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Uncertainty is an unavoidable aspect of engineering systems and will often degrade 

system performance or perhaps even lead to system failure.  As a result, uncertainty must 

be considered as a part of the design process for all real-world engineering systems. The 

presence of reducible uncertainty further complicates matters as designers must not only 

account for the degrading effects of uncertainty but must also determine what levels of 

uncertainty can be considered as acceptable. For these reasons, methods for determining 

and effectively mitigating the effects of uncertainty are necessary for solving engineering 

design problems. This dissertation presents several new methods for use in the design of 

engineering systems under interval input uncertainty. These new approaches were 

developed over the course of four interrelated research thrusts and focused on the overall 

goal of extending the current research in the area of sensitivity analysis based design 

under reducible interval uncertainty. The first research thrust focused on developing an 



 

 

approach for determining optimal uncertainty reductions given multi-disciplinary 

engineering systems with multiple output functions at both the system and sub-system 

levels. The second research thrust extended the approach developed during the first thrust 

to use uncertainty reduction as a means for both reducing output variations and 

simultaneously ensuring engineering feasibility. The third research thrust looked at 

systems where uncertainty reduction alone is insufficient for ensuring feasibility and thus 

developed a sensitivity analysis approach that combined uncertainty reductions with 

small design adjustments in an effort to again reduce output variations and ensure 

feasibility. The fourth and final research thrust looked to relax many of the assumptions 

required by the first three research thrusts and developed a general sensitivity analysis 

inspired approach for determining optimal upper and lower bounds for reducible sources 

of input uncertainty. Multi-objective optimization techniques were used throughout this 

research to evaluate the tradeoffs between the benefits to be gained by mitigating 

uncertainty with the costs of making the design changes and/or uncertainty reductions 

required to reduce or eliminate the degrading effects of system uncertainty most 

effectively.  The validity of the approaches developed were demonstrated using 

numerical and engineering example problems of varying complexity. 
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NOMENCLATURE 

C Input parameter control coefficient 

dL,k Distance from anchor point to lower bound on pk 

dU,k Distance from anchor point to upper bound on pk 

Dshell Shell diameter (heat exchanger problem) 

E Young’s modulus (tube problem) 

F Load on tube (tube problem) 

fA
(m)

 m
th

 anchor point 

fi i
th

 objective function 

fi,bad Constant scaling factor on the i
th

 objective 

fi,good Constant scaling factor on the i
th

 objective 

fi,max Max value of the i
th

 objective on pL ≤ pU 

fi,min Min value of the i
th

 objective on pL ≤ pU 

gj j
th

 constraint function 

gj,max Max value of the j
th

 constraint on pL ≤ pU 

h Tube height (tube problem) 

I Abbreviation for Investment, a cost metric 

Î  Cost metric calculated via meta-models of analysis functions 

Ip Input uncertainty level control metric 

idtube Internal tube diameter (heat exchanger problem) 

Lshell Shell length (heat exchanger problem) 

M Number of anchor points, m = 1,…,M 

m&  Mass flow rate (heat exchanger problem) 

ntubes Number of tubes (heat exchanger problem) 

o Generic output function 

pA
(m)

 m
th

 anchor point 

pL,k Specified lower bound on the k
th

 uncertain input parameter 

plb,k Extreme lower bound on the k
th

 uncertain input parameter 

pk k
th

 input parameter 

pU,k Upper bound on k
th

 uncertain input parameter 

pub,k Extreme upper bound on the k
th

 uncertain input parameter 

pv,k Realization of uncertain pk bounded by pU,k and pL,k 

Q&  Heat transfer rate (heat exchanger problem) 

R General output function variation(s) (Chapter 3) 

R Tube radius (tube problem in Chapters 5 and 6) 
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Rc Combined objective and constraint function variation(s) 

Rf Objective function variation(s) 

fR̂  Objective uncertainty calculated via meta-models of objective functions f 

Rg Constraint function variation(s) 

gR̂  Constraint uncertainty calculated via meta-models of constraint functions g 

SSi Sub-system i in and multidisciplinary problem, i = 0,1,2, … , I 

stubes Internal tube spacing (heat exchanger problem) 

T Temperature (heat exchanger problem) 

t Tube wall thickness (tube problem in Chapters 5 and 6) 

t Target variables (in Chapters 3 and 4) 

Vf Objective function variation metric 

Vg Constraint function variation metric 

w Weighting values in Ip and I metrics 

x Design variables 

XX0 Subscript denoting nominal solution (e.g. p0, f0, g0) 

XXSh Subscript denoting shared parameter 

y Shared design variables 

Y Coupling function 

α Parameter uncertainty reduction vector  

β Parameter adjustment vector 

∆fi Difference between fi,max and f i,min 

∆P Pressure drop (heat exchanger problem) 

∆pk Uncertainty interval for the k
th

 parameter 

δpk Maximum parameter adjustment value for the k
th

 parameter 

ε Designer selected limit(s) on RUID objective(s) 

η Maximum deviation of shared parameter values from target values 

θ Weighting values in Investment metric 

σmax Maximum stress (tube problem) 
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CHAPTER 1: INTRODUCTION 

1.1 RESEARCH MOTIVATION 

In recent years the design research community has become increasingly focused on 

solving the problems presented by uncertain input parameters to design methods and 

algorithms [Martin and Simpson, 2006; Moeller and Beer, 2008; Schueller and Jensen, 

2008; Lee and Chen, 2009].  Design algorithms, such as design optimization, involve 

selecting (or determining) the physical parameters that define the characteristics of an 

engineering system [Deb, 2001; Arora, 2004; Aute and Azarm, 2006].  When dealing 

with any physical parameter there is always the possibility that the exact 

dimensions/characteristics of that parameter cannot be known with absolute certainty, 

regardless of how tightly a machining or fabrication tolerance can be controlled.  As a 

result, uncertainty is an unavoidable aspect of any engineering system and may lead to 

poor system performance and/or unexpected system failure if not adequately accounted 

for during the design process [Jung and Lee, 2002; Li and Azarm, 2008].  However, 

understanding and mitigating the effects of uncertainty on the design of engineering 

systems is a complex problem, especially when faced with computationally expensive 

real world engineering design problems comprised of multiple engineering disciplines 

[Du and Chen, 2005; Chiralaksanakul and Mahadevan, 2007].   

Figure 1.1 depicts just such a system.  Clearly the design of a helicopter is a 

complex engineering challenge that involves designing many physically coupled systems, 

including the fuselage itself, the engines, and the flight control computer that 

communicates with the engines; just to name a few.  Furthermore, designing these 

systems could involve numerous distinct computational models, such as a finite element 
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analysis (FEA) model to predict the behavior of the engine’s turbine blades and a 

computational fluid dynamics (CFD) model to understand the properties of the flow of air 

through the engine.  Clearly all these systems and sub-systems are highly coupled and 

any uncertainty in one system will invariably affect the design of the other coupled sub-

systems or disciplines.  There are many important questions about the effects of 

uncertainty on these types of systems that a designer would like to answer, such as:  

Which uncertain parameters have the greatest effect on the performance of the entire 

system?  Which sub-systems are most important to the overall performance of the 

system?  If the helicopter needs to be as light as possible with as much lifting force as 

possible, should the engines be designed better or should the fuselage itself be more 

carefully addressed?  How much uncertainty in any given parameter of the helicopter’s 

design should be considered acceptable?  How best should limited uncertainty reduction 

and design adjustment resources be allocated during the design process in order to best 

mitigate the potentially damaging effects of system uncertainties?  These are the types of 

questions the work presented in this dissertation has attempted to address.   

 

Figure 1.1: A Multi-Disciplinary System 

CFD FEA Thermo

Fly By Wire 

Computer
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1.2 RELEVANT RELATED RESEARCH: AN OVERVIEW 

1.2.1 Uncertainty Overview 

Generally speaking there are two different types of uncertainty in input parameters: 

irreducible and reducible [Guo and Du, 2007].  Irreducible uncertain parameters include 

any uncertain factor or parameter that a designer cannot control, influence, prescribe or 

reduce further, even if more information is obtained. A material property, such as density, 

is an example of an irreducible uncertain parameter due to the natural variations in the 

material.  Reducible uncertainty on the other hand describes any uncertain parameter that 

a designer can control the level of uncertainty in through the specification of a tolerance, 

through the purchase of higher quality equipment, or through the collection of more 

statistical information.  These two types of uncertainty can be quantified in one of three 

ways, either through probability distributions [Gunawan and Papalambros, 2007; Noh et 

al., 2008; Youn and Wang, 2008], through imprecise probabilities (e.g. [Mourelatos and 

Zhou, 2006; Zhou and Mourelatos, 2008]) or by simple upper and lower bounds (interval 

uncertainty) [Du, 2007; Wu and Rao, 2007; Li et al., 2009a].  At present, two distinct 

strategies have been used to manage input parameter uncertainty: robust design 

approaches [Beyer and Sendhoff, 2007] or Sensitivity Analysis (SA) approaches [Fiacco, 

1983; Saltelli et al., 2000; Helton and Davis, 2003], both of which have their strengths 

and weaknesses. 

 



4 

 

1.2.2 Robust Approaches 

Robust design approaches are most appropriate when uncertainty is irreducible and 

are excellent for ensuring the feasibility of an engineering system; thus preventing system 

failure due to uncertainty.  It should be noted that robust approaches cannot be counted 

on to find that a desired preexisting design of interest for a system will be robust (or 

insensitive to uncertainty) and thus will most likely suggest alternate designs, which may 

not be something a designer is interested in for certain design problems.  This is because 

robust approaches traditionally search over a wide range of potential designs in an effort 

to find the best design that is insensitive to the uncertainty in the system [Gunawan and 

Azarm, 2005; Lee, 2006].  For example, if the designer of the engines for the helicopter 

system shown in Figure 1.1 chose to use a robust approach to mitigate the effects of 

uncertainty, the key design parameters such as output horsepower and output shaft 

diameter will likely be changed in order to ensure insensitivity to uncertainty in order to 

accomplish that goal. More specific examples of robust methods are Robust Optimization 

(RO) [Yu and Ishii, 1998; Gu et. al, 2006; Du and Choi, 2006; Apley et al., 2006; Li and 

Azarm, 2008] and Reliability Based Design Optimization (RBDO) [Gunawan and 

Papalambros, 2006; Choi et al, 2008; Jung and Lee, 2008; Noh et al., 2008; Youn and 

Wang, 2008].  There are currently robust approaches specifically formulated for 

probabilistic uncertainty [e.g. Youn and Wang, 2008], imprecise probabilities [e.g. Zhou 

and Mourelatos, 2008] and interval uncertainty quantification [e.g. Li et al., 2007].  These 

approaches all treat input uncertainties as uncontrollable aspects of the system that must 

be designed around, which is why they are well-suited to systems where all sources of 

uncertainty can be safely assumed to be irreducible. 
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However, in many cases some uncertainty sources may very well be reducible and 

the presence of reducible uncertainty in a system design will undoubtedly present 

additional challenges.  More often than not better machining processes, more expensive 

equipment and/or tighter tolerances could all reduce the uncertainty in a system and thus 

result in better system performance and a reduced potential for failure.  Clearly all of 

these options for uncertainty reduction can and will increase the overall cost of the 

system design.  For the system in Figure 1.1, the designer of the engines could select the 

best possible (and most expensive) thermocouples available on the market for use in 

monitoring engine temperatures as precisely as possible.  However, would the resulting 

increased cost associated with those expensive thermocouples be necessary to achieving 

the overall goals and objectives of the system as a whole, or could those resources be 

better spent on some other aspect of the design?  Designers would obviously like to know 

how best to spend limited resources, thus achieving the best possible performance of a 

system under uncertainty given the lowest possible cost, without the fear that money and 

resources have been wasted on over engineering non-critical sub-systems or parameters.   

For the most part robust approaches in the literature are not able to assist designers 

faced with these types of decisions about reducible uncertainty. RBDO approaches have 

been developed that allow for the inclusion of additional statistical information should it 

become available as a means for considering reducible uncertainty [Gunawan and 

Papalambros, 2006; Youn and Wang, 2008].  Other approaches combine uncertainty 

reduction mechanisms with RBDO techniques, either through sequentially performing 

reliability-based design optimization followed by uncertainty reduction [Qu et al., 2003], 

or through simultaneously considering reliability and uncertainty reduction mechanisms 
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during the design process [Kale and Haftka, 2008]. There are also approaches presented 

in the literature that suggest treating the variance in an uncertain parameter as a factor to 

control within an RBDO algorithm provided a designer has a means for producing lower 

variance in input parameters [Benanzer et al., 2009].  However, the above approaches all 

require probabilistic information or imprecise probabilities for uncertainty quantification, 

which may be unavailable, undesirable or invalid when statistical information is not 

available or too expensive to obtain early in a design process.   

1.2.3 Sensitivity Analysis Approaches 

Sensitivity analysis (SA) based approaches are often better suited to finding 

opportunities for reducing any uncertainty levels in an engineering system design that are 

known to be reducible [Greenland, 2001; Acar et al., 2007; Wu and Rao, 2007; Li et al., 

2009a]. This is because sensitivity analysis simply provides a designer with information 

relating output variation to input uncertainty.  That information can then be used to drive 

uncertainty reduction decisions if desired. SA based approaches are also very useful 

when a designer is interested in the effects of uncertainty on a predetermined design of 

interest [Iman and Helton, 1988; Sobieszczanski-Sobieski, 1990].  If SA is used to 

analyze the design of the engine in Figure 1.1, the nominal values of the output power 

and shaft diameter are more likely to remain largely unchanged for a preexisting design 

of interest when using SA.  This is because SA based approaches can provide a designer 

with information about the system that can be used to mitigate uncertainty in another 

manner.   SA approaches can be classified as either local or global.  Local SA approaches 

relate the variation in the outputs of a system to small uncertainty in the system inputs 

[Hamby, 1994; Frey and Patil, 2002; Kern et al., 2003], which is only valid for limited 
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levels of uncertainty.  On the contrary, global SA approaches [Saltelli et al., 2008] 

account for the entire range of input uncertainty and determines the effects of input 

uncertainty on system outputs.  Most of the SA approaches reported in the literature focus 

on probabilistic uncertainty quantification [e.g.  Acar et al., 2007; Castillo et al., 2008; 

Du, 2008], in part because the acquisition of more data can often be used to reduce 

uncertainty in a probabilistic sense.  However, some attempts have been made to apply 

SA based approaches to systems possessing interval uncertainty [Wu and Rao, 2007; Li 

et al., 2009a; Li et al., 2009b].  Sensitivity analysis techniques are ideally suited to relate 

system performance variation (and/or system failure) to input uncertainty.  However, 

there are not many SA based approaches that can then also determine the design changes 

and/or uncertainty reductions required to improve the performance (or eliminate the 

possibility of failure) of a design under uncertainty, with Li’s work being the only major 

exception [Li et al., 2009a, Li et al., 2009b].   

1.2.4 Multi-Disciplinary Approaches 

Much of the work done in this area of design under uncertainty has focused on 

single disciplinary engineering systems, including both robust approaches [Crespo et al., 

2008] and SA approaches [Helton and Davis, 2003].  Furthermore, SA approaches 

capable of handling multiple system outputs are relatively rare in the literature [Barron 

and Schmidt, 1988; Zhang, 2003; Li et al., 2009a].  However, engineering systems of 

interest will possess multiple design goals (or objectives) and will most certainly be 

comprised of many different disciplines.  As discussed above in the helicopter engine 

example, those multiple disciplines could be in the form of coupled computational 

models, such as an FEA model for a structure and a CFD model for analyzing the drag 
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forces on the structure.  Alternately, the multiple disciplines could be in the form of 

geometrically coupled but distinct sub-systems of a greater engineering system, such as 

the motor and battery modules that comprise the design of a power tool which are to be 

designed by different teams possibly in different geographic locations. 

1.3 RESEARCH FOCUS AND KEY ASSUMPTIONS 

The work presented in this dissertation has sought to address many of the 

shortcomings of the current research in the area of design under uncertainty as described 

in the previous section.  The overall goal of this work has been to provide designers with 

sensitivity analysis based algorithms for understanding and then optimally mitigating the 

effects of input uncertainty on single and multi-disciplinary engineering systems that are 

as computationally efficient as possible.  In order to achieve this goal the research 

presented in this dissertation has focused on the following five key areas and their 

corresponding assumptions. 

Sensitivity Analysis (SA): As described previously, SA based approaches are 

effective tools for better understanding the effects of uncertainty on a preexisting design.  

However, most SA based approaches currently in the literature are simply tools for 

gaining greater insight into the effects of uncertainty on an engineering system.  As a 

result, it is then up to the designer how best to proceed using any newly gained insight.  

Much of the work presented in this dissertation combines SA with multi-objective 

optimization techniques to provide a designer both with greater insight into the effects of 

uncertainty and more importantly with options for how best to adjust any available 

degrees of freedom in the system to mitigate the effects of uncertainty.  As such, much of 

the research presented in this dissertation has assumed that a preexisting design for an 
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engineering system of interest exists and is known to possess uncertain input parameters.  

Figure 1.2 depicts the general capability of SA, which is to relate output variations to 

input uncertainties.   

 

Figure 1.2: Sensitivity Analysis 

Engineering Feasibility: Perhaps the most important effect of uncertainty that needs 

to be mitigated in any engineering design effort is the potential for system failure due to 

uncertainty. This concept of engineering failure when placed in the context of 

engineering optimization is also known as infeasibility.  Previous work in the area of 

sensitivity analysis has focused on reducing variations in system outputs but there have 

only been limited efforts to address system failure specifically.  This work has focused 

specifically on this key area in engineering design and how sensitivity analysis can be 

used to ensure engineering feasibility, in both single and multi-disciplinary systems. 

Interval Uncertainty: While probability distributions are not always available for 

uncertain parameters (and obtaining such information is often quite expensive, if even 

possible), interval uncertainty levels are often much easier to determine and/or estimate.  

For this reason the sensitivity analysis based work presented in this dissertation has 

focused exclusively on interval uncertainty in an effort to be as general (and easy to 
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implement) as possible.  Note that this work has focused on system input parameter 

uncertainty and does not specifically address any model uncertainty potentially associated 

with the analysis models of the system being analyzed. 

Reducible Uncertainty:  As previously discussed, the presence of reducible sources 

of input uncertainty presents a distinct challenge to engineering system designers.  When 

uncertainty is potentially reducible a designer is forced to make decisions about the 

improvement in performance that can be obtained through uncertainty reduction while 

simultaneously taking into account the increased cost of further reducing uncertainty.  

The research presented in this dissertation attempts to provide system designers with 

multiple approaches for addressing this challenge in a systematic and automated fashion, 

thus making the process of design under reducible uncertainty a simpler task. 

Algorithm Efficiency: For any design algorithm to be useful it must be very 

efficient as current computational models for engineering systems can take many hours to 

execute.  In order to address this very real issue, all the work presented in this dissertation 

has attempted to increase the computational efficiency of the approaches developed 

through the use of surrogate approximation models wherever possible.   Surrogate 

modeling, also widely known as meta-modeling, describes a set of techniques for using 

limited actual analysis data to approximate a complex computational model [e.g. Shan 

and Wang, 2008].  The work presented in this dissertation have used analysis data 

generated early in design procedures to build surrogate models that are then used during 

later steps to greatly reduce computational effort through the intelligent re-use of already 

obtained system information.   
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1.4 RESEARCH THRUSTS 

To accomplish the overall goals of this dissertation research, four distinct research 

thrusts were pursued.  Each thrust built on the work of the previous thrust by relaxing 

some previous assumptions and/or addressing issues that were ignored or avoided in 

previous thrusts.  Only interval uncertainty was considered throughout the research and 

the interval uncertainty levels associated with each design under consideration were 

assumed to be reducible to some extent.  Each of four research thrusts performed will be 

described briefly in the following paragraphs and then in detail later in this dissertation.   

1.4.1 Thrust 1: Multi-Disciplinary Multi-Output Sensitivity Analysis 

The first step in this dissertation research was to extend the work of Li et al. 

[2009a] to multi-disciplinary systems.  As such, a sensitivity analysis based uncertainty 

reduction approach, called Multi-dIsciplinary Multi-Output Sensitivity Analysis 

(MIMOSA) was developed. This approach was developed for multi-disciplinary 

engineering systems decomposed into multiple sub-systems, where each sub-system 

analysis model has multiple uncertain inputs and multiple outputs. MIMOSA can 

determine: i) the sensitivity of system and sub-system outputs to input uncertainties at 

both system and sub-system levels, ii) the sensitivity of the system outputs to the 

variations from sub-system outputs, and iii) the optimal “investment” required to reduce 

uncertainty in inputs in order to obtain a maximum reduction in output variations at both 

the system and sub-system levels. A numerical and an engineering example with two and 

three sub-systems, respectively, were used to demonstrate the applicability of the 

MIMOSA approach.  A portion of this research thrust was presented in Li et al., [2009b] 

and the details of this new approach will be presented in Chapter 3 of this dissertation. 
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The objective of this research thrust was to develop an approach for understanding 

and optimally mitigating the effects of reducible interval input uncertainty on multi-

disciplinary, multi-output engineering systems. 

1.4.2 Thrust 2: Multi-Disciplinary Combined Sensitivity Analysis  

The goal of the second research thrust was to develop a sensitivity analysis method 

for determining where the appropriate uncertainty reduction opportunities exist in a 

preexisting multi-disciplinary system design in an effort to ensure the feasibility of all 

included sub-system designs.  This approach builds on the work of the previous thrust, 

which did not consider engineering feasibility.  Using the MIMOSA approach as a 

starting point, the Multi-dIsciplinary COmbined Sensitivity Analysis (MICOSA) 

approach was formulated to achieve both minimal output function variation at the system 

and sub-system levels (like MIMOSA), while simultaneously ensuring that both the 

overall system and all included sub-systems will be feasible in the presence of any 

retained uncertainty.  MICOSA combines output function variation reduction with the 

equally important goal of preventing the possibility of engineering failure due to input 

uncertainty.  This approach was applied to a notional multi-disciplinary unmanned 

underwater vehicle model to demonstrate its capabilities. The details of this approach are 

presented in Chapter 4. 

The objective of the second research thrust was to extend the MIMOSA approach to 

also consider engineering feasibility, thus making it possible to use uncertainty reduction 

mechanisms as a means for both optimally reducing output function variations while 

simultaneously ensuring the feasibility of multi-disciplinary engineering systems. 
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1.4.3 Thrust 3: Design Improvement by Sensitivity Analysis 

Uncertainty in the input parameters to an engineering system may not only degrade 

the system’s performance, but may also cause failure or infeasibility, as was addressed in 

the second research thrust. However, MICOSA only uses uncertainty reduction 

mechanism as a means for achieving feasibility under uncertainty, which may not always 

be sufficient.  The third research thrust addressed this limitation of MICOSA and focused 

on the development of a new sensitivity analysis based approach called Design 

Improvement by Sensitivity Analysis (DISA).  DISA analyzes the interval uncertainty of 

input parameters and, using multi-objective optimization, determines an optimal 

combination of design improvements that will ensure a minimal variation in the objective 

functions of the system while also ensuring feasibility.  The approach provides a designer 

with options for both uncertainty reduction and, more importantly, slight design 

adjustments (which will be defined in detail later in this dissertation).  A two stage 

sequential framework is used that can employ either the original analysis functions, or 

meta-model approximations, to greatly increase the computational efficiency of the 

approach.  This new approach has been applied to two engineering examples of varying 

difficulty to demonstrate its applicability and effectiveness.  The results produced by 

these examples show the ability of the approach to ensure the feasibility of a preexisting 

design under interval uncertainty by effectively adjusting available degrees of freedom in 

the system without the need to completely redesign the system.  A portion of this work 

was presented in Hamel et al. [2010] and the details of this research thrust are presented 

in Chapter 5 of this dissertation. 
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The objective of the third research thrust was to develop a sensitivity analysis 

based approach for optimally mitigating the effects of reducible interval input 

uncertainty on a preexisting candidate design that is capable of both engineering 

feasibility and minimal objective function variations at a minimal require cost through 

the use of uncertainty reduction mechanisms and small design adjustments. 

1.4.4 Thrust 4: Reducible Uncertain Interval Design 

Optimization under uncertainty can be a difficult and computationally expensive 

problem driven by the need to consider the degrading effects of system variations, as 

discussed earlier in this chapter.  Sources of uncertainty that may be reducible in some 

fashion present a particular challenge because designers must determine how much 

uncertainty to accept in the final design. As previously discussed, many of the existing 

approaches for design under input uncertainty, such as MIMOSA and DISA for example, 

require potentially unavailable or unknown information about the uncertainty in a 

system’s input parameters; such as probability distributions, nominal values or uncertain 

intervals. These requirements may force designers into arbitrary or even erroneous 

assumptions about a system’s input uncertainty when attempting to estimate nominal 

values and/or uncertain intervals for example. These types of assumptions can be 

especially degrading during the early stages in a design process when limited system 

information is available. In an effort to address these challenges a new SA inspired 

design approach was developed that can produce optimal solutions in the form of upper 

and lower bounds (which specify uncertain intervals) for all input parameters to a system 

that possess reducible uncertainty. These solutions provide minimal variation in system 

objectives for a maximum allowed level of input uncertainty in a multi-objective sense 



15 

 

and furthermore guarantee as close to deterministic Pareto optimal performance as 

possible with respect to the uncertain parameters. The function calls required by this 

approach are dramatically reduced through the use of a kriging meta-model assisted 

multi-objective optimization technique performed in two stages. The capabilities of the 

approach are demonstrated through three example problems of varying complexity.  This 

final research thrust seeks to relax many of the limiting assumptions of the MIMOSA, 

MICOSA and DISA approaches in an effort to provide designers with a general approach 

for the design of engineering system under reducible interval uncertainty.  A portion of 

this work was presented in Hamel and Azarm [2010] and the details of this final research 

thrust are presented in Chapter 6 of this dissertation. 

The objective of this fourth and final research thrust was to develop an sensitivity 

analysis inspired approach for the multi-objective optimal design of engineering systems 

under reducible interval input uncertain that is capable of determining the optimal upper 

and lower bounds for sources of reducible input uncertainty to an engineering system 

with as few required a priori assumptions as possible. 

1.5 ORGANIZATION OF DISSERTATION 

The research thrusts introduced in the previous section represent the major 

contributions of the work presented in this dissertation.  As previously discussed the four 

research thrusts are interrelated and each thrust successively builds up on the work of the 

previous thrusts.  Figure 1.3 below depicts the relationships between the four thrusts 

graphically. 
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Figure 1.3: Organization of Research Thrusts 

As can be seen in Figure 1.3, the new approach presented in each thrust is either 

more capable and/or requires less a priori information from the designer to produce 

similar results.  For example, in the first research thrust a new approach for using 

uncertainty reduction to control the output variations in a multi-disciplinary system is 

presented.  Then, the second thrust extends the approach presented in the first to also 

consider engineering feasibility, which was not considered previously.  This progression 

resulted in a set of four new SA based approaches for the design of engineering systems 

under reducible interval uncertainty where each new approach presented addresses the 

weaknesses and/or limitations of the previously presented approaches. 

The remainder of this dissertation will be organized as follows.  Chapter 2 contains 

some relevant background definitions and terminology that will be used throughout this 

dissertation.  Chapters 3 through 6 cover the details of the four main research thrusts.  

Thrust 1: 

Multi-dIsciplinary, Multi-Output 

Sensitivity Analysis (MIMOSA)

Thrust 2: 

Multi-dIsciplinary, COmbined

Sensitivity Analysis (MICOSA)
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Design Improvement by

Sensitivity Analysis (DISA)

Thrust 4: 

Reducible Uncertain 
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Approach for:

uncertainty reduction

to reduce variations

See Chapter 3

Approach for:

uncertainty reduction
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See Chapter 4

Approach for:

uncertainty reduction and design adjustments 

to reduce variations and ensure feasibility

See Chapter 5

Approach for:

design of reducible uncertain intervals 

to ensure best possible performance 

with minimal a priori assumptions

See Chapter 6



17 

 

Chapter 7 contains the relevant conclusions developed in each of the four research 

thrusts, an overview of the major contributions of this work and some potential directions 

for future research. 
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CHAPTER 2: BACKGROUND AND TERMINOLOGY 

2.1 INTRODUCTION 

In this chapter some general background information, definitions and terminology 

will be presented.  These terms, equations and figures will be referred to throughout the 

dissertation. 

2.2 MULTI-OBJECTIVE OPTIMIZATION 

Multi-objective optimization involves solving the problem shown in Eqn. (2.1), 

where f describes a set of objective functions for a system which depend on a vector of 

design variables x and a vector of parameters p, and limited by a set of constraint 

functions g. If any of the constraint functions g in Eqn. (2.1) has a value greater than 0, 

the system is said to be infeasible.  Typically Eqn. (2.1) would also contain a set of 

equality constraint functions as well, but these have been omitted in this work as most 

equality constraints will necessarily be violated under uncertainty. 
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 Traditionally the vector x describes factors that a designer can control while p is a 

vector of uncontrolled inputs.  However, if the elements of both x and p are either known, 

in the form of a candidate design (as required by most SA procedures), or potentially 

controllable in some sense (because the parameter or its upper and/or lower bounds are 

selectable), then the system can be thought of as depending simply on a single vector of 

input parameters p = {x , p} (assuming x and p are row vectors) as shown in Eqn. (2.2). 

In most cases this input vector is bounded by extreme upper and lower bounds as shown.  
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From this point forward there will be no distinction between x and p. All inputs to an 

analysis model will simply be referred to as parameters p as shown in Eqn. (2.2).   
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 From this point forward, a set of values for the vector p will be referred to as a 

design and evaluating the values for the actual functions f and g for a single design p will 

be referred to as a function call.  Multi-objective optimization can be accomplish with 

many different techniques [Miettinen, 1999; Deb, 2001], but the work presented 

throughout this dissertation uses Multi-Objective Genetic Algorithms (MOGA) in order 

to accommodate mixed continuous-discrete input parameters and discontinuous output 

functions [Deb, 2001]. 

2.3 MULTI-DISCIPLINARY DESIGN OPTIMIZATION 

 When the analysis model or simulation model for an engineering system contains 

more than one coupled sub-system analysis models then the system is said to be multi-

disciplinary and optimizing the design of such a system is called Multi-disciplinary 

Design Optimization (MDO).  An MDO problem can be solved in an all-at-once (i.e., 

with all coupled sub-systems considered together in a single system) or a decomposed 

(i.e., with decoupled sub-systems) fashion.  Some examples of MDO decomposition 

techniques include Concurrent Subspace Optimization (CSSO), Collaborative 

Optimization (CO) [Yi et al., 2007] and Analytical Target Cascading (ATC) [Kokkolaras 
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et al., 2006], all of which involve nesting sub-system optimizations within system level 

optimizers.  The decomposed solution is more useful in that it allows a designer to 

consider and evaluate the performance of each sub-system individually.  Figure 2.1 below 

shows the relationship between the all-at-once and decomposed MDO formulations using 

the Collaborative Optimization (CO) technique.  The major difference between the two 

approaches in the figure is the addition of a new type of variables for the decomposed 

approach, target variables t, at the system level, which serves as a target for the coupling 

variables y in each sub-system at the sub-system level.  An additional set of constraints 

are also added in the decomposed approach to ensure that at the sub-system level each of 

the coupling variables y is equal to its target variable value.  This technique was extended 

to multiple system objectives by Aute and Azarm [2006], and their approach is used 

throughout this dissertation when an MDO framework is required.  Note that the 

subscript sh in Figure 2.1 denotes input at the system level shared by more than one of 

the sub-systems. 

 

Figure 2.1: Decomposition of a Multi-Disciplinary System  
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2.4 CANDIDATE DESIGN 

In order to perform sensitivity analysis the assumption is that the variables p in 

Eqn. (2.2) are already given in the form of a predetermined design.  Thus hereafter in this 

dissertation the vector p0 is used to denote the nominal values for all inputs into a system 

for which a solution, or design, already exists.  Furthermore this design p0 will be called a 

candidate design.  As a result, the nominal objective and constraint functions values for a 

candidate design may be thought of simply as functions of the nominal values p0, which 

is a vector that contains both the predetermined design variable values and the parameter 

values from the original engineering design problem in Eqn. (2.1). The work presented in 

this dissertation focuses on how changes to the parameters contained in the vector p0, 

both in terms of nominal values and uncertainty level, affect the performance of the 

design described by the functions f0 and g0. 

2.5 INPUT PARAMETER UNCERTAINTY 

Interval uncertainty is considered in this work due to the ability of a designer to 

define uncertainty given limited information about parameters during the early stages of a 

design process. As stated earlier in this chapter, throughout this dissertation any input to a 

system analysis model will be considered a parameter. The interval uncertainty possessed 

by the k
th

 element of the vector of input parameters p is defined as ∆pk.  For notational 

simplicity it is assumed that the ∆pk associated with any parameter is symmetric.  In other 

words, the difference between the nominal parameter values p0 and the upper bounds on 

those parameters pU is the same as the difference between the nominal values and the 

lower bounds pL, or for the k
th

 uncertain interval ∆pk 
= | p0,k – pU,k | = | p0,k – pL,k |. This 

assumption is not necessary though and asymmetric uncertainty levels can be dealt with 
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easily by considering two ∆p values for each uncertain parameter p0,k.  In two dimensions 

the uncertainty quantified this way can be depicted as a rectangle in the parameter space 

for a problem, as shown in Figure 2.2.  The parameter space can be thought of as the 

entire range of all possible parameter combinations for a given system. The uncertainty 

associated with the candidate design p0 is a subset of the parameter space, bounded by the 

interval [p0 - ∆p, p0 + ∆p] (as originally defined by Moore [1966]). 
 

 

Figure 2.2: Parameter Space and Parameter Uncertainty 

2.6 REDUCIBLE PARAMETER UNCERTAINTY 

If the uncertainty in a set of parameters is reducible then, as proposed by Li et al. 

[2009a], reduction in that uncertainty can be quantified using a vector of uncertainty 
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∆pk to a system, a scaling factor αk is assigned.  Each of the K elements of the vector α is 

a number between 0 and 1.  The values of α and ∆p work together to reduce the original 

uncertain intervals of p as shown in Figure 2.3.  The new (smaller) uncertain region in the 
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completely, as is usually the case, a lower bound can be placed on the corresponding αk 

value.  Since the values for α can be any value between 0 and 1, the uncertainty in any 

parameter p can be reduced to any subset of values on the original uncertain interval [p0 - 

∆p, p0 + ∆p].  For instance, if uncertainty in p1 is completely irreducible then α1 should 

be limited to always be equal to 1; while if the uncertainty in p1 can only be reduced by 

50%, then α1 is limited to a minimum value of 0.5.  Additionally, if any of the available 

uncertainty reduction options for the parameter pk are discrete choices, then the available 

αk options can be limited to corresponding discrete values between 0 and 1.  It should be 

noted that the work presented in this dissertation assumes that uncertain intervals are 

symmetric about the nominal values p0 and thus only one element of the uncertainty 

reduction vector α is required for each reducible input parameter of interest.  In the case 

of an asymmetric uncertainty about the nominal, an additional element should be added 

to the α vector (increasing the size of the vector) for each input parameter with 

asymmetric uncertainty.  When using these additional elements, one element of the α 

vector controls the reduction in the upper bound of the uncertain interval for a parameter 

while the additional element controls the reduction in the lower bound.  This modification 

increases the dimensionality of the α vector, but also gives a designer greater control over 

uncertainty reduction decisions if necessary. 

 

Figure 2.3: Parameter Uncertainty Reduction 
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If parameter uncertainty is reduced by decreasing the values for one or more 

elements in α, the range of output function variation will also inevitably be changed.  

This propagation of uncertainty from input parameters to output function values can be 

represented by a set of resulting uncertain objective and/or constraint function values. As 

discussed above, uncertainty propagation is a function of the nominal parameter values 

p0, the original uncertainty intervals ∆p, and the values of the uncertainty reduction 

vector α.  Figure 2.4 depicts the impact that different uncertainty reduction values 

(denoted by decreasing α values) could have on output objective function variations when 

nominal parameter values p0 remain unchanged.   

 

Figure 2.4: Parameter Uncertainty Mapping for Various αααα Values 
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be called Rg.  If both objectives and constraints are considered simultaneously their 

variations will be measured with a metric called Rc, while if the nature of the output 

functions (objectives or constraints) is not specified, a general metric called R will be 

used. Figure 2.5 below depicts two different notional Rf values for a notional bi-objective 

system.  Similar figures could be drawn for Rg, Rc and/or R as needed.   

 

Figure 2.5: Graphical Depiction of Rf 

Note in Figure 2.5 that Rf (or any output function variation for that matter) will 

always be a function of any changes to the nominal input parameters p0 and their 
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essentially a notional function that correlates the amount of uncertainty associated with a 

candidate design to the “cost” required to produce that uncertainty level.  The general 

concept of the Investment metric is presented for a two parameter system in Figure 2.6, 

which shows that a higher reduction in uncertainty from the nominal will require a 

greater Investment level. 

 

Figure 2.6: General Investment Concept 
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2.9 MULTI-OBJECTIVE SENSITIVITY ANALYSIS (MOSA) 

Much of the work presented in this dissertation is an extension of, or inspired by an 

approach developed by Li et al., [2009a] called multi-objective sensitivity analysis 

(MOSA), which is an uncertainty reduction technique.  MOSA uses a bi-objective 

optimization problem to determine an optimal reduction in parameter uncertainty at a 

minimal cost, treating the uncertainty reduction vector as decision variables.   

 
)(min

)(min

α

α

α

α

Investment

R f

 

(2.3) 

Eqn. (2.3) can be solved using any multi-objective optimization technique; 

however, Li et al. [2009a] used genetic algorithms with much success.  This formulation 

elegantly places objective function variation, Rf, in competition with the cost of 

producing variation reduction Investment (or I if the simplified notation for Investment is 

used), and produces a Pareto set of solutions for the designer to choose from based on 

available funds for uncertainty reduction and objective function performance needs. 

However, the MOSA approach is limited to single disciplinary systems. Furthermore, 

MOSA provides no assurance of feasibility under uncertainty, nor does it provide a 

means for achieving feasibility if necessary. 

2.10 SURROGATE APPROXIMATION AND KRIGING  

Surrogate approximation, also widely known as meta-modeling, describes a set of 

techniques for using limited actual analysis data (often selected via a design of 

experiments (DOE) technique) to approximate a complex computational model [e.g. Shan 

and Wang, 2008; Allaire and Willcox, 2008; Wang and Shan, 2007].  Once properly 
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verified using the underlying analysis model, a meta-model can be used in lieu of the 

actual analysis model in an optimization or sensitivity analysis algorithm to conserve 

computational effort.  There are numerous techniques that can be used to approximate 

actual analysis data and one such particularly useful technique used in this work is a 

method borrowed from geostatistics called kriging [Martin and Simpson, 2005].  Kriging 

is well studied and none of the work presented in this dissertation attempts to improve 

kriging specifically, or meta-modeling in general, in any way. Rather this work simply 

uses the kriging technique as a means for increasing the computational efficiency of the 

various approaches presented in this dissertation.  Kriging was selected over other 

approximation techniques for three distinct reasons: 1) the kriging algorithm ensures than 

any approximate function will honor all observed data points, 2) the kriging algorithm is 

well suited to high dimensional data sets, and 3) the kriging algorithm produces an 

estimate of the error for any interpolated point, information that can be used to correct the 

approximation regularly to ensure accuracy.  It should be noted that meta-model accuracy 

is especially important in a sensitivity analysis context as inaccurate approximations 

could lead to errant sensitivity information.  This issue will be specifically addressed 

when necessary throughout this dissertation. 
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CHAPTER 3:  MULTI-DISCIPLINARY, MULTI-OUTPUT 

SENSITIVITY ANALYSIS (MIMOSA) 

3.1 INTRODUCTION TO RESEARCH THRUST 1 

The first research thrust of this dissertation involved the development of a new 

global sensitivity analysis approach.  This new approach can be used for the sensitivity 

analysis of multiple sub-system multi-output analysis models in which the inputs to the 

analysis sub-systems have reducible uncertainty. This new approach is called Multi-

dIsciplinary Multi-Output Sensitivity Analysis (MIMOSA). MIMOSA has several key 

properties and capabilities: a) it quantifies variation in multiple outputs in the system 

and/or each sub-system with respect to input interval uncertainty, considering multiple 

uncertain input parameters for a single design or a set of designs; b) it identifies the 

uncertain parameters, at the system and sub-system levels, which have the greatest effect 

on system output variations; and c) it does not require gradient information or probability 

density functions to quantify the uncertain parameters, rather it uses interval uncertainty 

which is more flexible and easier to obtain or estimate.  

In the context of Multi-Disciplinary Optimization (MDO), there have been 

numerous approaches proposed in the literature for ensuring that optimal design solutions 

are insensitive to the uncertainty associated with the system’s input parameters, mostly in 

the area of robust optimization (e.g., [Du and Chen, 2002 and 2005; Smith and 

Mahadevan, 2005; Kokkolaras et al., 2006; Padula et al., 2006; Gu et al., 2006; 

Chiralaksanakul and Mahadevan, 2007; Li and Azarm, 2008]). Those approaches, while 

valuable, do not address the possibility that in some cases the uncertainty in a system or 

its corresponding sub-systems could be reduced to some level, given enough investment, 
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and that reduction in uncertainty could in turn improve both the system’s and its 

corresponding sub-systems’ performance without the need for additional design 

optimization. This fact drives the need for a better understanding of the nature and effects 

of uncertainty in multi-disciplinary systems. Such knowledge would also lead to a better 

understanding of uncertainty, the relative importance of particular parameters and the 

opportunities to systematically apply limited resources in order to reduce the variations in 

a system’s outputs optimally. Sensitivity Analysis (SA) techniques provide a particularly 

useful option for understanding the effect of uncertainty and the application of SA 

techniques to uncertainty reduction problems is fast becoming an area of interest in 

current research efforts.  

The typical way that SA approaches are currently being used by designers is as 

methods for understanding the effects of system input uncertainty on system outputs 

[Iman and Helton, 1988; Saltelli et al., 2000]. The majority of the previous works in this 

particular application of SA have focused on systems where the uncertainty of input 

parameters has a presumed probabilistic distribution (e.g., [Saltelli et al., 2000; Chen et 

al., 2005]), or on systems where only one output at a time is considered (e.g., [Sobol, 

2001; Helton and Davis, 2003]). Moreover, most of the current SA approaches are only 

applicable to single-disciplinary analysis-based engineering problems [Saltelli et al., 

2000] as mentioned in Chapter 1. In contrast to these single-disciplinary methods, SA 

approaches that treat multi-disciplinary systems in a more flexible multiple sub-system 

fashion are obviously more attractive as they can determine the sensitivity of sub-

system’s outputs more flexibly and capture the interaction effects between sub-systems 

more accurately. Approaches addressing SA in a multi-disciplinary framework remain 
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rare in the literature and all of them require probabilistic distributions for uncertainty [Gu 

et al., 1998; Yin and Chen, 2008], or use gradient information of the function under 

consideration [Sobieszczanski-Sobieski, 1990; Sobieszczanski-Sobieski et al., 1991; 

Wehrhahn, 1991; Noor et al., 2000]. Moreover, in all the approaches currently in the 

literature, only one output is considered for each sub-system. However, almost all 

analysis models for engineering systems are multi-output in nature and probability 

distributions for uncertain inputs are not always known or valid (e.g., [Rao and Cao, 

2002; Wu and Rao, 2007; Li and Azarm, 2008; Qiu et al., 2008]).  

A single-disciplinary uncertainty reduction method, called Multi-Objective 

Sensitivity Analysis (MOSA), [Li et al., 2009a], was recently developed and the details 

of this approach are presented in Chapter 2.  Much like GSA methods, the MOSA 

approach can determine the sensitivity of output variations to multiple input parameter 

uncertainty. However, as pointed out in Chapter 2, MOSA did not address the uncertainty 

reduction problem at each sub-system in a multi-disciplinary framework. Uncertainty in 

the input parameters of a multi-disciplinary engineering analysis system is not only 

unavoidable but also results in variations in the outputs at both the system and sub-system 

levels. Moreover, in a multi-disciplinary analysis model, uncertainty reduction in one 

parameter (or combination of parameters) may greatly improve the performance of one 

sub-system, but may have no effect, or perhaps even adverse effects on other coupled 

sub-systems. For this reason, it is necessary that SA techniques be extended to multi-

disciplinary problems with multiple outputs in order to consider the complex 

relationships between input uncertainty and outputs of the analysis in each sub-system 

and across coupled sub-systems.  
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MIMOSA is capable of determining which sub-systems are most sensitive to input 

uncertainty and then can determine how limited resources should be applied to 

uncertainty reduction in order to obtain a maximum reduction in output variations at both 

the system and sub-system levels. The parameter uncertainty that MIMOSA is concerned 

with is assumed to be reducible and exists not only as input in each sub-system but also 

in the couplings between sub-systems. However, MIMOSA does not require probability 

distribution information for uncertainty characterization, but instead assumes that an 

uncertain interval is known for each uncertain parameter. In the MIMOSA approach, 

given the known interval uncertainty for input parameters in both the system and sub-

system levels, a designer can identify parameters whose uncertainty should be reduced or, 

perhaps even eliminated, in order to achieve the desirable reduction in variation in the 

system’s and it’s corresponding sub-system’s outputs simultaneously. In addition, the 

relative importance of each of the sub-systems can also be determined using the 

information produced by the MIMOSA approach. Two scalar metrics are used to quantify 

the amount of variation in outputs and the cost to the designer of reducing the uncertainty 

in the input parameters in both system and sub-system levels. A bi-objective SA problem 

is formulated in the system level problem and in each sub-system to minimize the 

variation in the corresponding system’s outputs while simultaneously minimizing the 

investment required to produce the necessary reduction in the uncertainty of the system’s 

parameters. A numerical example and an engineering design example, each having two or 

three sub-systems, respectively, are used to demonstrate the applicability of the 

MIMOSA approach. 
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The rest of this chapter is organized as follows. Some terminology and definitions 

used are described in Section 3.2. Details of the MIMOSA approach are presented in 

Section 3.3. Two examples, a numerical example having two sub-systems and an 

engineering example having three sub-systems, are presented in Section 3.4 to illustrate 

the applicability of the approach. Concluding remarks are presented in Section 3.5. A 

portion of this chapter was presented in Li et al. [2009b]. 

3.2 BACKGROUND AND TERMINOLOGY 

3.2.1 Tolerance Region 

The concept of a parameter uncertainty was first presented in Chapter 2 of this 

dissertation.  The region of the parameter space bound by the uncertain input parameter 

intervals for a candidate design of a system can be called a Tolerance Region (TR).  

Figure 3.1 below depicts a TR for a notional two parameter system.  Recall that the TR 

for an analysis model of a design quantifies the amount of uncertainty associated with the 

model’s input parameters. These are not selectable values, but are instead a property of a 

design under consideration that is known to possess uncertain input parameters.  As 

stated in Chapter 2, the parameter uncertainties considered in this work are assumed to be 

defined by intervals and are assumed to be reducible.  

 

Figure 3.1: Tolerance Region 

p1

Tolerance Region
p2

p0,1± ∆p1

p0,2± ∆p2
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3.2.2 Uncertainty Reduction and Retained Tolerance Region (RTR) 

The uncertainty reduction vector α = {α1,…,αK} was also first presented in Chapter 

2.  Recall that the elements of the α vector are bound by 0 and 1, for k = 1,…, K,  one for 

each corresponding uncertain parameter.  The term Retained Tolerance Region (RTR) is 

used to describe the reduced uncertain region of the parameter space defined as the 

portion of an original TR, determined by the α vector and the original parameter 

uncertainty. Essentially, RTR can be any symmetric hyper-rectangle that is inside the 

original tolerance region centered at the nominal parameter values. Recall that the α 

vector is a measure of the prescribed level of uncertainty reduction for the given 

uncertain parameters and is treated as a set of the decision variables and will be selected 

within the MIMOSA algorithm, not by the designer beforehand. 

3.2.3 Reduced Output Sensitivity Region (ROSR) 

Regardless of which type of uncertainty (irreducible or reducible) is considered, it 

is possible to map the effects of input parameter variation for one or more designs under 

consideration into the output space and then evaluate those effects on the resulting 

uncertainty, in a multi-output sense as described in Chapter 2. Given a known TR, which 

is characteristic of a given design and its associated uncertain parameters (the left side of 

Figure 3.2), the result of mapping that input uncertainty to the system outputs forms an 

Output Sensitivity Region (OSR) (the right side of Figure 3.2) for each design under 

consideration. Figure 3.2 assumes a two-input, two-output analysis model for several trial 

designs in the interest of visualization, but the concept is applicable to a problem of any 

size.   
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Figure 3.2: Mapping from the Tolerance Region to the OSR 

For a trial design x0, the nominal values of the M analysis outputs are o(x0, p0) = 

{o1(x0, p0),…, oM(x0,p0)}. Output variations of x0 will be considered to be caused by the 

retained parameter variations α ° ∆p (as originally defined in Chapter 3) in Eqn. (3.1): 

 

pαpppαp

pxopxop ,xo

∆∆∆∆++++≤≤≤≤≤≤≤≤∆∆∆∆

−−−−====∆∆∆∆

oo
00

0000

-

  where

),(),()(

 (3.1) 

Notice that the TR of parameters on the left of Figure 3.2 can lead to different 

OSRs for the designs represented in the output space on the right of Figure 3.2. This 

mapping of uncertain parameters can be quantified by measuring the distance of the 

largest deviation from the nominal output function values under the uncertain parameter 

intervals using a ||.||∞ norm. This quantification was first presented in Chapter 2 and is 

here denoted by R, or the Reduced OSR (ROSR) for x0, the design under consideration 

for analysis, as shown in Eqn. (3.2).  This R metric is a general metric (it does not 

differentiate between objective and constraint functions) since in the context of this work 

the output functions under consideration may be either objectives, constraints or both.  
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In Eqn. (3.2), ∆o0 is the Acceptable Output Variation Region (AOVR) for the M 

outputs. The AOVR value is specified by the designer and then the variation in those 

outputs is normalized by the corresponding AOVR values. The value of the AOVR is 

usually assumed by the designer who has good knowledge about the system or a clear 

requirement on the acceptable variation range of the system performance. Given an 

AOVR, it is required that the variation in the outputs to be less than the AOVR. As a 

result, R should be less than or equal to 1 for the acceptable variation for the outputs 

obtained from the analysis of a design x0. If an AOVR is not available or not desired, R 

can still be normalized instead by using the nominal output values. Normalization in Eqn. 

(3.2) is usually necessary depending on the applications, especially for the engineering 

analysis problems that have multiple outputs with different units or orders of magnitude.  

As shown in Figure 3.3, a measure of output variation R can be reduced (for 

multiple designs, as shown) by reducing the RTR for a given set of input parameters as, R 

is a function of the corresponding α vector values for the system (or sub-system) of 

interest.  This is concept was presented conceptually in Chapter 2. 
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Figure 3.3: Mapping from RTR to Reduced OSR (ROSR) with variation R 

3.2.4 Correlation Coefficient Matrix (CC) 

CC is a matrix of correlation coefficients, calculated for a matrix whose rows are 

observed data of variables under consideration and whose columns are the variables. The 

(i, j)
th

 element of the matrix CC is defined as shown in Eqn. (3.3), where C(i, j) is the 

covariance value between variable i and variable j. 
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3.2.5 Investment 

The Investment metric, presented conceptually in Chapter 2, is essentially a 

notional function that correlates the amount of uncertainty to the “cost” required to 

produce that uncertainty reduction, and can be used in the absence of actual cost data or 

functions for an engineering analysis model. For this research thrust, the Investment 

metric used is the formulation first presented by Li et al. [2009a].  It is simply defined as 

the normalized representation of how much in terms of both perimeter and area (or 

volume) the uncertain region in the parameter space for a set of parameters is reduced as 

a function of the α vector values, as detailed in Eqn. (3.4):  
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In Eqn. (3.4) the quantities Σαk and Παkrepresent the hyper-perimeter and hyper-

volume, respectively, of the uncertainty retained in the parameter space after the 

uncertainty is normalized by ∆p.  The θ values can be selected and aligned according to 

the designer’s preferences on the hyper-perimeter or the hyper-volume. In the work 

presented in this chapter it is assumed that θ1 = θ2 = 0.5, meaning that both the volume 

and perimeter metrics have equal weights for reduction. The hyper-perimeter included in 

Eqn. (3.4) indicates that the investment used to reduce uncertainty is linear to the amount 

of uncertainty in each parameter and identical for all parameters unless a weighting 

scheme is employed. Additionally, the hyper-volume included in Eqn. (3.4) describes that 

the investment is proportional to the product of uncertainty reduction for all parameters, 

which accounts for the total volume of uncertainty reduction given a set of α values. It 

can be seen from Eqn. (3.4) that as the uncertainty reduction vector elements go to 0, 

Investment goes to 1 indicating that a maximum possible effort is required to eliminate all 

the uncertainty in the input parameters, while as all αk values go to 1, Investment tends to 

0 meaning no resources are required to reduce the input uncertainty. Clearly Investment 

and R are competing metrics as smaller output variation levels will always require greater 

cost. It should be noted that if any real utility or cost function associated with parameter 

uncertainty reductions is available for specific applications, such as a known dollar value 

required per unit of machining tolerance improvement for a geometric dimension, it can 

be easily incorporated into Eqn. (3.4).  
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3.2.6 Multi-Disciplinary Multi-Output Analysis System 

Eqn. (3.5) and Figure 3.4 depict a typical multi-disciplinary multi-output system 

decomposed into three coupled sub-systems that share some design variables and input 

parameters, respectively represented as xsh and psh, along with their local sub-system 

variables and parameters xi and pi, i = 1, 2, 3. The sub-system’s outputs can be single or 

multiple and are used to resolve the system level outputs. In Eqn. (3.5), yij represents a 

coupling variable vector: Outputs from sub-system i (SSi) and inputs to sub-system j 

(SSj). The vector xi and oi are SSi’s design variables and outputs, respectively. The vector 

Yi in Eqn. (3.5) represents the functions that are used to calculate the coupling variables 

yij. Parameters pi represent the local uncertain parameters that have interval uncertainty. 

The entire system outputs can be represented by the vector o0, which can be assumed to 

be functions of shared design variables, parameters, and local (sub-system) outputs, 

respectively, 

Given the shared and local design variables xsh and xi, which specify the candidate 

design(s), the variations in the system and sub-system outputs are dependent on the 

uncertain input parameters and coupling variables.  
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Figure 3.4: A Multi-Disciplinary System with Three Sub-Systems 

One typical method to hierarchically decouple a fully (two-way) coupled multi-

output multi-disciplinary system is to introduce a new set of variables at the system level, 

indicated in Figure 3.5 as t, which represent target values, one for each of the coupling 

variables that connect the sub-systems [e.g., Aute and Azarm, 2006]. Each sub-system 

(SSi) uses the target variables to perform local calculations and obtain all local output 

values (i.e., oi, and yij). The collaborative consistency of the system is maintained by 

enforcing a consistency constraint in each sub-system. This consistency constraint 

requires that the value of each element of yij converges to its corresponding target value 

in tij in the deterministic case. These new variables, t, are considered as design variables 

to be given along with the shared design variables xsh, at the system level (SS0).  

 

Figure 3.5: Multi-Output Multi-Disciplinary System in a Decomposed Framework 
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3.3 MIMOSA APPROACH 

In this section the specifics of the MIMOSA approach are presented. The issue as 

to how to ensure the collaborative consistency of a multi-disciplinary system under 

uncertainty is addressed in Subsection 3.3.1. The formulation of the MIMOSA approach 

is outlined in Subsection 3.3.2. The detailed steps of MIMOSA are presented in 

Subsection 3.3.3.  

3.3.1 Collaborative Consistency of MIMOSA 

As mentioned previously, in order to decouple the multiple sub-systems that make 

up a multi-disciplinary system and maintain the collaborative consistency of the system, a 

target variable for each coupling variable must be introduced at the system level and then 

used in each sub-system. However, when uncertainty is considered in the system the 

collaborative consistency of the system is not straightforward and deserves more 

attention [Li and Azarm, 2008]. A multi-disciplinary system is said to possess 

collaborative consistency when all sub-systems achieve the same value for each coupling 

variable within the system’s decomposed framework, thus ensuring that all sub-systems 

will work together consistently to define a design. 

When considering the sub-system couplings shown in Figure 3.4, the propagation 

of uncertainty implies that outputs from one sub-system are not only affected by the 

uncertainty from this sub-system’s parameters but also by the uncertainty in coupling 

variables. With the introduction of interval uncertainty in parameters, the collaborative 

consistency constraint can no longer be satisfied since the uncertainty in the input 

parameters pi of SSi leads to a range rather than a single value for each component in the 
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coupling variables yij. The collaborative consistency constraint in SSi cannot force a 

range of output values for each coupling variable yij to converge to a single target value 

of tij. As a result, a system and corresponding sub-systems could become inconsistent due 

to a mismatch between the output range of each coupling variable and the deterministic 

value of each target variable. To resolve this mismatch the target variables t must be able 

to tolerate the resulting variation ranges in the coupling variables y. In other words, to 

accept the variation in the coupling variables y, target variables t should have an 

associated tolerance range. Given a candidate design, as long as the established tolerance 

range of tij encloses the resultant variation in yij for the system, the variations in coupling 

variables yij can be absorbed by a local uncertainty associated with the targets tij for SSj, 

ensuring that the system will remain collaboratively consistent.  

To accommodate the propagation of uncertainty, it is necessary to ensure that the 

selected tolerance regions associated with the target variables are large enough to enclose 

the expected variations in the corresponding coupling variables in order to maintain the 

feasibility of the entire system. This tension between uncertainty reduction and 

collaborative consistency is resolved in the MIMOSA approach by adding a new 

collaborative consistency constraint under uncertainty in each sub-system. In order for 

this new constraint to function properly and have the desired result of ensuring the overall 

system consistency, all target variables which are a part of the collaborative consistency 

constraints are considered to have interval uncertainty at the system level and have 

corresponding α vector values selected to control the associated uncertainty. Using this 

method, as long as the resultant variation in the coupling variables output from each sub-

system is less than the retained uncertainty in the target variables passed down from the 
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system level, the collaborative consistency among sub-systems will be ensured (see the 

next subsection for a detailed formulation). The selection on the original TR of the target 

variabls are dependend on the designer’s opinion or specific requirments on couplings. 

3.3.2 Formulation of MIMOSA 

For simplicity, the formulation of the MIMOSA approach will be presented as 

applied to a single candidate design, but extending this approach to multiple candidate 

designs is straightforward to accomplish (see [Li et al., 2009a]). The MIMOSA approach, 

as shown in Figure 3.6 consists of performing a two-objective optimization problem for 

SA at the system level and for each sub-system in a decomposed framework. The SA 

optimization problem is used to determine the best R and Investment attainable as a 

function of the α vector elements for uncertain parameters p and the target variables t. 

This is conducted at the system level and in each of the sub-systems being considered in a 

bi-level fashion. The formulation assumes that the designer already has obtained a 

candidate design (or designs) in which input parameters have reducible interval 

uncertainty.  

At the system level (SS0), the variables are the vector αSS0, which includes αsh and 

αt for psh and t, respectively. The two objectives of the SA optimization at the system 

level are 1) to minimize Investment and 2) to minimize the variation in the system level 

design outputs represented as RSS0, as shown in Eqn. (3.6).  Here, RSS0 at the system level 

is defined as the ||.||∞ norm of the variation in the corresponding system outputs.   
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In Eqn. (3.6), ∆oSS0 is the variation in SS0’s outputs. If the outputs in SS0 have 

different units or different orders of magnitude with respect to each other, the 

normalization of the variation in the system level’s (SS0) outputs is necessary. The most 

obvious choice is to normalize ∆oSS0 by the nominal output values for a candidate design 

under consideration.  

The formulation of the sub-system SA problem is very similar to the system level, 

with the key addition of the need to ensure collaborative consistency of the design under 

uncertainty. To do this consistency check under uncertainty, in each sub-system level 

optimization problem, SSi, the quantity ηC is defined as the maximum ||·||∞ distance from 

the coupling variable yij to the nominal target variable tij,0, as shown in Eqn. (3.7a). As 

long as this distance is within the optimizer-specified retained tolerance region α ° ∆tij,0 

for target variables, the variation in the coupling variable is acceptable. 

   3 2, 1, ,max ==
∞

iC iC i tp,
η  (3.7a) 

Eqn. (3.7b) below details the value Ci, used in Eqn. (3.7a), which quantifies the 

difference between yij and the nominal value of tij, normalized by the RTR of tij. Recall 

that α ° ∆tij is the retained tolerance region for target variables tij, in which α is determined 

by the system level optimizer and sent to SSi from SS0: 
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For the SA problem in sub-system i (SSi), the decision variables are the uncertainty 

reduction vector     αi for the local uncertainty parameters pi. The two objectives for each 

sub-system are again to minimize InvestmentSSi while simultaneously minimizing the 

maximum of either the output variation at the local sub-system level RSSi, or the variation 

in coupling variables, ηCi in SSi. In Eqn. (3.8), RSSi is again a measure of the variation in 

the sub-system’s outputs, here normalized by the corresponding sub-system’s AOVR 

∆οοοο0,i, which is the presumed acceptable variation for the sub-system’s outputs. This 

optimization problem is subject to two constraints as shown in Eqn. (3.8), including: 1) 

the variation in the SSi’s original outputs must be enclosed by the designated AOVR of 

SSi; and 2) the variation in coupling variables must be less than the retained tolerance 

region of target variables (determined in SS0). These constraints must be satisfied in all 

sub-systems in order to maintain the consistency of the system under uncertainty. Thus 

the SA optimization problem formulation in SSi is as follows: 
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The MIMOSA formulation is also shown in Figure 3.6 at both system and sub-system 

levels. 

 

Figure 3.6: MIMOSA Formulation 
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consistent by enforcing the constraint on ηCi in Eqn. (3.9), the solution found will be 

acceptable. In this simplified formulation, normalization of RSSi is still necessary in order 

to handle the possibility of different units or orders of magnitude in the sub-system 

outputs, and is accomplished by using the nominal output values. However, the value of 

RSSi is usually much less than the value of ηCi in this formulation and as a result the first 

objective of the SA problem for each sub-system should only minimize RSSi alone.  In 

Section 3.4, Eqn. (3.8) and Eqn. (3.9) will be used in the numerical and engineering 

example, respectively. 
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 (3.9) 

Notice first that in Eqn. (3.6) for SS0 and Eqn. (3.8) (or Eqn. (3.9)) for SSi, no 

additional information on the input-output relation from the analysis models is required. 

The analysis models in SS0 and SSi are treated like black-boxes and can be any kind of 

functions or computer simulations as long as the input and output values are provided. In 

addition, if one αk value in the uncertainty reduction vector is intentionally fixed to be 

zero and all other elements to be one, one parameter is essentially “left out” and the 
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corresponding RSSi value can be calculated. By repeating this for each parameter (or 

combination of parameters), the quantitative comparison on the importance of the 

parameter(s) can be obtained as using a traditional “leave one out” GSA method. 

However, the MIMOSA approach is more capable in that it allows every αk value not 

only to be zero or one but also any value between them, optimally determined by the 

approach. In this regard, all uncertain input parameters in one sub-system can vary within 

the RTR specified by the α vector and can affect the variation in sub-system outputs 

simultaneously. Thus, not only the main effect of each parameter, but also the interaction 

effects of those parameters are considered in this approach within the optimal uncertainty 

ranges. The individual importance of each parameter can also be determined from the 

resulting optimal solutions to Eqns. (3.6) and (3.8) as discussed later in Section 3.4. Due 

to the system properties considered by the MIMOSA approach, e.g., multi-input, multi-

output, black-box analysis models, and most importantly, variable uncertainty ranges 

(i.e., not just zero or one for α values), the MIMOSA approach is capable of providing 

more information about a system than produced by the other existing multi-disciplinary 

GSA approaches reviewed in Section 3.1.      

3.3.3 Steps of MIMOSA 

In order to perform the MIMOSA approach described above, an algorithm was 

developed and a step-by-step description of that algorithm follows. All system and sub-

system SA problem optimizations are accomplished using evolutionary algorithms or 

more specifically using the Multi-Objective Genetic Algorithm (MOGA) [Deb, 2001]. 

The usage of MOGA to solve the system or sub-system level problems is not required 

and other multi-objective optimization approaches could also be applied, if applicable 



49 

 

and desired. However, MOGA is used in this approach because of its flexibility in finding 

all Pareto solutions simultaneously, its ability to handle non-linear and non-differentiable 

output functions with both continuous and/or discrete variables, and its ease in 

incorporating “black-box” type simulations. These properties are very common in the real 

engineering applications that are the target problems of this approach. However, MOGA 

is not the only choice of optimization solvers for use in this approach. The decomposed 

SA optimization formulation is solved using a multi-objective multi-disciplinary 

optimization technique [Aute and Azarm, 2006] as previously mentioned. The MIMOSA 

steps are as follows: 

Step 1: Select a candidate design alternative (or a trial design), x0, whose sensitivity 

analysis is to be studied. 

Step 2: Select which input parameters are to be studied, and then determine the 

interval uncertainty for those parameters, specifying the original TR, p = [p0 + ∆p, p0 - 

∆p] for all parameters at the system and sub-system levels.   

Step 3: Select the original TR for target values t = [t0 + ∆t, t0 - ∆t] at the system level.  

Step 4: Initialize the optimization problem at the system level (SS0) as in Eqn. 

(3.6), given the system level design xsh and original TR for psh, and t. 

Step 5: Select the initial values for αSS0 at the system level for each element in psh 

and t, and use αSS0 to calculate InvestmentSS0. 

Step 5: Send the system design variables, nominal shared parameters, nominal 

target values, and system level αSS0 values to each sub-system level SA problem. 
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Step 6: Simultaneously initialize the SA approach in each sub-system level problem 

(SSi), given the xsh, αSS0, psh, and t values from SS0 along with sub-system variables and 

parameters, including initial αi values for the sub-system level uncertain parameters. 

Step 7: Determine the optimal αi to the optimization problem in Eqn. (3.8) (or Eqn. 

(3.9)) for each sub-system using MOGA, considering the variation in sub-system’s 

outputs (i.e., the variation in outputs and/or coupling variables) and Investment as the 

objectives, while ensuring the collaborative consistency constraint and/or AOVR 

constraint. 

Step 8: Return optimal output values and local optimal uncertainty reduction vector 

αi to the system level (SS0) from the sub-systems. If more than one local optimal solution 

αi is identified, some selection strategy should be used to select one local optimal solution 

for each sub-system. In this work, two selection strategies have been used: the optimal 

solution from the SSi’s Pareto with the maximum and minimum RSSi value will be 

selected as the sub-system’s single optimal solution in the numerical example and the 

engineering example in Section 3.4, respectively, and will be returned back to SS0. Other 

appropriate strategies for selecting a single solution from the sub-system Pareto are also 

acceptable.  

Step 9: Analyze system level R vs. Investment Pareto optimal solutions to Eqn. 

(3.6) for uncertainty reduction vector, αSS0. 

Step 10: Check stopping criteria of the system level SA problem. If stopping 

criteria are satisfied, stop the algorithm; otherwise generate a new set of candidates of 

uncertainty reduction vector αSS0 at the system level from the optimizer, go to Step 5, and 

repeat sub-system level optimizations.  
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The stopping criteria used is a pre-specified maximum number of iterations (which 

is large enough to ensure convergence), plus an additional complementary stopping 

criterion that further requires that a sufficient number of Pareto solutions are produced 

during several successive generations. In other words, when the number of Pareto 

solutions is more than some pre-specified percentage of the population size and when it 

becomes steady (e.g., the number of Pareto solutions is more than “40% population size”, 

for several generations), it can be concluded that the algorithm has converged. Compared 

to single-disciplinary SA approaches, the computational effort in this new MIMOSA 

approach will be larger due to the bi-level nature of the problem and will increase further 

when the number of sub-systems considered is increased, since a SA optimization 

problem (as shown in Eqn. (3.8)) must be solved for each sub-system considered. If the 

number of function calls in SS0 in Eqn. (3.6) is NSS0 and the number of function calls in 

each sub-system is NSSi and the number of function calls to evaluate RSSi in each sub-

system is NR, then the total number of function calls in MIMOSA is 

O[NSS0×NumSS(NSSi×NR)], where NumSS is the number of sub-systems.  The 

computational cost of MIMOSA may increase when the number of sub-systems and/or 

the number of system inputs are increased.  

3.4 EXAMPLES AND RESULTS 

In this section, a numerical example and an engineering example are presented to 

demonstrate the applicability of the MIMOSA approach. Eqns. (3.8) and (3.9), as well as 

different selection strategies discussed above in Step 8 of Subsection 3.3.3, are used in 

those two examples, respectively, for the sub-system level SA problems.    
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3.4.1 Numerical Example 

A two-output, bi-level numerical example is adapted from a previously presented 

bi-level MDO problem with two coupled sub-systems [Li and Azarm, 2008]. The two-

output formulation for this problem in a single-disciplinary (or all-at-once) formulation is 

given in Eqn. (3.10). There are three design variables: x = {x1, x2, x3}, two output 

functions: o = {o1, o2}.  
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The two coupling variables are y1 and y2 which make the two sub-systems fully coupled: 
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The above all-at-once formulation is converted into a system level and two sub-

system level SA problems. Between these two sub-systems SSi, i =1 and 2, there are two 

coupling variables y = {y1, y2}. In each sub-problem, there are two outputs in addition to 

the coupling variable. The decomposed formulation for this problem is as follows. 

In SS0, xsh includes only one design variable x1 and the vector of target variables t 

includes two target variables t1 and t2 corresponding to the two coupling variables y1 and 

y2. Thus xsh = {x1}, t12 = {t1} and t21 = {t2}. Each output in SS0 is the summation of the 

corresponding outputs of two sub-systems as shown in Eqn. (3.12), where oi,j, i, j =1 and 

2, is j
th

 output in SSi and calculated from Eqn. (3.13) and Eqn. (3.14) below: 
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SS1 has the local design variable: x1 = {x2}, and the local copy of the target 

variable for t2, i.e., t2
1
. The two outputs of SS1 plus the coupling variable y1 are given in 

Eqn. (3.13): 
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Similarly, SS2 has the local design variable x2 = {x3} and the local copy of the 

target variable for t1, i.e., t1
2
. The two outputs of SS2 plus the coupling variable y2 are 

given in Eqn. (3.14): 
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  (3.14) 

The interval uncertainty is assumed in input variables x1, x2 and x3, within ±6% 

from nominal. The AOVR for the outputs o1 and o2 in SS1 and SS2 is ±5 units from their 

nominal. The original TR for the target variables is: {∆t1, ∆t2} = {±4, ±3} units from their 

nominal. The candidate design alternative selected is x0: {x1, x2, x3, t1, t2} = {-5.478, 

0.035, 0.410, 30.262, 0.448}. The variables at the system level are αSS0 = {αx1
, α t1

, α t2
}.  

Here it is assume that not all of the uncertainties in the system can be completely reduced 

for each parameter, so αt1
 and αt2

are assumed to be in the ranges [0.3, 1] and [0, 1], 

respectively. At the sub-system level, the design variable in SS1 and SS2 are α1 = {αx2
} 

and α2 ≡ {αx3
} which are in the range [0, 1]. The MIMOSA formulation of this example 

for SS0, SS1 and SS2 is shown in Figure 3.7. The Pareto solutions are shown in Figure 

3.8. 
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Figure 3.7: Numerical Example: The MIMOSA Formulation 

 

Figure 3.8: Numerical Example: Pareto Solutions at (a) SS0, (b) SS1 and (c) SS2 

In this example, the optimal solution from the SSi’s Pareto with the maximum RSSi 

value is selected as the sub-system’s single optimal solution and is sent back to SS0. This 
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selection strategy is used in the cases that the designers in the sub-systems prefer the 

optimal αi with the minimum investment as long as the AOVR and consistency 

constraints are satisfied.  

The obtained Pareto solutions with three typical α solutions at the system and sub-

system levels using the formulation in Eqn. (3.8) are shown in Figure 3.8 as well as in 

Table 3.1. The trade-off between the Investment and variation in SS0’s outputs, RSS0 are 

clear. RSS0 (the variation in SS0) is decreasing with the increasing of Investment. As 

shown in Table 3.1, αIII = {0.99 0.99 1} gives almost the original uncertainty, which 

represents the maximum uncertainty in the input parameters. RSS0(αIII) is approximately 

4% of the nominal output values of SS0, which is almost the biggest variation observed 

in SS0. When the RTR is reduced to αII = {0.91 0.39 1}, RSS0(αII) is reduced to 1.5% of 

the nominal output values. If the RTR is further reduced to αI (i.e., {0.02 0.78 0.96}), 

RSS0(αI) is only about 0.9% of the nominal output values, which is the smallest variation 

observed in SS0 for this problem. The corresponding sub-system values are shown in the 

chapter appendix. Clearly, as Investment values are increasing in this procedure, the 

amount of uncertainty in input parameters and outputs is eliminated, as shown in Table 

3.1.  The details of sub-system solutions corresponding to Figure 3.8 are shown in Table 

3.2. 

Table 3.1: Typical α    Solutions, Investment vs. RSS0 

 x1 t1 t2 RSS0 (% of nominal ) Investment 

αI 0.02 0.78 0.96 0.86% 70% 

αII 0.91 0.39 1.00 1.49% 44% 

αIII 0.99 0.99 1.00 3.94%   2% 
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Table 3.2: Detailed Values for Pareto Solutions in Figure 3.8 

 (a) SS1 

Solution # αx2

 
max{RSS2,ηC1

} InvestmentSS1 ηC1
 ∆o1,1 ∆o1,2 

1: αI 0.996 0.306 0.004 0.306 0.648 0.165 

2 0.992 0.237 0.008 0.237 0.628 0.16 

3 0.985 0.314 0.015 0.314 0.839 0.214 

4: αII 0.99 1 0.01 1 1.273 0.329 

5 0.959 1 0.041 1 1.444 0.373 

6 0.996 1 0.004 1 1.969 0.494 

7 1 1 0 1 2.302 0.569 

8 0.996 1 0.004 1 2.625 0.646 

9 0.982 1 0.018 1 2.717 0.662 

10 0.859 1 0.141 1 2.849 0.699 

11 0.998 1 0.002 1 3 0.728 

12 0.998 1 0.002 1 3 0.735 

13 0.984 1 0.016 1 3.215 0.779 

14 0.998 1 0.002 1 3.5 0.834 

15 1 1 0 1 3.5 0.838 

16 1 1 0 1 3.5 0.84 

17 0.969 1 0.031 1 3.591 0.851 

18: αIII 1 1 0 1 3.637 0.865 

(b) SS2 

Solution # αx3

 
max{RSS2,ηC2

} InvestmentSS2 ηC2
 ∆o2,1 ∆o2,2 

1:αI 0.948 0.112 0.052 0.112 0.217 0.006 

2 0.896 0.145 0.104 0.145 0.29 0.006 

3 0.968 0.143 0.032 0.143 0.281 0.026 

4:αII 0.889 0.153 0.111 0.153 0.216 0.299 

5 0.933 0.166 0.067 0.166 0.231 0.324 

6 0.979 0.177 0.021 0.177 0.239 0.3 

7 0.999 0.199 0.001 0.199 0.49 0.324 

8 0.889 0.198 0.111 0.198 0.266 0.314 

9 0.951 0.209 0.049 0.209 0.273 0.327 

10 0.951 0.218 0.049 0.218 0.277 0.328 

11 0.971 0.214 0.029 0.214 0.278 0.32 

12 0.85 0.212 0.15 0.212 0.283 0.327 

13 0.97 0.23 0.03 0.23 0.287 0.328 

14 0.952 0.223 0.048 0.223 0.291 0.314 

15 0.997 0.219 0.003 0.219 0.287 0.302 

16 0.896 0.23 0.104 0.23 0.296 0.327 

17 0.995 0.233 0.005 0.233 0.297 0.327 

18:αIII 0.962 0.231 0.038 0.231 0.299 0.327 
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In order to identify the relative importance of each uncertain parameter, a 

correlation plot of α1, α2, R and Investment for all Pareto α solutions in Figure 3.8 is given 

in Figure 3.9. To clearly illustrate the correlation among obtained solutions in Figure 3.8, 

correlation coefficient matrix values were calculated as defined in Section 3.2, for α, R, 

and Investment and are reported in Table 3.3. It can be shown from Figure 3.9 and Table 

3.3 that among x1, t1, and t2, the variable x1 has the strongest correlation to the variation in 

SS0’s outputs and Investment.  

 

Figure 3.9: Numerical Example: Plots of Correlations among αααα, Investment and R 

Table 3.3: Correlation Coefficient Matrix of Pareto solutions at System Level 

Correlation Coefficient αx1

 
αt1

 
αt2

 
R Investment 

αx1

 
1 - - - - 

αt1

 
-0.20 1 - - - 

αt2

 
0.79 -0.33 1 - - 

R 0.78 0.45 0.54 1 -0.98 

Investment -0.87 -0.29 -0.64 -0.98 1 

Several interesting observations can be concluded from Figure 3.8 and Table 3.2: i) 

The variations in all the sub-system level outputs and couplings are less than the specified 

AOVR and RTR of the target variables in each sub-system, but the variation in SS1 is 
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larger than the variation in SS2 as shown in Figures 3.8(b) and 3.8(c), showing that SS1 

is more sensitive to the uncertainty; ii) Since the approach selects the optimal solution 

from SS’s Pareto with the minimum Investment, α solutions from SS1 and SS2 are both 

large and near to 1, meaning only small amount of uncertainty need to be reduced in x2 

and x3; iii) The variations in SS1’s outputs are much larger than those in SS2’s outputs, 

making it clear that the uncertainty in SS1 has a much greater effect on the variation in 

the system level outputs and since the variation in SS2’s outputs is always much less than 

1, the AOVR (±5) for outputs in SS2 might be overestimated; iv) In both SS1 and SS2, 

the variation in the couplings (compared to their outputs) contributes significantly to each 

sub-system output variations; however, ηC2 
in SS2 is much smaller than 1 while most ηC1

 

values are equal to 1 (i.e., the consistency constraint is active in SS1), meaning that the 

uncertainty propagated from SS2 to SS1 through the coupling variable t2 has a greater 

effect than the variation propagated to SS2 in t1. All those observations can help the 

designers revise the settings of AOVR and TR of the target variable and provide insights 

to understanding the uncertainty effects on this bi-level multi-disciplinary problem. 

3.4.2 Engineering Example 

To further demonstrate the capabilities of MIMOSA approach, a battery-powered 

right angle grinder model was chosen for its multi-disciplinary nature and its combination 

of continuous and discrete parameters. This angle grinder model was developed based on 

an all-at-once model first presented by Williams et al., [2008]. Here, Williams’ model is 

decomposed into two coupled sub-system and a new battery sub-system is added, 

producing a bi-level multi-disciplinary system with three fully coupled sub-systems. 

Figure 3.10 depicts a graphical overview of this new angle grinder model.  The grinder 
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system analysis models are collections of closed form equations, look-up tables and 

conditional functions used to described the various performance and constraint functions 

of the system as functions of geometric and performance parameters. Although the 

grinder model contains no complex analyses, such as finite element analysis, the system 

and sub-system analysis models are treated as “black-box” functions considering only 

inputs and outputs, which mirrors many engineering analysis models. The inclusion of 

more complex analysis examples would not change the MIMOSA approach beyond an 

obvious increase in the required computational effort. 

 

Figure 3.10: Engineering Example: Right Angle Grinder 

The overall grinder system model (SS0) consists of three sub-systems which define 

the design of the three main physical components of the power tool: a battery pack model 

(SS1), an electric motor model (SS2) and a bevel gear assembly (SS3). The design of 

each of the three sub-systems, as shown in Figure 3.11, is accomplished through the use 

of various equations that describe the physics, performance and geometry of the specific 

sub-system. Additionally, each of the grinder’s three sub-systems is connected to other 

sub-systems through coupling variables. For these reasons, this model provides a good 

platform for demonstrating the MIMOSA approach. Each of the sub-systems is briefly 

described in the following paragraphs. 

SS0

SS3: bevel gear

SS2: electric motor

SS1: battery pack
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Figure 3.11: Design Variables, Couplings, and Outputs in Grinder Example 

As shown in Figure 3.11, at the system level, there are three design variables that 

are used by more than one sub-system. These are gear ratio (Gr), motor shaft diameter 

(SD), and number of battery cells in the battery pack (nb), in which nb is an integer 

variable. The overall system design outputs of interest are the total grinder mass and the 

total grinder power. Each sub-system has its own design variables and local outputs, as 

shown in Figure 3.11. More importantly, there are three coupling variables that connect 

three sub-systems: current (I) from SS1 to SS2, torque load from SS2 to SS3 and shaft 

mass from SS3 to SS2. In order to decompose the system into a decomposed framework, 

three target variables are introduced in SS0, one for each coupling. Thus, SS0 has six 

design variables in total. Two SS0’s parameters have interval uncertainty in this example, 

as shown in Table 3.4. The design variables, parameters, and outputs of SS0 and each 

sub-system are detailed in the first column to the third column, respectively, in Table 3.4 

to Table 3.7, where a bold font is used to highlight the design variables or parameters 

which have interval uncertainty in SS0 and each sub-system. As discussed earlier in 

Section 3.3, the target variables must have an original tolerance region and a retained 

SS1

Gear ratio (Gr)

Motor shaft diameter (SD)

Number of battery cells (nb)

Nominal cell voltage (CellVolts)

Density of steel (ρsteel)

SS2

SS3

y12: Current I

y23:        Torque 

Load

Shared system inputs:

hcell, tCd

tSep, Td, Nb

tNi, ρNi

SS1 inputs:

Nc, Ns, LStack

ts, RPMLoad

LGap, Ro

SS2 inputs:

y32:

Shaft mass

SL

Dp, WF

SS3 inputs:

Grinder mass 

Grinder power

Cell mass 

Cell capacity

Motor mass 

Torque load

Gear mass
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tolerance region controlled by their α vector values. Additionally the outputs of interest in 

each sub-system have also been bolded and will necessarily have resulting variation.  

Each sub-system has its own design variables and parameters. For this study two 

parameters or design variables for each sub-system are assumed to have interval 

uncertainty, so there are two αk values established in each sub-system to control the 

possible uncertainty level reduction. Each sub-system also has two outputs of interest, 

selected from their analysis outputs, except SS3 (Bevel Gear) which has only one output 

due to the relatively simple nature of the model. Table 3.4 through Table 3.7 outlines the 

specifics of the 4 models that comprise the right angle grinder system.  

Table 3.4: Grinder System (SS0) 

Grinder Variables: Grinder Parameters: Grinder Outputs (Units): 

Number of battery cells (nb) External components mass (mext) Grinder mass (lbs) 

Gear ratio (Gr) Cell voltage (CellVolts) Grinder RPMs (rpm) 

Motor shaft diameter (SD) Density of steel (ρsteel) Grinder current (A) 

Target Torque load  Grinder power (W) 

Target Shaft Mass  Grinder duration (hr) 

Target Current  Grinder grirth (in) 

Table 3.5: Battery Sub-System (SS1) 

Battery Variables: Battery Parameters: Battery Outputs (Units): 

Battery cell height (hcell) NiCd cell voltage (Vcell) Battery cell mass (lbs) 

Ni reactant sheet thickness (tNi) Density of Nickel (ρNi) Battery cell capacity (Ah) 

Cd reactant sheet thickness (tCd) Density of Cadmium(ρCd) Grinder voltage (V) 

Separator sheet thickness (tSep) Density of Separator (ρSep) Battery pack mass (lbs) 

cell discharge time(Td) Density of cell wall material (ρcw)  

Battery cell coil turns (Nb) - integer Battery cell wall thickness (cwt)  
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Table 3.6: Electric Motor Sub-System (SS2) 

Motor Variables Motor Parameters Motor Outputs (Units) 

Motor armature wire turns (Nc) Density of steel (ρsteel) Motor mass (lbs) 

Stator armature wire turns (Ns) Shear strength of steel (τsteel) Motor girth (in) 

Stator outer radius (Ro) Demsity of copper (ρCu) Motor RPM (rpm) 

Stator thickness (tS) 20 awg wire resistivity (Rw) Torque load (ft-lbs) 

Gap length (LGap) 20 awg wire cross-section area (Aw)  

Stack length (LStack) Brush loss factor (αBrush)  

Grinder RPMs – loaded (RPMLoad) Permeability of free space (µO)  

 Permeability of steel (µSteel)  

Table 3.7: Bevel Gear Sub-System (SS3) 

Gear Variables: Gear Parameters: Gear Outputs (Units): 

Motor shaft length (SL) Pressure angle (θP) Gear mass (lbs) 

Pinion pitch diameter (Dp) Face width (WF)  

 Gear elasticity factor (Ze)  

 Amplification factor (Ka)  

 Load distribution factor (Km)  

 Geometric factor (GF)  

 Density of steel (ρsteel)  

 Arbor Mass (mA)  

 Commutator Mass (mC)  

 Pinion Shaft Mass (mPS)  

In this engineering example, it is assumed that the designer does not have a 

specified AOVR for SS0 or sub-systems and would like to understand the effects of input 

uncertainty on any possible variation ranges for the outputs at both system and sub-

system levels. In this regard all output variations are normalized to their nominal output 

values and the MIMOSA formulation in Eqn. (3.9) is used for each sub-system. A grinder 

design was obtained to serve as the nominal or candidate solution using the the 

collaborative optimization approach of Aute and Azarm [2006]. Using this candidate 

design, a set of MIMOSA Pareto solutions is obtained using Eqn. (3.6) and Eqn. (3.9) at 

the system and sub-system levels with three typical solutions as shown in Figure 3.12. 

Different from the numerical example, the optimal αi solution with the minimum RSSi is 

selected from SSi’s Pareto in this engineering example and used to calculate the outputs 
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of the SA problem in SS0. The RSS0 is shown as a percentage of the nominal output 

function values. α = {α1, α2, α3, α4, α5} is the uncertainty reduction vector corresponding 

for {target current, target torque load, target shaft mass, cell volts, density of steel}, as 

shown in bold in Table 3.4. The trade-off between Investment and the variation in SS0’s 

outputs RSS0 are clearly shown in Figure 3.12. Figure 3.13 shows the correlation plot 

figures for five α vector elements along with RSS0 and InvestmentSS0 for all Pareto α 

solutions shown in Figure 3.12. The correlation coefficient values for all Pareto α 

solutions in Figure 3.12 are also given in Table 3.8.  

  

(a) (b) 

  

(c) (d) 

Figure 3.12: Grinder Design: Pareto Solutions for System and Sub-System Levels: 

(a) SS0, (b) SS1, (c) SS2, and (d) SS3 
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As shown in Figure 3.12(a), with the obtained largest uncertainty intervals (αIII = 

{0.95 1.00 0.98 0.68 0.98}), the variations in SS0’s outputs are about 6.2% of their 

nominal values. With more uncertainty being reduced (i.e., αI = {0.55 0.87 0.98 0.01 

0.28}), the RSS0 can be reduced to around 0.3% of the nominal value.  

  

Figure 3.13: Grinder Design: Plots of Correlations among α1 Investment and R 

As clearly shown in Figure 3.13 and Table 3.8 (in the grey cells), among those five 

uncertain parameters, Cellvolts (α4) has the strongest, while target shaft mass has the 

weakest, correlation to the system output variation. Other three uncertain parameters are 

in the middle. In this regard, more investment should be used to reduce the uncertainty in 

the cell volts and the uncertainty in the current for the battery part (the second strongest 

correlated to RSS0), which is consistent with expectations since the voltage and output 

current of the battery can significantly affect the performance of the grinder. 
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Table 3.8: Correlation Coefficient Matrix of Pareto Solutions at System Level 

Correlation 

Coefficient 
α1 α2 α3 α4 α5 R Investment 

α1 1 - - - - - - 

α2 0.75 1 - - - - - 

α3 -0.18 -0.05 1 - - - - 

α4 0.31 0.23 0.25 1 - - - 

α5 0.82 0.64 -0.19 0.29 1 - - 

R 0.34 0.25 0.24 1 0.32 1 -0.98 

Investment -0.51 -0.39 -0.19 -0.97 -0.50 -0.98 1 

For the sake of brevity detailed solutions from each of the sub-systems are not 

given here. However, some additional observations are made in this example. Since a 

single optimal solution that possesses the minimum RSSi from each sub-system’s Pareto is 

selected for use in the corresponding SS0 solution, the Investment required by all three 

sub-systems are relatively large, as shown in Figure 3.12(b) to 3.12(d). It is also observed 

that although all three sub-systems have comparable variations in their mass values, after 

normalizing them by their nominal values, the normalized variation in SS2’s outputs 

(Figure 3.12(c)) is considerably larger than the variation in SS1 and SS3 (Figure 3.12(b) 

and 3.12(d)). This shows that SS2 is more sensitive to the input uncertainty in this grinder 

model. The variations in the coupling variables are always less than the RTR of the target 

variables due to the consistency constraint. Moreover, at the sub-system level, three 

uncertain parameters, the nickel reactant sheet thickness in SS1, the stator outer radius in 

SS2, and the pinion pitch diameter in SS3, compared to another uncertainty parameter in 

the corresponding sub-system, are more strongly correlated to the output variations in 

their sub-systems. They have been underlined through Table 3.3 to Table 3.6. More 

investment should be spent on reducing uncertainty in those three parameters. This is an 

interesting finding recalling that in the current algorithm from the sub-system level the 
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uncertainty reduction vector (α) values are selected in order to produce the greatest 

reduction in sub-system output variation (minimum R without regard for Investment). In 

the case of the battery sub-system, this choice clearly demonstrates that controlling the 

nickel reactant sheet thickness parameter is far more important than controlling the 

density of the nickel used to ensure the performance of the battery sub-system. Figure 

3.14 is a plot of the corresponding α values for tNi and ρNi from SS1 for all Pareto 

solutions at the system level shown in Figure 3.12. As can be seen on the figure, the 

uncertainty reduction value (αk) for tNi is much smaller than the corresponding uncertainty 

reduction value for ρNi, which indicates that in order to produce optimal variation 

reduction in the outputs for the battery sub-system, the uncertainty in the geometric 

parameter must be much more tightly controlled.   

 

Figure 3.14: α Values of tNi and ρNi for Pareto Solutions at System Level 

Based on the data presented, in order to optimally reduce the variation in the 

outputs at the system and sub-system levels, the designer of this right angle grinder 

should reduce the uncertainty mainly in the four parameters (or design variables) which 

are underlined through Table 3.4 to Table 3.7. The results shown here, while clearly 
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based on the grinder model used for this example, highlight the greater capability of the 

MIMOSA approach to efficiently identify the most important uncertain parameters in a 

complex model during the conceptual phase of design. This discussion is merely an 

example of the type of data that could be extracted from each of the other sub-systems 

and how it might be analyzed. 

3.5 SUMMARY OF RESEARCH THRUST 1 

In this chapter a new global SA method, called MIMOSA, is presented. MIMOSA 

has the ability to analyze the effects of uncertainty on system and sub-system 

performance for fully coupled multi-output multi-disciplinary problems in which 

uncertainty exists not only in parameters in each sub-system but also in the sub-system 

couplings. Given multiple interval uncertainties for parameters at the system and sub-

system levels, MIMOSA can optimally identify how much the investment is necessary to 

optimally reduce uncertainty in input parameters in order to ensure a desired level of 

variation in the system and sub-systems’ output values, considering a single design or a 

set of designs. Two metrics, R and Investment, have been used in the SA problems in SS0 

and sub-systems to quantify the variation in multiple system and/or sub-system outputs 

and the cost used to reduce the input uncertainty. MIMOSA can also efficiently 

determine the relative importance among uncertain parameters in the system and sub-

systems in terms of uncertainty reduction. Sub-systems’ relative importance, in terms of 

their contribution to the entire system performance variation, can also be analyzed using 

this new approach. MIMOSA is a global SA approach which uses interval uncertainty to 

quantify the uncertainty instead of gradient information or probability density functions. 

Because MIMOSA is accomplished by using the MOGA as its optimization solver, it is 
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capable of handling both continuous and discrete design variables and/or parameters. 

Finally, MIMOSA is flexible enough to be able to handle various designer preferences, 

including the limits on parameter uncertainty reduction levels, different acceptable output 

variation levels, and different selection strategies if applicable.  

The applicability and capabilities of the MIMOSA approach have been 

demonstrated using a numerical and an engineering example, both of which have 

multiple fully coupled sub-systems. The numerical example had two outputs in each of 

two sub-systems while the engineering example includes three sub-systems and has 

mixed continuous-discrete design variables. From the results obtained in these two 

examples, the trade-off between the investment used to reduce the uncertainty levels in 

the input parameters and the variations in the system outputs are clearly demonstrated. 

Both examples show the ability of MIMOSA to optimally determine the best uses of 

limited investment available for uncertainty reduction in the attempt to improve system 

performance in terms of reducing output variations. The correlation between uncertain 

parameters and the variations in the system and sub-system outputs are easily determined 

based on the obtained Pareto solutions for R vs. Investment. Both examples specifically 

present how the MIMOSA approach can identify the sub-system in a decomposed multi-

sub-system problem that is the most sensitive to the uncertainty and has the greatest 

effect on the system level performance under uncertainty. The engineering example also 

demonstrates how MIMOSA is capable of isolating parameters whose uncertainty greatly 

influence system and sub-system outputs in contrast to those who do not. The importance 

of parameters in each of the sub-systems of the angle grinder has been identified as well.  
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The MIMOSA approach presented is adaptable to many different types of 

engineering problems and thus has a wide range of applications not specifically addressed 

in this research thrust. As a result of this flexibility, the MIMOSA approach is an 

excellent tool for clearly understanding and optimally eliminating the wide-spread effects 

of uncertainty in many different engineering design efforts based on designer preferences, 

limitations and/or goals. For instance, Investment could be further defined to include a 

real cost function associated with specific uncertainty reductions, and that cost function 

needs not be the same for all uncertain parameters within a problem (e.g., [Acar et al., 

2007] and [Kale and Haftka, 2008]). MIMOSA could also be used to ignore (redundant) 

design parameters or outputs from the design process that are unimportant or already 

insensitive to uncertainty in favor of using valuable computational resources for the more 

important or more critical design aspects, thus simplifying a complicated problem down 

to a more manageable size consisting of more relevant issues. 

The MIMOSA approach is clearly quite capable and very useful given the correct 

system properties, such as a preexisting candidate design and input uncertainty that is 

reducible about known nominal parameter values.  However, as stated in Chapter 1, 

MIMOSA does not consider engineering feasibility which is a critical element of many 

engineering design challenges.  The work presented in the next chapter attempts to 

address this shortcoming. 
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CHAPTER 4: MULTI-DISCIPLINARY COMBINED 

SENSITIVITY ANALYSIS (MICOSA) 

4.1 INTRODUCTION TO RESEARCH THRUST 2 

The goal of the second research thrust was quite simply to extend the MIMOSA 

approach of Chapter 3 to multi-disciplinary systems that may include infeasibility under 

uncertainty.  The MIMOSA algorithm presented in Chapter 3 provides a multi-

disciplinary SA framework, but it does not acknowledge the possibility for infeasibility 

due to the input parameter uncertainty in an engineering system.  Just because a system’s 

objectives, for example, are insensitive to the variation in its input parameters does not 

mean that the feasibility of the system is necessarily ensured under uncertainty.  

Furthermore it may at times be more important for the feasibility of a design to be 

insensitive to uncertainty than for the design be optimal in an objective sense. The ability 

to use uncertainty reduction to improve the performance of a system under uncertainty is 

a powerful tool.  However, there is a very real possibility for uncertainty to lead to failure 

(infeasibility) at either the system level or sub-system level of a multi-disciplinary 

system.  The work presented in this is chapter is a simple but necessary modification to 

the MIMOSA approach presented in previous chapter which makes it possible to use 

uncertainty reduction to also ensure engineering feasibility in addition to producing 

reduced output function variations.  This new approach is called Multi-dIsciplinary, 

multi-objective COmbined Sensitivity Analysis (MICOSA); with the word “combined” 

chosen to indicate that this approach considers the effects of both objective and constraint 

function variations in a combined fashion. 
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4.2 BACKGROUND AND TERMINOLOGY 

This section contains some relevant background and terminology used throughout 

the rest of this chapter. 

4.2.1 MIMOSA Review 

As previously stated, the MICOSA approach is a direct extension of the MIMOSA 

approach presented in Chapter 3.  The MICOSA approach uses the same framework and 

is based on the same assumptions as the MIMOSA approach. All of the relevant details of 

the MIMOSA approach can be found in the preceding chapter. 

4.2.2 Objective and Constraint Function Variation Metrics 

 In the previous chapter, the output functions analyzed by MIMOSA could be 

either objectives, constraints, or both, and the formulation of the approach made no 

distinction.  As a result, in order to extend MIMOSA to also consider engineering 

feasibility a distinction between objectives and constraints is necessary.  Eqn. (4.1) adapts 

the formulation for R presented in Chapter 3 for objective function(s) only, while Eqn. 

(4.2) adapts the R formulation for constraint function(s) only.  Recall that the R metric 

presented in the previous chapter is a function of the α vector, which is a measure of 

uncertainty reduction for the K input parameters to a system.  In Eqns. (4.1) and (4.2) the 

vector pv is established, which represents a single realization of the uncertain values p 

bounded by the retained uncertain interval [p0 – α ° ∆p, p0 + α ° ∆p].  This vector will be 

used throughout this chapter (and later on in the dissertation) as a decision variable when 

attempting to quantify the effect of input uncertainty.   
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It should be noted that the value for Rg will be greater than 1 for an infeasible level 

of input uncertainty based on the formulation of Eqn. (4.2).  This capability is important 

because it makes it possible to easily detect when a particular combination of input 

uncertainties will lead to potential engineering infeasibility.  

 

Figure 4.1: Effects of Reduced Uncertainty on Objectives and Constraints 

Figure 4.1 depicts Rf and Rg graphically given input parameter uncertainty.  Note 

that uncertainty in p will lead to uncertainty in f and g, as discussed in Chapter 2. Note 

that for the light grey (larger) uncertain region, the value for g2 is greater than 0 indicating 
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infeasibility, while the darker grey uncertain region ensures that all possible outcomes of 

p will result in all constraint functions (g1 and g2) being less than 0 and thus feasible.  

Refer to the discussion on multi-objective optimization in Chapter 2 for details on the 

violation of constraint functions within the context of optimal design. 

4.2.3 Combined Output Variation Metric 

To simultaneously consider both objective and constraint function variations, the 

following new metric, called Rc, is presented.  This metric simply compares the resulting 

Rf and Rg values for a given level of input uncertainty and select the larger value.  This 

formulation makes it possible for Rc to reflect the system performance measure, either 

objective function variation(s) or constraint function variation(s), that is more important 

for a given level of input uncertainty as specified by α.  This metric will be used as an 

objective function in the MICOSA formulation which will be presented later in this 

chapter. 

 ),(max
gfC

RRR ====  (4.3) 

4.3 MICOSA FORMULATION 

In order to account for the shortcoming of the MIMOSA approach previously 

discussed, the following extension was developed.  This extension, called MICOSA, 

seeks to use uncertainty reduction as a means for improving the objective performance of 

a multi-disciplinary system design, while simultaneously ensuring the feasibility of the 

system under uncertainty. The MICOSA algorithm includes two changes from the 

MIMOSA formulation presented in the last chapter.  First, the first objective function of 

the MICOSA formulation is changed to minimize Rc, vice R as was used in the previous 
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chapter.  Recall that Rc is a function of Rf and Rg, which are given in Eqns. (4.1) and (4.2) 

respectively.    Using Rc the MICOSA algorithm seeks to reduce variations in either the 

objective or constraint function(s) at the system and sub-system levels, whichever are 

greater given the current levels of input uncertainty.  The second change is the inclusion 

of a constraint that Rg at both the system and sub-system levels must be less than or equal 

to 1.    Using the formation for Rg provided in Eqn. (4.2), a value of Rg less than or equal 

to 1 will indicate a feasible system as previously discussed, assuming the nominal 

(deterministic) design is feasible.  Eqn. (4.4a) provides this new MICOSA formulation, 

which is applicable to a single disciplinary system or any sub-system (SSi) within a 

multi-disciplinary framework.  If Eqn. (4.4a) is used to analyze a single disciplinary 

system, the name of the approach is shorted to Combined Sensitivity Analysis (COSA) 

for simplicity.  In this chapter the Investment metric has been abbreviated with the letter I 

only, but the formulation used is identical to that provided for Investment in Chapter 3. 
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 For demonstration purposes, an unconstrained formulation of the COSA 

algorithm is provided in Eqn. (4.4b).  Notice that Eqn. (4.4b) is identical to Eqn. (4.4a) 

except for the lack of the constraint on the value of Rg.  This formulation is provided for 

comparison purposes and will be used to show that the formulation in Eqn. (4.4a) is 

necessary to achieve the stated goals of this research thrust, namely to ensure feasibility 

of the engineering system under uncertainty. 
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 (4.4b) 

 MICOSA requires simply employing the MIMOSA framework with the new 

COSA formulation at the system and sub-system levels, as shown in Figure 4.2.  The 

steps and procedures for employing the MICOSA approach are identical to that of 

MIMOSA as presented in the previous chapter.  The only changes are those detailed 

above with regard to the new objective function Rc and the inclusion of the Rg constraint 

at the system and sub-system levels. 

 

Figure 4.2: MICOSA Framework 

4.4 EXAMPLES AND RESULTS 

In an effort to demonstrate the capabilities of the approach, the MICOSA approach 

was applied to two examples, a single disciplinary propulsor model and a multi-

disciplinary unmanned underwater vehicle (UUV) model.  The single disciplinary model 

demonstrates the ability of the approach to ensure the feasibility of the system through 

uncertainty reduction.  The multi-disciplinary example then demonstrates the ability of 

the approach to handle more complex system models within a decomposed framework. 
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4.4.1 Single Disciplinary Propulsor Example 

To verify the COSA algorithm, the approach was used to analyze a candidate 

design for an undersea vehicle propulsor.  The propulsor system analysis model is a set of 

meta-models fitted to a set of CFD data for a notional propulsor provided to the 

University of Maryland by the Naval Surface Warfare Center as part of active research 

collaborations.  Figure 4.3 depicts this example problem.  This figure contains several 

pieces of information required for employing COSA, including: the underlying 

optimization problem (e.g. maximizing propulsor efficiency and minimizing propulsor 

noise), the parameter values for the candidate design of interest (e.g. OD = 8.11 inches) 

and the nominal uncertainty levels (e.g. 1% of nominal for the outer diameter parameter 

value of 8.11 inches) for each of the input parameters.  

 

Figure 4.3: UUV Propulsor Model 

 Using the single disciplinary COSA algorithm the above problem was solved 

twice and the results are presented in Figure 4.4, once using the constrained formulation 

provided in Eqn. (4.4a) and once using the unconstrained formulation provided in Eqn. 

(4.4b).  The Pareto frontiers provided on the left side of Figure 4.4 show the expected 

tradeoff between Rc and I.  Of particular interest is the demonstrated need for the Rg 

constraint.  As seen in the two solutions highlighted by the dashed circle on both sides of 

Outer Diameter (OD)

8.11 inches 

1% uncertainty

Propulsor RPM

2406 RPM 

3% uncertainty

Thrust Coefficient (CT) 

0.09001 

20% uncertainty

Housing Mass

11.805 lbs

10% uncertainty

Objectives:

Propulsor Efficiency (0.84%)

Noise (4.06 dB)

Constraints:

CL,max ≤ Limit

Noise ≤ Limit

Cavitation Number ≤ Limit

Blade Stress ≤ Limit

Upper and Lower Bounds
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the figure, the Rc and I values for the constrained and unconstrained solutions are similar 

(left side figure), but upon further examination the constrained solution is feasible (Rg < 

1) and the unconstrained solution is infeasible (Rg > 1) as seen on the right side plot, 

which is not a Pareto frontier but rather a plot of Rg vs I for comparison purposes. 

 

Figure 4.4: Combined Sensitivity Analysis Results for Propulsor Design 

 These two solutions differ in terms of how the reduced variation (Rc) is produced.  

Figure 4.5 depicts the uncertainty bands for each of the four parameters considered in the 

example, comparing the nominal uncertainty (black bands on the left side of each plot), 

the retained uncertainty in the unconstrained case (hollow grey bands in the middle of 

each plot) and the retained uncertainty in the constrained formulation (hollow black 

bands on the right of each plot), which is the actual COSA approach.  In the 

unconstrained case the uncertainty in the housing mass is greatly reduced because this 

reduces the variation the propulsor mass (one of the objective functions for the original 

problem) more significantly.  However, the uncertainty in the RPM value must have a 

greater effect on feasibility for the propulsor system and thus, when feasibility is 

considered in the constrained approach, the uncertainty in the RPM is reduced further 

while the housing mass parameter retains more of its original uncertainty.  Table 4.1 
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contains the numerical α values for the four parameters discussed above (and shown in 

Figure 4.5) for completeness. 

 

Figure 4.5: Comparison of Highlighted COSA Solutions 

Table 4.1: Uncertainty Reduction Vector Values for Figure 4.5 Solutions 

α values: OD RPM CT Housing 

Unconstrained 0.992 0.800 0.921 0.671 

Constrained 0.940 0.656 0.830 0.927 

4.4.2 Multi-Disciplinary UUV Example 

The MICOSA approach was also applied to a complex multi-disciplinary system 

model.  The model chosen was an unmanned underwater vehicle (UUV) model 

comprised of 5 sub-systems.  This model was developed using open literature sources 

[Hamel et al. 2009].  For this application only the system level model and two of the sub-

system models were assumed to possess uncertainty.  Figure 4.6 depicts the analysis 

system diagram, the system and sub-system candidate design nominal values for all 

uncertain inputs, the uncertainty associated the input parameters and the underlying 

design optimization problem for each of the systems to be analyzed.  Much of the details 
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of this model are omitted in the interest of brevity, as the complete system model consists 

of over a hundred input parameters and numerous outputs.  The system given in Figure 

4.6 was analyzed using the MICOSA formulation and the system level results along with 

a sample of the sub-system level results obtained are provided in Figure 4.7.  It should be 

noted that sub-system results presents are associated with just one of the Pareto solution 

in the system level solution set.  As with the MIMOSA approach, a complete set of 

Pareto solutions are produced at the sub-system level for each solution point generated at 

the system level and the vast majority of the sub-system solutions are not presented in 

this dissertation in the interest of brevity. 

 

Figure 4.6: UUV MICOSA Example 
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Figure 4.7: Sample UUV MICOSA Results 

A few observations can be made from Figure 4.7.  First, it is clear that MICOSA 

approach produces results that are very similar in nature to those provided by MIMOSA.  

These results provide designers with insight into how best to allocate limited resources in 

an effort to improve the performance of the overall system.  Furthermore, MICOSA also 

is capable of determining the relative importance of different sub-systems when 

considering both objective function variations and engineering feasibility.  Note that the 

sample payload sub-system results show a wide range of potential solutions ranging from 

very low to very high I values, indicating that a designer is free to select the uncertainty 

reduction levels for that sub-system based purely on the desired Rc value.  Conversely for 

the SS1, the Guidance and Control (GNC) sub-system, a minimum I value of ≈ 0.5 is 

required for all solutions.  This suggests that there is a minimum level of investment 

required for this system just to achieve feasibility (Rg < 1) under uncertainty, and that any 
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additional investment of resources (I greater than ≈ 0.5) can then result in reduced output 

function variations (i.e. better performance).  These results suggests that the MICOSA 

approach is capable of ensuring that resources are first supplied to ensuring that the 

system will not fail prior to applying any uncertainty reduction resources to reducing 

other output performance variations. 

4.5 SUMMARY OF RESEARCH THRUST 2 

This chapter detailed the MICOSA approach, a simple extension to the MIMOSA 

approach presented in Chapter 3.  This approach possesses all the same capabilities as 

MIMOSA, with the added benefit of also considering engineering feasibility. The 

capabilities of this new approach were demonstrated through two example problems that 

highlighted the key improvements of MICOSA over MIMOSA.  The single disciplinary 

example was used to demonstrate the necessity of the Rg constraint to the formulation of 

the COSA approach.  By solving the single disciplinary example problem two times, 

once with the constraint on Rg and once without, the capability of the COSA formulation 

to ensure feasibility under uncertainty was clearly demonstrated.  The multi-disciplinary 

example problem demonstrated the full capability of the MIMOSA approach.  First this 

example showed that MICOSA produced results comparable to those produced by 

MIMOSA, which was to be expected.  Additionally, the second example problem 

demonstrated the value of using Rc as the objective function (as opposed to Rf or Rg) as it 

forces the approach to apply limited uncertainty reduction resources limiting the more 

critical output function variations (either objectives or constraints) first, which is an 

intuitive way to approach the use of limited resources. 
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However, it may not always be possible for uncertainty reduction alone to ensure 

feasibility, as demonstrated in this chapter.  Many design solutions for various system 

may only be feasible when uncertainty is completely eliminated, which will most likely 

not be possible to accomplish since virtually all physical systems possess some level of 

uncertainty.  Clearly in those cases the MICOSA approach, while certainly very capable, 

will be insufficient for mitigating the effect of input parameter uncertainty.  The 

following chapter addresses this shortcoming of the MICOSA approach. 
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CHAPTER 5:  DESIGN IMPROVEMENT BY SENSITIVITY 

ANALYSIS (DISA) 

5.1 INTRODUCTION TO RESEARCH THRUST 3 

As first stated in Chapter 1, much of the current research in engineering design 

(including the first two research thrusts presented in Chapters 3 and 4 of this dissertation) 

is driven by the fact that all real-world engineering systems are comprised of uncertain 

input parameters [Martin and Simpson, 2006; Schueller and Jensen, 2008; Moeller and 

Beer, 2008; Lee and Chen, 2009].  Understanding and managing uncertainty levels 

during an engineering design process is of particular importance when uncertainty can 

lead to the failure, or infeasibility, of an engineering system.  In the previous chapter of 

this dissertation the MICOSA approach was presented which focused on mitigating the 

effects of uncertainty on a system’s feasibility through the use of uncertainty reduction.  

That approach was proven to be capable of ensuring feasibility, but only in those cases 

where uncertainty reduction alone was sufficient, which may not always be the case.  

This chapter presents a more general approach to that problem for single disciplinary 

engineering systems.   

As with the previous two chapters, the work presented in this chapter focuses on 

interval input uncertainty to engineering system analysis models and assumes that the 

uncertain intervals are reducible.  Furthermore the work presented in this chapter has 

approach the problem of design under uncertainty from a sensitivity analysis (SA) point 

of view, as opposed to a robust optimization point of view, due to the fact that SA is 

better suited to uncertainty reduction decision making.  The motivation and background 

details for these decisions were presented in detail in Chapter 1 of this dissertation.   
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It should be noted that some robust approaches have been used successfully to 

explore opportunities for uncertainty reduction (as opposed to simply considering all 

uncertainty as irreducible) in various ways.  For example, there are RBDO methods 

reported in the literature that use Bayesian techniques [Wang et al., 2009], methods that 

sequentially perform RBDO and consider uncertainty reduction [Qu et al., 2003], and 

methods that simultaneously consider RBDO and uncertainty reduction options [Kale and 

Haftka, 2008].  These approaches are not limited to irreducible uncertainty as is 

traditionally the case for robust approaches, but like most robust approaches they 

consider many drastically different potential designs in an effort to design a system under 

uncertainty.   In many cases a designer may already have a design in mind and may not 

wish to consider drastically different design alternatives.  As previously discussed in 

Chapter 1, in those cases an SA approach is often preferable to a robust approach due to 

the unique capabilities of sensitivity analysis.   

The MOSA approach [Li et al., 2009a] that was first presented in Chapter 2 and 

then extended in Chapters 3 and 4, is an SA based approach for uncertainty reduction.  As 

previously discussed, MOSA (and MIMOSA for that matter) assume that uncertainty 

reduction is always possible and that any design under consideration will always be 

feasible given any combination of uncertain inputs.  Furthermore, the MICOSA approach 

presented in Chapter 4 assumes that if a design is not feasible under nominal uncertainty, 

its feasibility can be guaranteed through uncertainty reduction.  These assumptions may 

not hold for a design that is on or near the limits of a problem’s feasible domain and may 

become infeasible due to uncertainty, regardless of how much uncertainty levels are 

reduced.  Efforts were made by Li et al. to address this shortcoming by combining the 
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MOSA algorithm with robust optimization techniques in an effort to produce design 

solutions that are insensitive to irreducible uncertainty while simultaneously finding 

optimal levels of uncertainty reduction for all reducible uncertainty [Li et al., 2009c].  

However, since this approach [Li et al., 2009c] is a robust approach, it considers many 

potential designs in addition to finding optimal uncertainty reduction opportunities.  This 

multi-layered strategy adds potentially unnecessary computational expense and will also 

produce solutions that may be very different from a preferred preexisting design, as 

previously discussed.  The work presented in the previous chapter attempted to address 

this shortcoming as well, but only for those cases where uncertainty reduction alone 

could be assured of guaranteeing feasibility, which is not always the case. 

A method that has the ability to improve a preexisting design and simultaneously 

prevent its infeasibility through a better understanding of the effects of uncertainty would 

be very useful.  A preexisting design in this sense refers to either: a) a design that is 

already in use but need to be slightly redesigned (adjusted) due to significant changes to 

input parameter values or uncertainty levels; or b) a deterministic design solution 

generated using a conceptual design procedure, such as one produced by a deterministic 

design optimization procedure.  In either of the above cases the effect of uncertainty has 

to be accounted for carefully.  Typically safety factors would be assigned to the critical 

aspects of the design, which could necessarily lead to some adjustments to the preexisting 

design’s parameters.  It would be preferable in many cases to instead utilize information 

from a sensitivity analysis approach to produce feasible designs under uncertainty in a 

systematic fashion without the need to arbitrarily guess or assume safety factor values.  
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The work presented in this research thrust seeks to provide just such a capability by 

proposing a new sensitivity analysis based approach, called Design Improvement by 

Sensitivity Analysis (DISA).  This new approach is capable of first finding optimal 

uncertainty reduction options for a given design and then suggesting required small 

changes (or adjustments) to the original design to ensure the feasibility of the system 

when necessary, provided uncertainty reduction alone is insufficient.  Small adjustments 

are defined in this work as changes to the nominal values of any uncertain parameter of 

an engineering system within the original uncertainty interval for a given parameter.   

Additionally, this work will show that, if desired, the DISA approach is capable of 

suggesting those required small adjustments with very little (if any) additional 

information about the engineering system.  This is accomplished by retaining system 

information obtained during an initial uncertainty reduction SA procedure and then using 

meta-modeling [Srivastava et al., 2004; Martin and Simpson, 2005; Wang and Shan, 

2007; Allaire and Willcox, 2008; Ju and Lee, 2008; Shan and Wang, 2008] to 

approximate the system response for determining the required design adjustments.  As a 

result, this new approach is no more computationally expensive than the MOSA approach 

[Li et al., 2009a], but is also capable of ensuring the engineering feasibility of a 

preexisting design without the need for feasibility robust optimization.  

The basic capability of the DISA approach can be summarized with the following 

simple example.  Suppose a design engineer would like to use a 2 inch diameter pin to fit 

into a 2 inch diameter hole based on certain requirements, as shown on the top half of 

Figure 5.1, but knows that the diameter of the pin (D0) will undoubtedly possess some 

level of uncertainty.  Clearly no amount of uncertainty reduction would be capable of 
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ensuring that the pin would always fit into the 2 inch diameter hole in this scenario.  

However, if the nominal diameter of the pin was reduced (or adjusted) to a value slightly 

less than 2 inches, that adjustment coupled with some small amount of uncertainty 

reduction could then guarantee that the pin would always fit into the required hole.   

 

Figure 5.1: Simple Example 

The DISA approach is capable of solving just such a problem involving numerous 

design variables, multiple design objectives and many constraints for a system possessing 

interval uncertainty in an efficient manner. Section 5.2 outlines specific background and 

terminology applicable to this new approach.  Section 5.3 provides the formulation of the 

approach and the general results it is capable of producing.  Section 5.4 shows two 

engineering examples of varying degrees of difficulty to demonstrate the applicability of 

this new approach.  Section 5.5 contains some concluding remarks. 

5.2 BACKGROUND AND TERMINOLOGY 

In this section some necessary background, terminology and concepts will be 

introduced.  Note that all these concepts are applicable to multi-dimensional problems but 

for simplicity two-dimensional illustrations are used. The approach presented in this 

chapter is an extension of the MIMOSA approach and thus builds on the concepts 

presented in Chapters 3 and 4.   

D0

DAdjusted
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Recall that SA approaches assume that a predetermined design already exists for a 

system of interest.  Following this assumption all predetermined inputs into an 

engineering system can simply considered as fixed design parameters p.  Thus hereafter 

in this chapter the vector p0, as with the previous two chapters, is used to denote the 

nominal values for all inputs into a system for which a solution, or design, already exists.  

Furthermore this design p0 will be called a candidate design.  As a result, the nominal 

objective and constraint functions values for a candidate design may be thought of simply 

as functions of the nominal values p0.   

The work presented in this chapter focuses on how changes to the parameters 

contained in the vector p0, both in terms of nominal values and uncertainty level, affect 

the performance of the design described by the functions f0 and g0.  As with the work 

presented in the previous chapters, if the uncertainty associated with a system’s input 

parameters (bounded by the interval [p0 - ∆p, p0 + ∆p]) are reducible, then the uncertainty 

reduction vector α can again be used to quantify the reduction in the uncertainty of those 

parameters.  When the uncertainty in any of the input parameters to a system are reduced 

by decreasing the values for one or more elements in α, the range of output function 

variation will also inevitably be changed.  This propagation of uncertainty from input 

parameters to output function values can be represented by a set of resulting uncertain 

objective and constraint function values: 
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As shown in Eqn. (5.1), uncertainty propagation is a function of the nominal 

parameter values p0, the original uncertainty intervals ∆p, and uncertainty reduction 

vector α.  In Eqn. (5.1) the vector pv is again used (as in the previous chapter), which 

represents a single realization of the uncertain values p bounded by the retained uncertain 

interval [p0 – α ° ∆p, p0 + α ° ∆p], and will be used throughout the chapter as a decision 

variable when attempting to quantify the effect of uncertainty.  Figure 5.2 depicts the 

impact that different uncertainty reduction values could have on output function 

variations when nominal parameter values p0 remain unchanged.   

 

Figure 5.2: Parameter Uncertainty Mapping for Various αααα Values  

5.2.1 Design Adjustment Vector 

Small adjustments to the nominal values of the parameter vector p0, as discussed in 

Section 5.1, provide an obvious means for ensuring the feasibility of a design that cannot 

become feasible through uncertainty reduction alone.  In this work the exact magnitude of 

the adjustment is controlled by a proposed design adjustment vector β.  This vector is a 
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set of scaling factors, much like α, that can be selected to make small adjustments to the 

nominal parameter values p0 of a candidate solution. One element of the design 

adjustment vector β is established for each element in the vector p0, yielding β = 

{β1,…,βk,…,βK} with -1 ≤ βk ≤ 1. 

As with the α vector, the values for β are typically taken to be continuous. If only 

discrete adjustments are possible for the k
th

 parameter of a system the corresponding βk 

can be limited to discrete options.  For each parameter pk, the associated βk value scales 

the predetermined maximum allowable adjustment in that parameter δpk. δp is a vector of 

values specified by the designer based on specific system limitations and should be of the 

same order of magnitude as the original uncertainty levels in ∆p.  For example, one 

parameter of a notional power tool design may be the thickness of wire used to connect 

the tool’s electrical supply to its motor.  For a candidate design under consideration the 

designer may specify 10 AWG wire (American Wire Gage, approximately 0.1 inches in 

thickness).  However, the designer may know that the choice to use 10 AWG wire was 

arbitrarily made based on other factors and may suspect that the nominal wire thickness 

could actually be adjusted by ±0.01 inches without affecting the electrical system of the 

tool, which would amount to using 9 AWG (0.11 in) or 11 AWG (0.09 in) wire.  As such 

the designer would then select δpwire to be 0.01 inches.  In this work δpk is simply taken to 

be ten or twenty percent of its nominal value p0,k (depending on the engineering system of 

interest), but any assumed max adjustment is acceptable provided the max range of the 

adjustment is sufficiently small, as discussed previously.   

When considering uncertain parameters whose nominal values are adjustable, the 

effects of those parameters on a system’s outputs depends on the nominal parameter 
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values p0, the β values associated with each parameter, the assumed maximum 

adjustment values δp and a given level of parameter uncertainty as described in Eqn. 

(5.2).  Again the vector pv is used to denote a specific realization of the uncertainty in p, 

this time bounded by the uncertain interval defined by ∆p, β and δp as shown in Eqn. 

(5.2): 
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It can be seen in Figure 5.3 that small changes to nominal parameter values can 

ensure the feasibility of a candidate design for a given level of parameter uncertainty. 

 

Figure 5.3: Parameter Adjustment Mapping 

There is the possibility that for some problems no combination of uncertainty 

reduction or small adjustments on nominal parameter values will be sufficient to ensure 

feasibility.  This possibility is highly problem dependent and in those cases a designer 

can enlarge the elements of the maximum allowable adjustment vector δp.   
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5.2.2 Objective and Constraint Uncertainty Mapping 

As discussed generally in Chapter 2, in order to effectively manage input 

uncertainty in an effort to improve output function performance (i.e., to reduce the 

variation in the outputs), it is necessary to measure and quantify objective and constraint 

function variations separately as a function of α and β.  In order to do this, Li et al.’s 

work [2009a] is extended here to include both objective functions fi as well as constraint 

functions gj and to include the effects of parameter adjustments in addition to parameter 

uncertainty reduction. Two metrics, Rf and Rg, are used for measuring the variations in 

objective and constraint functions respectively in this chapter.  The formulation of these 

metrics is slightly different then used in the previous chapter due to the inclusion of the β 

vector, which was not considered in MICOSA. 
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As shown in Eqn. (5.3) objective function variations are normalized by the nominal 

design’s objective function values and then the largest variation is found using a ||.||2 

norm; however a ||.||∞ norm is also acceptable if desired.  In Eqn. (5.4) Rg is calculated as 

the maximum value of all constraint function values, normalized by the candidate 

design’s nominal constraint function values.  A simple maximization is used in Eqn. (5.4) 

to find the largest constraint deviation from the nominal and ensures that any positive Rg 
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value will indicate an infeasible input uncertainty interval [(p0 + β ° δp) – α ° ∆p , (p0 + β ° 

δp) + α ° ∆p]. Since the Rf and Rg metrics measure output variations given input 

uncertainty levels, both α and β values must be specified for the system of interest prior 

to evaluating Eqns. (5.3) and (5.4).  Once α and β values are given, Rf and Rg values in 

Eqns. (5.3) and (5.4) can then be calculated by performing a single objective optimization 

to find the worst case variation in the system’s objectives (Rf) and/or constraints (Rg).  

The decision variables in each of these optimizations are the values for the system’s input 

parameters (denoted by pv) bounded by a predetermined level of uncertainty in each of 

those parameters (specified by α and β values).  In this work, Rf and Rg are mathematical 

metrics that quantify the resulting variations in multiple system outputs as a single scalar 

value for either the system’s objectives (Rf) or constraints (Rg).  Figure 5.4 depicts this 

relationship between changes in α and Rf and Rg for demonstration purposes.  A similar 

figure can be drawn for Rf and Rg as a function of β only, or both α and β simultaneously. 

 

Figure 5.4: Graphical Depiction of Rf(α) and Rg(α) 

For many engineering systems it is possible that uncertainty reduction and/or 

design adjustments may not be possible for one or more of nominal parameters. Such 

limitations can be addressed by adjusting the upper and/or lower bounds of the 

corresponding elements of α and β. 

Rg(α)

Rg

Rf (α)

Rf

f1

f2
g1

g2



94 

 

5.2.3 Parameter Adjustment Cost Metric 

In most engineering systems uncertainty reduction and/or small design adjustments 

are not always possible without additional penalty, cost, or investment.  For example, a 

better machining process could produce a more accurate (less uncertain) dimension for a 

part, but only if a designer or manager were willing to make the cost investment required 

to purchase better equipment.  Similarly, changing the nominal design parameters for a 

candidate design may not be completely desirable as small changes may require other 

related parts or complementary sub-systems to be redesigned as well, incurring more time 

and costs.  In order to deal with these realities the following generic formulation for 

quantifying these costs is provided in Eqn. (5.5).  This metric I (short for investment) is 

an extension of the Investment metric developed by Li et al. [2009a] and used in the last 

two research thrusts, modified here to measure both the uncertainty reduction 

requirements and design adjustments.   
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(5.5) 

I can be used as a measure of the cost associated with those changes made to a 

nominal solution in the absences of any actual cost information for a given system.  The 

two weighting factors in Eqn. (5.5), w1 and w2, can be used to adjust the relative costs 

associated with uncertainty reduction and nominal design adjustment in accordance with 

the designer’s preferences.  For this work w1 = 0.75 and w2 = 0.25 are chosen, 

corresponding to an arbitrarily determined preference for design adjustment over 

uncertainty reduction (accomplished by placing a greater weight, or penalty, on 

uncertainty reduction).        
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5.3 DISA APPROACH 

In this section the Design Improvement by Sensitivity Analysis (DISA) approach is 

formulated.  DISA seeks to efficiently determine the optimal combination of uncertainty 

reductions and/or small design adjustments required in order to produce the best possible 

reduction in objective function variation while ensuring the feasibility of a design under 

uncertainty.  This is accomplished by solving two bi-objective optimization problems in a 

sequential fashion.  The first optimization determines a Pareto set of uncertainty 

reduction (α) options in an effort to reduce objective function variation first. In the 

context of this approach uncertainty reduction is preferable since it does not require 

changes to the nominal parameter values of the predetermined candidate design.  Then, if 

necessary, a second optimization problem is solved repeatedly, once for each Pareto 

solution of interest produced during the first stage optimization, in an effort to determine 

the optimal design adjustment (β) required to ensure feasibility.  If desired, this second 

stage optimization can be performed using a set of meta-models (one for each system 

output) created using system data retained during the first stage optimization problem.   

The decision to formulate the DISA approach using a sequential algorithm (as 

opposed to the seemingly more intuitive all-at-once approach where both α and β would 

be optimized simultaneously) was made for a specific set of reasons. Indeed DISA 

intentionally does not attempt to obtain solutions that are optimal with regard to both α 

and β simultaneously, accepting the possibility of producing inferior solutions in order to 

provide an approach that has the following three important advantages over the all-at-

once approach.  First, it is possible that uncertainty reduction procedure alone could be 

enough to ensure feasibility.  These types of solutions could be very attractive to some 



96 

 

designers but may potentially be suppressed (and therefore missed) in an all-at-once 

approach.  Secondly, a two-stage approach allows a designer to only perform the second 

stage optimization on a subset of uncertainty reduction solutions obtained in the first-

stage optimization that are of interest, providing the designer with further control over the 

approach and the type of results that it produces.  The third and most compelling reason 

for formulating DISA in this way is to allow for greater computational efficiency.  

Solving DISA using two sequential stages makes it possible to use analysis data obtained 

in the first stage optimization to perform the second stage optimizations (recall that the 

second stage optimization may be solved repeatedly) using surrogate approximations as 

opposed to additional function calls.  In this chapter a function call is defined as the 

evaluation of one specific input parameter vector pv for its output function (i.e., f and g) 

values obtained from a computational analysis or simulation model.  See Chapter 2 for 

details on surrogate approximation. 

To take advantage of the efficiency gains mentioned above all uncertain inputs to 

the system must be sufficiently sampled over their ranges of uncertainty during the first 

stage of the approach.  This condition will be met in those cases when, after the first stage 

of the approach, all possible values for any uncertain parameters to be considered in the 

second stage are guaranteed to fall within the original maximum uncertain intervals for 

those parameters.   This is because the first stage of the approach varies all uncertain 

input parameters over their maximum uncertain intervals in search of uncertainty 

reduction opportunities as shown in Eqns. (5.3) and (5.4), generating a wealth of function 

call (system outputs as a function of pv) information.  Clearly, for many systems the 

parameter space may not be sufficiently sampled during the first stage of the algorithm as 
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discussed above and additional data will be required in order to build effective meta-

models of the system’s objective and constraint functions prior to searching for optimal 

adjustments to the nominal values of uncertain parameters.  This does not preclude the 

use of the DISA approach and simply requires that any additional required function call 

information be obtained after the first stage problem but prior to building any meta-

models for use in the second stage.  This case will be addressed in detail in Section 5.3.2 

and in Section 5.4 through the engineering examples.  

Additionally, it should be pointed out that using meta-models within the second 

stage of the DISA approach is not without its own set of potential drawbacks which are 

well known and beyond the scope of this work.  Prior to employing the meta-model 

assisted DISA approach the user should become familiar with the strengths and 

weaknesses associated with surrogate approximation by reviewing the literature for 

details (e.g., [Martin and Simpson, 2005]). 

5.3.1 DISA Formulation 

The DISA approach begins with a candidate design solution, defined by the 

parameter vector p0 for a system comprised of multiple objective functions f and 

constraint functions g.  The designer then determines which parameters have uncertainty 

and/or whose nominal values can be adjusted, including their associated uncertainty 

intervals and maximum design adjustments, ∆p and δp, respectively.  A MOSA based 

unconstrained optimization problem (i.e., Eqn. (2.3) with I substituted for Investment) is 

then performed to minimize both the variation in objectives (Rf) and the metric I as 

defined in Eqn. (5.5). Recall that the decision variables in this first stage optimization 

problem are only the elements of the uncertainty reduction vector α, and since Eqn. 2.3 
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does not contain β (since MOSA does not consider design adjustments), β is taken to be a 

zero vector in the first stage.  The optimization can be conducted using a population 

based optimizer, such as a Multi-Objective Genetic Algorithm (MOGA) [Deb, 2001] and 

during each generation all analysis data from the simulation model(s) are retained.  Recall 

that this retained data is in the form of fi(pv) and gj(pv) data can be obtained when Eqn. 

(5.3) is solved within Eqn. (2.3), assuming that the gj(pv) constraint functions are also 

evaluated.  Following the completion of the first stage optimization a Pareto set of Np 

optimal uncertainty reduction vector α* solutions will be obtained.  Since this first stage 

optimization problem is performed in an unconstrained fashion (recall that MOSA is an 

unconstrained problem) the Pareto solutions produced cannot ensure the feasibility of the 

candidate design.  Since uncertainty reduction alone may not be enough to ensure 

feasibility the second stage optimization is performed by solving Eqn. (5.6), once for 

each uncertainty reduction solution of interest obtained in the first stage problem.   
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The second stage is solved repeatedly, once for each Pareto αi* solution of interest, 

i = 1,…, N1 (N1 ≤ Np).  A designer may wish to perform the second stage optimization 

procedure for all α* solutions obtained in the first stage if desired. It is also permissible to 

limit the number of α* solutions N1 considered in the second stage optimization problem 

if a small subset of first stage solutions is more attractive.  Selecting multiple solutions of 

interest will increase the range of possible feasible solutions produced by the approach, 
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providing the designer with a larger set of design adjustment options.  In each of the 

second stage optimizations, i = 1,…, N1, the αi* value of interest is held constant.  As 

previously discussed, as long as Rg is less than or equal to 0 the corresponding 

combination of β and α* values will produce a feasible design.  Simultaneously 

minimizing Rf and I again creates a natural tension, this time between objective function 

variation reduction due to design adjustments and the required magnitude of those design 

adjustments.  It is important to note that the second stage solves for what is defined as 

β*|αi* (i.e., β* given αi*), not the more general independent β*, which is an important 

distinction.  It is possible that for the i
th

 first stage solution considered in the second stage 

no combination of β*|αi* can produce a feasible solution (Rg ≤ 0) and as a result no 

Pareto solutions will be produced.  In this case it is up to the designer to select an 

alternate αi* solution from the first stage to investigate and further drives the need for the 

designer to select multiple αi* solutions of interest.   

If the DISA approach is solved in the manner described above using actual analysis 

functions to repeatedly solve Eqn. (5.6), the computational effort (in terms of the number 

of function calls) can become a problem if numerous β optimization problems have to be 

solved.  In order to improve the computational efficiency of the DISA approach, Eqn. 

(5.6) is restated by using meta-models to obtain the values of Rf, Rg and I within the 

second stage optimization.  The data for creating these meta-models comes from the data 

retained during the first stage uncertainty reduction optimization problem as previously 

discussed.  Before beginning the optimization(s) to determine corresponding β values, 

meta-models for all functions fi and gj are created and then used in lieu of the actual 

simulation functions to determine approximated Rf, Rg and I values.  Prior to building 
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those meta-models it is important to check the maximum and minimum pv values retained 

during the first stage and compare them to the maximum and minimum pv values that 

could be evaluated in the second stage (which can be determined based on αi* and δp).  If 

there is any possibility that any of the second stage pv value could fall outside the range 

of retained data, then additional function calls are needed and should be obtained and 

included in the meta-models.  Eqn. (5.7) formulates this meta-model assisted second 

stage optimization to solve for β*|αi* Pareto solutions.  Recall that all fi(pv) and gj(pv) 

information generated during the first state procedure is retained, despite the fact that the 

first stage optimization does not check for constraint violation, making it possible to 

generate meta-models of the systems’ constraint functions.   
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Figure 5.5 depicts both formulations of the DISA approach for comparison 

purposes.  Figure 5.5(a) depicts the general formulation which does not require meta-

models of the system output functions and solves Eqn. (2.3) and (5.6) sequentially.  

Figure 5.5(b) shows the more efficient meta-model assisted DISA approach which 

involves solving Eqn. (2.3) and Eqn. (5.7). 
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Figure 5.5: DISA Approach (a) Without Meta-Models and (b) With Meta-Models 

5.3.2 DISA results 

The DISA approach will produce solutions with the following properties, as shown 

in Figure 5.6.  The first stage Pareto α* values will optimally reduce the uncertainty 

levels in the system.  However, this first stage procedure will not necessarily ensure that 

the resulting design system will be feasible (note that in Figure 5.6 if only uncertainty 

reduction is considered the constraint g1 is still violated).  As a result the subsequent 

optimal selection of corresponding β* values for each αi* solution are needed to ensure 

feasibility of the design under uncertainty with a minimal change in objective 

performance.   
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Figure 5.6: Sample DISA Results in Two Dimensions 

Figure 5.7 depicts the cascading flow of information produced by this approach.  

As can be seen on the lower left side of the figure the first stage optimization finds a 

Pareto set of α* solutions which optimally reduce uncertainty levels.  Then, for each α* 

solution of interest produced (one of which is depicted on the diagram) a second 

optimization is performed using meta-modeling (or actual analysis functions if desired) to 

produce an additional Pareto set of options, this time adjusting the nominal values of 

uncertain parameter in an effort to ensure feasibility given the predetermined optimal 

uncertainty reduction levels.  
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Figure 5.7: Sample Propagation of DISA Result  

If analysis functions (or simulation models) are used for both stages of the DISA 

algorithm, as shown in Figure 5.5(a), the computational effort would be equal to the 

number of function calls required to solve the α problem, M, times the number of 

function calls required to solve each β problem, N, times the number of times the β 

problem needs to be solved, N1 in the worst case, resulting in a total computational effort 

of O(MNN1) calls.  If meta-models are used to approximate the analysis function for all β 

problem optimizations performed, as shown in Figure 5.5(b), the computational savings 

would amount to the sum total of all function calls needed for all β problems required to 

be solved, or O(NN1) calls.  Clearly this is a significant reduction in computational effort.  

However, when using the meta-model assisted approach it is important to verify that the 

parameter space is sufficiently sampled during the first stage optimization in order to 

produce valid meta-models over the entire range of potential design adjustments, as 

pointed out at the beginning of this section.  If the range of permissible design 

adjustments for a specific problem is sufficiently smaller than the uncertainty levels 

presented in the system no additional information is required as the parameter space will 

Rf (α*)

I(α*) Rf (β*|α*)

I(β*|α*)
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be sufficiently sampled during the first stage optimization. If the range of permissible 

design adjustments is larger than the area of the parameter space sampled during the first 

stage optimization then additional sampling data must be collected after the first stage 

optimization in order to construct valid meta-models, as previously discussed.  In this 

case the computational effort would clearly increase by the number of function calls P 

required to adequately sample the neglected portion of the parameter space.  In this case 

the resulting computational effort would be O(M+P), which is still significantly less than 

the O(MNN1) function calls required if no meta-modeling is employed.  This 

differentiation will be demonstrated in the next section via the first example.  The exact 

number of function calls required in this case (P), however, should be determined by the 

designer based on the size of the parameter space that needs to be sampled.   

5.4 EXAMPLES AND RESULTS 

In order to demonstrate the capabilities and efficiency of the DISA approach, two 

engineering examples of varying complexity are presented.  In both examples a single 

candidate design was obtained beforehand using a deterministic (no uncertainty 

considered) optimization procedure.  The nominal parameter values for the candidate 

design were located on or near the boundaries of the corresponding system’s feasible 

domain.  As a result, the nominal designs will become infeasible if the input parameters 

are acknowledged to be uncertain.  All parameter uncertainty intervals in these examples 

are considered to be reducible and all nominal parameter values considered are assumed 

to be adjustable by a small amount.  In other words there will be associated selectable αk 

and βk values for each parameter considered.  For the examples presented in this section 

the problems are solved twice in order to validate the capability of the meta-model 
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assisted DISA approach, first obtaining solutions using the DISA approach of Figure 

5.5(a) and then again using the meta-model assisted DISA approach detailed in Figure 

5.5(b).   

5.4.1 Thin-Walled Tube Design 

The first example presented is a simple two dimensional problem adapted from 

Arora [2004] to consider two objectives, chosen so that the solutions produced can be 

presented graphically.  Figure 5.8 depicts the simple hollow tube system under 

consideration which is described by its length, L, radius, R, wall thickness, t, and the 

compression load it supports, P.   

 

Figure 5.8: Tube Design Model 

Determining the optimal dimensions for the parameters R and t without uncertainty 

can be accomplished by solving the following bi-objective optimization problem:  

 

0  0,

0
4

0
2

min

2min

max

≥≥≥≥≥≥≥≥

≤≤≤≤−−−−≡≡≡≡

≤≤≤≤−−−−≡≡≡≡

====

====

tR

h

tERπ
Fg

σ
πRt

F
g

s.t.

t

R
f

ρhπRtf

R,t

R,t

2

33

2

1

2

1

 (5.8) 

R

t

F

h



106 

 

The optimization problem in Eqn. (5.8) seeks to minimize the weight (f1) and the 

radius to thickness ratio (f2) of the tubular column subject to stress (g1), buckling (g2) and 

non-negativity constraints.  Eqn. (5.8) contains the following constant parameters: ρ = 

7833 kg/m
3
 (material density), h = 5 m (tube length), F = 10,000 N (tube loading), σmax = 

248 MPa (max stress) and E = 207 GPa (Young’s modulus).  One deterministic optimal 

solution to this problem is R = 0.1558 (m) and t = 0.0412 (m), which for this problem can 

be obtained graphically.  For this solution the nonlinear constraints g1 and g2 are both 

active.  Based on this fact it is clear that if the input parameters R and t possess any 

uncertainty the only way to ensure the feasibility of the design would be to completely 

eliminate all uncertainty, which is usually not an option.  As a result the DISA approach 

can be used for this problem to determine an optimal combination of uncertainty 

reduction and small design adjustments to ensure both feasibility and minimal 

performance variations with respect to the two original objective functions, f1 and f2 in 

Eqn. (5.8). 

The uncertainty ranges ∆p for each parameter (i.e., R and t) were set to be ±20% of 

each parameter’s nominal value, as given above. Additionally each parameter was 

allowed to be adjustable (δp) by ±10% from its nominal value.  These values were 

determined intuitively for the purpose of demonstrating the capabilities of the approach, 

but for specific problems designers should set ∆p and δp using system information.  

Based on these selected ranges for ∆p and δp the allowable design adjustments will be 

guaranteed to be within the limits of the parameter uncertainty considered for each 

parameter provided at least 50% uncertainty reduction (α ≤ 0.5) in the first stage problem.  

This is because a 50% reduction in uncertainty will result in a maximum retained 
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uncertainty of ±10% of the nominal parameter values, which will be guaranteed to fall 

within the original uncertain region (±20% of nominal) even if β adjusts p0 by the 

maximum 10% adjustment.  The DISA approach was implemented using a MOGA 

optimizer and produced the results shown in Figures 5.9 and 5.10.   

 

Figure 5.9: β Results for Three Sample αi* Solutions  

 

Figure 5.10: Adjusted Uncertain Solution in the Parameter Space 
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Figure 5.9 is an objective space (Rf vs. I) plot of the α* Pareto solutions, along with 

three sets of β Pareto solutions corresponding to three selected α* solutions (which have 

been highlighted in grey filled circles in Figure 5.9).  Figure 5.10 is a plot of the same β 

Pareto solutions shown in Figure 5.9, but plotted in the parameter space of the tube 

design problem in order to show their relationship to the problem’s objective and 

constraint function contours.  In Figure 5.10 the nominal design’s original input 

parameter uncertainty region and the retained uncertainty regions for two representative β 

solutions (called out with a grey fill) are plotted as rectangles around those solutions.  

This has been done to clearly show that the original candidate design is infeasible due to 

input parameter uncertainty and that the feasibility of the resulting solutions produced by 

the DISA approach is ensured.  In both figures the solutions obtained with actual analysis 

function calls are shown in black outlines while those obtained using kriging meta-

models of the analysis functions are shown in grey outlines.  The geometric shapes of the 

solution point markers (triangles, squares, and diamonds) are the same for corresponding 

solutions in both Figures 5.9 and 5.10 for comparison purposes.  For instance, the square 

shaped solutions in Figure 5.10 are the parameter space plots of the square shaped Pareto 

points in Figure 5.9.  Recall that all α solutions were obtained using actual analysis 

functions.  In Figure 5.10 the original objective contours are depicted in black dashed 

lines (to show that the DISA approach does in fact minimize the variation in the original 

system objectives), the constraint function contours are depicted in bold and dashed black 

lines and the nominal design solution is depicted by a white filled circle.   It should be 

noted that when both black and grey solution cannot be clearly distinguished on one of 

the corresponding figures it is because there is excellent agreement between the two 
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solution methods (actual analysis functions in black outlines and kriging meta-model 

assisted solutions in grey outlines). 

As can be seen in Figure 5.9, each β Pareto solution set generated has larger Rf and 

I values than the α* solution used to generate those corresponding β solutions. This is 

because the parameter adjustments made to the candidate design in the second stage 

problem clearly increase both Rf and I when β values are nonzero, as seen in Eqn. (5.3) 

and Eqn. (5.5) respectively.  This is the price of ensuring feasibility.  The candidate 

design is clearly on two active constraint functions as shown in Figure 5.10.  As a result 

all DISA solutions to this problem have been moved away from the constraint boundaries 

by some small amount, resulting in nonzero β values. The exact amount of parameter 

adjustments required is a function of the retained uncertainty in the system following the 

first stage problem.  As the amount of retained uncertainty in the system increases, as 

shown by a decrease in I in the α Pareto on Figure 5.9 (i.e., from α1* to α2*), larger 

adjustments to the nominal parameter values are required. This can be seen in Figure 5.10 

as the β solutions corresponding to α2* are further away from the nominal solution than 

those corresponding to α1*, and the black outlined triangle β solution (corresponding to 

α1*) has a smaller retained uncertainty range than the grey outlined square point 

(corresponding to α2*).  

As shown in Figures 5.9 and 5.10, for each of the solutions presented (i.e., from α1* 

to α3*), the meta-model assisted β solutions do not match the analysis function results 

perfectly, but they do show general agreement, suggesting that any effective meta-

modeling technique could produce solutions without the need for additional function calls 

after first solving the α problem in this example. In this example the α problem required 



110 

 

61,707  function calls while each of the three β problems solved using the DISA 

approach of Figure 5.5(a) required 178,120, 180,255 and  180,255 function calls 

respectively.  Recalling that the meta-model assisted DISA solution, obtained using the 

approach formulation of Figure 5.5(b), did not require any additional function calls than 

what was previously obtained to solve the α problem and thus it can be concluded that the 

meta-models assisted formulation leads to a total computational savings of 538,630 

function calls. 

If the above problem is restated using ±15% and ±20% of nominal as the ranges of 

parameter uncertainty ∆p and maximum design adjustments δp respectively, clearly the 

range of potential design adjustments will fall outside of the region of the parameter 

space sampled during the first stage optimization.  As a result, between the first and 

second stage optimizations the parameter space needs to be sampled a bit more to ensure 

adequate coverage in order to build valid meta-models for design adjustments.  The DISA 

approach was applied to the problem again, this time using these new ranges. The 

computational effort for the α and β problems was comparable to the original example, 

but this time an additional 1,017 function calls were used to sample the region of the 

parameter space not considered during the first stage optimization.  For this case the 

results shown in Figures 5.11 and 5.12 are produced (which use the same notation as 

Figures 5.9 and 5.10 above).   
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Figure 5.11: Alternate Problem Pareto Frontier 

 

Figure 5.12: Alternate Problem Adjusted Uncertain Solutions  

Notice that in Figure 5.12 the original nominal uncertain region is much smaller 

and that the retained uncertain regions for the solution points lie outside the original 

uncertain region.  However, the produced results from kriging assisted DISA (Figure 

5.5(b)) essentially agree with the results produced by the DISA approach using actual 
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analysis functions (Figure 5.5(a)).  Clearly, a limited number of additional function calls 

can produce effective results in the cases where acceptable design adjustments fall 

outside of the region of the parameter space considered during the uncertainty reduction 

optimization problem. 

5.4.2 Angle Grinder Design 

To demonstrate the properties of the DISA approach with a more complex system, 

an angle grinder model used by Li et al. [2009a] (first presented by Williams et al. [2008] 

and used in the Chapter 3) was analyzed.  As shown in Figure 5.13, the angle grinder 

system consists of a battery model, a motor model and a bevel gear model containing 

approximately 30 input parameters and numerous outputs.  A deterministic optimal 

solution that produces a minimal grinder weight and a maximum available power was 

found using MOGA prior to employing the DISA approach to this system.  Six of the 

model parameters were considered to have uncertainty in this example.  For specific 

details on the grinder model see Williams et al. [2008]. 

 

Figure 5.13: Angle Grinder System 

Table 5.1 provides the settings used in the application of the DISA approach, while 

the nominal values for the 6 parameters considered in this application are shown below in 

Table 5.2 (all other inputs to grinder model were taken as deterministic constants). 

Stator Radius (Ro)

Stator Thickness (ts)

Gap Length (LGap)

Stack Length (LStack)

Copper Wire Area (Aw)

Copper Wire Resistance (Rw)

grinder mass

grinder power
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Table 5.1: Grinder Problem Specifics 

Objectives 2 

Constraints 9 

Parameters 6 

Uncertainty 20% of nominal 

Max Adjustment 10% of nominal  

All of these parameters are critical elements of the design of the angle grinder’s 

motor sub-system.  These 6 parameters were analyzed by the DISA approach and were 

assumed to be both uncertain and adjustable in accordance with the limits given in Table 

5.1. The nominal design was selected such that four constraints g2, g3 and g4 were very 

close to being active.  These constraints all represent limitations on the flux density of the 

stator, armature and air gap of the grinder’s electric motor.  

Table 5.2: Grinder Problem Nominal Parameters 

Parameters Nominal Values 

Stator Radius (Ro) 0.0012 m 

Stator Thickness (ts) 0.0501 m 

Gap Length (LGap) 0.0006 m 

Stack Length (LStack) 0.0188 m 

Copper Wire Area (Aw) 0.036 mm
2
 

Copper Wire Resistance (Rw) 0.504 Ω 

Using the data in Tables 5.1 and 5.2 and the grinder analysis functions, a set of 

DISA results were obtained using a MOGA optimizer.  Figure 5.14 displays three 

representative sets of β results for the grinder problem for three selected α Pareto 

solutions.  As with the previously presented two-dimensional example β solutions were 

determined in two ways: using actual analysis function model and using kriging meta-

models.  Figure 5.14 contains Rf vs. I plots for both the results of the first stage 

optimization and three sets of β*|αi* Pareto solutions.  In Figure 5.14, all α Pareto 

solutions are presented in black circles.  The αi* solutions considered for each depicted 

β*|αi* Pareto are called out by grey filled circles.  The corresponding β Pareto solutions 
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obtained using the analysis function are presented in black outlines and the kriging meta-

model assisted results are presented in grey outlines.  As with the plots in the previous 

example, when a distinction between the black and grey solutions cannot be distinguished 

on the figure it is because the solutions obtained agree directly.  Not all of the α Pareto 

solutions for this example were infeasible following the first stage problem, indicating 

that for some cases (7 out of 15 α Pareto solutions) the feasibility of the system could be 

achieved by uncertainty reduction alone and the second stage procedure was unnecessary.  

However, those solutions that were feasible after the first stage procedure also required a 

high level of investment (low α values) which could potentially be undesirable to the 

designer.  For those solutions that were infeasible (as indicated by positive Rg values) the 

second stage procedure of the DISA approach was necessary.  Three αi* solutions shown 

in Figure 5.14 were infeasible yet after the first stage procedure and thus need further 

adjustment to guarantee feasibility. 

 

Figure 5.14: Grinder β Results for Various αi* Solutions 
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As can be seen in Figure 5.14, the β solutions corresponding to two selected α1* 

and α2* overlap quite a bit.  For this reason Figure 5.15 shows just the first stage solution 

α1* and its corresponding β Pareto.  Several observations can be made from Figures 5.14 

and 5.15.  First, in order to ensure feasibility additional cost is necessary as all β solutions 

have higher I values than α1*.  Secondly, the trade-off between I and Rf is very clear for 

the β solutions depicted, showing that more investment can lead to smaller variations in 

system objectives.  The third and most interesting observation is that if the designer is 

willing to invest more it is possible to further reduce objective function variations 

(through adjusting the nominal values of parameters) than that achieved through 

uncertainty reduction alone.  This result is demonstrated by the solutions with an Rf value 

being less than 0.13 in Figure 5.15, or the entire set of ββββ solutions corresponding to α3* in 

Figure 5.14.  

 

Figure 5.15: Grinder β Solutions for α1*  
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As can be seen in the preceding figures there is actually a very good agreement 

between the two approaches for finding the corresponding β*|αi* solutions suggesting 

again that the DISA approach can be made computationally efficient if legacy data from 

in the first stage uncertainty reduction problem is used to solve the subsequent design 

adjustment problem.  To further demonstrate this fact and to describe a sample of the 

improvements to the nominal design suggested by the DISA approach in the case of the 

angle grinder, Table 5.3 is provided which contains a comparison of a single DISA β*|αi* 

solution obtained through two different methods (the β*|αi* solution point called out on 

Figure 5.15 with black and grey crosses, for the analysis function and kriging meta-model 

produced solutions, respectively).   

Table 5.3: Sample Grinder Results Comparison 

 First Stage 
(α1*) 

Analysis 

Functions 

Kriging 

Metamodel 

Rf 0.138 0.129 0.129 

I 0.165 0.261 0.261 

Rg 0.394 -0.353 -0.354 

 α βAnalysis βKriging 

p1 (Ro) 0.919 -0.279 0.292 

p2 (ts) 0.103 -0.315 -0.136 

p3 (LGap) 0.894 -0.718 -0.717 

p4 (LStack) 0.918 0.514 0.410 

p5 (Aw) 0.889 -0.189 -0.508 

p6 (Rw) 0.960 -0.294 0.248 

Table 5.3 also contains the corresponding Rf, I and Rg values of the first stage 

solution for comparison purposes.  Note that the Rg value following the first stage 

procedure is greater than 0, indicating that the determined level of uncertainty reduction 

is incapable of guaranteeing feasibility which drives the need for the second stage 

procedure. Furthermore, Table 5.3 suggests that for this specific solution the copper wire 

area Aw needs only a small uncertainty reduction of 11% (α5 = 0.889) and an equally 
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small nominal value adjustment of less than 2% (β3 = -0.189, or 0.189×10% ≈ less than 

2% of its nominal value in accordance with Tables 5.1 and Table 5.2), which suggests 

that the uncertainty in this parameter does have a large effect on the candidate design’s 

performance and feasibility.  Conversely this DISA solution suggests that the uncertainty 

in the mass of the stator thickness (ts) is far too uncertain (α2 = 0.103), and additionally 

needs to have its nominal value reduced as well by (β2 = -0.315).  This suggests that the 

uncertainty in the stator thickness parameter is far more important to the overall design 

and should be addressed more carefully.  These conclusions make sense given that the 

original design objectives are to maximize grinder power and minimize grinder weight.  

Better control of the critical parameters of the grinder’s motor design will clearly impact 

the overall grinder power in a positive fashion.  Keep in mind that this analysis focuses 

on just one potential solution for this problem and the DISA approach produces 

numerous options just like this one for the designer to consider.   

In terms of computational effort the first stage α problem required approximately 

2,640,000 function calls.  An additional 931 function calls were required following the 

first stage procedure in order to sample regions of the parameter space not adequately 

sampled during the first stage optimization, as discussed in Section 5.3.   Each of the β 

problems solved using the framework shown in Figure 5.5(a) required additional 

3,400,000 function calls, on average.  As before, solving the second stage problem using 

the formulation shown in Figure 5.5(b) required practically no additional function calls 

(save for the 931 extra calls required for meta-model refinement prior to beginning any 

second stage optimizations), which demonstrates the capability of the meta-model 

assisted DISA approach to produce a rather large total savings in function calls. 
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5.5 SUMMARY OF RESEARCH THRUST 3 

A new sensitivity analysis based approach using a sequential two stage approach, 

DISA, has been presented for use in managing uncertainty in engineering design.  For a 

candidate design containing interval parameter uncertainty this approach has the ability to 

determine the optimal combination of uncertainty reduction in the first stage 

optimization. If necessary, the DISA approach is then capable of determining the optimal 

combination of design adjustments required to minimize system objective function 

variations while simultaneously ensuring feasibility under the system’s retained 

uncertainty in the second stage optimization problem.  Most importantly, by using a two-

stage optimization framework, this approach arrives at those solutions without searching 

the entire design space of the problem and in the process ensures that new design 

alternatives are as similar to the candidate design as possible.  

This approach has been shown to be effective on engineering problems of varying 

difficulty and additionally has been shown to be capable of doing so rather efficiently 

using a meta-model assisted framework.  It was shown in both examples that given 

various levels of optimal uncertainty reduction this new DISA approach is capable of 

taking an infeasible design and moving that design away from the nominally active 

constraint surfaces by a small amount in order to ensure feasibility while maintaining 

performance effectively.  In the more complex engineering example a specific study was 

performed on a single candidate solution produced by the DISA approach to demonstrate 

the ability of the new method for showing a designer which specifics elements of an 

engineering system are the most critical to both the feasibility and performance of the 

design.  More importantly, it was also shown that the DISA approach also is capable of 
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suggesting to a designer how best to use available investment through uncertainty 

reduction and/or small design adjustments. 

The DISA approach, like the other approaches presented in this dissertation (and 

the MOSA approach which it was extended from), does require a significant level of a 

priori information to employ.  The DISA approach is only applicable when a candidate 

design already exists and then assumes that the uncertainty in that candidate design can 

be reduced about the nominal parameter values for the candidate design.  There may be 

many design problems for which a nominal or candidate design does not yet exist, but for 

which a designer must have a means for considering numerous sources of reducible 

uncertainty.  The next chapter of this dissertation attempts to address this type of problem 

and thus provide a more general approach for the design of engineering systems under 

reducible interval uncertainty.  
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CHAPTER 6:  REDUCIBLE UNCERTAIN INTERVAL DESIGN 

(RUID) 

6.1 INTRODUCTION TO RESEARCH THRUST 4 

In the previous three chapters new sensitivity analysis based approaches for the 

design of systems under reducible interval uncertainty were presented.  These approaches 

have been shown to be effective at improving the performance of a preexisting candidate 

design by making changes to the known nominal uncertain intervals and/or making small 

adjustments to the predetermined nominal parameter values themselves.  However, the 

underlying assumption for all these approaches has been that the nominal parameter 

values and nominal uncertain intervals are known, which may often not be the case.  The 

work presented in this chapter provides designers with an approach for the design of 

engineering systems under reducible interval uncertainty without the need for a 

preexisting candidate designs and/or known uncertainty levels, thus relaxing the limiting 

assumptions required by the previous three research thrusts. 

 Many of the current approaches for design under uncertainty possess limitations.  

Some methods require large and difficult to obtain data requirements for statistical 

uncertainty quantification [Lui et al., 2006; Youn and Wang, 2008; Benanzer et al., 

2009]. Other methods approximate or estimate unknown statistical information with 

evidence theory or possibility theory, resulting in a decrease in accuracy when compared 

to probabilistic methods [Mourelatos and Zhou, 2006; Zhou and Mourelatos, 2008]. Still 

other methods forgo statistics altogether in lieu of interval analysis but require designers 

assume nominal values and uncertain intervals for the uncertain parameters [Liao and 

Chiou, 2008; Hamel et al., 2010; Li et al., 2009a]. All of these approaches have distinct 
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strengths and weaknesses that a designer must consider when determining how and when 

to consider uncertainty in the design process. Statistical uncertainty quantification is 

certainly desirable but requires large amounts of information that is not always available. 

When that is the case, should a designer invest in obtaining that information? Does it 

always make sense to approximate unknown statistical information with lower fidelity 

estimations? If obtaining statistical information is not feasible or desired, what uncertain 

intervals should the designer assume or estimate for uncertain parameters?  Does it even 

make sense to assume a nominal value for an uncertain parameter that by its very nature 

is uncertain, as required by numerous current approaches (e.g. [Liao and Chiou, 2008; 

Hamel et al., 2010; Li et al., 2009a])?  These are the types of questions that a designer 

must be able to answer when deciding how to consider reducible sources of input 

uncertainty and the answers are not always clear. Furthermore, these questions may be 

particularly difficult to answer early in the design process when very little (if any) 

information is available about the types and sources of uncertainty that may exist within 

the system being designed. 

 When dealing with irreducible uncertainty the sources uncertainty becomes a 

known limiting factor in the system and must simply be designed around (e.g. robust 

optimization as discussed in Chapter 1). However, when faced with reducible uncertainty 

the problem becomes more complicated, as previously stated. A designer must evaluate 

how much uncertainty is acceptable and must consider if the system’s performance could 

be improved through costly investments such as more information, better equipment or 

tighter control of tolerances; all of which will require additional resources or capital.  

RBDO approaches have been developed that allow for the inclusion of additional 
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statistical information should it become available as a means for considering reducible 

uncertainty [Gunawan and Papalambros, 2006; Youn and Wang, 2008].  Other 

approaches combine uncertainty reduction mechanisms with RBDO techniques, either 

through sequentially performing RBDO followed by uncertainty reduction [Qu et al., 

2003], or through simultaneously considering reliability and uncertainty reduction 

mechanisms during the design process [Kale and Haftka, 2008]. There are also 

approaches presented in the literature that suggest treating the variance in an uncertain 

parameter as a factor to control within an RBDO algorithm provided a designer has a 

means for producing lower variance in input parameters [Benanzer et al., 2009]. For the 

cases where statistical uncertainty quantification is not possible some recent approaches 

have suggested that the uncertain intervals for input parameters can be reduced around a 

known nominal value (in effect specifying tighter tolerances) in order to improve the 

performance of a design [Li et al., 2009a; Li et al., 2009b, Hamel et al., 2010].  

 All of the approaches discussed in the previous paragraph, and in Chapters 3-5 for 

that matter, are extremely effective when the appropriate information is available with 

which to quantify or describe any relevant uncertainty. Collecting additional statistical 

information or specifying tighter tolerances about a known nominal parameter value 

necessarily implies that the uncertainty in that parameter is known to some extent, either 

in the form of distributions or uncertain intervals about that known nominal value, which 

may not always be the case.  There may often be situations where a system designer 

faced with reducible sources of uncertainty will know, based on his/her experience, that 

the input parameters of a design will possess tolerances and/or uncertainties, but may 

have no way of estimating or specifying those tolerances without making many needless, 
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arbitrary or perhaps even erroneous assumptions, especially at early stages in the design 

process when information is necessarily limited. 

 Currently there is no existing approach capable of including reducible input 

uncertainty within an optimization framework and able to consider the following factors: 

1) multiple sources of controllable (or reducible) input interval uncertainty, 2) limited 

resources for controlling uncertainty, 3) computationally expensive simulation models, 4) 

no available statistical information about uncertainty, 5) unknown nominal values for 

uncertain parameters, and 6) no reliable means for estimating uncertain intervals. This 

chapter presents a new multi-objective optimization approach designed to meet these 

needs. This new approach, called Reducible Uncertain Interval Design (RUID), is 

inspired by SA approaches in that it relates input uncertainty to output variations, but 

does not require a designer to have or estimate any statistical information, uncertain 

intervals or nominal values for any uncertain parameters.  The only values a designer 

must specify to use this approach are the extreme upper and lower bounds on any 

uncertain input parameters for which the uncertainty is reducible or controllable. The 

RUID approach is able to determine the optimal uncertain intervals (upper and lower 

bounds) for the reducible uncertain input parameters to a system that will: i) guarantee 

minimum variations in system outputs under uncertainty, ii) guarantee minimal required 

control over reducible uncertainty (recognizing that reducing uncertainty has an 

associated cost), iii) ensure that the system’s feasibility is satisfied under uncertainty, and 

iv) produce design solutions with as close to the deterministic multi-objective optimal 

system performance as possible. 
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 Simply put, the RUID approach provides designers with optimal uncertain 

intervals for all input parameters which possess reducible uncertainty. These intervals can 

then be used to specify tolerances, select manufacturing processes, purchase equipment 

and/or make any other uncertainty related design decision later in the design process.  

Figure 6.1 depicts the manner in which the optimal uncertain intervals produced by the 

RUID approach can be used. An uncertain interval, such as the one shown at the top part 

of Figure 6.1, will be specified for all input parameters considered by the RUID 

approach.  Once those intervals are determined, as long as a designer specifies tolerances 

in the form of a nominal value and an uncertain interval (left side of the lower part of the 

figure) or selects processes with statistical uncertainty (right side of the lower part of the 

figure) within the RUID determined upper and lower bounds for all reducible uncertain 

parameters considered, the performance of the system under uncertainty will be 

guaranteed. 

 

Figure 6.1: Unknown Uncertainty Quantification 

 RUID makes it possible to perform optimal design under reducible uncertainty 

without the need for limiting or degrading assumptions as previously discussed.  It is 

formulated to handle design optimization problems possessing multiple objectives, 

multiple constraints and mixed continuous-discrete input parameters.  Additionally the 

computational efficiency of the approach is improved through the use of a kriging meta-
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modeling technique applied to system responses obtained early in the approach. This new 

approach does require an increase in the overall dimensionality of the problem due to fact 

that both the upper and lower bounds on the input parameters are determined.  

Additionally, while the use of meta-modeling techniques improves the efficiency of the 

approach, this improvement does create the potential for decreased accuracy. The 

strengths and weakness of this new approach will be detailed in the subsequent sections. 

Section 6.2 contains necessary background information and terminology. The 

formulation of the RUID approach is presented in Section 6.3. Section 6.4 presents the 

results obtained using the RUID approach on three example problems of varying 

difficulty.  Section 6.5 contains some concluding remarks. 

6.2 BACKGROUND AND TERMINOLOGY 

 This section contains the necessary background information and relevant 

terminology for the RUID approach that has not been previously presented in this 

dissertation. 

6.2.1 Input Uncertainty Level Control 

 The set of uncertain intervals for a system can be depicted as an uncertain region 

in the parameter space for a problem, as seen in previous chapters of this dissertation. 

Recall that the term “parameter space” describes the set of all possible input parameter 

combinations for a system of interest, bounded by extreme upper and lower bounds pub 

and plb.  Figure 6.2 below depicts a two dimensional visualization of a general parameter 

space for a problem comprised of two inputs p1 and p2. Shown within the parameter space 

in Figure 6.2 is an input uncertainty region defined by the upper and lower bounds on 
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both parameters pU and pL (or the uncertain interval [pL , pU]) that a designer would like 

to determine. This figure is very similar to Figure 2.2 with the key difference that no 

nominal parameter value is depicted in Figure 6.2 since the assumption in this chapter is 

that nominal parameter values are unknown.  Instead this figure depicts an uncertain 

region within the parameter space determined only by upper and lower bounds, plb ≤ pL ≤ 

pU ≤ pub. 

 

Figure 6.2: Input Uncertainty Region 

 As can be seen in Figure 6.2, the difference between the size of the input 

uncertainty region (the dark grey rectangle in Figure 6.2) and the region depicting all 

possible parameter combinations (light grey rectangle) can be thought of as the overall 

level of control over the reducible uncertain parameters in the system.  The greater the 

difference in size between the two regions, the lower the level of input uncertainty the 

system will possess. Recall that the RUID approach will use optimization to select the 

upper (pU) and lower (pL) bounds for all input parameters to a system that possess 

reducible uncertainty.  Eqn. (6.1), which is a function of pU and pL, provides a 

formulation for describing the overall level of control over the reducible uncertainty in a 

system. 
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 (6.1) 

 This formulation is adapted from the Investment metric used in previous chapters 

and by Li et al. [2009a], but has eliminated the need for nominal parameter values and 

further penalizes extremely low uncertainty levels through the use of the exponential 

decay function. The metric Ip describes the overall control level over k = 1,…,K uncertain 

parameters, where ∆pk represents the uncertain interval in a single parameter normalized 

by the constant extreme upper and lower bounds on that parameter.  As the elements of 

∆p approach zero when system uncertainty is decreased, the value for Ip will approach 1.  

High Ip indicates the need for greater control over uncertain parameters (e.g. lower 

tolerances or more uncertainty reduction), which will necessarily require a greater 

investment in resources and/or capital. The C in Eqn. (6.1) is a constant that can be 

selected by the designer in order to tune the relationship between uncertainty levels and 

the costs associated with reducing system uncertainty. The larger the value for C the 

more sensitive the value for Ip is to small changes in the values for ∆pk. When solving 

Eqn. (6.1) for Ip throughout this chapter the constant C is set to a value of 5. This value 

was selected based on empirical observations made during the development of this new 

approach and can obviously be adjusted as necessary to fit the needs of a particular 

design problem.  Additionally a value of 0.5 is used for both w1 and w2 throughout this 

chapter, again based on empirical observations.     
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6.2.2 Worst Case Uncertainty Propagation 

 Uncertainty in the inputs to a system leads to a corresponding uncertainty, or 

variation, in the system’s outputs.  In the case of a system that a designer would like to 

optimize using Eqn. (2.2), uncertainty in p will lead to some level of variation in both f 

and g as shown in Figure 6.3.  For visualization purposes Figure 6.3 depicts a notional 

system consisting of two uncertain parameters in the parameter space, the resulting 

variation of two objective functions in the objective or performance space, and the 

variation in two constraint functions shown in the constraint space.  As with the 

parameter space defined previously, the objective and constraint spaces describe the set 

of all possible objective and constraint function combinations possible, respectively, for a 

particular level of input uncertainty. 

 Regardless of how a system’s input uncertainty is quantified it is essential to 

understand the effect of that uncertainty on the performance of the system.  If the input 

uncertainty to a system is quanified with upper and lower bounds, one means for 

quantifying the effect of that uncertainty is to search for the minimum and/or maximum 

values of all output functions of interest (i.e. objectives and constraints) using a simple 

single objective optimization procedure for each maximum and/or minimum output 

value. For example, if a designer is interested in the maximum possible value for an 

objective function (or the worst case value if the objective is to minimize function fi) then 

the optimization problem given in Eqn. (6.2) should be solved. In Eqn. (6.2) the vector pv 

is again used, which represents a single realization of the uncertain values of the vector p 

bounded by pU and pL.  This vector is again used as the decision variables when 
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attempting to quantify the effects of a set of known input uncertain intervals on a 

system’s outputs.   
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 If the minimum value for an objective function (or best possible performance) is 

desired, then the optimization problem in Eqn. (6.3) must be solved. 
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 Lastly, if a designer is interested in the feasibility of a system, then it is important 

to know if any of the constraint functions will potentially have a value greater than 0.  As 

such, in order to check the feasibility of a system under uncertainty it is necessary to 

check the maximum possible values for all constraint functions.  This can potentially be 

accomplished by solving Eqn. (6.4) for each constraint function. 
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Figure 6.3: Uncertainty Propagation 
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 If a designer is attempting to solve the multi-objective optimization problem 

given in Eqn. (2.2) for a system known to possess input parameter uncertainty, the worst 

case variation in the system’s objective functions f can be quantified with a single value 

as shown in Eqn. (6.5). 
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In the above equation fi,max and fi,min are found using Eqn. (6.2) and Eqn. (6.3) 

respectively. Recall that solving Eqns. (6.2) and (6.3) for fi,max and fi,min requires that the 

values for pU and pL be specified. The top half of Figure 6.4 graphically shows Vf for a bi-

objective system. The denominator of each ∆fi value in Eqn. (6.5) consists of two 

constant normalization factors fi,good and fi,bad which must be determined prior to 

evaluating Eqn. (6.5).  These normalization or scaling factors should be selected to ensure 

that each ∆fi value considered is between 0 and 1, with 0 describing no variation and 1 

describing maximum variation in the i
th

 system objective given a specified level of 

system uncertainty. This scaling makes it possible to compare multiple ∆fi values of 

drastically different orders of magnitude using a ||.||∞ as given in Eqn. (6.5). The method 

for determining these scaling factors within the context of the RUID approach will be 

discussed in Section 6.3. 

 As stated previously, variation in p may very well lead to system failure, or 

infeasibility.  Recall that in Eqn. (2.2) infeasibility results when at least one of the 

system’s constraint functions has a value greater than 0.  In order to check this, given a 

specified level of system input uncertainty, Eqn. (6.6) can be evaluated. 
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 As with Eqn. (6.5), Eqn. (6.6) is solved for specified values of pU and pL. If the 

value for Vg is greater than 0 the system may become infeasible given the specified input 

uncertainty intervals.  This formulation is used to find Vg in a single step in order to avoid 

the computational effort that could result from considering each constraint function 

independently through the use of Eqn. (6.4).   

 The bottom half of Figure 6.4 graphically depicts Vg for a two constraint system 

for two different levels of input uncertainty.  In Figure 6.4 the dark grey uncertainty 

interval will result in a Vg value greater than 0 and an infeasible system. Also shown in 

Figure 6.4 is the correlation between Ip, or input uncertainty control, and Vf and Vg.  If a 

designer can afford to place greater control over system uncertainty the most likely 

outcome will be lower variations in system outputs and in some cases will eliminate the 

potential for system failure. 

  

Figure 6.4: Propagated Uncertainty Comparison 

p2

p1

f2

f1
g2

g1

Lower Ip

Higher Ip

Infeasible Vg

Feasible Vg

Higher Vf

Lower Vf



132 

 

6.2.3 Anchor points 

If all the elements of the vector p are known with certainty (i.e., p = pU = pL) then 

Eqn. (2.2) can be solved in a deterministic sense for the optimal values for p.  The set of 

Pareto optimal solutions that are produced describe the best performance attainable for 

the system in a multi-objective sense.  Each of the determined Pareto optimal solutions 

corresponds to a different deterministic solution for the elements of the vector p, 

assuming the values for p are known with certainty. However, as previously stated 

uncertainty in the input parameters for most systems is unavoidable. As a result, the 

values for p may very well possess some uncertainty and thus the performance of the 

obtained deterministic Pareto optimal solutions cannot be guaranteed. Figure 6.5 depicts 

this likely scenario in the parameter space for a two parameter system given a single 

objective function contour for simplicity. 

 

Figure 6.5: Variation from Deterministic Optima 

 As shown in Figure 6.5, for some realizations of p the performance of the system 

may improve (f may decrease), while for other realizations the performance may degrade 

and the designer cannot reliably know which of the two will occur. This relationship 

between input uncertainty and output variation is present in all outputs, including 

objectives and constraints, further exacerbating the issue. When optimizing a system 
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under uncertainty a designer must decide what realizations of p to focus on in the 

optimization problem as a result of these potential variations. As previously discussed, a 

designer of a system that possesses input uncertainty could optimize the expected value 

of the system’s outputs in a statistical sense if data is available, or if data is not available 

the designer could optimize the system around an assumed nominal design.  In either case 

the designer must make an assumption about the system and in extreme cases the system 

may perform very different from the expected or nominal performance, especially in 

multi-objective problems.   

 

Figure 6.6: RUID Anchor Points 

 An alternate approach to the challenge of optimizing a design under uncertainty is 

to treat the deterministic Pareto optimal solution set for a system of interest as the ideal 

performance of the system.  Using this approach a designer would like the system’s 

performance under uncertainty to vary as little as possible from the deterministic optimal 

performance.  To this end a Pareto optimal set of solutions for a system of interest, 

determined by solving Eqn. (2.2) for p in a deterministic sense, can be treated as target 

values, or anchor points, for a follow on optimization under uncertainty procedure, as 

shown in Figure 6.6. 
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6.2.4 Anchor Point Upper and Lower Bounds 

 Once a set of M anchor points pA is obtained, as detailed in the previous section, 

the uncertainty associated with the m
th

 anchor point (pA
(m)

) can be described by the 

distance from the anchor point to the upper/lower bounds on all uncertain parameters, as 

shown in Eqn. (6.7).   
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The vectors dU and dL have the same number of elements as pA and describe the 

uncertainty associated with the m
th

 anchor point as shown in Figure 6.7.  The values for 

dU and dL should be limited to values between 0 and a designer specified maximum 

distance, which could typically be some percentage of the difference between the extreme 

upper and lower bounds (pub and plb) on the system’s inputs. The index of the anchor 

point m and the anchor point distances dU and dL associated with that anchor point will be 

selected systematically by the RUID approach thus defining the upper and lower bounds 

on the reducible uncertain parameters of a system. 

 

Figure 6.7: Uncertain Region for the m
th

 Anchor Point 
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6.3 REDUCIBLE UNCERTAIN INTERVAL DESIGN (RUID) 

 As previously stated the Reducible Uncertain Interval Design (RUID) approach 

determines the optimal upper and lower bounds for input parameters to a system that 

possesses reducible uncertainty.  The resulting solutions will produce minimal variation 

from the deterministic Pareto optimal performance of the system provided a maximum 

level of input uncertainty in a multi-objective sense.  This is accomplished by solving two 

different multi-objective optimization problems in sequence. First the system is 

optimized in a deterministic sense with respect to the engineering objectives f and the 

parameters of interest that possess reducible uncertainty p in order to provide a set of 

anchor points.  Then a second bi-objective optimization problem is solved that seeks to 

maximize the reducible uncertainty in the system’s inputs (minimum Ip value as given in 

Eqn. (6.1)) provided the solution contains a deterministic anchor point, while 

simultaneously minimizing the variations of the systems outputs. The computational 

efficiency of the approach is improved through the use of kriging meta-models built 

using function call data obtained during the deterministic optimization procedure and 

refined as necessary during the second optimization under uncertainty procedure.   

6.3.1 RUID Formulation 

 As previously stated, the RUID approach involves sequentially solving two 

optimization problems.  The first stage optimization problem optimizes the performance 

of the engineering system with respect to the uncertain parameters in a deterministic 

sense, thus providing a set of anchor points for use in the second stage of the approach.  

This is accomplished by solving Eqn. (2.2). The first stage optimization problem also 

generates a large amount of system information (f(pv) and g(pv) data) which is retained 
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and used to generate system output function scaling factors and kriging meta-models of 

the system output functions for use in the second stage optimization problem.  The 

second stage problem then focuses on solving the optimization problem given in Eqn. 

(6.8). 
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 The decision variables in Eqn. (6.8) are the index of the anchor point of interest 

m, along with the vectors dU and dL which describe the upper and lower bounds of the 

input uncertainty with respect to the m
th

 anchor point.  When a set of M anchor points are 

known, the index m can be used to look up the values for pA
(m)

 and then Eqn. (6.7) can be 

used to determine the upper and lower bounds pU and pL on all reducible input parameters 

given dU and dL. This obviously represents an increase in the dimensionality of the 

original problem, but that increase allows for an extremely low number of a priori 

assumptions as listed in Section 6.1. Recall that Vf is determined by solving Eqn. (6.5) 

given pU and pL.  Ip also depends on pU and pL and is determined by solving Eqn. (6.1). 

Lastly Vg is determined by solving Eqn. (6.6), again given pU and pL. The other two 

constraints listed in Eqn. (6.8) are optional and simply allow the designer to specify 

boundaries on Vf and/or Ip if desired. It is important to note that solving Eqns. (6.5) and 

(6.6) both involve solving single objective optimization problems.  As a result, Eqn. (6.8) 



137 

 

is a two-level nested optimization problem. This nested structure can obviously result in 

high computational effort as is the case for many design optimization approaches that 

include parameter uncertainty as discussed in Section 6.1. The computational effort of the 

RUID approach is reduced through the use of kriging meta-models, as discussed in 

Chapter 2, built using the data retained during the first stage optimization problem. This 

process will be discussed in detail in the following sections.   

 Eqn. (6.8) uses a bi-objective optimization framework to place system objective 

function variations (Vf) in tension with the cost required to control (or reduce) system 

input uncertainty (Ip).  These two competing objectives are formulated such that for a 

given decrease in output uncertainty, which is desirable, there is an associated increase in 

cost to the designer, which is unavoidable.  Additionally, the use of an anchor point set 

and the vectors dU and dL as the decision variables in Eqn. (6.8) makes it possible for the 

RUID approach to guarantee that any uncertain solution produced by the approach (as 

defined by pU and pL) will be as close to a deterministic Pareto optimal design for the 

system as possible.  This is because any uncertain solution produced by Eqn. (6.8) will 

necessarily contain a deterministic Pareto optimal solution within the bounds of the 

uncertain intervals of that solution.  

6.3.2 Steps of the RUID Approach 

Figure 6.8 contains a flow chart for the overall RUID algorithm.  
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Figure 6.8: RUID Approach 

The steps of the approach are as follows: 

Step1:  Solve Eqn. (2.2) for p* (optimal p) in a deterministic sense (i.e. no 

uncertainty).  During this initial optimization problem retain all function call data. 

Step 2: Deterministic Pareto optimal solutions obtained provides the set of anchor 

points pA. 

Step 3: Search set of retained function call data for the maximum and minimum 

observed values for each of the fi objectives functions.  Set maximum and minimum 
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scaling factors in Eqn. (6.5). Recall that Eqn. (6.6) does not require scaling factors for 
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Step 5:
 
Solve Eqn. (6.8) to determine Pareto optimal set of upper and lower 

bounds on all input parameters pU and pL.  Solving Eqn. (6.8) requires iteratively varying 

the selected anchor point index m and the variables dU and dU and then solving Eqns. 

(6.2), (6.3) and (6.6) to obtain Vf , Ip and Vg. This process is called the inner problem and 

consists of solving numerous single objective optimization problems focused on 

determining the maximum variations of all system output function given specified levels 

of input uncertainty.  Figure 6.9 contains a flow chart of the inner problem. 

 

Figure 6.9: RUID Inner Problem 
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Step b: Solve Eqns. (6.2), (6.3) and (6.6) for each system objective and/or the 

system constraint functions.  For each function the meta-model built during Step 4 is used 

in lieu of the actual system analysis models. 

Step c: If the kriging error estimate for any evaluation is too high, the actual 

function is evaluated to ensure accuracy and the newly obtained function call is retained 

to refine meta-model(s). 

Step d: Rebuild meta-model(s), if necessary. 

6.3.3 RUID Computational Efficiency 

The unique capability of the kriging interpolation technique makes it possible for 

the RUID approach to be more efficient.  To solve a multi-objective optimization 

problem in a deterministic sense using MOGA requires G generations and H populations, 

resulting in a computation effort of the order O(GH).  Solving a multi-objective 

optimization problem that includes input uncertainty requires the use of an inner problem 

that consists of solving several optimization problems for each population point 

considered in each generation.  In the case of the RUID approach the inner problem 

requires solving an additional set of single objective maximization problems, one for 

each of the I objective functions and one for all J constraint functions considered 

together.  If each single objective inner optimization problem requires a total of U 

function calls, the resulting computational effort for RUID would be of the order 

O(GH(2I+1)U).  Since the RUID approach involves solving both a deterministic and 

uncertain optimization problem, the effort required by RUID in the absence of any 

surrogate approximation would be of the order O(G1H1+G2H2(2I+1)U) in the worst case, 
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where the subscript 1 represents the deterministic first stage problem, while the subscript 

2 denotes the second stage optimization problem.  

 Clearly this level of computational effort could quickly become unacceptable for 

any system that consists any more than a few objective and/or constraint functions.  

However, using meta-models built from the function call data generated by the first stage 

deterministic optimization procedure a significant savings is possible, even considering 

the additional V function calls required by the inner problem when the kriging predicted 

error [Martin and Simpson, 2005] is too high (as shown in Figure 6.9).  The resulting 

meta-model assisted algorithm would have a computational effort of the order 

O(G1H1+V), which yields a total savings of G2H2(2I+1)U -V function calls.  In this work 

a kriging predicted error of 1% of the function value was considered too high, but this 

value can be adjusted by a designer as appropriate.  The accuracy of this technique will 

be demonstrated in the next section for each of the example problems. 

6.4 EXAMPLES AND RESULTS 

 In this section the RUID approach is applied to one numerical and two 

engineering example problems of varying complexity, as presented in the first three 

subsections.  The accuracy of the meta-modeling strategy used will be addressed in 

Section 6.4.4. 

6.4.1 Numerical Example 

 The first example problem presented is a two-dimensional constrained multi-

objective problem called TNK [Deb, 2001].  The formulation of TNK is provided in Eqn. 

(6.9). 
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 Since TNK is a two dimensional problem where the two objectives are to 

minimize the two decision variables, the results can be visualized graphically.  RUID was 

applied to the TNK problem using MOGA as the optimizer.  A population size of 40 and 

100 generations were used in the first stage and the total realized computational effort 

was 2,218 function calls.  In the second stage optimization a population size of 80 and 

100 generations was used and required only 4,657 additional function calls (required 

when the kriging predicted error was too high), vice the maximum of 40,000,000 calls 

that could have been required if meta-modeling had not been used. This maximum 

number was calculated by multiplying the number of generations (G = 100) by the 

population size (H = 80) by the sum of 2 times the number of objectives (I = 2) plus one 

(for the Vg optimization) times the number of function calls required for each inner 

problem optimization on average (U = 1000) using the procedure discussed in Section 

6.3.3.  

 The second stage optimization produced the Pareto solutions provided in Figure 

6.8, while the anchor points produced by the first stage optimization along with a set of 

four representative RUID solutions are depicted in the parameter space for the TNK 

problem in Figure 6.11.  The Vf, Ip and determined upper and lower bounds for the four 

representative solutions are provided in Table 6.1 and are called out in Figure 6.10 with 
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grey fill for comparison purposes.  To obtain these solutions Vf was constrained to be less 

than 0.1 (or 10% maximum variation in system objective(s)) and the maximum values for 

dU and dL were both limited to 10% of the maximum values for p as shown in Eqn. (6.9).  

 

Figure 6.10: RUID Pareto Solutions for TNK Problem 

Table 6.1: Select RUID Pareto Points for TNK Problem 

 
Vf Ip pU,1 pL,1 pU,2 pL,2 

a 0.016 0.807 0.519 0.495 0.867 0.843 

b 0.024 0.727 0.832 0.796 0.561 0.529 

c 0.031 0.651 0.640 0.594 0.820 0.778 

d 0.038 0.590 1.050 0.994 0.151 0.101 
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Figure 6.11: TNK Problem Parameter Space 

 Figures 6.10 and 6.11 clearly show the capability of the RUID approach to 

provide a designer with a set of design alternatives for the upper and lower bounds on the 

system’s two inputs, leaving the designer with the freedom to choose the level of 

acceptable output variations based on required input uncertainty control (or reduction).  

For example, solution a has an extremely low Vf value, but achieves that low output 

variation through tight control over the uncertainty in p1 and p2, as demonstrated by the 

extremely high Ip value and the extremely small region of uncertainty associated with that 

solution in Figure 6.11. This example problem is a difficult bi-objective optimization 

problem and shows the capability of the RUID approach to find uncertain solutions that 

do not violate any constraints while simultaneously achieving as close to deterministic 

Pareto optimal performance as possible given the specified level of input uncertainty. 
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 The second example problem presented is a simple two-dimensional engineering 
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chosen again in order to again present the obtained uncertain interval results graphically 

thus clearly demonstrating the capabilities of the RUID approach further.  Figure 6.12 

depicts the system graphically while Eqn. (6.10) formulates the corresponding 

optimization problem. 

 

Figure 6.12: Tube Design Problem 
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 Eqn. (6.10) was first solved in a deterministic sense using a population size of 40 

and 100 generations and required 1,591 function calls.  As before this procedure 

produced a set of deterministic Pareto optimal points, which again served as the anchor 

points for the second stage of the RUID approach.  Next, Eqn. (6.8) was solved by 

MOGA using a population size of 80 and 100 generations.  For this problem, as with the 

previous example, the maximum possible number of required function calls that would 

have been required if kriging had not used was 40,000,000.  In reality the second stage 

actually only required an additional 4,922 function calls, resulting in a total function call 

R

t

F
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savings of almost 100%. This savings was calculated by subtracting the total additional 

function calls required from the maximum total possible, and then dividing that number 

by the maximum possible function calls. The population size was increased from 40 to 80 

in the second stage optimization procedure in order to better converge given the increased 

dimensionality of the second stage of the RUID problem.  Recall that a deterministic 

optimization procedure determines the values for each of the elements of the vector p, 

while the second stage optimization in the RUID approach solves for both the upper and 

lower bound on each of the elements of the vector p.  As before Vf was again limited to a 

maximum of 0.1 and for this problem the anchor point distance vectors (dU and dL) were 

varied between 0 and 10% of the difference between the extreme upper and lower bounds 

for R and t provided in Eqn. (6.10).  

 Figure 6.13 shows the Pareto optimal frontier obtained by solving Eqn. (6.8) for 

the tube design problem shown in Eqn. (6.10).  Each solution on the Pareto frontier 

depicts an optimal option for the upper and lower bounds on the two input parameter for 

the tube design problem, the radius of the tube R and the thickness of the tube t. The 

entire Pareto frontier is shown on Figure 6.13, while four representative solutions have 

been called out with grey fill as with the previous example.  The values for the RUID 

determined upper and lower bounds pU and pL, along with the corresponding Vf and Ip 

values for each of the four representative solutions are provided in Table 6.2.  Lastly the 

optimal uncertain regions for each of the four representative solutions have been plotted 

in the parameter space for the tube design problem in Figure 6.14, along with the 

deterministic Pareto optimal solutions which served as the anchor points for the RUID 
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algorithm.  Figure 6.14 also includes constraint function contours to define the feasible 

domain of the problem, along with objective function contours for comparison purposes. 

 

Figure 6.13: RUID Pareto Solutions for Tube Problem 

Table 6.2: Select RUID Pareto Points for Tube Problem 

 
Vf Ip pU,t pL,t pU,R pL,R 

a 0.026 0.728 0.068 0.066 0.139 0.134 

b 0.031 0.650 0.064 0.062 0.140 0.136 

c 0.040 0.559 0.052 0.049 0.153 0.148 

d 0.053 0.446 0.058 0.054 0.149 0.143 

 

 

Figure 6.14: Tube Problem Parameter Space 
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 Solution a in Table 6.2 and Figure 6.13 and 6.14 has extremely low variation in 

the system’s objective functions, but in order to achieve that low variation tight control 

over the input parameters is necessary, including only 0.005 m of uncertainty in R and 

only 0.002 m  of uncertainty in t.  Solution d on the other hand has significantly more 

variation in the objective (higher Vf) but is also much cheaper to obtain in that it has a 

correspondingly low Ip value.  If the designer of the tube system is happy with the 

variation level associated with solution d, then that design can be achieved with much 

lower tolerances on R and t.  However, if it is extremely important that the variation in 

the performance of the tube design be as low as possible, then the designer can select the 

further reduced uncertainty in R and t as specified by solution a.  The RUID approach 

provides designers with a suite of options and tradeoff, such as those discussed above, to 

aide in determining input parameter tolerances and potential uncertainty reductions 

without making any a priori assumptions about the statistical, expected or nominal values 

of the parameters.  It is also important to note that in Figure 6.14 all the solutions 

depicted contain a deterministic optimal anchor point within the uncertain regions 

determined by the RUID approach based on the formulation of the approach and thus 

guarantee as close to deterministic Pareto optimal performance as possible under 

uncertainty.   

6.4.3 Heat Exchanger Design Problem 

In order to demonstrate the RUID approach on a more complicated system, a 

thermal-fluid problem taken from Magrab et al. [2005], was adapted into the bi-objective 

optimization problem given in Eqn. (6.11) and depicted graphically in Figure 6.15.  This 

problem is concerned with the design of a shell and tube heat exchanger that uses a flow 
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of cold water to remove heat from a flow of hot water.  One fluid flows through a set of 

small tubes mounted inside a larger shell, while the other fluid flows over the smaller 

tubes within the shell.  The overall system objectives are to maximize the heat transfer 

rate of the heat exchanger (a measure of how much energy is moved from the cold fluid 

to the hot fluid) while simultaneously minimizing the length of the heat exchanger.  The 

system consists of 6 input parameters (including 1 discrete parameter), 2 objectives and 

multiple thermal-fluid, performance and geometric constraints, as shown in Eqn. (6.11).  

For details on this system see Magrab et al. [2005].  

 

Figure 6.15: Shell and Tube Heat Exchanger Problem 
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 The heat exchanger problem was solved using the procedure described in Section 

6.3 just as with the previous two example problems. The Pareto set of uncertain solutions 

produced are shown in Figure 6.16 and as with before a set of 4 representative solutions 

have been called out with dark grey fill and the details for these 4 solutions are shown in 

Table 6.3.  As with the previous examples both the first stage and second stage problems 

were solved with MOGA using 100 generations in each stage. When considering both the 

function calls required by the first stage optimization and the additional function calls 

required by the inner problem of the second stage problem for the cases when the meta-

model predicted error was too high, an overall computational savings of about 100% was 

again observed when compared to the worst case as described in Section 6.3.3, despite 

the increased dimensionality and increased number of constraint functions in this 

problem. 

 

Figure 6.16: RUID Pareto Solutions for Heat Exchanger 
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Table 6.3: Select RUID Pareto Points for Heat Exchanger Problem 

 
Vf Ip 

 
h

m&  
c

m&  Ds idtube stubes ntubes 

a 0.004 0.51 
pU 19.84 11.68 0.32 0.11 0.03 149 

pL 19.73 11.63 0.28 0.10 0.03 145 

b 0.006 0.41 
pU 19.54 11.10 0.33 0.12 0.03 146 

pL 18.89 11.04 0.29 0.10 0.03 140 

c 0.008 0.36 
pU 19.90 11.68 0.32 0.13 0.03 148 

pL 19.36 11.60 0.26 0.10 0.03 142 

d 0.043 0.29 
pU 19.73 10.96 0.33 0.13 0.03 150 

pL 18.81 10.53 0.30 0.10 0.03 142 

 

 

Figure 6.17: Heat Exchanger System Performance 
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forward in the process of developing the heat exchanger by focusing more attention and 

resources on pumps (to control flow rate) and interior geometry (to control tube space).  

 As with the previous example, these solutions are as close to the deterministic 

Pareto optimal performance as possible given the level of uncertainty associated with 

each solution.  Since the design space for this problem cannot be visualized to 

demonstrate this fact the worst case objective function values for of the RUID optimal 

solutions included in Table 6.3 have been plotted over the deterministic optimal solutions 

in the objective space for the problem in Figure 6.17.  In the figure the four representative 

solutions provided in Table 6.3 are called out with grey fill for emphasis.  The RUID 

solutions are shown with square markers, while the anchor points are shown with circles.  

As expected, the RUID solutions are all reasonably close to the deterministic Pareto 

frontier, suggesting that even in the worst case the uncertain solutions found using the 

RUID approach will provide objective performance that is very close to the deterministic 

optimal performance for the system. 

6.4.4 Meta-Model Accuracy 

 In order to demonstrate the accuracy of the meta-model assisted inner problem 

used by the RUID approach, each of the obtained Pareto optimal solutions for the first 

two example problems were verified by recalculating the Vf and Vg values for each 

optimal pU and pL solution obtained using actual function calls vice the kriging meta-

models.  The results obtained were then compared and a percent error value was 

calculated assuming the function call obtained solution was the true solution.  The 

average percent error values (µ) along with the standard deviation (σ) of those percent 

error values are provided in Table 6.4, which clearly show that the meta-model assisted 
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RUID approach is capable of accurately representing the objective and constraint 

functions of the example problems presented in this chapter. 

Table 6.4: Meta-Model Accuracy Statistics 

 Vf Percent Error Vg Percent Error 

 µ σ µ σ 

TNK -3.2e-16 1.9e-15 0 0 

Tube Design 7.6e-17 7.2e-16 0 0 

 

6.5 SUMMARY OF RESEARCH THRUST 4 

A new approach for optimal design under uncertainty, called Reducible Uncertain 

Interval Design (RUID), has been presented. This approach is focused on determining the 

appropriate level of uncertainty for reducible sources of system uncertainty.  RUID does 

not require statistical quantification of uncertainty, which may be difficult to obtain or 

unavailable, and relaxes many of the assumptions required by other current approaches.  

RUID places minimizing objective function variation in tension with the cost of 

producing that minimal variation in a bi-objective optimization framework.  Furthermore 

the RUID approach forces the worst case objective performance of an uncertain design, 

in a multi-objective sense, to be as close as possible to the deterministic Pareto optimal 

performance of the system.  The efficiency of this new approach is significantly 

improved through the use of kriging meta-models within the inner problem of the RUID 

algorithm.  The kriging meta-models used are built using data obtained early in the 

algorithm and continually refined throughout the algorithm in order to ensure accuracy. 

This process makes it possible to conduct optimization under uncertainty for only a 

slightly higher computational effort than is required to complete a deterministic 

optimization of the system. The capabilities and efficiency of the of the RUID approach 
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were demonstrated through three example problems of varying difficulty.  These example 

problems showed how the RUID approach can be used to determine optimal uncertain 

intervals for reducible input parameters that will ensure as close to deterministic Pareto 

optimal performance as possible.  The results produced by the RUID approach can then 

be used by designers to specify tolerances, materials and/or manufacturing processes.  

Additionally the RUID results can also be used to gain a better insight into a system’s 

uncertain parameter and then focus attention and resources on those uncertainties that are 

the most important to control in order to ensure minimal variations in the system’s overall 

performance. 

The RUID approach makes it possible for designer to consider reducible, or 

controllable, uncertainty in an optimization framework in an efficient manner without the 

need for potentially erroneous or degrading a priori assumptions about system 

uncertainty levels.  This capability makes it possible for uncertainty to be considered 

earlier in the design process and with less available parameter information. The results 

produced by this new approach are compelling, especially given the fact that the 

approach requires virtually no parameter uncertainty information.  However, this new 

approach is not without its own limitations and weaknesses.  First and foremost this 

approach requires an overall increase in the dimensionality of the problem as it 

determines upper and lower bounds on all parameter values.  The approach also requires 

that two optimization procedures be performed in sequence with the second stage 

optimization containing a set of nested inner optimization problems. Both the increase in 

dimensionality and the nested structure have the potential to cause extreme computational 

issues for many problems, including the second example presented in this chapter.  
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Kriging meta-models were used in the approach in an effort to reduce this computational 

burden, but meta-modeling in general is difficult to employ effectively for some systems 

and possesses its own drawbacks including decreased accuracy. Obviously these issues 

must be considered before employing the RUID approach. 

However, in spite of these drawbacks the new RUID approach is clearly a useful 

new method for optimization under reducible uncertainty that does not require a designer 

to supply numerous pieces of potentially unavailable information about the nature and 

quantification of a system’s uncertain parameters. The RUID approach is capable of 

producing optimal solutions for a system that a designer can then use to specify materials, 

manufacturing process and/or tolerances.  The solutions produced by this approach, in the 

form of upper and lower bounds on all uncertain system parameters, will assure a 

designer of minimal variations in a system’s objectives for a minimal cost and provide as 

close to deterministic optimal performance as possible. 
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CHAPTER 7: CONCLUSIONS 

This dissertation has presented four distinct strategies for understanding and 

optimally mitigating the degrading effects of reducible input uncertainty on both single 

and multi-disciplinary engineering systems.  Chapter 1 discussed the motivation for this 

research, along with the specific focus and assumption of this work.  Chapter 2 then 

established some necessary background information and terminology that was used 

through the dissertation.  Chapters 3 through 6 outlined the details of the four interrelated 

research thrusts of this dissertation. Each research thrust built on or extended the work 

presented in the preceding thrust in an attempt to overcome inherent limitations or to add 

increased functionality.  This final chapter is organized as follows: Section 7.1 

summarizes the key conclusions of each research thrust, Section 7.2 details the main 

contributions of this work and Section 7.4 provides some directions for future research. 

7.1 DISSERTATION SUMMARY 

In this section each of the four research thrusts will be summarized and the key 

conclusions of each research thrust will be reviewed. 

7.1.1 Research Thrust 1 Conclusions 

In Chapter 3 a new global sensitivity analysis approach for fully coupled multi-

disciplinary, multi-output engineering systems under uncertainty, called Multi-

dIsciplinary Multi-Output Sensitivity Analysis (MIMOS) was presented.  This approach 

extended the work of Li et al. [2009a] to multi-disciplinary systems and was built on the 

multi-disciplinary design optimization framework proposed by Aute and Azarm [2006].  
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This new approach assumes that input parameter uncertainty is quantified in the form of 

intervals about a set of predetermined nominal parameter values for a candidate design 

and that the interval uncertainty is reducible.  The approach then solves for the optimal 

level of uncertainty reduction at both the system and sub-system level in a multi-

objective sense.  The competing objectives in this approach are the level of reduced 

variations in the system and sub-system outputs, here called R, placed in tension with the 

cost of achieving those reduced variations.  This “cost” is a function of the required 

reduction in input uncertainty and is called Investment in this work. 

The capabilities of the MIMOSA approach were demonstrated through two 

example problems, including a numerical example and an engineering example.  

MIMOSA was shown to be able to identify both critical parameters (the uncertain input 

parameters that have the greatest effect on system variations) and critical sub-systems 

(the sub-system(s) that have the greatest effect on the overall performance of the system 

as a whole under uncertainty).  Both examples specifically present how the MIMOSA 

approach can identify the sub-system in a decomposed multiple sub-system problem that 

is the most sensitive to the uncertainty and has the greatest effect on the system level 

performance under uncertainty. The engineering example also demonstrates how 

MIMOSA is capable of isolating parameters whose uncertainty greatly influence system 

and sub-system outputs in contrast to those who do not.  

The MIMOSA approach is very effective but not without its downsides.  The 

approach does not consider engineering feasibility and thus in not effective in analyzing 

designs where input uncertainty levels may lead to potential engineering failure.  

Additionally MIMOSA requires that a designer possess a preexisting or preferred 
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candidate design in the form of nominal parameter values and known parameter 

uncertainties, which may not always be available.  Furthermore, the MIMOSA approach 

nests a sensitivity analysis optimization problem within a multi-level MDO framework, 

resulting in a potentially high computational cost for many applications. 

7.1.2 Research Thrust 2 Conclusions 

The work presented in Chapter 4 simply extended the MIMOSA approach to also 

consider engineering feasibility, thus effectively overcoming one of MIMOSA’s major 

shortcomings.  This new sensitivity analysis approach for multidisciplinary systems 

under reducible interval input uncertainty is called Multi-dIciplinary multi-objective 

COmbined Sensitivity Analysis (MICOSA).  In contrast to MIMOSA this approach 

differentiates between the objective function variations and constraint function variations 

for a candidate design.  MICOSA then uses sensitivity analysis techniques to determine 

the optimal combination of uncertainty reductions at both the system and sub-system 

levels that will optimally reduce the variation in all system and sub-system outputs while 

simultaneously ensuring engineering feasibility.   

This new approach was demonstrated through both a single disciplinary example 

(in the form of a UUV propulsor model) and a multi-disciplinary example (the entire 

UUV system in a decomposed fashion).  The results obtained were shown to be very 

similar to those produced by the MIMOSA approach, with the key distinction of also 

being able to guarantee feasibility under any retained uncertainty.  The single disciplinary 

propulsor model example specifically demonstrated the capability of the approach to 

ensure feasibility through a side by side comparison.  The multi-disciplinary UUV 

example demonstrated the ability of the MICOSA approach to detect critical sub-systems.  
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Furthermore, the UUV example demonstrated the ability of the Rc metric to apply limited 

uncertainty reduction resources to critical constraint variations prior to using uncertainty 

reduction to reduce objective variations.   

This new approach is a significant improvement over MIMOSA, but was very 

limited in its scope.  MICOSA requires that uncertainty reduction alone will be sufficient 

to ensure engineering feasibility under retained uncertainty in all cases, which may not 

necessarily always be possible.  For many designs no amount of uncertainty reduction 

may be sufficient to ensure feasibility.  Additionally MICOSA also shares MIMOSA 

potential for high computational cost due to the nested structure of the approach. 

7.1.3 Research Thrust 3 Conclusions 

To overcome the key limitation of the MICOSA approach, its assumption that 

uncertainty reduction alone is sufficient to ensure feasibility under uncertainty, a new 

sensitivity analysis approach for single disciplinary systems was developed.  This 

approach, called Design Improvement by Sensitivity Analysis (DISA) was again based 

on the work of Li et al., but it not limited to uncertainty reduction alone.  Like MIMOSA 

and MICOSA it places reduced system output variations in tension with the cost to 

achieve those reduced variation in a multi-objective sense, but allows not just for 

uncertainty reduction but also for small changes to the nominal design of the system.  

Those small changes, called design adjustments, are the key to being able to ensure 

feasibility under uncertainty.  The DISA approach is performed in two distinct stages.  

During the first stage the system is analyzed with respect to uncertainty reduction 

opportunities.  Then in the second stage the nominal parameter values of the candidate 

design are adjusted as necessary (given some level of uncertainty reduction as determined 
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in the first stage) in an effort to produce design solutions that possess an optimal level of 

uncertainty reduction but are also guaranteed to be feasible.  The two stage structure of 

the DISA approach also makes it possible to use system analysis information generated 

during the first stage to build surrogate models of the system for use in the second stage 

procedure, thus greatly increasing the computational efficiency of the approach. 

The capabilities of the DISA approach were demonstrated through two example 

problems of varying complexity.  The DISA approach was applied to a simple two-

dimensional example problem and a more complex engineering example.  The simple 

example clearly demonstrated the ability of the DISA approach to use small design 

adjustments to change the nominal parameter values of a candidate design in order to 

move the candidate design away from active constraints and ensure the feasibility of the 

design under uncertainty.  With the complex example a specific study was performed on 

a single candidate solution produced by the DISA approach to demonstrate the ability of 

the new method for showing a designer which specifics elements of an engineering 

system are the most critical to both the feasibility and performance of the design.  More 

importantly, it was also shown through both examples that the DISA approach is also 

capable of suggesting to a designer how best to use available investment through 

uncertainty reduction and/or small design adjustments.   

The approach proved to be very capable at both ensuring feasibility and reducing 

system variations, in some cases to an even greater extent than would be possible through 

uncertainty reduction alone.  However, the DISA approach like the MIMOSA and 

MICOSA approaches required a large amount of known or predetermined system 

information in the form of a candidate design and known parameter uncertainty intervals 
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about the nominal parameter values of the candidate design.  These a priori requirements 

are limiting the cases where a designer is faced with sources of reducible system 

uncertainty, but does not yet have a system design in place to analyze.  Furthermore, the 

DISA approach relies on surrogate approximation techniques (specifically kriging) to 

ensure a reasonable computational effort. Surrogate approximation techniques are not 

without their own specific sets of drawbacks and limitations [Shan and Wang, 2008].  

Additionally, the DISA approach is currently only applicable to single disciplinary 

systems. 

7.1.4 Research Thrust 4 Conclusions 

As a result of the limiting requirements of the previous three research thrusts, a new 

more general approach for the design of multi-objective engineering systems under 

reducible interval uncertainty was developed.  This approach, called Reducible Uncertain 

Interval Design (RUID) eliminates the need for candidate designs, known uncertain 

intervals and nominal parameter values.  RUID simple searches the parameter space of a 

system in an effort to find the optimal upper and lower bounds for all system input 

parameters that are known to possess reducible uncertainty.  The solutions produced are 

optimal in the sense that RUID places minimizing objective function variation in tension 

with the cost of producing that minimal variation in a bi-objective optimization 

framework.  Furthermore the RUID approach forces the worst case objective 

performance of an uncertain design, in a multi-objective sense, to be as close as possible 

to the deterministic Pareto optimal performance of the system.  The computational 

efficiency of the approach is again improved through the use of surrogate models which 
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are again developed using information obtained early in the approach and then refined 

over time as the approach converges to the optimal uncertain interval solutions. 

The capabilities of the RUID approach were demonstrated through three example 

problems of varying complexity and the results produced were quite compelling.  The 

first two example problems presented where both two-dimensional problems of varying 

complexity and both graphically demonstrated the capability of the approach to produce 

optimal upper and lower bounds for all reducible input parameter that guaranteed 

feasibility while simultaneously being as close to the deterministic Pareto frontier of the 

problem as possible.  The complex engineering example further demonstrated the ability 

of the approach to draw a designer’s attention to an engineering system’s most critical 

uncertain input parameters.   

The RUID approach is a sensitivity analysis inspired approach for the design of 

multi-objective systems under reducible systems that does not require statistical 

information or any other limiting a priori information about the system or its inputs.  This 

makes the RUID approach useful to designers focused on answering uncertainty 

reduction questions much earlier in the design process and with much less required 

information and/or system knowledge.  The main drawback of the RUID approach is the 

associated computational effort.  Attempts were made to address this issue through the 

use of kriging meta-models, but as pointed out in the previous subsection meta-modeling 

is not without its own significant drawbacks.  As with all the approaches presented in this 

dissertation, virtually all approach for design under uncertainty must determine the 

effects of uncertainty on any design solution considered within the approach.  This 

assessment of the effects of uncertainty often involves an optimization procedure, which 
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necessarily then requires that the approach consists of solving nested optimization 

problems.  This nested structure is what produces the high computational expense of the 

RUID approach, and many other approaches optimization under uncertainty approach for 

that matter.  Furthermore, RUID is only presently applicable to single disciplinary 

systems. 

7.2 MAIN CONTRIBUTIONS 

Several new and novel sensitivity analysis based approaches for optimally 

mitigating the effects of reducible interval uncertainty on single- and multi-disciplinary 

systems have been presented in this dissertation.  The specific key contributions of this 

work to the design research community are outlined in the following paragraphs. 

The MIMOSA approach presented in Chapter 3 provided a new framework for 

analyzing the effect of reducible interval uncertainty on fully coupled multi-disciplinary, 

multi-output systems.  As previously stated this approach is capable of determining the 

relative importance of different uncertain inputs and of different sub-system with regards 

to their impact on the overall performance of the system as a whole.  Furthermore the 

MIMOSA approach provides designer with the combination of uncertainty reduction 

required to optimally mitigate the effect of uncertainty on the system and sub-system 

designs.  The MISMOSA approach was presented in part in Li et al. [2009b]. 

The DISA approach presented in Chapter 5 provides a sensitivity analysis based 

approach for optimally mitigating the effects of reducible input uncertainty on a 

preexisting candidate design that is capable of both ensuring engineering feasibility and 

also providing minimal objective function variations at a minimal require cost through 
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the use of uncertainty reduction mechanisms and small design adjustments.  The DISA 

approach is capable of providing designers with solutions that suggest optimal 

combinations of uncertainty reduction and small nominal parameter value adjustments 

that will improve the overall performance of a candidate design with respect to both 

objective function variations and engineering feasibility under uncertainty.  The DISA 

approach was presented in part in Hamel et al. [2010]. 

The RUID approach presented in Chapter 6 provides new multi-objective design 

under uncertainty approach, inspired by the previously developed SA approaches, that 

can produce optimal solutions in the form of upper and lower bounds (which specify 

uncertain intervals) for all input parameters to a system that possess reducible 

uncertainty. The solutions produced by this approach provide minimal variation in system 

objectives for a maximum allowed level of input uncertainty in a multi-objective sense 

and furthermore guarantee as close to deterministic Pareto optimal performance as 

possible with respect to the uncertain parameters.  This approach requires a very limited 

amount of a priori information and/or assumptions and thus makes it much easier for 

designers to consider the degrading effects of reducible uncertainty much earlier in the 

design process.  The RUID approach was presented in part in Hamel and Azarm [2010]. 

7.3 FUTURE RESEARCH DIRECTIONS 

The final section of the dissertation outlines some directions for potential future 

research.  These ideas either build on or extend the work presented in this dissertation or 

seek to overcome some of the shortcoming of the work presented. 
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7.3.1 Multi-Disciplinary Extension of the DISA and RUID Approaches 

A clear next step, as alluded to earlier in this chapter, would be to develop multi-

disciplinary extensions of the approaches presented in Chapter 5 and 6.  These two new 

approaches are very capable and have many compelling attributes, but are thus far only 

applicable to single disciplinary systems.  This fact limits their applicability to real-world 

engineering design challenges, which as discussed in Chapter 1 will often be multi-

disciplinary in nature.  The framework developed for the MIMOSA approach detailed in 

Chapter 3 could provide a good starting point for this work and multi-disciplinary 

extension of both the DISA and RUID approaches would be particularly useful. 

7.3.2 Approaches for Mixed Reducible and Irreducible Uncertainties 

All the work presented in this dissertation has focused on reducible uncertainty, 

which is clearly an important aspect of engineering design.  However, irreducible 

uncertainty is also obviously a critical issue as evidenced by the numerous robust 

approaches that appear throughout the literature (see [Beyer and Senhoff, 2007]).  As 

discussed earlier in this thesis a few recent approaches have attempted to combine 

irreducible sources of uncertainty and uncertainty reduction mechanisms in a few 

different ways (e.g. [Qu et al., 2003; Li et al., 2009c, Wang et al., 2009]).  This area of 

research deserves more attention and would be useful to real-world design efforts.  The 

distinction between reducible and irreducible uncertainties is somewhat subjective and 

thus distinguishing between these two ways of looking at uncertainty is limiting.  It is 

extremely likely that a designer may not be able to classify various sources of uncertainty 

as either purely reducible or strictly irreducible, especially in the early stages of a design 

process.  Careful work should be undertaken to develop new approaches that can reliably 
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consider both reducible and irreducible sources of uncertainty and that allow designer 

with freedom to change the way uncertainty is classified should better information 

become available. 

7.3.3 More Efficient Nested Optimization Algorithms 

Chapter 1 clearly motivates the need for more efficient strategies for solving nested 

optimization problems.  Most current SA and design under uncertainty approaches rely 

heavily on multi-disciplinary optimization and decomposition techniques. As previously 

discussed, there are numerous MDO approaches currently reported in the literature, but 

the work that has been done up to this point in the area has proved to be relatively 

inefficient from a computational effort standpoint. Current decomposition techniques, 

such as Collaborative Optimization and Analytical Target Cascading, involve nesting 

sub-system design algorithms inside a coordinating or system-level design algorithm at a 

high computational expense [Balling and Sobieszczanski-Sobieski, 1996; Aute and 

Azarm, 2006; Kokkolaras et al., 2006; Yi et al., 2007].  As seen throughout this 

dissertation, nested optimization techniques are frequently used when solving sensitivity 

analysis problems and the work presented in this dissertation was repeatedly impacted by 

the high computational effort of those techniques. Clearly more work is needed in this 

area before SA approaches and become more efficient and useful to practicing design 

engineers.  Thus far the only real answer to these efficiency issues have been to use meta-

modeling techniques to approximate expensive analysis models (such as CFD codes) 

with less expensive analytical functions [Martin and Simpson, 2005; Wang and Shan, 

2007; Shan and Wang, 2008].  Meta-models can be used to reduce the underlying 

computational expense associated with the analysis functions of a design system quite 
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effectively, as demonstrated in Chapters 5 and 6, but their use does nothing to lessen the 

efficiency issues associated with the nested algorithms currently used to solve 

multidisciplinary problems.  Clearly other means for improving the efficiency of multi-

disciplinary algorithms are needed, particularly for problems that already use meta-

modeling but are still too computationally expensive to solve efficiently.  Perhaps new 

applications and/or extensions of other classical decomposition techniques, such as 

Bender’s Decomposition [e.g. Conejo et al., 2006], could provide the answer to this very 

real and challenging problem that must be addressed in the near future. 
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