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Abstract

A new approach to frequency domain design of robust controllers
for distributed parameter systems is presented. The central idea is
to use techniques that were developed for the solution of the Corona
Problem, for the solution of both the Bezout equation and an auxil-
iary equation that arises form the Nehari interpolation problem. An
algebraic reformulation of these equations allows the solution to be
computed from the solution of an inhomogeneous Cauchy Riemann
equation with a Carleson measure as the inhomogeneous term. The
theory is applied to a single input single output system with delay to
yield the transfer function of a stabilizing controller with guaranteed
H> stability margin. Finally the framework is extended to handle
multi-input multi-output systems.

Key words: Robust Control, Linear Systems, H*®, Cauchy Rie-
mann Equations, Interpolation.

*This work was supported by AFOSR-URI grant# AFOSR-90-0105

tDepartment of Electrical Engineering and Institute for Systems Research, University
of Maryland, College Park

*Department of Mathematics and Institute for Systems Research, University of Mary-
land, College Park



1 Introduction

This paper presents a new approach to H*® controller design for a general
class of linear systems that are described by irrational transfer functions.
The approach is based on a computational method for solving linear Dio-
phantine equations in algebras over the ring of H® functions. The term
Diophantine here is used in analogy with Diophantine equations over the
ring of integers to refer to algebraic equations over more general rings, in
this case rings constructed from function spaces. The term linear is used to
indicate that the equations that are being considered do not involve products
of the unknown variable, in other words they have the same form as linear
algebraic equations over fields. Two such equations occur in the design of
H®* controllers for linear systems: the first is the Bezout identity that leads
to the parameterization of all stabilizing controllers, and the second is an
equation that arises from the Nehari problem. Bounded solutions to the
second equation provide controllers with guaranteed robustness in the sense
of H® control theory.

The extension of H* design techniques to distributed parameter systems
has been an area of active research since the 1980’s. In the report [Cur92]
Curtain compares five approaches that were developed during this period.
The approach that has enjoyed the greatest practical success is based on the
work of Glover, Curtain and Partington [GCP88), in this paper the authors
show that if a distributed system has a Hankel operator of nuclear type,
then the system may be approximated by a finite dimensional system with
a guaranteed bound on the L™ norm of the error. This result means that
a finite dimensional controller designed for the approximate plant will also
control the infinite dimensional plant with guaranteed (though reduced) H*®
stability margins. For linear plants that are associated with a nuclear Hankel
operator, a class that includes many cases of practical interest, this method
provides a practical solution to the problem of controller design.

In spite of this result, research has continued on ways to attack the
problem of controller design directly, without the initial finite dimensional
approximation to the plant. As in the case of the theory that was developed
for rational plants, the work on infinite dimensional systems can be divided
between approaches that consider the plant as a linear state-space system
with an infinite dimensional state space, and approaches that consider the
plant as a transfer function that acts multiplicatively in the frequency do-
main on the transform of the signal space. An example of the first approach
is found in the work of van Kuelen [vK93] in which the author presents a



pair of infinite dimensional Riccati equations with solutions that are the ba-
sis for a state space representation of a controller. Examples of the second
approach are found in the work of Foias, Tannenbaum, Ozbay and Smith
[FT88a], [FT88b], [0ST93], [093], and in the work of Dym, Geogiou and
Smith {GS92], [DGS93]. The two sets of authors design H* controllers using
methods based on the theory of skew Toeplitz operators that is presented by
Bercovici, Foias and Tannenbaum in [BFT88]. The authors Flamm, Mitter
and Yang independently follow a similar approach in [FM87] and [FY94].

The method of controller design presented in this paper takes the fre-
quency domain approach. It extends the method presented by Francis in
[Fra87] for systems with rational transfer functions to systems with irra-
tional transfer functions. The method starts with a co-prime factorization
of the plant, solves the associated Bezout Equation, and from this computes
a Youla parameterization of all stabilizing controllers. An associated Ne-
hari problem is solved approximately and the solution provides a controller
which, although not optimal, has guaranteed robustness in an H*® sense.
The result of the controller computation is a numerical approximation to
the controller’s transfer functions rather than a closed form expression com-
posed of elementary functions.

The main contribution of this paper is the presentation of a new method
for solving both the Bezout equation that leads to the Youla parameteriza-
tion and the equation that is derived from the Nehari Problem. This method
is based on a constructive proof of the corona theorem presented by Gar-
nett in [Gar81]. The constructive part involves an explicit solution to the
inhomogeneous Cauchy Riemann equation 8b/0Z = u, where the inhomoge-
neous part u is a Carleson measure, and the solution b is a distribution with
support in the right half plane and an L* boundary value. The terminology
is explained in detail in Section 3. The method of solution of this first order
partial differential equation, which is due to Jones [Jon80] [Jon83], combines
a careful decomposition of the measure p with a Green’s function method.

It seems most logical to compare the results achieved here with those
achieved by the methods developed in [0ST93], and to this end the example
presented by Enns, Ozbay and Tannenbaum in [EOT92] is reworked in this
paper with the techniques developed here. The steps in the computation of
a compensator transfer function are presented in detail, and an open-loop
Nyquist plot for the compensated system is presented along with magnitude
plots of appropriate sensitivity transfer functions for the closed loop system.
Enns et al. are able to compute an optimal solution for this problem, so a
comparison with the results in [EOT92] provides a good indication of the



distance between the solution computed here and an optimal solution.

The paper is divided into six sections of which this introduction is the
first. In the second section the example from [EOT92] is presented and an
outline of the method to be employed for its solution is given, in particular
this section shows how linear Diophantine equations occur in the H® design
problem. The third section provides the theory that is used to solve the
linear Diophantine equations. This is necessarily the most technical sec-
tion of the paper and includes a number of ideas that are not commonly
met in the control literature. The fourth section shows how the algorithms
that are described in section three are applied to the example introduced
in section two. Included in this section is a description of the structure of
the software that was developed to implement the algorithms and the re-
sults of the controller design. Section five contains the theory needed to
extend the methods presented in the previous sections to general multiple-
input multiple-output systems, and the final section contains provides some
conclusions and a discussion of future directions



2 An Example

A concrete example is introduced in this section in order to establish a design
method and provide motivation for the techniques that are introduced in the
following section. The example uses a simplified model of the pitch-axis fast
dynamics of an unstable aircraft taken from a paper by Enns, f)zbay and
Tannenbaum [EOT92]. The plant, which is given by the transfer function!

e—TZ

F(z)=

oz—1’ (1)
has an unstable pole at z = 1/0, and a delay of 7 seconds, as such it is
amongst the simplest unstable infinite dimensional systems. The design
objective is to produce a linear feedback controller with the configuration
illustrated in Figure 1 that both robustly stabilizes the plant and maintains
low low-frequency sensitivity.

G

Figure 1: Feedback Controller

The design proceeds by the standard procedure [Fra87] of reformulating
the problem as the minimization of the L® norm of an affine expression over
an H* parameter. Let

Fi(z) = e 7/(oz+1) (2)
Fy(z) = (0z—-1)/(cz+1)

IThe symbol z is used throughout the paper to denote an independent complex variable
in, for example, transfer functions. While this notation is at odds with the usual choice
of s for the independent variable in the Laplace transform, it is standard in complex
analysis, and it’s adoption here offers the benefit of maintaining consistency between the
notation in Section 3 and the notation in the literature, as well as an improvement in the
self-consistency of the notation.



then F(z) = Fi(z)/F2(2) and infrez>0(|F1(2)| + |F2(2)|) > 0 so Fi and Fb
form a co-prime factorization of F. Let X; and X5 be functions in H* that
solve the Bezout equation?

Fi(2)X1(2) + Fa(2) Xa(2) = 1 (3)

then all stabilizing controllers may be expressed in terms of an H* parameter
@ by the bilinear function

= Xl - R0 @

This parameterization was first given by Youla et al. [YBJ76] for the case of
rational transfer functions and was extended to irrational transfer functions
by Baras in [Bar80]. Smith gives a proof of the existence of strongly co-prime
factorizations for stabilizable plants in [Smi89].

A key step in the parameterization is the solution of the Bezout equation.
If the plant has rational co-prime factors, then the equation may be solved
by algorithms that exploit the Euclidean domain structure of the ring of
polynomials such as that given by Kailath in Chapter 2 of [Kai80], or by
algorithms that rely on state space techniques such as that used by Francis in
[Fra87]. Neither technique will handle irrational transfer functions however,
and people working with irrational transfer functions have been restricted to
systems that are sufficiently simple that the solution to the Bezout equation
may be found by inspection. This is the case in the example presented in
Equation (1); the authors of [EOT92] give the solution

Xi(z) = €7
(o2 +1) —2e7/7e™7%

%2(z) 07 =1)

The lack of a good method for computing solutions to the Bezout equation
has hindered the application of frequency domain methods to controller
design for plants with irrational transfer functions.

Returning to the example, and in line with the H* design methodology,
the design goals of robust stabilization and low low-frequency sensitivity are
reformulated as the requirement that the controller should be chosen so that
the weighted norms of a pair of transfer functions should be minimized. The
sensitivity is given by the closed loop transfer function (1 + FG)~! and the

2The symbol 1 is used to represent the constant function 1(z) = 1.



robust stabilization requirement is interpreted as meaning that the controller
should stabilize all plants with transfer functions within an L* neighbor-
hood of the nominal plant. An argument based on the Nyquist theorem
(Theorem 1 of [CD82]) assures a stable neighborhood provided the trans-
fer function G(1 + FG)™! is bounded above. Both objectives are satisfied
with the choice of a feedback controller G that minimizes a combination of
the norms of both transfer functions Such a controller attempts to optimize
both the sensitivity and robustness of the closed loop system. The relative
importance of the sensitivity and robustness objectives are controlled in a
frequency dependent fashion by multiplying the two transfer functions by
H* weighting functions, W;(2) and W(z). A good description of the H®
design methodology may be found in [Fra87] [DFT92|, and details of its
particular application to the pitch control problem are given in [EOT92].
In short the design specification is translated into the requirement that
the controller should be chosen to stabilize the plant and minimize the value

of the norm
WaG(1 + FG)™1 (5)
Wi(l+ FG)‘1 oo’

where W1 and W, are the weighting functions referred to earlier in the
previous paragraph. If the Youla parameterization (4) is substituted for G
in (5) then the objective is transformed into the norm of the affine expression

( Fa(2)(X1(2) + Fa(2)Q(2)) Wa(2) )

Fa(2)(Xa(2) — R(2)Q(2)Wi (2 ()

The design problem is to find a function Q in H*® that produces a value
for (6) within a predefined upper bound. This problem, which is related
to the classical Nehari problem has been at the center of frequency domain
approaches to the H*® control system design since the early work of Francis
et al. [FHZ84], [FZ84]. The authors of [EOT92] and [FY94] use operator
theoretic techniques to tackle the Nehari Problem, the method that this
paper presents starts from a different point of view. If the affine expression
in (6) is labeled P, then

_( BEX()Wa() Fy(2)*Wa(2)
Plz) = ( Fy(2) X2 (Wi (2 ) + Q) ( ~REHF(RWi(2) ) ’

0

which may be rewritten as,

Fa(2) X1 (2)Wa(2) \ _ —Fy(2)*Wa(2)
( Fa(2) o (2) W3 (2 ) = 1P() +Qb) ( Fa(2)Fi (2) W (2) ) )

7



and the design problem may be viewed as the problem of solving a linear
Diophantine equation with the added requirement that a norm on the so-
lution should be minimized. More specifically, one must find @, an H*®
function, and P, a matrix of H* functions which together solve (7) with
the added constraint that the L* norm for the largest singular value of P
should lie within a specified bound. An optimal solution is one for which
the norm on P is a minimum with respect to the values that this norm takes
over all solutions P to Equation (7). The algorithm presented here will not,
in general, achieve that minimum, and we demonstrate in Section 4 that the
discrepancy can be large. Equation (7) resembles the Bezout equation (3)
which is also a linear Diophantine equation, and the same basic technique
is used to compute solutions for both of them.



3 Solving Linear Diophantine Equations

Let f1, fo and h be three functions in H*®. This section addresses the
problem of finding solutions h; and hs in H*® for the equation

f191 + faga = h. (8)

Equation (8) subsumes the Bezout equation (3), and if the objective function
(6) were replaced by a scalar objective function, it would subsume the linear
equation (7) that arises in the Nehari problem as well. If f; and f, are outer
functions, which is to say that they possess multiplicative inverses in H®,
then the solution is easy. A family of solutions with parameter n an H®
function is formed by setting g1 = nhf; ! and g2 = (1 — n)hf; . When f;
and fo have zeros in the right half plane, the inverses no longer exist and
this method breaks down, but if the requirement that the solutions be in
H® is temporarily relaxed then bounded (but not analytic) solutions may
be found as follows.

Let ¢ be a bounded function on the half plane with the property that the
zero set of fq is bounded away from the support of ¢, and the the zero set of
f2 is bounded away from the support of 1 — ¢. For such a function to exist
some restriction needs to be placed on the functions f; and f,, for instance,
it is necessary that they should have no common zeros. Bounded solutions
to Equation 8 can be constructed in a piecewise fashion by taking §; = 0
outside the support of ¢, and g1 = ¢hf; ! on the support of ¢ and for the
second function go = 0 outside the support of 1 — ¢ and g2 = (1 — #)hfy 1
on the support of 1 — ¢.

Observe that if e is a bounded function on the right half plane, then the
two functions —ef; and ef, satisfy the relation

(—efi)fo+ (efa)f1 =0.

With this in mind the step from the bounded solutions g; and g, to H®
solutions can be made if a bounded function e can be found such that the
functions

g1 = g1tefs (9)
g2 = Gg2—efi

are are both in H*®. In this section it is shown that if the function ¢ is
chosen appropriately, a suitable function e can be calculated as a solution




to a first order partial differential equation. The H* norms of the solutions,
g1 and go, depend on the choice of ¢ and e. In the case of the Nehari
Problem described in section 2, a bound on the norm ||P|« is obtained
by separately bounding quantities that correspond to g; and e in equation
(9). As a consequence, success in calculating solutions with small || Pl
norms depends critically on controlling the norm of the function e. Section
4, which presents a solution to the problem posed in Section 2, contains
further discussion of this point.

3.1 Algebraic Reformulation

The appropriate setting in which to make the introductory paragraphs of
this section precise is the setting of homological algebra. This setting was
first presented by Hormander [H6r67] in conjunction with the corona prob-
lem, and has been used by Berenstein, Taylor, Struppa and Yger [BS86],
[BT80], [Str83], [BY89] for the investigation of linear Diophantine equations
in algebras over rings of analytic functions of bounded growth. In the sim-
ple cases of equations that arise from single-input single-output systems the
algebraic formalism reduces precisely to the equations of the opening para-
graph. A good introduction to the analysis used in this chapter is [BG91],
and the survey [BS93] describes recent applications of the methods that are
used in this paper to other problems in the analysis of linear operators.

Let R denote a ring of functions (or distributions) on the half plane
‘H. For any positive integer m let A(R) denote the graded module over R
that consists of functions on € that take values in the exterior algebra of
antisymmetric forms on an m-dimensional vector space. Let A¥(R) denote
the homogeneous elements in A(R) of order k. A(R) is a finite free module
over R, and a basis element will be denoted by e;, . ; with the indices
ordered1 <14y <... <4 <m. Ifj € {11,...,%} then the symbole, ~

T1yeens yennslle
denotes the basis element of AF~1 that is formed by deleting the index j from
€z 167 & {41,...,1} then € iy = O Suppose that f = {f1,... fm}

is a finite subset of R, then the operator Py defined on A(R) acts on a basis
element as follows

k
Pf(eil v'"rik) = Z fij ei] ,...,{;,...,ik
j=1

The operator Py forms an exact sequence over the homogeneous sub-
modules A* called the Koszul complex. In the case of m = 2 the Koszul

10



complex is represented by the diagram
0—A2(R) 25 AN R)ZEH A (R)—s0, (10)

and when R = H®, this corresponds exactly to the concrete algebraic setting
described in the opening paragraphs of this section. Finding a solution
to Equation (8) is equivalent to inverting the operator Py : Al(H®) —
A%(H*). The approach to inverting the operator Py that was outlined in
the introduction was first to find an inverse in a larger space than A'(H™),
and then add an element from the image of Py : A2(H®) — A}(H™) that
will return the solution to H*®. The appropriate ring in which to invert
Ps is the ring of distributions which will be introduced with the following
definitions from Hérmander [HGr67].

Denote the open right half plane by #, its closure by H, and its boundary,
the imaginary axis, by 0H. Let p be a measure with support on #, then a
distribution u on H satisfies the equation®

ou
37 =M (11)

if for any continuously differentiable test function 1 with support compactly

contained in H,
ou _ o(z)
() = - [0y '
= [ d@du (12)
H

The measure dz dy in the first integral is the Lebesgue measure on €. A
distribution u that satisfies (12) is said to have boundary value ¢, an L*®
function on the imaginary axis, if there exists U, an extension of u to #,
that satisfies:

ou

Frial ¢dz/2i. (13)

Each side of this formula is to be interpreted as a distribution acting on test
functions supported in the closed half plane # and the measure ¢dz/2i is a
measure on € with support on the imaginary axis. The motivation for this
definition comes from Stokes’ Theorem.

3When C is considered as a homeomorphic to R? in the usual way (z,y) — « +4y then
the operator 8/8Z is expressed in local real coordinates as 8/9z = 1/2(0/0z + i9/8y)

11



A measure p in H is called a Carleson measure [Gar81] with Carleson
constant C if

u(S) < C I(S) (14)

for every square S C H with a side of length [(S) lying on an interval on the
imaginary axis. The space of Carleson measures is denoted by the symbol
C.

Let B denote the ring of distributions over H with boundary value in
L®°, and with each element b € B satisfying

db
35 =M (15)

for some Carleson measure p in H. This is the ring in which the operator Py
will be inverted. The differential operator 8/9z : B — C and the canonical
injection ¢ : H*® — B form an exact sequence

0—a°-L8%% 00 (16)

which when combined with the Koszul complex (10) gives a double complex
which for the case m = 2 is represented by the commutative diagram of
Figure 2. For notational convenience the modules A¥(B) and A*¥(C) are
denoted by A¥ and A% respectively. Readers familiar with complex manifold
theory should recognize Equation (16) as a 8 co-homology sequence. Since
the results of this paper are restricted to analytic functions defined on the
complex half-plane, it is not difficult to avoid introducing the language of the
co-homology of differential forms — the appropriate setting for analogous
results about analytic functions of several complex variables.

The next theorem, which comes from [H6r67], explains how the complex
is used to provide solutions to the Diophantine equations. The construction
of the solutions is given in the proof which is repeated here for the sake of
completeness.

Theorem 1 [Hérmander]
Suppose that the following conditions are satisfied:

(i) Let s take the values 0 and 1, and r take the values 1 and 2. Ifh € AS
and Pgh = 0 then the equation Prg = h has a solution g € ASTY with
8g/0% € ASY] when Oh/0Z = 0.

(i) 8g/0Z = u has a solution g € A? for every u € A3

12
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A L A B A oo
0 0 0

Figure 2: double complex for m = 2

Then for every h € Ay with 8h/0z = 0 one can find g € A} so that 8g/0%Z = 0
and Prg = h.

Proof:
The result follows when premises (i) and (ii) are used to traverse the diagram
in Figure 2 as follows. :

Suppose that h € A? is a holomorphic function with boundary value in
L>; that is, 0h/0Z = 0 on H, and there exists a function H(y) € L®(R)
such that for almost all y € R, H(y) = lim,_;y h(2) when the limit is non-
tangential to the boundary. Then by the first premise there exists g' €
A} such that Prg' = h and d¢'/0z € A}. Commutativity implies that
P;dg'/8z = 8/0% Psg' = 0, so again by the first premise there exists g2 € A3
such that P;g% = 8g! /0%. By the second premise the equation d¢g3/8z = g°
has a solution g% € A2. Let g = g' — Psg®, then

3 9

5% = &(91—131'93)
_ 3g1 393
= 27 oz
=0

and Prg = Ps(g* — Psg3) = Ps(g') — PsPsg® = Pg' = h as required.

13



Before Theorem 1 can be used to construct solutions to Diophantine
equations, explicit inversion formulas for the operators Py and d/0z satisfy-
ing premises (i) and (ii) need to be presented. It was this need for inversion
formulas which governed the definitions of the spaces B and C. Formulae
for the inversion of the operator P that are based on the work in [H6r67]
with only small modification are presented next. Only the case of m = 2,
the case needed for single-input single-output systems, is considered here; a
more general situation that will be used for multi-input multi-output sys-
tems is dealt with in Section 5. A constructive scheme for inverting the
Cauchy Riemann operator d/0% that comes from the more recent work of
Jones [Jon80] [Jon83] is presented in the next section.

The inversion of the operator Py : Al — A? is dealt with first. It
turns out that the requirement that is hardest to satisfy is the requirement
that the anti-holomorphic derivative of the inverse should be a bounded
Carleson measure. To overcome this problem (which in fact presents a major
obstacle in the proof of the corona theorem) the construction is based on an
application of the following Lemma from [H6r67)

Lemma 2 [Carleson - Hérmander] Let f; € H, j = 1,...,n, and assume
that for some ¢ >0

[f1(@)] +... + |fnl2)] 2 . (17)

Then for sufficiently small € > 0 one can find a partition of unity ¢; sub-
ordinate to the covering of H by open sets H; = {z : | fj(2)| > €} such that
0¢;/0z,defined in the sense of distribution theory, is a Carleson measure for
all 3.

This Lemma is a restatement of a result of Carleson’s original paper [Car62]
in which he directly constructs the measure. A more recent account of the
construction is given in Garnett’s book [Gar81]. The difficult part of the
lemma is the construction of a partition of the plane into two sets each of
which contains the regions of the plane where one of the two functions f; or
f2 becomes very small. In general, the boundary between the two sets will
be a complicated curve, however in practice, the functions f; and fo may
possess some regularity that allows a boundary curve to be easily chosen.
For example, when solving the Bezout equation that arises from the example
presented in Section 2, f; and f; are the functions Fy(z) = e™7%/(1+2) and
Fy(z) = (1 — 2)/(1 + 2) so the only restriction on the partition is that it
separate the point z = 1 where F3(2) = 0 from the regions of the plane
where |2{ is large and F}(z) tends to zero, and a simple geometry suffices.

14



The partition of unity from Lemma 2 is used to construct a left inverse
for P; on AY as follows: for h € AY, let

¢
g=h fi
then Prg = fig1+ fage = h. The right inverse g also satisfies the premise of
Theorem 1, for if 9h/8Z = 0, then 9g/0z = hf'8¢;/dZ which by Lemma 2
is a Carleson measure.
A second inversion formula is needed to invert the operator Py : A3 — A}.
In fact, for the purposes of Theorem 1 it suffices to invert Py on the subspace
consisting of measures dg' /0% where g! is a solution of Prg' = h for some
holomorphic function h. In this case the problem may be written down
explicitly as a redundant set of equations for the coefficient of g2

9hafr = h/fL041/0z
—g%fi = h/f20¢2/0%

and since fy and f; are both holomorphic functions with magnitude bounded
away from zero on the support of 3¢, /9% a solution is given by

o _ _h
=Ty,

(18)

0¢,/0z.

3.2 Constructing Bounded Solutions to the Inhomogeneous
Cauchy Riemann Equation

In the preceding section the construction of solutions to the Bezout Equation
has been reduced to two steps: the construction of the partition of unity ¢;,
and the construction of bounded solutions to the Cauchy Riemann equation.
This section describes a technique devised by P. Jones [Jon80] for solving the
Cauchy Riemann equation; the presentation is based on the account given
in Garnett [Gar81].

The problem that needs to be solved is: given u, a Carleson measure
on the right half plane, find a distribution b with bounded boundary values
that satisfies

8b/0z = p.

The solution, which is based on a Green’s function argument, has three
stages: the measure 4 is approximated by a sequence of measures p; which
converge weakly to yu, each y; being supported on a finite set of points; the

15



support of each measure p; is partitioned in such a way that the pseudo-
hyperbolic distance* between any two points in the same partition is bounded
from below, and the measure p; is subdivided into a corresponding sum
b ,uf each ,uf having support on a distinct set in the partition; finally the
Cauchy Riemann equation is boundedly solved for each ,u.? and these solu-
tions are summed to form the approximate solution b;. The whole procedure
is performed in such a way that the sequence of solutions b; is a uniformly
bounded sequence of functions in H*®.

Before the solution is discussed in detail the fundamental solution to the
Cauchy Riemann operator 9/8Z is introduced, and a result about interpo-
lating Blaschke products is recounted. Let D C € be an open domain with
C' boundary that contains the origin z = 0. The fundamental solution to
the operator 8/8Z on D is a distribution b that satisfies the identity

~ [ o) 252 daay = 4(0)
D 0z

for any C* function ¢ with support compactly contained in D [Hor90].
In this formula the integral on the left hand side of the identity should
be interpreted as the action of the distribution on a test function. The
fundamental solution is computed as follows. Suppose that ¢ is an arbitrary
C* function with support compactly contained in D. Let U C D have C!
boundary and contain the support of ¢ in its interior. Consider the function
#(¢)/¢, Stokes’ theorem gives

My [ B0, _ [ D (40
w ¢ T e e % /|([>e3<< ¢ )d“dc

. 1¢
—2z/ ——=dzdy.
> ¢ 8¢ v

Because ¢(z) = 0 on the boundary of U, the first boundary integral is zero,
and as € = 0 the second integral approaches the limit 27¢(0). Consequently
a fundamental solution for 8/9Z is given by the distribution b(z) = 1/(7z).

If 2 = z + 4y is a complex number, then the real conjugate of z is
defined to be the number Z = —z + 4y. The need for this usage results from
considering Laplace transforms of system operators; the Laplace transform
of a bounded causal system gives a transfer function which is analytic in
the right half plane, so in places where a complex conjugate Z occurs in the

“The pseudo-hyperbolic distance between two points in the half-plane is defined as
p(z1,22) = |21 — 22l [|21 — 22|

16



analysis of functions analytic in the upper half plane, it will be natural to
substitute the real conjugate 7. For instance, given a set {(; = & +in;, & >
0} that satisfies the condition

¢
LTTIGE <™

a Blaschke product with zeros (; is defined by the expression

B(z)=(z;1) chj llz—Cy.

z+1 G#1 12-_(]

The factors |{; — 1|/({; — 1) ensure that the product converges when the
sequence {|{;|} is unbounded, and for finite zero sets they may be omitted.
A finite number of zeros at { = 1 may be introduced into the Blaschke
product separately in the factor in front of the product sign.
Let By(z) be a Blaschke product with a zero set {{; = &; + in;} that
satisfies the condition
Ck — CJ

Gtk | Sk =

then the inverse 1/By(z) is an analytlc function except on the zero set {(;}
and is given by the expression

1/B() _1+21/BO<J

z2—Gj

>46>0, (19)

If 1/Bo(z) is considered as a distribution on #, then it follows from the
discussion of the fundamental solution to the d operator that

0 _ T
Zem0 - T

= 2 Bi&id; (20)
j

where 1 < |8;] < 1/4.
The following theorem is quoted from Jones [Jon83] Theorem 6.

Theorem 3 [Jones]
Suppose {21} is a sequence of points in the half plane that satisfies

: Kk~ %j =
lan -Z—k_—_EJZJ>O, k=12,....

T bk
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Let B(z) be the the Blaschke product with zeros at the points {z;} and B;(z)
be the Blaschke product with zeros in the set formed by removing the point
z; from the set {z}. Let E;(z) be the function

2 .

Yx <Y

where

¢j = —4(Bj(z;)) " exp { logiz/‘s Z = }

2; — 2
ye<y; I k

Then Ej (zk) = 5j,k and
> |Ej(2)] < (Co/d) log(2/9) (22)
J

for all z € H.

This theorem is an instance of Carleson’s interpolation theorem that explic-
itly gives the form of the interpolating function. The bound on the norm of
the interpolating function, (Cp/d) log(2/6) is optimal in § up to the multi-
plicative factor Cy.

The application of Jones’ interpolation formula requires the following
lemma which is extracted from the proof of Carleson’s interpolation theorem
in Chapter 7 of [Gar81].

Lemma 4 (Garnett [Gar81])
Let {2;} be a sequence in the right half plane, with points z; well separated
in the hyperbolic metric, i.e.

2k — 25
25 — Zj

>a>0, J#k,

- p(zkazj) =

and suppose that there exists a constant A such that for every square Q =
{yo <y <y +1UQ),0<z<Q)},

> 3 <AIQ)
Z;€EQ
then
inf TT |22=2] > 6 > exp (—40A (1 +2log l)) :
b itk A ¢
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The bound that is given for d in the lemma depends on the points {2} having
a minimum spacing a in the hyperbolic metric and on the measure > Tj0z
being a Carleson measure with Carleson constant A. Unfortunately the
generality of the theorem means that the bound derived will be conservative
for many specific examples. This is particularly true of examples such as the
one presented in this paper in which the measures have easily recognizable
additional structure. Additional information about the distribution of the
points {21} could well be used to derive a less conservative estimate.

The next two lemmas contain the constructive solution to the Cauchy
Riemann equation that is presented in Chapter 8 of [Gar81]. The proofs
closely follow the work cited, but are given here because they contain the
algorithms that are used to compute actual solutions. Jones’ interpolation
theorem and the discussion preceding it on fundamental solutions provide
the basis for calculating solutions to the Cauchy Riemann equation in the
following simple case.

Lemma 5 (Garnett [Gar81])
Let z; be a finite set of points satisfying (19) and let p = - ajz;d,; with
|aj| < 1. Then the function

b(z) = E(2)/B1(2) ' (23)

satisfies Ob/0Z = p where Bi(z) is a Blaschke product with zeros z;, and
E(2) is a function that is analytic on the right half plane and has a bound
that depends on the choice of u only through the § of Equation (19).

Proof:
Equation (20) states that

a 1

and that the coefficients 3; lie within the uniform bounds 1 < |3;] < 1/4.
An application of Jones’ interpolation theorem produces a function

E(z) = o /B;E;(2) (24)

that is analytic in the right half plane, interpolates the values «;/3; at the
points z;, and is bounded on the imaginary axis by

|E(2)| < (Co/d) log(2/4)

in which Cj is an absolute constant.
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The result follows by taking b(z) = E(z2)/B1(z)
a

The case of a general Carleson measure p is tackled by constructing
a sequence of approximating measures {y,,} that converges (weakly) to u;
each measure in the sequence is supported on a finite set of points and has
the form py, = ¥ «jz;0,;. A sequence {b,} of uniformly bounded solutions
to the equations 0b,/0Z = u, is calculated, and the restrictions to the
imaginary axis {by, (4y)} form a uniformly bounded sequence of L*° functions.
The mapping

(y) — /_ :f(y)bn(iy) dy, felLl

associates the set {b, (i)} with a set of uniformly bounded functionals on L*,
and weak compactness of the unit ball ensures that {b, (i)} contains a sub-
sequence that converges in the weak® sense to an H* function b(iy). Choose
one such subsequence, and relabel it {b,(éy)}, then, if ¢ is any C§°(C) test
function with support that intersects the half plane, the restriction to the
imaginary axis v(iy) is an L' function, and

n—o0

[ wwptvdy = lim / (i)t 50) 4

1 8y
= Jim = bad/\d+/¢—d/\dz
= nlLrglo2/b ——d:v/\d +/1/J = dz A dy

Rearranging the left-most and right-most sides, and substituting y,, = 9b,/0z
gives the equation

Jim / bp— da:/\dy < %>— /_ :w(iy)b(iy)dy

which provides a consistent definition for b, as a distributional solution to
0b/0Z = p on H with boundary value b(t)

20



Lemma 5 is not quite enough to provide the sequence of solutions {b,};
the difficulty is that the bound in Lemma 5 depends on the parameter §
which, through Lemma 4, is related to the spacing (in the pseudo-hyperbolic
metric) of the points in the supporting set {z;}, and if a general Carleson
measure is going to be approximated by a sequence of measures with finite
point support, then the spacing of the points in the support of the approxi-
mating measures will decrease to zero as the approximations converge. What
is needed is a method for decomposing the approximating measures in such
a way that the spacing between points of support for each element of the
decomposition remains large, yet the sum of the Carleson constants of the
elements in the decomposition remains constant. The next lemma uses this
approach to produce a method for solving the equations db,/8z = pu,, with
a uniform bound on the sequence of solutions b,.

Lemma 6 (Jones-Garnett [Gar81])

Let p = Zjbi1 a;z;0,; be a measure supported on the finite set {z; = x; +
iy}, with masses oz at the points z;, and with Carleson constant N(u) <
C. Then there exist an integer N, functions by(z), and a function

1 2N
b(z) = = 3 byl2)
p=1

such that each by(2z) is a function of the type produced in Lemma 5, 0b/0Z =
i for a measure i that is arbitrarily close to p, and [b(it)] < KC fort € R
and K a constant independent of .

Proof:

First it is shown that g may be approximated arbitrarily closely by a new
measure i of the form C/N 3" z;6,;. The support of i is the same as the
support of u, but each point mass z;0,; may be repeated a finite, and possi-
bly large number of times in the new sum. If N is chosen to be a sufficiently
large positive integer, the coefficients ¢ in the finite sum p may be uni-
formly approximated to arbitrary accuracy by o; = n;/NC in which n; are
positive integers and C is the Carleson constant of u. If each term in the
sum Y ;z;0,; is expanded as

QL0 = %(wjézj +... (nj times)... + x;02;)

then a renumbering of the terms in the summation gives the approximation

. C
J
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From here on no distinction will be made between the measure y and the
approximation f.

In the second part of the proof a systematic method of decomposing the
measure /4 is established. The point masses z;J,; are distributed amongst a
finite number of sets in such a way that the distance between any two points
in the same set is large in the hyperbolic metric.

So

A
Y

Qo

Figure 3: Dyadic Subdivision of the Half Plane

Choose a square Qg with suppp C Qo C H and a side of length 1(Qo)
lying on the imaginary axis. This square may be subdivided to form a dyadic
sequence of squares of uniform hyperbolic size as follows (Figure 3 illustrates
the construction). Let Q1, @2 be the two adjacent squares that comprise the
left half of the square Qq. Each have sides of length {(Q)/2, and each have
one side on the imaginary axis; continue this subdivision process inductively
on each square @Q; until the squares Qan, Qon+1_1 are outside the support of
p for some n (the process is guaranteed to stop because the support of u,
which is finite, is compactly contained in H). Since the Carleson constant
of u is fixed to the constant C, a simple count shows that the right hand
section of any dyadic square Q can contain at most 2N points z;. This allows
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the points {2;} to be partitioned into 2NV sets {S,} in such a way that the
spacing between any two points in the same set is uniformly bounded from
below by a = 1/3.

The sets Sy, are explicitly defined as follows. For every n, let S, = {z; :
1(Q0)2™™! < z; < I{Q0)2™™} and order the elements of each S, so that
Sn = {Zkn + ik} With

Ye-1,n < Yk < Ye+1me

Then the set {z;} may be split into 2N sequences Y1,...,Yan such that
the points in each S, are evenly distributed between the Y;, i.e. if z; =
Tk + Win € Sp then 25 € Y if r = k mod 2N. Now suppose that P C H
is a fixed square of arbitrary size with one side lying on the imaginary axis,
let M, (P) be the number of points in S, N P, then each set Y, NS, N P
must contain fewer than 1 + M,(P)/(2N) points z;, and

Yoz <Y (1+M;—](VP)) 27" [(Qo)

Y,nP n:SnNP#

x
1
AP) Y2+ —= > ma;
n=0 m z;€P

IA

41(P) + u(P)
51(P) (25)

IA A

Consider the sets {X,} defined by

X=Yn |J S (26)
n even

and )
Xorp1 =Y, |J Sn (27)
n odd

then the measures u, = sze X, zi0; satisfy p = C/N > p tp and up to the
factor C/N provide a decomposition of u into measures with well spaced
support and Carleson constant uniformly bounded by 5.

A bound on the separation between points of support is arrived at by
the following argument. If z; € Sy and 2z; € Sp_o then p(z;,2;) > 1/3 by
the definition of the sets S,. On the other hand, if z; and z; are in the same
set S, then it follows, from the fact that the top half of any Q; contains
at most 2N points, and the way in which the set Y, that corresponds to
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X, was constructed, that z; and z; must be separated by at least 1 square
of length 1(Qg)2~". Consequently, the distance between z; and z; must be
bounded below by

2—n
p(zi,2) = WS
> 1/3. (28)

Lemma 5 can now be applied to the measures y, to produce functions
by that satisfy

The constant § in Lemma 5 which determines the bounds on the norms ||b, ||
is estimated by using Lemma 4 and the inequalities (25) and (28). This
gives an estimate on the norms ||b,|| of

“bP” S K’

in which K is an absolute constant that is independent of the measure y,.
Let

b(z) = —Z% ‘ZVI_V: bp(2).
p=1
Then 0b/0z = C/N 3 2j0,; = p and
8]l < 2CK, (29)
which completes the proof.

a

Lemma 6 provides the last step in the constructive proof of the following
theorem.

Theorem 7 (Garnett [Gar81])
Let p be a Carleson measure with Carleson constant N(u) < 1. Then there
is a distribution b(z) with L™ boundary value, supported on H such that

% _
az—p',

and the boundary value satisfies ||bllec < C for C a positive constant in-
dependent of the choice of u. Further, there exists a sequence of measures
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{pr} that satisfy the criteria of lemma 6, and which converge weakly to L.
The corresponding sequence of solutions {b;(2)} converge in a distributional
sense on H to b(z), and have boundary values that converge in the weak-star
topology to b(ty) on the imaginary azis.

The reason for presenting Lemma 6 in such detail is that the construction
in the proof provides a key part of the algorithm that is used to compute
solutions to the Diophantine equations arising from the control problems. In
this application a bound on the norm of the solution to the equation 8b/8z =
1 has physical significance, and consequently a tight a priori estimate of
this bound would be valuable. Unfortunately, the generality of the methods
presented means that the estimates on the norms that can be obtained from
Lemmas 4, 5 and 6 are too conservative to be of practical use.
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4 Solution to Enns’ example

The theory presented in the previous section provides a practical way to de-
sign linear compensators for a general class of linear time invariant systems.
The remainder of this paper provides examples that illustrate the use of the
theory. This section continues the example that was started in Section 2 by
showing how a compensator is calculated for the plant that was given in the
example.

The plant from the example in Section 2 is described by the transfer
function in Equation (1),

e—'TZ

F(z) =

oz—1

Values are ascribed to the parameters for the numerical calculations: o takes
the value o = 1, making the open loop system unstable, and 7 takes the
values 7 = 0.06 or 7 = 0.37, the first is a small delay which has little influence
on the behavior of the open loop system, and the second is a large value
for the delay that makes the problem of robust stabilization significantly
more challenging. The transfer function of a stabilizing controller is given
in terms of an H® parameter Q by the bilinear function in Equation (4).
Evaluating this expression requires solutions to the Bezout equation (3) and
the Diophantine equation (7), the Bezout equation is dealt with first.

4.1 Computing solutions to the Bezout equation

Using the notation of Section 3.1 the Bezout equation may be re-written
as Pgg = h in which h is the constant function h(z) = 1, f is the pair
of co-prime factors fi1(2) = N(z) and fo = M(z), and g, the solution, is
a function in A'(R) with components g; = X; and go = X which are
H* functions. From theorem 1 the solution may be written as g = g% —
P;g® in which g! satisfies the equations Psg! = h and 8g'/0% = Pyg? for
g a Carleson measure on €, and g3 satisfies 9g°/0Z = ¢° for the same
measure g2. Substituting the notation of the problem gives the following set
of equations:

Xi1(2) = Xi(z) —b(z)Fa(z) (30)
Xy(2) = )?z(z)+b(z)F1(z)

in which X; and X satisfy the equation

X1(2)Fi(2) + Xo(2) Fa(2) = 1, (31)
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and b(2) = g}, = —g3, is the coefficient function of the 2-form g2 and a
distributional solution of

it (32)

The inhomogeneous term p in equation 32 is a Carleson measure that is
supported on the half plane and that satisfies

X,
Xy
7z -

Lemma 2 guarantees the existence of choices for X1, X and 4 that satisfy
equations (31) and (33). In fact, since the function Fi(z) = e™*%/(z 4+ 1) is
bounded away from zero on any set compactly contained in the right half
plane, and the function M(z) = (1 — 2)/(1 + 2) has a single zero at the
point 2 = 1 and is bounded away from zero on any set that excludes a
neighborhood of that point, a partition of unity that satisfies the condition
in lemma 2 is the following:

L jz=1<r )L |[z=-Y=r
¢1(z)—{0’ z=1>r ¢2(z)_{0, z—1<7r (34)

With this choice for a partition the solution to (31) determined by equation
(18) is Xi(2) = 1/Fi(2) ¢1(z) and Xa(2) = 1/F5(2) ¢2(2). Taking anti-

holomorphic derivatives, and substituting into the first of the equations (33)
yields the measure

p=1/(F1(2)F2(2)) 841/0z. (35)

The meaning of the expression d¢,/0Z may be elucidated by mollifica-
tion. Let ) denote the support of ¢1, and let 9, be a sequence of positive
C* functions supported on connected neighborhoods of the origin, and with
the property that diameter(supp ) — {0} as k — oo. For each k the C®
function %k = ¢1 * P is a mollification of ¢y; for sufficiently large k it is
supported on a region slightly larger than 2, and takes the constant value 1
on a region slightly smaller than Q. Let Dy denote the support of the C*®
function 7 = 9k /0z. 1t follows that Dy is a tubular neighborhood of the
boundary of the support of ¢, and that ¢; takes the value 1 on the interior
part of 8D (the boundary of D), and the value 0 on the exterior part of 8D.
The function 7, may be interpreted as a complex valued measure on C in
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the following sense. Let x be a compactly supported C* function, then an
application of Stokes theorem gives

_ O
/xdnk = /Dkxaz dzdy
i [ 8$k _
= 2 [ 5% 4 nd
3 Jp X9z ¥
e ~ 1 ~ Ox _
= 2 /a . Bixdz =5 [ Bigkazns (36)

As k — 0 the sequence ak converges to ¢; in the topology of the space of dis-
tributions, the area of the region Dy, converges to 0, and the boundary 9Dy,
converges to the set 9€). Since the function dx/9Z is uniformly bounded,
the second integral in (36) converges to 0, and the first integral, which only
has a contribution from the interior part of 0Dy, converges to —i/2 [, x dz.
The negative sign on the contour integral is a consequence of the orientation
of the boundary 8Dy. The expression d¢1/0% is interpreted as a measure
supported on the set 9, which acts on a C™ function y by

a9\ 1
/xd(-é—z)— 5 aﬂxdz.

The shape of the region ) is arbitrary provided that the partition of
unity that it determines satisfies the condition in lemma 2. For the actual
computation of the solutions to the Bezout equation, ) was chosen to be
a circle for the pragmatic reasons that it is a simple curve to describe and
that it seems to give reasonable results. The radius for the circle was chosen
with a view to keeping the Carleson constant of the measure y small. It
was found that » = 0.7 is a suitable value when the delay in the plant takes
either of the values 7 = 0.06 or 7 = 0.37.

The only remaining step in determining solutions to Equation (3) is
the calculation of a solution to the Cauchy Riemann equation (32). The
algorithm presented in the proof of Lemma 6 provides a way to calculate
numerical approximations to a solution of the equation. The approximations
converge in the weak-star sense; this is a natural topology in the context
of system transfer functions. In accordance with the proof of Lemma 6,
the measure u is approximated by a finitely supported measure constructed
as a sum of point masses uniformly distributed on the support of u, and
the algorithm presented in Lemma 6 is used to calculate an approximate
solution for 9b/9z = u.
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4.2 Computing solutions to the Nehari equation

The Diophantine equation (7) is solved using the same method as was used
for the Bezout equation with only small modifications. The similarity in
form between the Nehari problem and the Bezout equation becomes appar-
ent when Equation (7) is rewritten as

A=1P+ BQ (37)
in which
A= [ BXiWe B —F2W,
- F2X2W1 - FQFIWI ’

For purposes of comparison the choice of weighting functions W, and W5 is
the same as that used in [EOT92):

142
Wi o= 1+ 10z
W, = 02.

Equation (37) may be rewritten again in the notation of Section 3.1 as Prg =
h. Now h = A is a vector with two H*®® components, f has components
f1 = 1 and fy = B, a vector, and the solution g has two components,
g1 = P, a vector with two H*® components, and g2 = @ an H*® function.
The same formalism that was used for the Bezout equation yields the set of
equations:

P P —b(2)B (38)
, Q = Q+b(z
where P and Q satisfy L
P+QB=A
and b(z) is a distributional solution of
o _
8z M
where 4 is a Carleson measure that satisfies either of the equivalent equations
oP
—~ = uB
2z~ F
Q _
oz . M
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0 0.5 1 1.5 2 25 3

Figure 4: Contour for measure in Nehari Problem

At this point a problem becomes apparent. Consider P to bea 2 x 1
matrix with H® entries, then the optimal solution to the control problem
is the solution that minimizes the L norm of the largest singular value of
P(iy). The problem is that the algorithms based on the methods presented
in section 3 can only guarantee an upper bound for the norm on P, they do
not give information about how close the computed solution is to an opti-
mal solution. The upper bound on the solution is obtained by the triangle
inequality from bounds on the size of the two terms in the right hand size
of equation (38). The bound on the size of the first term P is controlled
directly by the choice of the distributional solutions P and @, and the bound
on the second term, bB is controlled by the the Carleson constant for the
measure 4 and the a priori bound that theorem 7 imposes on b the solution
to the Cauchy Riemann equations. In the example calculation described in
the following paragraphs ad hoc methods are used in the selection of the
distributions P and Q. The results indicate that better methods of selec-
tion need to be combined with improved solutions for the Cauchy Riemann
equations if the goal of reliable computation of near optimal controllers is
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to be achieved.

The distributions }3, @ are chosen to minimize the L*® norm of P and
the Carleson constant for u. The equation (A — @B) - B = 0 has a solution
Q = A - B/B - B which is a bounded analytic function away from the zeros
of the denominator B - B, and unbounded in a neighborhood of these zeros.
Let € be a region in the complex plane that contains a neighborhood of the
zeros of B and is bounded by an absolutely continuous closed curve, and let
$1(z) =1 when z € Q and ¢1(z) = 0 when z ¢ Q, and let Q and P be the
bounded distributions:

~ A-B
? N B-B~¢1
P = A4-0B (39)
A-B
= A-Z=DB. (40)

Outside the region Q the measure P is the pointwise orthogonal projection
of A onto BL. Substituting in the values for A and B gives

W2FX, — W2F X,

¢ WEFy y WiFE !
—~ FyFyW2W,
= X 1-
Py 2 X1Wa (1 —¢1) + WIFE + WiWg ¢
—~ F2W1W2
P, = BXoWi(l- 2 2
) B XaWi (1 —é1) + WEFE + W2 b1,
and for the measure y acting on a C* function X,
1 A-B
; W2FX, - W2FX
= ! 2 21 1222 dz. (41)

"2 Jon WZFZ + WEF?

The criteria for choosing the region Q are that it should include the ze-
ros of the function W2M? + W2N? and that the L™ norm of P(iy) and
Carleson constant of the measure p should be minimized. For the re-
sults presented, the region ( was chosen by plotting the weighting function
(WIMY —WENX)/(WEZM?+W2N?) and choosing by inspection a contour
that includes the singularities of the function, yet keeps the Carleson con-
stant of  small. The chosen contour is illustrated in Figure 4; the contour

31



is superimposed on a logarithmically scaled contour plot of the magnitude
of the weighting function in Equation (41). Once the contour is chosen, the
Carleson measure in (41) can be computed and the inhomogeneous Cauchy
Riemann 0b/0Z = p may be solved. The solution b is substituted into (38)
to give the Youla parameter @ and the transfer function matrix P that
constitute a sub-optimal solution to the Nehari Problem.

4.3 The Algorithm and its Implementation

This section contains a summary of the algorithm which indicates the ex-
act order of the steps taken in obtaining solutions, and where the various
formulae in Sections 2 — 4 are used.

The data for the problem are the transfer function F' given in equation
(1), and the weighting functions that appear in the norm (5). The solution
algorithm can be divided into two parts, one part to calculate the solutions
X, and X, to the Bezout Identity (3), and the other to calculate solutions
to the Diophantine equation (7) associated with the Nehari Problem.

Partl: The Bezout Identity
1 Factor the transfer function — Equation (2).

2 Choose a partition of H that separates the zeros of the factors F; and
F, — Equation (34).

3 Define the Carleson measure u for the Bezout equation (35).

4 Compute a discrete approximation to the Carleson measure as a finite
sequence of complex valued point masses at points on the support of
¢ — Theorem 7.

5 Group the points according to the algorithm presented in the proof of
Lemma 6.

6 Use Equation (21) of Theorem 3 and equations (23) and (24) of Lemma
(5) to compute solutions to the inhomogeneous Cauchy Riemann equa-
tion (32).

7 Use Equation (30) to calculate the solutions to the Bezout equation
at points z € H.
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In practice, the solution is calculated over a given set of points. Steps 1
— 5, which are independent of the point z at which the solution is to be
calculated, are performed first, and then the calculations in steps 6 and 7
are performed at each point z in the given set.

Part2: The Diophantine Equation for the Nehari Problem

8 Choose a partition of H so that the Carleson constant for the measure

in Equation (41) is minimized. The Carleson constant for a measure
is defined in Equation (14).

9 Define the Carleson measure p for the Nehari problem by Equation
(41).

10 Follow steps 4 — 7 above to compute the solutions to the inhomo-
geneous Cauchy Riemann equation associated with the measure con-
structed in step 9. This step requires the evaluation of X; and X, at
each of the points in the discretization of the Carleson measure p from
step 9.

11 Use Equation (38) to evaluate the solutions P and @ on points z € H.

The whole algorithm for computing the solutions is encoded in computer
software. The heart of the computation is performed by two C programs.
The first program computes the approximation to the Carleson measure, and
the second computes the uniformly bounded approximations to the solution
of the Cauchy Riemann equation. Matlab routines that call the C programs
calculate the transfer functions for the controller on a set of points on the
imaginary axis, and produce the graphical output.

The first C program produces a discrete approximation to the measure p
and orders the points of support according to the decomposition described
in Lemma 6. The process occurs in a number of discrete steps. The first
step is to calculate a discrete approximation to the measure. The measure
u is supported on a curve in the right half complex plane. In the example
presented here, in both the case of the solution to the Bezout equation and
the case of the solution to the Diophantine Equation associated with the
Nehari Problem, this support is compactly contained in the open right half
plane, and the weighting function is fairly regular. Consequently it suffices
to choose the supporting points of the discretization to be equally spaced on
the supporting curve. A case of non-compact support would require that the
measure be restricted first to a compact subset of the plane, and the added
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complexity of non uniform spacings in the discretization may be justified
in some instances by an increase in the efficiency of the approximation.
The discretization of the measure is stored as a list of ordered pairs of
complex numbers, the first element in each pair is the point of support
2k = Ty + 1y, and the second is the value of the weight assigned to each
point —i(Azy + 1Ayg)/(2F; (2) Fa(2y)). Azy + iAyy is the tangent to the
supporting curve at z; with length equal to the arc-length spacing of points
in the discretization.

The second part of the measure computation, the ordering of the points,
is independent of the particular measure being approximated. The algo-
rithm proceeds via a sequence of procedures that implement the steps in the
proof of Lemma 6. The first procedure takes the list of weights from the
discretization and and produces a list of weights of uniform size by splitting
large weights. Given a small constant § > 0 there exists an integer R suffi-
ciently large that each weight may be written as wy = my@;/R where my
is an integer and 1 < |Wg| < 1+ 4. So the weight (zg,wg) is split to form
my, weights (2;, Wg/R). A second procedure groups the weights into sets
according to the value of the real part of their support, the weights in each
band are sorted by the imaginary part of their support, and these sorted
bands are passed to a procedure that selects weights from the sorted bands
in a fashion that results in groups of weights with supports that are well
spaced in the hyperbolic metric. One last procedure ensures that the result-
ing measures are symmetric about the real axis; this step helps to minimize
numerical errors that manifest themselves later as small asymmetries in the
final transfer functions.

The output from the first program is a file that contains sets of ordered
pairs of complex numbers. The sets correspond to the partition given in
Equations (26) and (27). The second C program takes as input the parti-
tioned measure data from the first Program and a list of points at which
to compute the value of the solution. The program constructs the Blaschke
products and the Jones’ interpolating functions of Lemma 6 for each part of
the partitioned measure, and evaluates the partial solutions b (z) at each of
the data points. Summing the partial solutions at each data point produces
the desired evaluations b(z).

In summary, given a description of the Carleson measure, the pair of C
programs will compute values of approximating solutions to the inhomoge-
neous Cauchy Riemann equations on any set of data points in the complex
plane. The computed solutions converge in distribution, on any compact
set to a bounded solution of the equations. The restriction of the approx-
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imations to the imaginary axis are uniformly bounded L™ functions that
converge in the weak-star topology as the discretization of the Carleson
measure converges in distribution to the actual Carleson measure.

4.4 Results

H 1 1 1 |
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Figure 5: Transfer function and pulse response for Q(z) with 7 = 0.37.

Figures 5 to 9 show the results of the computational solution to the problem
described in section 2.

Figure 5 contains two graphs that describe the solution for the H* pa-
rameter @ in terms of a transfer function and the time domain response to a
square input pulse of unit magnitude and 1 second duration. The value for
the delay chosen was 7 = 0.37. The causal character of the pulse response
verifies that the computed Youla parameter is an H*® function. Figure 6
contains Nyquist plots of the open loop transfer functions of the combined
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Figure 6: Nyquist plot of loop gain for controlled system.

system including Plant and feedback compensator for two values of the delay
7 = 0.06 and 7 = 0.37. The frequency variable that parameterizes the curves
is y. A comparison with the corresponding Nyquist plot from [EOT92], Fig-
ure 7, illustrates well the differences in the controllers that are produced by
the two different approaches. The controller of Enns et al. does have better
stability and better low frequency sensitivity, this is to be expected, since
the system that is considered in the example is sufficiently simple that the
skew Toeplitz theory from [OST93] that Enns et al. use is able solve the
Nehari problem with an optimal solution. In order to do this they require
that the system be factored as a product of an H® function and a rational
function with inverse in H*; further, each factor needs to be decomposed
by an inner outer factorization. Solutions under conditions more relaxed
then those in [OST93] appear in the works of Flamm and Yang [FY94] and
Ozbay [(393]. Although a large number of interesting systems satisfy the
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conditions imposed in these works, the conditions are restrictive. While
computation of inner-outer factorizations is a non-trivial problem, recent
work by Flamm and Crow [FC94] which addresses the problem of comput-
ing numerical approximations to inner outer factorizations should extend
the applicability of the results in [OST93] to more complicated examples.
The method presented in this paper avoids both of these restrictions by
avoiding the operator theoretic approach of [OST93] entirely.
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Figure 7: |S(ig)| = |(1 + P(iy)Cliy)) 7.

Figures 7 and 8 plot the transfer functions that determine the closed
loop sensitivity and the robustness. Comparison with Figures 9 and 10 of
[EOT92], provides confirmation of the comments made in the previous para-
graph. The graph of the largest singular value of P(iy), Figure 9, provides
an indication of how far the computed solution is from an optimal solution.
An optimal solution would have a flat response with value less than 1.
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5 General underdetermined systems of linear Dio-
phantine equations

So far this paper has dealt only with controller design for a single-input
single-output plant. It turns out that the same basic methods extend nat-
urally to the multiple-input multiple-output case at the cost of an increase
in the algebraic complexity of the formulation. This section shows how the
standard, general formulation for an H* control problem can be reduced
to two general, underdetermined systems of linear Diophantine equations.
After extending the algebraic setting from Section 3, Theorem 1 is used
to give expressions for the solutions to these general systems of equations.
A practical implementation of the methods of this section would take the
same form and encounter the same problems as the computations described
in Section 4.

W ————» > 2

=)

Figure 10: Configuration of Multi-input Multi-output Controller

Figure 10 depicts a feedback controller for a general class of multiple-
input multiple-output robust control problems [Fra87]. The plant has a
block transfer function matrix

Fi, Fy
F= ,
[ Fy Fy }

and the equations for the closed loop system are:

= Fnhw+ Fu
y = Fnw+ Fau
u = Gy

The robust stabilization problem is the problem of choosing a controller with
transfer function matrix G in a way that minimizes the operator norm of
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the matrix transfer function that maps the input signal w on to the output
signal z. For a stable linear system the operator norm is the L* norm of the
largest singular value of the transfer function matrix which, in the single-
input single-output case is just the H* norm of the transfer function. The
following theorem combines a number of results from Chapter 4 of [Fra87]
including the Youla parameterization of stabilizing controllers.

Theorem 8 [Frag87)
Assume that F is stabilizable, then:

(1) G stabilizes F if and only if G stabilizes Fyy.

(i) Suppose Fy = FiF; = f‘{ 113'1 are co-prime factorizations of Fia,
then there exist X1, Xo, and X1, X such thatd

)?2 —Xl F2 Xl
= ~ = 1. 42
[ —-Fl Fy ] l F X, :I ( )

and the set of all G stabilizing Fyo is parameterized by the formulae

G = (X1 +FRQ)(Xy— 1’7'1Q):1
= (X2 - QFR)'(-X1+QE)
Q € H*=.

(i1t) With G given by the parameterization in (i), and with the transfer
functions Ty, To, T3 given by

T\ = Fi—FFRXFy

T, = Fpkb
T3 = FyFy,

the transfer function from w to z in Figure 10 equals T1 — ToQT3.

Although this theorem was proved by Francis in the setting of rational
H* functions, a suitable definition of co-primeness broadens its scope to
more general rings. An appropriate notion of co-primeness for the ring H®
is one based on the condition in the premise of Lemma 2; this link between
the co-prime factorizations for transfer functions and the corona theorem

%1 is used to denote the identity matrix which, in this context, is a matrix of constant
H* functions
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was stated by Baras [Bar80]. Also related to the theorem is the work of
Smith [Smi89] who shows that any plant that has a factorization over H*®
and is feedback stabilizable has a doubly co-prime factorization.

Given a plant transfer function matrix F' with left and right co-prime
factorizations, the design of an optimal controller requires two steps: the
first is to find eight H* matrices that satisfy Equation (42), and the second
is the search for the H*®® matrix that minimizes the norm of the closed loop
transfer function

P =T - T2QTs. (43)

Both steps can be reformulated as the solution to an underdetermined sys-
tem of equations of the form
Az =b. (44)

Finding matrices that satisfy Equation (42) is equlvalent to finding a left
factorization F = F2 1F1 a right factorization F' = F F2 , and H* matrices
X1, Xo, X1 and X that satisfy the four equations

XoF, - X F = 1 (45)
BXy,-FRX =1 (46)
BRF -FF, =0 - (47)
XX - X1 X, = 0. (48)

Equations (45) and (46) are matrix Bezout equations, and Equation (47) is
automatically satisfied since the left and right factorizations are factoriza-
tions of the same transfer function matrix. Given left and right co-prime
factorizations of F, and arbitrary solutions Y7 and Y3 to Equation (46), and
Y1, Y2 to Equation (45), a little algebraic manipulation yields the following
parameterization of all doubly co-prime factorizations that satisfy equations
(45 — 48):

X1 = 1+ EFRA

Xy = Yo+ FA

X, = H+(A-N"e+ iR
X, = B+ (A-Th+WR)E

The parameter A is a matrix with entries in H®. With this result the
computation of a doubly co-prime factorization reduces to the solution of

the two matrix Bezout equations (45) and (46). The form of these equations
is similar to the form of (43), and with suitable substitutions the solution
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of each of the three equations is subsumed by the following problem: given
Al B, A2, B2, and C, find X! and X? that solve

A'X'B' + A2X?B? =C. (49)

This equation is the matrix analog of (8) for multiple-input multiple-output
systems.

Equation (49) has the form of a general linear equation in the entries
of the matrices X! and X2. This equation is recast in the form of (44),
Az = b by stacking the columns of the matrices X' and X2 to form a long
vector z, stacking the columns of C to form the vector b, and replacing
the left and right multiplying matrices by one left multiplying matrix A.
If the dimension of A is mm x n then m < n, and A represents a module
homomorphism with domain H*® x .%7. xH®, and image H®x .. xH®.

As in Section 3.1 the solution to (44) is based on Theorem 1, but the
definition of the spaces and the operators in (10) and Figure 2 need to be
changed. Define the following modules over a ring R

A%(R) = Rx ™ xR
AYR) = Rx.m xR
A% (R) = A"™Y(Rx ™ xR).

The three rings of interest are the same as those in Section 3, H*, B, and
C. Denote the rows of the matrix A by A;... A, and the columns by
a1...an, then 4; € A}(H®), and a; € A°(H*®). Define the homomorphism
Pa : AY(R) = A%(R) by Paz = ¥ z;a;, then Equation (44) can be written
Psz =b. let {eg} be a basis for A"~™~1 €", and let y = ygeg be an element
of A%(R). Define a second homomorphism P4 : A%(R) — A}(R) by

(Pay) =Y ys(x(A1 A... A A Aep)) (50)
B

in which the star homomorphism® is taken relative to the normal Euclidean
scalar product on €C". With these definitions the sequence (10) may be
rewritten as the sequence

A2(R)EAAY(R) 24 A0 (R)—0, (51)

8The star homomorphism is determined by its action on hornogeneous forms. On these
it satisfies the equation %(e;; A...Aej YA (e, A...Aei,) =e1A...Aeyn, where the vectors
e; are the unit vectors in C*
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which is exact at A'(R). In fact the sequence in (51) may be extended
leftward to form a complete sequence, but the definitions given are already
enough for an application of Theorem 1.

Theorem 2 provides an algorithm that produces a solution to (44) as
follows. First find o' € Al(B) that solves the equation

Paz' =1b. (52)

The ring B is the ring of distributions with boundary values in L*® that
was introduced in Section 3.1. The solution needs to be chosen so that
0z'/0z € A1(C), where C is the ring of Carleson measures that have support
on the right half plane. With this in mind choose 2 € A%(C) to be a solution
of

oz’
Paz? = — (53)
0z
and z3 € A%(B) to be a solution of
O3
75 = (54)

It follows from Theorem 1 that a solution to (44) is given by
z =z — Pazd. (55)

As in the scalar case, the real computational problems lie in inverting
the three operators 8/9z : A%(B) — A%(C), P4 : A¥(B) — A%B) and Py :
A?(C) = A1(C). Fortunately though, the same approach that was used in the
scalar case may be applied to systems of equations with some extra algebra.
The first operator, 3/0Z is the easiest to deal with, Equation (54) may be
solved by applying the method of Section 3.2 to calculate each component
of 23 from the corresponding component of z2. The remaining operators are
inverted by using a method due to [Rao83] to construct a left inverse, and
some algebraic constructions that are similar to those presented in [BS86)
and [Str83].

First consider Equation (52). Denote by A, the rank m minors of A,
then the index v can take one of n!/(n—m)!m! values that correspond to the
choices of m columns from the n columns of A. Provided that the functions
A, satisfy the condition of Lemma 2, there exists a partition of the plane
into sets ., such that if ¢, is the characteristic function of the set {2, that
is,

¢7(z)={(1) z:gz )
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then A, is bounded away from zero outside the set ... The distributional
derivatives 0¢,/0Z are Carleson measures supported on the boundaries 8¢2,.
Choose Gy = ¢,/A,, then each G, is a bounded analytic function on the
interior of {1, is identically zero outside £2,, and has a distributional deriva-
tive G, /0% that is a Carleson measure supported on the boundary 8<,.
Further, the functions G, solve the equation

> A,G,=1
it

[Ra083)] uses the Cauchy Binet theorem to show that if

gjk = Z G7 3%1

then the matrix G = [g;4] is a right inverse of A with rank m minors G,. It
follows that a solution to equation (52) is given by

dA
4 = TEeED
¢78A

- ZZA -+ Bag; (56)

The final equation that needs to be solved is Equation (53) Pyz? =
8z /8z. Let 1% have components yg with respect to the canonical basis for
A2%(C). When the solution from (56) is substituted for £, and the expression
for the operator P4 from (50) is expanded in coordinates, the j'th component
of Equation (53) becomes

a 0A,
Y ysha= Zg( (aa ) )
,6,(! L% k
Jj€y
The summation on the left hand side in this formula is taken over all multi-

indices oz and B such that j € aU B, aNB =0, and || = m. Substituting
the solution for G, gives

_ bk 044 Oy
Zo:tyﬂAa = ; ; A7 aakj 97
Jjey
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It follows from the choice of ¢ that the sum on the right hand side is
supported entirely on the curve segments 8Q,, N JS,,. So the components
1y of the solution z? are measures supported on the boundaries o8, , and at
any point on these boundaries there are n equations for the n!/m!(n—~m—1)!
variables y4 of the form

,
0 Jé Yo UYq
+——2 €A, —
ZyﬂAa = Xk: A’Yp aa,-k it Il
B T i_l__aA,,piLaA.,q jepnn
\ & A’Yp 3ajk A’Yq aa,-k P 1

The arbitrary signs are determined by the sense of integration inherent in
the measures 0v,/0Z and 0v,/0Z

Although the algebra associated with the inversion of the operators
P4 : AY(B) — A°(B) and P4 : A%(C) — AY(C) seems complicated, the
real computational difficulties are the same as those experienced with the
single-input single-output system, namely, choosing a partition (2, and com-
puting minimal norm solutions of db/9% = pu for a Carleson measure p. The
requirement that Lemma 2 places on the minors A, of the matrix A induces
the appropriate co-primeness conditions on the left and right factorizations
of the transfer function matrix F for the multiple-input multiple-output
system.
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6 Conclusion

This paper has presented a new computational method for H* controller
design. The method places two requirements on the systems to which it
applies: an explicitly computable co-prime factorization of the system over
H* functions should exist, and sufficient information about the location
of the zeros of the factors is needed to construct the partition of unity in
Lemma 2. These requirements are very close to necessary conditions for
a linear plant to be stabilizable, a fact that indicates that the techniques
presented are potentially widely applicable.

The method has been demonstrated on a simple example drawn from the
literature. For this example independent methods may be used to construct
a controller that is optimal in the sense of H* control; for this reason it pro-
vides a good indication of how close the controller computed for the example
is to an optimal controller. For a controller design to be truly practical it is
important that it produce near optimal controllers. This is particularly true
for infinite dimensional systems which often have transfer functions that are
sensitive to small parameter variations. Under this criterion for practicality,
the conclusion to be drawn from the result in Section 4 is that more work
is needed.

Two areas in need of further work stand out. The first concerns the
selection of the partition of unity that is postulated in in Lemma 2, and is
used in the construction of the Carleson measures. The particular selection
made for a given problem affects the quality of the solution through the
norm of the inverse in Equation (18), and through the Carleson constant
associated with the Blaschke product in the inequality (19). The intricate
construction that is required in the Carleson’s proof of the Corona Theorem
would indicate that in the most general case choosing an optimal selection
is a difficult problem. however, many of the situations that are of interest in
engineering are described by boundary value problems and delay differential
equations of the type presented in this paper; in these cases the additional
structure provided by the problem description can be exploited to provide
partitions of unity without recourse to elaborate constructions.

The second area for future work is the problem of constructing bounded
solutions to the Cauchy Riemann equations. In particular, attention should
be paid to the interpolating function that is used in the computation of
the solutions. Although the function given in Theorem 3 is optimal in the
sense that it satisfies the bound given in Equation (22) independent of the
measure, a particular choice of interpolating function tailored to a particular
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measure could produce a lower bound.

Finally, a note on the calculations. The method described is computa-
tionally intensive, however, with careful programming, it certainly is fea-
sible. The computations for the example presented took minutes, rather
than hours, on a workstation with a RISC processor and floating-point co-
processor’. The predominant computation involves evaluating a small set
of functions over a large set of data points with no interdependencies in the
evaluations. This type of calculation is trivially parallelizable on massively
parallel architectures.

"The calculations were made in compiled C code on a SPARC Station 10

47



References

[Bar80]

[BFTSS]

[BGY1]

[BSS6]

[BS93]

[BT80]

[BY89)

[Car62]

[CD82]

[Cur92]

John S. Baras. Frequency domain design of linear distributed sys-
tems. In Proceedings of the 19th IEEE Conference On Decision
and Control, pages 728 — 732, 1980. This paper was also presented
in a preliminary form at The 4'th International Symposium on
the Mathematical Theory of Networks and Systems, Delft, The
Netherlands, July 3-6, 1979.

Hari Bercovici, Ciprian Foias, and Allen Tannenbaum. On skew
toeplitz operators, i. Operator Theory: Advances and Applications,
29:21 - 43, 1988.

Carlos A. Berenstein and Roger Gay. Complex variables: an intro-
duction. Number 125 in Graduate texts in mathematics. Springer-
Verlag, 1991.

Carlos A. Berenstein and Daniele C. Struppa. l-inverses for poly-
nomial matrices of non constant rank. Systems & Control Letters,
6:309 - 314, Jan 1986.

Carlos A. Berenstein and Daniele C. Struppa. Complex analysis
and mean-periodicity. In G. M. Henkin, editor, Several Complex
Variables V, volume 54 of Encyclopoedia of the Mathematical Sci-
ences, pages 1-108. Springer, 1993.

Carlos A. Berenstein and B.A. Taylor. Interpolation problems in
C™ with applications to harmonic analysis. Journal D’Analyse
Mathématique, 38:188 — 254, 1980.

Carlos A. Berenstein and Alain Yger. Analytic bezout identities.
Advances in Applied Mathematics, 10:51 — 74, 1989,

Lennart Carleson. Interpolation by bounded analytic functions
and the corona problem. Ann. of Math., 76:547 — 559, 1962.

M. J. Chen and C. A. Desoer. Necesary and sufficient condition
for robust stability of linear distributed feedback systems. Inter-
national Journal of Control, 35:255 — 267, 1982.

Ruth F. Curtain. A comparison of finite dimensional controller de-
signs for distributed parameter systems. Technical report, INRIA-

48



[DFT92]

[DGS93]

[EOT92]

[FC94]

[FHZ84]

[FM87]

[Fra87]

[FT88a)

[FT88b]

[FY94]

[FZ84]

Roquencourt, Domainede Voluceau, Roquencourt, BP105, 78153
LeChesnay Cedex, France, Mars 1992.

John C. Doyle, Bruce A. Francis, and Allen R. Tannenbaum. Feed-
back control theory. Macmillan, 1992.

Harry Dym, Tryphon T. Georgiou, and Malcolm C. Smith. Direct
design of optimal controllers for delay systems. In Proceedings of
the 32nd Conference on Decision and Control, 1993.

Dale Enns, Hitay f)zbay, and Allen Tannenbaum. Abstract model
and controller design for an unstable aircraft. Journal of Guidance,
Control and Dynamics, 15:498 — 508, 1992.

David S. Flamm and Katherine M. Crow. Numerical computation
of h*°-optimal control for distributed parameter systems. Prepint,
submitted to JEEE Transactions on Automatic Control, February
1994.

Bruce A. Francis, William J. Helton, and George Zames. H* - op-
timal feedback controllers for linear multivariable systems. IEEE
Transactions on Automatic Control, 29:888 — 900, 1984,

D.S. Flamm and S.K. Mitter. Hyo-sensitivity for delay systems,
part 1. Systems and Control Letters, 9:17 — 24, 1987.

Bruce A. Francis. A course in H® control theory. Springer Verlag,
first edition, 1987.

Ciprian Foias and Allen Tannenbaum. On the four block problem,
i. Operator Theory: Advances and Applications, 32:93 — 112, 1988.

Ciprian Foias and Allen Tannenbaum. bn the four block problem,
ii: the singular system. Integral Equations and Operator Theory,
11:726 — 767, 1988.

David S. Flamm and Hong Yang. Optimal mixed sensitivity for
SISO-distributed plants. IEEE Transactions on Automatic Con-
trol, 39(6):1150 — 165, 1994.

Bruce A. Francis and George Zames. On H*®-theory for SISO feed-
back systems. IEEE Transactions on Automatic Control, 29(1):9
- 16, 1984.

49



[Gar81]

[GCPS88]

[GS92]

[Hor67]
[Hor90]
[Jon80]
[Jon83]

[Kai80]
[093]

[0ST93)

[Rao83]

[SmigY]

[Str83]

John B. Garnett. Bounded Analytic Functions. Academic Press,
first edition, 1981.

Keith Glover, Ruth F. Curtain, and Jonathan R. Partington. Re-
alisation and approximation of linear infinite-dimensional systems
with error bounds. SIAM J. Control and Optimization., 26:863 —
898, 1988.

Tryphon T. Georgiou and Malcolm C. Smith. Robust stabilization
in the gap metric: Controller design for distributed plants. JEEFE
Transactions on Automatic Control, 37:1133 — 1143, 1992.

Lars Hormander. Generators for some rings of analytic functions.
Bull. Amer. Math. Soc., 73:943 — 949, 1967.

Lars Hormander. The Analysis of Linear Partial Differential Op-
erators I. Springer Verlag, second edition, 1990.

Peter Jones. Carleson measures and the Fefferman - Stein decom-
position of BMO(IR). Ann. of Math., 111:197 — 208, 1980.

Peter W. Jones. L® estimates for the § problem in a half-plane.
Acta Mathematica, 150:137 — 152, 1983.

Thomas Kailath. Linear systems. Prentice Hall, first edition, 1980.

Hitay ézbay. H® optimal controller design for a class of dis-
tributed parameter systems. International Journal of Control,
58(4):739 — 782, 1993.

Hitay C")zbay, Malcolm C. Smith, and Allen Tannenbaum. Mixed-
sensitivity optimization for a class of unstable infinite dimensional
systems. Linear Algebra and its Applications, 178:43 — 83, 1993.

K.P.S. Bashkara Rao. On generalized inverses of matrices over
integral domains. Linear Algebra and its Applications, 49:179 -
189, 1983.

Malcolm C. Smith. On stabilization and the existence of coprime
factorizations. IEEE Transactions on Automatic Control, 34:1005
- 1007, 1989.

Daniele Carlo Struppa. The fundamental principle of systems of
convolution equations. Memoirs of the A.M.S., 273:1 — 167, 1983.

50



[vK93] Bert van Kuelen. Ho,-Control for Distributed Parameter Systems:
A State-Space Approach. Systems and Control, Foundations and
Applications. Birkhduser Boston, Cambridge, MA, 1993.

[YBJ76] Dante C. Youla, Joseph J. Bongiorno, and Hamid A. Jabr. Mod-
ern Wiener-Hopf design of Optimal Controllers Part II: The Mul-
tivariable Case. Transactions on Automatic Control, 21:319 — 338,
1976.

51



