
ABSTRACT

Title of dissertation: DIMENSION REDUCTION USING
INVERSE SPLINE REGRESSION

Kijoeng Nam, Doctor of Philosophy, 2014

Dissertation directed by: Professor Paul J. Smith
Mathematical Statistics Program
Professor Dmitry Dolgopyat
Mathematics Program

In high-dimensional data analysis, we often want to reduce the number of pre-

dictors without eliminating variables which are related to the response of interest.

Inverse regression methods use the response variable when performing dimension

reduction so that information regarding the relation between the covariates and the

response is not lost. However, it is common to assume that the inverse regression

function is linear or to use some other ad hoc approach. Instead, we propose a

new dimension reduction method which models the inverse regression function as a

spline. We develop asymptotics for our approach and demonstrate its performance

through simulations and several data sets commonly found in the machine learning

literature. We show that its performance is better than existing inverse regression

based methods, especially when the dimension reduction space is a nonlinear man-

ifold such as the Swiss roll example of Roweis and Saul (2000).
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Chapter 1: Introduction and Literature Review

1.1 The Curse of Dimensionality

Broadly speaking, our problem of interest deals with the regression of a uni-

variate response Y on a p×1 random vector of predictors X = (X1, . . . , Xp)
T ∈ R

p,

with the general goal of making inference about the conditional distribution of Y

given X. When the number of predictors p is large, almost all of the methods used

to study these relationships will utilize some type of dimension reduction for X.

This is because, as the number of predictors grows, many statistical methods run

into the “curse of dimensionality,” and thus dimension reduction is desirable.

The curse of dimensionality refers to various phenomena that arise when ana-

lyzing data in high-dimensional spaces that do not occur in low-dimensional settings.

The common theme of these problems is that when the dimensionality increases, the

volume of the space increases so fast that the available data become sparse. This

sparsity is problematic for any method that requires statistical significance. In order

to obtain a statistically sound and reliable result, the amount of data needed to sup-

port the result often grows exponentially with the dimensionality. Also, organizing

and searching data often relies on detecting areas where objects form groups with

similar properties; in high dimensional data however all objects appear to be sparse
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and dissimilar in many ways which prevents common data organization strategies

from being efficient. The notion of intrinsic dimension refers to the fact that any

low-dimensional data space can trivially be turned into a higher-dimensional space

by adding redundant (e.g. duplicate) or randomized dimensions, and in turn many

high-dimensional data sets can be reduced to lower-dimensional data without sig-

nificant information loss. This is also reflected by the effectiveness of dimension

reduction methods such as principal component analysis in many situations. Specif-

ically, a common goal of dimension reduction methods in regression is to reduce

the dimension of the predictor vector X without sacrificing information about the

dependence of the response Y on X. That is, we hope to find a reduction method so

that the the conditional distribution of Y |X may be nearly recovered by examining

Y |R(X), where R(X) is the reduced version of X .

1.2 Literature Review on Dimension Reduction in Regression

In this Section, we review a variety of dimension reduction methods in regres-

sion and their asymptotics.

1.2.1 Principal Component Analysis

Principal component analysis (PCA) was first introduced by Pearson (1901)

and later independently discovered and named by Hotelling (1933), and is one of the

oldest and best known methods for reducing dimensionality in multivariate prob-

lems. Principal component analysis is widely used in a variety of applications and
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is often one of the first methods used when dimension reduction is the goal. PCA

seeks to achieve dimension reduction by projecting the high dimensional data to a

lower dimensional space in such a way that the data points are spread out as much

as possible in the projected space.

The PCA procedure is described in the following steps.

1. Let X be the p dimensional variable of interest and let ΣX = cov(X) be the

covariance matrix of X. The first principal component is the linear combi-

nation b′1X that has the largest variance among all linear combinations bX

such that b has unitary length. It is determined by

b1 = argmax
a

a′ΣXa, a ∈ R
p, ||a|| = 1. (1.1)

2. After finding the first direction b1, one finds the second principal component

b2 by identifying the linear combination with the largest variance such that

the linear combination is also uncorrelated with b′1X. That is,

b2 = argmax
a

a′ΣXa, a ∈ R
p, ||a|| = 1, cov(a′X, b′1X) = 0. (1.2)

By repeating this process, one can obtain all the subsequent principal compo-

nents, b3, . . . , bp.

3. An important fact is that (b1, . . . , bp) are eigenvectors of ΣX with associated

eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λp.

It is worth noting that in practice the covariance matrix ΣX is usually unknown.

In these cases, one repeats the same procedure using the sample covariance matrix

Σ̂X in place of ΣX .
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As shown in the description of the PCA procedure, we only need to perform an

eigenvalue decomposition of the covariance matrix ofX in order to find the principal

directions. Because the “total variation” of X = (X1, . . . , Xp) can be expressed as

∑p
j=1Var(Xj) = tr(ΣX) =

∑p
j=1 λj, examining the ordered eigenvalues indicates

how much of the variation that each principal component “explains”. In many

cases, the ordered PCA eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λp will decrease quickly and

only several of the eigenvalues will seem to stand out. When this occurs, it indicates

that most of the data are spread out very well along the first few directions indicating

that the most interesting structure in the data can be explained through these first

few principal components.

To apply PCA to dimension reduction in regression problems, one direct ap-

proach is to apply PCA on X first and choose the first few principal components

(ξ1, . . . , ξd), and then fit a regression of Y on (ξ1, . . . , ξd) instead of the original vari-

ables. This procedure is commonly known as principal component regression (PCR).

One drawback of PCR is that the dimension reduction only uses X and does not

involve the response variable Y in any way. Indeed, with PCR, the two differing

data sets (Y,X) and (Y ′,X) will always reduce to the same linear combinations,

as long as the input variables X are the same. This occurs even if the relationship

between X and Y is substantially different than the relationship between X and Y ′.

In regression, it is desirable that a dimension reduction method not treat X sepa-

rately from Y but consider them jointly. This perspective on dimension reduction

in regression is taken in sliced inverse regression (Li (1991)) where the idea of the

effective dimension reduction (e.d.r.) space plays a key role. With this approach,
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we have the desirable situation in which one can reduce the dimension of X without

losing any important for predicting Y .

1.2.2 Sliced Inverse Regression

Examining the conditional distribution of the predictor given the response

can be a useful approach in dimension reduction - a concept introduced in sliced

inverse regression (SIR) Li (1991) for the regression setting and in reduced rank

linear discriminant analysis for the classification setting. The SIR method employs

the following semiparametric model

Y = g(b
′

1X, . . . , b
′

dX, ǫ). (1.3)

Here, Y represents a univariate response variable and X ∈ R
p represents the col-

lection of predictors. The random error ǫ is assumed to be independent of X, but

its probability distribution does not necessarily need to be specified. Our primary

interest is on the collection of p dimensional vectors (b1, . . . , bd) since it is appar-

ent from (1.3) that the relationship between X and Y is determined only through

b
′

1X, . . . , b
′

dX. If g is known, then (1.3) is similar to a simple neural net model or

a nonlinear regression model. What distinguishes (1.3) from these models is that g

is unknown and can be completely general. There are a number of ways to estimate

b1, . . . , bd which we will discuss in Section 1.2.3. Before mentioning estimation of

(b1, . . . , bd) however, we will first discuss the notion of the efficient dimension re-

duction (e.d.r.) direction as it plays such an essential role in the SIR methodology

and in extensions of SIR such as the principal Hessian directions (pHd; Li (1992)).
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Definition 1.2.1 Under (1.3), the space B spanned by the vectors b1, . . . , bd is

called the efficient dimension reduction (e.d.r.) space. Any non-zero vector in the

e.d.r. space is called an e.d.r. direction.

From observing (1.3), one can see that any set of d linearly independent e.d.r.

directions can be reparameterized, which means that the e.d.r space B is identifiable

but the individual vectors b1, . . . , bd are not identifiable. An important fact shown

in Li (1991) is that the conditional expectation E(X|Y = y), called the inverse

regression curve, is contained in the efficient dimension reduction (e.d.r.) space. It

is the objective of many inverse regression methods to study the (inverse) conditional

distribution of X given Y .

Before looking at the SIR method in detail, we should first discuss the linear-

ity condition – a key probabilistic assumption required by many inverse methods.

Consider the trajectory of the inverse regression curve E(X|Y = y) as y varies with

the center of the curve being located at E(E(X|Y = y)) = E(X). In general, the

centered inverse regression curve, E(X|Y = y) − E(X) is a p-dimensional curve

in R
p. However, when the design distribution satisfies the linearity condition, the

curve lies on a d-dimensional subspace.

Definition 1.2.2 (Linearity condition) For the directions B = (b1, b2, . . . , bd) in

model (1.3) and any constant vector β ∈ R
p, there exist constants c0 ∈ R

1 and

c ∈ R
d depending on β such that E(βTX|BTX) = c0 + cTBTX.

As pointed out by Cook and Weisberg (1991), the most important family of distri-

butions satisfying the linearity condition is the elliptically symmetric distribution
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(e.g., the normal distribution).

Theorem 1.2.3 (Li (1991)) Under the linearity condition and model (1.3), the

centered inverse regression curve E(X|Y = y) − E(X) is contained in the linear

subspace spanned by bkΣX (k = 1, . . . , d), where ΣX denotes the covariance matrix

of X. Moreover, if we let Z be the standardized version of X,

Z = Σ
−1/2
X (X − E(X)), (1.4)

where ΣX is the covariance matrix of X, then the standardized inverse regression

curve E(Z|Y = y) is contained in the linear space generated by the standardized

e.d.r directions η1, . . . , ηd,

ηk = bkΣ
1/2
X , k = 1, . . . , d. (1.5)

For a given data set, (X1, y1), . . . , (Xn, yn), the SIR algorithm is as follows:

1. Sort the data by Y to obtain sorted data (X(1), y(1)), . . . , (X(n), y(n)), where

X(i) is taken to be the concomitant vector of the ith order statistic y(i). That

is, X(i) is the vector of predictors associated with the response y(i).

2. Divide the range of Y into H “slices” (A1, . . . , AH), and let nh =
∑

i 1{yi ∈

Ah} be the number of cases in slice h. The number of slices H is a user-

specified parameter. For example, one may find that between 10 to 20 slices

is reasonable for a sample of size n = 500. As we will discuss later, there are

theoretical results indicating that SIR outputs do not change much for a wide

range of H .
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3. Within each slice, compute the sample mean of X,

X̄h =
1

nh

n
∑

i=1

X(i)1{y(i) ∈ Ah}. (1.6)

Note that SIR uses the Y values only to create slices. Once the slices are

formed, they can be discarded.

4. Compute the covariance matrix for the slice means of X, weighted by the slice

sizes:

Σ̂η =
1

n

H
∑

h=1

nh(X̄h − X̄)(X̄h − X̄)T , (1.7)

where X̄ = n−1
∑n

i=1X i, sample mean for X i.

5. Compute the sample covariance for X i’s,

Σ̂X =
1

n

n
∑

i=1

(X i − X̄)(X i − X̄
T
). (1.8)

6. Find the SIR directions by conducting the generalized eigenvalue decomposi-

tion of Σ̂η with respect to Σ̂X :

Σ̂ηβ̂i = λ̂iΣ̂Xβ̂i, (1.9)

where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. The ith eigenvector β̂i is called the ith SIR

direction. The first few SIR directions can be used for dimension reduction.

For further analysis, one may project X along the SIR directions; that is, use each

SIR direction to form a linear combination of x. For example, β̂
T

1X would be the

first SIR variate, and β̂
T

2X would be the second SIR variate, and so on. By plotting

Y against the SIR variates in 2-D or 3-D, one can often reveal the regression structure
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from a graphical summary. This SIR is invariant under affine transformation of X.

In addition, SIR is not a model based approach in the sense that we do not specify

a sampling or distributional model for X |Y .

Since the introduction of this novel tool, many related studies have been carried

out to improve SIR in both theory and applications. Hsing and Carroll (1992)

established the asymptotic properties of SIR estimates when each slice only contains

2 observations. Zhu and Ng (1995) extended this idea to allow for a fixed number of

observations per slice while Zhu et al. (2006) studied the asymptotic behavior of the

SIR estimates when the dimension of the covariates goes to infinity as the sample

size goes to infinity. Zhu et al. (2006) obtained both strong and weak convergence of

the SIR estimates. Zhu and Fang (1996) bypassed the slicing step and used kernel

smoothing to estimate Cov[E(Z|Y )] as also mentioned by Li (1991). Schott (1994)

generalized the asymptotic testing procedure for determining the dimension k for

elliptically symmetric distribution instead of the normal distribution in Li (1991).

Velilla (1998) further proposed a testing procedure which imposed no distributional

assumptions on the predictors. A weighted Chi-squared test was discussed by Bura

and Cook (2001).

Li (1991) suggests the discrepancy measure to evaluate the effectiveness of an

estimated e.d.r. direction. An obvious criterion is to evaluate the squared Euclidean

distance between the estimated e.d.r. direction b (normalized to have the unitary

length) and the true e.d.r. space B. But the result will be sensitive to the scale

change in X. To avoid this problem, the following affine-invariant criterion will be
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considered:

R2(b) = max
β∈B

(bTΣXβ)
2

bTΣXb · βTΣXβ
, (1.10)

the squared multiple correlation coefficient between the projected variable bTX and

the ideally-reduced variables βT
1X, · · · ,βT

dX.

1.2.3 Other Dimension Reduction Methods in Regression

SIR is a powerful method due to its simplicity. However, a drawback of SIR is

its inability to diagnose symmetric dependence where, due to symmetry, the inverse

mean curve E(Z|Y ) is equal to zero for all values of Y . To handle such cases,

one remedy is to explore higher order conditional moments, such as sliced average

variance estimation (SAVE; Cook and Weisberg (1991)). Recently, there have been

some other advances along the lines of investigating other features of the inverse

conditional distribution. For instance, Yin and Cook (2003) look at using inverse

third moments, Zhu et al. (2006) examines SIR for high dimensional covariates,

and Cook and Ni (2005) develop an inverse regression approach based on minimum

discrepancy.

In most regression problems, the mean function E[Y |X] is of primary interest,

and, in contrast to inverse regression methodology, forward regression methods study

the conditional distribution of Y given X directly. There are many existing forward

regression methods, such as ordinary least squares (OLS; Li and Duan (1989)),

average derivative estimation (ADE; Hardle and Stoker (1989), Samarov (1993)),

the structure adaptive method (SAM; Hristache et al. (2001)), Fourier methods
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(FM; Zhu and Zeng (2006)), and minimum average variance estimation (MAVE;

Xia et al. (2002)).

In contrast to both forward or inverse regression, the principal Hessian direc-

tion (pHd; Li (1992)) is a dimension reduction technique based on the joint regression

point of view. The aim of pHd is to estimate the plotting directions that capture the

curvature in the regression function in a largely nonparametric setting. To describe

the pHd procedure, first consider the regression problem with a univariate response

Y and a p × 1 vector of predictors X having the joint cdf F (Y,X). In addition,

let f(X) denote the regression function E(Y |X). The regression function is a p

dimensional function and takes the form

E(Y |X) = f(X) = h(βT
1X, . . . ,βT

dX), (1.11)

for some function h. By assuming that h is twice differentiable, we can construct

the p× p Hessian matrix H(X) of f(X) where the ijth entry of H(X) is given by

[H(X)]ij =
∂2f(X)

∂Xi∂Xj
. (1.12)

The Hessian matrix varies asX changes unless the surface is quadratic, so difficulties

associated with the curse of dimensionality would arise quickly if we were to estimate

it for each value of X. Instead, the pHd method considers the average Hessian

E[H(X)] and then defines the principal Hessian directions (pHd; Li (1992)) to be

the eigenvectors b1, . . . , bp of the matrix E[H(X)]ΣX , where ΣX is the covariance

matrix of X given by

E[H(X)]ΣXbj = λjbj, j = 1, . . . , p, (1.13)
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with |λ1| ≥ · · · ≥ |λp|. The eigenvalue decomposition of the average Hessian with

right-multiplication by ΣX makes the procedure invariant under affine transforma-

tion of X.

The following lemma states that if one can estimate the average Hessian matrix

well, then the pHds with nonzero eigenvalues can be used to find the e.d.r. directions.

Lemma 1.2.4 Under (1.13), the rank of the average Hessian matrix, E[H(X)], is

at most d. Moreover, the pHds with nonzero eigenvalues are in the e.d.r. space B

spanned by the β vectors.

For the case when the predictors are normally distributed predictors, Li showed,

using a result of Stein (1981), that

E[H(X)] = Σ−1
X ΣyXXΣ

−1
X , (1.14)

where ΣyXX is the third moment matrix

ΣyXX = E[(Y − E(Y ))(X − E(X))(X −E(X))T ). (1.15)

Consequently, the pHd’s bj , j = 1, . . . , p, can be obtained by an eigenvalue decom-

position of ΣyXX with respect to ΣX :

ΣyXXbj = λjΣXbj, j = 1, . . . , p. (1.16)

The results for the Normal case provide the motivation for the following steps

for finding the pHds from an i.i.d sample, (X1, y1), . . . , ((Xn, yn)).

1. Form the estimate of the population moment matrix ΣyXXbj by using the

corresponding sample moment matrix,

Σ̂yXXbj =
1

n

n
∑

i=1

(yi − ȳ)(X i − X̄)(X i − X̄)T . (1.17)
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2. Conduct an eigenvalue decomposition of Σ̂yXXbj with respect to Σ̂X :

Σ̂yXX b̂j = λ̂jΣ̂X b̂j , j = 1, . . . , p (1.18)

where |λ̂1| ≥ · · · ≥ |λ̂p|.

As is the case with SIR, there are a few variants to the basic pHd approach. Cook

(1998a) revisits Li’s proposal, offering a number of suggestions for improved appli-

cations of pHd. Cook suggests a relatively more straightforward procedure based on

the OLS residuals to greatly improve the effectiveness of this method. Yin and Cook

(2004) further developed a pHdk method based on the marginal k-th moments.

1.2.4 Sufficient Dimension Reduction

Throughout this dissertation, we work under the dimension reduction paradigm

of Cook (2007). In this framework, dimension reduction methods replace X with a

lower dimensional function R(X) which is said to be a sufficient reduction whenever

R(X) contains all the relevant information about the relation between X and Y .

Sufficient dimension reduction (SDR), introduced by Cook (2007) and Cook

and Forzani (2008), is important in both theory and practice. It strives to reduce

the dimension of X by replacing it with a minimal set of linear combinations of X,

without losing knowledge about the conditional distribution Y |X. Cook introduced

the following definition of a dimension reduced space: If a predictor subspace S ⊆ R
p

satisfies

Y ⊥⊥ X|PSX, (1.19)
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where ⊥ stands for independence and P(.) represents the projection matrix with

respect to the standard inner product, then S is called a dimension reduction space

with respect to X and Y . The central dimension reduction subspace (CDR), indi-

cated with SY |X – an essential concept in SDR – is then defined to be the intersection

of all dimension reduction subspaces satisfying (1.19) with respect to X and Y . We

will often refer to the central dimension reduction subspace as the effective dimen-

sion reduction (e.d.r.) subspace. In our problems of interest, the dimension d of

SY |X will usually be far less than p, and the sample size n will also be larger than p.

Definition 1.2.5 A reduction, R(X) : Rp → R
d, d ≤ p, is called sufficient if it

satisfies at least one of the following three conditions:

(i) Inverse regression, X|(Y,R(X)) ∼ X|R(X)

(ii) Forward regression, Y |X ∼ Y |R(X)

(iii) Joint regression, (Y ⊥⊥ X)|R(X),

where ⊥⊥ indicates independence, Z ∼ W means that Z and W have the same

distribution, and A|B refers to the conditional distribution of random vector A given

the vector B.

The three statements in Definition 1.2.5 are equivalent when (Y,X) has a joint

distribution.

If we consider a classical statistical problem D = (Z1, . . . , Zn) where the Zi

are a sample from fθ(z) and reinterpret X as the dataset D and Y as the parameter

θ, then condition (i) for inverse reduction becomes D|(θ, R) ∼ D|R so that R is
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analogous to the sufficient statistic. In this way, the notion of a sufficient reduction is

analogous to Fisher’s concept of sufficiency: If D represents the data, then a statistic

t(D) is sufficient if D|(θ, t) ∼ D|t so that t contains all of the relevant information

about θ. One crucial difference between sufficient reductions and classical sufficient

statistics is that sufficient statistics are observed from the data, while a sufficient

reduction may contain unknown parameters and thus needs to be estimated.

1.2.5 Dimension Reduction and Variable Selection

Consider again the regression setting where Y is a response of interest, and

X1, . . . ,Xp, a set of potential explanatory variables or predictors, are vectors of

n observations. The problem of variable selection, or subset selection, arises when

one wants to model the relationship between Y and a subset of X1, . . . ,Xp , but

there is uncertainty about which subset to use. Such a situation is particularly of

interest when p is large and X1, . . . ,Xp is thought to contain many redundant or

irrelevant variables. Often variable selection problems are of enormous size. Even

with moderate values of p, evaluating the properties of each of the possible 2p subsets

is prohibitively expensive and some reduction of the model space is needed.

Consider the common Gaussian linear regression model

Y = Xβ + ε, (1.20)

where Y = (Y1, . . . , Yn)
T are the responses, β = (β1, . . . , βp)

T are the regression coef-

ficient, X = (X1, . . . ,Xp) is the covariate matrix, and ε = (ǫ1, . . . , ǫn) ∼ N(0, σ2In)

are the error terms. Variable selection for (1.20) is the problem of selecting and fit-
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ting a model of the form

Y = Xγβγ + ε, (1.21)

where γ indexes the subsets of (X1, . . . ,Xp), qγ is the size of the γth subset,

Xγ ∈ R
n×qγ , βγ ∈ R

qγ and ε ∼ N(0, σ2In). The most popular criteria for com-

paring subsets of predictors are AIC (for Akaike Information Criterion) and BIC

(for Bayesian Information Criterion). Letting lγ denote the log likelihood of the γth

model, AIC selects the model which minimizes −2lγ + 2qγ , whereas BIC selects the

model which minimizes −2lγ + qγ log(n). BIC is consistent when the true model

is fixed, (Haughton (1988)), whereas AIC is consistent if the dimensionality of the

true model increases with n (at an appropriate rate) (Shibata (1982)).

The Least Absolute Shrinkage and Selection Operator (the Lasso) (Tibshirani

(1996)) estimator performs simultaneous model selection and estimation in linear

regression models. It employs an L1-type penalty on the regression coefficients which

tends to produce sparse models, and thus is often used as a variable selection tool as

in Tibshirani (1996) and Osborne et al. (2000). Knight and Fu (2000) studied the

asymptotic properties of Lasso-type estimators and showed that under appropriate

conditions, the Lasso estimators are consistent for estimating the regression coeffi-

cients. They also showed that the limiting distribution of the Lasso estimators have

positive probability mass at 0 when the true value of the parameter is 0. It has been

demonstrated in Tibshirani (1996) that the Lasso is more stable and accurate than

traditional variable selection methods such as best subset selection. Efron et al.

(2004) proposed the Least Angle Regression (LARS) algorithm, and showed that
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there is a close connection between the LARS algorithm, the Lasso, and another

model selection procedure called the forward stagewise regression. Each of these

procedures involves a tuning parameter that is chosen to minimize the prediction

error.

As mentioned earlier, sufficient dimension reductions directions are linear com-

binations of all the original predictors so, it is often difficult to interpret the resulting

estimates. To overcome this problem, Ni, Cook and Tsai (2005), Li and Nacht-

sheim (2006) recently combined sliced inverse regression estimation and shrink-

age variable selection procedure to produce sparse dimension reduction directions.

Based on these two pioneering works, Li (2007) successfully transformed a common

eigen-decomposition problem in the inverse dimension reduction methodology into

a regression-type optimization problem, and proposed a unified estimation strat-

egy combining dimension reduction and variable selection. This feature has greatly

enhanced the power of dimension reduction in many applications.

1.3 Literature Review of Spline Regression

One of the main themes of this dissertation is modeling the inverse regression

curve E(X|Y ) nonparametrically, and the use of polynomial splines provides an

effective approach for nonparametric modeling. Usually, polynomial splines are

fitted by minimizing a global criterion such as the sum of squared errors or the

negative of the log-likelihood, possibly with a penalty term (Hastie et al. (2001)).

The resulting estimate is a polynomial spline that can be totally characterized by the
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values of the coefficients in a basis expansion. One advantage of this approach is that

the estimate is simpler than the original data set since the number of coefficients,

which equals the dimension of the estimation space, is usually much smaller than

the sample size. The piecewise polynomial nature of polynomial splines suggests

that expecting good local behavior of polynomial spline methods is not unrealistic.

The theoretical investigation of methods based on polynomial splines has been

an active area of research for years. Global rates of convergence of spline estimates

have been thoroughly studied for various statistical contexts; see Stone (1985), Stone

(1986), Stone (1994), Hanse (1994), Kooperberg et al. (1995a), Kooperberg et al.

(1995b), Huang (1998b), Huang (1998a), Huang and Stone (1998) and Huang et al.

(2000). A systematic treatment of global asymptotic of spline estimates is given

in Huang (2001). In contrast, the local properties (behavior at a point) of spline

estimates are much less studied. See Zhou et al. (1998) for some available results.

Local asymptotic results of Zhou et al. (1998) are applied in Chapter 4. Local

asymptotic results are useful for constructing asymptotic confidence intervals. They

also provide theoretical insights about the properties of estimates that cannot be

explained by global asymptotic results.

1.4 Summary and Outline

As discussed above, the development of sufficient dimension reduction method-

ology has provided us with a powerful tool to address challenging problems in high

dimensional data analysis. All the methods discussed above have their own advan-
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tages, as well as some drawbacks. For instance, the inverse methods, such as SIR,

SAVE and pHd, are very easy to implement and have very nice asymptotic prop-

erties. The combination of these approaches with shrinkage methods has further

enhanced their effectiveness in practice.

In this dissertation, we develop a semi-supervised inverse spline regression

method which extends the model-based approach of Cook (2007) and Cook and

Forzani (2008).

We briefly review the principal component model (PC) and principal fitted

components models (PFC) of Cook (2007) and Cook and Forzani (2008) in Chapter

2.

Starting in Chapter 3, we focus on extending the principal fitted component

model to a likelihood-based principal fitted component model without the assump-

tion of normality or any distributional assumptions. We also address their known

large sample theory discovered by Johnson (2008), Cook (2007), and Cook and

Forzani (2008).

In Chapter 4, a novel algorithm, the so-called principal fitted spline compo-

nent model (PFSC), is introduced. Here, we address B-spline estimation and its

relationship with the spline regression of Zhou et al. (1998). Partially, through us-

ing the results of Zhou et al. (1998) we establish both interesting local and global

asymptotic properties of PFSC for the case when Y is assumed to be bounded.

In Chapter 6, we explore the effectiveness of our methodology through two

simulation studies and a demonstration on the Swiss roll dataset.

Chapter 7 addresses the problem of image recognition by applying the proposed
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PFSC method to a binary alphabet and digits data set. These data contain very

high dimensional features which allow us to see the improvements in classification

performance that result from using PFSC for dimension reduction.
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Chapter 2: Principal Component Model and Principal Fitted Com-

ponent Model

In Chapter 2, we briefly review the principal component model (PC) and prin-

cipal fitted components models (PFC) of Cook (2007) and Cook and Forzani (2008),

and then illustrate their important results on how to obtain the maximum likeli-

hood estimates (MLEs) in the PC and PFC models. In Section 2.3, the algorithms

of PC and PFC models are described. In Section 2.4, we review the fact that PFC is

equivalent to SIR under certain conditions (see Cook (2007) and Cook and Forzani

(2008)).

2.1 Principal Component Model Revisited

Principal component analysis (PCA) (Pearson (1901)) as mentioned in Section

1.2.1 seeks uncorrelated linear combinations of the original variables that capture

maximal variance. The basic idea is to replace the predictor vector X ∈ R
p with

a few of the principal components. As there is no response involved, PCA is an

unsupervised multivariate dimension reduction method. As mentioned in Section

1.2.1, principal component regression (PCR) uses PCA to perform dimension reduc-

tion in regression problems, but one main drawback of PCR is that the dimension
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reduction only uses X to perform dimension reduction and does not involve the

response variable Y . This is because the main goal of PCA or PCR is finding the

principal components rather than performing dimension reduction in the regression

setting. To overcome this drawback of PCR, one might consider to find principal

components in the context of regression. A useful idea is that it may be possible to

only use the first several principal components in place of X without losing much

information. That is, we might hope that the leading principal components will

contain essentially the same information about Y as the original predictors, which

is in the spirit of Fishers idea of sufficiency (Fisher (1922) and Fisher (1924)).

Based on Fisher’s idea of sufficiency, Cook (2007) investigated an exposition

on principal components as a reductive method in regression, the so-called principal

component model. A model based approach for analyzing X|Y is developed in both

the principal components model and principal fitted components model described in

Cook and Forzani (2008) and Cook (2007). In these papers, the authors introduced a

model for the conditional distribution X|Y and used an inverse regression approach

to achieve sufficient dimension reduction. Cook’s formulation of the conditional

distribution X|Y is as follows: suppose that the conditional distribution of X given

Y = y can be modeled as follows:

Xy = µ+ Γνy + ε ∼ N(µy,∆), (2.1)

where Γ ∈ R
p×d, d < p, ΓTΓ = Id, and d (although it needs to be estimated in

applications) is assumed to be known. The term Xy denotes the random variable

which is distributed as X|(Y = y). It is assumed that Xy is normally distributed
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with mean µy and positive definite variance-covariance matrix ∆. That is, the

conditional distribution of X given the variable Y = y is X|(Y = y) ∼ N(µy, σ
2Ip),

where µy = µ + Γνy, which is a consequence of the fact that the error term ε

is Gaussian and is independent of Y . The coordinate vector νy ∈ R
d, which is

given by νy = ΓT (µy − µ), is an unknown function of y satisfying Var(νY ) > 0.

The columns of the matrix Γ ∈ R
p×d form a basis for the d-dimensional subspace

SΓ = span{µy − µ|y ∈ SY }, where SY denotes the sample space of Y . Because

Γ ∈ R
p×d and νy ∈ R

d, the mean of Xy lies in a subspace spanned by the column

of Γ with νy being the coordinates of µy −µ with respect to the basis consisting of

the columns of Γ. In this sense, we say that the columns of Γ span the e.d.r. space.

Proposition (2.1.1) connects the inverse regression model in equation (2.1) with

the forward regression of Y on X. It follows from this proposition that R(X) =

ΓT∆−1X is a sufficient reduction since part (ii) of Definition 1.2.5 holds.

Proposition 2.1.1 (Cook (2007)) Under Model (2.1), the distribution of Y |X is

the same as the distribution of Y |ΓT∆−1X for all values of X.

One important thing to notice is that in model (2.1) the matrix Γ is not iden-

tifiable. This is because, for any full rank d × d matrix A, we can always obtain

an equivalent parametrization as Γνy = (ΓA−1)(Aνy). However, the reduced sub-

space span(Γ) is identified and estimable, and we will therefore assume without loss

of generality that Γ is a semi-orthogonal matrix satisfying ΓTΓ = Id. Therefore,

the goal is to estimate the dimension reduction subspace ∆−1SΓ.

When ∆ is assumed to have the form ∆ = σ2Ip, one may estimate the pa-
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rameters in model (2.1) through maximum likelihood estimation. The resulting

estimators are presented in Theorem 3.2.1 below.

Theorem 2.1.2 (Cook and Forzani (2008); Cook (2007)) Define

Σ̂n =

(

∑

y

(Xy − X̄)(Xy − X̄)T

)

/n, (2.2)

to be sample covariance matrix of (Xy − X̄). Under the PC model (2.1) with the

added assumption that ∆ = σ2Ip, denote Γ̂ as the estimator of Γ, σ̂2 as the esti-

mator of σ2 and µ̂ as the estimator of µ. Then the maximum likelihood estimators

(Γ̂, σ̂2, µ̂) under the model (2.1) are

Γ̂ =
[

γ̂T
1 , · · · , γ̂T

d

]T
, σ̂2 =

1

p

p
∑

i=d+1

λ̂i and µ̂ = X̄ , (2.3)

where γ̂1, · · · , γ̂d is an orthogonal basis of the eigenspace associated with the alge-

braically largest d eigenvalues λ̂1 ≥ · · · ≥ λ̂d of Σ̂n. The vectors γ̂T
1X, · · · , γ̂T

dX

are the principal components (PC). Using these estimates, one may express ν̂y as

ν̂y = ΓT (Xy − X̄). (2.4)

2.2 Principal Fitted Components Model Revisited

In the previous section, we introduced Cook’s principal component (PC) model

in equation (2.1), where νy is unknown for all y ∈ SY . This is called the principal

component (PC) model since the maximum likelihood estimator of SΓ described

in Theorem (3.2.1) is estimated by the first d principal components of the sample
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covariance matrix of (Xy − X̄). Cook extended this PC model by introducing the

principal fitted components (PFC) model. Under this approach, the coordinate

vectors are modeled as νy = β{fy − E(f y)}, where f y ∈ R
r is a known vector-

valued function of y satisfying
∑

y f y = 0, and β ∈ R
d×r, d ≤ r, is an unrestricted

rank d matrix.

The general form of the PFC model is the following:

Xy = µ̄+ Γβ{f y − E(fY )}+ ε = µ+ Γβf y + ε ∼ N(µy,∆), (2.5)

where f y ∈ R
r, β ∈ R

d×r, and d ≤ min(r, p). As in the PC model, the matrix

Γ is not identifiable in this model; however, the span of Γ is both identifiable and

estimable. When Var(ε) = ∆ = σ2Ip, Cook and Forzani (2008) refer to model (2.5)

as the isotonic PFC model.

As in the PC model, the PFC approach may be connected with the forward

regression of Y on X. Thus, as stated in the proposition below, R(X) = ΓT∆−1X

is a sufficient reduction for the PFC model.

Proposition 2.2.1 (Cook (2007)) Let R(X) = ΓT∆−1X, and let T (X) be any

sufficient reduction. Then, under model (2.5), R is a sufficient reduction and R is

a function of T .

To estimate the central subspace, Cook and Forzani (2008) first perform a

multivariate regression of Xy on fy so that the fitted matrix of predictors is ex-

pressed as X̂ = P FX. Here, X is the n× p matrix with rows (Xy − X̄)T , F is the

n× r matrix with rows (f y − f̄)T , and P F = F (F TF )−1F T denotes the projection

matrix which projects X onto the column space of F . This is then referred to as the
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principal fitted component (PFC) model since the maximum likelihood estimator of

SΓ is now the sample covariance matrix of the fitted vectors P F (Xy − X̄)T .

When ∆ is assumed to have the form ∆ = σ2Ip, one may estimate the pa-

rameters in the PFC model through maximum likelihood estimation. The resulting

estimators are presented in Theorem (3.2.2) below.

Theorem 2.2.2 ( Cook and Forzani (2008); Cook (2007) ) Let F denote the

n × r matrix with rows fT
y where fy ∈ R

r is a known vector-valued function of y

with linearly independent elements. Define

Σ̂fit,n =

(

n
∑

i=1

(Xyi − X̄)F (F TF )−1F T (Xyi − X̄)T

)

/n. (2.6)

Suppose that the PFC model (2.5) with the added assumption that ∆ = σ2Ip holds,

and suppose that β ∈ R
d×r, d ≤ r, is an unrestricted rank d matrix. Then the

maximum likelihood estimators (Γ̂, σ̂2, µ̂) under model (2.5) are

Γ̂ =
[

φ̂
T

1 , · · · , φ̂
T

d

]T

, σ̂2 =

∑p
i=1 λ̂i −

∑d
i=1 λ̂

fit
i

p
, and µ̂ = X̄ (2.7)

where φ̂1, · · · , φ̂d is an orthogonal basis of the eigenspace associated with the alge-

braically largest d eigenvalues λ̂fit
1 ≥ · · · ≥ λ̂fit

d of Σ̂fit,n. We call φ̂
T

1X, · · · , φ̂T

dX

the principal fitted components (PFC). Using these estimators we may express β̂ as

β̂ = ΓT
X

TF (F TF )−1. (2.8)
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2.3 Algorithms of PC and PFC Model

For the given data set, (X1, y1), . . . , (Xn, yn), the algorithm of the PC model

is the following.

1. Compute the sample mean of X,

X̄ =
1

n

n
∑

i=1

Xyi (2.9)

2. Compute the sample covariance for Xy − X̄’s,

Σ̂n =

(

n
∑

i

(Xyi − X̄)(Xyi − X̄)T

)

/n. (2.10)

3. Find the maximum likelihood estimators (Γ̂, σ̂2, µ̂) under the model (2.1)

Γ̂ =
[

γ̂T
1 , · · · , γ̂T

d

]T
, σ̂2 =

1

p

p
∑

i=d+1

λ̂i and µ̂ = X̄, (2.11)

where γ̂1, · · · , γ̂d is an orthogonal basis of the eigenspace associated with the

algebraically largest d eigenvalues λ̂1 ≥ · · · ≥ λ̂d of Σ̂n.

4. The PC directions are the vectors

γ̂T
1X, · · · , γ̂T

dX. (2.12)

5. (Optional) For given Γ̂, calculate ν̂y using

ν̂y = Γ̂
T
(Xy − X̄). (2.13)

For the given data set, (X1, y1), . . . , (Xn, yn), the algorithm of the PFC model

is the following.
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1. Choose an appropriate fy ∈ R
r for the given data set, (X1, y1), . . . , (Xn, yn).

In this case, fy ∈ R
r is assumed to be a known vector-valued function of y

with linearly independent elements. Let F denote the n× r matrix with rows

fT
y .

2. Compute the sample mean of X,

X̄ =
1

n

n
∑

i=1

Xyi (2.14)

3. Compute the sample covariance for Xyi,

Σ̂n =

(

n
∑

i

(Xyi − X̄)(Xyi − X̄)T

)

/n. (2.15)

4. Compute the sample conditional covariance for Xyi|Y = yi,

Σ̂fit,n =

(

n
∑

i=1

(Xyi − X̄)F (F TF )−1F T (Xyi − X̄)T

)

/n, (2.16)

5. Find the maximum likelihood estimators (Γ̂, σ̂2, µ̂) under model (2.5),

Γ̂ =
[

φ̂
T

1 , · · · , φ̂
T

d

]T

, σ̂2 =

∑p
i=1 λ̂i −

∑d
i=1 λ̂

fit
i

p
, and µ̂ = X̄ (2.17)

where φ̂1, · · · , φ̂d is an orthogonal basis of the eigenspace associated with the

algebraically largest d eigenvalues λ̂fit
1 ≥ · · · ≥ λ̂fit

d of Σ̂fit,n.

6. The PFC directions are the vectors

φ̂
T

1X, · · · , φ̂T

dX. (2.18)

7. (Optional) Given Γ̂, calculate β̂ by using

β̂ = Γ̂
T
X

TF (F TF )−1, (2.19)

where X is the n× p matrix with rows (Xyi − X̄)T .
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2.4 PFC and SIR

In the PFC model (2.5), when Y is univariate and graphical guidance is not

available, f y could be constructed by first partitioning the range of Y into h = r+1

“slices” or bins Hk , and then setting the kth coordinate fyk of f y to fyk = 1{y ∈

Hk} − nk/n, k = 1, . . . , r, where 1 is the indicator function and nk is the number

of observations falling in Hk. This is equivalent to the SIR model proposed by Li

(1991).
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Chapter 3: Likelihood-based Principal Fitted Component Model

In Chapter 3, we focus on extending the principal fitted component model to a

objective function-based principal fitted component model without the assumption

of normality or any other distributional assumptions. By using eigenvalue decom-

position optimization, one can minimize the desired objective functions without

assuming that the conditional distribution of X given Y is normal. We also address

the known large sample theory discovered by Johnson (2008) and Cook (2007) and

Cook and Forzani (2008).

3.1 Eigenvalue Decomposition Optimization Revisited

In this section, we describe several well-known results from linear algebra that

we apply throughout Section 3.2.

Theorem 3.1.1 Consider a symmetric matrix M with dimension n × n and an

arbitrary orthogonal matrix V of dimension n × d. With M fixed, the trace of

V TMV is minimized when V is an orthogonal basis for the eigenspace associated

with the d algebraically smallest eigenvalues of M . Also, With M fixed, the trace of

V TMV is maximized when V is an orthogonal basis for the eigenspace associated

with the d algebraically largest eigenvalues of M .
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Theorem 3.1.1 implies that minimum of trace(V TMV ) is achieved by using the

eigenbasis itself to form the columns of V although this minimizer is certainly

not be unique. That is, if the eigenvalues of M are labeled in increasing order

λ1 ≤ · · · ≤ λn and u1, . . . , ud are the eigenvectors associated with the eigenvalues

λ1 ≤ · · · ≤ λd, then V̂ = [u1, . . . , ud] minimizes trace(V TMV ).

Similarly, if the optimization problem is to maximize trace(V TMV ) with V

restricted to be an orthogonal matrix of dimension n×d, then an optimal choice of V

uses the orthogonal basis for the eigenspace associated with the largest d eigenvalues

of M . That is, if the eigenvalues of M are labeled in decreasing order and u1, . . . , ud

are the eigenvectors associated with these first d eigenvalues λ1 ≥ · · · ≥ λd, then

V̂ = [u1, . . . , ud] maximizes trace(V TMV ) over the space of all n × d orthogonal

matrices.

3.2 Likelihood-based PC and PFC model

In contrast to the PFC model in (2.5), we do not assume that Xy is normally

distributed in this dissertation. Thus, the model of likelihood-based PC is the

following:

Xy = µ+ Γνy + ε, (3.1)

where Γ ∈ R
p×d, d < p, ΓTΓ = Id and the error term ε is independent of Y

with E(ε) = 0 and V ar(ε) = σ2I. We assume that Xy is not necessary normally

distributed, that its mean is µy = µ + Γνy and that its positive definite variance-
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covariance matrix is ∆. Also, the model of likelihood-based PFC is given by

Xy = µ̄+ Γβ{fy −E(fY )}+ ε = µ+ Γβf y + ε, (3.2)

where fy ∈ R
r, β ∈ R

d×r, and d ≤ min(r, p) the error term ε is independent of Y

with E(ε) = 0 and V ar(ε) = σ2I.

We can not use the maximum likelihood estimation in order to estimate the

PFC components. Instead, analogous to maximum likelihood estimation in the

normal distribution case, we will minimize the negative Gaussian log likelihood

associated with PC and PFC defined as (3.1) and (3.2) in order to estimate the

model parameters. Optimizing that objective function in equation (3.4) and (3.8)

is achieved by applying the results from Section 3.1 and we have the following

theorems.

Theorem 3.2.1 (Cook and Forzani (2008); Cook (2007)) Define

Σ̂n =

(

∑

y

(Xy − X̄)(Xy − X̄)T

)

/n, (3.3)

to be sample covariance matrix of (Xy − X̄). Under the likelihood-based PC model

(3.1) with the added assumption that ∆ = σ2Ip, denote Γ̂ as the estimator of Γ,

σ̂2 as the estimator of σ2 and µ̂ as the estimator of µ. These estimators (Γ̂, σ̂2, µ̂)

minimize the objective function

J (Γ, σ2,µ) = (np/2) log(σ2) + (1/2σ2)
n
∑

i=1

‖Xyi − µ− Γνyi‖2 (3.4)

whenever

Γ̂ =
[

γ̂T
1 , · · · , γ̂T

d

]T
and σ̂2 =

1

p

p
∑

i=d+1

λ̂i and µ̂ = X̄, (3.5)
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where γ̂1, · · · , γ̂d is an orthogonal basis of the eigenspace associated with the alge-

braically largest d eigenvalues λ̂1 ≥ · · · ≥ λ̂d of Σ̂n. We call γ̂T
1X, · · · , γ̂T

dX the

principal components (PC). Using these estimates, we may express ν̂y as

ν̂y = ΓT (Xy − X̄). (3.6)

Theorem 3.2.2 ( Cook and Forzani (2008); Cook (2007) ) Let F denote the

n × r matrix with rows fT
y where fy ∈ R

r is a known vector-valued function of y

with linearly independent elements. Define

Σ̂fit,n =

(

n
∑

i=1

(Xyi − X̄)F (F TF )−1F T (Xyi − X̄)T

)

/n. (3.7)

Suppose that the likelihood-based PFC model (3.2) with the added assumption that

∆ = σ2Ip holds, and suppose that β ∈ R
d×r, d ≤ r, is an unrestricted rank d matrix.

The estimators (Γ̂, σ̂2,µ) minimize the objective function

J (Γ, σ2,µ) = (np/2) log(σ2) + (1/2σ2)
n
∑

i=1

∥

∥Xyi − µ− Γβfyi

∥

∥

2
(3.8)

whenever

Γ̂ =
[

φ̂
T

1 , · · · , φ̂
T

d

]T

and σ̂2 =

∑p
i=1 λ̂i −

∑d
i=1 λ̂

fit
i

p
, and µ̂ = X̄ (3.9)

where φ̂1, · · · , φ̂d is an orthogonal basis of the eigenspace associated with the alge-

braically largest d eigenvalues λ̂fit
1 ≥ · · · ≥ λ̂fit

d of Σ̂fit,n. We call φ̂
T

1X, · · · , φ̂T

dX

the principal fitted components (PFC). Using these estimators we may express β̂ as

β̂ = ΓT
X

TF (F TF )−1. (3.10)
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3.2.1 The Choice of F in the PFC model

Cook and Forzani (2008) and Cook (2007) suggested to choose the adequate

covariates f y in model (3.2) by their experiences with simulations. For example, if it

is decided that each inverse mean function E(Xj |Y = y) can be modeled adequately

by a cubic polynomial in y, then f y equals (y, y2, y3)T minus its sample average. If

E(Xj|Y = y) can be modeled by arbitrary order of polynomial of order r, then f y

equals (y, . . . , yr)T minus its sample average. When Y is univariate and graphical

guidance is not available, the kth coordinate fyk of f y can take the form of

fyk = 1{y ∈ Hk} − nk/n, k = 1, . . . , r, (3.11)

where the range of Y get partitioned into h = r+1 slices or binsHk, 1 is the indicator

function and nk is the number of observations falling in Hk as mentioned in Section

2.4. Cook and Forzani (2008) and Cook (2007) also suggest other possibilities for

basis functions, such as a classical Fourier series form. For these reasons, the PFC

models can effectively deal with the nonlinear relationship between the predictors

and the response. However, all of those choices of f y may be ad-hoc and can cause

some bias when fit the true model which is unknown in the real world. To illustrate

we show the box plots of angles according to the choice of fy by using the simulation

example in Section 6.1.2. In Figure 3.1, we display the effect of various polynomial

choices of fy when the true fy is exponential. The performance of PFC with

f y = (y, y2, . . . , yk) and k ≥ 3 was notably better than PFC with either f y = (y)

or f y = (y, y2). Also, the performance of PFC with fy = (y, y2, . . . , yk) and k ≥ 4
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was essentially the same as when using PFC with the true model f y = exp(y).

This demonstrates the importance of choosing an appropriate F in order to avoid

substantial bias when fitting the model. Instead of using PFC, which is a parametric

model for a fixed F , we employ a more flexible semi-parametric model to estimate

the inverse regression curve by using the spline estimation approach discussed in

Chapter 4.
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Figure 3.1: Boxplots of the angle between each of seven estimators and SΓ. Boxplots

1, . . . , 7 are for the PFC estimators under various choices for fy: boxplots 1, . . . , 6

are labeled according to the last term in f y = (y, y2, . . . , yk)T , k = 1, . . . , 6. The

last boxplot is for fy = exp(y).
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3.3 Large Sample Theory of Likelihood-based PFC Model

Consider the PFC model 2.5. We have Γ̂ in 3.2.2, an orthogonal basis of

the eigenspace associated with the algebraically largest d eigenvalues of Σ̂fit,n =

X
TF (F TF )−1F T

X/n, where X is an n× p matrix with rows given by (Xy − X̄)T .

Let X
TF (F TF )−1F T

X = X̂
T
X̂. Then X̂ = P FX which is the fitted matrix of

predictors. In this section, we analyze the properties of PFC estimators based on the

likelihood type of objective function. We refer to Johnson (2008), Cook (2007), and

Cook and Forzani (2008) to address the theoretical properties of these estimators.

We write Γ̂PFC for estimates of Γ for the sake of brevity. An estimate Γ̂PFC of Γ is

given by the set of d eigenvectors of the fitted sample covariance matrix X̂
T
X̂ which

correspond to largest d eigenvalues.

3.3.1
√
n Consistency of Likelihood-based PFC Estimates Revisited

The PFC model satisfies the following theorems, according to the results of

Johnson (2008), Cook (2007), and Cook and Forzani (2008).

Definition 3.3.1 For true Γ and estimated value Γ̂PFC, define

C(Γ̂PFC,Γ) =
‖P ΓΓ̂PFC‖2F

‖(Ip − P Γ)Γ̂PFC)‖2F
. (3.12)

The quantity C(Γ̂PFC,Γ) measures the proportion of the magnitude of the estimate

Γ̂PFC which lies in the span of the columns of Γ, and hence measures how good

an estimate of the span of Γ is provided by Γ̂PFC. In the case r = d = 1, this is

compatible with Cooks plots of the angle Θ(Γ̂PFC,Γ) between true Γ and estimated
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Γ̂PFC (Cook (2007); Cook and Forzani (2008)), in the sense that for any Γ̂PFC and

Γ the C(Γ̂PFC,Γ) = cot2Θ(Γ̂PFC,Γ).

Theorem 3.3.2 (Johnson (2008)) Let Θ(Γ̂PFC ,Γ) denote the angle between true

Γ and estimated Γ̂PFC. In the case where d = r and the errors ǫ are independent

and symmetric with variance σ2 and finite fourth moment, then we can construct

confidence intervals such that

P

(

Θ(Γ̂PFC,Γ) ≥ Θ∗
+(α)

)

≤ α, (3.13)

P

(

Θ(Γ̂PFC,Γ) ≥ Θ∗
−(α)

)

≤ α, (3.14)

where for any fixed α, the Θ∗
±(α) = O(1/

√
n).

Johnson (2008) assumes F is the true F . It never happens in a real world so one

have to be careful when choose F . Also Johnson (2008) assumes PFC model is

exactly true. PFC model was suggested by Cook and Johson proved some theorems

about PFC based on the distributional assumption of X|Y = y. Also, this assumes

that inverse regression model follows the normal distribution and it is not promise

in the real world data.

Theorem 3.3.3 (Cook (2007); Cook and Forzani (2008)) Assume the PFC model

(2.5) with uncorrelated but not necessarily normal errors; that is, V ar(ε) = σ2Ip.

Then

Σ̂ −→p Σ = σ2Ip + ΓVar(fY β
T )ΓT ,

Σ̂fit −→p Σfit = ΓVar(fY β
T )ΓT ,

Σ̂res −→p Σres = σ2Ip,
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where

Σ = Var(X) = E(Var(X|Y )) + Var(E(X|Y ))

= σ2Ip + ΓVar(fY β
T )ΓT = Σres +Σfit.
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Chapter 4: Likelihood-based Principal Fitted Spline ComponentModel

4.1 Motivation

In high-dimensional data analysis, we often want to reduce the number of

predictors without eliminating variables which are related to the response of interest.

Inverse regression methods use the response variable when performing dimension

reduction so that information regarding the relation between the covariates and the

response is not lost. However, it is common to assume that the inverse regression

function is linear or to use some other ad hoc approach. Instead, we propose a

new dimension reduction method which models the inverse regression function as

a spline, namely principal fitted spline components model (PFSC) by extending

Cook’s principal fitted component model (PFC) ( Cook and Forzani (2008); Cook

(2007)) described in Chapter 2. We develop asymptotics for our approach for the

case when the support of the response Y is contained in a bounded compact set.

4.2 Spline Regression

A spline (de Boor (2001)) is defined as a piecewise polynomial over a set of

knots. Let S(m, t) be the set of spline functions with order m (or equivalently,
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degree m− 1) and a nondecreasing sequence of real numbers t called knots. A basis

for S(m, t) is the collection of B-spline basis functions which are defined as

Definition 4.2.1 (B-spline basis functions). Let m be a nonnegative integer and

let t = (tj), the knot vector or knot sequence, be a nondecreasing sequence of real

numbers of length at least m+ 2. The jth B-spline of order m (degree m− 1) with

knots t is defined by

fj,m,t(y) =
y − tj

tj+m − tj
fj,m−1,t(y) +

tj+m+1 − y

tj+m+1 − tj+1
fj+1,m,t(y) (4.1)

for all real number y, with

fj,1,t(y) =















1, tj ≤ y < tj+1;

0, otherwise,

for j = 1, . . . , k0(n) + 1.

Spline functions are linear combinations of members of the B-spline basis.

Definition 4.2.2 (Spline functions). Let t = (tj)
k0(n)+m+1
j=1 be a nondecreasing se-

quence of real numbers, that is, a knot vector for a total of k0(n) + 1 B-splines,

t(yn) = {a = t1,n < t2,n < · · · < tk0(n)+m+1,n = b}, (4.2)

where k0(n) is referred to as the number of internal knots. The linear space of all

linear combinations of these B-splines is the spline space Sm,t defined by

Sm,t = span{f1,m, . . . , fk0(n)+1,m} (4.3)

=







k0(n)+1
∑

j=1

βjfj,m|βj ∈ R for 1 ≤ j ≤ k0(n) + 1







(4.4)
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An element s =
∑k0(n)+1

j=1 βjfj,m of Sm,t is called a spline function, or just a spline,

of degree m with knots t, and βj are called the B-spline coefficients of s. In other

words, when m = 1, S(m, t(yn)) is the set of step functions with jumps at the knots

and, for m ≥ 2,

S(m, t(yn)) = {s ∈ C(m−2)[a, b] : s(y) is a polynomial of degree ≤ (m− 1)

on each subinterval [ti,n, ti+1,n]},

where C(m−2)[a, b] is the space of functions on [a, b] that have m − 2 continuous

derivatives.

We denote the vector of B-spline basis functions evaluated at y by

fn
m(y) =

(

f1,m,t(y), . . . , fk0(n)+1,m,t(y)
)T

. (4.5)

Importantly, the set of functions {fi,m(·)}k0(n)+1
i=1 forms a basis for S(m, t(yn)). Let

us also define hi,n by

hi,n = ti+1,n − ti,n, i = 1, . . . , k0(n) + 2, (4.6)

where hi,n is the distance between neighboring knots. The two following examples

show the form of the B-spline basis functions when there are only several equally

spaced knots in between 0 and 1.

Example 4.2.3 The basis functions of order m = 1 (degree = 0 ).

Suppose the knot vector is t = {0, 0.25, 0.5, 0.75, 1}. Hence, k0(n) + 2 = 5 and

t1 = 0, t2 = 0.25, t3 = 0.5, t4 = 0.75, and t5 = 1. Then the basis functions of degree
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0 {f1,0(y), . . . , f4,0(y)} are simply indicator functions

f1,0(y) =















1, y ∈ [0, 0.25)

0, otherwise

f2,0(y) =















1, y ∈ [0, 0.5)

0, otherwise

f3,0(y) =















1, y ∈ [0.5, 0.75)

0, otherwise

f4,0(y) =















1, y ∈ [0.75, 1)

0, otherwise

Example 4.2.4 The basis functions of order m = 2 (degree = 1)

With the same knots in the Example 4.2.3, the basis functions of degree 1 are the

following.

f1,1(y) =















4y, y ∈ [0, 0.25)

2(1− 2y), y ∈ [0.25, 0.5)

f2,1(y) =















4y − 1, y ∈ [0, 0.25)

3− 4y, y ∈ [0.5, 0.75)

f3,1(y) =















2(2y − 1), y ∈ [0.5, 0.75)

4(1− y), y ∈ [0.75, 1)
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4.3 Principal Fitted Spline Components Model

In contrast to the PFC model in (2.5), we do not assume that Xy is normally

distributed so we may not directly use the maximum likelihood estimates described

in Theorem 3.2.2 in order to estimate the PFC components. However, we still

use the likelihood-based objective function defined in (3.8) of Theorem 3.2.2 in

order to estimate the model parameters. Additionally, our method for producing f y

differs from Cook and Forzani (2008) and Cook (2007) in that it uses B-spline basis

functions to construct f y. Because the objective function in (3.8) involves fy, the

estimates (Γ, σ,µ) depend on f y, and hence the construction of fy deserves careful

consideration.

As in the PFC model, we express the conditional expectation ofX given Y = y

as

E(X|Y = y) = µ+ Γg(y), (4.7)

where Γ ∈ R
p×d, d < p, ΓTΓ = Id. We approximate g(y) with the spline function

β∗fm(y) where β
∗ ∈ R

d×(k0(n)+1) and fm(y) ∈ R
(k0(n)+1)×1 is a vector of spline basis

functions with k0(n) interior knots. We may then rewrite the inverse regression

curve as

E(X|Y = y) = µ+ Γβ∗fm(y) + Γb(y), (4.8)

where b(y) denotes the approximation error. If we assume that the inverse regression

has a “signal-plus-noise” form, we may rewrite (4.8) as

X|(Y = y) = µ+ Γβ∗fm(y) + Γb(y) + ε = Γg(y) + ε. (4.9)
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where Γ ∈ R
p×d, d < p, ΓTΓ = Id and the error term ε is independent of Y with

E(ε) = 0 and V ar(ε) = σ2I. Given data {(X1, y1), . . . , (Xn, yn)}, the inverse

regression problem may be then be formulated as

X i|(Y = yi) = µ+ Γβ∗fm(yi) + Γb(yi) + ε = Γg(yi) + εi. (4.10)

4.4 B-spline basis functions

Consider the inverse regression problem of estimating g(y) in (4.10). Assume

yi ∈ [a, b] and a, b ∈ R. To estimate the inverse regression function, we consider

spline approximation. The definition of splines and the B-spline basis functions are

given in Definitions 4.2.1 and 4.2.2.

4.4.1 Algorithm of PFSC model

To solve (4.9) for β, it is helpful to first introduce the following matrix notation

X = X − X̄ = µ− X̄ + FβTΓT +E, (4.11)

where F = [fm(y1)
T , . . . , fm(yn)

T ]T , E = [εT1 . . . εTn ]
T , X ∈ R

n×p, F ∈ R
n×(k0(n)+1),

β ∈ R
d×(k0(n)+1), and E ∈ R

n×p.

1. For given Γ, to estimate g(y) in (4.9), we use a least squares criterion which is

based on a likelihood-type objective function. The regression spline estimator

of order m for Γg(y) is defined to be the least squares minimizer Γĝ(y) based

on the data {(xi, yi)} drawn from model (4.10), with the B-spline basis. That

is, Γĝ(y) is defined to be the minimizer Γĝ(y) = µ̂+ Γ̂β̂fm(y) of the following
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objective function

J (Γ, σ,β,µ) = (np/2) log(σ2)+(1/2σ2)
n
∑

i=1

‖Xyi − µ− Γβfm(yi)‖2 , (4.12)

where fm(y) is the vector of spline basis functions defined in (4.5).

2. Compute the sample mean of X,

X̄ =
1

n

n
∑

i=1

Xyi (4.13)

3. Compute the sample covariance for Xyi,

Σ̂n =

(

n
∑

i

(Xyi − X̄)(Xyi − X̄)T

)

/n. (4.14)

4. Compute the sample conditional covariance for Xyi|Y = yi,

Σ̂fit,n =

(

n
∑

i=1

(Xyi − X̄)F (F TF )−1F T (Xyi − X̄)T

)

/n, (4.15)

5. Find the maximum likelihood estimators (Γ̂, σ̂2, µ̂) under model (2.5),

Γ̂ =
[

φ̂
T

1 , · · · , φ̂
T

d

]T

, σ̂2 =

∑p
i=1 λ̂i −

∑d
i=1 λ̂

fit
i

p
, and µ̂ = X̄ (4.16)

where φ̂1, · · · , φ̂d is an orthogonal basis of the eigenspace associated with the

algebraically largest d eigenvalues λ̂fit
1 ≥ · · · ≥ λ̂fit

d of Σ̂fit,n.

6. The PFSC directions are the vectors

φ̂
T

1X, · · · , φ̂T

dX. (4.17)

7. (Optional) For a given estimate Γ̂, calculate β̂ to minimize the criterion (4.12)

β̂ = Γ̂
T
X

TF (F TF )−1, (4.18)

where X is the n× p matrix with rows (Xyi − X̄)T .
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4.4.2 Sufficiency of PFSC

In this Section, we show the PFSC directions in (4.17) are sufficient as in

Definition 1.2.5. The following proposition states the PFSC directions from PFSC

model (4.9) is sufficient with the inverse regression condition in Definition 1.2.5.

Proposition 4.4.1 Under the PFSC model 4.9, the distribution of X|(Y,R(X)) is

the same as the distribution of X|R(X) where R(X) is the reduction R(X) = ΓTX.

This implies that R(X) is a sufficient reduction.

Proof Recall model (4.9),

X = Γg(Y ) + ε. (4.19)

Since R(X) = ΓTX,

R(X) = ΓT (Γg(Y ) + ε) = g(Y ) + ΓTε. (4.20)

and hence

g(Y ) = R(X)− ΓTε. (4.21)

Therefore,

X = Γ
(

R(X)− ΓTε
)

+ ε

= ΓR(X) + (I − ΓΓT )ε. (4.22)

Since ε and Y are independent, we achieved

X|(Y,R(X)) ∼ X|R(X) (4.23)

and from Definition 1.2.5, R(X) is a sufficient reduction.
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It is interesting to note that the sufficiency of R(X) does not require any distribu-

tional assumptions about the error term ǫ.

4.4.3 Relationship between Spline Estimates

In the following two sections, we will provide local and global asymptotics

for the case when Y is bounded. To show this, we will refer to the spline model

described in Zhou et al. (1998). Here, we give an explanation of the relationship

between our estimation procedure and the spline estimates in Zhou et al. (1998).

Note that

n
∑

i=1

‖Xyi − µ− Γβfm(yi)‖2 =
∥

∥X− Fmβ
TΓT

∥

∥

2

F
, (4.24)

where ‖·‖ denotes the Frobenius norm. Since Γ is a p×d orthogonal (or orthonormal)

matrix, we can find a (p − d) × p orthogonal matrix Γ⊥ such that [Γ;Γ⊥] is p × p

orthogonal. Using Γ⊥, we can express (4.24) as

∥

∥X− Fmβ
TΓT

∥

∥

2

F
= ‖XΓ⊥‖2F +

∥

∥XΓ− Fmβ
T
∥

∥

2

F
. (4.25)

Therefore, the objective function in (4.12) can be rewritten as

J (Γ, σ,β,µ) = (np/2) log(σ2) + (1/2σ2)

n
∑

i=1

‖Xyi − µ− Γβfm(yi)‖2 ,

= (np/2) log(σ2) + (1/2σ2)
n
∑

i=1

∥

∥ΓT
⊥(Xyi − µ)

∥

∥

2

+(1/2σ2)

n
∑

i=1

∥

∥ΓT (Xyi − µ)− βfm(yi)
∥

∥

2
, (4.26)

where fm(y) is the vector of spline basis functions defined in (4.5). Consequently,

for given Γ, µ, and σ, the problem of finding the estimator of β which minimizes
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the objective in (4.26) can be reduced to the following optimization problem:

β̂ = arg minβ

n
∑

i=1

∥

∥ΓT (Xyi − µ)− βfm(yi)
∥

∥

2
(4.27)

If we define Wk(yi,β) to be the kth component of ΓT (Xyi −µ)−βfm(yi), then we

can rewrite (4.27) as

β̂ = arg minβ

n
∑

i=1

d
∑

k=1

W 2
k (yi,β)

= arg minβ

d
∑

k=1

n
∑

i=1

W 2
k (yi,β) (4.28)

and in noting that Wk(yi,β) = Wk(yi,βj) only depends on the kth row of β gives

β̂ = arg minβ

d
∑

k=1

n
∑

i=1

W 2
k (yi,βk) (4.29)

Clearly, if β̂k minimizes
∑n

i=1W
2
k (yi,βj) for each k, then the associated matrix β̂

will solve the minimization problem in (4.27). That is, solving (4.27) is equivalent

to solving d minimization problems separately.

To relate the objective in (4.27) to the spline regression model in Zhou et al.

(1998), consider the following

Zyi = ΓT (Xyi − µ) (4.30)

uyi = ΓTεi, (4.31)

where E(εi) = 0, and Var(εi) = σ2Id. Then, finding β to optimize (4.27) is the

same as finding estimator of g(yi) in the following model

Zyi = g(yi) + ui, (4.32)
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where Zyi = (Zi1, . . . , Zid)
T , g(yi) = (g1(yi), . . . , gd(yi))

T , and ui = (ui1, . . . , uid)
T .

As stated before, the estimate can be found by looking at each component separately,

which from (4.32) is

Zyik = gk(yi) + uik, for k = 1, . . . , d (4.33)

with the corresponding minimization criterion

β̂k = arg minβ
j

n
∑

i=1

(Zyik − βkfm(yi))
2 (4.34)

The univariate model in (4.33) and (4.34) is the same as in Zhou et al. (1998) except

that yi plays the role of xi, Zyik plays the role of yi, and gk(·) plays the role of f(·).

Thus, we can apply the results of Zhou et al. (1998) to each component of our spline

estimator

In the following two sections, we investigate the local and global asymptotic

theory for PFSC by using the results from Zhou et al. (1998).

4.5 Local Asymptotic Theory of PFSC for Bounded Random Vari-

able Y

The asymptotics of regression splines was investigated by Zhou et al. (1998)

where the design points {Xi}ni=1 were assumed to be bounded in [0, 1] and assumed

to be either deterministic or random.
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4.5.1 Conditions

To study the asymptotic bias and variance of Γĝ(y), we need to specify several

conditions.

1. For each component ge(y) of g(y), we have g(y) ∈ Cm+1([a, b]), where y ∈ [a, b]

and e = 1, . . . , d.

2. The data {(X1, y1), . . . , (Xn, yn)} are i.i.d. with yi having the same marginal

distribution as Y , and where the support of Y is contained in [a, b]. More-

over, Y has an absolutely continuous distribution Q with density q(y) that is

bounded above by qmax.

3. There exists a pre-determined constantM2 > 0 such that h(t(yn))/hmin(t(yn)) ≤

M2 a.s., where hi,n = ti,n − ti−1,n, h(t(yn)) = maxi hi,n, and hmin(t(yn)) =

mini hi,n. In addition, maxi |hi+1,n − hi,n| = op(1/k0(n))

4. As n −→ ∞, k0(n) = o(nr), where r ∈ (0, 1/2].

5. The number of interior knots satisfying

k0(n) ≥ Cn1/(2m+1), (4.35)

for some constant C > 0.

4.5.2 Asymptotic bias and variance of Γĝ(y)

We first apply a result from Zhou et al. (1998) which gives us a sense of the

order of the bias of the estimate ĝ(y).
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Theorem 4.5.1 [Zhou et al. (1998)]. Suppose that Γ is fixed and known, and

suppose that assumptions (1)-(4) are satisfied. Define Γĝ(y) = Γβ̂fm(y). Then,

for any y ∈ (ti,n, ti+1,n] , the following holds

E(Γĝ(y)|yn)− Γg(y) = Γb(y) + op(h(t(yn))
m),

where the eth component of b(y) is defined to be

be(y) = −
g
(m)
e (y)hm

i,n

m!
Bm

(

y − ti,n
hi,n

)

. (4.36)

Here Bm(·) is the m-th Bernoulli polynomial, which is the coefficient of tm in the

power series expansion

exp(tx)

1− exp(t)
=

∞
∑

m=0

Bm(x)
tm

m!
. (4.37)

The following theorem addresses the variance of ĝ(y).

Theorem 4.5.2 [Zhou et al. (1998)]. Let conditions (1)-(4) in Section 4.5.1 hold.

Then for any y ∈ (ti,n, ti+1,n], i = 0, . . . , k0(n),

Var(Γĝ(y)|yn) = ΓVar((β̂)fm(y)|yn)Γ
T

=
σ2

n
ΓF T (y)G−1(q)F (y)ΓT + op((nh(t(yn))

−1), (4.38)

and

G(q) =

∫

F (y)F T (y)q(y)dy. (4.39)

4.5.3 Asymptotic normality of Γĝ(y)

In Theorem 4.5.3, we study the asymptotic distribution of a properly stan-

dardized Γĝ(y).
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Theorem 4.5.3 [Zhou et al. (1998)].. In addition to the conditions in Theorem

4.5.1, let condition (5) also hold, and suppose that the {ǫi}ni=1 are independently

and identically distributed with mean 0 and variance σ2. Then, for any fixed y ∈

(ti,n, ti+1,n],

V −1/2
n

(

Γĝ(y)− [Γg(y) + Γb(y)]
)

−→d N(0,ΓΓT ), (4.40)

where

Vn = Var{β̂fm(y)|yn}. (4.41)

4.6 Global Asymptotic Theory of PFSC for a Bounded Random Vari-

able Y

In this section, we investigate the large sample theory for an estimate of the

fitted covariance matrix. The fitted covariance matrix is defined to be

Σfit = Γ

























E{g21(Y )} E{g1(Y )g2(Y )} · · · E{g1(Y )gd(Y )}

E{g1(Y )g2(Y )} E{g22(Y )} · · · E{g2(Y )gd(Y )}
...

...
. . .

...

E{gd(Y )g1(Y )} E{gd(Y )g2(Y )} · · · E{g2d(Y )}

























ΓT . (4.42)

and our estimate of the fitted covariance matrix of g(yi) in (4.32) is defined as

Σ̂n,fit = Γ
1

n

















ĝ1(y1) · · · ĝ1(yn)

...
. . .

...

ĝd(yn) · · · ĝd(yn)

































ĝ1(y1) · · · ĝd(y1)

...
. . .

...

ĝ1(yn) · · · ĝd(yn)

















ΓT . (4.43)
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Before addressing the asymptotic behavior of Σ̂n,fit, we first need to establish the

following two lemmas.

Lemma 4.6.1 Under conditions (1)–(4) of Section 4.5.1, we have that for any

e ∈ {1, . . . , d}

sup
a≤y≤b

|E{ĝe(y)− ge(y)|yn}| −→P 0. (4.44)

and

sup
a≤y≤b

E
{

(ĝne(y)− ge(y))
2
∣

∣

∣
yn

}

−→P 0. (4.45)

Proof First note that

E
{

(ĝne(y)− ge(y))
2
∣

∣

∣
yn

}

= E
{

(ĝne(y)−E{ĝne(y)|yn})2
∣

∣

∣
yn

}

+2E
{

(ĝne(y)−E{ĝne(y)|yn})(E{ĝne(y)|yn} − ge(y))
∣

∣

∣
yn

}

+E
{

(E{ĝne(y)|yn} − ge(y))
2
∣

∣

∣
yn

}

= E
{

(ĝne(y)−E{ĝne(y)|yn})2
∣

∣

∣
yn

}

+ (E{ĝne(y)|yn} − ge(y))
2

= Var{ĝne(y)|yn}+ (E{ĝne(y)|yn} − ge(y))
2, (4.46)

which means that

sup
a≤y≤b

E
{

(ĝne(y)− ge(y))
2
∣

∣

∣
yn

}

≤ sup
a≤y≤b

Var{ĝne(y)|yn}+ ( sup
a≤y≤b

E{ĝne(y)|yn} − ge(y))
2 (4.47)

For the second term in (4.47), we can note that from equation (25) in Zhou et al.
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(1998)

sup
a≤y≤b

|E{ĝe(y)|yn} − seg,n(x)| = op(h
m) (4.48)

where from equation (21) in Zhou et al. (1998) seg,n(x) is a function such that

sup
a≤y≤b

|seg,n(y)− ge(y)| ≤ sup
a≤y≤b

|be(y)|+ o(hm), (4.49)

where be(·) is as defined in Theorem 4.5.1 and satisfies ||be(y)||∞ = o(hm). Hence,

sup
a≤y≤b

|E{ĝe(y)|yn} − ge(y)|

≤ sup
a≤y≤b

|E{ĝe(y)|yn} − seg,n(y)|+ sup
a≤y≤b

|seg,n(y)− ge(y)|

= op(h
m) + o(hm) = op(h

m). (4.50)

From Lemma 6.6 in Zhou et al. (1998), we have that

sup
a≤y≤b

Var{ĝne(y)|yn} ≤ cn−1λ−1
min (4.51)

where c is some constant and n−1λ−1
min −→P 0 where λmin is the minimum eigenvalue

of FF T/n. Thus,

sup
a≤y≤b

Var{ĝne(y)|yn} −→P 0. (4.52)

Lemma 4.6.2 If we let ĝne(y) be the eth component of ĝn(y) and let ge(y) denote

the eth component of g(y), then from Lemma 4.6.1 we have

sup
a≤y≤b

∣

∣

∣
E
{

ĝne(y)−ge(y)
∣

∣

∣
yn

}∣

∣

∣
−→P 0 and sup

a≤y≤b

∣

∣

∣
E
{

ĝnf(y)−gf(y)
∣

∣

∣
yn

}∣

∣

∣
−→P 0

and

sup
a≤y≤b

E
{

(ĝne(y)−ge(y))
2
∣

∣

∣
yn

}

−→P 0 and sup
a≤y≤b

E
{

(ĝnf(y)−gf(y))
2
∣

∣

∣
yn

}

−→P 0.
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This implies

sup
a≤y≤b

∣

∣

∣
E
{

ĝne(y)ĝnf(y)− ge(y)gf(y)
∣

∣

∣
yn

}∣

∣

∣
−→P 0. (4.53)

Proof Note that

sup
a≤y≤b

∣

∣

∣
E
{

ĝne(y)ĝnf(y)− ge(y)gf(y)
∣

∣

∣
yn

}∣

∣

∣

= sup
a≤y≤b

∣

∣

∣
E
{

ĝne(y)(ĝnf(y)− gf(y)) + gf(y)(ĝne(y)− ge(y))
∣

∣

∣
yn

}∣

∣

∣

≤ sup
a≤y≤b

∣

∣

∣
E
{

ĝne(y)(ĝnf(y)− gf(y))
∣

∣

∣
yn

}∣

∣

∣
+ sup

a≤y≤b

∣

∣

∣
gf(y)E

{

ĝne(y)− ge(y)
∣

∣

∣
yn

}∣

∣

∣

≤ sup
a≤y≤b

E
{

|ĝne(y)(ĝnf(y)− gf (y))|
∣

∣

∣
yn

}

+ sup
a≤y≤b

||gf ||∞
∣

∣

∣
E
{

ĝne(y)− ge(y)
∣

∣

∣
yn

}∣

∣

∣

≤ sup
a≤y≤b

√

E
{

ĝ2ne(y)
∣

∣

∣
yn

}

√

E
{

(ĝnf(y)− gf(y))2
∣

∣

∣
yn

}

+||gf ||∞ sup
a≤y≤b

∣

∣

∣
E
{

ĝne(y)− ge(y)
∣

∣

∣
yn

}∣

∣

∣

≤ sup
a≤y≤b

√

E
{

ĝ2ne(y)
∣

∣

∣
yn

}

sup
a≤y≤b

√

E
{

(ĝnf(y)− gf(y))2
∣

∣

∣
yn

}

+||gf ||∞ sup
a≤y≤b

∣

∣

∣
E
{

ĝne(y)− ge(y)
∣

∣

∣
yn

}∣

∣

∣

≤ sup
a≤y≤b

√

2g2e(y) + 2E
{

(ĝne(y)− ge(y))2
∣

∣

∣
yn

}

sup
a≤y≤b

√

E
{

(ĝnf(y)− gf(y))2
∣

∣

∣
yn

}

+||gf ||∞ sup
a≤y≤b

∣

∣

∣
E
{

ĝne(y)− ge(y)
∣

∣

∣
yn

}∣

∣

∣
(4.54)

Since gf is assumed to be continuous, ||gf ||∞ = supa≤y≤b |gf(y)| is finite.

Theorem 4.6.3 Under conditions (1)–(4) of Section 4.5.1

Σ̂n,fit −→P Σfit (4.55)

Proof If we look back at (4.43), we can see that Σ̂n,fit = ΓB̂nΓ
T where B̂n is the

matrix whose (e, f) entry is given by

B̂
(e,f)

n =
1

n

n
∑

i=1

ge(yi)gf(yi). (4.56)
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Now observe that

∣

∣

∣
B̂

(e,f)

n −E{ge(Y )gf(Y )}
∣

∣

∣

=
∣

∣

∣

1

n

n
∑

i=1

ĝne(yi)ĝnf(yi)− E{ge(Y )gf(Y )}
∣

∣

∣

=
∣

∣

∣
E
( 1

n

n
∑

i=1

ĝne(yi)ĝnf(yi)
∣

∣

∣
yn

)

− E{ge(Y )gf(Y )}
∣

∣

∣

≤
∣

∣

∣
E
(1

n

n
∑

i=1

[ĝne(yi)ĝnf(yi)− ge(yi)gf(yi)]
∣

∣

∣
yn

)∣

∣

∣

+
∣

∣

∣
E
(1

n

n
∑

i=1

ge(yi)gf(yi)
∣

∣

∣
yn

)

− E{ge(Y )gf(Y )}
∣

∣

∣

≤ sup
a≤y≤b

∣

∣

∣
E
(

ĝne(y)ĝnf(y)− ge(y)gf(y)
∣

∣

∣
yn

)∣

∣

∣

+
∣

∣

∣

1

n

n
∑

i=1

ge(yi)gf(yi)−E{ge(Y )gf(Y )}
∣

∣

∣
.

From 4.6.1 and Lemmas 4.6.2,

sup
a≤y≤b

∣

∣

∣
E
(

ĝne(y)ĝnf(y)− ge(y)gf(y)
∣

∣

∣
yn

)∣

∣

∣
−→P 0 (4.57)

It follows directly from the weak law of large numbers that

∣

∣

∣

1

n

n
∑

i=1

ge(yi)gf(yi)− E{ge(Y )gf(Y )}
∣

∣

∣
−→P 0, (4.58)

which means that B̂
(e,f)

n −→P E{ge(Y )gf(Y )}. Hence, by (4.56) and the definitions

of Σ̂fit,n and Σfit, we have Σ̂fit,n −→P Σfit.
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Chapter 5: Global Asymptotics of the Conditional Covariance Ma-

trix of PFSC for Unbounded Random Variables Y

In order to implement sliced inverse regression (Li (1991)), one requires an

estimate of the conditional covariance matrix

Σ = E{Cov(X|Y )} = Cov(X)− Cov{E(X|Y )}, (5.1)

where X ∈ R
p is the predictor and Y is the response. One such estimate is Li

(1991)’s two-slice estimate, defined as follows: the data are sorted on Y and grouped

into sets of size 2, the covariance of X is estimated within each group and these

estimates are averaged. In Hsing and Carroll (1992), they consider the asymptotic

properties of the two-sliced method, obtaining simple conditions for n1/2-convergence

and asymptotic normality. In this chapter, we study asymptotics of conditional

covariance matrix Cov(E(X|Y )) based on asymptotics of spline inverse regression

studied under the model (4.8), and we consider the asymptotics of the conditional

covariance matrix Σfit.
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5.1 Overview

We assume that the distribution of the p-dimensional vector X conditional on

the value of Y = y can be described by

Xy = µ+ Γg(y) + ε (5.2)

where Γ is a p× d matrix satisfying ΓTΓ = Id, g(y) is a function g : R −→ R
d and

Var(ε) = σ2
eIp.

To estimate g(y), we consider spline approximations by using a (k0(n)+1)×1

vector of spline basis functions fn
m(y) = (f1,m,t(y), . . . , fk0(n)+1,m,t(y)) with knots

t(yn) = {t1 < t2 < · · · < tk0(n)+2}, (5.3)

where k0(n) is referred to as the number of internal knots. So we will approximate

g(y) with βnf
n
m(y) for some matrix of coefficients βn ∈ R

d×(k0(n)+1).

The B-spline basis is defined in Definition 4.2.1 and the B-spline regression is

defined in Definition 4.2.2.

5.1.1 Notation

X is an n× p matrix with ith row (Xyi − X̄)T .

F n is an n× (k0(n) + 1) matrix with ith row fn
m(yi)

T .

Gn is an n× d matrix with ith row g(yi)
T , where g(y) is is as defined in (5.2).

En is an n× p matrix whose ith row is εTi .

P Fn
is the n× n projection matrix defined as

P Fn
= F n(F

T
nF n)

−1F T
n . (5.4)
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X̂ = P Fn
X is the n× p matrix of fitted values given by

X̂ = F n(F
T
nF n)

−1F T
nX. (5.5)

Σ is the covariance matrix of X, denoted by Cov(X).

Σ̂n is the estimated covariance matrix given by

Σ̂n = n−1
X

T
X, (5.6)

Σfit is the covariance matrix of the conditional expectation of X given y:

Σfit = Cov{E(X|Y )}. (5.7)

Σ̂n,fit is the fitted estimated covariance matrix given by

Σ̂n,fit = n−1
X̂

T
X̂ = n−1

X
TP T

Fn
P Fn

X = n−1
X

TP Fn
X. (5.8)

5.1.2 Problem Definition

Our main goal in this chapter is to show that Σ̂n,fit −→p Σfit where

Σ̂n,fit = n−1
X

TP Fn
X, (5.9)

and the fitted covariance matrix Σfit is defined to be

Σfit = Cov{E(X|Y )}

= Cov{Γg(Y )}

= ΓCov{g(Y )}ΓT

= ΓE
{

g(Y )g(Y )T
}

ΓT , (5.10)
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where the last equality is true since g(Y ) is assumed to have zero mean. Note that

the marginal covariance matrix Σ = Cov(X) can be decomposed as

Σ = E{Cov(X|Y )}+ Cov{E(X|Y )}

= σ2
eIp +Σfit

= Σres +Σfit. (5.11)

5.2 Model in matrix form

We can also write the model just using g(·) in matrix form with data {(Xyi, yi)}ni=1,
















(Xy1 − X̄)T

...

(Xyn − X̄)T

















=

















(µ− X̄)T

...

(µ− X̄)T

















+

















g(y1)
TΓT

...

g(yn)
TΓT

















+

















εT1

...

εTn

















, (5.12)

which we can write assuming that µ = 0 as
















XT
y1

...

Xyn

















=

















g(y1)
TΓT

...

g(yn)
TΓT

















+

















εT1

...

εTn

















. (5.13)

In matrix form, (5.13) is expressed as

X = GnΓ
T +En (5.14)

Assume m = 1 and let Aj,n = [tj,n, tj+1,n) for j = 1, . . . , k0(n)+ 1. From now on, for

notational simplicity, we will set k(n) = k0(n) + 1. The form of F n is then

F n =

















1{y1 ∈ A1,n} 1{y1 ∈ A2,n} . . . 1{y1 ∈ Ak(n),n}
...

...
. . .

...

1{yn ∈ A1,n} 1{yn ∈ A2,n} . . . 1{yn ∈ Ak(n),n}

















. (5.15)
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Define bj,n =
∑n

i=1 1{yi ∈ Aj,n} to be the counts in the jth bin and

ĥl(Aj,n) = b−1
j,n

n
∑

i=1

gl(yi)1{yi ∈ Aj,n} (5.16)

to be the local average of gl(y) over the jth bin.

We first consider the case where the knots are placed at the order statistics so

that for an array of integers {kjn}nj=1, the knots can be expressed as

t(yn) = {t1,n < t2,n < t3,n < · · · < tk(n)+1,n},

= {y(1) < y(k2n) < y(k3n) · · · < y(n)}, (5.17)

and the local averages can be expressed as

ĥe(Al,n) =
1

bl,n

n
∑

i=1

ge(yi)1{yi ∈ Al,n}

=
1

bl,n

kl+1,n
∑

i=kln

ge(y(i)). (5.18)

In this case,

F T
nF n =

























b1,n 0 . . . 0

0 b2,n . . . 0

...
...

. . .
...

0 0 . . . bk(n),n

























. (5.19)

Also,

F T
nGn =

















1{y1 ∈ A1,n} . . . 1{yn ∈ A1,n}
...

. . .
...

1{y1 ∈ Ak(n),n} . . . 1{yn ∈ Ak(n),n}

































g1(y1) . . . gd(y1)

...
. . .

...

g1(yn) . . . gd(yn)

















(5.20)
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so that

F T
nGn =

























b1,nĥ1(A1,n) b1,nĥ2(A1,n) . . . b1,nĥb(A1,n)

b2,nĥ1(A2,n) b2,nĥ2(A2,n) . . . b2,nĥb(A2,n)

...
...

. . .
...

bk(n),nĥ1(Ak(n),n) bk(n),nĥ2(Ak(n),n) . . . bk(n),nĥb(Ak(n),n)

























(5.21)

We can express the fitted estimated covariance as

Σ̂n,fit = n−1
X

TP Fn
X

= n−1ET
nP Fn

En + 2n−1ET
nP Fn

GnΓ
T + n−1ΓTGT

nP Fn
GnΓ

T . (5.22)

In the following sections, we will deal with the asymptotics for B̂n which is defined

to be

B̂n = n−1GT
nPFn

Gn = n−1(F T
nGn)

T (F T
nF n)

−1F T
nGn. (5.23)

From (5.19) and (5.20), we can see that for the m = 1 case, the (e, f) entry of B̂n

is given by

B̂
(e,f)

n =
1

n

k(n)
∑

l=1

bl,nĥe(Al,n)ĥf (Al,n)

=
1

n

k(n)
∑

l=1

1

bl,n

(

kl+1,n
∑

i=kln

ge(y(i))
)(

kl+1,n
∑

i=kln

gf(y(i))
)

=
1

n

k(n)
∑

l=1

1

bl,n

kl+1,n
∑

i=kln

kl+1,n
∑

j=kln

ge(y(i))gf(y(j)). (5.24)

5.3 Lemmas

Lemma 5.3.1 If k(n)/n converges to a constant c, then for a general value of m

n−1ET
nP Fn

En −→P cσ2
eIp. (5.25)
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Proof Let εln = [ε1l, . . . , εnl]
T denote the lth row of ET

n . Then, the lth diagonal

component of n−1ET
nP Fn

En is given by Hln = n−1(εTlnP Fn
εln). Note that since

(ε1l, . . . , εnl) are independent with E(εil) = 0 and Var(εil) = σ2
e with (ε1l, . . . , εnl)

also independent of (y1, . . . , yn), we have that

E
{

Hln

∣

∣

∣
y1, . . . , yn

}

= E
{εTlnP Fn

εln

n

∣

∣

∣
y1, . . . , yn

}

=
tr(P Fn

Var(εln))

n

=
σ2
e

n
tr(P Fn

)

Thus, E{Hln} = σ2
e tr(P Fn

)/n = σ2
ek(n)/n and since E[Hln|y1, . . . , yn] does not

depend on (y1, . . . , yn), we have Var(E{Hln|y1, . . . , yn}) = 0. Now let µ4l = E{ε4il}

and let pF be a column vector containing diagonal elements of P Fn
. Then, using a

result for the variance of a quadratic form (see Seber, pg. 11):

Var
{εTlnP Fn

εln

n

∣

∣

∣
y1, . . . , yn

}

=
1

n2

{

(µ4l − 3σ4
l )p

T
FpF + 2σ4

l tr(P Fn
)
}

. (5.26)

Since each element of pF is less than or equal to one,

Var
{εTlnP Fn

εln

n

∣

∣

∣
y1, . . . , yn

}

≤ 1

n2

{

n(µ4l − 3σ4
l ) + 2σ4

l rank(P Fn
)
}

(5.27)

=
µ4l − 3σ4

l

n
+

2σ4
l (k0(n) + 1)

n2
. (5.28)

Hence,

E
(

Var
{εTlnP Fn

εln

n

∣

∣

∣
y1, . . . , yn

})

≤ µ4l − 3σ4
l

n
+

2σ4
l (k0(n) + 1)

n2
. (5.29)

Combining (5.29) with the fact that Var(E{Hln|y1, . . . , yn}) = 0 gives

Var(Hln) ≤
µ4l − 3σ4

e

n
+

2σ4
ek(n)

n2
. (5.30)
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It then follows directly from Chebyshev’s inequality that

Hln − σ2
e tr(P Fn

)/n −→P 0, (5.31)

which means that

Hln −→P cσ2
e . (5.32)

Let An
ij denote the (i, j) element of n−1ET

nP Fn
En for i 6= j so that An

ij = n−1(εTinP Fn
εjn).

Let i 6= j. Note that

E
{

An
ij

∣

∣

∣
y1, . . . , yn

}

=
1

n
E
{

tr(εTinP Fn
εjn)

∣

∣

∣
y1, . . . , yn

}

=
1

n
E
{

tr(P Fn
εjnε

T
in)
∣

∣

∣
y1, . . . , yn

}

=
1

n
tr
(

E
{

P Fn
εjnε

T
in

∣

∣

∣
y1, . . . , yn

})

=
1

n
tr
(

P Fn
E
{

εjnε
T
in

∣

∣

∣
y1, . . . , yn

})

=
1

n
tr
(

P Fn
E
{

εjnε
T
in

})

. (5.33)

Because E
{

εjnε
T
in

}

= 0 for any i 6= j, we have that E{An
ij} = 0. Also,

E{(An
ij)

2|y1, . . . , yn, εin} =
1

n2
E{(εTinP Fn

εjn)
2|y1, . . . , yn, εin}

=
1

n2
E{εTinP Fn

εjnε
T
jnP Fn

εin|y1, . . . , yn, εin}

=
1

n2
εTinP Fn

Var{εjn|y1, . . . , yn, εin}P Fn
εin

=
1

n2
εTinP Fn

Var{εjn}P Fn
εin

=
σ2
e

n2
εTinP Fn

P Fn
εin

=
σ2
e

n2
εTinP Fn

εin.
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Hence,

E{(An
ij)

2|y1, . . . , yn} =
σ2
e

n2
E{tr(εTinP Fn

εin)|y1, . . . , yn}

=
σ2
e

n2
tr
(

P Fn
E{εinεTin|y1, . . . , yn}

)

=
σ4
e

n2
tr
(

P Fn

)

=
σ4
ek(n)

n2
(5.34)

so thatE{(An
ij)

2} = (σ4
ek(n))/n

2. Since, E{An
ij} = 0 and Var{(An

ij)
2} = (σ4

ek(n))/n
2,

it follows from Chebyshev’s inequality that An
ij −→P 0.

Remark 5.3.2 Our proof shows that n−1ET
nP

T
Fn
En goes to zero only when the

number of knots is not too large. So, Lemma 5.3.1 suggests that we need the num-

ber of sample points in each interval to be large enough to prevent this asymptotic

bias occurring. In particular, n−1ET
nP

T
Fn
En goes to zero in probability as long as

k(n)/n −→ 0.

Lemma 5.3.3 For a general value of m

n−1ET
nP Fn

GnΓ
T −→P 0. (5.35)

Proof Again, let εTen = [ε1e, . . . , εne] denote the eth row of ET
n and let gfn =

[gf(y1), . . . , gf(yn)]
T denote the f th column of Gn so that εTenP Fn

gfn is the (e, f)

entry of ET
nP Fn

Gn. First, note that

E{εTenP Fn
gfn|y1, . . . , yn} = 0 and Var

(

E{εTenP Fn
gfn|y1, . . . , yn}

)

= 0.

(5.36)
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Hence,

E{εTenP Fn
gfn} = E

{

E{εTenP Fn
gfn|y1, . . . , yn}

}

= 0. (5.37)

Also,

Var{εTenP Fn
gfn|y1, . . . , yn} = E{(εTenP Fn

gfn)
2|y1, . . . , yn}

= E{εTenP Fn
gfng

T
fnP Fn

εen|y1, . . . , yn}

= E{tr(εTenP Fn
gfng

T
fnP Fn

εen)|y1, . . . , yn}

= tr(gfng
T
fnP Fn

Var(εen))

= σ2
etr(gfng

T
fnP Fn

). (5.38)

Now, using the fact that both gfng
T
fn and P Fn

are positive semi-definite (all pro-

jection matrices are positive semi-definite)

tr(gfng
T
fnP Fn

) ≤
√

tr([gfng
T
fn]

2)
√

tr(P 2
Fn
)

=
√

tr([gfng
T
fn]

2)tr(P Fn
)

≤
√

tr(gfng
T
fngfng

T
fn)tr(P Fn

)

=
√

k(n)
√

tr(gT
fngfng

T
fngfn)

=
√

k(n)

n
∑

i=1

g2f(yi). (5.39)

So, from (5.38) and (5.39), we have that

E
(

Var{n−1εTenP Fn
gfn|y1, . . . , yn}

)

=
σ2
e tr(gfng

T
fnP Fn

)

n2

≤ σ2
e

√

k(n)

n
E(g2f (Y )), (5.40)

66



and by combining the above with (5.36) gives

Var(n−1εTenP Fn
gfn) = Var

(

E{εTenP Fn
gfn|y1, . . . , yn}

)

+E
(

Var{n−1εTenP Fn
gfn|y1, . . . , yn}

)

≤ σ2
e

√

k(n)

n
E(g2f(Y )). (5.41)

By Chebyshev’s inequality

n−1εTenP Fn
gfn −→P 0 (5.42)

and therefore

n−1EnP Fn
Gn −→P 0. (5.43)

5.4 Lemmas and Theorems

In this section, we consider knots determined by tj,n = y(kjn) where {kjn}nj=1

is a non-random array of integers with 1 = k1n < k2n < · · · < kk(n)+1,n = n and

(kjn − k(j−1),n)/n > 0, for every n.

5.4.1 Conditions

(A1) For each component e, E{g4e(Y )} < ∞.

(A2) The distribution function of Y , Q(y), is continuous and strictly increasing, i.e,

Y has a density q(y) strictly positive.

(A3) For each component e, there is a nondecreasing continuous function Me(y)

satisfying E{M4
e (Y )} < ∞ such that for any y1, y2

|ge(y1)− ge(y2)| ≤ |Me(y1)−Me(y2)|. (5.44)
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5.4.2 Case when m = 1

Lemma 5.4.1 Consider a continuous function H(·) such that E{H4(Y )} < ∞ and

suppose that condition (A2) holds. Then, for any sequence of integers {hn} with

1 ≤ hn ≤ n such that hn/n −→ 0, we have

1

n

n−hn
∑

i=1

(H(y(i+hn))−H(y(i)))
2 −→P 0, (5.45)

Proof Let ε > 0 and note that

1

n

n−hn
∑

i=1

(H(y(i+hn))−H(y(i)))
2 = (I)δn + (II)δn + (III)δn, (5.46)

where for some δ ∈ (0, 1), (I)δn, (II)
δ
n, (III)

δ
n are given by

(I)δn =
1

n

⌊δn⌋
∑

i=1

(H(y(i+hn))−H(y(i)))
2

(II)δn =
1

n

⌊(1−δ)n⌋
∑

i=⌈δn⌉

(H(y(i+hn))−H(y(i)))
2

(III)δn =
1

n

n−hn
∑

i=⌈(1−δ)n⌉

(H(y(i+hn))−H(y(i)))
2.

Then,

(I)δn =
1

n

⌊δn⌋
∑

i=1

(H(y(i+hn))−H(y(i)))
2

≤ 2

n

⌊δn⌋
∑

i=1

H(y(i))
2 +

2

n

⌊δn⌋+hn
∑

i=hn+1

H(y(i))
2

=
4

n

⌊δn⌋+hn
∑

i=1

H(y(i))
2.

Since hn/n −→ 0, we have that δn+hn ≤ 2δn for sufficiently large n. Then, because

Q is strictly increasing y(2δn) −→ q2δ (a.s.), where qp denotes the pth-quantile of Q.
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So, since hn ≤ δn for sufficiently large n, we have that y(i) ≤ q4δ for i ≤ ⌊δn⌋ + hn

and sufficiently large n. Hence,

lim sup
n−→∞

(I)δn = lim sup
n−→∞

1

n

⌊δn⌋+hn
∑

i=1

H(y(i))
2

≤ lim sup
n−→∞

4

n

n
∑

j=1

H2(y(j))1{y(j) < q4δ} (a.s.)

= lim sup
n−→∞

4

n

n
∑

j=1

H2(yj)1{yj < q4δ}. (5.47)

Therefore, by the strong law of large numbers

lim sup
n−→∞

(I)δn ≤ 4
(

E{H4(Y )}
)1/2(

P{Y ≤ q4δ}
)1/2

. (a.s.) (5.48)

Now, consider (III)δn

(III)δn =
1

n

n−hn
∑

i=⌈(1−δ)n⌉

(H(y(i+hn))−H(y(i)))
2

≤ 2

n

n−hn
∑

i=⌈(1−δ)n⌉

H2(y(i+hn)) +
2

n

n−hn
∑

i=⌈(1−δ)n⌉

H2(y(i))

≤ 4

n

n
∑

i=⌈(1−δ)n⌉

H2(y(i+hn)).

Again, since hn ≤ δn for sufficiently large n, we have that y(i+hn) > q1−4δ for

i+ hn ≥ ⌈(1 − δ)n⌉ and sufficiently large n. Hence,

lim sup
n−→∞

(III)δn = lim sup
n−→∞

1

n

n−hn
∑

i=⌈(1−δ)n⌉

(H(y(i+hn))−H(y(i)))
2

≤ lim sup
n−→∞

4

n

n
∑

j=1

H2(y(j))1{y(j) > q1−4δ} (a.s.)

= lim sup
n−→∞

4

n

n
∑

j=1

H2(yj)1{yj > q1−4δ}. (5.49)

Therefore, by the strong law of large numbers

lim sup
n−→∞

(III)δn ≤ 4
(

E{H4(Y )}
)1/2(

P{Y > q1−4δ}
)1/2

. (a.s.) (5.50)
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Now, for (II)δn. Because H is continuous, it is uniformly continuous on the interval

[qδ, q1−δ]. As a result, we can choose a εδ > 0 such that for z, y ∈ [qδ, q1−δ]

|z − y| < εδ =⇒ |H(z)−H(y)| < δ. (5.51)

Note that for ⌈δn⌉ ≤ i ≤ ⌊(1− δ)n⌋ and n large enough so that hn ≤ δn/2,

|y(i+hn) − y(i)| ≤ |y(i+hn) − q(i+hn)/n|+ |y(i) − qi/n|+ |q(i+hn)/n − qi/n|

≤ 2 sup
δ≤p≤1−δ/2

|q̂p − qp|+ |q(i+hn)/n − qi/n|. (5.52)

Since |q̂p− qp| (where q̂p is the pth sample quantile) converges uniformly to zero over

the compact set [δ, 1 − δ/2], it follows from (5.52) that for sufficiently large n

max
⌈δn⌉≤i≤⌊(1−δ)n⌋

|y(i+hn) − y(i)| < εδ (a.s.) (5.53)

This, along with uniform continuity of H over [qδ, q1−δ/2] and the fact that both

y(i) ∈ [qδ, q1−δ/2] and y(i+hn) ∈ [qδ, q1−δ/2] for ⌈δn⌉ ≤ i ≤ ⌊(1 − δ)n⌋ for sufficiently

large n, implies that (for sufficiently large n)

(II)δn =
1

n

⌊(1−δ)n⌋
∑

i=⌈δn⌉

(H(y(i+hn))−H(y(i)))
2 ≤ δ2 (a.s.) (5.54)

So, if we choose δ so that P{Y < q4δ}1/2 < ε/4
√

E(H4(Y )) and P{Y > q1−4δ}1/2 <

ε/4
√

E(H4(Y )), and δ2 < ε, it follows from (5.48), (5.54), and (5.50) that

lim sup
n−→∞

[

(I)δn + (II)δn + (III)δn
]

≤ 3ε (a.s.) (5.55)

Because ε > 0 is arbitrary

1

n

n−hn
∑

i=1

(H(y(i+hn))−H(y(i)))
2 −→a.s. 0. (5.56)
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Lemma 5.4.2 If conditions (A1)-(A3) hold, then for any 1 ≤ e ≤ d and 1 ≤ f ≤ d,

1

n

k(n)
∑

l=1

1

bl,n

kl+1,n−1
∑

i=kln

kl+1,n−1
∑

j=kln

ge(y(i))gf(y(j)) −→P E
{

ge(Y )gf(Y )
}

. (5.57)

Proof First note that

1

n

k(n)
∑

l=1

1

bl,n

kl+1,n−1
∑

i=kln

kl+1,n−1
∑

j=kln

ge(y(i))gf(y(j))

=
1

n

k(n)
∑

l=1

kl+1,n−1
∑

i=kln

ge(y(i))gf(y(i)) (5.58)

+
1

n

k(n)
∑

l=1

1

bl,n

kl+1,n−1
∑

i=kln

ge(y(i))

kl,n−i+bl,n−1
∑

h=1

(gf(y(i+h))− gf (y(i)))

+
1

n

k(n)
∑

l=1

1

bl,n

kl+1,n−1
∑

i=kln

gf(y(i))

kl,n−i+bl,n−1
∑

h=1

(ge(y(i+h))− ge(y(i)))

= (I)n + (II)n + (III)n, (5.59)

where

(I)n =
1

n

k(n)
∑

l=1

kl+1,n
∑

i=kln

ge(y(i))gf(y(i)) =
1

n

n
∑

j=1

ge(yj)gf(yj)

(II)n =
1

n

k(n)
∑

l=1

1

bl,n

kl+1,n−1
∑

i=kln

ge(y(i))

kl,n−i+bl,n−1
∑

h=1

(gf(y(i+h))− gf(y(i)))

(III)n =
1

n

k(n)
∑

l=1

1

bl,n

kl+1,n−1
∑

i=kln

gf(y(i))

kl,n−i+bl,n−1
∑

h=1

(ge(y(i+h))− ge(y(i))). (5.60)

The expressions for (II)n and (III)n are found through the same reasoning as

3
∑

i=1

ge(yi)

3
∑

i=1

gf(yi) = 3

3
∑

i=1

ge(yi)gf(yi) +

3
∑

i=1

ge(yi)

3−i
∑

h=1

(

gf(y(i+h) − gf(yi)
)

+
3
∑

i=1

gf(yi)
3−i
∑

h=1

(

ge(y(i+h) − ge(yi)
)

. (5.61)
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Consider

3
∑

i=1

ge(yi)

3−i
∑

h=1

(

gf(y(i+h) − gf(yi)
)

(5.62)

= ge(y1)
(

gf(y2)− gf(y1)
)

+ ge(y1)
(

gf(y3)− gf(y1)
)

+ ge(y2)
(

gf (y3)− gf(y2)
)

= ge(y1)gf(y2) + ge(y1)gf(y3)−
e
∑

i=1

ge(yi)gf(yi) (5.63)

and

3
∑

i=1

gf(yi)

3−i
∑

h=1

(

ge(y(i+h) − ge(yi)
)

(5.64)

= gf(y1)
(

ge(y2)− ge(y1)
)

+ gf (y1)
(

ge(y3)− ge(y1)
)

+ gf(y2)
(

ge(y3)− ge(y2)
)

= gf(y1)ge(y2) + gf(y1)ge(y3)−
e
∑

i=1

ge(yi)gf(yi). (5.65)

Hence,

3
3
∑

i=1

ge(yi)gf(yi) +
3
∑

i=1

ge(yi)
3−i
∑

h=1

(

gf(y(i+h) − gf(yi)
)

+
3
∑

i=1

gf(yi)
3−i
∑

h=1

(

ge(y(i+h) − ge(yi)
)

= 3

e
∑

i=1

ge(yi)gf(yi) + ge(y1)gf(y2) + ge(y1)gf(y3) + gf(y1)ge(y2) + gf(y1)ge(y3)

−2

3
∑

i=1

ge(yi)gf(yi)

=
3
∑

i=1

ge(yi)gf(yi) + ge(y1)gf(y2) + ge(y1)gf(y3) + gf(y1)ge(y2) + gf(y1)ge(y3)

=
3
∑

i=1

ge(yi)
3
∑

i=1

gf(yi). (5.66)

It is clear from the weak law of large numbers that (I)n −→P E{ge(Y )gf(Y )}. Now,

for (II)n note that

|(II)n| ≤ 1

n

k(n)
∑

l=1

1

bl,n

kl+1,n−1
∑

i=kln

|ge(y(i))|
kl,n−i+bl,n−1
∑

h=1

|gf(y(i+h))− gf(y(i))|

≤ 1

n

k(n)
∑

l=1

1

bl,n

kl+1,n−1
∑

i=kln

|ge(y(i))|
bl,n
∑

h=1

|gf(y(i+h))− gf(y(i))|, (5.67)
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where we define y(m) = y(n) if m > n. If we let hn = maxl{bl,n} and use the fact

that Mf (·) is nondecreasing (condition (A3))

|(II)n| ≤ 1

n

k(n)
∑

l=1

1

bl,n

kl+1,n−1
∑

i=kln

|ge(y(i))|
bl,n
∑

h=1

{Mf (y(i+h))−Mf (y(i))}

≤ 1

n

k(n)
∑

l=1

1

bl,n

kl+1,n−1
∑

i=kln

|ge(y(i))|bl,n
(

Mf (y(i+bl,n))−Mf (y(i))
)

=
1

n

k(n)
∑

l=1

kl+1,n
∑

i=kln

|ge(y(i))|
(

Mf (y(i+bl,n))−Mf (y(i))
)

≤ 1

n

k(n)
∑

l=1

kl+1,n
∑

i=kln

|ge(y(i))|
(

Mf (y(i+hn))−Mf (y(i))
)

=
1

n

n
∑

j=1

|ge(y(j))|
(

Mf (y(j+hn))−Mf (y(j))
)

≤
( 1

n

n
∑

j=1

g2e(yj)
)1/2[ 1

n

n
∑

j=1

(

Mf (y(j+hn))−Mf(yj)
)2]1/2

. (5.68)

Hence, it follows conditions (A1) and (A3) and from Lemma 5.4.1 that (II)n −→P 0.

The fact that (III)n −→P 0 can be proved in a similar way to (II)n.

Theorem 5.4.3 When conditions (A1)-(A3) hold and k(n)/n −→ 0, we have the

following

Σ̂fit,n −→P Σfit. (5.69)

Proof Recalling (5.24) the (e, f) entry of B̂n is given by

B̂
(e,f)

n =
1

n

k(n)
∑

l=1

1

bl,n

kl+1,n
∑

i=kln

kl+1,n
∑

j=kln

ge(y(i))gf(y(j)). (5.70)

From Lemma 5.4.2,

B̂
(e,f)

n −→P E{ge(Y )gf(Y )}, (5.71)
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which means that

ΓB̂nΓ
T −→P ΓCov{g(Y )}ΓT = Σfit. (5.72)

Now, recall from (5.22) that

Σ̂n,fit = n−1ET
nP Fn

En + 2n−1ET
nP Fn

GnΓ
T + n−1ΓTGT

nP Fn
GnΓ

T

= n−1ET
nP Fn

En + 2n−1ET
nP Fn

GnΓ
T + ΓT B̂nΓ

T .

The result then follows from Lemmas (5.3.1) and (5.3.3).

Corollary 5.4.4 When conditions (A1)-(A3) hold, and k(n)/n converges to a con-

stant 1/b (with b > 0), we have the following

Σ̂fit,n −→P Σfit +
σ2
e

b
Ip. (5.73)

Proof As stated in the proof of Theorem 5.4.3, ΓB̂nΓ
T −→P Σfit. From Lemma

5.3.1,

n−1ET
nP Fn

En −→P
σ2
e

b
Ip (5.74)

and from Lemma 5.3.3

n−1ET
nP Fn

GnΓ
T −→P 0. (5.75)

The result then follows from the fact that

Σ̂n,fit = n−1ET
nP Fn

En + 2n−1ET
nP Fn

GnΓ
T + ΓT B̂nΓ

T .
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Chapter 6: Simulations

In order to examine the efficacy of both the isotonic principal fitted spline

component (isotonic PFSC) method with isotonic gaussian error structure and the

general principal fitted spline component (general PFSC) method with a general er-

ror structure, we demonstrate its performance through simulations in Chapter 6. We

performed several simulation studies which applied our new isotonic PFSC method

to simulated data. In Section 6.1, a small simulation was conducted to evaluate

the performance of isotonic PFSC and to compare the results to the results from

principal components, isotonic principal fitted components as in Cook (2007), Cook

and Forzani (2008), and ordinary least squares (OLS). In section 6.3, we applied

our methods to multiple-class classification problems and also provide visualization

of high-dimensional data through dimension reduction.

6.1 Simulated Estimation of the Reduced Subspace

In this Section, we describe simulations when both the forward and inverse

regressions are assumed to be linear, and also when they are assumed to be nonlinear.

Each of the simulations is performed assuming that Γ contains only one column. To

measure the closeness of the estimated subspace to the true subspace, we recorded
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the angle (since d = 1) between these two subspaces . See Cook (2007), Johnson

(2008), and Stewart (1977). We present all of our results with the sample mean and

sample standard deviations obtained from MonteCarlo 500 replications (Thomas

and Luk (2008)).

In Section 6.1.1, we describe our simulations assuming linearity for both the

forward and inverse regression. In Section 6.1.1, we examine the angle discrepancy

between the estimated and true subspaces, which lies between 0 and 90 degree. In

Section 6.1.2, we describe a similar simulation study except that a nonlinear model

is simulated.

6.1.1 Simulation When Forward and Inverse Regressions Are Linear

To guide our simulation study, we use generative models described in Cook

(2007) and in Cook and Forzani (2008). We then compared our results with OLS

and with Cook’s PC and PFC results.

The first generative model may be described as follows: first generate Y as

a normal random variable with mean 0 and variance σ2
Y , secondly generate Xy

according to the isotonic inverse regression model

Xy = Γy + σε, (6.1)

where Γ = (1, 0, . . . , 0)T , ε ∼ Np(0, Ip), p = 10 and σ > 0. This generative model

places the restriction Γ ∈ R
p (d = 1) because this allows direct comparison with

forward OLS. The forward regression model that corresponds to (6.1) is the simple
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Figure 6.1: Simulation results from model (6.1). (a)-(c) Display average simulation

angles between the estimated and the true direction versus (a) sample size with

σY = σ = 1; (b) σY with n = 40, σ = 1; and (c) σ with σY = 1.
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Table 6.1: Sample Mean and Standard Deviation of MonteCarlo estimates of average

simulation angles between the estimated and the true direction based on the 500

replications from model (6.1)

PC Isotonic PFC OLS Isotonic PFSC

n = 12 57.65 (7.93×10−1) 43.44 (6.03×10−1) 66.74 (6.03×10−1) 52.35 (7.50×10−1)

n = 25 48.68 (8.36×10−1) 31.12 (3.99×10−1) 46.33 (4.90×10−1) 36.27 (5.86×10−1)

n = 50 36.70 (6.22×10−1) 23.36 (2.70×10−1) 33.28 (3.48×10−1) 25.72 (3.06×10−1)

n = 100 25.11 (3.89×10−1) 16.52 (1.95×10−1) 23.64 (2.55×10−1) 17.84 (2.15×10−1)

n = 250 15.12 (1.76×10−1) 10.37 (1.10×10−1) 14.85 (1.56×10−1) 11.28 (1.22×10−1)

σY = 0.1 74.82 (5.16×10−1) 70.95 (5.74×10−1) 71.83 (5.55×10−1) 73.48 (5.30×10−1)

σY = 0.5 66.74 (6.95×10−1) 43.86 (5.24×10−1) 49.77 (5.54×10−1) 52.25 (7.23×10−1)

σY = 1 40.13 (7.50×10−1) 25.82 (3.11×10−1) 37.67 (3.98×10−1) 28.61 (3.63×10−1)

σY = 2 15.13 (2.02×10−1) 13.32 (1.53×10−1) 30.51 (3.07×10−1) 14.41 (1.70×10−1)

σY = 5 5.58 (6.89×10−2) 5.47 (6.69×10−2) 28.25 (2.95×10−1) 5.96 (7.32×10−2)

σY = 10 2.69 (3.22×10−2) 2.68 (3.19×10−2) 27.95 (2.86×10−1) 2.94 (3.53×10−2)

σ = 0.1 2.73 (3.29×10−2) 2.72 (3.26×10−2) 28.42 (2.88×10−1) 2.92 (3.35×10−2)

σ = 0.2 5.54 (6.68×10−2) 5.40 (6.47×10−2) 28.27 (3.08×10−1) 5.79 (6.62×10−2)

σ = 0.5 15.06 (1.97×10−1) 13.21 (1.59×10−1) 30.47 (3.19×10−1) 14.33 (1.82×10−1)

σ = 0.7 23.41 (3.99×10−1) 18.10 (2.20×10−1) 33.00 (3.48×10−1) 19.78 (2.52×10−1)

σ = 1 38.65 (7.34×10−1) 25.21 (3.13×10−1) 37.38 (4.12×10−1) 27.76 (3.68×10−1)

σ = 2 67.86 (6.89×10−1) 44.43 (5.49×10−1) 49.95 (5.72×10−1) 52.77 (6.80×10−1)

σ = 4 72.84 (5.50×10−1) 62.04 (6.42×10−1) 64.88 (6.21×10−1) 68.26 (6.50×10−1)
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normal linear regression model:

Y = α0 +αTx+ σY |Xε, (6.2)

where x denotes an observed valued of X, σY |X is constant, ε is a standard normal

random variable and span(α) = span(Γ). We examine four ways of estimating SΓ

including OLS using span(α̂), PC, PFC, and PFSC. For the PFC method, we use

f y = y− ȳ, and for PFSC, f y is a spline approximation using a polynomial of order

1 (degree m− 1 = 0) with 3 interior knots located at the 3 quartiles of y. In Figure

6.1(a), 6.1(b) and 6.1(c) we used angles as test statistics.

In Figure 6.1(a), we display the mean angle between the estimated and true

subspaces obtained by each of the four methods. For each of these methods, the

mean angle seems to settle down when n reaches 200. However, as shown in ??, the

mean angle does not go to 0 as n increases for each method. The SPFC is not quite

as good as PFC, but both of these methods outperform PC or OLS. OLS and PC

are perform similarly except for small values of n. In Figure 6.1(b), we fixed n and

σ and varied the value of σY . In this case, OLS shows consistently poor results. In

Figure 6.1(c), we fixed n = 40 and σY = 1 and varied the value of σ. As σ increases,

the mean angle increases for all methods. For large n, PC clearly performs worse

than the others.

In 6.1(a), 6.1(b), and 6.1(c), we observe that isotonic PFSC is slightly worse

than isotonic PFC. This is unsurprising since the generative model is very simple

and isotonic PFC is using the true fy (i.e., f y = y − ȳ). In contrast, the isotonic

PFSC introduce a little extra noise by using a B-spline with 3 broken lines which
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results in more parameters to estimate.

6.1.2 Simulation of a Nonlinear Case

The main point of non-parametric regression is so that it works in non-linear

situations. We conducted simulations using the non-linear generative model de-

scribed in Cook Cook and Forzani (2008) with νy = exp(y). We chose f y based

on our experiences with the performance of isotonic PFC and isotonic PFSC over

numerous simulations.

The generative model is the following: first, generate Y ∼ U(0, 4); then gen-

erate Xy according to the isotonic inverse model

Xy = Γ exp(y) + σε, (6.3)

where Γ = (1, . . . , 1)T/
√

(20), ε ∼ Np(0, Ip), p = 20, d = 1 and σ > 0. We consider

two ways of estimating SΓ. Data set was fitted with d = 1, fy = y−ȳ for PFC model

and fy is a spline approximation using a polynomial of order 1 (degree m− 1 = 0)

with 3 interior knots located at the 3 quartiles of y for PFSC model.

In Figure 6.2(a), we see that every method except OLS does quite well on this

non-linear model. From Figure 6.2(b), we can clearly see that OLS is not estimating

the dimension reduced subspace as the non-linear data cannot be fit by a straight

line. This is apparent when σ is very small since the angle discrepancy here is

entirely due to the bias. However, when σ is large, the data is much noisier so the

lack of fit of OLS becomes less obvious. In Figure 6.2(a) and 6.2(b), we cannot

distinguish the performance of isotonic PFSC, isotonic PFC, and PC methods.
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Figure 6.2: Simulation results from model (6.3). (a)-(b) Display average simulation

angles between the estimated and the true direction versus (a) sample size with

σ = 1; and (b) σ.

81



Table 6.2: Sample Mean and Standard Deviation of Monte-Carlo estimates of av-

erage simulation angles between the estimated and the true direction based on the

500 replications from model (6.3)

PC Isotonic PFC OLS Isotonic PFSC

n = 12 5.72 (1.10×10−1) 6.24 (1.18×10−1) 83.59 (1.73×10−1) 6.28 (1.23×10−1)

n = 25 3.64 (5.27×10−2) 4.02 (5.82×10−2) 75.97 (2.11×10−1) 3.96 (5.93×10−2)

n = 50 2.50 (2.97×10−2) 2.77 (3.22×10−2) 68.32 (2.54×10−1) 2.71 (3.28×10−2)

n = 100 1.67 (2.02×10−2) 1.87 (2.13×10−2) 59.38 (2.87×10−1) 1.83 (2.19×10−2)

n = 250 1.08 (1.28×10−2) 1.21 (1.39×10−2) 46.57 (3.33×10−1) 1.16 (1.35×10−2)

σ = 0.1 0.27 (3.55×10−3) 0.30 (4.07×10−3) 87.88 (3.06×10−2) 0.32 (4.48×10−3)

σ = 0.2 0.56 (6.95×10−3) 0.62 (7.78×10−3) 85.77 (7.08×10−2) 0.65 (8.88×10−3)

σ = 0.5 1.40 (1.83×10−2) 1.55 (2.08×10−2) 79.84 (1.42×10−1) 1.65 (2.25×10−2)

σ = 0.7 1.97 (2.40×10−2) 2.18 (2.62×10−2) 75.99 (1.93×10−1) 2.30 (2.95×10−2)

σ = 1 2.90 (3.61×10−2) 3.20 (3.99×10−2) 70.43 (2.43×10−1) 3.41 (4.63×10−2)

σ = 2 5.78 (7.60×10−2) 6.19 (8.16×10−2) 56.56 (3.37×10−1) 6.61 (9.21×10−2)

σ = 4 12.12 (1.70×10−1) 12.21 (1.55×10−1) 43.75 (3.45×10−1) 13.01 (1.70×10−1)
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6.2 Regression on a Nonlinear Manifold

6.2.1 Measuring the accuracy in estimating the d.r. space

In Section 6.1 where the dimension of the reduced space d is 1, we use the angle

between the true subspace and the estimated subspace to measure the performance

of dimension reduction. When d > 1, one needs an alternative measure. For this,

we use the metric proposed in Wu et al. (2010) as a measure of the accuracy of

estimating the e.d.r. space.

For an estimate B̂ = (β̂1, . . . , β̂d) of B, Wu’s accuracy metric is defined to be

Accuracy(B̂,B) =
1

d

d
∑

i=1

||PBβ̂i||2 =
1

d

d
∑

i=1

||(BBT )β̂i||2, (6.4)

where PB denotes the linear operator which projects onto the subspace spanned by

the columns of B and where the columns β̂i of B̂ are the estimated d.r. directions.

The accuracy metric is a function of the d angles between the true subspace and

estimated subspace.

6.2.2 Swiss roll

A popular generative model used in the manifold learning literature is the

Swiss roll show in Figure 6.3 with sample size n = 600.

We tested the performance of PFSC on data generated from a Swiss roll model

with X = (X1, . . . , X10)
T ∈ R

10. The first three dimensions of X form the Swiss

roll (Roweis and Saul, 2000)

X1 = t cos(t), X2 = 21h, X3 = t sin(t) (6.5)
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Figure 6.3: Swiss Roll data: Illustration.

where t = 3π(1 + 2θ)/2, θ ∼ Unif([0, 1]), h ∼ Unif([0, 1]). The remaining 7 di-

mensions of X are independent Gaussian noise, i.e. X4, . . . , X10 ∼iid N(0, 1). The

response Y is then generated by the following

Y = sin(5πθ) + h2 + ǫ, (6.6)

where ǫ ∼ N(0, 0.01). The predictors X1 and X3 form an interesting Swiss roll shape

as illustrated in Figure 6.3(b), and the nonlinear relationships between Y and X1,

X2, X3 is illustrated in Figure 6.3(a). In this case, an efficient dimension reduction

method should be able to find the first 3 dimensions. That is, the true SDR space

is the space of X1, X2, and X3 since these are the only X ’s that appear in the

regression for Y . The true B here is defined as [I3×3 03×7]
T .

In Figure 6.8(a), we randomly drew data sets from the above generative model,

with sample sizes ranging from 40 to 600. We ran isotonic PFSC on each of these

data sets to compare their performance with the SDR method of isotonic PFC as

obtained by Mao et al. (2009). For each dimension reduction method, we estimated

the d.r. directions and compute the estimation accuracy using the metric defined
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in (6.4). For isotonic PFC, we set f y = (y, y2, y3)T , and for isotonic PFSC we set

f y to be a B-spline approximation of order 1 (degree m − 1 = 0) with 32 interior

knots placed at each of the 3k-percentiles (k = 1, . . . , 33) of (y1, . . . , yn). The results

are presented in Figure 6.8(a). Isotonic PFSC outperforms isotonic PFC, but the

accuracy of both of these methods is close to 1 as n increases, and they work very well

when compared to LSIR, SIR in Mao et al. (2009). In Figure 6.8(c), the variation

in the accuracy of the isotonic PFC model is due to Monte-Carlo error since a new

dataset is generated for each choice of knots.

The Swiss roll (the first three dimensions) is a benchmark data set in non-

linear manifold learning, where the objective is to “unroll” the high-dimensional

data into the intrinsic two dimensional space. Since isotonic PFC and istonic PFSC

aim to discover the association between x and y, we expect them to retrieve the

dimensions relevant to the prediction of Y .

6.2.2.1 Swiss roll with Order m in PFSC vs. Degree r in PFC

To examine the role of the order m in PFSC and the degree r in PFC and

to examine the effect of changing the distribution of ǫ, we set up two experiments

using the swiss roll generative model in (6.5) and (6.6). To check this, two small

experiments were conducted with one In both of the experiments, the knots were

selected so that m× k0(n) = 100. In the first experiment, we used a normal distri-

bution for ǫ with n = 500 and various values of σ: 0.52, 22, and 52. The accuracy

results for this first experiment are shown in Figure 6.5.
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Figure 6.4: Simulation results in the Swiss roll example (a)-(c) Display average

simulation accuracies versus (a) sample size with σ = .1; (b) σ with n = 200; and

(c) spacing between knots (percentile units) with σ = .1 and n = 200.
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Table 6.3: Sample Mean and Standard Deviation of Monte-Carlo estimates of av-

erage simulation accuracies between the estimated and the true direction based on

the 500 replications in the Swiss roll example

Isotonic PFSC Isotonic PFC

n = 40 0.9967 (5.37×10−5) 0.8739 (4.32×10−3)

n = 100 0.9971 (4.57×10−5) 0.8871 (4.10×10−3)

n = 200 0.9975 (4.13×10−5) 0.9079 (3.95×10−3)

n = 400 0.9978 (3.82×10−5) 0.9135 (3.79×10−3)

n = 600 0.9981 (3.57×10−5) 0.9261 (3.63×10−3)

σ = 0.1 0.9975 (4.36×10−5) 0.9016 (3.93×10−3)

σ = 0.4 0.9974 (4.25×10−5) 0.8982 (3.96×10−3)

σ = 0.8 0.9971 (4.86×10−5) 0.8848 (3.94×10−3)

σ = 2 0.9967 (5.62×10−5) 0.8630 (4.12×10−3)

σ = 4 0.9966 (5.58×10−5) 0.8565 (4.12×10−3)

σ = 7 0.9966 (5.61×10−5) 0.8581 (3.93×10−3)

pnots = 1 0.9992 (1.24×10−5) 0.9014 (3.96×10−3)

pnots = 4 0.9972 (4.92×10−5) 0.9029 (3.91×10−3)

pnots = 7 0.9952 (1.11×10−4) 0.9025 (3.97×10−3)

pnots = 10 0.9920 (3.06×10−4) 0.9036 (3.93×10−3)

pnots = 16 0.9869 (7.09×10−4) 0.9022 (3.92×10−3)

pnots = 25 0.9454 (2.63×10−3) 0.9085 (3.74×10−3)
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Figure 6.5: Simulation results in the Swiss roll example (a)-(c) Display average

simulation accuracies versus order of spline m (a) with ǫ ∼ t(2); (b) ǫ ∼ t(4) and

(c) ǫ ∼ t(6); n = 500 for (a)-(c) with m× k0(n) = 100 and r = k0(n)

88



In the second experiment, we wanted to see the effect of using a more heavy-

tailed distribution for ǫ. To accomplish this, we used t-distributions with small

degrees of freedom (i.e., d.f is 2, 4, 6). As in the previous experiment, we selected

the knots so that m× k0(n) = 100. The results are shown in Figure 6.6.

We also performed simulations using both a normal distribution with 0 mean

and 102 variance and a t-distribution with 1 degree of freedom for the error distri-

bution. In these simulations, we fixed the number of knots to 10 in PFSC and set

the degree of the polynomial in PFC to r = 10 in order to make the number of

parameters in each of the approaches comparable. The sample size n was set to 500

in both cases. The results shown in Figure 6.7 show that when the error distribution

has a large variance PFSC tends to perform substantially better than PFC.

We found two interesting things from these two experiments. First, as the

order of m in PFSC increases, the accuracy becomes worse; and, as the degree r

in PFC increases, the accuracy also tends to become worse. We also found that

PFSC performs notably better than PFC when the error distribution has a very

large variance or has a heavy-tailed distribution such as a Cauchy distribution. We

can explain these results by looking at the choice of F in PFC and F n in PFSC and

the corresponding coefficient β. In PFC,

βF =

r
∑

j=0

cj,PFCy
j, (6.7)

while in PFSC g(y) is approximated by the spline estimator

βF n =

k0−m
∑

j=0

cj,PFSCy
m−1. (6.8)

Equation(6.7) implies that if r >> 1 then a small error in cr,PFC may result in a large
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Figure 6.6: Simulation results in the Swiss roll example (a)-(c) Display average

simulation accuracies versus order of spline m (a) with ǫ ∼ t(2); (b) ǫ ∼ t(4) and

(c) ǫ ∼ t(6); n = 500 for (a)-(c) with m× k0(n) = 100 and r = k0(n)
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Figure 6.7: Simulation results in the Swiss roll example (a)-(b) Display average

simulation accuracies versus order of spline m (a) with ǫ ∼ N(0, 102); and (b)

ǫ ∼ t(1); n = 500 for (a)-(b) with k0(n) = r = 10.
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error in cr,PFCy
r. For example, if we have the estimate ĉ20,PFC = c20,PFC + 0.001

at y = 2 with r = 20, the error rate will be 0.001 × 220 due to the value of y. In

contrast, with PFSC the degree of the polynomial is always m − 1 and does not

grow with the number of knots. Indeed, when the distribution of ǫ is heavy-tailed

(e.g., the Cauchy distribution or the normal distribution with a large variance), the

values of y in the tails will cause larger error rates in PFC. Thus, choosing F as the

B-spline basis may be more robust when estimating the true g(y) under these more

extreme scenarios.

We also conducted an experiment on the Swiss roll with fixed m = 1 and with

three different values of k0(n) = r ∈ {7, 10, 14}. The sample size n ranged from

40 to 1700, and we used 500 replications. In these simulations, we assumed that ǫ

follows a Cauchy distribution. From Figure 6.8, one might observe that the accuracy

with PFSC was either steady or increasing as the sample size grew. However, the

accuracy for PFC became worse as the sample size was increased. This seems to be

due to the fact that because of the heavy-tailed error distribution the number of very

large y values increased as the sample size grew; and consequently, this increased

the overall error as shown in Figure 6.8.

In contrast to the previous experiment, we examine in Figure 6.9 the average

accuracies obtained by isotonic PFSC in the Swiss roll example as a function of

the degree of the spline and the spacing between the knots (percentile units). The

accuracy for isotonic PFC with r = 3 is shown for comparison. Figure 6.9 shows that

the performance improves as we increase the number of knots, and the performance

is worse when the number of knots is small.
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Figure 6.8: Simulation results in the Swiss roll example (a)-(c) Display average

simulation accuracies versus sample size n (a) with k0(n) = r = 7; (b) k0(n) = r =

10 and (c) k0(n) = r = 14; ǫ ∼ t(1) and m = 1 for (a)-(c).
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Figure 6.9: Accuracy in the Swiss roll example of isotonic PFSC as a function of
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for comparisons].
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These experimental results with different types of error structures for the swiss

roll in PFSC shows that PFSC is an efficient dimension reduction method compared

to the PFC by controlling the number of knots with small degree. So PFSC is

computationally efficient compare to the PFC without the normality assumption on

error structure.

6.3 Visualization and Classification

In this Section, we provide visualizations of high-dimensional data through

dimension reduction. We also work on multiple-class classification problems, by

employing the k-nearest neighbor (kNN) classifier, Linear Discriminant Analysis

(LDA), and support vector machines (SVMs) after finding the e.d.r space using

both our new method PFSC and Cook’s PFC. The classification performance was

measured using 10 fold cross validation methods. For each random partition of

the data, we used function “CVPARTITION” in Matlab software, which creates a

cross-validation partition for data. An object of the CVPARTITION class defines

a random partition on a set of data of a specified size. This partition can be

used to define test and training sets for validating a statistical model using cross-

validation. CVPARTITION(Y ,‘K’, 10) creates a CVPARTITION object defining

a random partition for a stratified 10-fold cross-validation. Each subsample has

roughly equal size and roughly the same class proportions as in Y .
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6.3.1 Multiple Classifiers (kNN vs LDA vs SVMs )

For classification problems, K-NN, LDA, and SVM have been widely applied.

The kNN (Cover and Hart (1967)) rule is one of the oldest and simplest methods

for pattern classification. Dimension reduction methods are often used to help kNN

classifiers by reducing computational complexity.

Fisher’s linear discriminant analysis (FDA) (Fisher (1936)) was developed for

dimension reduction in binary classification problems, and its multi-class extension

is usually referred to as LDA. In practice, LDA has three major drawbacks: (Cover

and Hart (1967)) It suffers from the small sample size (SSS) problem when the di-

mensionality is greater than the sample size (Vapnik (1995)). It creates subspaces

that favor well separated classes over those that are not. (Vapnik (1998)) LDA as-

sumes the data obey normal distribution. It may fail to obtain the optimal direction

to separate two classes when the data are non-normal.

The support vector machine (SVM) (Vapnik (1995)) is based on the statisti-

cal learning theory of Vapnik and quadratic programming learning theory. SVMs

(Vapnik (1995)), (Vapnik (1998)) were originally developed for binary classification

problems and have been extended to handle multi-class problems. The superior

classification performance of SVM has been justified in numerous experiments, par-

ticularly in high dimensional/ small sample size (SSS) problems.
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6.3.2 Likelihood acquired directions (LAD)

The likelihood acquired direction (LAD) model was proposed by Cook and

Forzani (2009). It finds the maximum likelihood estimator of the central subspace

under conditional normality of the predictors given the response and it seems quite

robust to deviations from normality. We used LAD to compare the performance of

classification in the following section. Cook and Forzani (2009) also use Xy to denote

a random vector distributed as X|(Y = y), y ∈ SY where SY denotes the support

of Y . Assume a general mean µy = E(Xy), µ = E(X), a general conditional

covariance ∆y = Var(Xy) > 0, ∆ = E(∆Y ) and Σ = Var(X). Also assume

a categorical response Y . When the response is continuous or many-valued it is

typical to follow Li (1991) and replace it with a categorical version constructed by

partitioning its range into h slices like SIR. The central subspace SY |X = span(α)

is the smallest subspace that satisfies the conditions (i) ∆y = ∆ + P T

α(∆y)
(∆y −

∆)Pα(∆y)
and (ii) span(α) ⊆ ∆−1span(µy − µ) where α is a basis matrix. The

MLE for S
Y |X maximizes over span(α) the log likelihood function

L(α) = −np

2
(1 + log(2π))− n

2
log |Σ|+ n

2
log |αΣα| − 1

2

h
∑

y=1

ny log |α∆yα| (6.9)

where the data consist of ny independent observations onXy, y = 1, . . . , h. The like-

lihood function L(α) indicates that LAD extracts dimension reduction information

from both the sample means X̄y and sample variances ∆y.
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6.3.3 Is it a bird, a plane or a car?

We used the data examined by Cook and Forzani (2009) to test the classi-

fication performance of PFSC. In Cook and Forzani (2009), five second snippets

of sounds were selected and reduced to a 13-dimensional vectors of features. Each

recording has a label which identifies it as either a bird, a car or a plane. This re-

sulted in 58 recordings identified as birds, 43 as cars and 64 as planes. Each recording

was processed and represented by 13 scale dependent Mel-Frequency Cepstrum co-

efficients (SDMFCCs). As in Cook and Forzani (2009), we focus on reducing the

dimension of the 13-dimensional feature vector to 2-dimensional reduced vectors for

the visualization shown in Figure 6.10. For the classification and visualization, we

generated class labels Y as discrete responses for isotonic PFSC and general PFSC

and we set the dimension of the reduced subspace d = 2. Isotonic PFSC and general

PFSC used f y as spline approximation with degree of 1 B-spline polynomial with

3 interior knots which are the 3 quartiles of {y}ni=1. For the classification, we ran-

domly split the data set into two parts ten times to use the 10-fold cross validation

method with 20 number of replications to get the average classification error rates

and its standard deviation. One part was taken for training and the other part was

used for testing. When the projection matrix is computed from the training part,

all the data including training part and the test part are projected to feature space,

and recognition is performed based on K-nn, LDA, and SVM described in Section

?? shown in 6.4 in feature space.

Figure 6.10(a) shows a plot of the first and second SIR predictors Cook and Ni
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Figure 6.10: Plots of SIR, LDA, Isotonic PFSC and PFSC predictors for the birds-

planes-cars example.
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(2005) marked by sound sources, cars, planes and birds. The first direction SIR-1

separates cars from birds and planes well, and the second direction SIR-2 separates

birds from planes well. Thus SIR can provide two directions for location separation.

A plot of the first two LAD predictors is shown in Figure 6.10(b). In fact, the

first two LAD predictors almost perfectly separate the sound sources. This shows

that they may be sufficient for discrimination. Like LAD, the first two predictors

of isotonic PFSC separate almost perfectly as shown in Figure 6.10(c). In Figure

6.10(d), the first direction PFSC-1 separates birds from planes and cars and the

second direction PFSC-2 separate planes from cars and birds. The main difference

of first two predictors between isotonic PFSC and PFSC is the structure of errors.

Isotonic PFSC assumes the error is isotonic Gaussian noise but general PFSC as-

sumes the error has general covariance structure, ∆. Isotonic PFSC results shows

birds are pretty condensed but general PFSC shows birds are spread out and there

is some overlap. The general PFSC does about as well as SIR.

The classification results are shown in Table 6.4 with three classifiers: K-nn,

LDA, and SVM. Test shows the comparison of SIR, LAD, isotonic PFSC, and PFSC.

To see the difference performance of before and after dimension reduction we also

conduct the classification on the high-dimensional feature space with p = 13. After

conducting dimension reduction on the birds-planes-cars example, we would like to

be able to say the loss of information in the data may sustainably low as before the

DR as shown in the Table 6.4.
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Figure 6.11: Error rate in the birds-planes-cars example
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Table 6.4: Sample Mean and Standard Deviation of Monte-Carlo estimates of av-

erage simulation classification Error Rate based on the 40 replications in the birds-

planes-cars example by K-nn, LDA, and SVM with 5-fold cross validation when

d = 2.

K-nn LDA SVMs

Before Reduction 0.0327 (5.98×10−4) 0.0886 (1.15×10−3) 0.0672 (9.77×10−4)

SIR 0.0784 (1.47×10−3) 0.0886 (1.15×10−3) 0.0798 (6.74×10−4)

LDA 0.0201 (1.10×10−3) 0.1371 (1.24×10−3) 0.0572 (1.11×10−3)

Isotonic PFSC 0.0462 (1.13×10−3) 0.1136 (9.28×10−4) 0.0759 (4.79×10−4)

General PFSC 0.0762 (1.53×10−3) 0.0886 (1.15×10−3) 0.0799 (7.17×10−4)

6.4 Conclusion and Discussion

A main advantage of the PFSC method is that it is flexible enough to be

directly applied in a wide variety of settings. As we show in Sections 6.1.1 and

6.1.2, the PFSC works at least as well or almost as well as the PC and PFC mod-

els when the inverse regression curve is relatively straightforward. Ordinary least

squares (OLS) is widely recognized as a reasonable first method of regression when

the response and predictors follow a nonsingular multivariate normal distribution.

Nevertheless, examples are given in Section 6.1.1 and in Section 6.1.2 to demonstrate

that in this context reduction by PC, PFC, and PFSC may dominate OLS with-

out any invoking collinearity conditions. More notably, the PFSC method shows

especial promise in examples such as the Swiss roll where the relation between the
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Table 6.5: Sample Mean and Standard Deviation of Monte-Carlo estimates of av-

erage simulation classification Error Rate based on the 20 replications in the birds-

planes-cars example by K-nn and LDA with 5-fold cross validation

Reduced Dimension Methods K-nn LDA

d= 2 Before Reduction 0.0354 (1.37×10−3) 0.0833 (2.00×10−3)

SIR 0.0772 (2.22×10−3) 0.0833 (2.00×10−3)

LAD 0.0254 (3.47×10−3) 0.1415 (3.49×10−3)

Isotonic PFSC 0.0454 (1.74×10−3) 0.1154 (1.00×10−3)

General PFSC 0.0784 (2.92×10−3) 0.0833 (2.00×10−3)

d= 3 Before Reduction 0.0357 (1.28×10−3) 0.0884 (2.28×10−3)

SIR 0.0800 (3.39×10−3) 0.0884 (2.28×10−3)

LAD 0.0457 (5.93×10−3) 0.1584 (8.44×10−3)

Isotonic PFSC 0.0451 (1.79×10−3) 0.1512 (1.03×10−2)

General PFSC 0.0657 (3.13×10−3) 0.2372 (2.49×10−2)

d= 8 Before Reduction 0.0357 (1.20×10−3) 0.0878 (2.21×10−3)

SIR 0.0954 (2.97×10−3) 0.0878 (2.21×10−3)

LAD 0.0318 (2.05×10−3) 0.0963 (2.01×10−3)

Isotonic PFSC 0.0351 (1.85×10−3) 0.1339 (3.56×10−3)

General PFSC 0.0587 (2.88×10−3) 0.1772 (1.28×10−2)

d= 12 Before Reduction 0.0351 (1.01×10−3) 0.0896 (2.96×10−3)

SIR 0.1148 (2.73×10−3) 0.0896 (2.96×10−3)

LAD 0.0351 (1.26×10−3) 0.0875 (2.76×10−3)

Isotonic PFSC 0.0378 (1.65×10−3) 0.1290 (4.96×10−3)

General PFSC 0.0475 (2.95×10−3) 0.1436 (1.04×10−2)
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true predictors and the response is more complex. Throughout this dissertation, we

mostly focus on spline approximations which are piecewise linear with knots placed

at the quantiles of the response. This use of piecewise linear approximations is

due to both its simplicity and good performance in several simulation studies and

applications. In addition, we show that polynomial fitting is sensitive to outliers,

lowering the quality of the approximation. Outliers have a more nearly local effect

when piecewise polynomials are used, and since each polynomial piece approximates

only a portion of the entire function, each piece will usually be of lower degree than

a single polynomial, rendering a stabler over- all approximation. Also, exploring

criteria which could be used to select both the degree of the spline and the knot

locations would be an important topic for future research.
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Chapter 7: Image Recognition

In this chapter, we apply our new methods – the isotonic PFSC method with

an isotonic gaussian error structure and the general PFSC method with a general

error structure– as well as reduction methods, SIR to high-dimensional image data.

In the first set of experiments, we perform comparisons on the binary alpha digits

database. For the classification, we split the data set into two parts ten times to

use the 10-fold cross validation method with 20 of replications. One part is taken

for training and the other part will be used for testing. The projection matrix is

computed from the training set, and all the images including both the training and

test sets are projected to the feature space, that is, the dimension reduced subspace.

Recognition is then performed using the KNN and LDA classifiers.

7.1 Binary Alpha digits Database

In this study, we conducted experiments on the Binary Alpha digits database

Reduction (Bin) . In this data, each image contains a single character. This char-

acter is either a single digit (from 0 to 9) or a single letter of the alphabet. In this

experiment, we only used the images which had digits. The images are 20 × 16

eight-bit gray scale maps, with each pixel ranging in intensity from 0 to 255. The
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portion of the database which we used contains 390 binary images with each digit

having 39 samples.

Each of the methods - isotonic PFSC, general PFSC, and SIR - are useful tools

for dimension reduction and compression in this setting. For the classification and

visualization, we used the class label Y as a discrete response for isotonic PFSC and

general PFSC. Isotonic PFSC and general PFSC used fy as spline approximation

with order 1 B-spline polynomial with 3 interior knots which are the 3 quartiles of

{y}ni=1. We illustrate this feature on the Binary Alpha digits data described above.

Figure 7.1 shows digits, each a considerable variation in writing styles, character

thickness and orientation. With the SIR method, we used 10 slices with the kth slice

(k = 0, 1, . . . , 9) containing the observations with Y = k.

Figure 7.1: Digits from the Binary Alpha digits database

Before performing classification, we conducted dimension reduction on the

original data set (binaryalpha digit) where the dimension of the reduced space is 2,

(i.e. d = 2) by using three dimension reduction methods: SIR, isotonic PFSC, and

general PFSC. Then, we visualized each dimension reduced space by plotting the
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obtained predictors in Figure 7.2. 7.2(a) shows a plot of the first and second SIR

predictors (Cook and Ni (2005)). Figure 7.2(b) shows a plot of the first and second

isotonic PFSC predictors. Figure 7.2(c) shows a plot of the first and second general

PFSC predictors. The reduced subspace of the original data using general PFSC is

similar to the one obtained using SIR (by rotation, there position can overlap). With

both of these methods 0, 1, 4, 7, 8, and 9 are well-separated but 2, 3, 5 and 6 overlap

considerably. From this, one might guess that the feature space of 0, 1, 4, 7, 8, and 9

have distinct features, but 2, 3, 5 and 6 have similar features. In addition, compared

with SIR and general PFSC, isotonic PFSC shows poor results. In particular, 2, 3,

5 and 6 are not distinguishable from one another and stick together. This suggests

that the Binary Alpha digits are distributed in a high dimensional nonlinear space.

In particular, 2, 3, 5 and 6 are significantly correlated due to the similar feature

space. Hence, if one reduces the original dimension to the extreme case where d = 2

then, SIR or general PFSC – which both have general covariance structures – should

have better visualization results.

In Figure 7.2, we show a visualization where the reduced space d is 2. In

Figure 7.3 and Table 7.1, we show the classification performance obtained after

applying some form of dimension reduction. As shown in Figure 7.3 and Table

7.1 the classification error is examined with the variable reduced degree d ranging

from 2 to 50. In these simulations, we first conducted dimension reduction using

each of the three methods: SIR, isotonic PFSC, and general PFSC. Then, using

the dimension reduced data, we applied two classification methods, k-nn and LDA

for each of the dimension reduction methods. As a basis of comparison, we also
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Figure 7.2: Visualization of dimension reduced digits from 0 to 9 in Binaryalphadigit

database.
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used the classification methods with the original high-dimensional data without

any dimension reduction. We consider these images to be points xi ∈ R
320, and

compute their principal components via the PFSC, SIR, PC and PFC. Here the

size of the training set is selected by using 10-fold cross validation. The estimated

classification accuracies of average results of 10-fold cross validation experiments are

shown in Table 7.1.

The experiments reveal some interesting points. The label “Before Reduction”

shows the almost flat line with the same value of error rates since classification was

done with original data without the dimension reduction, and the small variation is

occurred due to the Cross Validation. In Figure 7.3(a), when applied k-nn, one can

observe that the original data without dimension reduction shows the best results

with smallest classification error rates, then the isotonic PFSC shows good results

when the reduced degree d > 5 and the results of isotonic PFSC and before reduction

results show almost no difference where d > 10. In addition, the general PFSC

has worse results than the isotonic PFSC or before reduction but the performance

improves as d is increased. By a spline fitted components fitted on the Y values,

isotonic PFSC and general PFSC might get the better classification results. SIR

do not perform well and shows worst performance where the d is more than 10

degree. Since k-nn can classify well for highly sparse nonlinear dataset, that’s why

its classification results are better than LDA in general especially as d is increasing.

In the case of LDA, LAS is relatively hard when the number of class is larger

than 3 and for the highly nonlinear data. For example, the binary alpha digits

database is the sparse nonlinear high dimensional dataset, the results of before
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Table 7.1: Sample Mean and Standard Deviation of Monte-Carlo estimates of aver-

age simulation classification Error Rate based on the 20 replications in the binary

alpha digits database by K-nn and LDA with 10-fold cross validation

Reduced Dimension Methods K-nn LDA

d= 2 Before Reduction 0.0814 (1.06×10−3) 0.6608 (5.23×10−3)

SIR 0.7816 (4.61×10−3) 0.7823 (4.11×10−3)

Isotonic PFSC 0.4282 (1.87×10−3) 0.3969 (2.01×10−3)

General PFSC 0.7789 (4.16×10−3) 0.7823 (4.11×10−3)

d= 6 Before Reduction 0.0838 (1.13×10−3) 0.6617 (3.89×10−3)

SIR 0.6915 (5.09×10−3) 0.6896 (4.23×10−3)

Isotonic PFSC 0.1176 (1.58×10−3) 0.1203 (8.40×10−4)

General PFSC 0.6470 (5.99×10−3) 0.6896 (4.23×10−3)

d= 10 Before Reduction 0.0832 (1.06×10−3) 0.6579 (3.80×10−3)

SIR 0.6638 (3.62×10−3) 0.6579 (3.80×10−3)

Isotonic PFSC 0.0893 (2.23×10−3) 0.6288 (2.81×10−1)

General PFSC 0.6176 (6.15×10−3) 0.7780 (9.55×10−3)

d= 30 Before Reduction 0.0843 (1.02×10−3) 0.6576 (5.78×10−3)

SIR 0.7167 (4.54×10−3) 0.6576 (5.78×10−3)

Isotonic PFSC 0.0932 (2.23×10−3) 0.1738 (3.11×10−3)

General PFSC 0.4801 (9.22×10−3) 0.9724 (1.99×10−3)

d= 50 Before Reduction 0.0816 (8.75×10−4) 0.6478 (4.16×10−3)

SIR 0.7552 (4.86×10−3) 0.6478 (4.16×10−3)

Isotonic PFSC 0.0957 (2.11×10−3) 0.1607 (2.84×10−3)

General PFSC 0.4319 (1.04×10−1) 0.9748 (1.85×10−3)
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reduction has worse performance in LDA compared to the results from k-nn. Before

reudction and SIR have similar performance of classification rate while the d is 5

or more and have the same results starting from d > 10 as shown in Figure 7.3(b).

SIR and general PFSC is similar up to d = 5 while d > 5 general PFSC shows very

bad results. In addition, isotonic PFSC shows the best results overall. However,

isotonic PFSC shows bad performance with degree d between 10 and 25 again when

has good stable result from d > 25. This part is needed for the further study.
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Figure 7.3: Visualization of dimension reduced digits from 0 to 9 in Binaryalphadigit

database.
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Chapter 8: Conclusions and Future Work

8.1 Conclusions

In this dissertation, we introduced a model-based approach which uses the

conditional distribution of the predictors given the response to guide dimension

reduction. Our work builds upon the principal components (PC) and principal fit-

ted components (PFC) models of Cook and Forzani (2008) and Cook (2007). In

contrast to these previous approaches, we explicitly model the inverse regression

curve as an unknown function of the response which we propose to estimate with

a spline function. This approach, which we call principal fitted spline components

(PFSC), provides a generic, nonparametric method for estimating the inverse re-

gression curve.

Here, we addressed some nice aspects of PFSC Model.

1. Splines basis are not orthonormal but there are advantages using B-splines:

B-splines have “local support” so this reduces the computational burden. The

matrix F TF is banded using order m (m− 1 degree of polynomial) B-splines.

Since the number of bands is independent of the number of knots, one can

handle data complicated structure by controlling the degree of piecewise poly-
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nomials of in the spline basis with fixed knots and can find the best represen-

tative modeling for the given data.

2. If Y is bounded, one can use polynomial or can find the orthonormal basis

of polynomials called Legendre polynomials to create F. However, Legendre

polynomial don’t yield banded F TF since thy don’t have a local support. So,

F TF is dense matrix. Spline basis gives the sparse banded matrix F TF so

PFSC is computationally very efficient. Also if Y is unbounded, finding the

orthonormal basis of Legendre polynomials is not guaranteed. PFSC can yield

the spline basis when Y is also unbounded.

3. Arbitrary degree in polynomial it may have n roots which would mean it

crosses zero n times that gives oscillations. It means it gives up and down so

may not converge.

4. A spline approximation to true inverse regression has a bias component b(y)

for bounded random variable y. We go beyond Johnson by looking at approx-

imation error in using spline approximation of βf to approximate νy.

8.2 Future Work (Ongoing)

8.2.1 How to Choose Knots

As one may see from the asymptotics results for the estimated conditional

covariance matrix of E(X|Y = y) in Chapter 4 and in Chapter 5, consistency

of the conditional covariance matrix holds as long as the number of knots grows
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sufficiently slowly as n goes to ∞. In other words, one needs the number of sample

points in each of the intervals between the knots to be large enough to prevent

any asymptotic bias from occurring. Although we provided a condition on the

number of knots which guarantees consistency, we did not discuss how to choose

the knots in this dissertation in much detail. Under the assumption that one can

find a consistent estimator of conditional covariance matrix of E(X|Y = y) with

enough samples in each bin, one could further suggest an optimization algorithm

that chooses the number of knots and the location of the knots in order to achieve

the best dimension reduction results. If we could find an experimental example

that shows that the PFSC produces a dimension reduced subspace that is closer to

the true subspace by properly controlling the number of knots and their locations,

this would nicely demonstrate that PFSC has good properties as the sample size

increases.

8.2.2 Extend the Global Asymptotics of the Conditional Covariance

Matrix of PFSC for the case of m > 1 and an unbounded Y

In Chapter 5, we showed the global asymptotics of the conditional covariance

matrix of PFSC for unbounded random variables Y for the case with m = 1. When

m > 1, we would need to deal with more the complicated spline basis matrix from the

iterative equation (4.1) which would make the proof considerably more challenging.

However, establishing the global asymptotics of the conditional covariance matrix

for any m ≥ 1 would be a worthwhile next step. If we can show the the global
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asymptotics for all m ≥ 1, we could establish that our new methods PFSC is more

robust theoretically. In our experiments in Chapter 6, all the experiments had the

best performance for finding the reduced subspace when we set m = 1. One might

guess that this result is caused by over-fitting since we have too many parameters

when m > 1. Hence, useful future work might involve developing a procedure to

choose the order of the spline m.
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