues have cut
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Figure 1: The top panel shows a slice of a cosmological
simulation (100 Mpc on a side and 10 Mpc thick).
The bottom panel shows the same slice viewed by an
observer at the lower left corner in “redshift” space. To
refine and test analysis techniques, we need simulated
“skies” where the underlying truth is known.



steel and ground glass to survey a “fair volume” that
we must simulate, but we need N = 10'? to do this.
Direct summation of the gravitational forces using fixed
timesteps would take 10'° Teraflop-years.

We will explain why this is a unique time to survey
the Universe as well as describing the technical break-
throughs required to create a better survey of the cos-
mos. We will then present the three keys to a realistic
float count: 1) spatially adaptive potential solvers, 2)
temporally adaptive integrators and 3) volume renor-
malizations. Another goal of this paper is to define
“high quality simulations” and the niche science that
can be done with N ~ 108,

2 From SDSS to The Ultimate Digital Sky.

You guys aren’t trying hard enough.
—-Steve Shectman 1993

2.1 SDSS. The quote above was comparing our sim-
ulation plans to upcoming large surveys, SDSS and
2MASS—an all-sky infrared survey at 2 microns. Both
of these projects will produce about 10 Terabytes (TB)
of data, not a coincidence at all.

The efficiency of a photometric sky survey is:

6photo = qQD2

where ¢ is the detector quantum efficiency, 2 is the solid
angle of the field covered by the detectors and D? is the
collecting area of a telescope of diameter D. The sky
surveys done by 48-inch Schmidt survey machines had
e = 0.30m2deg”, assuming an optimistic photographic
quantum efficiency of 0.5%. SDSS uses a 2.5m telescope
with an array of 30 (2048x2048) CCDs with a pixel scale
of 0.4 arcseconds and a quantum efficiency of roughly
50%. The value of € is roughly 4.8, more than an order
of magnitude higher than the Schmidt Telescopes|[18].

The median seeing of a good site is ~ 0.8 arcsec-
onds; optimal sampling sets the pixel scale at 0.4 arc-
seconds. SDSS will observe ~ 7 steradians of the sky
in 5 colors for a total pixel count of 8.2 x 10! times
5 colors of 2 bytes fixing the archive at 8.2 TB. As the
surveyed angle will lie between 7 and 47 steradians with
the pixel size set by the atmosphere, the data volume of
a large survey is fixed.

The increase in the spectroscopic efficiency is far
more stunning. SDSS expects to identify 10 million
galaxies, 50 million stars and a few hundred thousand
quasars. Spectra will be taken of a million galaxies and
roughly 100,000 quasars and a lesser number of stars.
The spectroscopic efficiency is given by:

€spectra = qNspectraD2 (S/N) -

where ¢ and D were defined before, Njpectrq is the
number of spectra that can be taken simultaneously
and (S/N) is the signal to noise required to get a
redshift. The redshift surveys done 30 years ago used
telescopes that were 3—-5m, measured spectra one at a
time and required a (S/N) ~ 10 as they were measured
by holding photographic plates up to lamps, hence
€spectra ~ 8x1075m?2. The SDSS spectrograph will have
640 fibers fed to high ¢ CCDs. Digital spectra require
a (S/N) ~ 1 for redshifts, s0 €spectra ~ 5 x 103m?. The
throughput advance is nearly 8 orders of magnitude.

SDSS will produce some “lighter” data products.
A 50 GB catalog will give derived quantities for all
“found objects” while there will be an archive of postage
stamp images that will be ~ 0.5 TB. The spectroscopic
data inherently adds little volume to the total database.
In most surveys, 75% of the sources are within one
magnitude of the limit. The limiting magnitude is
defined by requiring that only 5% of the sources are
fraudulent (in a 5 color survey, this means that over one
quarter of the catalog is nonexistent). Thus, for most of
the sources, the colors are the highest resolution spectra
that may be extracted.

2.2 The Nearly Ultimate Digital Sky (NUDS).
How large can our Digital Sky become? SDSS will
probably cost ~$50M. We’re about to describe a project
that couldn’t be done for $50B, but isn’t completely
outside the realm of current technology. NUDS uses
10m space telescopes, so the pixel size of ~ 1072
arcseconds is determined by the diffraction limit. If
we survey 4n steradians using 20 colors, the archive is
roughly 0.1 Exabyte with 2 x 10'5 pixels (10* SDSS
archives). The found object catalog will saturate at
200 billion sources, given by the surface density of
objects seen on the Hubble Deep Field (HDF). If you
observe sufficiently long, the sources no longer pile up
at the faint limit of the survey. At the HDF limit, the
source counts are turning over as we see the limit of the
Universe defined by a combination of its curvature and
seeing back in time to an epoch before galaxies were
starting to form (we are seeing everything in our visible
horizon). The star-galaxy ratio is inverted from that
seen with SDSS; there are many more galaxies than
stars. Each of them is resolved and must be saved in the
“postage stamp archive”. The postage stamp archive
becomes meaningless, as a casual inspection of the HDF
shows that postage stamps of individual objects would
cover roughly half of the sky! So the 0.1 petabyte source
catalog is NUDS’ only “light data product”.

2.3 The Ultimate Digital Sky (UDSS). UDSS
requires a new kind of detector that registers the



direction, energy and time of arrival of each photon.
One then archives photon data rather than pixel data.
Considering all the photons that hit a 10m telescope
in 10 years, our rough estimate of the data volume is
~ 10?3 bytes which we call an Avogadro-byte. If we
had a real observational astronomer here, they’d tell
you why they have to have it.

3 Following the Progress of Simulations

3.1 A Brief History of N. Over the last 20 years,
the N of our simulations has increased as: logioN =
0.3 x (Year — 1973). To simulate 102 particles, can we
just wait until 20137 Computers in 1974 had speeds
of 10% flops, now they are > 10 flops—a 10* speed
improvement. However, our current algorithms equal
this speed-up by requiring 10* fewer floats per timestep
to advance 10° particles than the algorithms used in
1974 code. To reach N = 10'2 with computer speed
and algorithms contributing equally, we would have to
achieve the impossible and make the cost of advancing
a particle equal to few dozen pairwise force evaluations!

We note that both the spectroscopic survey effi-
ciency and our simulation throughput have increased
by 10% in the last decades. However, the spectroscopic
efficiency has saturated; none of D, ¢, Nspectra O (S/N)
can change by large factors. In the future, simulation
will play an increasingly greater role.

3.2 Declaration of N-dependence. There are a va-
riety of problems where N ~ 108 represents a minimum
ante. For example, clusters of galaxies are extremely im-
portant for determining cosmological parameters such
as the density of the Universe. Within a cluster, the
galaxies are 1-10% of the mass, and there are roughly
10% of them. If the galaxies have fewer than 10° par-
ticles, they dissolve before the present epoch owing to
two-body relaxation in the tidal field of the cluster. To
prevent this, we need N > 107 per cluster. Scaling to
the Sloan Volume yields N ~ 10'2.

There are ~ 10%° solar masses within the SDSS
volume, so even 10!2 is a paltry number as each particle
would represent 10® solar masses. We need ten-fold
more to represent the internal structure of galaxies.
N will always be far smaller than the true number
of particles in the Universe and will compromise the
physics of the system at some level. We can only
make sure that: 1) the physics being examined has
not been compromised by discreteness effects owing to
N-deprivation and 2) gravitational softening, discrete
timesteps, force accuracy and simulation volume don’t
make matters even worse. N is not the figure of merit in
most reported simulations—it should be! The N-body
Constitution in the Appendix provides a set of necessary

but not sufficient guidelines for N-body simulation.

The main physical effect of discreteness is the en-
ergy exchange that results from two body collisions.
Gravity has a negative specific heat owing to the neg-
ative total energy (sum of gravitional binding and ki-
netic energy) of a bound ensemble, like a star cluster.
As a star cluster evolves, stars are scattered out by col-
lisions and leave with positive energy. The remaining
stars have greater negative energies, the cluster shrinks,
the gravitational binding energy increases and the stars
move faster. In galaxies and clusters of galaxies, the
timescale for this to occur is 10° to 108 times the age of
the Universe. In many simulations, the combination of
discreteness in mass, time and force evaluation can make
the timescale much shorter leading to grossly unphysi-
cal results. So, we must use IV sufficient that physical
heating mechanisms dominate over numerical heating
or the numerical heating timescale is much longer than
the time we simulate. We inventoried all the physical
heating mechanisms experienced by galaxies in clusters
and discovered a unique new phenomena we call “galaxy
harassment” [29, 30].

4 All the N that fits.

There are two constraints on our choice of N. The
cost of computing a full cosmological simulation is
~ 10%7N*/3 floats (the scaling with N*/3 arises from
the increased time resolution needed as interparticle
separation decreases). The memory needed to run a
simulation is ~ 102N bytes. If we fix N by filling
memory, the time to run a simulation is 10 days x
(bytes/flop rate(N/30Million)'/3).  Current machines
are well balanced for our Grand Challenge simulations.
With Gigaflops and Gigabytes, we can perform simula-
tions with N ~ 107->. With Teraflops and Terabytes, we
can simulate 10'° particles. Simulations with N ~ 10'2
lie in the nether world of Petaflops and Petabytes.

5 Parallel Adaptive N-body Solvers.

Performance gains of the recent past and near future
rely on parallel computers that reduce CPU-years to
wall-clock—days. The challenge lies in dividing work
amongst the processors while minimizing the latency
of communication.

The dynamic range in densities demands that spa-
tially adaptive methods be used. Our group has for-
saken adaptive mesh codes to concentrate on tree-
codes[2, 6] that can be made fully spatially and tem-
porally adaptive. The tree-codes use multipole expan-
sions to approximate the gravitational acceleration on
each particle. A tree is built with each node storing its
multipole moments. Each node is recursively divided
into smaller subvolumes until the final leaf nodes are



reached. Starting from the root node and moving level
by level toward the leaves of the tree, we obtain a pro-
gressively more detailed representation of the underly-
ing mass distribution. In calculating the force on a par-
ticle, we can tolerate a cruder representation of the more
distant particles leading to an O(N log N) method. We
use a rigorous error criterion to insure accurate forces.
Since we only need a crude representation for distant
mass, the concept of “computational locality” translates
directly to spatial locality and leads to a natural domain
decomposition.

The force of a distant cell can be calculated using
higher moments other than monopole. Our experiments
have settled on hexadecapoles as the most efficient
order. Since a hexadecapole requires 319 floats to
evaluate while a monopole is only 38, the greater serial
efficiency becomes a bigger win in parallel as fewer off-
processor cells are fetched for a fixed error criterion. In
order to use hexadecapoles in cosmological simulations,
we had to generalize periodic boundary conditions to
arbitrary order[44].

Experience has shown that the domain decomposi-
tion and the data structure for force calculation must
be the same for efficient calculation. One approach is
to build an oct-tree for forces[6] and hash it to produce
the domain decomposition[5].

We use a balanced k-D tree for both the domain
decomposition[43] and the data structure. The tree is
constructed by recursively bisecting the particle distri-
bution along the longest axis. The lowest level nodes of
this tree contain several particles (usually 8 to 32) whose
force calculations are collectively optimized. Each 2™
domains is a single rectangular region of the upper m
levels of the tree. Pointers are unnecessary, each node in
the tree can be indexed so that finding children, parents
and siblings in the tree are simple bit shift operations[5].
The same shift operations provide a natural ordering to
move through the particle list and calculate forces. By
using such a natural order, there is a large correlation
in the off-processor data from one particle to the next.
An efficient caching strategy can exploit this.

This simple tree structure provides a fast and
effective means to create portable parallel codes for N-
body simulations, nearest-neighbor searching and group
finding. The same code runs under PVM, MPI, the
Cray shmem library, KSR’s pthreads and INTEL’s NX
system. Strategies vary a bit from machine to machine.
The Cray T3D-512 version has a peak rate of nearly
20 Gigaflops with a sustained rate of over 10 Gigaflops.
The IBM SP2 version is ~ 1.7 times faster.

6 Hierarchical Timestepping.

The great advance in the calculation of forces has come
from hierarchical methods that are spatially adaptive.
As the number of particles in a cosmological simulation
grows, so do the density contrasts and the range of
dynamical times (x 1/+/density). If we take the final
state of a simulation and weight the work done on
particles inversely with their natural timesteps, we find
a potential gain of of ~ 50. Temporal adaptivity is one
of the last algorithmic areas where we can squeeze an
order of magnitude improvement.

The most commonly used time integration scheme
for N-body simulations is leapfrog:

D"'ift, D(’T'/Q)7 £n+1/2 = Ln —+ §TY7L7
KiCkJ K(T)7 yn—‘,—l = Vv, + T@(£n+1/2),
D’I‘ift, D(T/Z), Lyl = Ln+1/2 + §TYH+1

where r is the position vector, v is the velocity, a is
the acceleration, and 7 is the timestep. The opera-
tor D(1/2)K(1)D(7/2) evolves the system under the
Hamiltonian

-HN = HD + HK + He'r"r = %Y2 + V(E) + He'r“r)
where H,,, is of order 72[40].

The existence of this surrogate Hamiltonian insures
that the leapfrog is symplectic—it is the exact solution
of an approximate Hamiltonian. Errors explore the
ensemble of systems close to the initial system rather
than an ensemble of non-Hamiltonian time evolution
operators near the desired one.

Leapfrog is a second-order symplectic integrator re-
quiring only one costly force evaluation per timestep and
only one copy of the physical state of the system. These
properties are so desirable that we have concentrated
on making an adaptive leapfrog. Unfortunately, simply
choosing a new timestep for each leapfrog step evolves
(r,v,7) in a manner that may not be Hamiltonian, hence
it is neither symplectic nor time-reversible. The results
can be awful[10]. Time reversibility can be restored[20]
if the timestep is determined implicitly from the state
of the system at both the beginning and the end of
the step. This requires backing up timesteps, throw-
ing away expensive force calculations and using auxil-
iary storage. However, we can define an operator that
“adjusts” the timestep, A, yet retains time reversibil-
ity and only calculates a force if it is used to complete
the timestep[34]. This is done by choosing A such that
it commutes with K, so that DAKD is equivalent to
DKAD. Since K only changes the velocities, an A op-
erator that depends entirely on positions satisfies the



commutation requirement. The “natural definition” of
timestep, o« 1/+/density, is ideal but it is difficult to
define when only a few particles are within the region
of interest. Synchronization is maintained by choos-
ing timesteps that are a power-of-two subdivision of the
largest timestep, 7,. That is, 7; = 5%, where 7; is the
timestep of a given particle. We are currently exper-
imenting with this approach and encourage others to
look at variants.

7 Volume Renormalizations.

The power of this technique has recently been shown
in the simulation of rare quasar formation sites[22]. A
large scale simulation is first done at modest resolution
(particle mass of 10'0-°Mg)— galaxies “weigh” just ~
100 particles. Current simulations with this resolution
cover volumes of (100 Mpc)® with > 107 particles.
Within these volumes, regions of interest are identified.
These can be sites of galaxy/QSO formation occurring
at high redshift, a large cluster of galaxies or a structure
matching our local group.

Next, initial conditions are reconstructed using the
same low-frequency waves present in the low resolution
simulation but adding the higher spatial frequencies. To
reduce the number of particles and make the nonlinear
simulation possible using the same cosmological context,
we construct another set of initial conditions with
particles whose mass, and therefore mean separation,
increase with the distance from the center of our volume.
Note that because tides are important in the formation
of the filaments it is not sufficient to extract just the
central region. Finally, the higher resolution simulations
can be done adding gas dynamics using TREESPH[19].

Using this approach, we can simulate structures like
the local Virgo cluster of galaxies using 107 particles. A
larger cluster like Coma requires 10® particles. We can
get the gross dynamics of the local group, capturing the
larger satellites with 107 particles.

8 Simulating the Sloan Volume.

Our proposed program to simulate the Sloan Volume
before the new millenium is as follows:
e Simulate the entire volume (800 Mpc)? with N =
10'°, each with a mass of 10195M.

e “Renormalize” dozens of groups, clusters, etc. and
simulate with 103-10° particles.

The total cost for the first simulation is roughly a
Teraflop-year and requires a machine with a Terabyte
of memory. The second sequence of simulations should
be designed to have roughly equal computational cost,
but will require less memory.

9 The Fate of the Solar System.

Advances in hardware and numerical methods finally
enable us to integrate the Solar System for its lifetime.
Such an integration is a 1,000 fold advance on the
longest accurate integration ever performed[27] and can
address numerous questions:

Is the Solar System stable? Do all the planets re-
main approximately in their current orbits over the life-
time of the Solar System, or are there drastic changes,
or perhaps even an ejection of a planet?

What is the affect of orbital changes on the
planetary climates? According to the Milankovich
hypothesis, climate variations on the Earth are caused
by insolation changes arising from slow oscillations in
the Earth’s orbital elements and the direction of the
Earth’s spin[9]. Remarkably, the geophysical data
(primarily the volume of water locked up in ice as
determined by the '80/'®O ratio in seabed cores) covers
a longer time than any accurate ephemeris.

How does weak chaos alter the evolution of the
Solar System? An empirical relationship was found
between the Lyapunov timescale and time for dramatic
change such as planet crossings and ejections:

1.8

Teject TLyap

Tdynamical Tdynamical

but the relation was only investigated for Try.p ~
10 — 1007 4ynamicar and there is large scatter[28].
What is the stability of other planetary system?
How are the giant planets related to terrestrial planets
on stable orbits? Without such a cleansing of planetes-
imals from the Solar System by giant planets[14], the
bombardment of the Earth by asteroids would be steady
and frequent throughout the main sequence lifetime of
the Sun[47]. The chaos produced by Jupiter and Saturn
may have played a role in insuring that planetesimals
collided to form the terrestrial planets!, but too much
chaos will eject planets in the habitable zone. While a
search for giant planets is the only technically feasible
one today, it may be the ideal way to screen systems
before searching for terrestrial planets.

10 Methods for Evolving the Solar System.

10.1 The Legacy of Laplace. When Laplace ex-
panded the mutual perturbations of the planets to first
order in their masses, inclinations and eccentricities, he
found that the orbits could be expressed as a sum of pe-
riodic terms—implying stability. Poincaré[33] showed
that these expansions don’t converge owing to reso-

nances. Using the KAM theorem, Arnold[4] derived
TTn Ancient Greek, chaos was “the great abyss out of which

Gaia flowed”.
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Figure 2: A comparison of the Earth’s eccentricity as
calculated by evolving the secular system and explicitly
integrating the planet’s orbits. The solid line shows the
Earth’s eccentricity in the direct integration, and the
dashed line shows the difference in Earth’s eccentricity
between the two methods.

constraints on planet masses, eccentricities, and incli-
nations sufficient to insure stability. The Solar System
does not meet his stringent conditions, but this does not
imply that it is unstable.

Laskar[23] tested the quasi-periodic hypothesis by
numerically integrating the perturbations calculated to
second order in mass and fifth order in eccentricities
and inclinations, ~150,000 polynomial terms. Fourier
analysis of his 200 million year integration reveals that
the solution is not a sum of periodic terms and implies
an instability that is surprisingly short, just 5 Myr.

10.2 The Legacy of Newton The second method
for attacking the stability problem is to explicitly inte-
grate the planets’ orbits (Table 1). As early as 1965,
Pluto’s behavior was suspicious[11]. In the last ten
years, projects using general purpose computers such
as LONGSTOP[31] have battled special purpose ma-
chines like the Digital Orrery[3, 45] for top honors in
computing the orbits of the outer planets. The Digital
Orrery integrations show a Lyapunov exponent of (1/20
Myr~1) for Pluto’s orbit, while LONGSTOP finds that
Pluto is locked in a complicated system of resonances
so that the Lyapunov exponent could be extremely sen-
sitive to fine details of the initial conditions.

10.3 New Integration Methods. LONGSTOP in-
tegrations were not limited by CPU time but by round-
off error[35]. New fourth order “mixed variable sym-
plectic” (MVS) integrators reduce roundoff error such
that a 10 billion year integration of all nine planets is
possible with 128 bit precision. These new integrators
were used for an accurate integration of all nine plan-
ets and the Farth’s spin axis for 3.05 Myr into the past,
and future[36, 27]—roughly the limit of 64 bit precision.
General relativity was included in an extremely elegant
way[40]. A comparison with the heroic secular perturba-
tion calculation shows remarkable agreement over their
common range including the existence of the secular res-
onance claimed to be responsible for the chaos[27], but
all planetary orbits appear to be regular over the 6 Myr
interval. (see Figure 2)

MVS integrators[39] separate the Hamiltonian into
the Kepler part and the mutual planetary kicks:

HSolar System — HKepler + leanetary kicks T+ He'r'r'

and use fourth order leapfrog integrators[49] composed
of steps: D(7/2)K(7)D(7/2) as in §6, but the Drift
operator moves the particle on a Kepler ellipse and
the Kick operator calculates the mutual interactions
of the planets. H.,,, is of order 7*. The accuracy of the
integrator at a given timestep is increased by the ratio
of Jupiter’s mass (the biggest kicker) to the sun’s mass.

Sussman and Wisdom[46] performed a 100 Myr
integration on a somewhat special purpose computer
that used the potential approximation to General
Relativity[32], but was otherwise similar to the 6
Myr integration[36]. They found an initial divergence
timescale of 12 Myr, but a 4 Myr divergence dominates
after 60 Myr. The 4 Myr divergence occurs much later
in the outer planets than in the inner planets hinting
at two distinct mechanisms (or three since Pluto has
its own distinct chaotic behavior). They were cautious
about identifying the underlying dynamical mechanism
for the chaos, noting that an angle can alternate be-
tween libration and circulation owing to the projection
of a high-dimensional trajectory onto a plane as well as
from a separatrix. Understanding the source of Solar
System chaos awaits an analytical demonstration that
the resonances involved are sufficiently strong and close
for resonance overlap.

Nonetheless, the Solar System is almost certainly
chaotic. Laskar[24] looked at the fate of Mercury and
estimates the chance of ejection in the next few billion
years approaches 50%. Our belief in the regularity of the
Solar System would be dashed if the ejection of Mercury
were in the historical record. There could have been a
dozen or more planets just a few billion years ago. At
the very least, the chaotic motion leads to a horizon of



predictability for the detailed motions of the planets.
With a divergence timescale of 4-5 Myr time[23, 46],
an error as small as 10710 in the initial conditions will
lead to a 100% discrepancy in 100 Myr. Every time
that NASA launches a rocket, it can turn winter to
spring in a mere 10 Myr.2 (Don’t let this go beyond
this room, environmental impact statements are already
tough enough.)

Table 1: Solar System Integration History

Year Ref Length # GR? Earth’s
(Myr) Planets Moon?
1951 [15] 0.00035 5 no no
1965 [11] 0.12 5 no no
1973  [12] 1. 5 no no
1986 [3] 217. 5 no no
3. 8 no no
1986  [32] 100. 5 yes no
1988  [45] 845. 5 no no
1989 [38] 2. 9 no no
1991  [36] 6. 9 yes yes
1992  [46] 100. 9 yes yes
1999 wus 10,000. 9 yes yes

We have started a 9 Gyr integration—4.5 Gyr into
the past when the Solar System was formed and 4.5
Gyr into the future when the Sun becomes a red giant.
One basic requirement is a computer with fast quad
precision to overcome roundoff problems. Table 2 shows
that the IBM 3CT is the current machine of choice.
To understand any chaos, we will need to see it by an
independent means and devise methods to determine its
underlying source.

Table 2: Digital Orrery Speeds

machine Years of Evolution
per cpu year

IBM 3CT ~10°

SGI R8000 ~ 10%

HP/735 ~ 107

Sparc-10 ~ 108

Dec alpha  no quad precision

10.4 Parallel Methods for Calculating the So-
lar System. Because there are only nine planets, dis-
tributing the planets among different processors does
not promise great speed gains through parallel compu-
tation. We employ a different form of parallelism—the
“time—slice concurrency method” (TSCM)[41]. In this

2Are the integrations meaningful given this sensitivity to the
initial conditions? We investigate Hamiltonian systems that are
as close to the Solar System as possible. KAM theory tells us that
the qualitative behavior of nearby Hamiltonians should be similar.
While the exact phasing of winter and spring is uncertain after
millions of years, the severity of winter or spring owing to changes
in the Earth—Sun distance and the obliquity are predictable.

method, each processor takes a different time—slice; pro-
cessor 2’s initial conditions are processor 1’s final condi-
tions and so on. The trick is to start processor 2 with a
good prediction for what processor 1 will eventually out-
put, and iterate to convergence. This is analogous to the
waveform relaxation technique used to solve some par-
tial differential equations[16]. However, Kepler ellipses
are a good guess to the orbits for a timescale that is
proportional to the ratio of the Sun’s mass to Jupiter’s.
Tests show that it is extremely efficient to iterate to
convergence in double precision (typically 14 iterations
each costing 10-15% of a quad iteration), then perform
just two iterations to get convergence in quad. In this
way, the total overhead of the full 16 iterations can be
less than a factor of 4. There are still many algorithmic
issues to be addressed.

For long-term integrations, TSCM has been formu-
lated in a way that preserves the Hamiltonian structure
and exploits the nearness to an exactly soluble system;
otherwise errors grow quadratically with time. TSCM
will enable us to integrate ~ 0.5 Gyr per day on a 512
node SP2—a speed-up over real-time of 10*!. This will
make it feasible to study the stability of other solar sys-
tems. Detailed development and implementation will
be much more challenging than for previous methods,
and our high quality serial integration will be required
for comparison and validation.

Finally, we will use a new technique to gauge the ori-
gin of instabilities (the “tangent equation method”)[42].
In the past, it was common to integrate orbits from
many slightly different initial conditions. While that
works, it is more rigorous and also more economical to
integrate the linearized or tangent equations—the equa-
tions for differences from nearby orbits. We will inte-
grate the tangent equations along with the main orbit
equations.

11 Cosmology meets Cosmogony: Simulating
the Formation of Planetary Systems

Theories of Solar System formation are traditionally
divided into four stages[25]: collapse of the local cloud
into a protostellar core and a flattened rotating disk
(Nebular Hypothesis); sedimentation of grains from
the cooling nebular disk to form condensation sites for
planetesimals; growth of planetesimals through binary
collision and mutual gravitational interaction to form
protoplanets (planetesimal hypothesis); and the final
assembly to planets with the remaining disk cleansed
by ejections from chaotic zones.

The cosmology code described in §5 & §6 is ideal for
the third stage of Solar System formation, particularly
in the inner regions where gas was not a primary com-
ponent and gravitational interactions dominate the evo-



lution. The first stage entails magnetohydrodynamics,
the complicated small-particle physics and gas dynam-
ics of the second stage is still not well understood, and
the fourth is the purview of long-term stability codes.

All that is required for a detailed simulation of the
third stage is a model of the collisional physics and a
code capable of dealing with a large number of particles.
Previous simulations of the planetesimal stage have
been restricted to of order 102 particles[7], or examined
a local patch of a disk with Kepler shear[1] with one or
two “external perturbers” to mimic the action of giant
planets[47]. Our cosmology code has the potential to
treat as many as 10® particles simultaneously, a million-
fold improvement that makes us enthusiastic! Only
statistical methods[48] employing prescriptions for the
outcomes of encounters have been used to peek at this
regime.

We reach an important threshold at N ~ 108 in
our ability to follow planetesimal evolution. At early
times, the relative velocities between planetesimals are
small and inelastic physical collisions lead to “runaway”
growth of planetary embryos[7]. Eventually gravita-
tional scattering increases the planetesimal eccentric-
ities to such an extent that collisions result in frag-
mentation, not growth. The embryos will continue to
grow owing to their large mass, but at a slower rate as
their “feeding zones” are depleted[21]. The total mass
of our planetary system is 448 Mg or 3.6 x 10* Miunar,
while the inner planetesimal disk amenable to simula-
tion had a mass ~ 103 Mjunqe,. To capture both growth
and fragmentation[48] requires a minimum particle mass
of 107° Miynar leading to our target N ~ 102.

A detailed direct simulation of planet formation can
address a variety of important questions, including: Was
there runaway growth of a few embryos or a continu-
ously evolving homogeneous mass distribution? How
does the primordial surface density alter the evolution?
What is the dominant physical mechanism that drives
the late stages of growth—perturbations by the giant
gas planets or intrinsic gravitational instabilities? What
fixes the spin orientation and period of the planets—
uniform spin-up from planetesimal accretion[26] or a
stochastic process dominated by the very last giant
collisions[13]? Is it feasible that the Earth suffered a
giant impact late in its growth that led to the forma-
tion of the Moon[8]? How much radial mixing was there
and can it explain observed compositional gradients in
the asteroid belt[17]?

12 Summary

An old joke is that when theorists give talks, only
they believe the result; while when observers speak,

they are the only ones that do not. Simulation frees
theory from artificial simplifications and determines its
nonlinear consequences after applying the projections
and biases of observational (not experimental) data.
However, all too often it becomes the “worst of both
worlds”. The results may rest on the choice of “sub-grid
physics” and the output is freely rotated and projected
to create a picture that is compared to real observations.
In our approach, we strive to:

o Carefully choose problems where the most impor-
tant physics is above the grid; problems dominated
by gravity are best.

o Implement any subgrid physics faithfully.

o Adhere to clear standards for high quality simula-
tions.

e Create data products with sufficient integrity to be
put into the critical path of observational programs.

e Collaborate with observational astronomers to in-
sure the utility of the simulation data.

In this approach, we embrace future computing technol-
ogy and ask, “What simulations will solve these prob-
lems once and for all”? In many cases, problems must
be deferred, and the next year is spent on an appropriate
niche problem where this goal can be achieved. How-
ever, with the approach to Teraflop and Petaflop com-
puting, we hope that the niches grow to fill the space of
problems that we wish to attack.
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Appendix: The N-body Constitution

Preamble

We, the people of the HPCC consortium, in order to
form more perfect N-body simulations, establish justice,
insure domestic tranquility, provide for the common
defense, promote the general welfare, and secure the
blessings of scientific accuracy to ourselves and our
posterity do ordain and establish this Constitution for
the conduct of numerical N-body simulations.

Article I: On the Gravitational Softening Length
Section 1—The gravitational softening length should
be large enough to minimize the effects of two body
relazation.

There should be at least 8 particles in each softening
volume in objects of interest.

Article IT: On the Size of Time steps

Section 1—Time steps should be chosen to be small
enough to eliminate the effects of two body scattering
introduced through integration errors.

1/2
GL) . Near the
P
center of an isothermal sphere this is equivalent to At <
.382‘”i for a standard Plummer softening. For a typical

The timestep must satisfy At < % (

THUBBLE 10kpc
upoLe ., 450010k

t €grav

Spline kernel softening requires 33% more timesteps.
Hierarchical timestepping is permitted. Some particles
must be on the smallest timesteps and any criterion for
longer timesteps must be rigorously tested using both
isolated models and hierarchical clustering.

Article ITI: On the Accuracy of Forces

Section 1—Forces should be calculated with a mazimum
absolute and relative error.

The error should always be less than 0.5% of the force
or the rms force, whichever is less.

Article IV: On the Accuracy of the Integrator
Section 1—The integrator must be second order and
symplectic (or time reversible) and avoid any correlated
higher order error terms.

Retaining second order accuracy is particularly impor-
tant when the length of the time step in changed during
the calculation. However, one must be careful not to
introduce correlated third order errors when correcting
to second order accuracy. If the integrator is not sym-
plectic then artificial dissipation may result.

cosmological simulation Nyteps =

Article V: On the Size of the Simulation Volume
Section 1—The simulation volume must be large enough
to model all non-linear effects.

Mode couplings between large and small scales can
increase power on small scales. In particular, filaments
greatly affect the gravitational evolution at small scales.
The diameter of the simulation for a CDM spectrum
with og = 0.7 must be at least 40h—! Mpc. Models
with more large scale power will require larger volumes.
Section 2—No one object should dominate the evolution
of the simulated volume.

To prevent objects from tidally influencing themselves
via aliasing and to keep objects from artificially lowering
the mean background density, no virialized object may
contain more than 1/10 the total simulated mass.
Section 3—The simulation must have a large enough
volume that the amplitude in the fundamental mode
01 < 0.01 when the simulation is concluded.

Accurate evolution of the largest scale modes requires
periodic boundary conditions. Further, without peri-
odic boundary conditions, the accelerations at the edge
of the volume are large and error criteria become hard
to apply.

Article VI: On the Starting Redshift of the
Simulation

Section 1—The simulation must start at a redshift high
enough to insure that all represented mass scales are still
in the linear regime.

In particular, if the initial conditions are generated us-
ing the Zel’dovich approximation, the starting redshift
must be sufficiently high to insure that the absolute
maximum |§| < 1. For example, a CDM simulation
with gg = 0.7 in a cubic volume 40h~—! Mpc on a side
simulated with 128° particles would require a starting
redshift of at least z = 50.

Article VII: What Ratification Shall Establish
Constitution

Section 1—This constitution must be ratified by the
representatives of at least two different HPCC groups
at a constitutional convention by late 1995.

The effects of violating the above articles are not
known. Some violations will introduce unphysi-
cal dissipative effects while others will introduce
errors that act like an artificial heat source.

Status of the N-body Constitution

Several groups have acknowledged the importance
of these criteria in their own research papers. However,
few have shown a willingness to follow through and
perform simulations to the quality specified here.



