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Technical Notes and Correspondence

High-Frequency Nonlinear Vibrational Control . ~sinz; -
V(i)rtlcally : . Horizontally
. . vibrated H vibrated
B. Shapiro and B. T. Zinn pendulum pendulum

Abstract—This paper discusses the feasibility of high-frequency non-
linear vibrational control. Such control has the advantage that it does
not require state measurement and processing capabilities that are re-
quired in conventional feedback control. Bellmanet al. [1] investigated  Fig. 1.
nonlinear systems controlled by linear vibrational controllers and proved
that vibrational control is not feasible if the Jacobian matrix has a

positive trace. This paper extends previous work to include nonlinear  gjnce the naturally occurring feedbaek D sin (1) in (2) is of

vibrational controllers. A stability criteria is derived for nonlinear systems P : ;
with nonlinear controllers, and it is shown that a nonlinear vibrational the same form a€ sin (1), we can view this form of control as a

controller can stabilize a system even if the Jacobian matrix has a positive Variation of the parametet’; that is
trace. .

Index Terms— Method of averaging, naturally occurring feedback, iy =[C+ aw?D sin (wt)] sin (1) — Ba: (4)
nonlinear control, open loop, vibrations. 2 i IR 2

Linearization of the above system vyields

I. INTRODUCTION & 0 1 |@
- ; - : ; iy |~ |C4aw’Dsin (wt) —B||a: ®)
This paper discusses the feasibility of applying open-loop control in *2 CTaw s W L2

the form of high-frequency vibrational control to engineering systemghich is of the form

Such control may be applied in cases where closed-loop control is i

impractical and has the advantage that it does not require costly & = [A+ B(t)]= (6)
sensing and computing capabilities. Vibrational control is applied Qyhere 2 is a vector, A is a constant matrix, andi(¢) is a time-
oscillating an accessible system component at low amplitude apghying matrix. In the linear model (6), vibrational control appears
high frequency (relative to the natural frequency of the systems 3 yariation of parameters, where the parameters of the roétrix
For example, an inverted pendulum can be stabilized by verticallye \/aried byB(t). This is the model investigated by Bellmanal.
oscillating the pendulum pin at a sufficiently high frequency and loy4) However, there is no reason to assume that vibrational control
amplitude. Let us examine the case of the pendulum in more deteily 5jways be viewed as a variation of parameters as in the above

The vertically oscillated pendulum is described by the foIIowingxampm. In fact, there are examples where the above model does
nonlinear differential equation:

not apply.
i = @ Consider the pendulum once again. Suppose we oscillate the pin
. . oo . of the pendulum horizontally instead of vertically, producing motions
2 =C'sin(z1) — Bzs 4 aw” D sin (z1) sin (wt) 2) that are described by
where x; is the angular displacement measured from the inverted 1 =0 @

equilibrium point,z is the angular velocityB, C', andD are positive
physical constants, and and w are the amplitude and frequency
of the applied vibration, respectively. In this example, the contréhstead of the moment argin (x1), we now have a moment arm
input is the applied vibration which is given laysin (wt). Note that cos (x1), and the naturally occurring feedback i8> D cos (z1).
the amplitude and frequency of the control input are constant ardnearization of this system of equations yields
therefore, independent of the state of the system. Since there is no .

Ll=le sl leniwn] @

iy =C'sin (21) — Bay 4+ aw” D cos (1) sin (wt). 8)

sensing or computation involved, this is a form of open-loop control. 2y
However, (2) involves a feedback-like term?®D sin (x1) which ¢ -B aw” Dsin (wt)
occurs naturally as a result of the moment asim(z;) between Wwhich cannot be written in the form of (6). Consequently, we cannot
the vertically oscillating pendulum pin and the center of mass gfew the above case as a variation of parameters.
the pendulum. Consequently, the feedbackD sin () is naturally The above example demonstrates that vibrating a system compo-
occurring as shown in Fig. 1. nent does not always produce “variation of parameters” as in the
vertically vibrated pendulum. Consequently, we adopt a more general
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engine, the air-throttle or amount of fuel injected might be vibratedonsider a more general case of vibrational control via a nonlinear,
Let 2(wt) = sin (wt) denote the applied high-frequency vibration. Islowly varying g(z, a, w). In other words, we consider functions
is assumed that the vibration affects the systfm) through some whose rate of change with respectitas bounded (i.e.||0g/0z|| <
naturally occurring feedback functiop(x, w, a), which depends wé:). We show that in this case, vibrational control may be possible
on the vibrated component. The vibrationally controlled system &ven if the trace of the Jacobian matrix is positive. Specifically, it
described by will be shown that there exist nonlinear functiopér, a, w) that
. stabilize (11) even if its Jacobiafi (0) has a positive trace.
i = flx) + h(wt)g(z, w, a). (1) The main point of this paper is that nonlinearitiesgife, a, w)
For convenience, the amplitude ifwt) is taken to equal unity, and May not be negligible and can affect the stability of (11). This result
the amplitude of the applied vibration is accounted fogby, w, «). S Of practical importance for the following reason. In engineering,
In the case of the pendulum it is common practice to linearize a system before analyzing its
» stability. However, if a linear system is considered, then the Bellman
f() = [z, Csin(21) — Bao]" (12) et al. result indicates that vibrational control is not feasible when
the Jacobian has a positive trace (note that positive traces occur
pin, or g(x, w, a) = [0, aw’Dcos(x:)]” for the horizontally na wide. varigty of engineering systems, e.g. liquid rqckets [8]).
Most engineering systems are, however, nonlinear, and it is possible

vibrated pin. We emphasize once again thdt, w, a) occurs ? 2 . o

. . hat nonlinearities iy(x, a, w) may stabilize the system even if its
naturally and is not measured or computed but is a resuilt of ¢ gcobian trace is positive. This implies that one should not discount
interaction between the system and vibrated component, Obvious M)‘rational controlaor S st'ems thatp exhibit a positive trace. Instead
an oscillating fuel injection rate is not going to affect the jet engin\é Y P ) '

in the same fashion as an oscillating throttle. Consequently, eath should investigate the nonlinear functigis, «, w) associated

actuation will be described by a different functigtr, w, a). Since W|th.\./ibrat.ion.al opgn-loqp cgntrol to determine if they satisfy the
g(x, w, a) depends on properties of the systém y(which are fixe ability criteria derived in this paper. We also note that the theory

and the vibrated component, we can only control the choice esented in this paper agrees almost exactly with numerical solutions

the component to oscillate and the frequency and amplitude of t 5e Section [II-A).

vibration. This choice determines the form gfr, w, ), and since

and g(z, w, a) = [0, aw?Dsin (x,)]F for the vertically vibrated

in certain cases there exist por, w, a) that will allow vibrational Il. GENERAL DERIVATION
control, such control is not always feasible. Consider once again the nonlinear system
We now turn to the question of stability. Suppose the equilibrium
point 2 = 0 of (10) is unstable, and that there exist one or more &= f(z) + h(wt)g(z, w, a) (13)

accessible system components or processes that can be vibrated, each ] )

associated with a functiog(z-, w. «) that is known. The objective of Whereh(w#) = sin (wt), = € IR* is the state-space vector, and

the theory presented in this paper is to determine a stability criterign= 0 iS an equilibrium point of (10), which is not necessarily an

for (11). Consequently, if a certaip(x, w, a) satisfies the derived €quilibrium point of the forced system (13). It is assumed that)

stability criterion, then oscillation of the corresponding system corf three times continuously differentiable, apdr) is four times

ponent, with specific frequency and amplitudea, will alter the ~continuously differentiable.

stability of the system and result in vibrational control. Therefore, the We will show that the nonautonomous system (13) can be approx-

developed criterion will determine if vibrational control is feasible fofMated by an autonomous system

various accessible system components or processes in a given system. i = Fy). (14)
Vibrational control has found various applications, including lasers ’ ’

[2] and particle beams [3]. Initial work on developing a general theofphis approximation means that there exists a function ), which

of vibrational control was carried out by Meerkov [4]. He discussed small for all time, such that(t) = y(t) + u(#, y). Consequently,

the effect of vibrational control upon stability, transient motioni y (1) is a solution of (14) and¥(t) is a solution of (13), then
and response of the controlled system. In subsequent publicatiog$¢) — y (1) = u[t, Y (¢)] is small for all timet. Approximately,
several specific nonlinear problems were discussed [5], but no gengra}) corresponds to the time average &f(#) and it describes
vibrational control was proposed. Such a theory was outlined We slow response of the system' th@‘ Y'(t)] Corresponds to
Bellmanet al. [1], who presented criteria for the control of nonlineaghe small amplitude high-frequency system oscillations excited by
systems by linear vibrational control. Further nonlinear results ajige small amplitude, high-frequency control input. In essence, there
discussed in [6], including conditions for and choice of stabilizingxist two time scales: a fast time scale corresponding to the high-
vibrations. frequency control input and the resulting high-frequency system

To discuss the results derived in [1], consider (11) and assum&ponseu[t, Y ()] and the slow time scale describing the time-
that the Jacobian matriélf(0)/0x = f'(0) of f(x) in (11) has a averaged system responkdt). SinceY (¢) is a slow or averaged
positive trace. A classic theorem in linear algebra states that the traggponse, it is described by a time-averaged equation. In the case of
of a matrix equals the sum of the real part of its eigenvalues (see {ghrational control, the control input coupled with the system response
example [7, p. 251]). Consequently, if the trace is positive, then af; y (1)] yields a nonzero average that can stabilize the system.
least one of the eigenvalues must have a positive real part, and thgye will use the following notation. Since and« are constant,
equilibrium point is unstable. This does not imply, however, that {fie will expressg(x, w, a) as g(x). Also, we define the Jacobian
the trace is negative the equilibrium point is stable. A negative traggatrix J = /(0) = 9f(0)/9« and let
is a necessary but not a sufficient condition for stability.

Bellmanet al. [1] only considered linear vibrational control, which p(z) =f(z) = Jz (15)
limited the analysis to linear functiongz, a, w) = Mz in (11). p(wt) = —£°Jg(0) sin (wt) — £g(0) cos (wt) (16)
They proved that if the Jacobiafi(0) has a positive trace and ‘ ‘

g(x, a, w) is linear, then vibrational control is not feasible, indicatingvhere= = 1/w, andp(x) is the sum of all terms of second order and
that no matrixA/ can stabilize the system (11). In this paper, wéigher in the Taylor expansion gf(z) aroundz = 0. Furthermore,
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we introduce the constant vectbr Consequently, Theorem (11.1) indicates that the averaged behavior of
- 2 ! ) the system is governed b
p=J1 plo(wt)] dt — £9'(0)Jg(0) (17) 4 g y
T 0 2 O 1
. . . N Y — , 'D 2 Y1 (22)
whereT = 27 /w andg’(0) is the Jacobian matrix of(«), and the T i P (awD) —B ||y
Y2 5 Y2

constant matrix4
4— {J_ i@[g’(y)Jg(y)](O)} (18) which is in agreement with the result of [4]. Note that the term
T 2 dy C - (awD)?*/2 is negative for sufficiently large or w, indicating
that the equilibrium point is asymptotically stable. We also note that
even though the method in this paper is restricted to slowly varying
g(x), (e, |l¢'(2)]] € wé < w), the above result is also valid for
llg'(=)|] £ w. We impose the slowly varying restriction to permit

where ¢'(y) is the derivative of g(y) evaluated at y,
Alg' (y)Jg(y))(0)/dy denotes the derivative ofg (y)Jg(y)
evaluated at zero. Finally, we let

C =82 4 2006y + 662 + 5067 4 @ inverting the matri{7 +u,] in (56). In the case of the pendulum, we
€ € can show that the matri{ 4+, ] has an inverse evenl|ify/ («)|| £ w,
+ 65 + 8361 + 663 4 66061 + =63 (19) which eliminates the slowly varying restriction.
and denote a ball of radius centered at as B(z, §).
Theorem II.1: Consider the nonlinear system (13) and suppose lll. DISCUSSION OF THERESULTS
that f(0) = 0, [lg(0)]] < wdo, and [lg'(€)[] < wé for all £ € Theorem 1.1 implies that vibrational control can result in an

B(0, 6). Then, for sufficiently smalb, 6o, andé:, and sufficiently equilibrium shift. For such a shift to occur, the vectatefined in (17)
large w, there exists a functiom(t, y) that satisfies the following has to be nonzero. Equations (15)—(17) imply that such an equilibrium
propertiesi|u(t, y)|| < 2(80+66:) for all ¢ and for ally € B(0, 6);  shift can occur only ifg(0) is nonzero. In this case there are two
it is 27/w periodic int and for anyy has zero mean value. possibilities. The first possibility is that the averageppp(wt)] is
Furthermore, forz(t) governed by (13)y(t) = x(t) — u(t, y) is nonzero. Since(=) is defined in (15) as the nonlinear termsyf:),
governed by this implies that nonlinearities ifi(+:) can cause an equilibrium shift.
§=Ay+b+0(C) (20) Such an equilibrium shift would be of ordér§||¢||2) = ()(.65).. The
second possibility is that the terpi(0).J¢(0) is nonzero, indicating
forally € B(0, 6) andb, A, and( defined in (17)—(19), respectively. that the naturally occurring feedback functipf) can also cause an
While a detailed proof of Theorem II.1 is given in the AppendiXequilibrium shift. In this case, the equilibrium shift would be of order
an outline of the proof is provided below. A transformatiefs, y) O(=2||¢'(0)Jg(0)]|) = O(8:61). In either case, if the equilibrium
is constructed that satisfies the properties of the theorem. We thgyift is larger thars, our analysis fails because we are forced outside
substitute the equation(t) = x(t) — u(t, y) into (13) and bound the pall B(0, §).
various terms so that we can rewrite (13) as the approximate systemrheorem 11.1 also yields a useful linear result. Consider a linear
y = F(t, y). Next, we apply the method of averaging to derive thgystem of the form
averaged equatiop = Fy,,(y). Linearization ofy = F,,(y) at the
origin yields the result of the theorem. & = [J + sin (wt) Blz (23)
The analysis in this paper includes Taylor terms up to second
order iné& and &, Consequently, the resulting errgris of third Where [|B|| < wé:. In this case,g(z) = Bx andg'(x) = B.
order. If higher accuracy is desired, then more Taylor terms cdmereforeg(0) = 0, and we can seé% = 0 with no loss of generality.
be included, although more stringent smoothness constraints will fgplication of Theorem I1.1 yields the averaged equation
imposed because we will have to ensure that higher order derivatives “2BJB , &
exist for the functions () and g(). We note that for the examples Y= {J — = 5 }y +0 {6 <6 + 61+ T)} (24)
considered, a second-order analysis is sufficient and is in excellent -
agreement with numerical integration results (see Example IlI-A).  However, the most interesting implication of Theorem II.1 is the
following: the operatorg’ (y)Jg(y) in (18) is a nonlinear operator
A. Example: The Inverted Pendulum in g(y). Consequently, nonlinearities in(y) may result in linear
Consider the vertically vibrated pendulum described by (1) a8MS in (20) and can influence local stability. This indicates that the
(2). These equations are of the form of (13). Sin¢e) = 0, (16) local stability of the nonlinear system (11) is not the same as the
implies thaté(wt) = 0 and (15) shows that(0) = £(0) — 0 = 0. Stability of a_corre_s_por?dlng linearized system. Itis possible to s_how
Consequently, vectdr defined in (17) equals zero. The matrixis ~that the nonlinearities in(y) can alter the stability of a system with
defined in (18) and can be expressed in the following form: a positive Jacobian trace. Stabilization of a system with a positive

trace is illustrated in the next example.
A=<J— iM(O)
2 dy :

A. Example: A System with a Positive Jacobian Trace

20 0 0 ) ) . -
=J- 5 99| law?Deos (1) 0 In this example we consider a second-order system with a positive
- " trace. Specifically, we consider the second-order system derived in
.0 1 Y 0. [8] for the flow potential of a liquid rocket combustor
C —B||aw"Dsin(y1)

0

0 1 9 - 0 T4+ A+ Age =0 (25)
= |:C —B:| ~ B0 |:a, w? D? cos (y1) sin (y1) :| ) _ _ _ ) )
’ Yy D) 0 wherez is a nondimensional flow potential perturbation ani a
0 1 normalized time. In an unstable liquid rocket, unsteady combustion
=lco_ (awD)? B (21) provides negative damping that drives the instability. Since the
’ 2 damping is determined byl;, negative damping corresponds to a
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negative coefficientd,. To illustrate the point, we letl; = —0.2  Substituting the numerical values fer,, 4, «, 3, andes = 1/w
and A, = 1 and rewrite (25) as the following second-order systemyields

1 0 1 r1 0 1 r1 y 0 1

L= = ) . (26 gl = y

L} {—Ao —Al} Lz} {—1 0-2} Lz} (20 L}J {—1.061 —0.106} L/J 24)

The Jacobian matrix of (26) has a positive trace, indicating that tﬂﬁ'nich is asymptotically stable

equilibrium pointz = 0 is unsta_blg. . _ Since the solutionX (¢) of (28) is given by X (t) = Y (¢) +
Bellman et al. [1]. prove th‘,’ﬂ it is n(?t pOSSIb|e. to V|pr§t|0nally u[t, Y(#)], whereY'(¢) is a solution of (34) and tends toward the

control a syTtem WItT a pﬁsmvg trace if fthe fu”ft@ﬁr)f is linear. origin as time tends to infinityX (#) must remain close to the origin

Consequently, postulate the existence of a nonlinear fungtioh for all time becauselt, Y (¢)] is small for all time. The construction

0 of u(¢, y), as defined in the Appendix [see (39), (43), and (44)],
glx) = L’“ +,3£L'1£L’2:| (27) implies that if g(0) # 0 thenwu(t, y) 4~ 0 asy — 0. In this case
g(0) # 0, indicating thatu[t, Y (¢)] does not converge to zero as
that describes the effect produced by forcing a system component. VWig) tends to zero. Consequently (¢) remains close to zero for
stress once again that sucly(@) would have to occur naturally. We all time but does not tend to zero as time goes to infinity. Strictly
will now show that if such a nonlineaf(x:) exists, it will stabilize the speaking, the equilibrium point = 0 of (29) is not asymptotically
system (we do not claim that sucly@r) is possible in rocket motors). stable; indeed: = 0 is not an equilibrium point but is the center
A discussion of the reasoning for choosing the specific nonlipear  of a small asymptotically stable limit cycle. This limit cycle is the
given in (27) is provided in Section C in the Appendix. asymptotically stable orbi (¢) = (¢, 0) # 0. We refer tox = 0
Given the above choice gf(x), we write the forced equation as as aslow equilibrium pointbecausey = 0 is an equilibrium point
. of the slow or time-averaged system (20), and we say:that0 is
rl} = { 0 1 } {Tl} + { 0 } sin (wt). (28) slowly asymptotically stablbecause the equilibrium poigt= 0 of
T2 —Ao —Ai ][ o frias the slow system (20) is asymptotically stable. When we refetduoy
Let w = 70, a = 15, and3 = 200. For these values, (28) becomes€quilibrium points orslow stability, we refer to the properties of the
time-averaged system (20). The true dynamics are small oscillations
|:T1:| _ { 0 1 } |:Tl:| { 0 } sin (wt). (29) @bout the slow or averaged dynamics and hence display the same
) =1 0.2] [ 15 + 200z 22 . qualitative behavior. From a practical point of view we have achieved
; ) our control objective to keep (13) in a small neighborhood of the
It follows from (27) that|lg(O)]] < a < wbo for b0 =~ 0.22. ggin Therefore, if there exists an accessible component in a liquid
Similarly, [|g' (x)]| < Bx1 + 22) < 256 < wby for &~ (5.72)¢. rocket motor that can produce a naturally occurring feedback function
Consequently, both, andé; are sufficiently small, and we can applyq(w) = [0, a+ fa122]", then we can achieve vibrational control by
Theorem 11.1. _ ~ vibrating this component.
We need to calcula}te the ve_ctbrand the r_natn)_uk defln_ed n It is interesting and instructive to compare results obtained by this
(17) and (18), respectively. Notice thatr), defined in (15), is zero analysis with a numerical simulation. We can analytically solve the

because the system (26) is linear. Consequently, (17) yields time-averaged (34) to derive the following analytic expression for

=24'(0). Y1 (t):
p= - ZOIA0) (30) )
However Y1(t) =e 0% [Y1(0) cos (1.03t) + Y5 (0) sin (1.03t)]  (35)
o [0 o a1
9@ =5 (1) where v1(0) is the initial displacement and%(0) is the initial

velocity. Fig. 2 comparedi (t) of (35) with an X, (¢) calculated
indicating thatg’(0) = 0, which impliesb = 0 and that there is no by numerically solving (29). Since the initial conditions for the slow

equilibrium  shift. solutionY (¢) are not known, they are matched to the initial conditions
Equation (18) yields the matrixd shown by the numerical simulation. Fig. 2 shows that the slow
o oar equilibrium pointz = 0 of the forced system (29) is indeed slowly
A= |:J _ ;M(o)} asymptotically stable (i.eX:(¢) approaches a small asymptotically
2 9y stable limit cycle) but is not asymptotically stablé&’y(¢) 4 0).
—J— e 9 Furthermore, Fig. 2 shows excellent agreement between the behavior
2 Jy predicted by the developed theory and the numerical simulation.
Am o]l o}
By> Byr [ =4 —Ai [lat Oyiye [ [, IV. CONCLUSION
—J_ ii { 0‘ ‘ o } In this paper, we present a criterion for nonlinear vibrational open-
2 9y |aBy: — AraByr + BPyiys — A1yl loop control. Previous work that was restricted to linear control is
0 1 extended to include analysis of nonlinear, vibrational control. It has
= 24108 , a8 |. (32) been previously shown that linear vibrational control is not feasible
— Ao + D) A - 9 } if the Jacobian matrix has a positive trace. This paper demonstrates

o . that nonlinear vibrational control is possible even if the trace of the
Consquently, Theorem I1.1 implies that the averaged motion of t!ﬁcobian is positive. This result is significant because a large number
system is governed by of nonlinear engineering systems exhibit a positive Jacobian trace and
0 \ 1, " y(_et may bg stabilized by nonlinear, open-loop, _vibrgtional cor_wtr(_)l.
L}J = e Ajap € a/ﬂ} { } (33) Finally, it is shown thgt the the_ory developed in this paper is in
excellent agreement with numerical results.
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Vibrationally Controlled Unsteady Combustion
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Fig. 2. Damping of a liquid rocket instability by high-frequency vibrational control.
APPENDIX Substituting (39) into (40) and equating the coefficients of the sines
In this section, we prove Theorem I1.1 and discuss the corresporfdld cosines yields
ing change of variables(t) = y(t)+u(t, y). We begin by assuming —B(y) —=Ja(y) ==g(y) (41)
that the investigated system is described by aly) — £ TB(y) =0. 42)
& = flx) + huwt)g(z, w, a) (36) Solving (41) and (42) for(y) and 3(y) yields
where 2 € R*, f € C3(1]R1’, R"), f(0) = 0, h(wt) = aly) ==[T + 2 T%) Taly) (43)
sin (wt), w > 1, andg € C*(R" x R x IR, IR"). We perform a Bly) = —eJaly) — 2g(y) (44)

local analysis that will be restricted to a ball of radiusentered at the

origin. In addition, sincev anda are constant, we writg(z, w, a)  where the inverse matri|d + =2.7?]~* is well defined, provided is
simply asg(x) and impose the following smoothness constraints: small enough to satisfy the inequalify?.J?| < 1.

To derive approximate equations fofy) and 3(y) we need the

NIFoN < o, 0 < o ; - A,

ollowing bound ong(y):
ol < w0 < 5 @) g o)

lg' (O < wbi, 0 < & gl < 1l9(0) + g(y) — g(0)]|
6

where f'(x) denotes the derivative of evaluated atr and ¢ € <llg(0)]| + ?l||y||
B(0, 6). To simplify the algebra, we introduce a fast time variable S0 + 68,68
s = wt, definec = 1/w, denotedz/ds as i, and rewrite (36) in <— (45)

the fast time scale
which holds for ally € B(0, §). Next, we represent the inverse

i = =f(x) + =h(s)g(x). (38) matrix [I +=>J%]~" as the geometric series
I+ == T =

A. The Transformation =T+ 0(%0?). (46)

To prove Theorem II.1, we introduce the change of variables ] ' ' .
2(s) = y(s) + u(s, y). Next, we define the functiom(s, y) and Using (43)—(46) yields the following approximate expressions:

determine some of its properties; that is aly) = =2 Tg(y) + O(260 + £266,) (47)
u(s, y) = a(y)sin (s) + G(y) cos (s) (39) By) =—cg(y) + =* T g(y) + O(="60 + £'661). (48)

To complete the discussion of the propertiesu6$, y), we need
bounds onu(s, y) and the partial derivative,(s, y). We begin by
bounding the inverse matrid + <?.J%]~*. Equation (46) implies

wherea, 3 € C*(IR", R"). The functionsx(y) and3(y) are chosen
so thatu(s, y) satisfies the partial differential equation

us(s, y) = =Ju(s, y) +=h(s)g(y) (40) L+ 2727 < I+ 2172 + -
where.J = f'(0) is the Jacobian matrix and the subscrpdenotes <1+ +---
a partial derivative with respect te. Note that for any fixedy, 1 (49)

the above equation is an ordinary differential equationuin y). ~—1—¢g202"
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It follows from (43)—(45) and (49) that Substituting (40) into (62) yields
()] < frrl(&_o :651) (50) j=[I+ “g;(s,,y)]_1 £y +=p(y +v)
50 4 88 a + eh(s)g (y)u(s, y) + eh(s)q(y, v)]. (63)
1Bl < % (51)  Approximating the inverse matril + u, (s, y)]~' as a two-term

] ] ) series with a second-order error
for all y € B(0, 6). To derive the desired bound aris, y) we only

need to note that (39) impligk:|| < |l«|| + ||3]], indicating that I+ uy(s, )] =1 = uy(s, y) + O(||uy|*)
(s, py)| < (LFE) (b0 +881) =T—u(s, y> +0(51) (64)
PO = 1— 2202 and substituting (64) into (63) yields
<2060 +861) § =l = uy(s, y) +O(8})]
=0 +88) (52) {Jy+h(s)g (9)uls, v) + ply + u(s. y)]
which holds for all s and sufficiently smallz. The bound on + h(s)qly, u(s, y)]}
uy (s, y) = & (y)sin (s)+3'(y) cos (s) is also straightforward. Since ==F(s, y). (65)

(43) and (44) imply . » . .
) N 5 ot We are now in a position to apply the method of averaging. Since
aly)=—c[I+"J1 Jg(y) (53)  F(s, y) is periodic ins with a period2w, we can approximate the
B'(y) =—cJa' (y) — 24" (v) (54) nonautonomous syste = <F(s, y) as the autonomous averaged

systemy = F,,(y), where
using (45), (49), (53), and (54), one obtains

1 2T
oy o, < L4200 Pl = 5= [ Fergar (66)
_0(51)“ v (55) (see [9, p. 412]_ for_a c_iiscussion of averaging). Consequently, the
averaged equation is given by
which holds for alls. j = e /‘2T T uy(m ) + O(2)]
’ 2w
B. Proof of Theorem I1.1 ATy + h(r)g'@)u(n y) +ply + u(r, )]
We begin by noting that the transformatiafs, y) constructed in + 1(7)qly, u(r, y)]}dr. (67)

the previous section satisfies the constraints outlined in the theorem.
The transformation:(s) = y(s) + u(s, y) implies du/ds = & = Expanding (67) yields
. o 7 i . . ; _ e
¥ + us + uyy. Substituting this relationship into (38) yields = 2'7 / {JT/ + B uln y)
[T+ wy (s, ]9+ us(s, y) ’ ;
eyt u) 4+ ch(s)gly+ u). 56) +ply + w7 )]+ h(7)ly, u(r. )]
—uy(7, y) Ty = uy (7, ) R(T)g (y)u(T, y)
— uy (7, Y)ply + u(7, y)]
= uy (7, Y)h(7)qly, u(7, y)]

Equation (55) implied|u, (s, y)|| < 1 for sufficiently smallé, for
all y € B(0,§) and for all s. Consequently, the inverse matrix
[+ uy(s, y)] ' is well defined, and we can rewrite (56) as

5065 661
g=1+uy(s, )] + 0(661 R 535%)}(17. (68)
: [€f(y + U) + 511,(5)g(y + 'u) - us(s, y)] (57) The termsyy(q-7 y)Jy and ?Ig,(T, y)h(r)g'(y)u,(r, y) consist of an
The following relationships will be used to simplify (57): odd number of sinusoidal functions and thus average to zero. The
term Jy is constant with respect to and can be taken outside the
pla) =f(z) = Ja (58) integral Finally, sinceéi(s) = sin (s) andu(s, y) = a(y)sin (s) +
qly, v) =gy +u) — gly) — ¢’ (y)u. (59) A(y)cos(s), averaging the term(7)g (y)u(r, y) yields
27
wherep(x) is defined as before andy, ) represents the sum of all QL R(T)g (yulr, y)dr
terms of second order and higher in the Taylor expansioi®f-«) T )
_ 1 2 . ,
aroundu = 0. It follows that = sin 2(r)g' (y)aly)
P =y +sin (7) cos ()¢ (y) B(y) dr
p(0)=0 ' ,
) _ 9 Waly) (69)
ple) =0(||«(]) (60) 2
q(y, 0) =0 Using the approximate expression (47) &dpy) in (69) lets us rewrite
guly, 0) = (68) as
~3 ~ 2T
q(y, u) (|| I1%). (61) §=cJy — c?g'(y)Jg(y) + ; / {ply + u(7, )]
0

Using (58) and (59), we can rewrite (57) as + h(T)aly, u(r, y)] — wy (7, v)ply + u(r, y)]

§ =T+ uy(s )] Ty + 2 Tuls, 9) +2ply + ) — g (r, YR(T)aly, w(r, W]} dr
4
+ch(s)gly) + ch(s)g (v)uls, y) —|—5()< !5051-1-(5(51-1-(5061 +£+50 )
+ eh(s)q(y, u) — us(s, y)]- (62)

(70)
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To complete the proof we have to bound the integral in (70). The We now complete the proof by bounding the last term in (79).
bounds onuy (T, y)ply + u(7, y)] and uy (7, y)h(7)qly, u(7, y)] Since the derivative gb(z) exists and is continuous by assumption,

follow from (52), (55), (60), and (61); that is we can move the partial derivativ&/ 0y inside the integral to get
uy (T, )ply + u(r, 9)] = O([luy |l lly + ) = [
. d u(T, iT
—O(6%61 + 68081 + 6261) (71) {27r A ply +u(r y)]d }(0)
uy (7, h(T)aly, u(r, )] = Oluy || |u]*) 9y ‘
=O(8581 + 86061 + 8267). (72) )
_ _ = [T [2ely + o)) 80
To get bounds on the remaining termg[y + (7, y)] and =5 T( dr (80)
h(T)qly, u(7, y)], we will require the following notation. Denote
the second-order Taylor expansiongfy + «) atu = 0 as where
9y +u) =g(y) + ¢' (Wu+ 59" () {u, w) + O(JJu|l”) (73) w(m = p'[u(r, 0)] + p'[u(r, 0)]uy (7, 0). (81)
)y

where(u, u) denotes a tensor and (y) is the corresponding three-
dimensional array of coefficients evaluated sat It follows that Sincep(z) € IR", thenp'(a) € IR"*" is a matrix-valued function.
qly, w) = ¢"(y){u, u)/2 + O(]|lu|)®). Consequently, the averageletting [M];; denote the jth element of the matrid/ and(;;(a) =

of h(7)q(y, u(7, y)) is written as [p'(a)]i; € IR, using (81) lets us write thgjth term of (80) as
1 27 € 2T
o h(T)qly, u(r, y)] dr 04 — / ply + u(r, y)]dr
o 27 Jo (0)
1 27 a’.l
=1 n(r)g" (w)(ulr, y), u(r, y))dr + O(||ul|*). (74) Y -
1J
Since each term di(7){u(r, y), u(7, y)) consists of an odd number _ & '2”[.[, (., 0)]
of sinusoidal functions, the resulting average is zero. Hence, (74) is T or
reduced to + (Lirfu(T, O)][uy (7, 0)]x;) d7 (82)
1 ;
5 h(7)qly, w(r, y)]dr where the tensor notatiof ) implies a summation over the index
3 9 o 9 3.3 k. Expanding(;; and/(;; as first- and zero-order Taylor series about
= O((S(] + 66061 + é‘éob] + 6 51 ). (75)

the origin yields
With the aid of bounds (71), (72) and (75), we can rewrite (70) as _ gem
{& [+ atropiar)
0

2T (0)

g=cly— —J (y)fJ(y)+ — / ply + (7, y)ldr 5
0 y

2 2 6061’ .
+:0| ¢ §0§1+(551 +f . ij
567 =5 / {6:5(0) + €;,;(0)u(r, 0)
+—+60+66061+6061> (76) T Jo
c + {Lir(0)[uy (7, 0)]k;) } d7
Equation (76) is of the forny’ = F(y) + £O(---) where + 2O(|Jull® + Jull luyl))- (83)
F(y)=zcJy — —g "(y)Tg(y) Equation (60) implied;;(0) = 0, and the averages df;(0)u(r, 0)
o and {;;(0)[uy (7, 0)]x,; are zero. Consequently
+ 2— ply + w(7, y)]dr. 77) . g
T 8{2—/ ply + u(r, ’y)]dT}
Since we are concerned with Iocal behavior at the origin, we linearize T Jo 0)]y
(76) abouty = 0 to get Jy
OF ) )
= PO+ |5, 0]y +e0(8"+--). (78) = O(llyll l[ull” + lyll o]l ey 1)
1 _ 2 22
Expanding the above yields = O(68g + 8boby + &761). (84)
, o , 39’ (0)Jg(0) Bound (84) allows us to rewrite (79) as
9=13- plu(r, 0)] d7 — — . .
5 (ol ()] j = |:i / i plu(r, 0)]dT — ¢ 9)I90) (0)Jg(0):|
+€Jy_3{w(0)}y ! o /. ) 2
Y
T e | by - {0[0 (y)Tg(y) ](0)}
e} ;/ ply + u(r, y)]dr 2 dy
27 J, 0 ‘ . . 506
8063 +ﬁ+5 + 6261 + 855 + 8806 (85)
+€O<(S + & 60614—5614— 0% 0 0t 0 001
s87 According to definition (16)
od1 + 600 ) (79) R
o(1) = =" Jg(0)sin (1) — £g(0) cos (7). (86)



90 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 1, JANUARY 1997
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In (27), we letg(z) = [0, a + Bx122]T. This hypothetical choice
of g(x) is not arbitrary. We know that the sign ol: creates
an instability. Consequently, we wish to change the sign of this
coefficient by applying vibrational control. Consider (20); if we
denote the vectoy' (z)Jg(z) as[Gi(x), G=(x)]", then the matrix
A defined in (18) can be written as

_ LG (), Ga(a)]T

On the Relation Between Local Controllability and
Stabilizability for a Class of Nonlinear Systems

A=J B (0) Sergejéelikovslg’/ and Henk Nijmeijer
8G1(0)  9G1(0)
_ Ox Oxa
=J -k (’)G;EO) 6G;EO) (90) Abstract—The problem of local stabilizability of locally controllable
T o nonlinear systems is considered. It is well known that, contrary to the

linear case, local controllability does not necessarily imply stabilizability.
where k& is a positive constant. Fod to have a negative trace A class of nonlinear systems for which local controllability implies

either G, (0)/dx, or dG2(0)/dx, must be positive, or both. local asymptotic stabilizability using continuous static-state feedback is

. o e P, . .. described here, as for this class of systems the well-known Hermes con-
Consequently, lettingGi2(0)/dx» = c be a positive quantity implies trollability condition is necessary and sufficient for local controllability.
G2(x) = cao. It follows that

Index Terms—Local controllability, nonlinear systems, stabilization,

) g2 ) i
Ga(x) = m(r)% - gi(2) az -+ 0.292(-7:)% triangular form.

=CI2. (91)

|. INTRODUCTION

The aim of this contribution is to discuss local controllability
qQ(I)aﬁ = cao. (92) of a class of nonlinear systems and its relation to stabilization by
’ Oz, static-state feedback.

Equation (92) is a partial differential equation ga(x) which can ~ We study analytic single-input, continuous-time nonlinear control

be solved by the separation of variables. Unfortunately, the soluti§#Stems

to (92_) is ga2(x) = £ \/_|,r1 a:zlywh_ich is_singular a_lt the prigin i = f(z)+ ug(x) (1)

and violates the assumption thgtr) is continuously differentiable.

Consequently, we lgj(x) = « + S22, approximating the square with the statex € R™ and the scalar input (or control) € U, a

root dependence af, () near the origin. If we now sef; () = 0, closed interval containing the origin. All considerations will be local

theng(z) = [0, a + Bz122]" . It is noteworthy that the last term in in a neighborhood of an equilibrium point: € R”, f(xz) = 0 of

(91) suggests thag.(x) = K. might also be a viable feedback Manuscript received July 2, 1995; revised February 20, 1996. This work
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If we consider the first term only, we can set
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