ABSTRACT

Title of thesis: FLOOR (Framework for Linking Ontology
Objects and Textual Requirements): A New
Requirements Engineering Tool that Provides
Real-time Feedback
Edward Zontek-Carney, Master of Science, 2017
Thesis directed by: Associate Professor Mark Austin

Department of Civil and Environmental Engineering
and Institute for Systems Research

Cost overruns on complex system-of-systems development programs frequently trace
back to problems with requirements. For increasingly complex systems, a key capa-
bility is the identification and management of requirements early in a system’s life
cycle, when errors are cheapest and easiest to correct. Significant work has been
done to apply natural language processing (NLP) to the domain of requirements
engineering. Recently, requirements engineering tools have been developed that use
NLP to leverage both domain ontologies and requirement templates, which define
acceptable sentence structures for requirements. Domain ontologies provide ter-
minology consistency, and enable rule-checking during the testing of requirements.
This thesis introduces FLOOR, a new software tool for requirements engineering
that leverages NLP. FLOOR not only integrates domain ontologies and requirement

templates, but also supports importing multiple external domain ontologies.

FLOOR (Framework for Linking Ontology Objects and Textual
Requirements): A New Requirements Engineering Tool that
Provides Real-time Feedback

by

Edward Zontek-Carney

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of

Master of Science
2017

Advisory Committee:

Professor Mark A. Austin, Chair
Professor A. Yavuz Oruc
Professor Huan Xu

(© Copyright by
Edward Zontek-Carney
2017

Dedication

To Millie Jane Zontek-Carney.

i

Acknowledgments

I would like to acknowledge my parents, Kelly and Ed, my sister, Bonnie, and my

wife, Amy, for their long-lasting love and support.

il

Table of Contents

List of Figures vi
List of Abbreviations viii
1 The Need for Model-based Systems Engineering 1
1.1 Problem Statemento 1
1.1.1 What is Model-based Systems Engineering 1

1.1.2 State-of-the-Art Model-based Systems Engineering 2

1.2 Project Objectives 3
1.3 Contributions and Organization 5

2 Related Work 7
2.1 Natural Language Processing 7
2.1.1 Natural Language Processing Techniques 8

2.1.2 Natural Language Processing Tools 12

2.2 Requirements Engineeringo 12
2.2.1 Requirement Templates 13

2.2.2 Ontologies 14

2.2.3 Requirements Engineering Tools 18

3 FLOOR Software Architecture 20
3.1 FLOOR Overview e 20
3.2 Class Hierarchy 21
3.3 NLP Libraries 23

4 Requirements Engineering with FLOOR 24
4.1 Working with FLOOR 24
4.1.1 Loading Existing Files 24

4.1.2 Requirement Template Matching 25

4.1.3 Ontology Term Matching 25

4.1.4 Generating Analysis Reports 26

4.1.5 Exporting Requirements 27

v

5 Case Study Problems
5.1 Case Study 1: Simple Requirement Template Matching
5.1.1 Creating and Printing Requirements and Requirement Tem-
plates
5.1.2 Tokenization and POS-Tagging
5.1.3 Matching Requirements with Requirement Templates
5.2 Case Study 2: Working with Requirements from NASA Goddard . . .
5.21 Import Data.
522 Results.
5.3 Case Study 3: Scalability Analysis

6 Conclusions and Future Work
6.1 Conclusions
6.2 Future Work

Appendices
A RichTextFX License Agreement

Bibliography

29
29

29
31
31
33
33
36
36

38
38
38

41

41

43

1.1
1.2
1.3

2.1

2.2

2.3

24

2.5
2.6
2.7

2.8

3.1
3.2

4.1
4.2

4.3

5.1
5.2
5.3
5.4

List of Figures

Pillars of SysML: structure, behavior, requirements and parametrics.
Manual translation of text into high-level textual requirements.
Framework for automated transformation of text (documents) into
textual requirements (semi-formal models).

Output from first step on building chunking grammar. Purpose: Sim-
ply pick nouns from test sentence. L.
Output from second step on building chunking grammar. Purpose:
Identify noun phrases. L.
Output from third step on building chunking grammar. Purpose:
Form noun phrases.
Output from fourth step on building chunking grammar. Purpose:
Identify the adjective preceding the first noun phrase.
Example requirement template and instance.
Simple ontology, rules, and event-driven evolution of semantic graphs.
Schematic for state-of-the-art traceability and ontology-enabled trace-
ability for system design and management.
Connecting textual requirements to semantic models of system struc-
ture and behavior.

Real-time feedback: user interface.
FLOOR: class diagram.

Import options on the FLOOR File Menu.
Real-time feedback: matching requirement templates and ontology

terms. . ..o L
Example Testability Report.

Simple template matching: Create and print requirements.
Simple template matching: Create and print templates.
Simple template matching: Tokenization and POS tagging.
Simple template matching: Textual requirements matched with tem-

plates.

vi

14

6.1 FLOOR: Requirement template and domain ontology match

vil

API
CSV
DODT
DOORS
FLOOR
GUI
INCOSE
MBSE
NLP
OWL
POS
SysML
UML
XML

List of Abbreviations

Application Programming Interface

Comma Separated Values

Domain Ontology Design Tool

Dynamic Object-Oriented Requirements System
Framework for Linking Ontology Objects and Textual Requirements
Graphical User Interfaces

International Council on Systems Engineering
Model-Based Systems Engineering

Natural Language Processing

Web Ontology Language

Part of Speech

System Modeling Language

Unified Modeling Language

Extensible Mark-up Language

viil

Chapter 1: The Need for Model-based Systems Engineering

1.1 Problem Statement

This thesis describes a new approach to the interpretation, development, and
analysis of textual requirements, through the use of application-specific ontologies
and natural language processing. It builds upon our previous work in exploring ways
in which model-based systems engineering might benefit from techniques in natural

language processing [5, 6].

1.1.1 What is Model-based Systems Engineering

Model-based systems engineering (MBSE) is a system development approach
in which the focus and primary artifacts of development are models, as opposed to
documents [7, 9]. Maintaining a central system model supports error prevention,
error correction, reuse, and team-based development. As systems of interest have
become increasingly complex, a need has arisen for MBSE development tools with

enhanced automation capabilities.

1.1.2 State-of-the-Art Model-based Systems Engineering

Most widely-used MBSE tools are focused on the development and decom-
position of system architecture, as opposed to requirements. Modern MBSE tools
(e.g., Rhapsody or MagicDraw) support the Systems Modeling Language (SysML),
and provide a framework for reuse and collaboration based on the development of
a single, central model. SysML does contain a Requirement Diagram (see Figure
1.1), which captures requirement text, and can link requirements to other system
objects, such as test cases. Plug-ins for SysMI-based tools exist (e.g. DataHub)
that enable the integration of a requirements management database (e.g., DOORS)
with the system model [12]. Even so, current MBSE tools do not address the pro-
cess of requirements development and/or analysis. The underlying assumption is
that the text of each requirement is determined by a process external to the MBSE
development. No feedback addressing the quality of new requirements is presented
to the user while creating a Requirement Diagram. The critical capability to fully
develop requirements during early system life cycle phases, when it is cheapest and
easiest to correct errors, is largely overlooked by modern MBSE tools.

While engineers are looking for semi-formal and formal models to work with,
the reality remains that many large-scale projects begin with hundreds, or even
thousands, of pages of textual requirements. Initial requirements sets may be inad-
equate due to incompleteness, ambiguity, and/or several other factors. State-of-the
art practice (see Figure 1.2) involves the manual translation and decomposition

of text into a semi-formal format (suitable for representation in a requirements

1. Structure

Ssepping Do

Agal-LockPelsimancs

2. Behavior

F = (el 1-1fy

. Al ABE AotwshenSedoinod [SRquid L--:ql.--.ltj
bdd [pagkage] VihicteBtugure [ABS-Block Defndion DBlagram] - iﬂta‘ractlﬂﬂ
| definition
=hincks hlache whincks I i Tresms I I B sk |
B it Atl Luck et s TeaTracion [ioe Weshine Do
scmnnic . o ¥ wimm TreTrection [S1ae Wi chire Duagimm]
Proe Controlles L state :
machine ——
e o .‘_ [G T RaEn [
e i activity/ | =t Pereritacki etnty Doy} .
el [biock] Anti-LockCortmila fue 1
Bl AL addnn J i function 1
+ el
use Dincil ngs 04 Modelsle
LLLL o]
reg[package] VehiclSpacificaionm
[Fegumemsnte Disgram-Braking Ragurements| T
par|cotsiisvElek] Sraghilnetsheli mamas [Farimeks Dagram|
L W]
WViliiche Synoem [¥rakimg Sy tem
Spacificaten Sprxificaton O]
[Hrakinghasce = L Accelm sion
T E— e = Equatian Equation

IF = ma)

Liogle v iy
x="Thy vahicls ghal siop el

v B0 migh watkan 150 1t . ¥ i [B b i pedier il
on a phvan dry sudace® frakirg conddiony”
L, »
w
wiermefogts [

3. Requirements 4. Parametrics

Mote that the Pachage and Uge Caze diagrams ané not shown in this example, bt are respectively pam of the structure and behavior pilars

Meloeind quatinn
F

Figure 1.1: Pillars of SysML: structure, behavior, requirements and parametrics.

database) — a slow and error-prone process.

1.2 Project Objectives

This work is motivated by a strong need for computer processing tools that can
help requirements engineers overcome and manage these challenges. During the past
twenty years, significant work has been done to apply natural language processing
(NLP) to the domain of requirements engineering [3, 28, 29]. Applications range
from using NLP to extract ontologies from a requirements specification, to using

NLP to verify the consistency and/or completeness of a requirements specification.

Pages of Text Simplified Model of Requirements

manual
translation

Figure 1.2: Manual translation of text into high-level textual requirements.

Feedback
Pages of Text ¢ Validated Model of Requirements

S .

g 9 o Property Analysis g

’ NLP 1 o O i and Validation o
I 1
’J L‘ | A J !
1 I
| |
I
chunking chinking ' }] i
grammar grammar ! Domain Ontologies '
1

System Propertiecs <«————— System Ontology
Subsystem Properties <«———» Subsystem Ontologies

Component Properties -«———» Component Ontologies

Figure 1.3: Framework for automated transformation of text (documents) into tex-
tual requirements (semi-formal models).

Our near-term research objectives are to use modern natural language pro-
cessing (NLP) tools to ingest and tag a set of requirements, and to use the results
to offer support to systems engineers during their task of further decomposing the
initial requirements set. We propose applying NLP in two separate ways: require-
ment template matching, and ontology term matching. A requirement template is a
predetermined sentence structure that is deemed suitable for use in writing require-
ments [20]. Our goal is to inform the author whether a requirement, at the time of
writing, matches to a library of existing requirement templates. Leveraging NLP to
enforce the use of requirement templates can increase the clarity and testability of

requirements. An ontology is a set of concepts present in a particular domain, and

the relationships between them [8]. Our goal is to inform the author of a require-
ment, at the time of writing, whether the author’s new requirement uses terminology
that is consistent with an existing ontology. Using NLP to match terms against an
existing ontology (or multiple ontologies) can address the completeness and ambigu-
ity of a requirement set [5]. We aim to apply each method not only during real-time
requirements development, but also during post-processing a requirement set, in the
form of requirements analysis reports.

Figure 1.3 shows the framework for automated transformation of text (doc-
uments) into textual requirements (semi-formal models) described in this paper.
NLP techniques are applied to textual requirements, and the analyzed text is then
compared against a library of requirement templates, and a library of ontolgies.
Multiple ontologies can be used, perhaps for different levels of a system’s hierarchy.
Ontologies may be domain-specific, or interdisciplinary (e.g., an ontology of physical

units).

1.3 Contributions and Organization

The contributions of this work are as follows:

1. A prototype software tool for requirements engineering that provides real-time
feedback to the user regarding the quality of newly written requirements. Sim-

ilar tools do exist, but we provide a novel implementation.

2. The capability to use multiple ontologies during requirements development.

To our knowledge, this is a new accomplishment in the field of requirements

engineering.

3. An analysis of the utility of the new tool based on a case study containing real

requirements provided from an industry partner.

This thesis is organized as follows: Chapter 2 presents an overview of related work
in the areas of natural language processing and requirements engineering. Chapter
3 describes the design and implementation of FLOOR. Chapter 4 walks through a
typical use case for FLOOR, and provides an analysis of FLOOR’s utility based on
a case study of industry-provided requirements. Chapter 5 summarizes our contri-

butions and suggests opportunities for future growth.

Chapter 2: Related Work

2.1 Natural Language Processing

Natural language processing (NLP) is a field of computer science and linguis-
tics primarily focused on developing automated techniques for parsing and interpret-
ing standard text. Since the 1980s, most NLP frameworks incorporate statistical
and machine-learning methodologies to analyze textual corpora. Depending on the
ultimate goal of the processing, an NLP sequence features different steps. For the
purposes of term and sentence structure matching, a typical NLP workflow features
the following steps: tokenization, part-of-speech tagging, and chunking. Tokeniza-
tion is the deconstruction of text into individual elements, based on a predetermined
set of delimiters. Often, the delimiters are simply a combination of white space and
punctuation marks. Part-of-speech tagging (POS-tagging) ingests tokenized text as
an input, and outputs the sequence of part-of-speech tags corresponding to each
input token. Chunking uses the tags to determine whether adjacent tokens belong

to the same phrase, or chunk.

2.1.1 Natural Language Processing Techniques

Tokenization. Tokenization is the deconstruction of text into individual elements,
or tokens, based on a predetermined set of delimiters. An example delimiter is
white space. Periods, commas, and other punctuation marks are frequently used
as well [2]. In general, any character can be used as a delimiter between tokens.
Tokenization is a well-understood problem, but challenges still exist. In English,
for example, a tokenizer must address contractions, hyphenated words, and unusual
symbols. Depending on the end goal of the NLP, different rules may be desirable

for such corner cases.

Part-of-Speech Tagging. Part-of-speech tagging labels each individual token with
its particular part-of-speech. Most modern POS-tagging algorithms rely on a model
that is trained in advance on representative corpora. A POS-tag consists of one,
two, or three characters — a label that corresponds to a specific part-of-speech. An
example of a POS-tag is JJ, which the Penn Treebank Project uses for denoting an
adjective [30]. In fact, the Penn Treebank tag-set has become the de-facto standard
for POS-tagging. It consists of 48 POS-tags in total, including several representing
punctuation marks (not typically thought of as parts-of-speech, but certainly valid

pieces of text that must be addressed).

Chunking. Chunking is the process by which POS-tagged tokens are segmented
and labeled into phrases, or chunks. As an example, consider the sentence: “Sys-

tems engineers shall work.” In this sentence, “systems engineers” is one chunk, — a

noun phrase. The other chunk, “shall work,” is a verb phrase. In order to accom-
plish chunking, a particular grammar can be defined [5]. More commonly, chunker

algorithms rely on a trained model, similar to most POS-taggers.

Automatic Term Recognition and Automatic Indexing. Strategies for auto-
matic term recognition and automatic indexing fall into the general area of compu-
tational linguistics [22]. Algorithms for single-term indexing date back to the 1950s,
and for indexing two or more words to the 1970s [13]. Modern techniques for multi-
word automatic term recognition are mostly empirical, and employ combinations of
linguistic information (e.g., POS-tagging) and statistical information acquired from
the frequency of usage of terms in candidate documents [4, 18]. The resulting terms
can be useful in more complex tasks such as semantic search, question-answering,
identification of technical terminology, automated construction of glossaries for a

technical domain, and ontology construction [16, 21, 24].

A Simple Example. Consider the test sentence:

"When I work as a senior systems engineer, I truly enjoy my work."

Tokenizing the sentence gives:

[(°’When’, ’WRB’), (’I’, °PRP’), (’work’, ’VBP’), (’as’, ’RB’), (’a’, ’DT’),
(’senior’, ’JJ’), (°systems’, ’NNS’), (’engineer’, °NN’), (’,’, ’,’),
(°’I’, ’PRP’), (’truly’, ’RB’), (’enjoy’, ’VBP’), (’my’, ’PRP$’),
(’WOI‘k’, ’NN’), (} L ,) :)]

The first thing to notice from the output is that the tags are two or three letter codes.

Each one represents a lexical category or part of speech. For instance, WRB stands

for Wh-adverb, including how, where, why, etc. PRP stands for Personal pronoun;

01

WhenWHB IPRP workVBP asRB aDT seniord sysemsNNS NP . IPRP iuyRB enjoyVBP myPRPS NP

engineer NN work NN

Figure 2.1: Output from first step on building chunking grammar. Purpose: Simply pick nouns from test sentence.

When WRB IPRF workVBP asHAB aDT seniordd MNP NP v IPAP tulyRB enjoy VBP my PRPS NP

H

systems NNS engineer NN work NN

Figure 2.2: Output from second step on building chunking grammar. Purpose: Identify noun phrases.

WhenWRB IPAP workVBP asAB aDT seniorJd NP " IPAP tuyRB enoyVBP myPRPS NP

systems NNS engineer NN work NN

Figure 2.3: Output from third step on building chunking grammar. Purpose: Form noun phrases.

s
When WRB IPRP workVBP asRB aDT NP . IPRP tulyRB enjoy VBPF my PRPS NP
seniorJd systems NNS engineer NN work NN

Figure 2.4: Output from fourth step on building chunking grammar. Purpose: Identify the adjective preceding the first noun
phrase.

RB for Adverb; JJ for Adjective, VBP for Present verb tense, and so forth [30].
These categories are more detailed than presented in [19], but they can all be traced
back to those ten major categories. It is important to note the possibility of one-
to-many relationships between a word and the possible tags. For our test example,
the word work is first classified as a verb, and then at the end of the sentence, is
classified as a noun, as expected. Moreover, we found two nouns (i.e., objects), so
we can affirm that the text is saying something about systems, an engineer and
a work. But we know more than that. We are not only referring to an engineer,
but to a systems engineer, and not only a systems engineer, but a senior systems
engineer. This is our entity and we need to recognize it from the text. To do this, we
need to somehow tag groups of words that represent an entity (e.g., sets of nouns
that appear in succession: (’systems’, 'NNS’), (‘engineer’, 'NN’)). Modern NLP
tools offer regular expression processing support for identifying groups of tokens,
specifically noun phrases, in the text.

Figures 2.1 through 2.4 illustrate the progressive refinement of our test sentence
by the chunking parser. The purpose of the first pass is to simply pick the nouns from
our test sentence. Figure 2.1 is a graphical representation of the results Subsequent
analyses identify the presences of plural nouns (NNS), form single noun phrases,
and identify situations where words are located between adjectives and nouns. The
latter steps identify two entities, senior systems engineer and work, and that is

precisely what we want.

11

2.1.2 Natural Language Processing Tools

NLP has benefited greatly from the open-source era, as many prolific NLP
packages are available on a variety of platforms. One popular NLP tool is General
Architecture for Text Engineering (GATE), a Java-based NLP suite containing an
integrated GUL. OpenNLP is another Java library for performing NLP, distributed
by Apache. The Natural Language Toolkit (NLTK), written in Python is yet another
mature NLP tool [26]. All of these tools contain libraries that support tokenization,
POS-tagging, and chunking, as well as several other NLP functions. We have men-
tioned only a few packages of particular interest here, but for a more thorough survey

of modern NLP tools, see [25].

2.2 Requirements Engineering

Requirements engineering is the process by which system requirements are cre-
ated, decomposed, and maintained. Requirements engineering is a critical discipline
for complex systems development, as failures in requirements can very easily have
long-lasting, costly impacts on future system development. It is therefore critical
that system requirements be written and decomposed effectively. The quality of re-
quirements can be measured in many ways. According to the International Council
on Systems Engineering (INCOSE), characteristics of a high-quality requirement set
include, but are not limited to: completeness, containing requirements describing
all desired capabilities; consistency, the absence of requirements that contradict one
another; singularity, containing requirements that each describe exactly one capa-

12

bility; testability, containing requirements that can each be individually verified;
and unambiguity, the absence of requirements that have multiple interpretations
[27]. We contend that in providing feedback regarding requirement templates and
ontology term matching, FLOOR assists systems engineers in writing requirements

that achieve these five criteria.

2.2.1 Requirement Templates

Requirement templates, or boilerplates, were introduced by Dick, Hull, Jack-
son [20] in 2002. The concept is to maintain a repository of acceptable sentence
structures to be used for writing requirements. Requirements can then be written
in a clear and consistent manner, thereby improving singularity, testability, and un-
ambiguity. An example of a requirement template and a corresponding requirement
is given below in 2.5. In the example, the underlined instance phrases correspond to
the angle-bracketed place-holders in the preceding requirement template. Require-
ment templates may be added as necessary, and many requirements may be written

based on the same template.

Template: The <system> shall <action> <condition=.

Instance: The cursor shall move upon mouse movement.

Figure 2.5: Example requirement template and instance.

Requirement templates have been integrated into several NLP-based require-
ments engineering tools, most recently by DODT [14]. DODT’s implementation
supports the combination of multiple requirement templates when creating a new

13

Fact. Sam is a boy. He was born October 1, 2007. Q Q

‘ ! basAge
Rule 1: For a given date of birth, a built-in function basWeigt =<1 Pewon | 'L;;mm 8-
getAge() computes a person’s age. ?) i

\ ! attendsPreschonl
‘ h

[\
Rule 2: A child is a person with age < 18. ([mae] [Remae] ——]
a

Rule 3: Children who are age 5 attend preschool.
-ch

Feb 1, 2008 Feb 1,2013 Feb 1, 2015

=]
The Facts .

7 hasAge hazAge 5 +" attendsPreschool \ hasAge
l

Apge Rule
* ----- (o oo o
hasEirthdate hasBirthdate hasBirthdate hasEirthdate

Figure 2.6: Simple ontology, rules, and event-driven evolution of semantic graphs.

requirement. This method keeps the number requirement templates relatively small,
while still allowing for sufficient complexity. There is no standard format for re-
quirement templates, and finding an existing set of requirement templates remains

a challenge.

2.2.2 Ontologies

A domain ontology describes the concepts related to a specific domain, the
relationships among those concepts, and the attributes of data needed to describe
individuals (or instances) of the concepts. These notions are not unlike a class
hierarchy and data attributes one finds in object-oriented design methods. Instances
of ontologies are modeled as graphs that can be instantiated with data, and can
respond - dynamically evolve - to external events. From a requirements engineering

perspective, domain ontology integration is implemented by DODT [31].

14

Figure 2.6 shows, for example, the relationship among classes and properties
in a simplified family ontology. A person has properties: hasAge, hasWeight and
hasBirthdate. Male and Female are subclasses of the class Person and, as such, will
inherit all of the properties associated with Person Boy is a specialization of Male.
A Child is a Person who may (or may not) attend Preschool. The upper left-hand
side of Figure 2.6 shows one fact and three rules. Sam is a boy born on October 1,
2007. Given a birthdate and a current time, a built-in function getAge() computes
Sams age. Further rules can be defined for when a person is child and when they
attend preschool. Some of the data (e.g., Sams date of birth) remains constant over

time. Other data is dynamic and is controlled by the family rules.

Pathway to Ontology-Enabled Traceability for System Design and Man-
agement. From a systems engineering standpoint, this simple scenario is appealing
because it suggests an opportunity for modeling requirements, system structure,
and system behavior with semantic graphs that dynamically evolve in response to
events [8].

The systems architecture for state-of-the-art requirements traceability and its
connection into the proposed model is shown in the upper and lower sections of
Figure 2.7.

In state-of-the-art traceability mechanisms, design requirements are connected
directly to design solutions (e.g. objects in the engineering model). Our contention
is that even in the earliest stages of system development, a better approach is to

develop requirements by asking the question: What concepts (or group of design

15

State—of—the—Art Traceability

{ Requirements J‘

Engineering
Model

Proposed Model for Ontology—Assisted Development of Requirements and Traceability

-~

Physical System

N S T)
Requirements i Design I—immb Engineering
) |__notification Concept I data Model
_ Design ‘
. Rule Sensors IJ—
Checking -

hl—/

"
_"—.

Sensors

Figure 2.7: Schematic for state-of-the-art traceability and ontology-enabled trace-
ability for system design and management.

concepts) will I need to apply to create (and later on, satisfy) a requirement? Design
pts) pply : y) areq g

solutions are the instantiation/implementation of these concepts.

In the lower half of Figure 2.7, textual requirements, ontology models, and

engineering models provide distinct views of design:

1. Requirements are a statement of what is required,

2. Engineering models - not within the scope of this paper - are a statement of

how the required functionality and performance might be achieved, and

3. Ontologies and their associated rules are a statement of concepts justifying a

tentative solution.

During design, mathematical and logical rules are derived from textual requirements,

which in turn, are connected to elements in an engineering model. A key benefit of

the proposed approach is that design rule checking can be applied at the earliest state

16

possible - as long as data is available for the evaluation of rules, rule checking can
commence; the textual requirements and engineering models need not be complete
[11]. During the system operation, traceability links enable the evaluation of cause-
and-effect relationships between changes (events) at the system/component level and
their effects on stakeholder requirements [10]. Present-day system methodologies

and tools are not designed to handle projects in this way.

Design Rules and Reasoner Ontologies and Models Engineering Model Remarks
PR I R R (e R R] System structures are
Design Rules Classes i System Structure modded as networks

and composite hierarchies

; :i of components.

ol
i

Relationships

1
1
|
1
Reasoner 1
Properties ; i Behaviors will be
i associated with components.
; System Behavior
. define ! Discrete behavior will be
Textual Requirements Y ! ‘c modeled with finite
Instances ! & (d) state machines.
4. C—
individual |<aemm Yl Data <I_] Continuous behavior will be

represented by partial
differential equations.

1
<
Q
=
<

Requirement

Figure 2.8: Connecting textual requirements to semantic models of system structure
and behavior.

Figure 2.8 pulls together the different pieces of the proposed architecture shown
in Figure 2.7. A subset of the textual requirements will be described in terms of
mathematical and logical expressions for design rule checking. The pathway from en-
gineering models of system structure and behavior back to individual requirements,
with the data associated with ontology instances being used to verify whether a
requirement is currently satisfied [11, 10].

Our contention is that in the earliest stages of system development, strategic
approaches to the development of textual requirements will benefit from constant
feedback on the relationship of concepts expressed in the text and the concepts,

17

data, and rules defined in the associated ontologies. Specifically, when writing re-
quirements, using terminology taken directly from a domain ontology can greatly

improve consistency.

2.2.3 Requirements Engineering Tools

The application of NLP to requirements engineering is not a new idea [17],
23], [29]. In fact, there are many commerically available requirements engineering
tools that integrate NLP in some way. Some existing tools use NLP to analyze
requirements for specific characteristics, like the presence of the word shall. Such
tools include DESIRE, Qualicen Scout, and QVscribe. Other tools, such as RETA
and Semios, support requirement templates as well. A few tools support both re-
quirement templates and term matching - the two key features of FLOOR. These
tools include Lexior, the Requirements Authoring Tool (RAT), and the Domain On-
tology Design Tool (DODT). For a more thorough survey of NLP-based tools for
requirements engineering, see [32].

Out of all available NLP-based requirements engineering tools, DODT is the
most prolific. DODT uses NLP to leverage both requirement templates and domain
ontologies, in a similar fashion to FLOOR [14], [15]. DODT has been utilized in
an industry setting on “real” requirements, with promising results [31]. There are
some key differences between DODT and FLOOR. First, DODT is a dual-purpose
tool: it features editors for both requirements and domain ontologies (as the name

suggests). There are advantages and disadvantages to this approach. One advantage

18

is direct access to the domain ontology while editing requirements, which allows for
immediate insertion of terms into the domain ontology if deemed necessary. The
downside is that the requirements and domain ontology become coupled potentially
limiting the reusability of the domain ontology across separate development efforts.
Also, DODT requires exactly one domain ontology. As we demonstrate in Chapter
4, FLOOR allows the requirements engineer to import multiple external domain
ontologies, enabling extensibility and reusability across multiple domains involved

in team development of complex engineering systems.

19

Chapter 3: FLOOR Software Architecture

3.1 FLOOR Overview

We began the design of FLOOR with the mission of providing real-time feed-
back to the user regarding a new requirement’s applicability to requirement tem-
plates, and its terminological consistency with loaded ontologies. This goal led to

two central questions during the development of FLOOR:

1. What is a logical methodology for using NLP to extract the information we

need about requirement text?

2. What is a logical methodology displaying the feedback to the user?

The answer to the former is described in the following sections. As for displaying
feedback, requirement templates and ontology terms each required a user interface
decision. For displaying matching requirement templates, we chose a pop-up context
menu. The pop-up automatically updates based on new text entered by the user. For
displaying matching ontology terms, we elected to alter the font color of matching
(or non-matching) terms. Matching terms take on a green font color, and non-
matching terms assume a red font color. The font color for individual words also
automatically based on new text entered by the user. Figure 3.1 illustrates the

20

#° FLOOR — m| x|

File. View Reports Help
Requirements

Requirement template shall

Requirement template shall <Action=
Text

Requirement template shall <Action> <Constraint=

Figure 3.1: Real-time feedback: user interface.

various feedback elements. In Section 4.1, 4.2 figure illustrates the feedback user

interfaces during a real example.

3.2 Class Hierarchy

FLOOR is written in Java, and runs as a standalone JavaFX application. From
a structural perspective, the FLOOR project contains three packages: FLOOR, Re-
qTemps, and TemplateChunk. The FLOOR package contains all logic for controlling
the GUI. The ReqTemps package, short for Requirements and Templates, contains
a set of classes that serve as the data model for the objects operated on by the
FLOOR package. TemplateChunk, contains enumerations referenced by templates
instances. This layer is what enables FLOOR to interpret the NLP-processed re-

quirement text, i.e., how sentence fragments are mapped to potential requirement

21

templates.

Before delving into the correlation of partial sentences and matching require-
ment templates, we must first understand the data model. ReqTemps contains a
Requirement class and a Template class. Requirement has the properties “ID.,” a
string, and “text,” also a string. The Template class is more interesting - it contains
a name, again just a string, and an ArrayList of type Attribute.

Figure 3.2 is a high-level class diagram depicting the FLOOR architecture.
Attribute is an interface class that allows a Template to contain components that
have different characteristics. Following that direction, AbstractAttribute is an ab-
stract class that implements the Attribute interface. AbstractAttribute contains and
AttributeType (enumeration) called “type,” and a string called “text.” Individual
Attributes that extend AbstractAttribute include Condition, Article, Subsystem,
Modal, Action, Entity, and Constraint. These are the elements of a Template.

A Condition represents a conditional phrase, like “upon mouse movement.” An
Article is either “A)” “An,” or “The.” A Subsystem is the subject of a requirement.
A Modal is either “Will,” “Must,” or “Shall.” An Action is the function called
for by a requirement. An Entity is the object acted on by a requirements action.
(“Object” is not used because it is a reserved keyword in Java.) A Constraint places
a condition on an Action. These Attributes are the building blocks of a Template.

By construction, some Attributes of a Template may only originate from
chunks of text with a certain type. For example, a Subsystem is always present
in a noun phrase chunk. We enforce this in our implementation by providing public
enumerations for each AttributeType. These enumerations are contained in sepa-

22

ReqTemps Package FLOOR Package
imports
Template Main Main
corifing Requirement AutoCompleteTextArea
- imports
JE T — AttributeType
Attribute TemplateChunk Package
contains
— / Action ActionType
Article ArticleType
<Abstract Class> / »
extends \\ Modal IVIodaIType
extends
Condition Subsystem SubsystemType
: contains
Constraint ConstraintType

Figure 3.2: FLOOR: class diagram.

rate package, TemplateChunk. Each Attribute has an AttributeType enumerated

in the TemplateChunk package.

3.3 NLP Libraries

To perform the NLP required to analyze requirements, FLOOR uses OpenNLP,
an the open-source NLP library written in Java, and made available by Apache [2].
Specifically, FLOOR employs the tokenizer, POS-tagger, and chunker utilities pro-
vided by OpenNLP. The POS-tagger tags tokenized text according to the Penn
Treebank tag-set, and the chunker accepts the same tags as input. Both the POS-

tagger and chunker are pre-trained on English language corpora.

23

Chapter 4: Requirements Engineering with FLOOR

4.1 Working with FLOOR

In this section, we present the steps taken in the typical use case for FLOOR.
First, the user selects supporting CSV files to load, containing requirements, re-
quirement templates, and ontology terms. Next, the user begins to type a new
requirement into the editor. Real-time feedback appears for requirement template
and ontology term matching. After all new requirements have been entered, the
user can generate reports to analyze the new requirements set. Once all new re-
quirements have been entered, the user may then export the new requirements set

to a CSV (comma separated variable) file.

4.1.1 Loading Existing Files

Figure 4.1 shows FLOOR’s File Menu. The Import menu option allows the
user to select CSV files containing existing requirements, requirement templates, and
ontologies. If multiple ontology files are imported, FLOOR matches terms against
each one. The user may select an option from the View Menu at any point, to

examine the current requirements set (and editor), the loaded set of requirement

24

8 FLOOR = O X
[View Reports Help

Export Templates

Welcome to FLOOR!

. Exit Gnitologies Use the File menu to load requirements, templates. and/or ontolegies.

Figure 4.1: Import options on the FLOOR File Menu.

templates, or the loaded set of ontologies.

4.1.2 Requirement Template Matching

Figure 4.2 shows the real-time feedback provided when a user begins typing
a new requirement. The first few words of the new requirement match to multiple
requirement templates, which are displayed via a context menu. When new text is
added to the requirement, the context menu containing requirement templates auto-
matically updates. When the user is satisfied with the content of a new requirement,
pressing Enter adds the new requirement to the bottom of the Requirement Table.
Matching to a requirement template is not strictly enforced — it is ultimately the

user’s decision whether a requirement is complete.

4.1.3 Ontology Term Matching

Also notice that in Figure 4.2, the word windshield has a green font color, and
the word multiply has a red font color. Changes in font color occur automatically,
based on ontology term matching. When the user types a word that matches a

term in a loaded ontology, it automatically shows up in green. Likewise, if a noun,

25

i B FLOOR - O X

File View Reports Help

Requirements

The windshield shall multiply
The windshield shall multiply <Constraint=>
Text

The windshield shall multiply <Entity=

The windshield shall multiply <Entity> <Constraint>

4 The wheel shall steer.

5 The seat shall move,

Figure 4.2: Real-time feedback: matching requirement templates and ontology
terms.

verb, or adjective does not match a term in a loaded ontology, its font color is
automatically changed to red. Non-matching terms are limited to certain parts of
speech to prevent overwhelming the user with many subordinating words showing

up in red.

4.1.4 Generating Analysis Reports

The Reports Menu allows the user to generate reports for two metrics: com-
pleteness and testability. The Completeness Report analyzes whether each term in
the loaded ontologies appears at least once in any single requirement. The Testa-
bility Report analyses whether each requirement matches to one of the loaded re-
quirement templates. We argue that the Testability Report indirectly addresses

both unambiguity and singularity, as long as all loaded requirement templates pro-

26

i FLOOR — O x

File View Reports

Reports
Testability Report
Requirement ID Requirement Text Matching Template ID
1 The system shall process fext. 1
2 The system shall display text. 2
3 The system shall correct text. 3
4 The system shall not exit. MN/A

Total: 3 out of 4 requirements match templates.

Figure 4.3: Example Testability Report.

mote both of these qualities. Each report provides a result for each requirement
(or domain ontology term), as well as the total number of requirements (or domain
ontology terms) satisfying the report metric.

An example screenshot of the testability report is shown below in Figure 4.3.
In the figure, three out of four requirements match to requirement templates. The
fourth requirement contains the phrase shall not, which does not match to a loaded
requirement template. The reporting feature of FLOOR gives the requirements
engineer a second line of defense (the first being the real-time feedback from the

Requirement Editor) for requirements analysis.

4.1.5 Exporting Requirements

The File Menu contains an Export option 4.1. The Export option prompts

the user to specify a location and file name for a CSV file. The generated CSV file

27

contains the current content of the Requirement Table, as seen in the Requirements

View.

28

Chapter 5: Case Study Problems

5.1 Case Study 1: Simple Requirement Template Matching

As a precursor to a full use case for FLOOR, we first demonstrate the func-
tionality provided by the subordinate ReqTemps package. ReqTemp’s main method
creates several requirements and requirement templates, and then matches them
accordingly. In the following subsections, we include figure depicting the output of

each step, and a brief description.

5.1.1 Creating and Printing Requirements and Requirement Tem-

plates

Part 1 instantiates several requirements, and Part 2 instantiates several templates.
The requirements are shown below in Figure 5.1. Figure 5.2 shows the requirement

templates.

29

The monitor will display images.

The cursor must move upon mouse movement.
Within 1 second, the monitor shall update.
The processor will accept interrupts.

The processor shall execute.

Figure 5.1: Simple template matching: Create and print requirements.

Template_1:

AttributeType:
AttributeType:
AttributeType:
AttributeType:

Template 2:

AttributeType:
AttributeType:
AttributeType:
AttributeType:
AttributeType:

Template 3:

AttributeType:
AttributeType:
AttributeType:
AttributeType:
AttributeType:

Template 4:

AttributeType:
AttributeType:
AttributeType:
AttributeType:
AttributeType:

Article
Subsystem
Modal
Action

Condition
Article
Subsystem
Modal
Action

Article
Subsystem
Modal
Action
Condition

Article
Subsystem
Modal
Action
Entity

Figure 5.2: Simple template matching: Create and print templates.

30

5.1.2 Tokenization and POS-Tagging

Part 3 uses OpenNLP’s “SimpleTokenizer” to parse the set of input requirements
into individual words. Then, OpenNLP’s POS-tagger labels each token with a part-

of-speech. The result are shown below in Figure 5.3.

The |monitor|will |display|images].
DT|NN|MD|VB|NNS| .
The|cursor|must |move |upon |mouse | movement| .
DT|NN|MD|VB|IN|NN|NN] .
Within|1]second]|, [the |monitor|shall |update].
IN|CD|33], |DT|NN|MD|VB] .
The|processor|will|accept|interrupts].
DT|NN|MD|VB|NNS| .

The|processor|shall |execute] .

DT|NN|MD|VB] .

Figure 5.3: Simple template matching: Tokenization and POS tagging.

5.1.3 Matching Requirements with Requirement Templates

Part 4 processes the tagged tokens to match them to requirement templates, and
prints the resulting HashMap. The final processing is based on the location of the
modal (will, must, or shall) in the tokenized requirement, as well as knowledge
of how the templates are constructed. With this information, ReqTemps works
backwards to uncover the matching template, as shown in Figure 5.4. ReqTemps
does not explicitly use the results of the POS-tagger — that piece of functionality is

left to FLOOR.

31

Figure 5.4: Simple template matching: Textual requirements matched with tem-

plates.

{The processor
AttributeType:
AttributeType:
AttributeType:
AttributeType:
s The monitor
AttributeType:
AttributeType:
AttributeType:
AttributeType:
AttributeType:
s, The processo
AttributeType:
AttributeType:
AttributeType:
AttributeType:
AttributeType:

s The cursor must move upon mouse movement.=Template 3:

AttributeType:
AttributeType:
AttributeType:
AttributeType:
AttributeType:
; Within 1 sec
AttributeType:
AttributeType:
AttributeType:
AttributeType:
AttributeType:

}

shall execute.=Template 1:
Article

Subsystem

Modal

Action
will display images.=Template_4:
Article

Subsystem

Modal

Action

Entity

r will accept interrupts.=Template_4:

Article
Subsystem
Modal
Action
Entity

Article
Subsystem
Modal
Action
Condition

ond, the monitor shall update.=Template 2:

Condition
Article
Subsystem
Modal
Action

32

5.2 Case Study 2: Working with Requirements from NASA Goddard

The utility of FLOOR will ultimately be determined by systems engineers in
industry performing requirements engineering tasks every day. That said, it is still
interesting to use FLOOR to retroactively analyze a requirements set, assuming
some default set of requirement templates and ontologies. Although the FLOOR’s
benefits during initial requirement creation will not be observed by this method, the

reporting features can at least be studied.

5.2.1 Import Data

For this case study, we obtained a requirement set consisting of 14 require-
ments written for NASA’s Global Precipitation Mission (GPM) Project. The test
requirements are listed in Table 5.1. In the absence of any requirement templates
actually used during the requirements’ creation, we chose a default set of eight fairly
simple templates listed in Table 5.2. We also worked backwards to create ontolo-
gies, one for acronyms found in the requirements, and one for physical units. The
following tables contain case study the requirements, requirement templates, and

ontologies.

33

ID

Requirement Text

10

11

12

13

14

The GPM shall make measurements that enable the determination
of rainfall mean drop size, encompassing mean drop sizes ranging
from 0.5 to 3 mm.

The PIS shall include a DFPR.

The CSB shall be capable of ingesting an average rate of 95 kbps
continuously from the PR-U, and 95 kbps continuously from the
PR-A.

The spacecraft bus shall provide position information from the GPS
receiver to the DPR.

The CS shall use a GPS receiver for orbit position information and
time determination.

The CS shall accommodate the PIS with technical resources (mass,
power, FOV, command and data, etc.) and operating environment
(pointing, thermal control, etc.)

The CS shall provide structural support for the PR-U, PR-A, GMI,
and auxiliary instruments, with a total mass of up to 1027 kg.
The CSB shall provide orientation and clear Field-of-View for each
instrument in accordance with the instrument mechanical ICDs.
The CS shall provide the PR-U, PR-A, GMI, and auxiliary instru-
ments with DC unregulated power up to 896 watts steady state at
beginning of life and 796 W end of life.

The CSB shall be capable of ingesting an average rate of 20 kbps
continuously from the GMI, with no more than 1 kbps of that as
housekeeping data.

The CS shall provide structural support and stability sufficient to
maintain coalignment among the various instruments’ mechanical
reference surfaces to within 0.1 deg (3 sigma) per axis.

The DPR and CS design shall overlap the PR-A and PR-U beams
sufficiently (no more than 0.3 degrees apart) that drop-size distri-
bution can be determined.

If aligning the DPR radar beams so that they both sample the same
volume proves to be sufficiently difficult such that the instrument
cannot measure accurate drop size distribution; then GPM may not
meet one of its Level 1 requirements.

The DPR shall make measurements in both Ku and Ka frequency
bands.

Table 5.1: Case study requirement set (Source: NASA’s GPM Project).

34

S

Requirement Template

action)

action) (entity)
article) (subsystem) (modal) {action) (constraint)
article) (subsystem) (modal) (action) (entity) (constraint)

(modal
(
2
éconditiom (article) (subsystem) (modal) {(action)
(
(
(

modal

article
article

subsystem
subsystem

~ ~— ~— ~—

{
{
{
{

~ ~— ~— ~—
o~ o~~~
~— ~—— ~—— ~—
o~ o~~~

)
condition) (article) (subsystem) (modal) {(action) {(entity)
condition) {(article) (subsystem) (modal) {action) {(constraint)
condition) (article) (subsystem) (modal) (action) (entity)
constraint)

O O Ol k= Wi

Table 5.2: Case study requirement templates.

ID Term

CS Core Spacecraft

CSB Core Spacecraft Bus

DFPR Dual Frequency Precipitation Radar
DPR Dual Precipitation Radar
FOV Field of View

GMI GPM Microwave Imager
GPM Global Precipitation Mission
GPS Global Positioning System
ICD Interface Control Document
PIS Primary Instrument Suite
PR-A Precipitation Radar A
PR-U Precipitation Radar U

Table 5.3: Case study acronym ontology:.

Term Definition

deg degrees

Ka 26.5 to 40 GHz
Ku 12 to 18 GHz
kbps kilobits per second
kg kilograms

mim millimeters

W watts

Table 5.4: Case study units ontology.

35

5.2.2 Results

We found that only 5 out of the 14 requirements matched to one of our eight re-
quirement templates. The reasons for certain requirements’ failures to match were
interesting. One requirement contained hyphenated terms that caused problems
for the chunker, consequently the requirement was not adequately processed. In
another case, a seemingly well-constructed requirement did not match any require-
ment templates because we did not load any requirement templates that contained

a constraint followed by a condition.

5.3 Case Study 3: Scalability Analysis

This section discusses the scalability of FLOOR as related to large require-
ment sets and ontologies. It is important for FLOOR to be usable for both the re-
quirements development and requirements analysis of large requirement sets and/or
ontologies. To test the scalability of FLOOR, we measured the response time of the
Requirements View after importing requirement sets of varying sizes. The require-
ment sets were sized as follows: 100, 500, 1000, 5000, and 10000 requirements. For
each case, we imported an ontologies containing 100 and 1000 terms, and also timed
the report generation. FLOOR successfully loaded the Requirements View for each
set, and averaged required approximately 4 seconds of loading time for every 1000
requirements. We also note that the rate was similar for report generation, and was
unaffected by the size and number of loaded ontologies.

We considered this load rate to be satisfactorily scalable, given that upwards

36

of 7000 requirements would require just a 30-second wait time. However, the case
could be made that the current implementation is not quite robust enough to han-
dle requirement sets containing 15000 or more requirements, since a full minute
of wait time might be unacceptable. From this standpoint, FLOOR’s handling of

requirement sets could be further optimized, but it is not a critical need at this time.

37

Chapter 6: Conclusions and Future Work

6.1 Conclusions

This thesis introduces FLOOR, a new tool for requirements engineering that
provides real-time feedback to the user regarding the quality of new requirements.
FLOOR leverages NLP to match new requirement text to potential requirement tem-
plates, and to alert the user of terminological consistency with existing ontologies.
A critical feature of FLOOR is ability to load and match against multiple ontolo-
gies — a new development in the requirements engineering field. We see FLOOR as
a building block towards the next generation of model-based systems engineering
tools with enhanced automation, enabling systems engineers to recognize and solve

problems as early in the system life cycle as soon as possible.

6.2 Future Work

Looking to the future, we envision several improvements to FLOOR. The
prototype introduced in this thesis is mainly concerned with the creation of new
requirements, as opposed to the editing and maintenance of existing requirements.

To that end, FLOOR could be equipped with the capability of selecting and editing

38

existing requirements. Another limitation of FLOOR is the treatment of ontologies

as only lists of terms.

Requirements Editor Digital Receiver Ontology

i - o X .
el Detection Range Sensitivity

| File View Reports
; A
Requirements

hasRange hasSensitivity
the digital receivershall‘
Receiver

the digital receiver shall <action=

the digital receiver shall <action> <object> Template
Match
subclass

the digital receiver shall <action> <object> <condition>

Digital Receiver

Concept Match T

Figure 6.1: FLOOR: Requirement template and domain ontology match.

As illustrated in Figure 6.1, further integration with mainstream ontology formats,
like OWL, and semantic modeling software tools, like Jena, would enable FLOOR

to use the conceptual information contained within ontologies [1, 33].
Longer-term opportunities for future work include:

1. Distributing FLOOR to corporations in the systems engineering industry, with
the goal of obtaining user accounts on the tool’s utility, and desired improve-
ments. FLOOR has been presented to Northrop Grumman at two internal

symposia, and a beta version will soon be made available to the company.

2. Increasing the number of reporting options. Additional reporting options could

include ambiguity, consistency, and singularity, as well as other quality metrics.

3. Using of several large requirements sets as training corpora for the POS-tagging
and chunking models used by FLOOR. In this way, FLOOR could become

39

more tailored to the specific textual patterns that frequently arise in require-

ment text.

4. Integrating of FLOOR as a plug-in for a requirements database, e.g., DOORS.
Using this approach, existing requirements management practices could be
augmented with FLOOR’s enhancements for requirements development and

analysis.

40

Appendix A: RichTextFX License Agreement

Copyright (c¢) 2013-2017, Tomas Mikula and contributors

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this

list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or

other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-

CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-

41

CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES: LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-

WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Contact GitHub API Training Shop Blog About

2017 GitHub, Inc. Terms Privacy Security Status Help

42

1]

Bibliography

2013. Apache Jena, accessible at : http://www.jena.apache.org; Accessed on
11/27/13.

2016. Apache OpenNLP, accessible at : https://opennlp.apache.org; Accessed
on 04/01/16.

Ambriola V. and Gervasi V. Processing Natural Language Requirements. In
Proceedings 12th IEEFE International Conference Automated Software Engineer-
ing, pages 36-45. IEEE Comput. Soc, 1997.

Ananiadou S. A Methodology for Automatic Term Recognition. In Proceedings
of 15th International Conference on Computational Linguistics (COLING94),
pages 10341038, 1994.

Arellano A., Zontek-Carney E., and Austin M. A. Frameworks for Natural Lan-
guage Processing of Texual Requirements. International Journal On Advances
in Systems and Measurements, 8(No. 3 and 4):230-240, December 2015.

Arellano A., Zontek-Carney E., and Austin M. A. Natural Language Processing
of Textual Requirements. In The Tenth International Conference on Systems
(ICONS 2015), pages 93-97, Barcelona, Spain, April 19-24 2015.

Austin M.A., and J.S. Baras J.S. “An Introduction to Information-Centric
Systems Engineering”. Tutorial FO6, INCOSE, Toulouse, France, June 2004.

Austin M.A. and Wojcik C.E. Ontology-Enabled Traceability Mechanisms. In
20th Annual International Symposium of The International Council on Systems
Engineering (INCOSE 2012), Chicago, USA, July 12-15 2012.

Austin M.A., Mayank V., and Shmunis N. PaladinRM: Graph-Based Visualiza-
tion of Requirements Organized for Team-Based Design. Systems Engineering:

The Journal of the International Council on Systems Engineering, 9(2):129—
145, May 2006.

43

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

Delgoshaei, P. and Austin, M.A. and Pertzborn, A. A Semantic Framework
for Modeling and Simulation of Cyber-Physical Systems. International Journal
On Advances in Systems and Measurements, 7(3-4):223-238, December 2014.

Delgoshaei, P. and Austin, M.A and Veronica, D.A. A Semantic Platform In-
frastructure for Requirements Traceability and System Assessment. The Ninth
International Conference on Systems (ICONS 2014), February 2014.

Dynamic Object Oriented Requirements System (DOORS). See
http://www.telelogic.com /products/doorsers/doors/. 2009.

Earl L.L. Experiments in Automatic Extracting and Indexing. Information
Storage and Retrieval, 6(6):273-298, 1970.

Farfeleder S., Moser T., Krall A., et al. Ontology-Driven Guidance for Require-
ments Elicitation. The Semantic Web: Research and Applications, ():212-226,
2010.

Farfeleder S., Moser T., Krall A., et al. DODT: Increasing Requirements For-
malism using Domain Ontologies for Improved Embedded Systems Develop-
ment. In IEEFE 14th International Symposium on Design and Diagnostics of
Electronic Circuits and Systems, pages 212-226, 2011.

Fedorenko D., Astrakhantsev N., and Turdakov D. Automatic Recognition
of Domain-Specific Terms: An Experimental Evaluation. In Proceedings of
SYRCoDIS 2013, pages 15-23, 2013.

Ferreira D., Silva A. A Controlled Natural Language Approach for Integrating
Requirements and Model-Driven Engineering. In International Conference on
Software Engineering Advances, 2009.

Frantzi K., Ananiadou S., and Mima H. Automatic Recognition of Multi-
Word Terms: The C-Value/NC-Value Method. International Journal on Digital
Libraries, 3(2):115-130, 2000.

Haspelmath M. Word Classes and Parts of Speech. 2001.
Hull E., Jackson K. and Dick J. Requirements Engineering. Springer, 2002.

Judea A., Schutze E., and Bruegmann S. Unsupervised Training Set Gen-
eration for Automatic Acquisition of Technical Terminology in Patents. In
Proceedings of COLING 2014, the 25th International Conference on Computa-
tional Linguistics: Technical Papers, pages 290-300, Dublin, Ireland: Dublin
City University and Association for Computational Linguistics, 2014.

Kageura K. and Umino B. Methods of Automatic Term Recognition: A Review.
Terminology, 3(2):259-289, 1996.

44

[23]

[24]

[25]

[26]
[27]

28]

[29]

[30]

[31]

[32]

[33]

Kof L. From Requirements Documents to System Models: A Tool for In-
teractive Semi-Automatic Translation. In IEEFE International Requirements
Engineering Conference, 2010.

Kozakov L., Park Y., Fin T., et al. Glossary Extraction and Utilization in
the Information Search and Delivery System for IBM Technical Support. IBM
Systems Journal, 43(3):546-563, 2004.

Krithika L.B., Akondi K.V. Survey on Various Natural Language Processing
Toolkits. World Applied Sciences Journal, 32(3):399-402, 2014.

NLTK Project. Natural Language Toolkit NLTK 3.0 documentation.

Requirements Working Group, INCOSE. Guide for Writing Requirements. IN-
COSE Technical Report, ():, 2012.

Rolland C. and Proix C. A Natural Language Approach for Requirements
Engineering. In Advanced Information Systems Engineering, pages 257-277.
Springer, 1992.

Ryan K. The Role of Natural Language in Requirements Engineering. In [1993/
Proceedings of the IEEE International Symposium on Requirements Engineer-
ing, pages 240-242. IEEE Comput. Soc. Press, 1993.

Santorini B. Part-of-Speech Tagging Guidelines for the Penn Treebank Project
(3rd Revision), 1990.

Stalhane T., Wien T. The DODT Tool Applied to Subsea Software. In IEEE
22nd International Requirements Engineering Conference, 2014.

Tommila T., Pakonen A. Controlled natural language requirements in the
design and analysis of safety critical I&C systems. In SAREMAN project, 2013.

World Wide Web Consortium(W3C). OWL 2 Web Ontology Language Profiles
(Second Edition). In W3C Recommendation 11 December 2012, Available at:
http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/, 2012.

45

