THESIS REPORT
Master’s Degree

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

M.S. 87-2
Formerly TR 87-50

Using Computer Algebra for Design of
Nonlinear Control Systems

by O. Akhrif
Advisor: G.L. Blankenship

Using Computer Algebra
for Design of Nonlinear
Control Systems

by

O. Akhrif
G. L. Blankenship

LTI N D O TR S S R S D B L T R T RS SRR O R NI I M S IR DRI R RGP TII M B o B s S RRREHRE SRy

R L ATATIY Y

USING COMPUTER ALGEBRA FOR DESIGN OF
NONLINEAR CONTROL SYSTEMS

*

O. Akhrif * G. L. Blankenship *

Electrical Engineering Department & Systems Research Center
University of Maryland, College Park, Maryland 20742

>‘:This work was presentedfas a M.S Thesis by O. Akhrif.
**This research supported in part by NSF Grant CDR-85-00108

LI LN ATAC NN L e e D YTy T T Ry R e KLY LTy Y S e Ay I AR YAt PR NI SRV 2 N AR TS YRR RS TP S PY T3 PRV O PR IC PR PRIV PO WOV AN

Y R IIR LR

Abstract »

A rich collection of analytical tools based on differential geometric methods has been
developed for the analysis and design of nonlinear control systems. The concept‘
of feedback equivalence among nonlinear systems is used to linearize and control
certain classes of nonlinar control systems. The left and right invertibility of nonlin-
ear systems is used to solve the output tracking problem. Usihg computer algebra
programming methods, é, software system:has been developed which makes these
analytical procedures ave;ilable to'ﬁéers who need not have an extensive knowledge

of differential geometry. Examples of the use of this system are reported.

S R R R R R A g R R R R R R R R A R N B R SR R s 1 IR RN 5 B R R e 0batinge + IRBREE N L

Acknowledgements | :

We would like to thank Professor C. I. Byrnes of Arizona State University
who suggested this area of research.

O. Akhrif would also like to express her appreciation of the financial sup-
port in the form of a research fellowship from the Systefns Research’ Center,

University of Maryland.

Proee

1 R R R R R R R M R D SR B SRR R A R R RS B AR B RS R R BRRRRI RS MR R DR RR AT G RERRIRRAR YRS Y

Contents

Chapter 1 Introduction1

Chapter 2 Preliminaries Y
Chapter 3 Feedback equivalence to linear controllable systems . . 11

3.1. Equivalence of systems R 11

3.2. Necessary and sufficient conditions of transformability 14
8.2.1. Single-input systems = . . L .14
3.2.2. Multi-inﬁﬁt systems e 1

3.3. Construction ,Of the F-transformation . . . | R L

Chapter 4 Invertibility of nonlinear systems22

4.1. Left-invertibility22
4.1.1. Single input single outputcase24
4.1.2. Generalization to multivariable systems 26
4.2. Right-invertibility or [Functional controllability] 33

Chapter 5 Output tracking of nonlinear systems 36

5.1. Output tracking design using feedback linearization 37

5.2. Output tracking using invertibility of systems 38
Chapter 86 CONDENS: a software package using symbolic manipula-

tionso Lo 40
6.1. Programming objective fee ... 40

6.2. Description of CONDENS . a2

6.2.1. User—deﬁried functions45

| 6.2.2. TRANSFORM and INVERT46

s 6.2.3. FENOLS and TRACKS48

6.3. Examples L o
iii

T R TR AT M UM AR LA .';:e;m\'m«‘mm.\zm:Wmie«m»m’fwm;msz;a’a‘cam.\mm:z{wwnis.\tm:.\:.«m«fu:semts:sr«z\xmrm-*pcmszmmsx;m«':;:;umse«'a,\‘m,\‘zc:'m\\gum;mg:;zgagszgg;z;um;gggz(;:ﬁe :

Chapter 7 Conclusion59
Appendix...‘.........-.....'.........60

References « & v v v v v v v v v e .. .13

AL I 1 S L S ST ST TS T L TR TS P TS S D T3, T3 TS0 A SECIR LR S P ANLE SRS 'N{NRSzstsNmﬂ(tit(imumtthmmﬂﬂww\bmmni)!zm.\L\N)252.~c\\‘,«:>tR}N«t*'m)'t.\lR,\‘t.‘%(h‘?:.\sa(h‘a\‘:,x‘:«‘u‘g\'ﬂ)(zmm\

Chapter 1
Introduction

The main object of the thesis isrthe creation of a éeneral-purpose tool for analysis
and design of nonlinear control systems in the form of a software system using
computer algebra and symbolic ﬁanipulations.

The first part of the thesis will be concerned with the analysis of deterministic
servo-problems for nonlinear systems affine in control, i.e, systems which in local
coordinates are described by: '

= = @) + L uile(a) (11)

i=1

In recent years, the differential geometric approach to nonlinear control prob-

lems has been developing fast. The differential geometric setting allows the gener-

alization of many known classical results in linear systems theory to the nonlinear

case. For the purpose of dynamic control of nonlinear affine systems (output track-

ing, stabilization ...), we will use two concepts from differentia,l geometric system

theory. The first is the concept of feedback equivalence among nonlinear systems
The second is the concept of left-invertibility of nonlinear control systems.

Feedback equivalence is an equlva.lence relation (transitive, symmetric and

reflexive) among systems and it generalizes the concept of linear feedback group

which plays a role in linear system theory (Wohham [23]) leading, among other -

things, to the Brunovsky canonical form arid the definition of controllability indices.

R. Brockett [2] introd»uced?a. first definition ot: feedback transformation which

AT 7T T L M T T TS PSR E H R TR T R AR AR IR I s 2T

RS R RES T I

Bt I R RO 82 MR I BRI R ST I LM AP RATRRRMR L HI MM R RN UN S R R R R R R R RERRREDI D L BRGRNRAARRHERYY

includes state space change of coordinates, additive state feedback and control spac® '
change of coordinates linear over the reals. Jacubezyk-Respondek [13] and Hunt-Su
[10], [11] generalized Brockett’s definition allﬁwing control space change of coordi-
nates, linear over the ring of smooth functions: u = a(z) + b(z)v .

For nonlinear systems, the appeal of feedback-equivalence concept relies on
the same motivation: One can study equivalence classes of systems containing rep-
resentations with special structures or canonical forms of interest for analysis or
control purposés i.e, we look for structures that can be destroyed or induced by
feedback transformations.

It has been known for mahy years that most of the relevant properties of
éysterﬁ, (1.1), in the analytic case, are precisely mirrored in the Lie configuration
of L : the Lie algebra generated by f,g1...¢gm.

A first and very important step in this direction has been accomplished by
Brockett [2] (at an earlier stage), Jacubézyk-Respondek (13] and Hunt-Su [10], [11],
who give necessary and sufficient conditions on L in order for system (1.1) to
be feedback equivalent to a linear controllable system, which is certainly the best
understood class of systems.

The second concept used is the concept of tnvertibility of nonlinear systems. A
control system is invertible when the corresponding input-output map is injective.
If this is the case, then it is possible to reconstruct uniquely the input acting on
the system from the knowledge of the corresponding output. The main application
of this is in the output tracking problem where we try to control a system so that
its output follows some desired path. The inverse system is used to generate the
required control given the desired output function.

For linear systems, this problerg was first considered by Brockett and Mesarovic
in 1965 [3]. Then Silverman [20] proposed an algorithm in 1969 for multivariable
linear systems which does the following: 7 7

| Given the LTI multi-input mulf;‘.i—outpﬁt s&stem:

P
= Az +Bu

......

R I R T

y=Cz+ Du o

The algorithm generates an inverse system:

>

dz
dt
u =

<

2z+
+

O
)}
)

F4

where
§ is composed of components y(t), yM(t),...,y @ ().

o is the relative order of the system.

The generalization of these ideas to nonlinear control systems has been ac-

~_ complished by Hirschorn [T], [8], [9] who gave necessary and sufficient conditions

for the invertibility of nonlinear control systems of the form:

i = f(z) +ug(x)
y = h(z)

where the state space is a real analytic manifold. For invertible systems, nonlinear
inverse systems can be constructed and the class of real analytic functions which
can appear as outputs of a given nonlinear system can be described.

In the second part of the thesis, we present CONDENS, a software package
that addresses methods for nonlinear control systems using a differential geometric
approach.

Equipped with the theoretical concepts presented in previous chapters, this
expert system can, given a nonlinear system affine in control, answer questions such
as: Is this sy:stem feedback-equivalent to a controllable linear one? if S0, can we
construct the diffeomorphism that makes this equiva.le:nce explicit? Is the non linear

system invertible? What is the relative order of this system? In case the system

is invertible, can we construct a left-inverse for our system? Given a real analytic

function y(t), can y(t) appear as @tput for our original nonlinear system? If so,

what is the required control?

The expert system tries to ﬁ{ld an answer to all these questions and finally,

"3

X

R A R 2 K R R R S D L R R R R R M R S R R R B RB B RRRGERERRBR

uses this knowledge to solve a design problem: The output tracking problem for the v
given nonlinear control system.

The ultimate purpose of the system is to assist the user in the design process
by automatically selecting and executing an appropriate design method. The final
step is to validate and implement the design. This feature shifts a large amount of
complexity of the design problem from the design engineer to the “knowledge base”
of the CAE system. '

The system presents an other feature: it can automatically generate numerical
programs for the solution of problems posed in symbolric form or for simulation pur-
poses. Given a new control pi'oblgm, the time involved in analyzing the theoretical -
results and then writing the Fortran code to éxecute it is eliminated. The mistakes
and the time required to test and debug the Fortrén code is also eliminated.

Most importantly, the system allows the engineer to interact with the com-
puter for design at the symbolic manipulation level. In this way, he can modify his
analysis or design problem by modifying the symbolic functional form of the model.
The Fortran subroutines that he might have to modify by hand to accomplish this
in conventional design procedures are written automatically for him.

The outline of the thesis is as follows:

In Chapter 2, we introduce the basic definitions and tools from differential
geometry used throughout the thesis.

In Chapter V3,‘ the concepts of state equivalence and feedback equivalence
among systems are introduced and necessary and sufficient conditions for state and
feedback equivalence to linear controllable systems are recalled from the literature.
The construction of state and feedback transformations is also reﬁewed.

In Chapter 4, necessafy anﬁ sufficient conditions for the invertibility of non
linear control systems of the form £ = f (z) + =7, gi(z)ui,y = h(x) are given.
Also, the relative order of the system is introduced. These results are used to
study the question of functiqnd} contfollability for nonlinear systems where the
prbblem is to determine function:-s (@) whiéh can be realized as the outputs of the

nonlinear system driven by a suitable input function. A prefilter or left-inverse is

4

AITITOTLIAA TN AT A ST M AT T TR DUPRP O M mm«:«m\(\:\(.-ts:u{nnm\uﬂqm "?S"?‘?ﬂ"m?qﬂﬁ’"?*?“-“NQ(NNN)immﬁﬂ‘(ﬂm;ﬁ({t(tfﬂﬂzﬂi2.‘}}'}\}(}\: QUGN e RUHEREREN R0 v

then constructed to generate the required control. 0

In Chapter 5, we show how we can use the differential geometric concepts
presented for the output tracking of nonlinear control systems. Two design schemes
are used. The first one was proposed by G. Meyer at NASA Ames Research Center
[17). He used the transformation of control systems to Brunovsky canonical form
in the design of model following automatic pilots for vertical and short take-off
aircraft. One important aspect of tﬁis design is that all regulation is done on the
canonical foi‘m and the regulator never sees the more complicated original system.

The second design scheme is based on finding the inverse of the nonlinear Sys-
tem which, rif given the desired output will naturally generate the required control.
Idealiy, the Input/Output relationship of the cascade consisting of the nonlinear sys-
tem and its inverse is an identity. However, disturbances dictate that a regulator
be synthesized.

In Chapter 6, we present all the programming work. We show how the expert
system can make available to the design engineer some ciesign methods that rely
on more or less sophisticated mathematical tools. A complete description of the
different modules of the program is given. In the last section, we present some
examples with simulation results to illustrate the performance of the system.

Chapter 7 summarizes the contributions of this work and gives a brief amount

of directions of further research.

WO ORI IS (3 1A (A FEFTTEIP A IS TN IR IO DI 8T 13N precest SR BRI Db 0 S IRRRE 7 It aedse S0 v

Chapter 2

Preliminaries

In this chapter, background material and terminology which will be freely employed

throughout the thesis are introduced. Basic references are [1], [12].

M

V(M)

: a paracompact connected C* or C* manifold of dimension n (Through-

out the thesis M will be R").

: is either V°(M) or V¥ (M) the set of all C* or C* vector fields defined
on M. V(M) can be given the structure of vector space over the field
of the reals and the structure of Lie algebra with Jacobi brackets (see

below) as a nonassociative multiplication with the usual properties:

e [f,9]=—lg,f] anti-commutativity

o [£,(g, k] + [k, (£, 0]l +[9,[h, F]] =0 Jacobi identity

o [f,ag+ bk = a[f,g] + b[f, R]
[af + bg, k] = a[f, h] + blg, h] o
Wherefvg’hEV(M): ;a,beR

is either C*°(M) or C¥, $et of all C® or C¥ real valued functions 7
¢: M — R. It can be gi:iren the structure of a ring. V(M) can also

be given the structure of a;module over the rihg F(M).
6

.

AN T I AR A P TS I AT T O PO BEUTRO NP EHICH SO (IR TIRSTSTRS ‘ TRt 'Nioesm.t:,‘.., TREBRBRRUERR IR QR EUU L NN

Jacobi Brackets : Vf,geV(M) VzeM 1

£, 91(=) = adsg(z) = Lyg(z)

In local coordinates:

£,01@) = 2(2)7() - 2L (w)g(z)

where g% and %ﬁ are the Jacobians of g and f.

a 9 = 9
ad’}ﬂg = adf(ad’}g)

V*(M) : denotes the set of all one forms defined on M. In local coordinates a

one form w is represented as w = wydr; + - - - + w,dz,.

d:V*(M) — V*(M) : denotes the differential and in local coordinates its action
on h € F(M) is:

d:h——)dhzﬁiid:cl-i-----%-—aid:vn
Oz, Jz,

< w,f =: V*(M) x V(M) — F(M) : denotes the dual product between one forms
and vector fields w € V*(M), f € V(M) and it is defined in local coor-
dinates as:

<w,f >=w1f1+---+w,,fn

Definition 1: Let f € V(M), there are three kinds of Lie derivatives related to

f, which are expressed in local coordinates as follows:

1. if h € F(M) Ly :jF(M) — F(M)

oh
8:v,-

Lf(h) ='< dh, f = zn:ft(x)
: =1

the derivative of h alox{g the direction defined by the vector field
f.

AT I LA (AT P PRI TS . $ HONERITS RIS » mmmumzmammmmggm;m;m;;gm:umygf,≫gs:giggﬁ;zsz;q;‘-:h;.

2. ge V(M) Ly V(M) — V(M) ?

Lfg = [f,g]
LYy = ¢
Litg = Ly(Lig)

3. we V(M) Ly:V* (M) — V*(M)
dw* aJ
Lyw) = %L gy 4wl

where * denotes transpose and % and %5: are Jacobian matrices.

~ the three types of Lie derivatives are related by the following so called

Leibnitz formula:

Ly < f,g>=<Lsw,g >+ <w,Lzg >

Definition 2: a set of vector fields X;...X; € V(M) is involutive if there exists
scalar functions v;jx € F(M) such that:

4
(X5, X5)(=) = D win(2) X (2) 1<4,7<l i#j
=1

Frobenius Theorem: A set of linearly independent vector fields is completely

integrable if and only if it is involutive.

Definition 3: Consider the time-invariant n-dimensional linear- control system

with m controls: ' .

z = Az + Bu._ " (2.1)
Let

ro =. rankB 7
r; = rank{B,AB,...,A’B) —rank{B,..., A" B}

1<3<n-1

Fh T SIRER T A r e I S B RS S TR ORI MR C A o SSTRRLALI LTI TR L ETER R MU MU 2L ML I 2SI LM O MU U Mg 00 -

7

The kronecker indices k; are defined as the number of r;’s that ark v

> 1. Notice that:
ky>ky>--->kpnand

Yiliki=n

Fact : Thesystem (2.1) is equivalent to a linear system in Brunovsky canon-
ical form :

ézﬁz-}—ﬁv

,Where:» 7
(- (o010 - 0 00 - 0 - 0 -0
00 1 0 0 0
ks §
000 1
(000 0 00 0 0 0
00 0 (0 1 0 0 0
- ke{
A= 00 1
0 0 L0 0 0 0 0
00 0 (0 1 0
k4
00 1
\ 0 0 1o o 0)

LU A P ST I S G 3 2T ISP OB LM A PN T C T OO 1) HEACHTNOHLTOFRNTS CIOBTHLY FErEFTIRR { 0 TR AT AT T A SR IR 1 PO TR SN 1] 1487 S TSP T NP2 Te CATR A TR

kz* : .

b
I

&
3

10

U RTINS TN AT A AR YA CF VRN P TR AP AL A LR P T N O TAZA TN NI T USSP AT

TATLREIY PO SN S T AL A I A DT AL LA IV T AT T T R I IR e N

: SIS e

Chapter 3

Feedback equivalence to linear

controllable systems

In this chapter, we introduce and discuss the concept of feedback equivalence among
systems affine in control.

In section 3.1, we introduce the equivalence relation that exists among non-
linear systems and we characterize classes of equivalence by characterizing diffeo-
morphisms that exist among systems that belong to the same equivalence class.

In particular, in section 3.2, we recall a theorem of Jacubczyk-Respondek [13]
and Hunt-Su [11] on necessary and sufficient conditions for a nonlinear system to
be locally equivalent to a iinear controllable system.

In section 3.3, we recall the definition of controllability indices for nonlinear
systems affine in control and we discuss the construction of the feedback transfor-
mation given by Hunt-Su [10], which takes the nonlinear systems enjoying certain
properties into linear contrbllable ones; wé also point out that the controllability

indices of such nonlinear systems coincide with those_compﬁt.ed for the linearized

~ system around any equilibrium point.
- 3.1 Equivalence of systems -
Let us consider two control systems:

11

N T R A TS TP R AT £ F T T TS 2T AL AR P MR RO (T 6D A ORI AN AR A 800 ERRRUARRITRIPI I T T 10

S1: 2= F(Z1,Z2,-« 3Ty Ulyee+stim) z(0) =zo €M 2

Sy : 2':=G(z1,22,...,zn,vl,...,v,,,) z(O)-:-_zOEN

We consider the transformation (which will be called Feedback transformation

or F-transformation) consisting of:

T : a state space diffeomorphism T = (Ty,...,Ty) : U — V where U and V are

open subsets in M and N respectively.

2y = Tl(a:)
29 = VTz(.'l!)
zn = Tu(z)

S : state feedback and affine change of coordinates of the control space R™ over

the ring of smooth functions C*(U).

v = S]_ (2:, ‘U.)
v, = Si(z,u)
U = Sp(z,u)

We require the m x m matrix [2%(z)] to be invertible for every z € U.
J

Definition: The system S; is F-related to the system S, if there exists an F-
transformation {7, S) on U x R™ such that for each state zo € U and each

admissible control u the folloWing holds:

If we let:
zo = T(zo)
Z(t) = T(:l:) B
v(t) = iS(:z;,u)
ithen 5 ‘ 2(t) = zi(t, 2o, v(t))

12

e e - e T ekt BRSO vt SN, TYOLIV NP TATATA PSP AT £ 04 14 28 PATATS PP TNrVENes e N S P L e TR TR IS TETRRA VR Y ST T I EE N 214 SO IORFCRIN A v NN

It turns out that the F-relation among systems is an equivalence relation, wg b

say then that S; is F-equivalent to'Sz.

We are particularly interested in mapping (via an F-transformation) the non-

linear system:

O CORPICOMD (3.1
z(0) = O) '
f0) = o

to a controllable linear system:

2(t) = Az(t) + Bv(t) ' (3.2)
2(0) = 0
with kronecker indices kj, ks,. .., kpn.
Since system (3.2) can be transformed by means of state space coordinates !

change and feedback into a system in Brunovsky canonical form, there is no change

in the strength of the result if we take (A, B) already in the canonical form i.e:

(010 - 0) (00---0\
001 0
A= B=]10 0
000 1

L0 0.0 0) L0 0 1

The most straightforward case is when the nonlinear system is in Block trian-
gular form. This form has been introduced by G.Meyer at NASA Ames Research

Center. [17], who geéognized that it can be easily transformed to Brunovsky canon-

ical form. -

Definition: Given the nonlinear system (3.1), syppose'n = km where:

n = dimension of the state space

13

At AR AL S R R e A S A Tt O Ly L R L T A T L ST AT { TR IR Yo%y FT TR VRN U VPO

m = dimension of the control space 2

‘then if we partition the state x in k m-dimensional subvectors z,,...,z; and
if we call z341 = u then system (3.1) is in Block triangular form if:
:i:.~=F(:l:1,...,a:.-,z.-+1) t=1,...,k=

n
m

-

It is easy to transform this system to canonical form by letting the vector:

2y = T(-'Bl) = n

22 o= 2 = T(-'Bl, 22)

2 = ék—-l = T(Il, T2yeeny IEk)

v = ék = S(a:l,...,:z:k,d:kﬂ =u)

By just reindexing the new state variables we get:

(0 10 --- 0\ 00 --- 0\
001 -.--0

z= 7 z+]1 10 0 |v
000 ---1

\000---0) \00---1J

3.2 Necessary and sufficient conditions of trans-

formability

3.2.1 Single-input systems
Consider the single-input system:

Ht) = f(=() +oe@u) (33)
z(0) = 0 z€M=R" ’

where . f,g € V(R") f(O) = 0.

14

AT N A TR AT T A TR O O OPT M U C O TITI O A MM LA S AV S I I I A SO R e v ey

200

I S AT T T IET AN

i

The first result is due to Brockett [2]. He considered change of coordinatls v
in the state space and feedback of the form v = u + a(z) , where v is the control

variable of the linearized system.

Theorem 3.1 (Brockett [2]) Let f,g : R* — R"™ be analytic vector fields. The
system (3.3) with equilibrium point at =0 is, in a neighborhood of 0, F-equivalent
to one of the form:
-z = Az + bu
with (A, b} a controllable pa:r in canonical form if and only if ad® (g)k _, Spans R"
at z=0 and for k,m integers between 0 and n-1 there exists d; € C¥(R"™) so that:
: . maz(k,m)
lads(g), adF (g)] = Z d; (x)ad' g)
These conditions have been later relaxed by Su [21] by allowing more general

feedbacks of the form: v = a(z) + f(z)u.

The necessary and sufficient conditions of existence are naturally less restric-

tive than Brockett’s case.

Theorem 3.2 (Su [21]) System (8.8) is transformable to Brunovsky canonical
form in a netghborhood of the origin in R" if and only if:

e the vectors g,ad}(g),... ,ad’}'l(g) span R" about the origin.

o the set of vector fields g,ad}(g),. . ,ad?—2 (g) ts tnvolutive.

3.2.2 Multi-input systems

Hunt, Su and Meyer [10], [11] generalized Theorem 3.2 seer above to Iimlti—input
systems. 7 »

We: note that in the multi-input case, the Kroneeker indices of the equivalent
linear system come into account

Jacubczyk and Respondek [13] proved that the controllabxllty (Kronecker) in-

dices for the nonlinear system (3.3) are invariant under feedback ‘transformations.

15

r I\r‘\-\r\v\l\'rvﬁr}-'ﬂruu\nvu\r-ngrxc)n($hvnr\vmwh7‘m"?'$r??'ﬂfm'(ﬂ?\'\-“?‘?‘7‘”"‘('4?“h"(’(‘“"“v"“0‘?\‘“.‘0(‘"\'T("fﬁ"“,‘"l"sﬁ'(}nrtmﬂl{!’l}“m()(lﬂ,:\.‘\)\.‘\4':'«‘\‘\.*\\‘ Gl IO OIS R

Thus, there is a one to one correspondance between the set of all possible control¥
lability indices (m integers k; with the property Yiiki = n,k; > 1) and the set
of equi';'alence classes of systems under feedback transformations. The algorithm
for the computation of the Kronecker indices of the nonlinear system was proposed
by Hunt-Su [10] and is very similar to the one known for linear systems. (See the

Preliminaries.)

* Algorithm for computing the Kronecker indices of a non linear control system:

— Form the array of vectors:

)1 g2 o Im
[f:gll [f792] .o [fagm]

K ’j‘flgl R }‘_lgm)
— Set:
o = number of linearly independent vector fields in the first row.
o = number of linearly independent vector fields in the first two rows.
o,—1 = number of linearly independent vector fields in the array.
— Take:
To = g
1 o= G — 0o
Tn-1 = Op-1"— Op-2

k; will then be the number of r;’s > 1.
Thé_ set of k;’s computed this way will completely;characteriz:e the Brunovsky

_ canonical form non linear systeni will be transformed tfio.

16

T A LI (L CHE R s SELSR IR S AT T R Tt R R R A TS LS R SNV TR N e SIS T SE TR T SNR T3 VTR T ST TR S Y ST

* Necessary and sufficient conditions of transformability: 4

In the general case (multi-input, feedback of the form v = a(z) + 8(z)u), the
result was given by Hunt-Su [11].

Theorem 3.3 (Hunt-Su [11]) A multi-input control system & = f(z)+3 7, g:(x)u;
1s F-transformable to a controllable linear system in Brunovsky form in a neighbor-

hood of the origin in R"™ if and only if:

:1- The set C = {gl’ [f,gl]a eee sad?—i(gl))g% [f)g2]a .o 7ad’jc'2—l(g2),-"‘- yIm, [f,gm], .

adfe"fl(gm)} smns an n-dimensional space.

2. The sets Cj : {gla [fa gl], see 1ad;j_2(gl)1927 [fa 92]) oo ’ad;j—z(g2)a <+ 39m, [f’ gm]a cvey

(adf,"—“)(gm)} are tnvolutive for j = 1,2,...,m and
3. The span of each C; is equal to the span of C; N C.

where ky > kg > --- > k,, are the Kronecker indices of both the nonlinear system

and the linear system.

3.3 Constrﬁction of the F-transformation

In [10], Hunt and Su gave a procedure for construction of a transformation which
takes £ = f(z) + =7, ¢:(z)u; into a controllable linear system in canonical form

2 = Az + Bv where:

z = T(z)
v = S(z,u)

/

If ki, ks,-..,kn are the Kronecker indices of both systems, let:

0'1:]61

- oy = ki+k:

Om = kitks+ - +kn=n

17

T e R T e L R A S L S LAt TR T SEI TR FOv L3 P SR P VIR < TP SR IETE I PRI POV Y S

From the structure of the canonical form and the fact that we are using only coor? v

dina.fe changes and feedback, we have:

Zipr = % or
Tia(z) = Ti(z)
=1
v;:1,...,;1—1,al+1,...,az—1, -

o + 1,...,0’m;_1 - 1,Um_1 + 1,...,0’m -1
but since Ty, depends only on z, we have:

<dTi,g;> = O
<dT;Iaf>' = 11'—H.

on the other hand for: =1,2,...,m:

Vi = 2, or
Si(z,u) = To.(x)
= <dT,,f>+) <dT,,g; > u;

i=1
Therefore, the set of partial differential equations the F-transformation (T, S)
has to satisfy are:
- dT.-,g,- - =0
<dL,f > = T
i=1,2,...,00~ 1,01+ 1,...,00— 1,05 + 1, ¢ (3.5)

coisOm1 —1,0p 1 +1,...,0, —1T=n—-1

1=12,...,m.

<AL, [+ TR ue - = S
- %dTam,f+E§'f__1u;g¢> = Sn

18

FUAIETAT R T A O P Y PO By 2 TS AN A I T RIS et e dhe DA N RN Lt te e A . -
T SRR LS TP e A AR B] A N N N A

Using Leibnitz formula we can rewrite equations (3.5) as: d
< dTy, ad’,(g;) > = 0 i = 0,61,....,ky—2andj=1,...,m
-<dT,1+1,ad"f(g,-)> = 0 1+ = 0,1,...,k2—2 andj=1,...,m
< dT,,._,+1,ad%(g;) = 0 i = 01,....km—2and j=1,...,m. (3.6)

) <dTanf+Ez‘—_1uigi>' = Sl

< dTns.f + Zgﬂél uigi > = Sm

7 rwith the determinant of:

< dTI,@d’}l‘l(gl) > < dTy,adf " (gm) >

< dTy,_41,0d5 " Hgr) > .. < dTy,._+1,ad5™ " (gm) >
_being non zero.

Let s; be the number of times k; — ¢ appears in the set C defined in Theo-
rem 3.3. Let s;, be the number of linearly independent vectors in {g1,...,9m}. The
partial differential equations in equations (3.6) are solved by introducing parame-

ters ty,...,t, and solving the ordinary differential equations:

dz(t) ky—1

_—dtl = ady; (g1) z(0) =0
dz(ty,12) ki1
--—de— = adf (gz) I(tl,O) =0

continue in this manner to solve s; systems of equations ending with:

dz(ty,...,t
a:(l‘ait 3 31) = ad;;—l(gal) . .
3% 4)

x(tl): '7'°,t81—1,0) = Z(tl,...,tal_l)

We then solve:

dz/dt, 1 = adp (1) with z(t1y - st020) = 2(t1, -0 bay)

dz/dty,4s; = ad’}‘—z(g,,) with Z(t1,- .- tsy482-1,0) = Z(t1- -« s Es,4s5-1)

19

)

We continue this process until we have introduced parameters ¢,,...,t, ending

with the solution of:

dz .
——dt =gm Wlth x(tl,...,tn_]_,O) = Z(tl,... ,tn—l)
n
We now solve for ¢,,...,t, in terms of z,,...,z,.

Let:

T1 = tl (.’D)

Tax+1 = ’tv(.'E)
where 1 is the pafameter.Which was introduced when we solved dz Jdt = ad’}z_l(gg).
T02+1 = ’tv(m)

where £ is the parameter which was introduced when we solved dz/ di = adﬁa_l(gg).

We obtain this way the m leading components of the F-transformation Ty, Ty, 41, . . .

7T0m_1+1°

The other components are found by:

W o= <dT,f -
t1=1,...,0:—1L,01+1,...,0m_1 — 1,
Om-1+1,...,0m —1=n-1

Sy = '<dTauf+Zuigi>'

=1

Sp = <dTp, f+ uigi >

i=1 ‘ o
We can see that, in order to obtain the F-transformation, we must solve
n systems of n ordinary differential equations where the s_olutioh of each system
depends on ‘the solution of the previous system. As oné €an see, this is not always

an easy nor possible task to do.

In summary, given the nonlinear system z = f (a:) + Y™, g:(z)u; where the -

" vector fields f, g1, ... ,gm satisfy the necessary and sufficient conditions of Theorem

20

v

. .« . . '
3.3, there exists a transformation consisting of a change of coordinates and stat‘g '
feedback which transforms the nonlinear syétem to a controllable linear one. To

construct such a transformation, the system of partial differential equations (3.6)

must be solved.

21

Chapter 4
Invertibility of nonlinear systems

This chapter deals with the concept of left and right invertibility for multivariable
nonlinear systems.

Once again, we consider systems of the following form:
m
() = fz(t)) + 2 uilt)gi(=(2)) 2(0) =zo € M (4.1)
=1
y(t) = h(z(?))

where.the state space M is a connected real analytic manifold, f,¢;,...,g, are
analytic vector fields on M, £ — h(z) = (hi(z),...,h(z)) is a real analytic
mapping from M into R, and u; € U, the class of real analytic functions from [0, 00)
into R, the real numbers. If zo € M and v = (uy,...,%,) is an admissible control,
we denote the resulting solution to the above differential equation by (¢, v, zo) and

denote h(z(t,u,z0)) by y(¢,u,zo).

4.1 Left-invertibility

In the left-invertibility problem, we are interested in conditions which ensure that
in system (4.’1), different input functions produce diffefent output functions. If this

is the case, then the input-output map is invertible from the left and it is possible

)

to reconstruct uniquely the input acting on the system from the knowledge of the -

~ corresponding output. Since, as we know, the inputi_’output map of a nonlinear

22

_system depends on the initial state zo, one has to incorporate the dependence of '

the initial state into a precise definition of invertibility.

Definition: The nonlinear system (4.1) is said to be left-invertible at z, € M if

whenever © and 4 are distinct admissible controls,
y(t, v, z0) # y(t, &, o)

for at least a value of ¢t > 0.

The system (. 4.1) is strongly invertible at' zo € M if there exists an open
neighborhood V' of zo such that for all z € V, the system is left-invertible at

X.

The system (4.1) is strongly invertible if there exists an open and dense sub-
manifold My of M such that for all £y € M, the system is strongly invertible

at xg.

i

Clearly, left-invertibility at z¢ is equivalent to the Input-Output map described
by (4.1) being injective. Thus, given the output y(.) for a system which is invertible

" at xp, one can, in theory, determine the control which was applied.

If a system is invertible at zo, it is natural to look for a second system which
acts as a left-inverse for the original system. The inverse system is a nonlinear
system which, when driven by appropriate derivatives of y(., u, zo) produces u(.) as
its output. The left-inverse provides a practical method for determining u, and has
many applications, e.g, the tracking problem.

- For linear systems, this problem was first considered by Brockett and Mesarovic
in 1565 [3]. Then Silverman [20] propoéed an algorithm in 1969 for multivariable
linear systems which does the following: /

Given the }inear multivariable tifrle-invariant system:
- | B :z: = 4:1: + Bu
7 ~ y = Cz+ Du -
, xER",uER";,yE R™ | ' |

23

The algorithm generates a left-inverse system: o
¢ = Az+ By
u = Cz+ Ai/‘

where § is composed of components of y(t),y(t),...,y*(t) where o is the relative
order of the system.

These ideas have been generalized by Hirschorn [7], [8], [9] to the nonlinear

‘case.

Remark: For single input single output systems, necessary and sufficient condi-

tions for invertibility are known and can be easily be stated. In the multivari-

able case, the problem is much more involved and the amount of complexity

)

increases sharpiy. We will present the single input single output case first to

clarify the algorithm in the multivariable case.

4.1.1 Single input single output case

Consider the single input single output affine nonlinear system:

2(t) = f(a(t) +ola(t))ult) | (4:2)
y(t) = h(z(t) =(0)=z0€M

M connected analytic manifold.
f,g are analytic vector fields on M.
h analytic real-valued function on M.

- u € U the class of real analytic functions from {0, co) into R.

Before stating the theorem that gives the necessary and sufficient conditions™

of strong invertibility of sys‘fem (4;2), let us define the relative order a of system'

(42).

Definition: The relative order a of the nonlinear system (4.2) 1s the last rionneg—w

ative integer k slich tha.t L,L'}_lh % 0'on M and L,L’}h = 0> VOo<jy<k—1. .

or o= oo if L,LEh=0 Vk > 0.

24

Theorem 4.1 (Hirschorn [7]) The non linear system (4.2) ts strongly invertible

if and only if & < oco.

To see how the relative order of the system is related to its strong invertibility,
we have to remember that our aim is to solve for the control u(t) as a function of
the state and the output y(t).

To solve the output equation y(t) = h(z(t)) for u, it will be necessary to
differentiate y:

-~ dy - 3h
T P
= U@ el
= Lgh(z)+ Loh(x).u(t)

If L;h #0 then a = 1.

IfLh=0 then we get :
dy i
= = Leh(2)

therefore we should differentiate once more ;

d’y 2
’d—tz- = th(.’li) + Lngh(I).U(t)
If L;L,h #0 then a = 2.
If LyL,h =0 then a > 2 and we should again differentiate.

We can go on like this until we reach the relative order a, we obtain then:

d*y o : -
E;=%Mﬂ+h%‘ﬂﬂﬂﬂ
where LfL"g"“lh is #0. _

Let then M, = {z € M/L;L2 "h(z) # 0}.

"M, is called the inverse submanifold of the system. Becaﬁse of the analyticity
of the function L:jL;“lh,kMa will be an open dense subset of M, ;;hence a sub_maniféld
of M. 7 ' ‘ | 4

We can also see that M, will providé the state space for thé left-inverse system.

25

)

Indeed, for all z € M,, we caﬁ write:

oy = L= 176)
Lng‘_lh(z)

replacing this u(t) into system (4.2), we get:

o v(0) - L3h(2)
b = 1@+ S

_ g(z).L3h(z) g(z) .
- (f(x) B L;Lg‘{h(z)) + L;L;‘—lh(x)'y (t)

“Conclusion:
Suppose that the nonlinear system (4.2) is strongly invertible with relative

order ¢, initial state o € M, and inverse submanifold M,, then the system:

5 = F)+G()o 2(0) = 2o (4.3)
w = H(z2)+ K(2)v . (44

where z € Ma,v € U,
K(z) = W (4.5)
H(z) = _% (4.6)
Fo) = f(z) - LDLM) (4.7)

Lng‘_lh (Z)

) = Eaum ()

acts as a left-inverse for the original system (4.2).

4.1.2 Generalization to multivariable systems

The case of multi-input multi¥output systems is of course more deliéate because the
term that multiplies the vector input, L sLEh(z), is a matrix and not a real valued
function _anymore; scé we have to deal with non singularity of Ama.t:rices instead of

just checking if a function is zero or non zero.

26

)

In this section, we try to genera.hze the structure algonthm proposed by S"
verman [20] to nonlinear systems.

The main difference is in the fact that we are dealing with matrices whose
entries are smooth real valued functions instead of real numbers. So obviously,
special care should be taken when checking rank conditions and nonsingularity of
madtrices. '

Given a nonlinear system:

I

f(@) + D gi(z)w | (4.9)
, _ =l » ;
vy = h(z)
£ € M where M is a connected C® manifold.
fy915-..,9m are C*® vector fields.
= (h1,..-shn)T h; i=1,...,mis a C* real valued function on M.

The first step is to differentiate y:

Lyhy(x) Lo hi(z) -+ Ly, ha(z)
dy _ . .
dt

Lshp(z) Lghm(z) -+ Ly, hm(z)

To make the notation simpler, we call:

Lgh,y Lghy --- Ly . hy
L= Leh = o
L¢h,, Lyhm -+ Ly hpy
So, we can write :
| | dy ,
L) = Leh(a() + Loh(E@)ul) (4.10)

Definition: Let N (z) be an m x m matrix whose entries are smooth real valued

~ functions on M.

R _ ﬁgld of real némbers.’: |

K (C*) = quotient ﬁeld-ass;)ciatéd with the ring C* of real analyti—c functioné;.
-with N(z) we associaf;e::) : -

27

y(t):

1. rx(N) = dimension of the K(C")-vector space generated by the rows of '
N(z). ‘

2. rp(N) = dimension of the R-vector space generated by the rows of N(z).

Remarks:

. Clearly the two integers rx(N) and rg(N) are such that:

3 rr(N) > rx(N)

. If we try to row-reduce N (z) by multiplying in the left by a nonsingular matrix

V of real nﬁmbers, then we can see that:'r
TR (N) = TK(N)

if and only if the process of row-reduction of N leaves VN with a number of

nonzero rows equal to rx(N).

. Both rx(N) and rg(N) are dependent on the point z(t), but since in this part

we do not deal with the problem of singular points, we suppose that the ranks

are constant over M.

So now, starting from equation (4.10) which is:

o
d—zt}’: L¢h(z) + Lgh(z)u
If rx (Leh(z)) = m, then we can solve for u(t) as a function of z(t) and
1,y -
u(t,=(0) = [Lah(z)] (2 - Lyh(z) @)
If rx(Lgh(z)) < m, _.then let rk(Leh) = q1
Suppose , rK(Léh) '=" rr(Lgh) -

28

then there exists an m X m nonsingular real matrix S; such that:

Di(z) & §,Lag(z) = (D ‘0(”))

where D;(z) has ¢ rows and rank q.

The system (P;) is then defined as:

(A) {“” F(@(®) + Ty 0 (2 () ui(t)
| w1(t) =" Cufz(t)) + Di(=(t))u(t)

H

- where : ,
n(t) = Sidy/di(t)
Ci(z) = SiLsh(s)
Di(z) = SiLeh(z)

It will be convenient to represent y;(t) and C1(z) in the partitioned form:

Ci(z) Gi(t)
Ci(z) = . 1(t) =
(2) (aw) y()(am)

where the bar and tilde indicate the first ¢; and m — ¢; elements respectively of the

two vectors. System (P;) becomes then:
5 qu: CRNEICRRS
(P) (mm oyl B BN K10

Now if we differentiate Ur1:

L aéli
dt 9z’ :
= L;Ci(2) + LeCi(a)u
A o Y. | S - :
PV & L | -
0 Al’Im—qxiz : ' -

29

then 'Mlyl — ()]) — (.C—'t(z)) n (Di(x))u
% Lfcl(x) Lacl(x)
Lei; — 0 =i (D i(x))
LgCl(z)

o D (z) D, (z)
and suppose TR . =rg|{ .
CT] LGCl(z) 7 L(;CI(x)r
then there exists a real nohsingulér m X m matrix S, such that:

SNECARED
LeCy(z) 0

where D,(z) has g, rows and ri(D2(z)) = ¢

v2(t) = SaMyy(t)

sz(2)+52(Di())u(t)
L;Ci(z) LeCy(z)

& Cy(z) + Da(z)

72(t Ca(z
Similarly, if we partition y2(t) and Cy(z) into (1) and :() where
v (t) Ca(z)
the bar and tilde indicate the first ¢ and m — ¢; elements, we obtain:

. (y-z(t)) _ (il) . (Ds(a))u
m0) |\ G 0

The remainder of the sequence (FP;) is defined inductively.

Let (P;) denote the kt* system in the sequence:

(f,,) { #t) = fl=@)+ z;;';; gi(=(t))uws ()
) = Cul)+ Delt)u(t)

30

v

mm=(m@) am=(§@)
0 : Ci(z)

where . D4 has g rows and rank gp.

C has g, rows and 6’; has m — ¢; rows.

| 0
If ¢ < m then let M), = 2
0 I Im—tuﬁ

Mi(t) = Ay'k _ Ci(z) + Ek(i) "
%) \LG) | '\ LeCile)

' D
Let g4y = rank i(,m)
LG C k (IE)

suppose TK — =TR ~
LGC’k(a:) LGC]C(IIJ)

then there exists a non singular real valued matrix Sy ;:

Dis1(z) < Sk Di(z) = Dt ()
’ "\ LeBifa) 0

. where Dyyq(z) has gxy1 rows and rank giyq.

Yer1(t) = SeriMiyi(t) - (ﬂkﬂ(t))

7 Yr+1 (t)

Ci(z Crir(z) | -
Crr1(z) = Sks1|. i() = NH'I()
: L,C’,,(a:) . Ck+1($)

- era(t Cun(z)) [D :
(Pess) !ik+1() _ f;k+1_($) N k+1(z) u
Tre1(2) Ci+1(z) 0
Suppose there exists a such that D,(z) has rank m: ¢, = m

31

. . >0
Deﬁn'}tiqn: a is called the relative order of the multivariable system.

The a** system has the form:

(Pa) Ya(t) = Ca(z) + Da(z)u
with rank Dy(z) = m . Therefore, we can solve for the vector u(t) as a function of

Vya(t) and z(t).

u(t) = D'(z) (va(t) — Calz)) | : (4.12)
Conplusion: ’

Given the nonlinear sysfem:
m - .
i = f@)+al@u (4.13)
' i=1
y = h(z)
If system (4.13) is strongly invertible with relative order « , initial state

o € M, then the system:

2 = Fiu(2) + Gino(2)v (4.14)
W = Hiny(2) + Kino(2)v (4.15)
where z(0) = zo,u € U,
Hiny(z) = —D.'(2)Calz)

Kino(2) = D;'(2)
Fino(2) = f(2) = G(2)D;(2)Ca(2)
Gino(2) = G(2)D;'(2)

acts as a left-inverse to system (4.13). .

It should be pointed out however, that the algorithm ouj;lined above (page 26-
31) to generate the left-inverse system assumes some rather restrictive assumptions
on the system, e.g, rank conditions and also éhefnumber of inputs has to be equal
to the numbef of outputs. An other remark s that-by restﬁcting the left-inverse
system to be deﬁqed on M,, the inverse subrﬁan»ifrold of the system, we circumvent

the problem of singular points.

32

#

L] L] L3 Le E ° . L ’

4.2 Right-invertibility or [Functional controllabil-
ity]

In this section, we are concerned with determining the functions f (¢) which can

be realized as the output of the nonlinear system (4.1) driven by a suitable input

" function. While the left-invertibility is related to the injectivity of Input/Output

map of the nonlinear sysfem (4.1), the right-invertibility is related to the surjectivity
of the Input/ Oufput map.

For lineaf systems, this classification problem was sol?ed by R W Brockett in
1965 [3]. This classification is very important in our work since we are interested
in the output tracking problem. It gives us the class of functions that the output
of our nonlinear system can track. Clearly, if f(.) = y(.,u, zo) for some control u,
then the required control u can be generated as the output of the left-inverse system
studied in sectfon 4-1, driven by an appropriate derivative of f(t). In this case, the

left-inverse system in section 4-1, is said to act as a right- inverse for the original

system.

Theorem 4.2 (Hirschorn [7]) Consider the nonlinear system (4.1) with relative

order o.

If a < 00,70 € M, and f € C¥Y(R) then there exists u € U such that
y(.,u,zo) = f(.) +f and only if : '-

F®(0) = LEh(z0) fork=0,1,...,a—1
Recall from section 4-1 that if the nonlinear system:

i = f(z)+g(e)u " | (4.16)

y = h(z) rtEM
is strongiy invertible then the left inverse is:

i =" F(2) +G(2v - | (4.17)
w = H(2)+ K(z)v

33

|

The theorem says that the class of trajectories that can be realized as output';g

“of system (-4.16) are trajectories ya(t) that satisfy:
y$M(0) = Lih(zo) for k=0,1,...,0— 1 (4.18)

To see this, let y4(t) € C*(R), satisfying conditions (4.18), we want to find
u € U such that:

va(.) = y(-, %, Zo) for some zo € M,

Since y&“) () €U, if we let () be the input to the left inverse system (4.17):

v= y&a)
and set 2(t) = 2(t, ¥4, zo)

then the output to system (4.17) is:
w(t) = H(2(t)) + K(=()ws” (1

Now, take u(t) = w(t)

then, by differentiating the output equation of system (4.16) « times, we get:
y@(t) = Lh(z) + L;LE Vh(z)u (4.19)
replacing u(t) by' w(t) in equation (4.19), we get :)
y@(0) = LEh(z) + LLE k(@) (H0) + K (=))

where Lan(at)
H(z(t)) = —1i5 a0
K(=(t) = fzehem

y*(t) — L$h(z) + L;L2 h(z) [(_L,p;—lh(x))—f(_L?h»(x) +y§‘_(t))]

R N (4.20)

34

'

but since ?
va(0) = h(zo) = y(0)
y(0) = Lysh(zo) = y(0)
y0) = LEIh(z) = yl=(0)

we can conclude that y(t) = ya(t))

We can see clearly now how this notion of left and right invertibility of non-
linear systems caﬁ 7be app‘liedrto the output trécki‘ng probleri{. That is:

Given the nonlinear system (4.16) , if we want the output to track some desired
trajectory, ﬁrét, we have to check if this desirred path can be realized as butput of
system (4.16) using conditions (4.18), then, we construct the left inverse system
(4.17).

It suffices then to feed system (4.17) with the of* derivative of the desired

path y4(t) to obtain as output the required control ug(t).

35

¥

20

Chapter 5

Output Tracking of nonlihear

systéms |

In this chapter, we are interested in a deterministic servo-problem i.e, we are inter-
ested in designing a control law that forces the output of a nonlinear control system
to perform a particular task despite the presence of disturbances.

There is a considerable literature dealing with this problem for linear con-
trol systems (Ref[3], [23]). Here we consider the tracking problem for the class of

nonlinear systems affine in control:

i) = f(z(t))+§ge(w(t))ue(t) (5.1)
v(t) = h(z()

where z(t) € R*, u(t)e R™, y(t) € R.
fy915--s9m €V(RY), h:R"— R! real smooth mappings.

" The function ya : R — R'is a “desired” output for the system. The ob-
jective is to obtain a robust tracking controller such that the system (5.1) with
the controller has acceptable tracking performance or such that e = yq — h(z) , the
tracking error, is kept within a desirable tolerance. -

For this purpose, two design schemes based on the théorétical concepts pre-

sented in Chapter 3 and 4 are described.

36

5.1 Output tracking de51gn using feedback lin- -
earization

This section describes one of the main applications of the theory presented in Chap-
ter 3 to the control system (fesign problem.

The key concept of the approach is to simplify the representation of the plant
dynamics by means of a change of coordinates of the state»and control. Thé design
proceeds in three steps. ,First,A the given nonlinear system is transformed into a
constant, decpupled,gcoptrollAable linear 'represe'nta.tion.v Second, standard lineaf
and nonlinear desigh tec.h'niques, such as Bode plot, pole placemént, LQR, or phase
plane methods are used to design a control law for this simple representation. Third,
the resulting control law is transformed back out into the original coordinates to
obtain the control law in terms of the available controls.

G.Meyer at NASA Ames Research Center [17] proposed this scheme in the
design of exact model following automatic pilots for vertical and short take-off
aircrafts and has been applied to several aircraft of increasing complexity.

So, given the nonlinear system:
= f(z) + 3 gi(z)ui(t)
i=1

suppose there exists a nonsingular transformation (7', S) mapping our system (5.1)
to a time-invariant and controllable linear system with state variables 2 = T'(z) =

(21,..-,2,)T and control variables v = S(z,u) = (v1,...,vm)? where:
z=Az+ Bv

We control the plant (the nonlinear system) by controlling the linear system. The
proposed structure of the complete control system is specified in Figure 1. the
that the design is carried out on the “linear” side of the transforma.tlon)

More exphc1tly, the basic procedure will be as follows:

Given the path we want to track z4(t), the transformation T maps the z-space

to the z-spa.ce therefore, we will try to accomplish this by making z() = (z(t))

37

]

'

Nonlinear plant
A Xd
u | x=1(x) + X2, silx)uy x
A
T1 T
¥
z Z Zq3
— — — 7 T
I ._.)l 7z =Az+ Bv l——-. zg = Azgq + Bvg
_ - — — 1
Y

vd

va

Fig. 1: Block Diagram of the first design scheme

track zdtt) = T(z4(t)). 29

In our theory, the linear system is in Brunovsky canonical form which is invalﬁ-
able for the design of exact model followers. If we have a control system 2 = Az+ By
in Brunovsky form and 5. model to be followed 23 = Az + Buy, linear design is used
to find an 6pen-loop command vy by solving Z; = Az; + Bvs and since A and B
are in canonical form, this is straightforward. Then z is compared to z; to yield an

erTor €, = 2 — 2Z4.
€, =2— z;d, = A(z — z3) + B(v — v4)
= Ae, +B(v —vy)

Using linear feedback, we can design a regulator that stabilizes out rthe différ—

ence by placing‘ the poles of the linear system in the desired positions, let:
bv=v—vd = Ke,
K is an m X n matrix so that:
€, = Ae, + BKe, = (A + BK)e,

Choosing K in such a way that A 4+ BK has negative eigenvalues, we get
asymptotic stability of e, = 0. Placing the eigenvalues is a simple task for a system

in Brunovsky canonical form. Disturbances and variations in plant dynamics are

. handled in this way.

The controls v; and 6v are added and transformed through the inverse map

T-! to give a control v = (uy,...,u,)T which is applied to the plant.
" The main. advantage of this in direct approach is that the difficult tasks of
finding the open-loop control and the regulated contx;ol are pefformed on the linear

system.

5.2 Output tracking using in{feftibility of systems

Based on’ the theory of invertibility and functional reproducibi'lity for multivari-

able nonlinear systems, an application to the output tracking control of nonlinear

38 .

ya

Inverse

system

5

Nonlinear

system

Regulator

Fig. 2: Block Diagram of the second design scheme

Y

Y

' |
systems is presented in this section. 2

The design approach presented is based on the inversion algorithm of Chapter
4. The application of the inversion algorithm to the nonlinear system gives rise to
a left-inverse system which, when driven by appropriate derivatives of the output
y, produces u(.) as its output. The question of trajectory following by the output
is related to right-invertibility of the nonlinear input-output map, and the ability
of the nonlinear system to reproduce the reference path as its output. To obtain
robustness in the control §ystem under perttirba,tions, design of a servocompensator
around the inner loop using 'ser\%omechanism theory ris suggested. B

For the system (4.1), the output tracking design will be done in three phases:

1. Find conditions on the class of outputs which the system can track (i.e identi-

fication of functions y4(t) which can appear as outputs for the system (4.1)):

ya(-) = y(.,u, o) for some admissible control u

2. Construction of a control u4 for which y4(.) = y(.,u,z¢). To avoid keeping

track of degrees of differentiability, y4 is assumed to be infinitely differentiable

(smooth).

The basic idea in both linear and nonlinear tracking is to solve for the control,
%4, as a function of the desired output, y4, and the state z of the system. This
provides us with a left-inverse that generates the required control correspond-

ing to the desired output.

3. Ideally, the combined relationship of y4(.) to y(.) is an identity. However,

‘robustness purposes dictate that a regulator be synthesized.

39

Chapter 6

CONDENS: a software package

usih_g symbolic manipulations

In this chapter, CONDENS, a software package using symbolic manipulations is
presented. The main aim of CONDENS is to help the user in some symbolic cal-
culations in differential geometry and its applications to control, with emphasis on
the design of controllers for the output tracking problem.

In the first section, we present the programming objective and how the package
can make available to the design engineer some design methods that rely on more
or less sophisticated mathematical tools.

In the second section, a complete description of the different modules of CON-
DENS and how to use them is given.

In the last section, we present some examples with simulation results to test

our programs and the performance of the -system.

6.1 Programming objective

The impact of the computer on mathematics and its related fields is well-known.
Perhaps, less we}l—known is the recent progress of the application of symbalic calcu-
lations in the more continuous _parts of mathematics; such as mathematical analysis,

differeﬁtial equations, differential geometry and its applications in nonlinear control

40

A

theory.

The objec:tive of our program is to implement the theory presented in Chapters
2-5. |

The ultimafe purpose of the system is to assist the user in the design process
by automatically selecting and executing an appropriate design method. The final
step is to validate and implement the design. This feature shifts a large amount of
complexity of the desig}l problem from the design ehgineef to the “knowledge base”
of the CAE system.

An obvious but 'noﬁnegligible circumstance is the fact that, due to the use
of symbolic calcﬁla.tions, one may carry out easy, “long and tedious” calculations
with the'comﬁuter, thus avoiding elementary mistakes, such as wrong sigﬁs, missing
brackets, omitted symbols,...etc.

The system presents an other feature: It can automatically generate numerical
programs for the solution of problems posed in symbolic form or for simulation pur-
poses. Given a new control problem, the time involved in analyzing the theoretical
results and then writing the Fortran code to execute it is eliminated. The mistakes
and the time required to test and debug the Fortran code is also eliminated.

Most importantly, the system allows the engineer to interact with the com-
puter for design at the symbolic manipulation level. In this way, he can modify his
analysis or design problem by modifying the symbolic functional form of the model.
The Fortran subroutinizs that he might have to modify by hand to agcomplish this
in conventional design procedures are written automatically for him.

There are several systems designed for symbolic calculations, e.g, FORMAC,
MACSYMA, REDUCE. We have chosen the language MACSYMA as a basis for
our developments. It may be implementedv on any compﬁlter system supporting
LISP, it is easily available and, consequently, widespread. Last, but not least, we

are charmed by the intéractive facilities of MACSYMA. .

41

N |

6.2 Description of CONDENS ’

Based on the_ theoretical concepts p;'esented in previous chapt(;,rs, the System, can
treat feedback linearization and tracking control problems for certain classes of
nonlinear systems.

The package contains a set of user-defined functions, it also contains two Aelp
functions: MENU and HELP. MENU will display the list of all the user-defined
functions the package contains. HELP(“fct-name”) returns an information text
describihg the function, its syntax, how to enter its arguments, and an example.

All these functions .are‘collected in a special file (“initfile.mac”) with file ad-
-dresses for all the functions. Once this file is loaded into MACSYMA, a user-defined
function, not previously defined, will be automatically loaded into MACSYMA when
it is called. This will be done by a login file using the setup- autoload command. So
the first thing the user has to do once in MACSYMA, is to load the login file (load
“initfile.mac”;). He can then start the package using the command “condens();”
which will give him some hints on how to use CONDENS.

All functions not explicitly described in this section are already available in the
basic MACSYMA system. We recommend that the reader consult the MACSYMA
Reference Manual for details. '

Moreover, one has to be informed on how to start a MACSYMA session.

The programs that form CONDENS will be described by order of complexity,
in three different subsections.

Subsection 6.2.1 will describe a set of user-defined functions that perform
some differential geometﬁc corﬂputations. Straightforward computa.tiéns such as
Lie brackets and Lie derivatives and more complex computationé such as Kronrccker
indices or Re{ative order of nonlinear systems are included. The two help functions,
- MENU and HELP are also described in this su;bsgction.r

In subsection 6.2.2, we présent two more Vsophisti’cated modules cqntainéd in
CONDENS: TRANSFORM which addresses the feedback linearization problem,

and INVERT which provides the left-inverse of a nonlinear control system.

42

U R M R I O ITA TR O e SRR TR Co s i e

¥

PRRDAARE A LA

Subsection 6.2.3 will present a more complete picture of What CONDENS
_can do. In particular, it describes two programs that address the output tracking
deéfign problem. FENOLS and TRACKS use fhe modules and user-defined functions
presented in the two previous subsections to design a control law for a nonlinear
' sy:;tem in ;)rder to force its output i;o follow some desired trajectory. FENOLS and
TRACKS have also the capability of automatically generating FORTRAN codes
for simulation purposes.
Before describing ¢ONDENS in more detail, we shall make some general re-

marks relevant to all worked examples in each section.

1. Input lines always begin with a “(C,)”, which is the prompt character of
MACSYMA, indicating that the system is waiting for a command.

»

2. Results of commands terminated by a “;” are printed.

»

3. Results of commands terminated by a “$” are not printed.

4. If we are working with a single-input, single-output system:

z

f(=) +g(z)u
y = h(z)

then the vector fields f and g are entered in the form of lists:

£ (fi(e)s falz)s -5 fala)ls

g : [gl(z),gz(x),---,gn(x)];7

h : h(z);
example:
For the system:
£ = zi+2zu
252 = .'lez-{-u
, y = zj+7
' o
43

e - R AR R R O R R B R B R QR S R it

2)
g [2z,1);
h 2t 4 2
5. If we are working with a mu_ltiva.rié.blie control sysf.exﬁ:
& = @)+ el
=1

y = h(z)

zE€R* u€ R™, y€ R™

then the vecter field f is entered in the form:

flfi(=z),. .., fulz)]

but the m vector fields gy, g2,...,9m are entered in the compact form:

g:[91,---,9m] where each g;is g¢i:[gi1,...,Gin]

example:

For the system:

T = mf + 2z1uy + 229u,
:152- = I3Zs+ 2u; + ug

1 = 5521’ |

v = i+

[[:z:f, 181532];
[[2:51’2]’ [32’1]];

h : [zf,zf—i—zz];

44

TR AR R U R R RAIRAS LT

6.2.1 User-defined functions:
A description of the user—deﬁnéd functions available in CONDENS is given: -
MENTU: 7réturns a list of all the u;er—deﬁned funcﬁons contained in CONDENS.

HELP (fun-name): generates an information text describing the function, its syn-

tax, how to enter its arguments as well as an example.

/-

JACOB(f): computes the Jacobian of f. That is returns the matr;lx:

h ... 4
az; az,._

O ... 8/n
a:l:l

Oz,

LIE(f,g): computes the Lie brackets of the vector fields f and g¢:

of

3}
£,9)= 520 = 529

ADJI(f,g,k): computes the k & adjoint of f and g:

ad'}g = [f, ad;"lg]

acrg = g

LIDEV(f,h): computes the Lie derivative of the real valued function h along the
direction defined by the vector field f: L¢h.

NLIDEV(f,h,k):Acomputes the k** Lie derivative of h along f:

U = Ly (zw)
LSh = h

KRONECK(f,g): used for multivariable systems,where g represents the set of

vector fields ¢1,...,9m

This function is useful when the nonlinear system is transformable to a linear
controllable system in Brunovsky canonical form. It computes-the Kronecker .
P e |

45

IR T R R R L AR R T TR TR TP AR A MR Q G I B2 QPO PN QMBI A D v N MO v SR MAMREO I (OIS T80

indices of the equivalent linear system the original nonlinear system is trans-

formed to. It returns-a set of numbers:
ky >ky> -2 kn
ky+ kst kn=n

BTRIANG(f,g): This function checks if the nonlinear system & = f(z)+X, ¢i(z)u;
is in block triangular forfn (see section 3.1 for definition). The argument g of

the function represents the m vector fields g1, ..., gm.

RELORD(f,g,h): computes the relative order (see section 4.1.1 for definition) of

the single-input single-output nonlinear system:

z = f(z)+g(z)u
y = h(z)

6.2.2 TRANSFORM and INVERT

TRANSFORM and INVERT are two independent modules that use the user-defined
functions presented in the previous subsection to study two theoretical problems:
feedback linearization and invertibility of nonlinear control systems.
TRANSFORM (f,g):
TRANSFORM treats the feedback linearization problem presented in Chapter

3, that is, given the nonlinear control system:
T = f(z)+ D gi(x)us - (6.1)
- 1=1

TRANSFORM investigates the existence of a one to one transformation (con-
sisting of a change of coordinates and feedback) whi;:h transforms system (6.1) to |
a controllable linear system in canonical form. Moreover, in case the transforma-
tion, say T, exists, TRANSFORM generates the set of partial d_iﬁ'erential equations
that T satisfies. In some cases, the module TRANSFORM can solve these partial
differential equations and returns the transformation T and its inverse. .

TRANSFORM proceeds in ‘the following manner:
(W
46

SUBEMNRARSBARIWENIH e U U P S YOI ILILTEN ™~ IV LTS ENTRRITRT VR LTI 2 Da i L L S I AR S A 0 T U S AT AR 1113413 S I A AR ALITL L

o_Takes as input the nonlinear dyhamics fy91,.--y9myP1,y ...y hm and the desired

-trajectory ya(t).

° 'InVStiga.tes the;léft and right invertibility of the nonlinear system.

Left-im}ertibilit_y.: by computing the relative order of the system and making

‘sure that it is ﬁnite

nght-lnvertlblhty by checking if the desired trajectory yd(t) is trackable by

‘our system, that is, if yg(t) satisfies conditions
e Uses the package INVERT to construct the left-inverse to our system.

o Feeds the left-inverse system obtained with y4(t) to obtain, as output, the

required control uy(2).

e Generates upon request a Fortran program for simulation purposes.

6.3 Examples

In this section, two examples are treated using CONDENS.
EXAMPLE 1: Basic industrial robot

This is the example of a basic industrial robot. It has one rotational joint and

a translational joint in the (z,y) plane.

| S 49

DRI ¥ L PR PR RPN

AR SR R B R R SR N PRB IR DRSNS a0t s e e

T e S R A T R e L T T T Y T ST D SOV

Using a polar cbordina.te system for modelling the robot, the kinetic equatiors

are: -
- .2 mpl 2 K,
Fo= rg?- ©
T 2(mp+myg) mp + my,
. . ~2(mR - mL)r + ml i Mw
v k —mpglr + (mg + mp)r? v k —mpglr + (mg + mg)r?
yl = r. .
Y2 = ¥

with r(t) as translational motion and ¢(t) as the angle of rotation. y; and y, are
the outputs that have to be controlled. K,(t) and M, are the drives corresponding
to r(t) and p(t).

If the state variables and the inputs are chosen to be:

z1(t) = r(t) zo(t) = 7(t)
sslt) = p(t) aalt) = B0
ui(t) = Ki(t) ua(t) = My(t)

then the system can be described by a state space representation of the form:

T T2 0 0
Ty _ fi (X) + mn-lhnr, 0 UI
Z3 T4 7 0 0 2
£ f2(%) S Luo
where |
filx) = A - Z—(ERE_I;—lm—L-)—.’ci

—2[(mg + mz)z, — mpg]
k — mpglzy + (mgr + my)z?

f2(x)

2Ty

We are interested in designing a tracking controller to track the trajectories:

n(t) = m(t) = exp(t)
y2(t) = =z3(t) = ¢

W 2

50

Ap_sing- the first technique: Exact Linearization.

with T o ngL =] = 2’k =5 .

(c2) load("initfile.mac"); ' ’ : .
" (a2) S . * "initfile.mac

(c3) f;anols 0:

Hello,FENOL? tries to solve the prnb]en{ . - #

Given the non lifear system:

= > u g (x) *+(x
1 1
=1

find a non singular transformation that takes this system to a controllable 1i#

near system:

=b .Vv+a.z

enter dimension of the state space

enter dimension of the contrecl space
2;

enter the values of f in the form[fl1(x),f2(x),....,fn(x)] followed by ,
(X2, X1*x4*42-x4**2/2, x4, (4*X2*x4-B*x1*x2*x4) / (4*X1**2-4*X1+5)] ;

enter g (x) in the form [g (x) g (x) 3]
1 1,1 1, 4

{0.1,0,0]:

enter g (x) in the form [g (x) g {x)]
2 1, 1 1, 4

.

[0.0,0,4/(4*x1**2-4%x1+5)] ;
Hello, TRANSFORM tries to solve the problem: #
Given the non linear system:
. = 7
m=f(x) tu g (x) tu g (x)
.ac 2 2 1 1
find a non singular transformation that takes this system to a controllable

linear system:

checking if the system is in block triangular form....
system in block triangular form

the transformation is easy to construct .

i :
51

NS) R RIS o.mm\-\(»z\o{u,\t.\{,\l\lrl\\\kh\.s.\r\'wzRi\‘)mxISl,\e525as?ﬁ)e\!\b.‘xhEs}Quv_M\muQi:i)s:{aimu»‘:m)\‘.v(h.\()bboon.'az.;)(\.’,\:,\u..\\».-.n.--'m.~.\a“ o

P e

R N P S R L YE TF Y SR IO TRy
AREEA EER AL I RN S S A T TR T R S I SRS OO S L O IO A

The new state variables are:

2[1 1= xa

z2[2)= x3

z[3)= x2 ’ : -
~z[4 1= x4 :

The new control variables are:

- 2
ol 2 x4 :
V{1]=x1 x4 - ---+ul
2
4 %2 x4 - 8 X1 x2 x4 T4 w2
V[2 J= m-mmmmemmme e + ooemosoo—eoomeo-
. 2
4x1 -.4'%x1+5 4x1 -4x1+5

enter the desired traject:ory in the fom [xd(l), Lo.exd(n)]
[exp(t).exp(t).t.1];

oY

e

SR

R

enter the desired eigenvalues of the linear controller in the form [delta(l),

..,delta(n)] followed by a ,
(~2.-2,-2,-2):

The tracking controller is :

2 t
(2x1-1) x4 -2 (-4x3-4x1+5% +4rt)
u(x,xd) [1 J= - =-----------emss oo emeseoo—ne oo

u(x,xd){ 2]= ((8 x1 x2 - 4 x2). x4 + 4 x1 (- 4 x4 - 4 X2+ 4 e

t
-4 x1 (-49x4-49x2+49% +5) +5 (-4x4-4x%x2+ 47

Are you interested In simulation results?(answer y or n)

Y: . .
enter filename of fortran code(without adding‘'.f') .
exampl;

enter injtial time you would like the simulation to start from
0.0; R

enter final time tf - -
5.0;

enter step size h
0.01; v

enter 1n1t131 condition in the form([xo{l]....xo[n]}]
{0,0,0,0} .

dimension x(4).dx(4).datad (1000, 4), data (1000,
14)u(2).y(4)

c set no of equations -

n= 4 :

m= 2
c set initial conditions

x(1) =

x(2) = 0

x(3) =0

xy4) = 0

Y(1) = X(lg

y{2) = x(2

y(3) = x(3)

y(a) = x(4) -
c set initial & final time

t= 0.0

tf= 5.0 "
c set step size

h= 0.0

52

+ 5)

t
+ 5))/4

AT

' 2

215

125

30

10
25

15

20

30

(@3)

T A O I OO WM O A I b e LR I N N T N

desired trajectory
no= 500 .
do 15 i=1,n
datad|i,1)
vatad (i, 2)
datada(i, 3).
datad(4,4)
t=t+h
continue -
store initial values for plotting

do 25 1=1, 4 - -
data(l,1)=y (4 .

continue -- -

t=0.0

call control (x,t,u)

initialize k & mm

k=0

mm=1

print *, t,datad (mm, 1), data (mm, 1)

write dovn the differential equations

[¢]

~p(t)
xp (t) -
t - -

1

s

n= 4
ax(1) = x(2)

dx(2) = x(l;*x(4)“2wx(4)“2/2.0+u(1)
ax(3) = x(4 .
Ax(9) = (44x(2) *x(4) -82x (1) *x (2} *.c(1)) 7 (443 () **2-4*x (1) +5) +4%u(2)

)L /(4*x(1)**2-4*x (1) +3)
~all runta(n.k, 14,x,dx, t,h,u)

go ‘o (1,2),31 . '
mm=mm+ 1 .
y(2)= x(1) i
y(2)= x(2)

y(3)= x(3)

y(4)= x(a)

do 30 1=1, 4

data (mm, 1) =y (1)

continue

print *, t,datad(mm,1),data(mm,1)
if(t.le.tf) go to 1

stop

end

subroutine runta(n,k,ii,x,dx,t, h, u)
dimension yf(4),2(4).x(4).dx(4).u(2)
K=k+1

go to (1,2,3,4,5).k

do 10 j=1,n

z (3)=dx (3)

y£(3)=x{3)

x(3)=y£{3) +0.5*h*dx (J)
t=t+0.5*h

call control (x, t,u)

ii=1

returm

do 15 j=1.n
z(§)=2 (1) +2.0%dx (3)
x(3)=y£(3) +0.5%h*ax (3)

call control (x,t,u)

1i=1

return

do 20 j=1,n :

z (1) =2(3) ¥2.0*dx (3)

x (3} =y£ (3) +h*ax ()

o o 2%

-0 30 jI=i,n

x(3)=Y¥ (3)+ (z (3) +ax (1)) *h/6.0
call control (x, t,u)

ii=2

k=0

return

end

subroutine control (x, t,u)

dimension u(2),x{ 4)

u(l) = - ((2%x (1) -1) *x (4) **2-2* (S*exp (L) +4*t-2*x (3) -4*x (1))) /2.0
u(2) = (4*x(1)**2% (4*exp(t) ~4*x(4) -4*x(2) +5) -4*x (1) * (4*exp (t) ~4*x (

1 4)-4*x(2)+5) +5* (a*exp (t) ~4*x (4) ~a*x (2) +5) + (8%x (1) *x (2) -4*x (2)} *
2 x(4))/4.0

return
end

‘done

53

N I AT AN O I S i s 0y e 4 e

8

R N I p BRI e e e TN+ I BTN 8 A A S AT A T A a8 0T e A eV A e

L}

Using the second technique: Inverse System.

(c2) load("initfile.mac"): : - -
(d2)) initfile.mac

(<3) tracks(): . - . R

Hello, TRACKS tries to solse the problem:

. .
Given the non linear system:

m
- === -
dx \ . .
= > ug () ()
du / 1 1
1 =1
y (€t} =h(x)
where x is an n-dim vector

u is an m-dim vector
y is an m-dim vector

find the inverse system that takes as input the desired trajectory yd(t) and
generates the required control ud(t)

enter dimension of the state space
4;

enter dimension of the control space
2;

enter the values of £ in the form [f (x) ... f (x)] followed by .,
{%x2,x1*x4**2-x4**2/2,x4, (4'x2‘x4-8'x1}x2'x4)/(Qexl"z-é'xl*s)} :
enter g (x) in the form [g (x) g (x)] followed by ,

1 1,1 1, 4
[0.1,0,0};
enter g (x) in the form [g (x} g (x)] followed by ,
[:’.,c,o,z/(‘z*xl"z—a«th)],-) 24
enter the values of h in the form [h (x) ... h (x)] foilrlowed by .
[x1.x3]): ! 7 2
enter. the initial state x0 in the form [x0 (x) ... x0 (x) followed by ,
{1.1,0,1);: ’ ' ' ! *

entcr the desired trajectory you want the output of your system to track

yd[1 J(t)= ' . .
exp(t); . . .

yd[2](t)=
t: .

relative order of system = 2

The inverse system to our non linear control system is :

.

54

dx .
-- = binv(x}) . yi(t) + ainv(x)
dt -

u(t) = Cinv(x) + Dinv(x) . yl (t)

2 2
- dyl dy2
where yi(t) = {~---, ----]
dt ac”
[x2]
{]
(o)
Ainv(x) = []
[x4)
[3
(o3 :)
[0 0}
[]
[1 0]
Binv({x) = []
o o]
[) .
[2 2]
{ 2 x1 x4 - x4]
Cinv(x) = [- ==-=----------]
{ 2]
{]
[2 x1 x2 x4 - x2 x4]
[1 o]
{]
Dinv({x) = [2]
[4 x1 -4x1+5]
[0 =romommoooeoe-]
[4]

Checking if yd(t) is trackable by our system (right-invertibility)

yd(t) can be tracked by the output y(t)

The control ud(t) that makes y(t) track yd(t) is:

UA(E) [1]= [- mmm-memmmmm oo .2 x1 x2 xa - x2 x4]

ud(t) [2 }= [~ ----7-m--wommm-------- 0 270x)1 X2 X4 - X2 x4)
Arc you interested in simulation results ? (answer y or n)
Y

enter filename of fortran code
fort;

enter initial time you would the simulation to start from
0.0; :

enter final time tf
5.0;

enter step size h
0.05;

enter initial condition in the form [xo[1],...,xof 4)
[0,0,0,0}; :

55

dimension x{ 4 }.dx(4),<atzd(1000, 2 },data(1000,
12).302)y(2) :
c set n¢ of equetions
n= 4
m= ! .
[sel initial conditions
x{1)
x(2)
x(3)
x (4)
y(1) = x(1)
y(2) = x(3)
set initial & final time
t= 0.0 " :
tf= 5.0
set step size
h= 0.05
desired trajectory
no= 100
do 15 i=1,no
datad (1,1)
datad (i, 2)
t=t+h
15 continue’

[=X-ReN-]

[}

exp (t)
t

c store initial valuyes for plotting .
do 25 i=1, 2
data(1,1)=y (1)
25 continue
t=0.0
call control (x,t, u)
c injtialize k & mm
k=0
mm=1
print *, t,datad(mm, 1), data (mm,1)
c write down the differential equations
1 n= 4 -
dx (1)
Aax (2} = x(1)*x () **2-x(4)**2/2.0+u(1)
ax (3 (1)
ax(4) = (4*x(2)*x(2)-8"x(1)*x(2)*x(4))/(4*x (1) **2-2*x(1)+5) +4*u(2)
1 /(4*x (1) **2-4*x (1) +5)
call runta(n,k,ii, x, dx,t,h,u)
go to {1,2),11

x(2)

i

i

2 mm=mm+1
y(1)= x(1)
y{(2)= x(3)

do 30 i=1, 2
data (mm, 1) =y (1)
30 continue
print *,t,datad(mm,1),data (mm,1)
if(t le.tf}) go to 1
stop
end

subroutine runta(n.k, 11,6 x,dx,t, h, u)
dimension yf(4).z(4).x(4),dx(4).u(2)
Ko
oo {3,2,3,4,5) .k
2 de 10 3=1,n
2 (3) =dx(3)
v (3)=x(3)
10 x(3)=yf(3)+0.5*h*dx(])
25 t=t+0.5*nh
call control (x,t,u)
1 it=1 .
return
3 do 15 j=1,n
z(3)=z(3) +2.0%dx(3) .
15 x(3)=yf(3)+0.5*h*dx (3)
call control (x,t,u)
ii=1
return
4 do 20 j=1.,n
z(3)=z(3) +2.0%dx (3)
20 x(3)=yf(3)+h*ax (3}
go to 25
s do 30 j=1,n
30 x(3)=yT(3)+(z(§) +ax(3)) *h/6.0
call control (x,t,u)
ii=2
k=0
return
end -

subroutine control (x, t,u)
dimension u(2), x(4

u(l) = exp(t)-x(1)*x(4)**2+x(4)**2/2.0
12(2) = ~(4*x(2)*x (1) -8*x (1) *x (2} *x(4)) /4.0
vaturn .

end - -

56

B A A 25 T A I T N

Exaraple 2

- Check if ihe following nonlinear systexjn is feedback-linearizable to

B lable linear system and if so, find the F-transformation.

' 2

- | (xl\ [sin(z) ‘\-(0)

Z, sin(z3) 0
' u
"Lz | = 3 gt '

Uz

\~

Ze | zs + z3 — z}° 0

\.’E's} \ 0 /} \0

= O O O O

(c2) load("initfile.mac"):;
(d2) initfile.mac
(c3) f:[sin(x2),sin(x3),x4**3,x5+x4**3-x1%*10,0};

3 3 10
(d3) - (sin(>2), sin(x3), x4 , x5 + x4 - x1 , 0]

(c4) g9:[{0,0,1,0,0],{0,0,0,0,1]];
(d4) [{o. o, 1, 0, 0), [0. 0, 0, 0, 1]}

(c5) transform(f,qg);
Hello, TRANSFORM tries to solve the problem: #

Given the non linear system:
dx

= f(x) +u g (x) *u g (%)
at 2 2 1

find a non singular transformation that takes this system to a controllable

linear system:

checking 1f the system is in block triangular form....
sysien nut in bi-k tolanygailar foruw ==> trying the general method...

the system is multi-input ==> computing first the Kroneck-:' indjces of the equ#
ivalent controllable linear system

Kronecker indices are:
kf12=3
k{21=2
checking the first cordition of transformability.....
checking the seccnd candivtan of transformabllity...

checking the laird Corsditdon of Uransioraavility....

57

a control-

s

BRI T T R e T T T R

span of cl =span of cl /C

span of c2 =span of c2 /C 7 -

All the conditions are satisfied :

trying tc.> construct (1f possible) the transformation....
Tne new state variables are : - '
2(11=x1

z{ 2)= sin(x2)

z[3]= cos(x2) sin(x3)

z{ 4 1= - x4 Nz .:

: 3 10
z[5)= - x5 - x4 + x1

The new control variables are :

3 2
vi{ 1]= cos(x2) cos(x3) (x4 + ul) - sin(x2) sin (x3)

2 3 10 9
vi2]=-3x4 (x5+ x4 -x1) +10x1 sin(x2) - u2

(ds) done

58

Chai)ter 7
Conclusion

A rich collection of analytical tools based on differential geometric methods has
been developed for the analysis and design of nonlinear control systems. These
tools include: The Hunt-Su-Meyer technique for exact linearization of nonlinear
control systems and the right and left invertibility of nonlinear sytems.

Using computer algebra programming methods, a software system, CON-
DENS, has been developed which make these analytical procedures available to
users who need not have an extensive knowledge of differential geometry.

It should be pointed out that these methods are limited to a certain class
of nonlinear systems; namely the class of systems which are either invertible or

meet sufficient conditions of transformébility. However, many important control

- problems do belong to this class (e.g, Robot manipulators, Power systems).

A T

This work may be viewed as a component of an expert system for the treatment
of nonlinear control problems. In particular, CONDENS can be extended to include

some recent results on the analysis of nonlinear control systems such as:
e A global version of the exact linearization technique.

e Transformation of a nonlinear .control system with output to a controllable

and observable linear control system with linear output.

s Output tracking with singular points.

59

b e e,

| ‘Appendix

._Q_‘_“_ﬁ_d-l_._l—._l—i_‘_‘»ﬂ-ﬂ»ﬁ_i-tAﬂ_l-ﬂ_i_._l_‘_!_I_1«‘-*-._l-¢~ﬁ..-l.‘ﬂ

This is an init file for the package CONDENS:CONTROL DESIGN OF NONLINEAR °
SYSTEMS. This is the only file that has to be loaded in MACSYMA by the user,

all the other files will be automatically loaded as they are needed.

So to get started, the user justL has to type once : LOAD(Minitfile.mac"), _
followed by the command CONDENS () which will give him some hints on how lo

use the package. - .
_ﬂ_l_.-ﬁ-ﬁ—ﬂ-l-ﬁ_ﬁ-‘-i—t-‘—‘_ﬂ—l_l_i-iil.st_.,t_l:ﬂ_‘_l,n.l.l-t,,l,i_l.‘,AlVQ_I/

loadprint:false$
. setup_autoload ("CONDENS/menu.mac", menu) § -
setup_autoload ("CONDENS/geofunl. mac", jacob,pjacoblie.plie, adj)$ -
setup_autoload ("“CONDENS/geofun2.mac", lidev,plidev,nlidev, relord) $ i
setup_autoload ("CONDENS/transform.mac”, transform) $
setup_autoload {""CONDENS/fenols.mac", fenols) $
setup_autoload ("CONDENS /tracks.mac", tracks) $
setup_autoload ("CONDENS/invert.mac", invert) $
setup_autoload ("CONDENS/btriang.mac" btriang)$
setup_autoload ("CONDENS/simu.mac”, £1)$
setup_autoload (""CONDENS/condens .mac', condens) $
print_true:false$
help (arg) :=arg(help)$ '

condens () :=block (clearscreen().

print("anﬂlin-tnnantintuaalnlt‘naﬂn&nt!.nattaann_‘tﬂortn1‘a¢hatttnntttaiinttattn"

print (" S oy’
print(”* Hello ! WELCOME to CONDENS : CONtrol. DEsign of Nonlinear Systems "';,
print ("* any”
print(“* a MACSYMA package for the design of controllers for the output *";,
print ("* tracking problem using differential geometric concepts. *"y
print ('* . .) R D
print{"* by : WASSIMA AKHRI¥ B . n";’
print("* - : - oy,
princ("* .. under the supervision of : Prcf. GILMER BLANKENSH1P "y,
print (" - - ~ "y

print(“nnnnantngnﬁlntiﬁ-:n‘nnnntﬁattattﬁntnanaann‘nn-tnlnn-an-ttn.tnttantl‘tn“) "

print (" f.g and h,whenever mentioned, always designate the nonlinear .
print (" dynamics of the nonlinear system affine in control: "y,
pr;nt(:: dx/dt = £(x} + g(x) u ")
brinc(r "), T 8
print (" Type MENU(), to get a list of all functions avallable in"),
" "
print (-. SONDENS .).
print())s

menu () :=block (. . T . ’

print ("HELP (fun-name) : generates an information text describing the function ;')
print é"JACOB(f; :computes the Jaccbian matrix of f."), . T
print("LIE(f,g) : computes the Lie brackets of the vector fields f and g.")
print {"ADJ (f,g.K) : computes the k-th adjoint of f and g."), ‘
print ("LIDEV(f,h): computes the Lie derivative of the real valued function h")
print (" , along the direction defined by the vector field f."), . ‘
print("NLIDEV(f,h,K) : computes the k-th Lie derivative of h along f."),

print ("BTRIANG(f,q) : checks if the nonlinear system is in block triangular fod!')
print ("RELORD(f,g,h) : computes the relative order of the scalar control system"), ‘

print (" dx/dt=f (x) +g(x)u, y=h(x). "), .

print ("TRANSFORM(f,g) : treats the feedback linearization problem, that is checks")
print (" if the system is linearizable and solves for the nonlinear"
print (" transformation."),

print ("FENOLS () : module that treats the output tracking problem using feedback")
print (" linearization."), ’

print ("INVERT(f,g.h) : finds the left .inverse to the original nonlinear system.") ;
print ("TRACKS () : module that treats the output tracking problem using the left-")
print (" inverse system."),done)$ ‘

A £

60

/ann-nuﬁaﬁtt-aa--n..a-..-..aaaa-.o-a--na-.ia.--a{a.aanaannt.n.alannannaﬁnn:/

" -, -
/* This ftle contains 3 functions: .5
/* - o - - 'Y
/* Jacob () : computes the Jacobian of a vector function f. ﬂ;
- B _ - -
/* Lie(f,g): computes tfie Lie brackets of f and g. »/
/* - dg ar - : - .y e
/- (f.gl= _ .f - _ .9 - */
/" oax - A : Wi
/* - - - "/
VA Ad3 (f,qg.n): computes the adjoint of f and g of order n. /
/* . */
VA (ad.n f,g)=[f. (ad.n-1 £,9g)] */
;: (ad.0 f,g)= g */
*
/i CODE ‘iﬁﬁkﬁ.ﬁ..."'itﬂﬁi‘ﬁliQ*ﬁﬂ.ﬂtlitnﬁitﬂ!t‘ini‘t'.t‘.t"!ﬁ.i"ﬁ;
A */

jacob (argl) :=block ([p, templ, temp2, temp3],
if argl=help then return((
print (" jacob(f) : computes the Jacobian matrix of f. .
print (" f is entered in the form f:{f1(x).....fn(x)].
print (" example: (1f n=2) f:[x1**2,x2]). ") .done)),
p:length(argl), templ:],
.for il1l:1 thru p do~
(temp2:makelist (diff (argl[il].concat('x,J1)).j1.1,p).
templ :endcons (temp2, templ)),
temp3:apply (matrix, templ) ,
'df/dx= temp3)$

pjacob (arg) :=part (jacob (z'?rg) ,2)$

lie(argl, [arg2]) :=block([tem.qgl],
if argl=help then return((

",

print (" lie(f,g).: computes the Lie brackets of the vector fields f and g "),

print (" -f and g are entered in the form f [fl (x). fn(x)).,).
print (" gl(x),....gn(x)]). ").
print (" Example: (1f n=2) f:[x1,x2-1], g [xl**z xz“Z] ").done)},

gl:part(argz,1),

tem: (pjacob(gl) .transpose (argl) -pjacob (argl) .transpose (91)).

tem:makelist (tem[i2,1].12,1, length(arqgl)).
'{f.g]= tem)$

plie(argl, arg2) :=part(lie(argl,arg2),2)s

adj (argl, [arg2]) :=block([teml,gl,nl],

1f argl=help then return((
print (" adj(f.g.,kK) : compute_» the k-th adjoint of f and g "),
print (" f and g are entered in the form f:[fl(x),
print(

'Y 2

61

<. ()1,

' 2

/ta-\anﬁnna:tntintaaﬁnnauntnlnnanntactttttnanaaniinnn«ﬂllttian.naaata.atnnta/

/ : N/
/* This file contains 3_functions: - . ./
* L]
/* Lidev(f.h) : computes the Lie derivative of the real valued *
/. - function h along the direction defined by the o
/* vector fileld f : LY
A - - - : Lf(h) = < dh,f > ’ - *)

L - l/

/* Nlidev(f.h.k) : computes the k-th order derivative of h alonq £: */
/* < K k-1 ./
7* LE(h) = LELI(h) - - Wi

* .0 *
/* Lf(h) = h -/

. , . v/
/* Relord(f,.g.h) : computes the relative order of the scalar */
/* nonlinear system : . ./

. o x = f(x) + g(x) u */
7 ~ : y = h(x) 7

* . *

/tﬁtﬁttﬁtntaawaattnnnnttﬁtﬁtatﬂaﬁﬁﬁtﬁaﬁ'tt«ﬁtnﬁdﬁnﬁnﬁﬁnt-ntantﬁntntaaaninan/

lidev (argl, [arg2]) :=block ({x,res, hl],
if argl=help then return((
print (" lidev(f,h) : computes the Lie derivative of h along the direction f"),

print (" h : scalar real valued function, entered in the form h:h(x),").
print (" Example hixl+x2,).

print (" f : vector field entered in the form f:[{fl(x),...,fn(x)]), “).
print (" Example: (if n=2) f:[x1**2,x1+x2], ") .done)),

hl:part{arg2.1),

x:makelist (concat (x,1),1i,1,length(argl)).
res:sum(diff(hl,x{i])*argl{i]),1.1,length(argl)),
‘LEf('h)= res)§

plidev (argl, arg2) :=part(lidev(argl,arg2),2)$
nlidev (argl, {arg2}) :=block([tem,hl,nl),

) if argl=help then return((
print (" nlidev(f,h.n) : computes the n-th order Lie derivative of h along the dire

print("” . h : scalar real valued function, entered in the form h:h(x
print (" ‘f : vector field entered in the form f:[fl(x),f2(x),f
print (" Example: (if n=2) f:{x1**2,x1+x2), ").done)),

hl:part(arg2,1),

nl:part(argz2, 2},

tem:hl,

if nl#0 then for i:1 thru nl do
tem:plidev (argl, tem),

'Lf[nl} ('h)= tem)§

pnlidev(arl,ar2,ar3) :=part(nlidev(arl,ar2,ar3),2)$

gfh(f,g.h,n) :=plidev(g,pnlidev(f,h,n})$

relord(argl, [arg2)) := block([él hl,nl},) T
- 1f arglzhelp then return((
princs" relord(t‘ g.h) : computes the relative order of the scalar nonlinear “;,

print (" system: dx/dt = f(x) + g(x) u - ",
print (" - B Y = h(x) . : "),
print (" f 1s entered in the form f:(fl1(x),.....fIn(x)].").
print (" .. example: (1f n=2) £:[x1,x2**2],

print (" - g.1s entered in the form g:{gl (x) e gn(x)]."),
print (" " _example: (if n=2) g: [x2, xl‘xz).

print (" . h is entered in tne ,torm - h:h{x),"),

print (" - example: h:x1+x2, ") ,done)) .

gl:part(arg2,1), . R
- . hl:part(arg2, 2), -
nl:0,1lab,
if gfh(argl,gl, hl,nl)#0 then
(print ("relative order of system =",nl+1),done)
else (nl:nl+l,go(lab)))s

62

/anﬂ-nnan-alantanlﬁitnn‘nia_l‘t‘nt.’tnstnnnn‘nﬁﬂntntaannlatantttﬁtﬁtnlanaAnntau/

w - : . N - . N *
/* This function: checks 1T the system is in block triangular form - v/
* . . *

/Ait}nt lIlt-‘.lﬁ.‘nItiﬁlQtQ‘ltiln!‘ﬂlll.“nil‘.ttlﬂﬁ;“ﬂ‘tl".ﬂiitttﬁ.llhﬂ"i‘i/

btriang(argl, (arg2]) :=block{{x,x1,u,ind), - T
if argl=help then return ((
print("Btriang(f,g) : checks if ‘the multivarible system dx/dt=f(x) *g(x)u is "),

print (" in block triangular form. "

print (" f and g are entered in the form f: [f1(x},....fn(x)]. "),
printc (" ; g:(lg1(x)], .. [gm(x)1],).
print (" Example: (if n=2,m=2) f:[x1, x2“"2] "),
print (" . . g:[[x1,1], [x2,%1}). ")
.done}), .

f:argl,g:part(arg2, 1) ,n:length(f) ,m:length(g).

x:makelist (concat ('x,1).i.1,n),

ind:makelist (concat ('ind,1),1i,1,n),

ind[1}:0,d:1,pl:1,it:n,

u:makelist (concat ('u,i),1,1,m),

x1:makelist ([].%.1.n),x1(pl1]:u,

for i:1 thru n do

equi]:f{i]+sum(g[3] [1]*u[j].].1.m).

for p:1 thru n/m do(1:0,lo0s:0,

for i:n thru 1 step -1 do (

for id :1 thru d do

if i=ind[id] then (if i>1 then 1:1-1

else (los:1,1d:d)).

if los #1 then for r:l1 thru length(xl[p]) do
1f equ[il}#isubst (0,x1({p] [r].equ(i]) then (
1:1+41,cxfit):x[1],it:it-1,
x1 [p+1] :endcons (x[1],x1 [p+1]).
ind[d]:1,if d=n then (i:1,p:n/m),d:d+1,
r:length(x1{p]})).

if l#m then

(print ("system is not in block triangular form"),

resul:0,p:n/m)

else resul:1), ,if resul=1 then

print ("system in block triangular form"), done)$

(Y

63

/aannnnna..nﬁ‘nnnn-nnannnﬁa-‘aatn‘.natiqnintf.caaﬁnan‘nﬁﬁnnaon‘anntﬂ.nAl;npain/

" .
5- . . i . - ’ :/
/- TRANSFORM tries to solve the problem: ’ i ‘5
’/* Given the non linear control system: - S i;
/: - i=m - */

. " . 7 N/

* ax ’ / 1 65) . i A

- -- .= FE(x)} + [/ Gi(x) . u(i) - -- v/

* . dt ---- . - - */

/" 1=1 v/

: Find a non singular transformation that takes this si/stem '5
YR

— * to a controllable linear system : *5

/*) */
L)
5- o g
-- = z + Bv */
/* dc - . */
*
*

/aﬁﬁtnt..it!!!.tﬁ'tﬁﬂit‘tﬂﬂn."tﬂ'iﬂﬁﬁﬁtﬁtﬁﬁ!ﬁiﬂttﬂﬂtA.Qnt‘ﬁﬂ!t‘ﬂttlnﬂﬁt*itini/

transform(argl, {arg2]) :=block([cx.resul],
if argl=help then return((
print("Transform(f,g): given the nonlinear system dx/dt = f(x)+g(x)u,this "),

print (" functicn checks if this system is transformable, via"),
print (" a nonlinear change of coordinates and feedback, to a "),
print (" controllable linear system in canonical form. If so, "},
print (" Transform tries to solve for the transformation and its"),
print (" inverse."},

print (" f,g are entered in a list format.One must be careful®),
print (" in entering g ."),

print ("Example: if (n=2,m=2)"), -

print (" dxl/dt = x1 + x2*ul + u2 "),

print (" ’ dAx2/dt = x2+x1 + x1*uz "),

print (" f:[x1,x1+x2]. g:[[x2,0] , [1,x1]].").done)),

f:argl,g:part(arg2,1).
n:length(f) . m:length(g).

print ("Hello, TRANSEORM tries to solve the problem:
display ('diff(x, t)="f(x)+sum('g[1] (x)*u[i]},1,1.m)),
print ("find a non singular transformation that takes this system to a controllabl
linear system:"),
display('diff(z.t)= A.z + B.'v), -
n:length(f),
m:length(g),
print {"checking if the system is in block triangular form...."),
cx:makelist (concat (‘cx,1),41,1,n),
if integerp(n/m)=true then checkform(f,g).
for i:1 thrum
do k[i]:n/m ,if resul=1 then (print("the transformation is easy to construct"),

‘feed(f,g). return(bye))) . . o

. else print{“system not in block triangular form ==> trying the general
if m=1 then (k([1]:n, - ’ . .
print ("system 1i$ single-input ==> trying first a more restrictive type of
feedback- v=u+a (x) [Brockett] since pde's easier to solve..."), .
print (“checking if the system is transformable..."),
print(“checking the first condition of transformability.. ..
indep(f.g). -) :
if resul=1 then (print(“system not transformable"), return (bye))
) else print (*checking the second conditdon of transformability..."),
invol(f,g.1). - :
if resul=1 then (print("the feedback v=u+ta(x) 1is too restrictive, trying the
more gencral feedback a(x)+b(x)u...") kill (resul)} -

. else (print("system is transformable"),

print ("trying to construct (1f possible)the transformation...).

broc(f.g) .return(bye))).)
if m>1 then (print("the system is multi-input ==> computing first the Krone

kronecker (£,q)) .
print ('checking the first condition of transformablility.... .

indep(f,q).
if resul=1 then (print ("system not transformable"),return(bye))
else print ("checking the second condition of transformability...).
invol(f, g, 2).
if resul=1 then (print("system not transformable'),return(bye))
else if m>1 then(print("checking the third condition of transformabilit
span(f,q).
if resul=1l then (print(“"system not transformable"), return{bye))).
print("All the conditions are satisfied"”), .
print ("trying to construct (if possible) the transformation...).

hoy®lr.a)) s)
64

' 2

/tgtaagattnn'ttan’antnann*nﬁitntﬁnaanttﬁ«nc'ttt.ﬁﬁthtﬁtﬁntain.'lnn--aahﬁ-tntnn/

- - L]
* KPONECKER™ indices) */
* e e, ————— _ *
L] - - *
* This function computes the kronecker indices of the equivalent */
/* controllable linear system in Brunovsky canonical form. */
* *
/* ‘Kl >= K2 >=....... > Km - */
/* Kl + K2 + K3 +....... + Km =n . */
*® - . -
/ﬁﬁtt CODE ﬁitﬂ!.ttﬁﬁttttit.ﬁnt‘!!ﬂ’hl.ﬁ‘Qt.iﬁﬁﬂtn..i.ﬁ(&*ﬁﬁ.‘ﬁﬁ.’it!nttlia-!tit/
JANNEEEE ' ' S
kronecker (f, g) :=block ({depl.dep2,a,dep,r],depl: [}, n:length(f),
m:length(qg).

for j:1 thru m do

(dep2{3]:g[j].aepl: endcons(dePZ[J] depl)),
dep {0] :apply (matrix,depl),a[0] :rank (dep[0]).
r[0]:a[0].

,.if n>1 then tfor i:1 thru n-1 do (for j:1 thrum do (
‘dep2{j]:plie(f.dep2(]j]).depl:endcons (dep2[j].depl)),
dep[1i]:apply (matrix,depl),afi] :rank(dep[i]).
r[i}:af{i}-a{i-1]).for 1:1 thru m do (k({1]:0,
for j:0 thru n-1 do if r[j}>=1 then k([1]:k{1]+1
else k{1]:k(1]),print("Kronecker indices are:")
for 1:1 thru m do print ("k{[",1,"]=",k[1]))6

/tiﬂﬁtﬁta_ttntttﬂtﬂktnﬁ.Qlﬁt!!‘.tuﬁﬁﬁ'-l!n‘tﬁtﬁtﬁnﬁ'tﬁilhiﬁiﬁtnhntﬂittnntn-/

/2 ' S - "/
/* First Nec & Suff. condition of existence of the transformation T. */
. Attt ittt ittt */

_ - */
/* The set C= {g1.(f.g1]}....., (ad.k1-1 f,gl),q2, (f,q92],...(ad.k2-1 f,g2)*/ -
A gm, [Lgm), eeen.. . (ad.¥m-1 f,gm)} spans an n-dim */ -
/: space. */

L]

/Q. CODE a.ﬁtﬁtlﬁ.‘il.ﬂt.tt.‘ﬁﬁﬂﬁnitﬁﬁ.ﬂﬁtﬂﬁi.iﬁi.i.iﬁﬁlt.‘tﬁ.ﬁt"ﬁiilﬁn.i/
A /

indep (f, g) :=block ((depenl,depen2, h]l,depen2:{]. for i4:1 thrum do(
depenl:g[i4], de) 2:endcons (depenl, depen2) ,
if k([14]>1 theni?’o]r 34:1 thru k[i4]-1 do
(depenl:plie (f, depenl),
depen2:endcons (depenl, depen2))),
h:apply (matrix,depen2),if rank(h)=0 then("dependent vectors",
resul:1)
else"The set C spans an n-dim space")$

/iﬂnﬁtﬂ.ﬂ-ﬂﬂtﬂttﬂ‘n'ﬂﬁt!ﬁﬁﬁ‘iiiﬁiﬁt.‘tllﬁtﬁﬂ’ﬂ.tﬂﬂﬁhﬂ‘ﬂtﬂlﬁitl.knﬂﬁtnu'tnn/

/* , ‘/
/* _ Second condition 2/
o e :
/* - The sets Cj={gl, [f.qgl], .., (ad.kj-2 £, gl) gZ [f.g2],...(ad.kj-2 £,g92)*/
/* co.ogm, [f,gm],...., (ad.kj-2 £,gm)} */
A are involutive for 3j=1,2...... m. */
im . "
/At.’ CoDE»'-llttiiitfi*itt‘ttt‘t!itt*tﬂtﬂiiitﬂ*ktiﬂiﬁﬂtt;tﬁﬁtﬂtﬂﬂt.t'ﬁﬁi.ttt/
AR : "/

invol (f,g,w) :=block ([{depl,dep2,dep3.dep4, 1,ml,rl,r2] ,dep3: [], for d:1 thru m do

(depl:], for 15:1 thru m do{(

dep2:g[i5]}, depl:endcons (dep2,depl) .

i1f k(d]>w then for 35:1 thru k[d]-w do
(dep2:plie(f,dep2),depl :endcons (dep2,depl))),

l:apply (matrix,depl) ,if (m*(k{d]-1)+1)>n

then dep4: [concat(c,d), "involutive'")

else for }6:1 thru m* (k[d]-1)-1 do

for j7:36+1 thru m* (k(d]}-1) do
(rl:makelist(1[j6.t].t.1.n),
r2:makelist(1[37.t].t.1.n),

ml:addrow(l,plie(rl,r2)),

1f rank(ml) < (m* (k[d]-1)+1) then

dep4: [concat (c.d).,“is involutive']

else(dep4: [concat (c,d), "not invol"],resul:l)),

dep3:endcons (dep4,depl)) ,dep3) §

65

»/‘nl.n‘n‘l.-“t'ﬁ“nt..-‘Q.‘ﬁ‘l.ﬁn‘htﬂittﬂtﬁt“ﬂtﬁﬁﬁﬂitﬁﬂﬂﬂﬂinﬂtﬁodﬂnliﬁﬁltti./

/- : _ ° . . -/ .
/* + Third.condition) . . Y
ANNNNELEEELEEEEE - : I v

» . . ~ . ./
/Y The span of each Cj is equal to the span of Cj /\ C . - */
v »

/nnn CODF. ﬂlAntQll'tl‘l“lﬁllt‘tt‘i.“ﬁlt“lltiﬂlﬁ..!‘iﬁitlll‘nl..ﬁ‘ﬂ!tnllﬂiﬂn/

/* ke ‘ = . ./

- span (f,qg): —block([depl dep2,dep3,depd,ql,q2], oo)
) for d:1 thru m do {(R
depl:[}.dep3:[],for 1:1 thru m do (
dep2:g[i].depl:endcons (dep2,depl),
mi:min(k[1]1-1,k[d}-2),

if mi>=1 then for j:1 thru mi do(

dep2:plie(f,dep2) , depl:endcons (dep2,depl)),
dep4:g[i].depd:endcons (dep4, dep3) ,

i1f k{d)-2 >= 1 then for r:1 thru (k[d] 2) do
(dep4:plie(f,depd) .

dep3:endcons (depd,dep3))). ql:apply (matrlx, depl),
q2:apply (matrix,dep3) . 1if rank(ql)=rank (q2)then

print ("span of", concat(C,d), "=span of", concat(C,d),
"/N\C") else(print ("ko"),resul:1)))$

/t'ﬁﬁﬁﬁthﬂﬂ!Qﬁﬁ‘ﬂtttﬂtﬂ‘ﬁﬂttitiﬁtﬂﬁltﬂlﬁlﬂtﬁ*ﬁﬁt*ﬁtﬁit‘&tﬁ‘ﬁtttlit.tﬂiﬁiﬂnnﬂi./
/* */
/* This function checks if the system is in block triangular form *
- *
/.tﬁﬁtﬂﬂtﬂﬁﬁltttﬁﬂt!tﬁtttﬁttt"*'ttﬁ‘dﬂﬁiﬂ.ﬁﬂﬁl.tﬁﬁﬁtﬂﬁittttittﬁiﬁﬂﬂkﬁtﬁQitﬁnk/

checkform(f, g) :=“block ({x,x1,u,ind,d,p,it, 1] x:makelist (concat('x,1).1.1.n),
ind:makelist (concat ('ind, 1) ,1,1,n).
ind{1]:0,d:1,pl:1,it:n,
u:makelist (concat:('u,i),i,l,m),
xi:makelist ([].i.1,n),x1{p1]:u,
for 1:1 thru n do
equ(i]): f[1])+sum(g(3] [1])*u{3].].1.m),
for p:1 thru n/m do(1:0,10s:0,
for i:n thru 1 step -1 do (
for id :1 thru d do
1f i=ind[id] then (if 1>1 then 1i:i-1
else (id:d,los:1)),
if los#l then for r:1 thru length(xl([p]) do
if equ{i]#subst(0,x1[p] {r].equli]) then (
1:1+1,cx[it] :x[1],4t:it-1,x1 [p+l] :endcons(x[1],x1 [p+1]),
ind[d] :1,if d=n then (i:1l,p:n/m),d:d+1,
r:length(x1{p]))).
if 1#m then (resul:0.
print ("system is not in block triangular form"},
p:n/m)
else resul:1l),if resul=1 then
print("system in block triangular form"), done)$

/.1¢attnaaoaﬁntﬁalioottt.aan.tan-‘ntaatatt-nﬁnn-tiﬂnﬂ-tﬂnnﬁtttntiaatn.tananntn/

;/' R This block constructs the transformation when-the. system is in co%/
/* -block triangular form. B 2/

/l‘lﬁﬂ.ﬁtﬁﬂﬁltﬂ‘ﬂ‘ﬂ!.lnntﬂli‘ﬁ“ﬂ:’ilt‘ai!ﬁﬁ‘.ﬁtitll!1‘.."“!".1n“ltﬂﬂtn!!ﬁ/

feed (f, g) :=block ([x.u,eqa],x:makelist (concat ('x,1}.1,1,n), : .
- u:makelist (concat ('u,i),1,1,m), .
. zr :makelist {(concat('zr,1),1,1,n), B ’ -
- ' vr:makelist {(concat ('vr,i),i,1,m),
-) for 1:1 thrum do zr{i]:cx{i], - -
for i:m+1l thru n do
zr (1) :sum(diff (zr [i-m],x[j]) *equ{}]).J.1.n}),
for i:1 thru m do
vr[i]: sum(diff(zr[n m+i], x[j])‘equ[j] j.1i.n),
print ("The new state variables are:"),
for 1:1 thru n do print("z{",1,6")=",2r(1]),
print ("The new control variables are:") .
for 1:1 thru m do print("v[",1,"])=",vr[1]).
eqa:makelist(concat ('v,1)=vr{i],1,1,m),
for 1:1 thru m do dd2(i]:rhs(solve(eqa,u) [1]1{1]))$

'

65

' 2

/ant_nnnainnnat.a'nt.aaa*aﬁﬁﬁtannannteaa.anniaaﬁtnaaﬂaathﬂtnannntnnaﬁannnanQnﬁﬂ/

* R - - *

. This block constructs the transformation in the single */
* input case with the feedback restriction.: B : r/
* - *
» v = u + h(x) ’ . . - */
- - E *
/."‘t..ttt.ﬂtﬁ*tt.'.nlt.*Qﬁﬂﬁ‘ii‘i.t‘ﬂtﬁkﬂ'iﬁ.'tﬁ.t.Qﬁ'.Qnﬁﬂﬁ.'tlﬁnﬂﬂﬂ!ntﬁl‘li/

broc(f,qg): —block([x v,s,a,b,T,u,eqal.x: makellst(concat(x,1).1.1,n),
u: (concat(u,1)].
zr :makelist (concat ('z.1),.1,1,n) ,dep:g(1},
for j:1 thrun do s[l.j}: dep[_']]
1f n>=2 then for i:2 thru n do (dep:plie(f, dep) for j:1
thru n do
s[i.3]: dep[j]).a:gemmatrix(s.n,n),
b:a~"-1,for 1:1 thru n do T[i]}:b[i,n],
zr 1] :integrate(T[1],x[1].0, x[1]}),for 1:2 thru n do
for j:1 thru i-1 do 'I‘[i] subst(O x{3].T[1]).
zr (1} :zr{1)+integrate (T[1),x[1],0,x[i]))).
for 1:2 thru n do zr[i}: makelist(d1ff(zr[1 1]. x[j]) j.1i,n).
transpose(f+g[1]'u[1])
vr[1] :makelist (diff(zr[1}[n].x[]]).].1.n) .transpose
(f+g1)*u1]),
print ("The new state variables are:"),
for 1:1 thru n do print (“"z[",i, "]— zr[i])
print ("The new control variables are:
for 1:1 thru m do print ("v[",1i,6"]}=", vr[i])
eqa:concat('v,1)=vr[1],
dd2(1]):rhs (solve(eqa u1]) {1]))$

/.i..t.!ﬁnt‘ﬂtttﬂ...n‘!ntth‘lﬂnnniﬂtl“‘!t.!liit“ih‘.i‘.lll.!ll..‘!ltnl!..nﬁk/

/" : */
: This ‘block constucts the transformation in the general */
" - »
/* . case when the feedback is of the form: Y
VAR . o *
PAS v =a(x) + b(x) T u. a;
. . N - *

/n:a‘ittnnitt;gnn-aannqxnnu\tganainlntntttanltgatﬁtintnnninaﬁ-ailtnnnna-tain.tt/

cyr{f.g) :=block ({x,u.s,1.p.mit,sk,xol, tl,equ,x1i,y,b,al, c,trl, sigma, Ix],
for 3:1 thru mdo(s[1,3]:q9{j]l.1f k[1] >= 2 then
for 1:2 thru k{l1} do if i<= k[j] then
s{i,jl:plie(f,s[i~1,]j]) else s(i,3]):0),
1:k{1].p:1.for j:1 thru n do(
if s{1,p}=0 then (1:1-1,p:1),for 1:1 thru n do
mit[i,j):s[1.pJ[1].if 1=k{p] then sk(p]:j.
if p<m then p:p+l else (1:1-1,p:1)),
xo0i:makelist (0,4,1.n),

- ti:makelist (concat('t,i).i,1.n),

- equ:makelist (concat('eq,1).1,1,n),
x4 :makelist (concat('x,1).1,1.,n),
for kl:) thru n do(y:makelist (xi([j] (ti[k1}).3.1.n}),
for 1:1 thru n do(for r:1 thru n do mit[i,kl]:subst(y[r].xi[r],
mit{i, k1]).
equfi]:'Aiff(y[i].ti[k1])=mit[1, k1],

- atvalue(y[i],ti[k1]=0,x0i[i])).

B:desolve (equ,y) ,Al»:solve (B.y).C:ev{Al[l1l],laplace,ilt),
for i:1 thru n do xo0if{i}:rhs(C[1])).
for 1:1 thru n do C:subst(xi(i],y[1].C).
trl:solve(C,ti) 1], sigmafl]:1,
for 1:2 thru m do sigma[i]:sum(k[j].j.1,1-1)+1,
zr:makelist (concat('zr,1),1,1,n),
u:makelist (concat ('u,i) ,i,1,m),
vr:makelist (concat('vr,1).1,1,m),
fx:f+sum(g[i}*ufi}.1,1,m),
for j:1 thru m do (zr[sigma[j]] rhs (trl[sk(j]]).
for i:1 thru k{[j]-1 do
zr [sigma[j]+1]):plidev (fx, zr [sigma[j]+1-1])).
for j:1 thru m do vr[j):plidev(fx,zr [k[j]+sigma(]j]-1]).
eqa:makelist{concat(v,1)=vr[i]},1,1,m),
for i:1 thru m do dd2(i]:rhs (solve(eqa u) [1] [1]).
print (“The new state variables are :"),
for 1:1 thru n do print("z{",1,"}=" zr[i])
print ("The new control varisbles are :).
for 1:1 thru m do print("v[",1,")=", vr[i]))$

67

/lﬂtﬁ‘.n‘..t.l'n‘naln't.‘lli‘."llttitI_ﬂ.lt.‘Qnt"ﬁ‘ttla‘aa'.ﬁﬁtﬁ.!.‘ttnﬂ‘.ﬁtﬁ/

: | : 7
AN FENOLS tries to solve the problem: ’ */
/*) : : =
/*) Given the non linear control system:’ a; -
/* . © i=m - - Y

- - } R -) -
/* . \ - *

7 ax / - : .
/* ’ o= FE()y o~/ Gi(x) . u(i) . */
/* dt - .- . -/
/* . i=1 . - */

- *
/* Find the tracking control ud(t) that forces x(t) to follow a /-

. */
/* desired path xd(t). FENOLS accomplishes this by transforming v/
/t - */
/* the nonlinear system to a controllable linear one, using the */
/I .. -
/* " function TRANSFORM(f,g). */

* *
;“ﬁ.'tltttt‘nﬁ‘n'Oﬁﬂniﬁﬁ.tinttﬁt'tnt'tn'ﬁ.tttﬁt...!ﬁ‘ﬂﬂQﬁ"tﬁtﬁ.‘ﬁ.ttﬂﬂﬁ.ttﬂt/

fenols ([arg]}) :=block ({zr,zd. v, vr kf,sig,k,dd2,pol],
if length(arg)=0 then go(lsl).
if part(arg,1)=help then return ((
print(“fenols() :given the multivariable nonlinear system dx/dt=f(x)+g(xju "),

print (" this function finds the tracking control that makes the state")
princ (" x(t) follow some desired path xd(t) .Fenols() accomplishes this"),
print (" by transforming first the nonlinear system to an equivalent"),
print (" controllable linear system in Brunovsky canonical form."),

print (" The module asks progressively for the data as it needs it.")
,done)).

1s1,

print ("Hello,FENOLS tries to solve the problem:
display ('diff(x,t)="'f(x)+sum('g[i] (x)*u(i].1i.1.m)).
print(“find a non singular transformation that takes this system to
display('diff(z.t)= 'A.'z + 'B."'v),
n:read("enter dimension of the state space"),
m:read ("enter dimension of the control space"),
f:read("enter the values of f in the form{fl1(x),f2({x)......fn(x)] followed by ,"),
for 1:1 thru m do
gif{i):read("enter”, 'g(i] (x),"in the torm (", ‘'g[1,1](x)."....",'g[l,n]}(x).")"),
g:makelist(gi{1].1,1,m),
transform(f,qg).
xd:read ("enter the desired trajectory"),
delta:read ("enter the desired eigenvalues of the linear controller in the form (ge
zd:zr,
for 1:1 thru n do
zd:subst (xd[i]},concat ('x,1i),zd).
/* construction of linear control */
s1g[0}:0, for i:1 thru m do (sig[i] sum (k[j]. 1),
pol {1] :expand (prod ((sl1-delta(j]). j.sig{i- 1]+1 sig [1])).

Kf:zeromatrix(m,n),
for 3:1 thru m do

for 1l:sig{j-1]+1 thru sig[j] do
‘Kf{3.11]:-coeff(pol[}].s1,11-s1g[j-1]~1),
for j:1 thru m do wd[j] diff(zd[j] t)-sum(kf(j, 1]'zd[1] 1, sig[j 17+1, Sig[J])
v:makelist (concat('v,1i).1,1,m),
for 1:1 thru m do
v[i::sum(kf[4,) *2r {J].3. 1, n)+wd (4], - .
for 1:1 thru m do dd2{i]:ev(dd2{i}) o, - - R
print (“The tracking controller is :* .-
for 1:1 thru m do print("u(x,xd) (", 1, "]"' ddz2[1}).
ans:read ("Are you interested in simulation results?(abswer y or n)"
if ans=y then(file:read("enter filename of fortran code (without adding .f)")
ti:read(“enter initial time you would like the simulation to start from")
tf:read("enter final time tf"),
hi:read("enter step size h"),
xo:read ("enter initial condition in the form{xo[1l],...xo[n]]"),
fl:f,gl:g.,hl:makelist(x(1).1,1,n) ,m2:n,
for 1:1 thru n do
fl:subst(x (1) ,concat ('x,1), f1),
gl :subst (x (1) ,concat ('x,1),9l)),
yd:xd,
ff(file)),
return ("bye, have a good day")
)§

L
68

/ﬁ‘ﬂlin.!.ﬂill.i‘Q.ﬁ.!iﬁ.ﬂlil'!ﬂ‘!!*lnﬂlulnﬂ.ﬂl‘l‘lﬂﬂ‘ﬂﬂ.ﬁ‘l‘t‘ltﬂlln.-tlllﬂnl/

/. : - ’ ’ .t
/‘ .. - - .) 1;
VA INVERT tries to so]ve the problem: N */
/ : ‘ .
/" Given the non linear control system: B : ’ '5
e o i=m - B */
/: . - ST o : */
/ : _ - N : , Y
> L ax / . *
/* . - -- = FE(x) + / Gi(x} . u(i) N v/
/* - dt To-e-- . */
/* *) - i=1 */
/ y(t) = h(x) _ : .o/
*
* where x 1is n-dimensional - -5
* . u 1s m-dimensional “y
» y is mw-dimensional * : v
. .
VAR Find the left-inverse to (*), i.e, a system having as input */
* y(t) (or more precisely an appropriate derivative of y(t)). and i
* as ‘output u(t). .
* - K
/!'i.?ﬂti‘O!il‘ﬂ‘ﬂinti.iﬂﬂﬂﬁ‘!ﬂtﬁlﬂii*ﬂﬂﬂ‘ﬂlﬂ!iOl!tﬂii‘.“ﬂﬂtit..Qiﬁﬂt!ﬂ'nttnt/

invert (argl, [arg2]) :=block ([x,n,m, alpha],
if argl=help then return((

print(“invert(f,g,h) finds the left-inverse to the multivariable nonlinear")

print (" control system: dx/dt=f(x)+g(x)u, y=h(x).

print (" f.g.h are entered in list format. One must be careful .
print (" in entering g. "),

print ("Example: (if n=2,m=2) "),

print (" dxl/dt = x1**2 + ul + x1*uz "),

print (" dx2/dt = x1**2*ul + u2).

print(" yl =x2 "

print (" y2Z = xl“3"

* ?—1.

print (“then, f£:([x1**2,0}, g:[[1 x1**23 , [xl 1) J. h:(x2,x1**3), "},done)).
f:argl,g:part(arg2,1) . h:part(arg2,2).

n:length(f),

m:length(h),

x:makelist (concat ('x,1),

1,n).
y:makelist (concat('y,1).i.1,m), depends(y,t).

/* initialisation */
/**ﬁk‘ﬁi'i‘-\ﬁt.ﬂilli"ﬁﬁtﬂ‘.nﬂﬁlt'k!lﬁiﬁhﬁi..tiitiﬂtd‘l‘!..iiﬂﬁﬂﬂ't..‘.ﬁ!nn/

k:0,q{k):0,yi[k]:y.ci[k]:h,for i:1 thru m do for j:1 thru m do dinit{i,j]:0.
ai [k] genmatrix (dinit.m,m), 1a1,,
if q[k]#0 then
for i:1 thru g{k] do (myi[i]:yi[k][i].
mci {i):ci (k] [1],
for j:1 thru m do mdi[i,3]):d1[k][1.3]).
for jl:1 thru m do
for 1:q[k]+1 thru m do (myi(1]:diff(y1 (k] [1] t),
mci [1]) :plidev (f, makelist(ci <] {3).3.1+
mdi [1,71]:plidev(g{j1], make]ist(ci[k 1.1,
mmdi :genmatrix (mdi, m, m)‘

qx].m)) (1],
1+qKk].m)) [1]).

/" checking ranks */
/iitiill.ﬂﬂlﬁﬁi!l.l.tnit!!‘i‘ﬂ!lnl‘ﬂtﬂ"‘llﬂtiﬂ"l“1"‘t“ﬁ‘l‘ﬂ‘(ﬁ‘i‘i.ﬂ&../

- alpha:makellist (concat (' alpha 1}.1.1.m).

eq: make]isc(sum(alpha[j]‘mdl {3.4).3.1,m) .1, 1 m), .

alphal:solve (eq, alpha) [1], A

alpha2:alphal, - .

for i:1 thru n do alpha2:subst(0,x[1],alpha2),

if alpha2 # alphal then w:l
else (q[k+1] :rank (mmdi) .

if g[k+1]=m then (msa:ident(m),msb:ident(m), w:2),

1f g{k+1]=0 then(msa:ident (m) msb:ident (m) ,w:3),
if (q[k+114m and q[Kk+1]#0) then (/* construction of sk+l */

for 1:1 thrum do for J:1 thru m do sb[i,J]:0,

if q(k]#0 then for 1:1 thru q{K] do sb(i,1]:1,

for 1:qf{k]+1 thru q(k+1} do sb[i ind(m,q[k+1] ,mmdi) [1]]:1,

for 1:q[k+1]+1 thru m do for j:q[k}+1 thru m do

if sum(sb{l,3].1,q[Kk]+1,1-1)=0 t:hen (sb[1,3):1,3J:m),

msb:gemmatrix(sb,m,m),

msa:ident (m) , sbdimsb.mmdi,nl:genmatr 1x('nl.m-q[+1).q[k+1}). mmdb:sbhd,

mmdt :sbd,

for i:q[k+1]+1 thru m do mmdb:submatrix (i, mmdb),

thru g[k+1] do mmdt:submatrix(i,mmdt),tem:[],

69

P P I IN I

eql:nl.mmdb+mmdt, for 1:1 thru m-q(k+1] do tem:append (tem, eql [1])
coefl:{].for i1:1 thru m-q(k+1] do coef:append(coef,nl{i]),
coef2:solve (tem, coef) for 1:1 thru m-qfk+1] do

' 2

for jJ:1 thru gfk+1] do

msa[i+qk+1], 1] :coef2(}+ (1-1) *qk+1]]).

k:k+1,yi(k] :msa. .msb . transpose (makelist (myifi}.1.1 ,m)).
vi [k] :makelist (yi k] {1)[1].3.1,m).
ci[k] :msa.msb.transpose (makelist (mci [1].1.1, m))
ci [Kk] :makelist (ci (k] (1} {1].4.1,m),

di [k] :msa.msb.mmdi

1f w=1 then return (prlnt(1npossible, the system is not invertible")),

1f w2 then go(lal) .,

print ("relative order of- system

=",x),

/* construct the inverse system */
h.ttl.ﬁﬁiﬁﬂﬁtﬁi'tt.tiﬂOQ!t.tﬁ.‘.ﬁiﬁ‘ﬁttﬁﬁ.ﬁii'tﬂ*Qﬂﬁﬁ‘ﬁ‘tﬁﬁ.i'*ﬁ.'ttt'.ﬂﬂﬂ*ﬂ/

d:dif{k}~"-1,d2:yi[k]-ci[K],
for j:1 thru m do

for 1:1 thru n do

" .. Binvl

tali, 3] :9(J] [1] matg:genmatrix (tg.n.m).
Ainvl : ratsimp (transpose (f)-matg.d
: ratsimp (matg.d),

-ci[k]).

Cinvl : ratsimp(-d.ci[k]).Dinvl : ratsimp(d),
print (""The 1nverse system to our non linear coritrol system is

print ("

display (‘dlff(x, t)
print (" "

print (" u(t)
print (" "

print ("where yi(t)

print (" Ainv(x) =" Ainvl),
print (" Binv(x) =",Binvil),
print(” Cinv(x) =",Cinvl),

= Ainv(‘'x) + Binv('x)
= Cinv(x) + Dinv(x)

=".yi[K]).

print (" Dinv(x)

=",Dinvl), done) §

- yi(t)).

- yi(e)"),

H M

ind (m,q,d) :=block ([a) , a:makelist (Concat {a,1).4.1.q).ul:0,

/not..nalnaﬂ.tthanttatnanaatlttaantﬁtnn1.tt.aﬁt.ﬁ..nt.ntttt..nna.tnnaﬁ.n‘nnant/-

for 1:1 thru g do a[i1]:4,11,

for 1:1 thru q do) -
for j:1 thrum do b(i.j]:d[a[1].]].

c:genmatrix(b,g,m),

if rank(c)=q -then wul:l

else (
if afii)=m-3jj then (ii:11-1,3j:33+1)
else 1:1,
if 1i=q

then a[ii]:afii]+]
else (a[ii}:a[ii1]+1,for 1:ii+1 thru q do

afi):a(i-1]+41)),if ul=1 then go(12),go(11),12,a)$

/" -
.) :

/* TRACKS tries to solve the problem:

N) E

Vid Given the non linear control system: -

* - ° s i=m -

* ~ -

* - \ -
* .dx - /

. -- =L F() + / Gi(x) . u(y)

* - .dt - - -n-- -

* *) - i=1

. y(t) = hx)

/* where = x 1is n-dimensional

/* u 1is m-dimensional

/* y is m-dimensional

/.

/> Suppose we want the output y(t) to track a desired trajectory yd(t),

L
- using the inverse system generated by INVERT, TRACKS generates the

L]

- required control ud(t) and if we are interested in simulation results,
*

L]

TRACKS will generate a fortran code for that purpose.

i1:q9,33:0,for 1:q thru 1 step -1 do

*

‘«
.
*
*®
"
*
L]
*
-
*

/.ﬂ..ﬂ..ﬁi!.Qiiﬂ‘lt.‘ﬂi'ﬂ‘t.“ilﬁﬁ!.i'i‘.tttﬁl.‘.tﬁ‘ﬂ'ﬁ.t'.."...'Qt.'..t..ﬁtﬁ/

tracks ([arg)) :=block(
if length(arg)=0 then go(ls2),
if part(arg.l)=help then return((

70

i
e

'Y

print ("Tracks () : -given the multivariable system dx/dt = f(x) +g (X)u,y=h(x).").

print (" this function finds the control that makes the output y(t)").
print (" track some desired trajectory yd(t) .Tracks() accomplishes "),
print (" this by constructing first the left-inverse system using "),
print (" . the function INVERT(f,g.h}. "), : .
print (. _ Tracks asks progressively for the data as it is needed."), - -
done)),1s2, -) E R -

print (*Hello, TRACKS tries to solve the problem: -
display(r‘dlff('x,t)='f(‘x)+sum('g[i-]('x)"u[i],i,l,m)), . o B
print (" - y(©)=h(x)") .- : : :
print("where - x is an n-dim vector

u is an m-dim vector i -

y is an m-dim vector™},’ .
print("find the inverse system that takes as input the desired trajectory yd(t) an
n:read ("enter dimension of the state space"), .
m:read ("enter dimension of the control space'), -
f:read("enter the values of 'f in the form GPRE ALY NE S PO PR J LU NGE S P followed
for 1:1 thru m do) -

* gi[i]iread("enter”, 'gf1] ('x),"in the form [*,'g[1.1)1('x)."...."."g(1,n](*x)."] fol

y:makelist (gi[1].1,1,m), ' . -
h:resd("enter the valties of h in the form (“,'h[1)(!x)."...",
x0 | raa s“entnr' the initial mtate x0 in the form [",'x0[1] ('x}."...", 'x0[n] ('x),"fo
print (Yenter the desired trajectory you want the output -
of your system to track "), . - -
for 4:1 thru m do :
yd(1]:read("yd(",1."]1(t)= "), invert(f,g,h). . . .
]:;rint("Checking if yd(t) is trackable by our system (right-invertibilicy)"),
hl:0, -
for 1:0 thru k-1 do for 11:1 thru m do (1hO:pniidev(f.h[i13.1), -
for j:1 thru n do 1h0:subst(x0[3j].concat('x,J).1h0),
1h2:a1ff (yd[11].t. 1), - .
1f ev(1h2,t=0)#1h0 then (1hl:1,return(print(
- "The given yd(t) cannot be tracked by our system“))}).
if 1h1#1 then print ("yd(t) can be tracked by the output y(t)"),kill(dd2),
ddz2:d.dz2,
for 3:1 thru m do
ad2 :subst (yd[3].y[3].dd2) . dd2:ev (dd2, A1 ff),
dd2:makelist (dd2[1,1].1,1,m),
print (" The control ud(t) that makes y(t) track yd (t) 1s:"),
print (" "y
for 1:1 thru m do print (" ud(t) [, 41,"=]", ratsimp (dd2)).
ans :read ("Are you interested in simulation results ? (answer y or n)"),
if ans = y then (file :read(“enter filename of fortran code"),
ti:read("enter initial time you would the simulation to start fro
tf:read("enter final time tf"),
hi:read ("enter step size h"),
xo:read("enter initial condition in the form [xof{1].. co.xo".n, ™)
fl:f,gl:g.hl:h,
m2:m,
for 1:1 thru n do{
fl:subst (x (1) ,concat ('x.1), f1}),
gl:subst {x (i) ,concat ('x, 1) .ql),
hl:subst (x (1) .concat ('x,1) .hl)).
fr(file)).
resp:read("would you like to try an other system ? (answer y or n)"),
if resp = y then go{init).,return ("bye have a good day !"))$§

" 'h[m]"'x),"] followed

/:..““fl.l‘.‘At-‘.l.tﬂﬁ.n..l'ﬂn‘nl1!.1"‘1fﬂitttﬁ‘!‘ttﬁﬁﬁﬁﬁﬁ;ﬂﬁaﬂttQQ..'!I/'
. - N " *
/* This function generates a fortran file using Runge-Kutta methods */
/* for simulation purposes. . »
. 1 .

. — : *
/!.‘ttna.l‘l!.1lt'lﬂ‘aatﬂinl.‘ﬁ.lmﬁ*i!tﬁﬂﬂnﬂiQt'llﬁﬁ!lﬁii‘ltt.hna'..i.ﬂ'/

fr£(f11) :=block([equ],app19(wr1tefi]e, [£i11]).,) -
equ:makelist (concat('equ,1i),i,1,n), - -

print (" dimension x(".n,").,ax(".n.,"), datad "
§ aataCapenston x("in. %) lax("n.") (2000, ", m2,
print (" 1, m2. "y u (. m)Ly ("om2, ")),
print{"c set no of equations"),
print (" n=",n),
print (" m=",m),
print ("c set initial conditions"),

for j:1 thru n do
fortran(x[3j]:xo0[3]).
kill (x),

for 1:1 thru m2 do
fortran(y{1i]:hl[1i]).
kill(y).

71

print("“c set initial & final time"),

print (" t=",ti),

print(" tf=" tf),

print("c set step size")

print (" h=",hi), . N

print ("c desired trajectory"),

print (" no=", fix ((tf- tl)/hi)) -
print (" _ ' do 15.1=1,no"}, -

for j:1 thru m2 do
fortran (datad[1, j} yd 33).

print (" t=t+h"

print (" 15 continue"),

print('c store initial values for plotting"),
print (" do 25 .i=1,",m2),

print (" data(l_i)w(i) ").

print (" 25 contlnue Y.

print (" =0.0"),

print (" call r;ontrol (x t.u)"),

print("c initialize k & mm") _
print (" k=0"),

print (" mm=1"),

print (" print * t,datad({mm, 1), data(mm,1)"),
print ("c write down the differential equations"),
kill (u),

for 1:1 t:hru n do equi): fl[i)+sum(gl{j][i)*u(j).]j.1.m),
print (" n=",n),

for j:1 thru n do
fortran (dx{j]:equ{j]).

print (" call runta(n k,i}, x,dx,t,h,u)"),

print (" go to (1,2),ii"),

print (" 2 mn=mm+1") ,

for 1:1 thru m2 do

print (" y(".1.")=".n1[1]).

print(" do 30 1=1,".m2),

princ (" data (mm, 1)—y(1) ")

print(" 30 continue"),

print (" print *, t datad (mm, 1) data (mm,1) "),

print (" 1f(t.le.tf) go to 1" -

print (" stop"),

princ (" end"),

for 1:1 thru 4 do print (" "3. - -

print (" subroutine runta (n k,it,x, dx h

print (" dimension yf (" .z (" (& fax(“.n. " " wy e
Prant (* Keke1n) (UPLLEAS L "X) .. 0 (m, .
print (" go to (1,2,3,4,5), k")

print(" 2 do 10 3=1, n") -

print (* 'z (3)=ax (3} ")

print (* "

print(" 10 ><(J)W’f(J)*° S5*h*dx (1) "),
print(" 25 t=t+0.5*h"),

print (" call control (x,t,u)"),
print (" 1 ii=1"),

print (¥ return"},

print(" 3 do 15 j=1,n"),.

print (" z (3)=2(3) +2.0%ax (§) ") ,
print(" 15 x(3)=y1(3)+0.5*h*ax (3)").
print (" call- control (x,t,u)"),
print (" 11=1"),

print (" return”),

print(" 4 do 20 j=1,n"),

print (" z (3)=z(3)+2.0%ax (3)").
Prine(r 20 x(3)=yT(j) shax(3)")’
print (" go to 25"},

print(" 5 do 30 j =1,n"),
print (" 30 X(J)“yf(J)"(Z(J)ﬂi;((J))‘h/6 0"),

print (- call control (x,t
print (" 1i=2"),
print (" k=0"),
print (" return"),
print (" end"), :
for j:1 thru 4 do print(").
print (" subroutine control (x,t,u)"),
print (" dimension u(",m, "} ,x(",n,")}"),
ggg[i]; thru m do (for j;1 thru n do dd2([i]: subst (x (j) ,concat ('x, j),
fortran(u[i]:ad2[1])),
_print(" return"),
kill(u),
print ("’ "

apply{closefile, [)ﬂl]))§

72

LY

1]
2]
3]
4]
(5]

[6]

Ny

8]

[9]

[10]

' 2

References

: BOﬁOTHBVY,' W. M., 1975, “An Introdwction to Diﬁ'ereniiable Mansifolds and

Riemannian Geometry,” Academic Press, Inc.m New York.

BROCKETT, R. W., 1978, “Feedback Invariants for Nonlinear Systems,” IFAC

Congress, Helsinki. p. 1115-1120.

BROCKETT, R. W. a{na MESAROVIC, M. D., 1965, “The Reproducibility of -

multivariable control systems,” J.Math.Anal.Appl., vol. 11, pp. 548-563.

BRUNOVSKY, P., 1980, “A classification of linear controllable systems,” Kiber-

netika (Praha), vol. 6, pp. 173-188.

ForbD, C. H., 1983, “Numerical and Symbolic Methods for Transforming Con-

trol Systems to Canonical Form,” Ph.D Dissertation, Texas Tex University.

FREUND, E., 1982, “Fast nonlinear control with arbitrary pole placement for
industrial robots and manipulators,” in Robot Motion: Planning and Control,
ed. M. Brady, J. M. Hollerbach, T. L. Johnson, T. Lorenzo-Perez and M. T.
Mason, MIT Press, Cambridge, Mass, pp. 147-168.

HIRSCHORN, R. M., 1979, “Invertibility of nonlinear control systems,” SIAM

J Control Optim, 17, pp. 289-297.

HIRSCHORN, R. M., 1979, “Invertibility of multivariable nonlinear systems,”

IEEE Trans Automat Control, AC-24, No. 6, pp. 855-865.

HIRSCHORN, R. M. and DAVIS, J., 1985, “Output Tracking for Nonlinear

Systems With Singular Points,”

HUNT, R. L., SU, R., and MEYER, G., 1983, “Design for multi-input sys-
tems,” Differential Geometric Control Theory, edited by R. Brockett, R. Mill-
man and H. J. Sussman, Birkhauser, Boston, vol. 27, pf). 268-298.

73

Fés

[11] HUNT, R. L., SU, R., and MEYER G, 1983 “G’lobal Transformations of

Nonlinear Systems,” IEEE Trans Aut Control AC- 28 No 1, pp. 24-31.

[12] ISIDORI, A., 1'_985, “Nonlinear Control Systems: aniIntroduction,” Lecture

Notes in Control and Information-Séience, 72, Springer-Verlag, Berlin.

[13] JAKUBCZYK,,,B., and RESPONDEK, W., 1980, “On linearization of control

systems,” Bull Acad Polon Sci, Ser Sci Math Astronom phys, 28, pp.517-522.

[14] KRENER, A. J., 1973, “On the equivalence of control systems and the lin-

earization of nonlinear systems,” SIAM J Control, 11, pp. 670-676.

[15] MARINO, R., 1982, “Feedback Equivalence of Nonlinear Systems with Ap-
plications to Power Systerﬁs,” D.Sc. Dissertation, Washington University, St.

Louis, Mo.

[16] MEYER, G., and CICOLANI, L., 1980, “Application of nonlinear system
inverses to automatic flight control design-system concepts and flight evalua-
tions,” AGARDograph 251 on Theory and Applications of Optimal Control

in Aerospace Systems, P.Kent, ed., reprinted by NATO.

[17] MEYER, G., 1981, “The design of ezact nonlinear model followers,” Pro-

ceedings of Joint Automatic Control Conference,r FA3A.

'[18] NIIMELJER, H., 1982, “Inbertibﬁity of aﬁ’ine nonlinear control systems: A

geometric approach,” SySt Control Lett., 2, pp. 163-168. .

(19] NIMELJER, H., 1986, “Right-Invertibility for a class of nonlinear control

systems: A geometric approach,” Syst Control Lett., 7, pp. 125-132.

(20] .SILVERMAN, L. M., 1969, “Inversion of multivariable linear systems,” IEEE
Trans. Aut. Control, AC-14, No. 3, pp. 270-276.

W

74

[21] 'SU, R., 1982, “On the linear equivalents of nonlinear systems,” Systems and

Control Letters, 2, No 1, pﬁ. 48—52;?

" [22] THE MATLAB GROUP LABORATORY FOR' COMPUTER SCIENCE, 1983,

| “MACSYMA Reference Manﬁal,” M.LT., 'Calﬂbridge, Mass.

(23] ,WONHAM, W. M., 1979, “Linear Multivar:’able Control: A Geometric Ap-

proach,” (New York: Springer-Verlag).

"r
75

