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The structural solution problem can be a daunting and time-consuming task.

Especially in the presence of impurity phases, current methods, such as indexing,

become more unstable. In this work, the novel approach of semi-supervised

learning is applied towards the problem of identifying the Bravais lattice and the

space group of inorganic crystals. The reported semi-supervised generative

deep-learning model can train on both labeled data, i.e. diffraction patterns with

the associated crystal structure, and unlabeled data, i.e. diffraction patterns that

lack this information. This approach allows the models to take advantage of the

troves of unlabeled data that current supervised learning approaches cannot,

which should result in models that can more accurately generalize to real data.

In this work, powder diffraction patterns are classified into all 14 Bravais lattices

and 144 space groups (the number is limited due to sparse coverage in crystal

structure databases), which covers more crystal classes than other studies. The

reported models also outperform current deep-learning approaches for both

space group and Bravais lattice classification using fewer training data.

1. Introduction

The first step towards understanding the properties of a

crystalline material at a microscopic level is identifying the

crystal structure. However, this is nontrivial. The first part of

crystal structure determination is indexing. There are several

programs which can be used, such as DICVOL06 (Boultif &

Louër, 1991), TOPAS (Coelho, 2018), GSAS-II (Toby & Von

Dreele, 2013) or N-TREOR (Werner et al., 1985; Altomare et

al., 2000). These programs output a set of space groups and

lattice parameters that could represent the crystal. Using Le

Bail (Le Bail et al., 1988) and Pawley (Pawley, 1981) refine-

ments, the space group that fits the diffraction pattern the best

can be identified. Rietveld (Rietveld, 1967, 1969) refinement

can then be applied to profile the lattice parameters and check

the space group. In the presence of impurity phases, this

approach becomes more expensive as peaks must be selected

manually or tolerance levels must be tuned to discard a certain

number of peaks.

One of the approaches for identifying the positions of atoms

in a crystal is the charge-flipping algorithm (CFA) (Oszlányi &

Süto��, 2008; Palatinus, 2013; Baerlocher et al., 2007). CFA is an

iterative approach that relies on fast Fourier transforms to

determine the crystal structure of a material (Nussbaumer,

1981; Palatinus & Chapuis, 2007). For CFA, the unit cell and

Bravais lattice have to be known, that is, we must have already

been successful with some degree of indexing. CFA also

cannot handle impurity phases, which are prevalent in many

real-world samples.
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Data science methods are being used increasingly in

materials development (Balachandran, 2020; Vandermause et

al., 2020; Reyes & Maruyama, 2019; Karigerasi et al., 2018).

An example of this is the use of supervised neural networks

(NNs) to analyze diffraction patterns. Supervised learning is

an approach that seeks to learn a functional mapping between

data and their labels. The benefit of NNs is that they, unlike

CFA, do not require additional parameters, such as the

Bravais lattice or lattice parameters. Although some approa-

ches use NNs to aid in the Rietveld refinement (Ozaki et al.,

2020; Chang et al., 2020; Schmidt et al., 2019; Schleder et al.,

2019), others use NNs to classify diffraction patterns on the

basis of the crystal structure. These classifiers can be trained to

identify impurity phases and can be tailored towards specific

detectors or parameters. For example, Ryu et al. (2019) trained

an NN to classify the diffraction patterns of crystals that had

defects. Liu et al. (2019) used the pair-density function with

powder neutron diffraction data for space-group classification.

Ziletti et al. (2018) used a convolutional neural network to

classify simulated single-crystal diffraction X-ray image data

into eight space groups.

A number of studies represent powder diffraction patterns

as 2D images. However, the information is inherently one

dimensional. Previous groups probably used the image

approach to take easy advantage of trained models developed

by the machine-learning community. Unfortunately, this could

introduce more complexities to the model. Garcia-Cardona et

al. (2019) carried out one of the only studies to examine

neutron scattering data and used a 1D approach with simu-

lated powder diffraction data to both differentiate perovskites

into five crystal systems and tune the lattice parameters using

regression. This study only looked at a small subset of crystals.

A significant challenge with NNs is that they struggle to

generalize to new data sets. Most models that predict the space

group of a material use less than 100 space groups in their

training data set, which limits their application to new

diffraction patterns. However, large labeled diffraction data

sets are often rare, as labeling them is an expensive task. For

this reason, we use a semi-supervised model, which takes

advantage of both labeled and unlabeled data during training

(Odena, 2016; Zhu & Goldberg, 2009; Kingma et al., 2014;

Kipf & Welling, 2016). We employ a generative network that

can extract features from the unlabeled data distribution and

match these features with the corresponding crystal structure.

This allows semi-supervised learning to be used on more data

sets, especially ones where labels are not available.

In this study, we propose a 1D semi-supervised model for

Bravais lattice and space-group classification using powder

neutron diffraction data. Our NNs are trained with data

spanning 144 space groups and 14 Bravais lattices. The models

used in this study are freely available and can be downloaded

(Lolla & Liang, 2021).

2. Methods
2.1. Data

To test our approach under conditions where we know the

correct answer, we worked with simulated data sets. Our data

were taken from the Inorganic Crystal Structure Database

(ICSD; https://www.psds.ac.uk/icsd), which contains structural

information about more than 210 000 crystals (Bergerhoff et

al., 1983). A total of 138 362 diffraction patterns were simu-

lated using TOPAS (Coelho, 2018). For the Bravais lattices,

we combine the rhombohedral and tetragonal classes for a

total of 14 classes with ‘F’, ‘I’, ‘P’ and ‘C’ representing the face-

centered, body-centered, primitive and base-centered lattices,

respectively. We note that there is an inherent class imbalance

in the ICSD, as shown in Fig. 1. The most prevalent classes in

this data set were the primitive hexagonal, the face-centered

cubic and the primitive orthorhombic lattices. The least

represented lattices were the face-centered orthorhombic and

body-centered orthorhombic lattices.

For the space groups, we used 136 454 of the simulated

diffraction patterns. We used only the space groups that had

more than 50 diffraction patterns, leaving us with 144 out of

the 225 space groups present in the ICSD. The most frequent

space group is No. 62 (Pnma), which is orthorhombic, and

accounts for the disproportionately large number of ortho-

rhombic (P) diffraction patterns in the ICSD data set. A

complete list of the 144 space groups used is shown in Table 1.
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Figure 1
The (a) Bravais lattice and (b) space-group class distribution of the
simulated data.



A complete list of the ICSD IDs used in this study can be

found in the GitHub repository at the URL https://

github.com/usnistgov/semi-supervised-neutron (Lolla &

Liang, 2021).

In this study, we use a 1D approach rather than the tradi-

tional 2D image approach. Our data set consists of diffraction

patterns of powders. Examples of the 1D diffraction patterns

are shown in Fig. 2. To normalize these diffraction patterns, we

divided all intensities in each diffraction pattern by the

maximum intensity. This ensures that the new maximum

intensity is equal to 1 and the minimum is equal to 0.

2.2. Models

We use two approaches to classify the diffraction patterns: a

supervised approach using convolutional neural networks

(CNNs) and a semi-supervised approach using a semi-

supervised generative adversarial network (SGAN).

2.3. Supervised model

We used a 1D ResNet-18, a residual network (He et al.,

2016), model to identify the crystal structure of the diffraction

patterns. ResNets are examples of CNNs which are commonly

used for image classification network algorithms. CNNs

consist of convolutional layers, which are responsible for

extracting high-level features, such as edges and colors, from

images. These layers are used to create a feature map

consisting of the most relevant characteristics of the image. To
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Figure 2
Example 1D diffraction patterns for (a) hexagonal (P) crystals and (b)
orthorhombic (P) crystals.

Figure 3
(a) The ResNet block used in this study and (b) the ResNet-18
architecture. In both parts, the orange, purple, green, red, gray, blue and
yellow layers represent 1D Convolutional layers, Dropout layers, Layer
Normalization layers, Gaussian error linear unit (GELU) activation
functions, 1D Max Pooling layers, 1D Adaptive Max Pooling layers and
Fully Connected layers, respectively. The white circles with ‘+’ signs in
them represent the addition of two layers. In part (b), each ResNet block
was repeated twice, shown by the ‘2�’ next to each block. ‘nc’ and ‘ks’
represent the number of channels and the kernel stride for each
convolutional layer.

Table 1
List of space groups sorted by crystal system.

Crystal system Space groups

Triclinic 1, 2
Monoclinic 4–15
Orthorhombic 18–20, 26, 29, 31, 33, 34, 36, 38, 40–47, 51–53, 55–67, 69–74
Tetragonal 82, 85–88, 92, 96, 99, 100, 107, 109, 113, 114, 119 121, 122,

123, 125–131, 135–137, 139–142
Trigonal 143, 144, 146–148, 150, 152, 154–157, 159–167
Hexagonal 173–176, 180, 182, 185–187, 189–194
Cubic 197–201, 203–206, 212, 213, 215–218, 220, 221, 223–227,

229, 230



create this map using 1D data, a filter of size n is applied to a

larger sequence with size m, and the dot product of every n

consecutive values and the filter is computed. This generates a

smaller matrix that only includes the relevant features (LeCun

& Bengio, 1995).

A ResNet was used in this study to overcome the degra-

dation problem, which occurs when neural networks are too

dense so that the accuracy saturates and then quickly degrades

(He et al., 2016). ResNets are characterized by their residual

blocks, which contain convolutional layers with an identity

function. Fig. 3 shows the model architecture used for the

ResNet-18, and includes an example of a ResNet block used in

this model. During training, we randomly selected 90% of the

data to use as the training set and the remaining 10% of the

data were used to test the model. This testing data set was

distinct from the training one, so the model did not learn from

the testing data. These models and the associated training

scripts are available on GitHub (Lolla & Liang, 2021).

2.4. Semi-supervised model

We also used an SGAN (Odena, 2016; Goodfellow et al.,

2020; Salimans et al., 2016). The SGAN consists of two models:

a Generator and a Discriminator. The Generator tries to fool

the Discriminator with fake diffraction patterns, while the

Discriminator aims to differentiate between real and fake

diffraction patterns. The Discriminator also classifies the real

labeled data into the corresponding crystal structure class.

2.4.1. Generator. The purpose of the Generator is to

sample the latent space, a high-dimensional feature space, to

generate realistic diffraction patterns. The inputs to the

Generator were sampled from a random normal distribution

with a mean of 0 and a standard deviation of 1. The Generator

consists of 1D Convolutional Transpose layers, 1D Batch

Normalization layers and a Leaky rectified linear unit (ReLU)

activation function. The Convolutional Transpose layers are

used to upsample the data (Radford et al., 2015; Dumoulin &

Visin, 2016). The Batch Normalization layers standardize the

output of each layer, which reduces error when the model tries

to generalize to new inputs (Ioffe & Szegedy, 2015) and has

also been shown to reduce mode collapse, a major problem in

GANs (Radford et al., 2015). Mode collapse occurs when the

Generator only produces a few distinct diffraction patterns

despite the latent space input. The Leaky ReLU (Xu et al.,

2015) activation with � = 0.2 is used rather than ReLU to

reduce the vanishing gradients problem (Radford et al., 2015).

Graphs of the ReLU and the Leaky ReLU activation func-

tions are shown in Fig. 4. For negative values, the derivative

for the Leaky ReLU function is equal to �, but for the ReLU

function, it is equal to 0. By having a nonzero derivative for all

values, the Leaky ReLU is used to combat the sparse gradient

problem that occurs while training GANs. Due to our

normalization method, which was dividing all values in a

diffraction pattern by the maximum intensity, the Discrimi-

nator’s inputs were in the range from 0 to 1. For this reason, a

sigmoid activation was applied to the last layer of our
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Figure 4
(a) ReLU, (b) Leaky ReLU with � = 0.2, (c) derivative of ReLU and (d) derivative of Leaky ReLU with � = 0.2.



Generator, rather than the hyperbolic tangent function

recommended by Salimans et al. (2016). Fig. 5 shows the model

architecture of the Generator.

2.4.2. Discriminator. The Discriminator has two objectives:

to differentiate between real and generated data, and to

classify the real data into the correct class. To do this, we used

the same 1D ResNet-18 model described in Section 2.3, but an

activation function to the last fully connected layer, as

proposed by Salimans et al. (2016). This activation function is

shown in equation (1) and is a version of the softmax activa-

tion:

DðxÞ ¼
ZðxÞ

ZðxÞ þ 1
;

ZðxÞ ¼
PK
k¼1

exp½lkðxÞ�:

ð1Þ

In this equation, lkðxÞ represents the logit for class k with data

x. By doing this, we eliminate the need for a second output

layer and instead use only the logits from the classification

layer. By applying this activation function, diffraction patterns

with larger logits, which signify more confident predictions,

will be classified as ‘real’, whereas diffraction patterns with

smaller logits will be classified as ‘fake’. This encourages the

Discriminator to be more confident in its predictions, which

sharpens the decision boundary between classes. The Discri-

minator’s architecture is shown in Fig. 6.

While training the Discriminator, there are two modes:

supervised and unsupervised. During unsupervised training,

the Discriminator acts the same way it would in a regular

GAN as it tries to determine that the generated diffraction

patterns are fake and the data drawn from the unsupervised

set is real. In the supervised mode, the Discriminator is trained

to predict the class label for real samples. Training in the

unsupervised mode can help the Discriminator extract

features from the data, and training on the supervised data will

allow the Discriminator to use those extracted features for

classification.

2.4.3. Loss functions and objective functions. The modified

min–max loss proposed by Goodfellow et al. (2020) was used

for the adversarial loss between the networks. The objective

function that the Generator tries to maximize is shown in

equation (2):

r�g

1

m

Xm

i¼1

� logfD½GðzðiÞÞ�g: ð2Þ

�g represents the parameters in the Generator and zðiÞ repre-

sents the random values in the latent space. GðzðiÞÞ is the

generated diffraction pattern from the Generator and

� logfD½GðzðiÞÞ�g is the probability that the Discriminator

predicts that the generated pattern is real.

For the Discriminator, the objective function to be maxi-

mized is shown in equation (3):
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Figure 5
The architecture for the Generator. The blue, green, orange and red
boxes represent 1D Convolutional Transpose layers, Leaky ReLU
activations, Batch Normalization layers and sigmoid activations, respec-
tively. ‘nc’ and ‘ks’ in the blue boxes represent the number of channels
and the kernel size, respectively, for each 1D Convolutional Transpose
layer.

Figure 6
The model architecture for the ResNet-18 Discriminator. The orange,
purple, green, red, gray, blue and yellow layers represent 1D Convolu-
tional layers, Dropout layers, Layer Normalization layers, GELU
activation functions, 1D Max Pooling layers, 1D Adaptive Max Pooling
layers and Fully Connected layers, respectively. The white circles with ‘+’
signs in them represent the addition of two layers. In part (b), each
ResNet block was repeated twice. ‘nc’ and ‘ks’ represent the number of
channels and the kernel stride for each convolutional layer, respectively.



r�d

1

m

Xm

i¼1

log½DðxðiÞÞ� þ logf1�D½GðzðiÞÞ�g
� �

þ
XC

i

ti logðsiÞ:

ð3Þ

�d represents the parameters in the Discriminator, xðiÞ is the

unsupervised real data, and maximizing DðxðiÞÞ implies that the

model can identify real data. Like the Generator’s objective

function, zðiÞ represents the random values in the latent space

and GðzðiÞÞ is the generated diffraction pattern from the latent

space. Increasing the value of 1� logfD½GðzðiÞÞ�g shows that

the Discriminator can determine that the generated patterns

are fake. Equation (3) also includes the categorical cross

entropy loss, which is shown in the term
PC

i ti logðsiÞ. Here, C

represents the number of classes, ti shows whether the ith class

is the label of the diffraction pattern and si is the Discrimi-

nator’s prediction.

2.4.4. Training details. Fig. 7 shows the training pipeline

used in the SGAN. During SGAN training, the Discriminator

has three inputs: a generated sequence from the Generator, a

powder diffraction pattern that is labeled with either the space

group or the Bravais lattice, and an unlabeled powder

diffraction pattern that does not include the crystal structure.

We train our SGAN using four different amounts of labeled

training data. In all scenarios, we randomly select 10% of the

data as testing data, which is distinct from the labeled training

data and the unlabeled training data. In the first scenario, we

use 5% of the data as labeled training data and 85% as

unlabeled training data. In the second, we use 10% of the data

as labeled training data and 80% as unlabeled training data. In

the third, we use 25% of the data as labeled training data and

65% of the data as unlabeled training data, and finally we use

50% of the data as labeled training data with 40% of the data

as unlabeled training data. We also train our supervised

ResNet with the same 5, 10, 25 and 50% of the data to

compare the accuracy of the SGAN with that of the purely

supervised approach.

To train a supervised classifier, we use only the percentage

of labeled training data. The model uses a powder diffraction

pattern as input and aims to differentiate between the various

crystal structure classes.

Table 2 shows the hyperparameters used in the ResNet and

the SGAN.

We used PYTORCH (Paszke et al., 2017) as a deep-learning

framework. To accelerate training, each model was trained on

eight NVIDIA Tesla V100 Tensor Cores.

3. Results and discussion

3.1. Supervised model

Our supervised ResNet trained on 90% of the data set had

an accuracy of 88%. The confusion matrix for the Bravais

lattice model is shown in Fig. 8. By plotting the predicted

Bravais lattice against the actual Bravais lattice, the confusion

matrix provides more information about the sets of classes

that the network misclassified. If the model had a perfect

testing accuracy, the values along the principal diagonal would

sum to 100% as the network would have classified every

diffraction pattern correctly. Again, there is a clear imbalance

in the sampled ICSD data set, with orthorhombic (F) and

orthorhombic (I) having the least samples. From the confusion

matrix, we can see that, despite the fact that orthorhombic (P)

is the most prevalent class, the model misclassifies some of

these as monoclinic (P) crystals. The network also has trouble

differentiating between triclinic (P) and monoclinic (P)

diffraction patterns, as both of these classes have low

symmetries, agreeing with previous studies (Garcia-Cardona

et al., 2019). Similarly to Suzuki et al. (2020), we believe that

this result was caused by undersampling the triclinic crystals.

For the space-group identification, our model had a top-1

accuracy of 80.6% and a top-5 accuracy of 90.27% across all

144 space groups. We trained our model on all 230 space

groups and found that the model had a top-1 accuracy of 74%

and a top-5 accuracy of 85%. We decided to investigate further

the model on only the 144 most prevalent space groups within
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Table 2
Hyperparameters used in the supervised ResNet, Generator and
Discriminator.

Hyperparameter Supervised Generator Discriminator

Optimizer Adam Adam Adam
Learning rate 1 � 10�4 1 � 10�6 5 � 10�6

Dropout rate 0.1 None 0.1
Batch size 64 32 32
Nonlinear activations GELU Leaky ReLU & sigmoid GELU

Figure 7
The architecture for the semi-supervised GAN.

Table 3
Comparison with other supervised space-group classifiers.

Study
Number of
space groups Type of data Accuracy (%)

Our model 144 Powder diffraction 80
Liu et al. (2019) 45 Pair distribution function 71
Ziletti et al. (2018) 8 2D X-ray diffraction 96.3
Tiong et al. (2020) 72 2D X-ray diffraction 80.2



the data set, due to a major class imbalance. Some space

groups had less than 50 diffraction patterns, less than 0.03% of

our data set. Accuracy was measured by dividing the number

of correctly classified diffraction patterns in the testing set by

the total number of patterns in the testing set. Top-5 accuracy

is the percentage of samples for which the actual space group

was one of the model’s top five predictions. This outperforms

most current models of which we are aware. Liu et al. (2019)

used machine learning with a pairwise distribution function

with a top-1 accuracy of 71% and a top-5 accuracy of 90%

across 45 space groups. Tiong et al. (2020) classified X-ray

diffraction data into 8, 20, 49 and 72 space groups (Table 3).

Their accuracy decreased from 99 to 80% for 8 and 72 space

groups, respectively, implying that this accuracy would

decrease further if their model was trained on more space

groups. Aguiar et al. (2019) had a top-2 accuracy greater than

80% across all space groups, but used a data set consisting of

650 000 diffraction patterns, more than five times the size of

the data set used in this study. However, they used a 1D

network, suggesting that a 1D approach can lead to more

accurate predictions. We note that we did not take advantage

of data augmentation.

3.2. Semi-supervised model

We compare the accuracy of the SGAN with the accuracy of

the supervised model in Table 4. The SGAN consistently

outperforms the purely supervised model, showing that the

semi-supervised approach has the potential to be more

applicable in the real world. A graph comparing the accuracy

of the supervised and semi-supervised models is shown in

Fig. 9. This graph shows that although the accuracy of the

SGAN is impacted by a lack of data, the difference between

the accuracy of the SGAN and the accuracy of the supervised

model is greatest when only 5% of the data are used.
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Figure 8
The confusion matrix for the supervised ResNet-18.

Figure 9
Graph comparing the accuracies of the SGAN and supervised ResNet for
Bravais lattice and space-group identification.



4. Conclusion

In this study, we use both CNNs and a semi-supervised GAN

to investigate supervised and semi-supervised approaches for

crystal structure classification. We demonstrate that SGANs

can prove to be more accurate with limited quantities of

labeled data for Bravais lattice and space-group classification.

Further, we explore a 1D approach rather than a traditional

2D one. Our 1D model is more accurate than 2D image

models, which agrees with previous results in the literature.

Our semi-supervised model is also more applicable to real

data sets which will lack large quantities of labeled data.

In the future, we would like to train the SGAN to identify

impurity phases and to test the method on real data sets.
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Table 4
Comparing the accuracy (%) of the SGAN to the purely supervised
approach with different quantities of labeled training data for both
Bravais lattice and space-group classification.

Percentage
of data

Supervised
Bravais lattice

SGAN
Bravais lattice

Supervised
space group

SGAN space
group

5 61 70 54 60
10 68 74 61 65
25 76 80 68 72
50 82 85 75 78
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