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The memory system is increasingly becoming a performance bottleneck. Sev-

eral intelligent memory systems, such as the ActivePages, DIVA, and IRAM archi-

tectures, have been proposed to alleviate the processor-memory bottleneck. This

thesis presents the Memory Arithmetic Unit and Interface (MAUI) architecture.

The MAUI architecture combines ideas of the ActivePages, DIVA, and ULMT

architectures into a new intelligent memory system. A simulator of the MAUI

architecture was added to the SimpleScalar v4.0 toolset. Simulation results indi-

cate that the MAUI architecture provides the largest application speedup when

operating on datasets that are much too large to fit in the processor’s cache and

when integrated with systems using a high performance DRAM system and a

low performance processor. By coupling a 2000 MHz processor with an 800 MHz

DRDRAM DRAM system, the Stream benchmark, originally written by John

D. McCalpin, completed 121% faster in simulations when optimized to use the

MAUI architecture.
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Chapter 1: Introduction

Processor performance has enjoyed enormous performance increases in recent

years. Historically, processor performance has increased about fifty-eight percent

annually since 1994. Unfortunately, the memory system’s performance has not

increased as quickly as the processor’s performance. Dynamic Random Access

Memory (DRAM) latency has only decreased about seven percent annually, and

DRAM bandwidth has increased about fifteen percent annually. The perfor-

mance gap between the memory system and the processor has become a perfor-

mance bottleneck to total computer system performance. The memory-processor

performance gap is increasing as time progresses, only making the performance

bottleneck worse [9].

An intelligent memory system is one architectural feature which shows promise

in overcoming the performance bottleneck associated with memory accesses. Any

intelligent memory system builds computational ability into the memory system.

The goal of intelligent memory systems is to improve the performance of memory-

bound applications and operations by moving some of the computation closer to

the data stored in memory. Intelligent memory systems fall into one of two cate-

gories: either they migrate computational power into the DRAM system, or they

migrate DRAM into the main processor [2].

Several intelligent memory systems have already been proposed, and their

performance characteristics explored. The Active Pages architecture [19] and the

Data IntensiVe Architecture (DIVA) [8] represent two intelligent memory system

architectures that take the former approach of migrating computational power
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into the DRAM system. The Active Pages project in particular has been shown,

through simulations, to improve performance of some applications by a factor of

about 1000 times [19].

The Intelligent RAM (IRAM) architecture [25] represents an intelligent mem-

ory system architecture that takes the latter approach of migrating DRAM into

the processor. The IRAM architecture integrates a simple processor with several

banks of DRAM. One IRAM architecture that has shown promise is the Vec-

tor IRAM (VIRAM) architecture. The VIRAM architecture integrates a vector

processor with DRAM onto a single chip. Simulation results indicate that the VI-

RAM architecture is significantly faster than conventional cache based machines

on truly memory system limited benchmarks. For instance, simulations indicate

that the the VIRAM architecture is able to compute the transitive closure of a

directed graph in a dense representation more than twice as fast as an Intel P4

1.5GHz workstation [6].

Despite impressive simulation studies, none of these proposed intelligent mem-

ory system architectures have gained popular support for consumer computer

systems. One reason may be that the integration of logic and DRAM onto a

single silicon die and moving away from commodity DRAM has proven to be

expensive. There has already been one intelligent memory system proposed that

does not require the integration of logic and DRAM onto a single silicon die. The

User-Level Memory Thread (ULMT) [26] architecture builds additional compu-

tational power into the memory controller, avoiding the merging of DRAM and

processing logic onto a single die and allowing the use of a commodity DRAM

system. However, the ULMT architecture is not explicitly controlled by the ap-

plication running in the processor, and is used specifically to aid in prefetching.
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Despite this inflexibility, the ULMT architecture has been shown, in simulations,

to provide up to a 58% speedup for some applications.

This thesis presents a new intelligent memory system architecture named the

Memory Arithmetic Unit and Interface (MAUI) architecture. The MAUI archi-

tecture combines traits from the Active Pages, DIVA, and ULMT architectures

to create a new computational model. Like the Active Pages and DIVA archi-

tectures, the MAUI architecture migrates computational power into the memory

system. Furthermore, the MAUI architecture is explicitly controlled by the ap-

plication running in the host processor, much like the Active Pages and DIVA

architectures. Like the ULMT architecture, but unlike the Active Pages and

DIVA architectures, the MAUI architecture does not require logic and DRAM to

be integrated onto a single silicon die. The MAUI architecture integrates addi-

tional computational power onto the same chip as the memory controller. The

MAUI architecture is further split into two separate components: the Memory

Arithmetic Unit (MAU) and the Memory Arithmetic Unit Interface (MAUI). The

MAU performs the actual arithmetic performed by the MAUI architecture, while

the MAUI coordinates the data flow through the MAUI architecture.

Because the MAU is located on the same chip as the memory controller, it has

a higher bandwidth, lower latency connection to memory than the host processor.

Because the MAU has a more efficient connection to memory than the processor,

the MAUI architecture completes memory-bound operations more quickly than

the processor could complete the same memory-bound operation. Additionally,

because the MAUI architecture is a separate processing element from the main

processor, further application speedup is possible by exploiting parallel execution

using the MAUI hardware and the host processor.
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For the purpose of testing the performance of the MAUI architecture, the

SimpleScalar v4.0 simulator was modified to include a MAUI enhanced memory

system. Then, three benchmarks to test the MAUI enhanced memory system

were created. The first two benchmarks, MAUI-one and MAUI-two, are “arti-

ficial,” in that they do not represent real-world applications are were designed

only to determine under what circumstances the MAUI hardware performs well.

Simulations of MAUI-one and MAUI-two have shown that the performance of

the MAUI hardware increases as the memory system’s performance increases, the

problem size increases, and the processor speed decreases. Simulations of MAUI-

one have shown that the MAUI hardware can perform a single vector operation

up to 103% faster than the processor, and simulations of MAUI-two have shown

that, by using the MAUI hardware and the host processor in parallel, applications

can run about 80% faster than by using the processor alone.

The final benchmark, Stream, is a well accepted benchmark used to test to-

tal memory system performance. Originally written by John D. McCalpin [16],

Stream performs four vector operations on three extremely large arrays. Per-

forming three of Stream’s vector operations using the MAUI hardware resulted

in a 121% speedup compared to the unoptimized version in simulations. Because

this approach exploited both the fact that the MAUI performs vector operations

faster than the processor, as well as some parallelism, Stream performed better

than what was predicted from the MAUI-one and MAUI-two simulations.

The remainder of the thesis is divided into four chapters. Chapter 2 begins

by outlining the background and motivation for intelligent memory system archi-

tectures and concludes with a summary of previous research done on intelligent

memory system architectures. Chapter 3 introduces the new intelligent memory
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system, the MAUI architecture, details the MAUI’s architectural features, and

concludes with a description of the simulation environment used to test the MAUI

architecture’s performance characteristics. Chapter 4 presents the simulation re-

sults of the MAUI architecture. Chapter 5 concludes the thesis by summarizing

the conclusions and suggesting areas of further research.
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Chapter 2: Background, Motivation, and Previous Work

Computer system performance is greatly increasing as time progresses. In

general, Moore’s law predicts that the performance of a computer system will

double every eighteen months. Unfortunately, the performance of the memory

system has not increased nearly as fast as the rest of the computer system. The

performance gap between the memory system and the rest of the computer system

has become a performance bottleneck to total computer system performance. The

processor-memory performance gap is increasing as time progresses, only making

the performance bottleneck worse.

Conventional cache-based computer systems use latency hiding techniques to

alleviate some of the performance bottleneck caused by memory system perfor-

mance. However, latency hiding techniques such as caching, out-of-order execu-

tion, and prefetching are becoming less effective at improving the performance

of the memory system and are exposing the bandwidth limitations of the mem-

ory system. Intelligent memory systems seek to improve the performance of the

memory system by merging computational power into the memory system. The

remainder of the chapter covers the background and motivation for intelligent

memory systems and concludes with a summary of some previous intelligent

memory system research. The following sections provide the background and

motivation for the Memory Arithmetic Unit and Interface (MAUI) architecture,

a new intelligent memory system architecture. The MAUI architecture is intro-

duced and detailed in Chapter 3.
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2.1 Conventional Cache-Based Computer Systems

Modern computer systems can be partitioned into two pieces: a processing

system to perform mathematical and logical operations, and a memory system to

hold all the data and instructions involved with those operations. Most general

purpose computers consist of a single processor and a memory system consisting

of several levels. The lowest levels are cache memory, and one or more levels

of cache are usually integrated on the same die as the main processor. The

caches are built from semiconductor Static Random Access Memory (SRAM).

The next level of memory is main memory, and it is usually constructed from

several chips of semiconductor Dynamic Random Access Memory (DRAM). The

highest level of the memory system is non-volatile. Non-volatile memory is usually

built from magnetic disks. Semiconductor non-volatile memory, such as floating-

gate or Flash memory, could be used as non-volatile memory for smaller data

requirements [9].

In order for a processor to perform operations on data, the data must be first

transferred from main memory into the processor. In modern operating systems,

copying data from the memory system to the caches is a very time expensive op-

eration. Because increases in processor speed out-pace the performance increases

in memory systems, the relative time the processor waits on memory accesses is

increasing. Figure 2.1 illustrates the need for a processor to wait for the data

transfer to complete before continuing execution.

While the performance of both the processor and memory are increasing expo-

nentially as time progresses, processor performance is increasing at a much faster

rate than memory performance. The transistor density possible for logic chips,

which include processors, increases by about thirty-five percent annually, while
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Figure 2.1: Timing diagram illustrating DRAM latency.

die area increases from ten to twenty percent annually. These factors combine

to increase the transistor count possible on a single chip about fifty-five percent

annually [9]. The increase in transistor count is one factor that accounts for

the approximately fifty-eight percent increase in processor performance annually

since 1994. SRAM performance follows the performance trend, which means that

caches run approximately the same speed as processors.

While the density of semiconductor DRAM increases by between forty and

sixty percent annually, the performance of DRAM is also increasing much more

slowly. DRAM latency has decreased by only about one-third in ten years av-

eraging just a seven percent decrease per year. Bandwidth per DRAM chip has

improved only about twice as fast as DRAM latency [9]. Although DRAM den-

sity increases have been impressive, the performance improvements of the DRAM

system hasn’t followed the DRAM density increases. The performance gap be-

tween the processor and the memory system is only increasing as time progresses.

The growing processor-memory performance gap is illustrated in Figure 2.2.

Read-latency is defined here as the shortest possible response time of a single

DRAM chip. The shortest possible response time is the amount of time following

a Column Address Strobe (CAS) read command before the DRAM chip responds.

This definition for read-latency is extremely optimistic, as it does not take into
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Figure 2.2: With 1980 performance as a baseline, the performance gap between

memory and processor performance is plotted over time [9].

account the precharge and Row Address Strobe (RAS) commands which are

typically required in order to read data out of the DRAM chip. Currently, the

read-latency of a typical DRAM chip is approximately fifteen nanoseconds [17].

Assuming the optimistic read-latency of only fifteen nanoseconds, a processor

running at 3.0GHz (e.g. Intel’s Pentium 4 or AMD’s Athlon) needs to wait

at least forty-five cycles for data to return from a read operation on a single

memory chip. In reality however, overheads introduced by the caches and memory

controller force many computer systems to wait several hundred cycles or more

for a single read operation to return data from memory. As shown in Figure 2.2,

the performance gap between processor and DRAM speed is increasing at fifty

percent annually [24].

Modern architectures employ three schemes in an effort to hide or reduce

the apparent latency of reading and writing to memory. The first scheme is

out-of-order execution. Out-of-order execution allows instructions which aren’t

dependent on one another to finish out of order. With out-of-order execution, an

instruction blocked on a memory operation need not delay the completion of in-
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structions which don’t depend on the memory operation. Out-of-order execution

also has other performance advantages. It allows for non-memory instructions

with differing latencies to finish out of order and exploit the Instruction Level

Parallelism (ILP) of the program.

The second scheme is caching. A cache is a small amount of very fast memory.

If the required data are located in the cache, then the latency to access that data

is much smaller than the latency to read it out of main memory. The computer

system will load the cache with data which it believes the processor will need in

the future. This is data which shows temporal or spatial locality. Data which

expresses temporal locality are data which accessed once will probably be accessed

again. To exploit temporal locality, data accessed once will be kept in the cache

for as long as possible. Data which expresses spatial locality are data close to

data already accessed that will probably be accessed as well. To exploit spatial

locality, data are moved into the cache in blocks larger than what is initially

required by the processor [9].

The final scheme is prefetching. Prefetching brings data from the main mem-

ory into the cache before it is required by the processor for computation. Trans-

ferring data into the cache before it is required hides the latency of the initial

data access. There are a several popular and effective software and hardware

prefetching techniques [26].

However, the number of cycles a processor is stalled due to memory band-

width limitations increases as more aggressive latency tolerating schemes are em-

ployed [2]. Because the number of cycles a processor is stalled increases as more

aggressive latency tolerating schemes are employed, the total memory system

performance, both latency and bandwidth, are increasingly important to overall
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system performance.

It is also possible to operate on data for which caching and other latency tol-

erance schemes are not effective. Data sets which have a low degree of locality or

which are too large to fit in the cache defeat caching. Out-of-order execution does

not greatly improve the throughput of dependent instructions, so it is possible

for a long latency memory instruction to stall all other dependent instructions

as well. Also, multimedia applications (e.g. video, picture, and sound encod-

ing, decoding, and compression) have hard to predict data accesses and express

only small amounts of locality. Therefore, multimedia applications are a class of

applications for which latency hiding techniques do not work well [3].

2.2 Intelligent Memory Systems

An intelligent memory system is one architectural feature which shows promise

in overcoming the performance bottleneck associated with memory accesses. Any

intelligent memory system builds computational ability into the memory system.

Intelligent memory systems take one of two directions: they migrate computa-

tional power into the DRAM system, or they migrate DRAM into the processor

[2]. The former direction introduces more powerful primitives than simple reads

and writes to be issued to the memory system. Migrating processing power into

the DRAM allows for those operations which include a large number of memory

accesses to be offloaded completely into the memory system, drastically lowering

the number and frequency of memory accesses required by the processor. The

second approach, migrating DRAM memory onto the processor, the processor ex-

periences lower memory latency, increased memory bandwidth, and lower power

consumption [24].
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The following sections summarize the research efforts of some important

memory system architectures. The first several sections describe Active Pages

[14, 19, 20, 21, 22] and DIVA [8, 11], two architectures which migrate computa-

tional power into the DRAM system. The next section describes IRAM [6, 24, 25]

and VIRAM [10], two architectures that take the second approach of migrating

DRAM onto the same die as the processor. The final section covers other im-

portant intelligent memory system architectures including an image processing

specific IRAM architecture [13, 12], a prefetching specific intelligent memory con-

troller [26], an intelligent memory system which places the computational power

into the memory controller [4], and several Processor In Memory (PIM) based

multiprocessor computer systems [7, 28].

2.2.1 Active Pages

Introduced in 1998 at University of California Davis’ department of Computer

Science, Active Pages presents a new computational model. The Active Pages

computational model allows the memory system to perform vector operations,

such as add, multiply, find, insert, and delete, all within the memory system. The

Active Pages architecture forces the program to partition applications between

a processor and the intelligent memory system, leading to memory-centric and

processor-centric operations.

While the computational model introduced by Active Pages could be imple-

mented in a number of different ways, the Active Pages focuses on the integration

of reconfigurable logic with DRAM. The physical implementation of Active Pages

is the Reconfigurable Architecture RAM (RADram), shown in Figure 2.3. In the

RADram implementation of Active Pages, the DRAM is broken into sub-arrays,
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each of which has a dedicated reconfigurable functional unit. Each functional

unit operates only on data in a single sub-array. The combination of a sub-array

and a functional unit is an Active Page, capable of storing data and performing

manipulations of that data. The entire memory system is partitioned into a large

number of Active Pages.

Figure 2.3: The RADram implementation of Active Pages [19].

In addition to the speedup associated with performing memory-centric oper-

ations solely in memory, the Active Pages architecture also introduces support

for an enormous amount of parallelism. First, the processor is free to perform

operations which have no dependence on the memory-centric operations. Second,

each Active Page works independently of every other Active Page. Because each

Active Page is an independent processing element, the Active Pages architec-

ture can exploit massive amounts of parallelism, and simple operations can be

performed on arbitrarily large data in a very small amount of time [19]

Active Pages used SimpleScalar v2.0 [1] as the base simulation environment.

SimpleScalar was extended by replacing the conventional memory hierarchy with
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a RADram enabled memory system. In simulations, Active Pages with recon-

figurable logic is reported to show a 1000x speedup compared to a conventional

cache-based system [19].

While the RADram implementation of Active Pages has been shown to be

very promising, there is one major problem. Reconfigurable logic is expected to

occupy fifty percent of the available chip area, making efficient memory density

impossible. To alleviate the memory density problem, a different implementation

of Active Pages was proposed. In the new implementation of Active Pages, the

reconfigurable logic is replaced by a Very Long Instruction Word, (VLIW) proces-

sor. Active Pages using a VLIW processor is reported to require only thirty-one

percent of the chip area to be occupied with computational logic. In simulations,

the VLIW Active Pages demonstrates a speedup comparable to the reconfigurable

logic implementation of Active Pages. Furthermore, VLIW Active Pages shows

that instruction-level parallelism, and not hardware specialization, is what drives

the performance gains in the Active Pages intelligent memory system [21]. This

lesson can be applied to many intelligent memory system architectures.

A widely accepted assumption is that most computer systems are multipro-

grammed. One can expect that in such a system some applications would utilize

Active Pages memory, and others would not. Therefore, in such an environment,

the computational resources available in the Active Pages memory system are

not fully utilized. By sharing the computational logic between several logically

distinct pages in memory, the area required by computational logic in the DRAM

chip can be reduced from thirty-one percent to twelve percent while retaining vir-

tually identical performance on simulated multi-threaded workloads. Sharing the

computational logic between Active Pages greatly increases the chip area which
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is devoted to DRAM. By devoting more chip area to DRAM, the memory density

of the chip is increased, making the Active Pages architecture more commercially

viable than was previously possible [22].

To further facilitate the adoption of an Active Pages architecture, an operat-

ing system, ActiveOS, has been introduced which supports and takes advantage

of an Active Pages memory system. ActiveOS is aware of the intelligent mem-

ory system and schedules paging and inter-chip communication to achieve high

performance for those applications who use Active Pages. It is reported that

individual applications still experience up to a 1000x speed up, and total multi-

programmed workloads experience between a twenty and sixty percent speedup

[20].

The cache coherence problem 1 arises in any intelligent memory system which

merges extra computational ability into the memory system, because the memory

system is another processing element which can alter memory’s state. The Active

Pages project has explored two approaches to enforce cache coherence in intel-

ligent memory systems. The first approach is software driven. The processor’s

cache is explicitly flushed whenever the intelligent memory system may change

some location in memory, preventing the retention of stale data.

The second cache coherence approach uses a hardware enforced cache coher-

ence protocol, which is similar to the protocol used in conventional Symmetric

Multiprocessor Systems (SMP). In the hardware enforced cache coherence pro-

1The cache coherence problem is when incorrect data can be read out of the cache. It arises

in any system which has more than one processing element and employs caching. Incorrect

data could be read out of the cache by one processing element when a different processing

element changes that data in the memory and that change is not reflected in the cache of the

first processing element [5].
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tocol, the notion of owning pieces of memory is introduced. When a processing

element owns a piece of memory, it is guaranteed not to be cached by any other

processing element, allowing for safe modification of the data residing within that

piece of memory. In the hardware enforced cache coherence protocol, each Active

Page is a processing element with status in the cache coherence protocol equal

to that of the host processor.

With small data sizes, explicit flushing and hardware coherence yield simi-

lar performance in simulations, but hardware coherence requires less bandwidth.

Therefore, hardware coherence is the better method of cache coherence, because

as the number of threads in a multiprogrammed environment increases, the band-

width needs of a cache coherence system increase [14]. Active Pages has been

found to be an extremely promising model for an intelligent memory system.

2.2.2 DIVA

Similar to the Active Pages architecture, the Data IntensiVe Architecture

(DIVA) integrates processing elements into the memory chips. The DIVA archi-

tecture differs from Active Pages in the way the processing elements are integrated

into the memory system. First, DIVA incorporates one complex processing ele-

ment per memory chip while Active Pages integrates a number of simpler process-

ing elements per chip. Also, DIVA allows communication between the processing

elements in the memory system while Active Pages allows no such data sharing

within the memory system by forcing all communication to pass through the host

processor.

The DIVA architecture seeks to increase the memory bandwidth available to

the processor by performing selected computations within the memory system.
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DIVA seems unique in its explicit support of irregular applications, including

sparse-matrix multiply and pointer chasing. The author’s simulations have shown

that such types of irregular applications show between 1.6 and 30 times speedup

when run on a DIVA architecture [8].

In the DIVA architecture, the memory system consists of a number of Proces-

sor In Memory (PIM) modules. Each PIM module consists of a single processing

element and an array of DRAM. Approximately forty percent of the die area is

devoted to computation while sixty percent of the die area is DRAM memory.

On each PIM chip, the processing functional unit is designed to support wide

vector operations. The processor is able to process up to 256 bits in a single

cycle to allow similar operations to be performed on every element in a single

vector. Vector computation also maximizes the processor-memory bandwidth in

a single PIM chip. The remainder of the computation logic on the chip is devoted

to controlling communication [8].

The PIM array is tied together with a dedicated PIM-to-PIM network. The

close coupling between PIM array elements allow for high bandwidth and low

latency data movement between PIM chips without outside arbitration. As rel-

atively few PIM chips are tied together on a single network, the PIM-to-PIM

interconnect remains simple while retaining high performance [11].

The PIM array is controlled by one or more host processors. The host pro-

cessor utilizes the PIM array as its “dumb” memory system and also initiates

any computation which is to occur in the memory system. The approach of

integrating processing elements with a conventional memory system while retain-

ing a host processor makes the DIVA architecture closely related to the Active

Pages project. One difference is that the Active Pages architecture integrates a
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larger number of more limited processing elements in the memory system, while

there are fewer, more complex processing elements in DIVA. One more key dif-

ference is Active Pages severely limits sharing between the processing elements

in the memory system, whereas DIVA creates a dedicated network to support

the communication between the PIM chips. By limiting sharing, Active Pages

is able to simplify the processing structure of the memory system while achiev-

ing greater amounts of parallelism. However, DIVA’s dedicated PIM network

greatly increases the efficiency of largely inter-dependent irregular applications.

The DIVA architecture is most significant in its explicit support of irregular ap-

plications, which don’t traditionally perform well on intelligent memory systems

[8].

2.2.3 IRAM and VIRAM

In contrast to the Active Pages architecture and the DIVA architecture, In-

telligent RAM (IRAM) takes the second approach in intelligent memory design

by migrating DRAM into the processor. The IRAM architecture, introduced at

Berkeley, results in a single-chip computer consisting of a processor and several

banks of DRAM. The migration of DRAM onto the processor die significantly

increases the memory bandwidth and lowers the memory latency experienced

by the processor. For instance, simulations indicate that the the VIRAM archi-

tecture is able to compute the transitive closure of a directed graph in a dense

representation more than twice as fast as an Intel P4 1.5GHz workstation [6].

Furthermore, the power dissipation of the computer system as a whole could be

decreased, as there is no need to drive an external memory bus [24].

IRAM has one major limitation when compared to other intelligent memory
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system architectures. As IRAM is manufactured with a fixed amount of memory,

there is no opportunity to tune the performance and price of the system by

changing the amount of memory. Despite this limitation, the single chip design

and energy efficiency make IRAM an interesting candidate for embedded devices

and personal mobile multimedia devices [25].

VIRAM is an IRAM architecture based around a vector processor. A vector

processor is able to perform identical operations on all elements of a vector,

or array, in parallel. As vector computations are extremely valuable to many

multimedia applications, the VIRAM system is mostly targeted for streaming or

real-time multimedia applications [10]. A block level schematic of the VIRAM

single-chip computer is shown in Figure 2.4.

Figure 2.4: The VIRAM architecture [23].

In comparison with commercial cache-based machines, the VIRAM architec-

ture is significantly faster for applications whose performance bottleneck is caused

by memory system performance. The advantage is because the VIRAM architec-

ture enjoys a significantly higher bandwidth to memory than most cache-based

machines. The peak memory bandwidth of a VIRAM architecture is 6.4 GB/s,
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which is 5–10 times higher than most cache-based machines [6].

Both IRAM and VIRAM have been proposed as possible intelligent memory

system architectures for the support of multimedia and embedded applications.

In addition, both have also been shown to perform extremely well in comparison

to commercial computer systems for applications truly limited by memory system

performance. IRAM and VIRAM are two very promising models for an intelligent

memory system.

2.2.4 Other Important Architectures

There are several other proposed architectures which take advantage of intel-

ligent memory systems which are more application specific than Active Pages,

DIVA, IRAM, and VIRAM. One architecture is the Intelligent RAM architecture

introduced at the University of Illinois (U. of I.) at Urbana-Champaign. While

the architecture proposed at U. of I. is similar to Berkeley’s IRAM project, the

U. of I. Intelligent RAM architecture specifically supports complex image pro-

cessing applications. This Intelligent RAM architecture supports rasterization,

image analysis, and pattern recognition applications [13, 12].

Another intelligent memory architecture proposed by U. of I. at Urbana-

Champaign in conjunction with the Michigan State University supports prefetch-

ing. In this architecture, a User-Level Memory Thread (ULMT), separate from

the application running on the main processor, runs on a general-purpose pro-

cessor in main memory. In addition to being prefetching specific, the ULMT

intelligent memory system differs from Active Pages, DIVA, IRAM, and VIRAM

in that the ULMT architecture does not require the integration of processing logic

and DRAM onto the same die. The ULMT performs correlation prefetching in
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support of the application running on the main processor. Correlation prefetch-

ing uses past sequences of memory accesses to predict future memory accesses

and prefetch those addresses into the processor’s cache [27].

The processor performing correlation prefetching resides within the memory

system on the memory controller or “north bridge” chip 2 By integrating the

prefetching engine within the North Bridge chip, a large amount of flexibility in

the prefetching algorithm with minimal changes to both the commodity DRAM

chips and the processor is possible. With a general-purpose processor residing in

the memory controller, the sole change to the main processor is the top level of

cache must be able to accept prefetches coming in from the ULMT. The DRAM

chips remain completely unchanged. Results of several simulations indicate that

the ULMT architecture can result in up to a fifty-three percent speedup on single

threaded applications [26].

The ULMT architecture is important because of how it is different from other

intelligent memory systems. The ULMT architecture precludes the need to in-

tegrate DRAM and processing logic onto a single chip and thus greatly reduces

the cost of such a system. Additionally, the gains reported by using the ULMT

architecture do not depend on the programmer having in-depth knowledge of the

intelligent memory system [26].

Similar to the ULMT architecture, the Imagine architecture, currently devel-

oped at Stanford, creates an intelligent memory system without merging DRAM

and processing logic onto a single chip. Imagine is a stream architecture designed

2In many consumer computer system motherboards, including those designed by Intel, the

North Bridge chip, sometimes referred to as the chip-set, coordinates all data in and out of the

processor. The North Bridge is connected directly to the processor by way of the Front Side

Bus (FSB), and includes a memory controller and possibly graphics processing unit.
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to support applications exhibiting high data parallelism and producer-consumer

locality. Imagine includes several arithmetic clusters in the memory system, in

a separate chip from the memory chips. Such separation allows for read and

write transactions initiated by the host processor to be effectively overlapped

with memory system computation [4]. A block level schematic of the Imagine

architecture is shown in Figure 2.5.

Figure 2.5: The Imagine architecture [4].

When compared to Berkeley’s VIRAM architecture, Imagine performs very

well. Studies indicate that VIRAM outperforms Imagine in those applications

that have a low ratio of operations per memory access. However, Imagine is

reported to significantly outperform VIRAM for those applications that have a

much higher ratio of operations to memory accesses [4].

At least two purely PIM multiprocessor architectures also been proposed [7,

28]. Both architectures integrate a large number of limited processors into a single

machine, creating support for an extremely large degree of parallelism. Each PIM

in the parallel machine has very fast and efficient access to a limited amount of
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memory. Massively parallel PIM architectures promise significant performance

increases on parallel applications when compared to conventional multiprocessors.

2.2.5 General Intelligent Memory System Limitations

While every intelligent memory system architecture presented in this chap-

ter promises a speedup for some class of applications, none of them have been

generally accepted as a consumer computer architecture. There seems to be a

two nearly universal reasons for this lack of acceptance. First, although merging

logic and DRAM onto a single chip looks promising, merged logic technology has

proven to be expensive. Second, all the intelligent memory systems summarized

in Chapter 2 seek to move away from traditional commodity DRAM systems to

some new DRAM technology or interface. However, the DRAM manufacturer

community is extremely large and well funded. For instance, Kingston technol-

ogy, just one DRAM manufacturer, has sales of over $1.8 billion in 2003 [29]. A

more successful approach may be to leverage the multi-billion dollar DRAM fab-

rication industry by creating an intelligent memory system that uses commodity

DRAM’s.

In Chapter 3, yet another intelligent memory system architecture called the

Memory Arithmetic Unit and Interface (MAUI) architecture will be presented.

This new intelligent memory system architecture takes inspiration from the Ac-

tive Pages, DIVA, and ULMT architectures by implementing a general purpose

intelligent memory system architecture which uses a host processor to explicitly

control computation within the memory system without integrating DRAM and

processing logic onto a single chip. The MAUI architecture allows for the use of

any commodity DRAM system and interface and makes only minimal changes to
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the processor. When compared to conventional computer systems, major modi-

fication in the MAUI architecture is reserved for the memory controller or North

Bridge chip.
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Chapter 3: The Memory Arithmetic Unit and Interface (MAUI)

The memory system is increasingly becoming a performance bottleneck for

total system performance. Intelligent memory systems increase the performance

of memory bound computation buy adding computational power to the mem-

ory system. While there have been intelligent memory system architectures in-

troduced that promise significant performance increases when compared to tra-

ditional cache-based computer systems, none of these architectures has gained

popular support and acceptance for consumer computer systems. This chapter

presents a new intelligent memory system named the Memory Arithmetic Unit

and Interface (MAUI) architecture. The MAUI architecture combines architec-

tural features of the Active Pages, DIVA, and ULMT architectures into a new

intelligent memory system.

Like the Active Pages and DIVA architectures, the MAUI memory opera-

tions are explicitly invoked by the host processor, meaning that the processor’s

Instruction Set Architecture (ISA) is augmented to include MAUI instructions.

The MAUI architecture performs vector operations on arbitrary size vectors.

These computations include addition and multiplication of two vectors, scaling

of a single vector, and data movement. Other computations that may prove valu-

able, but are not explored as design alternatives for the MAUI in the thesis, are

other memory bound computations such as pointer chasing, searching, and sort-

ing. By providing the host processor with explicit control of specialized memory

operations, the MAUI architecture resembles both the Active Pages and DIVA

architectures.
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Whereas the Active Pages and DIVA architectures place computational power

within the DRAM chips, the MAUI architecture integrates computational power

onto the same chip as the memory controller. By placing the computational power

of the intelligent memory system here, the MAUI architecture resembles the

ULMT architecture. The placement of computational power within the memory

controller decreases latency and increase bandwidth to memory when compared

to the host processor. By avoiding the integration of processing logic and DRAM

onto a single chip, the MAUI architecture is made less expensive than the Active

Pages, DIVA, and IRAM architectures by using current processing technologies

and conventional consumer DRAM chips. Explicit computational support of

the application running on the host processor without integrating DRAM and

processing logic onto a single chip combines the advantages of several intelligent

memory systems to create the MAUI architecture.

The remainder of the chapter describes the MAUI architecture in detail. Sec-

tion 3.1 describes the MAUI software interface. Section 3.2 describes the MAUI

hardware, including the logical partitioning of the of the MAUI architecture’s

computational power. After the description of the MAUI architecture, Section

3.3 explores several performance drawbacks and discusses solutions to those draw-

backs. To test the performance of the MAUI architecture, a MAUI augmented

memory system has been added to the SimpleScalar v4.0 simulation environment.

Section 3.4 discusses the details of the augmented version of SimpleScalar v4.0

used to test the performance of the MAUI architecture. Chapter 4 presents the

simulated performance results of the MAUI architecture and Chapter 5 concludes

the thesis.
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3.1 MAUI Software Interface

Conventional memory systems support only two commands from the pro-

cessor, read and write 1. The MAUI architecture introduces a number of new

memory system commands, or MAUI commands. The MAUI augmented mem-

ory system supports Single Instruction, Multiple Data (SIMD) type vector op-

erations. SIMD operations perform the same operation on every element in a

vector. An example illustrating a vector addition is shown in Figure 3.1. In

Figure 3.1, notice that each addition operation is independent, allowing them all

to be executed in parallel.

Figure 3.1: An example illustrating a SIMD vector addition operation.

The MAUI commands can be broken into two groups: setup commands and

execution commands. Setup commands specify the size, source addresses, and

destination addresses for the subsequent execution commands. Execution com-

mands start the memory system computation. The MAUI architecture supports

several integer computations, including addition and multiplication of two vectors

1Even prefetching requests represent a special category of read commands
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and the scaling of a single vector. The MAUI commands are listed and explained

in Table 3.1.

Table 3.1: The MAUI instructions.

For instance, implementing a block copy using MAUI commands requires the

use of four commands from Table 3.1. The first three commands are maui-LD-

size, maui-LD-a, and maui-LD-c, which setup the MAUI with the correct source

and destination addresses and block size which will be copied. The command
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maui-ADD-scale is used to copy data by setting the scaling value to zero. The

execution command to begin copying data is maui-ADD-scalar. Figure 3.2 shows

the pseudo-C code for a block copy function named bcopy implemented with the

four previously mentioned MAUI commands.

/* Function to copy a block of n bytes from src to dst */

void bcopy(const void *src, void *dst, int n) {

maui-LD-size(n);

maui-LD-a(src);

maui-LD-c(dst);

maui-ADD-scale(0);

}

Figure 3.2: A MAUI implementation of bcopy.

Although MAUI operations can take a significant amount of time to complete,

and the latency of the MAUI operation is generally not known at issue time,

the MAUI hardware allows the program to assume that the MAUI operation

finishes instantly. The MAUI architecture ensures that any subsequent memory

accesses, whether they are traditional memory system commands or other MAUI

commands, will neither read stale data nor overwrite MAUI operands before

the MAUI architecture has a chance to use them. The MAUI architecture does

allow independent memory accesses to proceed and complete before the MAUI

operation has completed. The logical ordering of memory accesses and MAUI

operations is maintained automatically by the MAUI architecture.
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3.2 MAUI Hardware

This section describes a hardware implementation to support the software

interface described in Section 3.1. The MAUI architecture builds an intelligent

memory system with only minor modifications to the processor. The MAUI ar-

chitecture also leaves the DRAM system completely unchanged, so the MAUI

enhanced memory system can use any consumer DRAM system. Major modifi-

cation only occurs at the memory controller. By placing the MAUI architecture in

the same chip as the memory controller, the MAUI computational engine enjoys

a lower latency and higher bandwidth to memory than the processor. The MAUI

architecture is split into two components, the Memory Arithmetic Unit (MAU)

and the Memory Arithmetic Unit Interface (MAUI). The MAU performs all data

computations while the MAUI controls the data flow, computes addresses, gener-

ates memory read and write requests, and enforces the logical ordering of memory

accesses. The MAUI also includes a cache and registers to hold the source and

result data for the computations.

The remainder of Section 3.2 is broken into three subsections. Subsection 3.2.1

describes the location of the MAU and MAUI. Subsection 3.2.2 then continues

with a more detailed description of the MAU, and subsection 3.2.3 completes the

section with a detailed description of the MAUI.

3.2.1 MAU and MAUI location

The MAU and MAUI are located on the same silicon die as the memory

controller. Placing the MAU computational power inside the memory controller

has two advantages. The first advantage is that integrating extra computation

into the memory controller rides the technology trend of increased chip inte-
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gration. Some consumer computer systems are already equipped with powerful

graphics engines located within the memory system, such as NVIDIA’s nForce,

which integrates a powerful processor within the North Bridge Chip [18]. As pro-

cess technology improves, the processing capability possible for a North Bridge

Chip will increase. The MAUI architecture takes advantage of the possibility of

additional processing power in the memory controller to improve total system

performance. By riding the trend of integrating more processing power into the

North Bridge chip, the MAUI architecture avoids the integration of processing

logic and DRAM onto a single chip.

The second advantage is that the MAU and MAUI enjoy more efficient data

transfer to and from the DRAM chips than the host processor. Data movement

between the MAUI architecture and main memory does not stress the Front Side

Bus (FSB), the connection between the processor and the rest of the system.

By avoiding communication across the FSB, the the MAUI architecture has a

lower latency and higher bandwidth connection to main memory than the does

main processor. Because the MAUI has a higher bandwidth and lower latency to

memory than the processor, it means that memory-bound computations can be

performed more quickly within the MAUI architecture than they can be on the

host processor.

3.2.2 The MAU

The Active Pages project demonstrated that the performance gain in using

intelligent memory system architectures is mostly due to Instruction Level Par-

allelism (ILP) [21]. To exploit available ILP, the MAUI architecture performs

vector computations on vectors as wide as a cache-line. With the SimpleScalar
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architecture, the MAU supports two thirty-two byte vector operands. That means

that the MAU performs eight integer arithmetic operations in parallel. Future

possibilities for operations the MAU will support include searches, scatter-gather

operations, pointer chasing, or other memory access bound operations which ex-

press significant ILP.

As the MAU is located on the same chip as the memory controller, it is

limited to the same process technology, clock cycle, and power requirements as

the memory controller. Fortunately, this limitation is mitigated by the fact that

the MAU has a more efficient connection to main memory than the host processor

and the SIMD nature of the vector operations it supports allow for significant

exploitation of ILP.

3.2.3 The MAUI

The MAUI controls memory computations and acts as the intelligent mem-

ory system’s interface to the rest of the computer system. It is the heart of

the MAUI intelligent memory system computational model. The MAUI coordi-

nates its caches, includes dedicated registers to hold the source and destination

addresses, block size, and other run time information, performs address compu-

tation, and issues read and write requests to the DRAM system. The MAUI

is also responsible for supplying the MAU with vector operands from memory.

Lastly, the MAUI is responsible for ensuring the the logical ordering of tradi-

tional memory accesses and MAUI operations. While enforcing logical ordering

the MAUI also allows non-MAUI memory operations to “leap-frog” long latency

MAUI instructions and complete before the MAUI instructions are finished when-

ever possible. The block level schematic of the MAUI architecture is shown in
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Figure 3.3. Notice that all of the data flow in the MAUI architecture passes

through the MAUI.

Figure 3.3: The block diagram of the MAUI architecture.

As shown in Table 3.1, MAUI commands are divided into setup and execution

commands. The setup commands are used to load the source, destination, and

size registers within the MAUI. The source registers shown in Figure 3.3 are

registers A and B. These registers hold the beginning address of the source vectors.

That means the source vectors occupy the memory ranges of A to A+size−1

and from B to B+size−1. The beginning address for the destination vector is
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held in the register C, meaning that the destination vector occupies the memory

range from C to C+size−1. The MAUI needs to be setup before any execution

command is issued.

Once the MAUI is setup with valid source and destination vectors, the pro-

cessor may issue an execution memory command. When the MAUI receives an

execution memory command, it begins the execution of that command. Gener-

ally, the MAUI begins the the execution of the command by issuing read requests

to main memory. When the data comes back from memory, it is stored in the

MAUI cache until there are enough operands to perform some arithmetic in the

MAUI cache. Once the required operands have been fetched from memory they

are transferred to the MAU, which performs the actual arithmetic. Then, the

result from the MAU’s operation is sent back to memory with a write request

to main memory. As an example of how the MAUI coordinates the data flow

during the execution of a MAUI command, Figure 3.4 graphically details the ex-

ecution of a maui-ADD( ) command and how the data flows through the MAUI

architecture.

To maximize the performance of the MAUI augmented memory system, non-

MAUI memory operations are permitted to reorder with MAUI memory oper-

ations. However, the reordering cannot violate the logical ordering of memory

operations and reorder dependent memory operations. To that end, one very

important responsibility of the MAUI is to maintain the logical ordering of mem-

ory commands while allowing subsequent, independent memory operations to

complete without waiting for the completion of the MAUI operation.

To maintain the logical ordering or traditional memory accesses and MAUI

operations, the MAUI introduces the concept of locking memory. The MAUI
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Figure 3.4: Illustration of the MAUI add operation. The MAUI has already been

setup with the vector size and the source and destination addresses.

maintains two types of locks, Read and Write locks. The registers holding the

values of the read and write locks are shown in Figure 3.3, and are called R-Lock1

start and end, R-Lock2 start and end, and W-Lock start and end. The addresses

falling between the R-Lock start and end registers are Read locked, and those

addresses falling between the W-Lock start and end registers are Write locked.

A Read lock is placed on MAUI source addresses, or those memory locations

that the MAUI needs to read. A Write lock is placed on MAUI destination

addresses, or those memory locations that the MAUI needs to write to. A Read

lock prevents later memory operations from modifying the data, but allows the

data to be read by the host processor. A Write lock prevents later memory

operations from modifying or reading the data. So, the Read lock prevents the
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processor from modifying data that the MAUI hardware has not read yet, and

the Write lock prevents the processor from reading stale data that the MAUI

hardware has not over-written yet.

To enforce correctness, the MAUI stalls those memory commands which vio-

late either the read or write locks. The MAUI rechecks stalled memory commands

to see if they can be executed each time the MAUI completes any operation.

When the MAUI is idle, memory commands are never artificially stalled. Be-

cause the MAUI must be able to stall memory commands that are not MAUI

commands, the MAUI observes every command that enters the memory con-

troller. Figure 3.5 illustrates how the MAUI read and write locks stall memory

accesses.

Section 3.3 discusses host processor starvation and cache coherence as possible

drawbacks to the MAUI architecture. These drawbacks can cause performance

problems in using the MAUI architecture. Some solutions to the performance

problems caused by these possible drawbacks are also discussed. Section 3.3

concludes with a discussion of security issues inherent with the MAUI architecture

and Operating System (OS) support of the MAUI architecture as a solution to

these issues.

3.3 Possible Drawbacks to the MAUI Architecture

One possible performance pitfall for the MAUI augmented memory system

would be starvation of the processor going to memory. Starvation is defined here

as the inability to either read or write to main memory. Because the MAUI is

streaming data both into and out of the main memory, it would be possible for

the MAUI’s read and write requests to saturate the memory system and block
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Figure 3.5: MAUI memory locks: illustrating how, although several memory com-

mands are stalled because of the MAUI memory locks, other memory commands

are permitted to complete.

any memory commands from the processor. The MAUI architecture employs two

methods to help alleviate the processor starvation problem. The first method cre-

ates a priority scheme for memory requests. The priority scheme is that MAUI

requests to memory have a lower priority than the host processor’s memory com-

mands. That way, as long as the processor’s request did not violate any read or

write locks, the processor’s request to memory would bypass the MAUI’s requests,

helping to prevent starvation for the host processor.

However, the priority scheme does not completely eliminate the possibility of

starvation. The MAUI could burst a large number of requests to memory at once,
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saturating the memory system for an extended period of time. A burst of mem-

ory accesses would even stall higher priority processor memory commands which

occur after the memory request burst. The second starvation prevention method

solves the starvation problem by limiting the number of outstanding MAUI mem-

ory requests. An outstanding MAUI memory request is any read request from the

MAUI for which it hasn’t issued a corresponding write request. Therefore, the

MAUI will only burst a small number of requests to memory, and won’t block fu-

ture, independent memory requests from the host processor. The MAUI restricts

the number of outstanding memory accesses to four outstanding read requests:

two from source A and two from source B. For those MAUI operations with only

a single source, all possible outstanding memory accesses are allocated to source

A.

Limiting the number of outstanding MAUI memory requests has the addi-

tional benefit of reducing the complexity of the MAUI architecture. Because the

memory controller and DRAM system are free to reorder memory requests, the

MAUI is required to keep track of all outstanding MAUI memory requests. Also,

the MAUI will need to buffer up to one-half of the data for all outstanding mem-

ory requests. Looking at the MAUI-ADD operation as an example, half of the

outstanding MAUI memory read requests are generated from source register A,

and half of the outstanding MAUI memory requests are generated from source

register B. From here, these data sets are referred to source A and source B. Be-

cause the memory requests could be reordered into any order, the data from all

the read requests for source A could return from the DRAM system before any of

the data from source B arrives. In this case, all of the data from the outstanding

memory requests from source A needs to be buffered until the corresponding data
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from B arrives from the memory system. If the MAUI were permitted to burst

an unlimited number of requests to memory, the MAUI would need to buffer at

least half of those requests. Unlimited buffering is impossible, of course, but un-

limited outstanding MAUI memory requests, in the least, makes it very complex

to keep track of the memory requests. Limiting the number of outstanding MAUI

memory requests creates a less complex MAUI architecture.

By operating on data within the memory system, we run the risk of chang-

ing data that is stored in the processor’s cache, introducing the cache coherence

problem that is present in any system with more than one processing element.

The MAUI architecture takes cues from the Active Pages project in solving the

cache coherence problem. The Active Pages project showed that using software

driven cache coherence results in similar performance to hardware driven cache

coherence [14]. Because software driven cache coherence results in a more sim-

ple hardware implementation, hardware cache coherence is not explored for the

MAUI architecture.

The software approach to cache coherence used for MAUI commands has

two rules. First, the program must check addresses that fall within the source

vector(s). The caches must write out any “dirty” data in the cache that falls

within the source vector(s), but these addresses don’t need to be invalidated.

“Dirty” data are any data that the host processor has written to the cache but

not to main memory. Writing “dirty” cache lines to memory ensures that main

memory has the most recent copy of the data. However, the data are allowed

to stay within the cache, allowing the processor to read data that falls within

the source vector(s). The second rule applies to the destination addresses. The

caches must be invalidated for all addresses that fall within the destination vector.
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Invalidating the addresses that fall within the destination vector ensures that

the processor would need to issue a request to main memory to read or modify

data falling within the destination vector. Invalidating the correct cache lines

allows the MAUI to prevent the host processor from either reading stale data or

modifying data in the destination vector before the MAUI operation completes.

Another issue is introduced when examining the nature of virtual memory.

Most, if not all, consumer computer systems implement some form of virtual

memory. When a virtual address is translated to a physical address, it is clear

that a contiguous segment of virtual memory does not always translate to a

contiguous segment of physical memory [9]. The existence of virtual memory

does not align well with the assumptions the MAUI makes. The MAUI only has

access to the physical addresses, and expects the source and destination vectors to

have consecutive addressing. Therefore, when a vector crosses a page boundary

it’s possible for the parts of the vectors that fall in different pages to be mapped to

non-consecutive physical memory pages. If a user program were to issue a MAUI

command for the entire vector, when the MAUI crosses the page boundary, it

will be reading or modifying data that does not belong to the vectors that it is

supposed to operate on. At best, this constitutes a security hole. To exploit the

security hole, a malicious program would only have to issue a MAUI command to

a portion of memory to which it shouldn’t have access, then read or modify data.

At worst, reading or modifying unexpected data can cause monumental system

failure. MAUI instructions issued could modify data that the programmer did

not intend, causing the entire system to crash.

To solve the previously mentioned problem, when the MAUI commands are

issued, the program issuing the MAUI commands needs to know, at the time of
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issue, that the commands are correct and will not step into parts of memory that

aren’t intended. In order to ensure correctness, the program would need to know

the exact virtual address mapping on the system. However, it is unreasonable

to expect the programmer to know the virtual address mapping and validate

the correctness before runtime. However, the Operating System (OS) usually

manages virtual memory, and could handle the correctness of MAUI commands.

Therefore, the programmer would issue an OS system call asking to perform the

MAUI vectors operation. The actual MAUI commands would be privileged, and

would only run when the processor is running in kernel mode. The OS would

then check to see if the source or destination vectors cross page boundaries. If

the vectors do cross page boundaries, they would be split up into separate MAUI

instructions, and issued to the MAUI hardware. This way, the OS would be able

to enforce any security procedures it needed to, and it would also be able to check

the mapping to ensure that no incorrect behavior would accidentally occur.

Section 3.4 introduces the simulation environment created to test the per-

formance of the MAUI architecture. The simulation environment is based on

a version of SimpleScalar v4.0. Specifically, the MAUI architecture augments

the Micro-Architectural Simulation Environment (MASE) simulator within Sim-

pleScalar.

3.4 Simulation Environment

The simulation environment used to simulate MAUI performance is based on

the popular simulation environment, SimpleScalar [1]. SimpleScalar was chosen

for simulation because it already possesses a detailed simulation of caches and

out-of-order execution. Additionally, Dr. Bruce Jacob and David Wang of the
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University of Maryland’s Electrical and Computer Engineering Department have

created a highly detailed, DRAM-based memory system enhancement to the

Micro-Architectural Simulation Environment (MASE) portion of SimpleScalar

v4.0.

The MASE simulator provides a highly detailed, out-of-order simulation en-

vironment with support for a non-deterministic memory system. As illustrated

in Figure 3.6, MASE simulates 4 pipeline stages with a number of functional

units and a flexible interface to memory. While a four-stage pipeline does not

exactly mimic any commercially available microprocessor, the design is a general

representation of a “modern” out-of-oder execution, super-scalar microprocessor.

Most importantly however, MASE allows for the simulation of non-deterministic

memory systems. A non-deterministic memory system is any memory system in

which later memory accesses could effect the latency of previous memory accesses.

Non-deterministic memory systems include any memory system that can reorder

memory accesses to improve performance and intelligent memory systems [15].

Figure 3.6: Block diagram of the MASE performance model [15].
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MASE’s ability to simulate non-deterministic memory systems is crucial to

simulate the MAUI enhanced memory system. As MAUI operations can be ex-

tremely complex, the latency of these commands are not known at the time they

are issued. Also, the highly detailed DRAM-based memory system simulator

created at the University of Maryland for the MASE simulator allows for highly

faithful simulations of numerous DRAM systems under various conditions.

The MAUI architecture calls for additional instructions to be added to the

host processor’s ISA. For SimpleScalar, the addition of new instructions is fa-

cilitated by using the “annote” field that is available for any instruction in the

SimpleScalar Portable Instruction Set Architecture (PISA). As of this time, no

MAUI enabled compiler has been developed. Therefore, benchmarks written for

the MASE simulator that take advantage of the MAUI architecture need to be

hand optimized and written partially in assembly language. Table 3.2 shows the

instruction format for MAUI commands using in SimpleScalar’s PISA compatible

code and the “annote” field.

3.4.1 MAUI Enhancements to SimpleScalar

This section contains a description of the additions made to SimpleScalar’s

MASE simulator to simulate the MAUI hardware. The actual code that was

created or modified for the purpose of simulating the MAUI hardware is included

in Appendix A.

The simulated MAUI architecture is divided into two discrete parts, the

processor-side and memory-side MAUI hardware. The processor-side part of

the MAUI simulated architecture actually has no counterpart in the physical im-

plementation. However, in the MASE simulator, the memory system actually
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Table 3.2: PISA assembly MAUI instructions.

holds no data and is only used for timing of memory system accesses. Therefore,

the processor-side part of the simulated MAUI architecture performs the MAUI

operations while the memory-system side of the simulated MAUI architecture de-

termines the timing of the MAUI operations. Because the processor-side part of

the simulated MAUI architecture performs the arithmetic for MAUI operations,

it also maintains copies of the MAUI registers.

Within the processor’s pipeline, when a MAUI instruction reaches the execute
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pipeline-stage, the input dependencies have all been resolved. So, it is in the

execute stage that the MAUI instruction is detected and saved to the reorder

buffer. The input register values are also saved to the reorder buffer. In the

commit pipeline-stage, the MAUI instructions are read out of the reorder buffer

and sent to the memory system. For execution MAUI commands, the commit

pipeline-stage is where the processor-side part of the simulated MAUI architecture

performs the arithmetic for the MAUI instruction. For setup MAUI commands,

the correct values are simply saved in the processor-side copies of the MAUI

registers. The MAUI instructions are sent to memory in the commit stage to

ensure that the memory system receives the MAUI instructions in program order.

The memory-side MAUI hardware is implemented almost identically as de-

scribed in previous sections, except no arithmetic is actually performed. If the

memory system receives a setup MAUI instruction, the appropriate value, which

is passed along with the MAUI instruction, is loaded into the appropriate MAUI

register. If the memory system receives an execution MAUI instruction, the

MAUI operation is started and the appropriate memory operations are issued.

On every memory system clock cycle, the memory-system side of the MAUI ar-

chitecture simulation checks to see if the MAUI architecture has received any

data from the DRAM system, and if any new memory transactions can be issued

to the DRAM system. If data has arrived from the DRAM system, the MAUI

checks to see if there are enough operands in the MAUI’s cache to perform some

arithmetic. If the MAUI determines that there are the required operands to per-

form arithmetic, the MAU is simulated to perform that arithmetic. The MAU is

simulated to perform eight integer arithmetic operations in parallel, with addition

taking a single clock cycle and multiplication taking three clock cycles. After the
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MAU is finished simulating the latency of the arithmetic, the results are sent out

to memory. If the MAUI is idle, these checks aren’t made to try to optimize the

performance of the simulation.

The next chapter presents the performance results of the simulated MAUI

hardware. To test the performance of the MAUI-enhanced intelligent memory

system, three benchmarks were created and simulated using the MAUI-enhanced

version of SimpleScalar discussed in this chapter. The first two benchmarks were

created to test what data sizes, memory system types, and processor speeds

the MAUI-enhanced memory system performs well with. The final benchmark

represents an accepted benchmark to test total memory system performance.

The simulation results presented in Chapter 4 show that combining performance

advantages of the MAUI-enhanced memory system and parallel execution of the

MAUI hardware and the host processor can result in application speedup of up

to 121%.
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Chapter 4: Simulation Results and Conclusions

This chapter presents the simulation test results for the MAUI enhanced com-

puter system and draws conclusions based on these results. Three benchmarks

were written to test the performance of a MAUI enhanced architecture. The

first two benchmarks, MAUI-one and MAUI-two, are “artificial,” in that they

do not necessarily reflect the behavior of real-world applications and were writ-

ten specifically to test the MAUI architecture. The purpose of MAUI-one and

MAUI-two was to determine under what circumstances the MAUI architecture

can positively effect system performance. To that end, both benchmarks were

simulated with a number of problem sizes, processor speeds, memory configura-

tions, and cache configurations. Then, favorable processor, memory, and cache

configurations were determined using the results of the MAUI-one and MAUI-two

simulations.

The final benchmark, Stream, originally written by John D. McCalpin [16],

tests the performance of the memory system by performing vector additions, mul-

tiplications, scaling, and multiplication-accumulation on extremely large vectors.

The purpose of the Stream benchmark was to test how the MAUI enhanced intel-

ligent memory system affects total memory system performance. All benchmarks

were simulated using the MAUI enhanced version of SimpleScalar v4.0 discussed

in Chapter 3.

Two versions of each benchmark were created. The first version, designated

as the “unoptimized” version, is completely conventional and does not take ad-

vantage of the MAUI hardware at all. The second version, designated as the
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“MAUI optimized” version, performs part of the program utilizing the MAUI

hardware. The complete source code for both versions of MAUI-one, MAUI-two,

and Stream are included in Appendix B.

The processor configuration used in every simulation is noted in Table 4.1.

Every simulation used the same processor configuration, unless otherwise noted.

The remainder of Chapter 4 is broken in to four sections. Section 4.1, Section

4.2, and Section 4.3 describe the methodology used to simulate the MAUI archi-

tecture’s performance using the MAUI-one, MAUI-two, and Stream benchmarks,

respectively. Section 4.4 presents the results of the MAUI simulations, and draws

conclusions based on those results.

4.1 Simulation Methodology for MAUI-one

The first benchmark, MAUI-one, performs a single vector addition operation,

where individual members of two arrays are added together, and the result is

stored in a third array. Pseudo-C code for both the unoptimized and MAUI opti-

mized versions of the MAUI-one benchmark are shown in Figure 4.1. As Figure

4.1 shows, the unoptimized version of MAUI-one implements the vector addition

in a simple for loop, while the MAUI optimized version of MAUI-one implements

the vector addition with four MAUI commands. Not shown in Figure 4.1 is that

in both the unoptimized and MAUI optimized version of the benchmark, the

processor initializes the arrays.

The MAUI-one benchmark was simulated using MAUI enhanced version of

SimpleScalar v4.0. Across simulations, processor speed was varied between 900

and 2900 MHz, problem size was varied between 1000 and 64,000 integers per

vector, memory bus speed was varied between 100 and 800 MHz, and the mem-
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General

Issue Width 4 micro-ops/cycle

Instruction Fetch Queue Size 16

Load Store Queue Size 8

Reorder Buffer Size 16

Number of Reservation Stations 16

Branch Predictor Type/Size Bimodal/2048 entries

Functional Units

Number of Integer ALU’s/Latency 4 / 1 cycle

Number of Multiply/Dividers 1

Multiply Latency 7 cycles

Divide Latency 12 cycles

Number of Memory Ports 2

Number of Floating Point(FP) Units 1

FP Add latency 4 Cycles

FP Multiply Latency 4 Cycles

FP Divide Latency 12 Cycles

Cache Configuration

Level 1 Data Cache Size 16 KByte

Associativity 4 way

Block Size 32 Bytes

Latency 1 cycle

L1 Instruction Cache Size 16 KByte

Associativity Direct Mapped

Block Size 32 Bytes

Latency 1 cycle

L2 unified Cache Size 256 KByte

Associativity 4 way

Block Size 32 Bytes

Latency 6 cycles

Table 4.1: Processor configuration.
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/* MAUI-one, c = a + b */ /* MAUI-one -- using MAUI

hardware, c = a + b */

int main() { int main() {

int i, a[N], b[N], c[N]; int i, a[N], b[N], c[N];

for(i = 0; i < N; i++) int size = sizeof(int) * N;

c[i] = a[i] + b[i]; maui-LD-size(size);

} maui-LD-ab(a,b);

maui-LD-c(c);

maui-ADD();

}

Figure 4.1: The pseudo-C representation of the unoptimized and MAUI optimized

versions of the MAUI-one benchmark.

ory system type was varied between SDRAM, DDR-SDRAM, and DRDRAM.

For each combination of processor speed, problem size, memory bus speed, and

memory system type, two simulations were run: the first simulation used the

MAUI optimized version of MAUI-one whereas the second used the unoptimized

version of MAUI-one.

The percent speedup due to the MAUI optimization was calculated by:

percent-speedup =

(
sim-cyclenon−MAUI

sim-cycleMAUI

− 1

)
∗ 100%, (4.1)

where sim-cyclenon−MAUI is the number of processor cycles SimpleScalar reported

that the unoptimized version of MAUI-one took to complete and sim-cycleMAUI is

the number of processor cycles SimpleScalar reported that the MAUI optimized

version of MAUI-one took to complete. Equation 4.1 is only applied to two

simulations with identical processor speeds, problem sizes, memory bus speeds,
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and memory system types. In this way, only simulations with identical hardware

configurations are compared directly using simulated execution time. Simulations

with different processor speeds, problem sizes, memory bus speeds, or memory

system types are compared using percent speedup due to MAUI optimization, as

described above.

The MAUI-one benchmark tests how well the MAUI architecture can perform

a single vector operation. Assuming that the MAUI optimized version of MAUI-

one performs virtually all of the benchmark’s execution using the MAUI hard-

ware, the percent speedup due to MAUI optimization approximates the speedup

due to MAUI optimization for a single vector operation. Therefore, the MAUI-

one benchmark’s simulations can provide cues to what vector operations should

be off-loaded to the MAUI hardware for performance gains.

4.2 Simulation Methodology for MAUI-two

The second benchmark, MAUI-two performs two identical vector additions,

except each vector addition reads and stores to different arrays. The pseudo-C

code representation of both the MAUI optimized and unoptimized versions of

MAUI-two are shown in Figure 4.2. As shown in Figure 4.2, the MAUI opti-

mized version of MAUI-two performs the first vector addition using the MAUI

hardware while the second vector addition is performed by the main processor.

The unoptimized version, of course, does not utilize the MAUI hardware. The

function maui add(c,a,b,size) used in the MAUI optimized version of MAUI-two

in Figure 4.2 is a function consisting of four instructions. The first three instruc-

tions setup the MAUI hardware by loading the MAUI’s destination, sources, and

the size registers with c, a and b, and size from the function call, respectively.
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The final MAUI instruction is the MAUI-add instruction, which starts the MAUI

execution. The function maui add(c,a,b,size) implements exactly the same vector

addition used in the MAUI-one benchmark.

/* MAUI-two, Two Array /* MAUI-two, using the

Additions */ MAUI hardware */

int main() { int main() {

int a[N], b[N], c[N], i; int a[N], b[N], c[N], i;

int d[N], e[N], f[N]; int d[N], e[N], f[N], size;

size = sizeof(int) * N;

for(i = 0; i < N; i++) maui_add(c,a,b,size);

c[i] = a[i] + b[i];

for(i = 0; i < N; i++) for(i = 0; i < N; i++)

f[i] = d[i] + e[i]; f[i] = d[i] + e[i];

} }

Figure 4.2: The pseudo-C code representation of the unoptimized and MAUI

optimized versions of the MAUI-two benchmark.

MAUI-two simulations were conducted very similarly to MAUI-one. Using

the MAUI enhanced version of SimpleScalar v4.0, MAUI-two was simulated with

processor speed varying between 1000 and 3000 MHz, memory bus speed varying

between 100 and 800 MHz, problem size varying between 1000 and 64,000 integers

per array, and the memory system type varying across SDRAM, DDR-SDRAM,

and DRDRAM. Identical to MAUI-one, for each combination of processor speed,

memory bus speed, problem size, and memory system type, both the MAUI opti-

mized and unoptimized versions of MAUI-two were simulated using SimpleScalar.
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Again, calculating the percent speedup for MAUI-two due to the MAUI op-

timization is very similar to calculating the percent speed up for the MAUI-one

simulations. Looking only at simulations with identical processor speed, mem-

ory bus speed, problem size, and memory type, the percent speedup due to the

MAUI optimization was calculated by Equation 4.1, where sim-cyclenon−MAUI is

the number of processor cycles SimpleScalar reported that the unoptimized ver-

sion of MAUI-two took to complete and sim-cycleMAUI is the number of processor

cycles SimpleScalar reported that the MAUI optimized version of MAUI-two took

to complete.

The MAUI-two benchmark tests how well the MAUI hardware and the pro-

cessor are able to exploit parallelism when both are performing memory intensive

tasks. Because the two datasets used in MAUI-two are completely independent,

the MAUI optimized version of MAUI-two should be able to have the processor

and the MAUI hardware execute in parallel.

4.3 Simulation Methodology for Stream

The third and final software benchmark used to test the MAUI enhanced

architecture is Stream, originally written by John D. McCalpin [16]. Stream per-

forms vector scaling, addition, multiply-addition, and copying operations on large

sections of memory. The pseudo-C code representation of both the MAUI opti-

mized and unoptimized version of Stream is given in Figure 4.3. In the MAUI

optimized version of Stream, the MAUI operations are implemented by the func-

tions maui add(c, a, b, size), maui mul scalar(c,a, scalar, size), and maui copy(c,

a, b, size). Each MAUI function is implemented using four MAUI commands,

and these four MAUI functions are used very similarly to the maui add func-
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tion described and used in the MAUI-two benchmark. As shown in Figure 4.3,

and similar to both MAUI-one and MAUI-two, the MAUI optimized version of

Stream performs several vector-type operations using the MAUI hardware, while

the unoptimized version performs all the vector operations within the main pro-

cessor.

/* Stream Benchmark */ /* MAUI Stream Benchmark */

int main() { int main() {

int a[N], b[N], c[N]; int a[N], b[N], c[N];

int j, scalar; int j, scalar;

int size = sizeof(int) * N;

for(j = 0; j < N; j++) maui_copy(c, a, size);

c[j] = a[j];

for(j = 0; j < N; j++) maui_mul_scalar(b,c,scalar

b[j] = scalar * c[j]; size);

for(j = 0; j < N; j++) maui_add(c,a,b,size);

c[j] = a[j] + b[j];

for(j = 0; j < N; j++) for(j = 0; j < N; j++)

a[j]=b[j]+scalar*c[j]; a[j]=b[j]+scalar*c[j];

} }

Figure 4.3: The pseudo-C code representation of the unoptimized and MAUI

optimized versions of the Stream benchmark.

Unlike the MAUI-one and MAUI-two benchmarks, Stream was simulated with

a single combination of processor speed, memory bus speed, problem size, and

memory system type. Processor speed was set to 2000 MHz, memory type was

54



chosen as DRDRAM, memory bus speed was chosen as as 800 MHz, and the

problem size was chosen to be two million integers per array. These values for

processor speed, memory type, memory bus speed, and problem size were chosen

based results from the MAUI-one and MAUI-two simulations, common sense,

and common practice for the original version of the Stream benchmark [16].

At two million integers per array, the total data memory used in the bench-

mark about 23MB, which is much larger than the 8KB L1 data-cache and 256KB

L2 cache used for the simulation of Stream. In fact, at over 7MB per array, no

single vector used in the Stream benchmark can fit in the caches. This keeps

with the common practice of choosing the array sizes for Stream to be much

larger than the cache size of the system that’s being tested. By making Stream’s

dataset too large to fit in the cache, Stream provides an indication of total mem-

ory system performance. As the MAUI architecture aims to improve memory

system performance, the simulated running time of the Stream benchmark is a

good indication at how well the MAUI architecture achieves the goal of improving

memory system performance.

4.4 Simulation Results

This section summarizes the simulation results, showing only those simulation

results that best illustrate the effects MAUI optimization has on memory system

performance. Results of all simulations can be found in Appendix C. Section

4.4 is broken into three subsections. Subsection 4.4.1 summarizes the results

from simulations of the MAUI-one benchmark, Subsection 4.4.2 summarizes the

results from the MAUI-two benchmark, and the final subsection, Subsection 4.4.3,

summarizes the results from the Stream benchmark.
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4.4.1 Simulation Results from the MAUI-one Benchmark

Simulations of MAUI-one showed that the speedup due to the MAUI architec-

ture is dependent on memory system type, memory bus speed, processor speed,

problem size, and cache configuration. Figure 4.4 illustrates the effect memory

performance has on the speedup due to the MAUI architecture. Specifically,

as the memory bandwidth increases, the speedup due to the MAUI architec-

ture increases. Note that for the memory systems shown in Figure 4.4, memory

bandwidth, from smallest to largest, is SDRAM 100 MHz, SDRAM 133 MHz,

DDR-SDRAM 166 MHz, DDR-SDRAM 232 MHz, DRDRAM 400 MHz, and

DRDRAM 800 MHz. The trend illustrated in Figure 4.4 is repeated for each

combination processor speed and problem size; refer to Appendix C for all other

simulation results.

Figure 4.4 illustrates how, as the memory system performance increases, the

speedup due to optimization for the MAUI architecture increases. Intuitively,

this performance trend makes sense. Recall that, because MAUI architecture is

located within the memory system, its performance is limited by the memory sys-

tem performance. That means that for a 100 MHz SDRAM system, the MAUI is

only operating at 100 MHz. As the performance of the memory system increases,

the speedup due to the MAUI architecture also increases. In examination of Fig-

ure 4.4, notice that the break-even point seems to be at SDRAM 133 MHz, where

the MAUI optimized version of MAUI-one performs slower than the unoptimized

version when run with memory systems slower than SDRAM 133 MHz and faster

when run on memory systems faster than SDRAM 133 MHz.

The effect of processor speed on the speedup due to the MAUI architecture is

shown in Figure 4.5. Figure 4.5 shows that, as the processor speed increases, the
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Figure 4.4: Graph illustrating the effect memory configuration has on the speedup

due to the MAUI architecture for the MAUI-one benchmark simulated with a

processor speed of 1700 MHz and a problem size of 32,000 integers per array.

percent speedup due to optimization for the MAUI architecture decreases. Again,

this intuitively makes sense. For faster processors, the arithmetic performed by

the MAUI becomes comparatively more expensive.

The effect problem size has on the speedup due to the MAUI architecture is

shown in Figure 4.6. Examining Figure 4.6 one can deduce that, as the problem

size increases, the percent speedup due to optimization for the MAUI architecture

also increases. There are two reasons for speedup increasing while the problem

size increases. First, the cost of initializing the MAUI hardware is the same for

across all problem sizes. That means that the startup costs of sending the setup

MAUI instructions to the MAUI hardware is amortized over a larger amount of
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computation for larger problem sizes.

The second reason the speedup of MAUI-one increases when problem size

increases is that although the MAUI hardware’s efficiency in accessing memory

doesn’t change when operating on large vectors, the processor’s effective efficiency

decreases significantly on large datasets. The processor’s effective efficiency de-

creases when operating on large vectors because when a dataset can fit in the

cache, the processor has very high bandwidth, low latency access to the data,

but when the dataset grows so that it no longer fits in the cache, the processor

must access main memory, and its efficiency in accessing memory significantly

decreases. For smaller datasets, the data is loaded into the cache by the initial-

ization, and the data remains there for the entire simulation. Figure 4.7 shows

how as the cache configuration becomes better, the percent speedup due to the

MAUI architecture decreases for the same problem size. Note that there are two

variables that make a cache “better” in Figure 4.7. First, and most obviously,

a larger cache has better performance. Secondly, the cache’s associativity ef-

fects performance. For the cache configurations shown in Figure 4.7, the caches’

performances, from best to worst, are the 512 KB 4-way cache, 256 KB 8-way

cache, 256 KB 4-way cache, and then 256 KB 2-way cache. As the performance

of the cache increases, the percent speedup due to MAUI optimization decreases.

Because the MAUI hardware is aimed at improving the performance of those

operations that access memory often, the fact that the MAUI hardware doesn’t

speedup those operations that already fit well in the cache is not a drawback to

the MAUI architecture.

Additionally, the “knee” in Figure 4.6’s performance graph can also be ex-

plained by examining the effect cache has on the speedup due to the MAUI
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Figure 4.5: Graph illustrating the effect processor speed has on the speedup due

to the MAUI architecture for the MAUI-one benchmark.

Figure 4.6: Graph illustrating the effect problem size has on the speedup due to

the MAUI architecture for the MAUI-one benchmark.
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Figure 4.7: Graph illustrating the effect cache configuration has on the speedup

due to the MAUI architecture for the MAUI-one benchmark.

optimizations. The “knee” in Figure 4.6 is at about 20,000 integers per array,

where the percent speedup due to MAUI optimization suddenly increases. For

a 256KB four-way L2 cache, the unoptimized version of of MAUI-one no longer

comfortably fits in the cache at about 20,000 integers per array. Therefore, the

running time significantly increases at about 20,000 integers per array. Figure

4.7 shows how the performance “knee” moves as the cache configuration changes.

As the cache configuration improves, the “knee” moves towards larger problem

sizes, illustrating that the MAUI hardware provides the largest speedup when

working on datasets that do not fit in the cache.

Across all simulations of MAUI-one, the largest speedup due to MAUI opti-

mizations was 102.6%. The 102.6% speedup was realized when run on a system

with a 900 MHz processor, and an 800 MHz DRDRAM memory system. At 900

MHz, this simulation used the slowest processor and the 800 MHz DRDRAM
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system was the highest bandwidth memory system tested. Additionally, the

problem size for the simulation of Stream was set to 100,000 integers per array,

the largest problem size simulated. This all follows the conclusions drawn earlier,

which predict that the speedup due to MAUI optimizations increases as the pro-

cessor speed decreases, the memory system’s speed increases, and the problem

size increases.

Because the MAUI-one benchmark performs a single vector addition, MAUI-

one demonstrates the speedup achievable for a single vector operation when per-

formed by the MAUI architecture instead of using the processor. The MAUI

architecture is able to perform these vector operations more efficiently than the

processor because, although the MAUI hardware doesn’t posses as much compu-

tational power as the processor, it experiences a higher bandwidth, lower latency

connection to memory. Therefore, the results of MAUI-one shows that, for a

large enough data set running on a system with a low performance processor and

a high performance memory system, vector operations can run slightly more than

twice as fast when run on MAUI hardware instead of using the processor.

Throughout Section 4.4.1, the results were illustrated using a single combina-

tion of either processor speed, memory system type, or problem size. However,

the trends illustrated in Figures 4.4, 4.5, and 4.6 are repeated across all simula-

tions. Refer to Appendix C to see all the other simulation results.

4.4.2 Simulation Results from the MAUI-two Benchmark

As with the MAUI-one benchmark, the speedup due to MAUI optimizations

for the MAUI-two benchmark is dependent on memory system configuration, pro-

cessor speed and problem size. Figure 4.8 shows the effect memory configuration
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has on the speedup due to MAUI optimizations; as the memory systems’ possible

bandwidth increases, the speedup due to MAUI optimizations increases. The rea-

son for this performance trend is identical to the reason why the memory system

affects the speedup due to MAUI optimizations for the MAUI-one benchmark:

because the MAUI architecture is located in the memory system, its performance

is limited to be the same as the memory system. Again, note that for the mem-

ory systems shown in Figure 4.8, possible memory bandwidth, from smallest

to largest, is SDRAM 100 MHz, SDRAM 133 MHz, DDR-SDRAM 133 MHz,

DDR-SDRAM 166 MHz, DDR-SDRAM 266 MHz, DDR-SDRAM 333 MHz, and

DRDRAM 800 MHz.

Figure 4.8: Graph illustrating the effect memory configuration has on the speedup

due to the MAUI architecture for the MAUI-two benchmark.

Figure 4.9 shows the effect processor speed has on the speedup of MAUI-
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two due to MAUI optimizations. The trend shown in 4.9 is the same as the

trend shown in 4.5, illustrating the effect processor speed has on the speedup of

the MAUI-one benchmark. As the processor speed increases, the speedup due to

MAUI optimization decreases. The reason for this trend is that as the processor’s

performance increases, performing arithmetic with the MAUI hardware becomes

relatively more expensive.

Figure 4.9: Graph illustrating the effect processor speed has on the speedup due

to the MAUI architecture for the MAUI-two benchmark.

Simulations show that the speedup due to MAUI optimization for MAUI-two

are also dependent on problem size. The trend for MAUI-two is very similar

to that shown in Figure 4.6 for MAUI-one: as the problem size increases, the

speedup due to MAUI optimization increases. The effect problem size has on the

speedup of MAUI-two is shown in Figure 4.10.

There is one significant difference when comparing the effect problem size has
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Figure 4.10: Graph illustrating the effect problem size has on the speedup due

to the MAUI architecture for the MAUI-two benchmark.

on the speedup due to MAUI optimization for MAUI-one (Figure 4.6) to the

effect problem size has on the speedup due to MAUI optimization for MAUI-two

(Figure 4.10). Looking at Figure 4.10, notice that for 166 MHz DDR-SDRAM the

speedup shows a noticeable decline when the problem size reaches about 20,000

integers per array.

Remember that the MAUI optimized version of the MAUI-two benchmark

performs two vector additions, one in memory and the second in the processor,

while the unoptimized version performs all the vector operations using the proces-

sor. For the MAUI optimized version of MAUI-two, when the problem size grows

to 20,000 integers per array, the data set the processor is working on can no longer

comfortably fit in the cache. Notice the point where the data set can no longer fit

comfortably in the cache is the same problem size the the MAUI-one benchmark

experiences the performance “knee”. However, for MAUI-two this translates to
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a decline in the speedup, instead of the percent speedup increases, as is seen

in the MAUI-one benchmark. This is because once the processor’s dataset can

no longer fit in the cache, the processor and the MAUI hardware begin compet-

ing for access to memory. Because both the processor and the MAUI hardware

are accessing memory in parallel, each now only has access to half the available

memory bandwidth. There is still a significant speedup however, because of the

significant amount of parallel execution. The percent speedup decline starting at

about 20,000 integers per array is not as significant for the 800 MHz DRDRAM

curve shown in Figure 4.10 because the bandwidth available for that memory

system type is significantly greater than that of 166 MHz DDR-SDRAM.

The largest speedup due to MAUI optimization for the MAUI-two benchmark

was found to be 80.1%. The 80.1% speedup was realized when run on a 2500 MHz

processor with 400 MHz DRDRAM memory configuration and a problem size of

64,000 integers, the largest problem size simulated for the MAUI-two benchmark.

Although the largest speedup for MAUI-two was not realized using the fastest

memory , as predicted in Figure 4.8, the fastest memory system tested, 800 MHz

DRDRAM, does show a 78.8% speedup on MAUI-two (which is not significantly

slower than the 80.1% speedup experienced with 400 MHz DRDRAM ). Addition-

ally, although the largest speedup for the MAUI-two benchmark was not realized

using the slowest processor, as would be predicted by the trends shown in Figure

4.9, the speedup MAUI-two experienced on a 1000 MHz processor (the slowest

processor simulated for the MAUI-two benchmark) was 76.5%, which is also not

significantly lower than the 80.1% speedup when run on a 2500 MHz processor.

The speedup of the MAUI-two benchmark due to MAUI optimization is due

to exploiting the parallelism of two separate vector operations. Performing the
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vector operations of MAUI-two in parallel falls short of a two processing element

perfect parallel execution speedup by only about 20%. The 20% parallel execution

overhead would be expected to shrink if the operations performed by the processor

didn’t compete with the MAUI hardware for memory access.

Throughout Section 4.4.2, the results were illustrated using a single combina-

tion of either processor speed, memory system type, or problem size. However,

the trends illustrated in Figures 4.8, 4.9, and 4.10 are repeated across all simula-

tions. Refer to Appendix C to see all the other simulation results.

4.4.3 Simulation Results from the Stream Benchmark

The results of simulations of MAUI-one and MAUI-two indicate that higher-

performance memory and a lower performance processor and cache result in a

higher performing MAUI architecture. Therefore, to simulate Stream, the mem-

ory system was chosen to be DRDRAM running at 800 MHz, the highest perform-

ing, real-world memory system supported by SimpleScalar v4.0. The processor’s

frequency was chosen to be 2 GHz, which being neither laboriously slow nor as

fast as is currently available, appears to be a good choice to parallel real-world,

mid-range consumer computer systems. Additionally, the cache was chosen to be

512KB, 4-way set associative. Again, the cache configuration seems to parallel

real-world, mid-range consumer computer systems. The problem size for Stream

was set to twenty-million integers per array. At twenty million integers per array,

the problem size follows common practice for the original Stream benchmark [16].

Simulating the Stream benchmark showed a 121.5% speedup due to MAUI

optimization. There are two reasons behind Stream benchmark’s speedup. First,

referring back to Figure 4.3, the first three vector operations are performed with
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the MAUI hardware. As shown in simulations of MAUI-one, these vector opera-

tions can complete about twice as fast as the corresponding vector operations in

the unoptimized version of Stream.

The second reason for the 121.5% speedup of Stream due to MAUI optimiza-

tion is found examining how, in the MAUI optimized version of Stream, the final

vector operation is performed using the processor. Although the final vector oper-

ation performed by the processor and the preceding MAUI operation both operate

on the same data, the MAUI hardware allows significant execution overlap. The

processor is permitted to start execution of the final vector operation before the

preceding maui add is finished. Therefore, while the processor is executing the

beginning of the final vector operation, the MAUI hardware is executing the end

of the preceding vector operation. This parallelism means that the final vector

operation is mostly overlapped with the preceding vector operation. If it were

completely overlapped, then the speedup due to MAUI optimization would be

expected to be about 166%. At 121.5%, the simulated speedup is significantly

less than 166% because the final vector addition takes longer than the preced-

ing maui add operation, meaning that its execution is not completely overlapped

with the maui add operation.

Figure 4.11 compares the speedup of MAUI-one, MAUI-two, and Stream for

identical memory configurations and processor speeds. Simulations of Stream

show how, by combining parallel execution between the processor and the MAUI

hardware and by off-loading memory bound operations to the MAUI enhanced

memory system, the speedup of memory bound benchmarks can exceed that

predicted by the simplistic MAUI-one and MAUI-two benchmarks.
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Figure 4.11: Graph comparing the speedup of MAUI-one, MAUI-two and Stream

due to MAUI optimizations.
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Chapter 5: Conclusions and Recommendations for Further Research

Computer system performance is greatly increasing as time progresses. In gen-

eral, Moore’s law predicts that the performance of a computer system will double

every eighteen months. However, the memory system’s performance has not in-

creased as quickly as the processor’s performance. The performance gap between

the memory system and the rest of the computer system has become a perfor-

mance bottleneck to total computer system performance. The memory-processor

performance gap is increasing as time progresses, only making the performance

bottleneck worse [9].

Intelligent memory systems represent one architectural feature that shows

promise in overcoming the performance bottleneck associated with memory ac-

cesses. Any intelligent memory system builds computational ability into the

memory system. Intelligent memory systems fall into one of two categories: ei-

ther they migrate computational power into the DRAM system, or they migrate

DRAM into the main processor [2].

Several intelligent memory systems have already been proposed, and their

performance characteristics explored. The Active Pages [19] and DIVA [8] ar-

chitectures represent two intelligent memory system architectures that take the

former approach of migrating computational power into the DRAM system. The

IRAM architecture [25] represents an intelligent memory system architecture that

takes the latter approach of migrating DRAM into the processor. These archi-

tectures have shown, through simulation, to perform up to 1000 times faster on

some benchmarks.
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Despite impressive simulation studies, none of these proposed intelligent mem-

ory system architectures have gained popular support. One reason may be that

the integration of logic and DRAM onto a single silicon die has proven to be

difficult and expensive. There has already been one intelligent memory system

proposed that does not require the integration of logic and DRAM onto a single

silicon die. The User-Level Memory Thread (ULMT) architecture builds addi-

tional computational power into the memory controller. However, the ULMT

architecture is not explicitly controlled by the application running in the proces-

sor, and is used specifically to aid in prefetching. Despite this inflexibility, the

ULMT architecture has shown, in simulations, to provide up to a 58% speedup

for some applications.

This thesis presents a new intelligent memory system architecture named the

Memory Arithmetic Unit and Interface (MAUI) architecture. The MAUI archi-

tecture combines traits from the Active Pages, DIVA, and ULMT architectures

to create a new computational model. Like the Active Pages and DIVA archi-

tectures, the MAUI architecture migrates computational power into the memory

system, and the MAUI hardware is explicitly controlled by the application run-

ning in the host processor. Like the ULMT architecture, but unlike the Active

Pages and DIVA architectures, the MAUI architecture does not require logic

and DRAM to be integrated onto a single silicon die. The MAUI architecture

integrates additional computational power onto the same chip as the memory

controller. The MAUI architecture is split into to separate parts: the Memory

Arithmetic Unit (MAU) and the Memory Arithmetic Unit Interface (MAUI). The

MAU performs the actual arithmetic performed by the MAUI architecture, while

the MAUI coordinates the data flow through the MAUI architecture.
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Because the MAU is located on the same chip as the memory controller, it

has a higher bandwidth, lower latency connection to memory. Because of this

more efficient connection to memory, memory-bound operations can be performed

more quickly by the MAUI hardware than by the processor. Additionally, because

the MAUI hardware is a separate processing element from the processor, further

application speedup is possible by exploiting parallelism.

5.1 Summary of Results

For the purpose of testing the performance of the MAUI architecture, the Sim-

pleScalar v4.0 simulator was modified to include a MAUI enhanced memory sys-

tem. Then, three benchmarks to test the MAUI enhanced memory system were

created. The first two benchmarks, MAUI-one and MAUI-two, are “artificial,”

in that they do not represent real-world applications and were designed only

to determine what instances the MAUI hardware performs well. Simulations of

MAUI-one and MAUI-two have shown that the performance of the MAUI hard-

ware increases as the memory system’s performance increases, the problem size

increases, and the processor speed decreases. Simulations of MAUI-one have

shown that the MAUI hardware can perform a single vector operation up to

103% faster than the processor, and simulations of MAUI-two have shown that

by using the MAUI hardware and the host processor in parallel, applications can

run about 80% faster than by using the processor alone.

The final benchmark, Stream, is a well accepted benchmark used to test to-

tal memory system performance. Originally written by John D. McCalpin [16],

Stream performs four vector operations on three extremely large arrays. Perform-

ing three of Stream’s vector operations using the MAUI hardware resulted in a
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121% speedup compared to the unoptimized version in simulations. Because the

MAUI optimization for Stream exploited both the fact that the MAUI performs

vector operations faster than the processor, as well as some parallelism, Stream

performed better than what was predicted from the MAUI-one and MAUI-two

simulations.

The application speedups found when using the MAUI hardware arise because

the MAUI can more efficiently stream through memory. This is because the

MAUI pipelines to memory more effectively, making better utilization of the

memory’s available bandwidth. Referring back to Table 4.1, you can see that the

processor’s load/store queue has only eight entries and that there are only sixteen

reservation stations. That means that, during the any of the loops in all three

benchmarks, at most eight loads are are waiting for responses from the memory

system. Because the cache line is thirty-two bytes, and each integer is four bytes,

each cache line comprises of eight integers. That means that when the processor

is waiting for loads to return from the memory system, it is probably waiting

on half of a cache line from two separate sources. That means the pipeline to

memory the processor uses is only two cache-lines deep. The pipeline the MAUI

hardware sets up is three cache lines deep. The deeper pipeline allows the MAUI

hardware to more efficiently pipeline to memory.

Further application speedups could be expected in a multiprogrammed com-

puter system. For instance, assume that a computer system is running three

separate applications that, without using the MAUI-hardware, take the same

amount of time to complete. If two of the applications are memory-bound and

the third is not, total running time could be reduced to 1/3 of the original run-

ning time. A 300% increase in total system performance can be realized because,
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as indicated by the simulations of MAUI-one, MAUI-two, and Stream, the first

two memory-bound applications could run about 100% faster on the MAUI hard-

ware. Then, the final application could be executed in parallel with the first two

memory-bound applications. An illustration showing how the MAUI architec-

ture could increase total system performance by 300% on a multiprogrammed

computer system is shown in Figure 5.1.

5.2 Suggestions for Further Research

The thesis concludes by suggesting three major directions for further research

concerning the MAUI architecture. The first direction for further research is to

expand the MAUI hardware. The second research direction is to determine for

which applications the MAUI hardware would be most useful. The final direction

for further research is to expand the software support for the MAUI hardware.

Currently, the MAU and the MAUI represent an extremely limited vector

processor. One advantage of this limitation is that, because the data accesses of

the operations the MAUI hardware are simple, cache coherence is simple. Also,

vector operations represent a well understood computational model, already im-

plemented in architectures such as the MMX and Altivec SIMD architectures.

However, because of the MAUI architecture’s limitations,the types of operations

that the MAUI can perform are severely limited. Also, because the MAUI ar-

chitecture supports only a single vector-type operation at a time and requires

that all instructions come from the processor, all data dependent control flow is

controlled by the processor. One direction of future work would be to make the

MAUI architecture a more general purpose vector processor.

By making the MAUI hardware a more general purpose vector processor,
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Figure 5.1: Illustration of how the MAUI architecture could increase total system

performance by up to 300% on a multiprogrammed computer system. In this

example, Program 1 and 2 are both memory-bound programs that take the same

amount of time to complete as Program 3 when executed by the processor, but

each take half that time when executed by the MAUI architecture.
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many more types of memory-bound operations could be off-loaded to the MAUI

hardware. For instance, pointer chasing represents one memory bound compu-

tation that the MAUI currently cannot perform. If the MAUI hardware were

able to fetch and execute instructions from memory, pointer chasing may rep-

resent one type of operation the MAUI hardware could perform more efficiently

than the processor. However, by creating a general purpose vector processor in

the memory system, cache coherence between the main processor and the MAUI

hardware becomes much more complex. The additional flexibility provided by

using a general purpose vector processor in the MAUI architecture is another

area that could stand further research.

The second direction of further research would be into what applications the

MAUI hardware would be most useful in. For instance, operating systems are

now designed assuming that copying large sections of memory is a time intensive

task, and so those operations are avoided. However, the MAUI hardware not only

speeds up these block copies, but also provides a separate computational engine to

perform them, freeing the processor to perform other tasks. The availability of a

MAUI enhanced memory system may significantly change the way that operating

systems are designed and implemented.

The final suggested direction for further research is to expand the software

support for the MAUI hardware. Expanding the software support for the MAUI

hardware could encompass developing a MAUI aware compiler and a MAUI aware

multi-tasking Operating System. Expanding the software support for the MAUI

architecture is a logical extension of research in determining the kinds of ap-

plications for which the MAUI architecture would be most useful. Using this

knowledge, the compiler and Operating System could then efficiently allocate
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processes among the MAUI hardware and the processor.
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Appendix A: The MAUI Architecture Simulator

Appendix A contains the code written to simulate the MAUI architecture

within SimpleScalar v4.0’s MASE simulator.

A.1 MAUI.H

/*

* maui.h - simulates the MAUI addition to a memory controller/DRAM

* system. This is the header for the processor side of the

* simulated MAUI hardware.

*

* this file is being contributed to the SimpleScalar tool suite

* written by Todd M. Austin as part of the Multiscalar Research

* Project.

*

* Justin Teller

* Dept of Electrical & Computer Engineering

* University of Maryland, College Park

* All Rights Reserved

*

* This software, should it be distributed, is distributed with

* *ABSOLUTELY NO SUPPORT* and *NO WARRANTY*. Permission is given to

* modify this code as long as this notice is not removed.

*/
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/*

* April 2004

*/

#ifndef MAUI_H

#define MAUI_H

#define MAUI_UNDEF -1

#define MAUI_ADDI 0

#define MAUI_ADD 1

#define MAUI_ST_RA 2

#define MAUI_ST_RA_RB 3

#define MAUI_ST_RB 4

#define MAUI_ST_RC 5

#define MAUI_ST_RC_I 6

#define MAUI_ST_SIZE 7

#define MAUI_ST_SIZE_I 8

#define MAUI_MUL 9

#define MAUI_MULI 10

#define MAUI_FP_ADD 11

#define MAUI_FP_ADDI 12

#define MAUI_FP_MUL 13

#define MAUI_FP_MULI 14

#define MAUI_RID 100

typedef struct _q_node {
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unsigned long d1, d2;

int type;

unsigned int lat;

struct _q_node *next;

} maui_q_node;

typedef struct _maui_q {

maui_q_node *head, *tail;

int size;

} maui_q;

typedef struct _maui_ROB_info {

int type;

long immed, rs, rt;

} maui_ROB;

typedef struct _maui_reg_file {

/* ra and rb are the source registers */

md_addr_t ra;

md_addr_t rb;

/* rc is the destination register */

md_addr_t rc;

long size;

} maui_regs;

void maui_init();
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/* additional coommands */

int

maui_check_tlb(unsigned long a);

void

maui_proc_side_update();

void

maui_insert_wq(md_addr_t ra, md_addr_t rb, int biu_type,

unsigned int lat);

#endif

A.2 MAUI.C

/*

* maui.c - simulates the MAUI addition to a memory controller/DRAM

* system. This is actually the processor side to the MAUI hardware.

*

* this file is being contributed to the SimpleScalar tool suite

* written by Todd M. Austin as part of the Multiscalar Research

* Project.

*

* Justin Teller

* Dept of Electrical & Computer Engineering

* University of Maryland, College Park

* All Rights Reserved
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*

* This software, should it be distributed, is distributed with

* *ABSOLUTELY NO SUPPORT* and *NO WARRANTY*. Permission is given to

* modify this code as long as this notice is not removed.

*/

/*

* April 2004

*/

#ifndef MAUI_C

#define MAUI_C

#include "mase.h"

#include "maui2.h"

#include "mem-maui.h"

maui_regs in_proc_maui;

maui_q proc_maui_q;

void

maui_init(){

proc_maui_q.head = NULL;

proc_maui_q.tail = NULL;

proc_maui_q.size = 0;

in_proc_maui.ra = in_proc_maui.rb = in_proc_maui.rc = 0;
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in_proc_maui.size = 0;

mem_maui_init();

}

int

maui_check_tlb(unsigned long a){

mem_status_t result;

int lat;

/* we need to find the *real* address by passing it through the

TLB*/

if(dtlb){

result =

cache_access(dtlb, Read, (md_addr_t)a,

NULL, 1, sim_cycle,

NULL, NULL, RID_DTLB_HACK, NULL);

if(result.status == MEM_KNOWN) lat = result.lat;

else lat = 10;

/* right now, I’m not truly emulating a TLB miss.

* Instead, I am just printing this and then I’ll add

* it to the total at the end

*/

if(lat > 1) printf("We have a TLB miss! lat = %d\n", lat);
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/* else printf("No TLB miss.\n");*/

} else lat = 0;

/* return(lat); */

return(0);

}

void

maui_insert_wq(md_addr_t ra, md_addr_t rb, int biu_type,

unsigned int lat){

maui_q_node *new;

new = malloc(sizeof(maui_q));

if(new == NULL)

panic("AHHH! Couldn’t allocate memory for waiting q");

new->d1 = ra;

new->d2 = rb;

new->type = biu_type;

/* Lat is +1 because the update will be called after this call in

the same cycle*/

new->lat = lat + 1;

new->next = NULL;

proc_maui_q.size++;

/* printf("Size = %d\n", proc_maui_q.size);*/

83



if(proc_maui_q.head == NULL){ /*this happens if this is the first

on the queue*/

proc_maui_q.head = new;

proc_maui_q.tail = new;

} else {

/* this happens every other time */

proc_maui_q.tail->next = new;

proc_maui_q.tail = new;

}

}

#endif

A.3 MAUI2.H

/*

* maui2.h- simulates the MAUI addition to a memory controller/DRAM

* system. This is the header for the processor side of the

* simulated MAUI hardware.

*

* this file is being contributed to the SimpleScalar tool suite

* written by Todd M. Austin as part of the Multiscalar Research

* Project.

*

* Justin Teller

* Dept of Electrical & Computer Engineering

* University of Maryland, College Park

* All Rights Reserved
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*

* This software, should it be distributed, is distributed with

* *ABSOLUTELY NO SUPPORT* and *NO WARRANTY*. Permission is given to

* modify this code as long as this notice is not removed.

*/

/*

* April 2004

*/

#ifndef MAUI2_H

#define MAUI2_H

#include "maui.h"

void

add_maui_biu(unsigned long ra, unsigned long rb, int type);

int

try_biu_ins(int type, unsigned long d1, unsigned long d2);

void

maui_drain_wq();

void

maui_ex(int type, long rs, long rt, long imm);
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#endif

A.4 MAUI2.C

/*

* maui2.c- simulates the MAUI addition to a memory controller/DRAM

* system. This is actually for the processor side of the

* simulated MAUI hardware. As opposed to maui.c, this file

* has access to the memory system, and so implements that

* part of the processor side of the MAUI architecture.

*

* this file is being contributed to the SimpleScalar tool suite

* written by Todd M. Austin as part of the Multiscalar Research

* Project.

*

* Justin Teller

* Dept of Electrical & Computer Engineering

* University of Maryland, College Park

* All Rights Reserved

*

* This software, should it be distributed, is distributed with

* *ABSOLUTELY NO SUPPORT* and *NO WARRANTY*. Permission is given to

* modify this code as long as this notice is not removed.

*/

/*
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* April 2004

*/

#ifndef MAUI2_C

#define MAUI2_C

#include "mem-system.h"

#include "maui.h"

#include "mase.h"

#include "maui2.h"

extern biu_t biu;

extern tick_t sim_cycle;

extern maui_regs in_proc_maui;

extern maui_q proc_maui_q;

extern struct mem_t *mem;

void

execute_addi(unsigned long ra) {

int i;

int src, dst;

for(i=0; i < in_proc_maui.size/sizeof(int); i++){

mem_access(mem, Read, (in_proc_maui.ra + (i*sizeof(int))),

&src, sizeof(int));

dst = src + ra;
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mem_access(mem, Write, (in_proc_maui.rc + (i*sizeof(int))),

&dst, sizeof(int));

}

}

void

execute_add() {

int i;

int src1, src2, dst;

for(i=0; i<(in_proc_maui.size/sizeof(int)); i++){

/* fprintf(stderr, "MAUI:\tResult should be: %d\n",

(in_proc_maui.ra + in_proc_maui.rb));

*/

mem_access(mem, Read, (in_proc_maui.ra + (i*sizeof(int))),

&src1, sizeof(int));

mem_access(mem, Read, (in_proc_maui.rb + (i*sizeof(int))),

&src2, sizeof(int));

dst = src1 + src2;

mem_access(mem, Write, (in_proc_maui.rc + (i*sizeof(int))),

&dst, sizeof(int));

}

}

void

execute_mul(){
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int i;

int src1, src2, dst;

for(i=0; i<(in_proc_maui.size/sizeof(int)); i++){

mem_access(mem, Read, (in_proc_maui.ra + (i*sizeof(int))),

&src1, sizeof(int));

mem_access(mem, Read, (in_proc_maui.rb + (i*sizeof(int))),

&src2, sizeof(int));

dst = src1 * src2;

mem_access(mem, Write, (in_proc_maui.rc + (i*sizeof(int))),

&dst, sizeof(int));

}

}

void

execute_muli(unsigned long ra) {

int i;

int src, dst;

for(i=0; i < in_proc_maui.size/sizeof(int); i++){

mem_access(mem, Read, (in_proc_maui.ra + (i*sizeof(int))),

&src, sizeof(int));

dst = src * ra;

mem_access(mem, Write, (in_proc_maui.rc + (i*sizeof(int))),

&dst, sizeof(int));

}

}
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void

execute_fadd() {

int i;

double src1, src2, dst;

for(i=0; i < in_proc_maui.size/sizeof(int); i++){

mem_access(mem, Read, (in_proc_maui.ra + (i*sizeof(double))),

&src1, sizeof(double));

mem_access(mem, Read, (in_proc_maui.rb + (i*sizeof(double))),

&src2, sizeof(double));

dst = src1 + src2;

mem_access(mem, Write, (in_proc_maui.rc + (i*sizeof(double))),

&dst, sizeof(double));

}

}

void

execute_faddi(double ra) {

int i;

double src1, dst;

printf("Executing an faddi with immediate = %g\n", ra);

for(i=0; i < in_proc_maui.size/sizeof(int); i++){

mem_access(mem, Read, (in_proc_maui.ra + (i*sizeof(double))),

&src1, sizeof(double));
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dst = src1 + ra;

mem_access(mem, Write, (in_proc_maui.rc + (i*sizeof(double))),

&dst, sizeof(double));

}

}

void

execute_fmul() {

int i;

double src1, src2, dst;

for(i=0; i < in_proc_maui.size/sizeof(int); i++){

mem_access(mem, Read, (in_proc_maui.ra + (i*sizeof(double))),

&src1, sizeof(double));

mem_access(mem, Read, (in_proc_maui.rb + (i*sizeof(double))),

&src2, sizeof(double));

dst = src1 * src2;

mem_access(mem, Write, (in_proc_maui.rc + (i*sizeof(double))),

&dst, sizeof(double));

}

}

void

execute_fmuli(double ra) {

int i;

double src1, dst;
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for(i=0; i < in_proc_maui.size/sizeof(int); i++){

mem_access(mem, Read, (in_proc_maui.ra + (i*sizeof(double))),

&src1, sizeof(double));

dst = src1 * ra;

mem_access(mem, Write, (in_proc_maui.rc + (i*sizeof(double))),

&dst, sizeof(double));

}

}

void

maui_ex(int type, long rs, long rt, long imm){

/*printf("Here with type %d\n", type);*/

switch(type){

case MAUI_UNDEF:

return;

break;

case MAUI_ADDI:

execute_addi(rs);

break;

case MAUI_ADD:

execute_add();

break;
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case MAUI_ST_RA:

in_proc_maui.ra = rs;

break;

case MAUI_ST_RA_RB:

in_proc_maui.ra = rs;

in_proc_maui.rb = rt;

break;

case MAUI_ST_RB:

in_proc_maui.rb = rs;

break;

case MAUI_ST_RC:

in_proc_maui.rc = rs;

break;

case MAUI_ST_RC_I:

in_proc_maui.rc = imm;

break;

case MAUI_ST_SIZE:

in_proc_maui.size = rs;

break;

case MAUI_ST_SIZE_I:

in_proc_maui.size = imm;

break;

case MAUI_MUL:

execute_mul();

break;

case MAUI_MULI:

execute_muli(rs);
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break;

case MAUI_FP_ADD:

execute_fadd();

break;

case MAUI_FP_ADDI:

execute_faddi(rs);

break;

case MAUI_FP_MUL:

execute_fmul();

break;

case MAUI_FP_MULI:

execute_fmuli(rs);

break;

default:

panic("Incorrect MAUI code in execute!!");

break;

}

}

void

add_maui_biu(unsigned long ra, unsigned long rb, int type) {

int sid;

int biu_type;

unsigned int lat1, lat2, lat3;

/*printf("Maui instr at %lld\n", sim_cycle);*/

lat1 = lat2 = lat3 = 0;
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/* Possible fix:

* Taken out the tlb checks because it was messing up the

* order in which commands are sent to memory.

* TODO: Make the TLB checks happen and not mess up order.

*/

/* FIXED

* The cache flush latencies don’t matter, because they occur

* before (on the same clock period) as the command is put on the

* BIU.

*/

switch(type) {

case MAUI_ADDI:

biu_type = MAUI_ADDI_BIU;

break;

case MAUI_ADD:

biu_type = MAUI_ADD_BIU;

break;

case MAUI_ST_RA:

biu_type = MAUI_LD_A_BIU;

break;

case MAUI_ST_RA_RB:

biu_type = MAUI_LD_AB_BIU;

break;
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case MAUI_ST_RB:

biu_type = MAUI_LD_B_BIU;

break;

case MAUI_ST_RC:

case MAUI_ST_RC_I:

biu_type = MAUI_LD_C_BIU;

break;

case MAUI_ST_SIZE:

case MAUI_ST_SIZE_I:

biu_type = MAUI_LD_SIZE_BIU;

break;

case MAUI_MUL:

biu_type = MAUI_MUL_BIU;

break;

case MAUI_MULI:

biu_type = MAUI_MULI_BIU;

break;

case MAUI_FP_ADD:

biu_type = MAUI_FADD_BIU;

break;

case MAUI_FP_ADDI:

biu_type = MAUI_FADDI_BIU;

break;
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case MAUI_FP_MUL:

biu_type = MAUI_FMUL_BIU;

break;

case MAUI_FP_MULI:

biu_type = MAUI_FADDI_BIU;

break;

default:

break;

}

sid = find_free_biu_slot(INVALID);

if(sid == INVALID){

/* can’t get a free slot. Put this on the MAUI queue */

/*printf("Putting something on the MAUI waiting queue.\n");*/

maui_insert_wq(ra, rb, biu_type, 0);

} else {

fill_biu_slot(sid, sim_cycle, MAUI_RID, ra,

biu_type, 0, NULL);

/* and for this one, we have to also put in rb */

biu.slot[sid].field2 = rb;

}

}

int

try_biu_ins(int type, unsigned long d1, unsigned long d2){

int sid;
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sid = find_free_biu_slot(0);

if(sid != INVALID){

fill_biu_slot(sid, sim_cycle, MAUI_RID, d1,

type, 0, NULL);

/* and for this one, we have to also put in rb */

biu.slot[sid].field2 = d2;

}

return(sid);

}

void

maui_print_biu(){

int i;

printf("\nBIU STATUS\nStatus\tRid\tType\n");

for(i=0;i<MAX_BUS_QUEUE_DEPTH;i++){

printf("%d\t%d\t%d\t%d\n\n", biu.slot[i].status,

biu.slot[i].rid, biu.slot[i].access_type,

biu.slot[i].address);

}

}
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void

maui_drain_wq(){

int sid;

maui_q_node *ptr;

if(proc_maui_q.size == 0)

return;

while((ptr = proc_maui_q.head) != NULL){

sid = find_free_biu_slot(INVALID);

if(sid == INVALID){

/*printf("Trying to drain WQ, had to stop.\n");*/

/*maui_print_biu();*/

break;

} else {

fill_biu_slot(sid, sim_cycle, MAUI_RID, ptr->d1,

ptr->type, 0, NULL);

/* and for this one, we have to also put in rb */

biu.slot[sid].field2 = ptr->d2;

/*printf("Put one maui instr onto the BIU (wq)\n");*/

}

proc_maui_q.head = ptr->next;

free(ptr);

proc_maui_q.size--;
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}

if(proc_maui_q.head == NULL){

proc_maui_q.tail = NULL;

proc_maui_q.size = 0;

}

}

#endif

A.5 MEM MAUI.H

/*

* mem-maui.h - simulates the MAUI addition to a memory

* controller/DRAM system. This is the header for the memory system

* side of the MAUI architecture. The memory system side is where

* the timing of the MAUI instructions are determined.

* this file is being contributed to the SimpleScalar tool suite

* written by Todd M. Austin as part of the Multiscalar Research

* Project.

*

* Justin Teller

* Dept of Electrical & Computer Engineering

* University of Maryland, College Park

* All Rights Reserved

*

* This software, should it be distributed, is distributed with

* *ABSOLUTELY NO SUPPORT* and *NO WARRANTY*. Permission is given to
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* modify this code as long as this notice is not removed.

*/

/*

* April 2004

*/

#ifndef MEM_MAUI_H

#define MEM_MAUI_H

/* The next few attributes are places that can change to

behavior of the MAUI */

/* This is the number of outstanding reads that are allowed per

register */

#define MAUI_READ_MAX 1

#define MAUI_ISSUE_PER_CYCLE 3

/* This is the integer add latency, or the number of mem system cycles

it takes the MAUI to perform an add */

#define MAUI_ADD_LAT 1

#define MAUI_MUL_LAT 2 /* integer multiplication latency */

#define MAUI_FADD_LAT 2 /* floating point addition latency */

#define MAUI_FMUL_LAT 4 /* floating point mult. latency */

/* this is the size of the cache that the MAUI uses,

in wordline bytes */

#define MAUI_CACHE_SIZE 10 /* ex: 100 = 3200 bytes */
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/* These are definitions of the maui commands */

#define MEM_MAUI_ADD 1

#define MEM_MAUI_ADDI 2

#define MEM_MAUI_MUL 3

#define MEM_MAUI_MULI 4

#define MEM_MAUI_FADD 5

#define MEM_MAUI_FADDI 6

#define MEM_MAUI_FMUL 7

#define MEM_MAUI_FMULI 8

#define M_WORDLINE_SIZE 32

#define M_INTEGER_SIZE 4

#define M_DOUBLE_SIZE 8

#define M_FLOAT_SIZE 4

#define MAUI_RA_SID 1000

#define MAUI_RB_SID 1001

#define MAUI_RC_SID 1002

/* These are the statistic types */

#define M_LOCK 1

#define M_CACHE 2

102



typedef struct _wqnode_t {

int type;

unsigned long d1, d2;

struct _wqnode_t *next;

} wqnode_t;

typedef struct _maui_arch_wq {

wqnode_t *head, *tail;

int size;

} maui_arch_wq_t;

typedef struct _maui_arch {

/* these are registers that hold the addresses */

unsigned long ra, rb, rc, size;

/* this is the number of finished writes */

unsigned long finished;

/* this is the queue of waiting MAUI instructions */

maui_arch_wq_t waiting;

/*

cmd holds the type of command we’re doing right now

(ADD, ADDI, etc)

*/

int cmd;

/*
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this is a boolean telling us of the maui is occupied

with a command

*/

int busy;

} maui_arch_t;

/* this is cache that the maui has. In here, we only need to keep

track of addresses */

typedef struct _maui_cache {

unsigned int addresses[MAUI_CACHE_SIZE];

int next;

} maui_cache_t;

void

maui_biu_address(int next_slot_id);

void

mem_maui_init();

void

sink_maui_instr(int biu_sid);

void

update_mem_maui();

void

maui_mem_trans(int sid, int trans_type, unsigned int address);
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void

add_to_mem_wq(int biu_sid);

int

maui_add_transaction(tick_t now, int transaction_type, int slot_id);

int

maui_lock_chk(int next_slot_id);

int

maui_in_cache_slot(int sid);

int

maui_in_cache(unsigned int address);

void

maui_add_cache(unsigned int address);

int

maui_finished();

void

maui_stat(int type);

void

print_maui_stat();
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#endif

A.6 MEM MAUI.C

/*

* mem-maui.c - simulates the MAUI addition to a memory

* controller/DRAM system. This is the implementation of the memory

* system side of the MAUI architecture. This is where the timing of

* MAUI operations are determined.

* this file is being contributed to the SimpleScalar tool suite

* written by Todd M. Austin as part of the Multiscalar Research

* Project.

*

* Justin Teller

* Dept of Electrical & Computer Engineering

* University of Maryland, College Park

* All Rights Reserved

*

* This software, should it be distributed, is distributed with

* *ABSOLUTELY NO SUPPORT* and *NO WARRANTY*. Permission is given to

* modify this code as long as this notice is not removed.

*/

/*

* April 2004

*/
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#include "mem-system.h"

#include "mem-maui.h"

extern biu_t biu;

extern dram_system_t dram_system;

maui_arch_t mem_maui;

maui_cache_t maui_cache;

/* these variables are used to keep track of the state of the

oustanding MAUI instrs */

static int sent_ra = 0;

static int sent_rb = 0;

static int recieved_ra = 0;

static int recieved_rb = 0;

static int sent_rc = 0;

static int recieved_rc = 0;

static int lat_remain = -1;

static long long int last_time;

void

mem_maui_init(){

int i;
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mem_maui.ra = mem_maui.rb = mem_maui.rc = mem_maui.size = 0;

mem_maui.waiting.size = 0;

mem_maui.waiting.head = mem_maui.waiting.tail = NULL;

mem_maui.busy = 0;

for(i=0;i<MAUI_CACHE_SIZE;i++){

maui_cache.addresses[i] = 0;

}

maui_cache.next = 0;

sent_ra = sent_rb = sent_rc = 0;

recieved_ra = recieved_rb = recieved_rc = 0;

}

void

sink_maui_instr(int biu_sid){

unsigned int d1, d2;

d2 = biu.slot[biu_sid].field2;

d1 = biu.slot[biu_sid].address;

/* we want to make sure that we sink the instr only if

the maui isn’t already busy and if there aren’t any

instrs already waiting. */

if((mem_maui.busy == 0) && (mem_maui.waiting.size == 0)){
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/* printf("We’re in here, and we should be.\n"); */

switch(biu.slot[biu_sid].access_type){

case MAUI_LD_A_BIU:

mem_maui.ra = d1;

printf("Ra = %d\n", d1);

break;

case MAUI_LD_B_BIU:

mem_maui.rb = d1;

break;

case MAUI_LD_AB_BIU:

mem_maui.ra = d1;

mem_maui.rb = d2;

break;

case MAUI_LD_C_BIU:

mem_maui.rc = d1;

/*printf("Rc = %d\n", d1);*/

break;

case MAUI_LD_SIZE_BIU:

mem_maui.size = d1;

break;

case MAUI_ADD_BIU:

mem_maui.busy = 1;

mem_maui.cmd = MEM_MAUI_ADD;

sent_ra = sent_rb = sent_rc = 0;

printf("We’re starting a MAUI ADD instr!, %f\n",

dram_system.current_dram_time *

dram_system.config.cpu2mem_clock_ratio);
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if(mem_maui.size == 0) mem_maui.busy = 0;

break;

case MAUI_ADDI_BIU:

mem_maui.busy = 1;

/* no need to actually pass this data */

/* because all of this is just for timing */

/* mem_maui.imm_v = d1; */

mem_maui.cmd = MEM_MAUI_ADDI;

sent_ra = sent_rb = sent_rc = 0;

printf("Starting a MAUI ADDI instr!, %f\n",

dram_system.current_dram_time *

dram_system.config.cpu2mem_clock_ratio);

if(mem_maui.size == 0) mem_maui.busy = 0;

break;

case MAUI_MUL_BIU:

mem_maui.busy = 1;

mem_maui.cmd = MEM_MAUI_MUL;

sent_ra = sent_rb = sent_rc = 0;

printf("Starting a MUL instr\n");

if(mem_maui.size == 0) mem_maui.busy = 0;

break;

case MAUI_MULI_BIU:

mem_maui.busy = 1;

mem_maui.cmd = MEM_MAUI_MULI;

sent_ra = sent_rb = sent_rc = 0;

printf("Starting a MULI instr!, %f\n",
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dram_system.current_dram_time *

dram_system.config.cpu2mem_clock_ratio);

if(mem_maui.size == 0) mem_maui.busy = 0;

break;

case MAUI_FADD_BIU:

mem_maui.busy = 1;

mem_maui.cmd = MEM_MAUI_FADD;

sent_ra = sent_rb = sent_rc = 0;

if(mem_maui.size == 0) mem_maui.busy = 0;

break;

case MAUI_FADDI_BIU:

mem_maui.busy = 1;

mem_maui.cmd = MEM_MAUI_FADDI;

sent_ra = sent_rb = sent_rc = 0;

if(mem_maui.size == 0) mem_maui.busy = 0;

break;

case MAUI_FMUL_BIU :

mem_maui.busy = 1;

mem_maui.cmd = MEM_MAUI_FMUL;

sent_ra = sent_rb = sent_rc = 0;

if(mem_maui.size == 0) mem_maui.busy = 0;

break;

case MAUI_FMULI_BIU:

mem_maui.busy = 1;

mem_maui.cmd = MEM_MAUI_FMULI;

sent_ra = sent_rb = sent_rc = 0;

if(mem_maui.size == 0) mem_maui.busy = 0;
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break;

default:

panic("Uh oh. Somewhow an invalid MAUI command made it to

\"sinking\"");

break;

}

}

else add_to_mem_wq(biu_sid);

release_biu_slot(biu_sid);

}

void

print_status_mem_maui(){

printf("Status of the MAUI in memory:\n");

printf("RA\t\tRB\t\tRC\t\tSize\n");

printf("%ld\t%ld\t%ld\t%ld\n", mem_maui.ra, mem_maui.rb,

mem_maui.rc, mem_maui.size);

printf("-----------------------------------------------\n");

printf("\tSentRA\tSentRb\tSentRc\n");

printf("\t%d\t%d\t%d\n", sent_ra, sent_rb, sent_rc);

printf("\trecievedRA\trecievedRB\n");

printf("\t%d\t\t%d\n\n\n", recieved_ra, recieved_rb);

}

/* this function sinks maui instrs one at a time

until we hit one that makes the maui busy */

void
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maui_sink_waiting(){

wqnode_t *tmp;

while((mem_maui.busy == 0) && (mem_maui.waiting.size > 0)){

if(mem_maui.waiting.head == NULL)

panic("The in mem maui waiting queue is messed up");

switch(mem_maui.waiting.head->type){

case MAUI_LD_A_BIU:

mem_maui.ra = mem_maui.waiting.head->d1;

break;

case MAUI_LD_B_BIU:

mem_maui.rb = mem_maui.waiting.head->d1;

break;

case MAUI_LD_AB_BIU:

mem_maui.ra = mem_maui.waiting.head->d1;

mem_maui.rb = mem_maui.waiting.head->d2;

break;

case MAUI_LD_C_BIU:

mem_maui.rc = mem_maui.waiting.head->d1;

break;

case MAUI_LD_SIZE_BIU:

mem_maui.size = mem_maui.waiting.head->d1;

break;

case MAUI_ADD_BIU:

mem_maui.busy = 1;

mem_maui.cmd = MEM_MAUI_ADD;
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sent_ra = sent_rb = sent_rc = 0;

printf("We’re starting a MAUI ADD instr! (wq), %f\n",

dram_system.current_dram_time *

dram_system.config.cpu2mem_clock_ratio);

if(mem_maui.size == 0) mem_maui.busy = 0;

break;

case MAUI_ADDI_BIU:

mem_maui.busy = 1;

/* no need to actually pass this data */

/* because all of this is just for timing */

/* mem_maui.imm_v = d1; */

mem_maui.cmd = MEM_MAUI_ADDI;

sent_ra = sent_rc = 0;

printf("We’re starting a MAUI ADDI instr! (wq), %f\n",

dram_system.current_dram_time *

dram_system.config.cpu2mem_clock_ratio);

if(mem_maui.size == 0) mem_maui.busy = 0;

break;

case MAUI_MUL_BIU:

mem_maui.busy = 1;

mem_maui.cmd = MEM_MAUI_MUL;

sent_ra = sent_rb = sent_rc = 0;

printf("We’re starting a MAUI MUL instr! (wq), %f\n",

dram_system.current_dram_time *

dram_system.config.cpu2mem_clock_ratio);

if(mem_maui.size == 0) mem_maui.busy = 0;

break;
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case MAUI_MULI_BIU:

mem_maui.busy = 1;

mem_maui.cmd = MEM_MAUI_MULI;

sent_ra = sent_rb = sent_rc = 0;

printf("We’re starting a MAUI MULI instr! (wq), %f\n",

dram_system.current_dram_time *

dram_system.config.cpu2mem_clock_ratio);

if(mem_maui.size == 0) mem_maui.busy = 0;

break;

case MAUI_FADD_BIU:

mem_maui.busy = 1;

mem_maui.cmd = MEM_MAUI_FADD;

sent_ra = sent_rb = sent_rc = 0;

if(mem_maui.size == 0) mem_maui.busy = 0;

break;

case MAUI_FADDI_BIU:

mem_maui.busy = 1;

mem_maui.cmd = MEM_MAUI_FADDI;

sent_ra = sent_rb = sent_rc = 0;

if(mem_maui.size == 0) mem_maui.busy = 0;

break;

case MAUI_FMUL_BIU :

mem_maui.busy = 1;

mem_maui.cmd = MEM_MAUI_FMUL;

sent_ra = sent_rb = sent_rc = 0;

if(mem_maui.size == 0) mem_maui.busy = 0;

break;
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case MAUI_FMULI_BIU:

mem_maui.busy = 1;

mem_maui.cmd = MEM_MAUI_FMULI;

sent_ra = sent_rb = sent_rc = 0;

if(mem_maui.size == 0) mem_maui.busy = 0;

break;

default:

panic("Uh oh. Somewhow an invalid MAUI command made it to

the wq");

break;

}

tmp = mem_maui.waiting.head->next;

free(mem_maui.waiting.head);

mem_maui.waiting.head = tmp;

mem_maui.waiting.size--;

}

}

/*****************************************

* This function is called once every DRAM

* cycle. It puts reads and writes on the transaction

* queue, and takes the responses off.

*****************************************/

void

update_mem_maui(){
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int t_id;

int num_trans;

int old;

/* If the maui isn’t currently busy, there may be a maui instr

waiting on the queue */

if(mem_maui.busy == 0) {

if(mem_maui.waiting.size > 0)

maui_sink_waiting();

return;

}

num_trans = 0;

while(num_trans < MAUI_ISSUE_PER_CYCLE){

/* printf("Here\n");*/

/* if(dram_system.current_dram_time > 500000)

print_status_mem_maui();*/

/* if it’s not busy, there’s nothing to do */

if(mem_maui.busy == 0) return;

old = num_trans;

switch(mem_maui.cmd){

case MEM_MAUI_ADD:

if((sent_ra == 0) && (sent_rb == 0)){

/* here we’re just starting */
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recieved_ra = recieved_rb = recieved_rc = 0;

mem_maui.finished = 0;

}

if((sent_rc < recieved_rb) && (sent_rc < recieved_ra)){

/* since we’re in here, we should issue a write to rc */

/* but only after the add latency is finished */

if(lat_remain == -1){

/* Here we know that we’re just starting the add instr */

lat_remain = MAUI_ADD_LAT - 1; /* minus 1 because it takes

one cycle to get here

after recieving something

from ra or rb */

/* check to make sure lat remain doesn’t go negative */

if(lat_remain < 0) lat_remain = 0;

}

if(lat_remain == 0){

t_id = maui_add_transaction(dram_system.current_dram_time,

MEMORY_WRITE_COMMAND,

MAUI_RC_SID);

if(t_id == INVALID){

/* do nothing, because transaction queue is full */

/*printf("Full Transaction Queue\n"); */

return;

}
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maui_add_cache(mem_maui.rc + (sent_rc * M_WORDLINE_SIZE));

sent_rc++;

num_trans++;

mem_maui.finished = mem_maui.finished + (M_WORDLINE_SIZE);

/*printf("Sent a total of %d writes.\n", sent_rc);*/

lat_remain = -1;

if(mem_maui.finished >= mem_maui.size){

printf("We finished the MAUI ADD instr!, %f\n",

dram_system.current_dram_time*

dram_system.config.cpu2mem_clock_ratio);

mem_maui.busy = 0;

return;

}

} else if(last_time != dram_system.current_dram_time){

last_time = dram_system.current_dram_time;

lat_remain--;

}

}

/* Don’t let ra get ahead of rb */

if(sent_ra <= sent_rb){

if(((sent_ra - recieved_ra) <= MAUI_READ_MAX) &&

(sent_ra * (M_WORDLINE_SIZE) < mem_maui.size)){

/* since we’re in here, we should issue a read for ra */

t_id = maui_add_transaction(dram_system.current_dram_time,

MEMORY_READ_COMMAND,
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MAUI_RA_SID);

if(t_id == INVALID){

/* do nothing, because transaction queue is full

printf("Full Transaction Queue\n"); */

return;

}

sent_ra++;

num_trans++;

/* printf("Sent out a read for ra. %d\n", sent_ra);*/

}

}

if(((sent_rb - recieved_rb) <= MAUI_READ_MAX) &&

(sent_rb * (M_WORDLINE_SIZE) < mem_maui.size)){

/* since we’re in here, we should issue a read for rb */

t_id = maui_add_transaction(dram_system.current_dram_time,

MEMORY_READ_COMMAND, MAUI_RB_SID);

if(t_id == INVALID){

/* do nothing, because transaction queue is full

printf("Full Transaction Queue\n"); */

return;

}

sent_rb++;

num_trans++;

/*printf("Sent out a read for rb. %d\n", sent_rb);*/
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}

break;

/* Next, do the ADDI function */

case MEM_MAUI_ADDI:

if((sent_ra == 0) && (sent_rb == 0)){

/* here we’re just starting */

recieved_ra = recieved_rb = recieved_rc = 0;

mem_maui.finished = 0;

}

/* this is very similar to the add, except we only fetch from

ra */

if(sent_rc < recieved_ra){

/* since we’re in here, we should issue a write to rc */

/* but only after the add latency is finished */

if(lat_remain == -1){

/* Here we know that we’re just starting the add instr */

lat_remain = MAUI_ADD_LAT - 1; /* minus 1 because it takes

one

cycle to get here after

recieving something from

ra or rb */

/* check to make sure lat remain doesn’t go negative */

if(lat_remain < 0) lat_remain = 0;
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}

if(lat_remain == 0){

t_id = maui_add_transaction(dram_system.current_dram_time,

MEMORY_WRITE_COMMAND,

MAUI_RC_SID);

if(t_id == INVALID){

/* do nothing, because transaction queue is full */

/*printf("Full Transaction Queue\n"); */

return;

}

maui_add_cache(mem_maui.rc + (sent_rc * M_WORDLINE_SIZE));

sent_rc++;

num_trans++;

mem_maui.finished = mem_maui.finished + (M_WORDLINE_SIZE);

/*printf("Sent a total of %d writes.\n", sent_rc);*/

lat_remain = -1;

if(mem_maui.finished >= mem_maui.size){

printf("We finished the MAUI ADDI instr!, %f\n",

dram_system.current_dram_time *

dram_system.config.cpu2mem_clock_ratio);

mem_maui.busy = 0;

return;

}

} else if(last_time != dram_system.current_dram_time){

last_time = dram_system.current_dram_time;

lat_remain--;

122



}

}

if(((sent_ra - recieved_ra) <= MAUI_READ_MAX) &&

(sent_ra * (M_WORDLINE_SIZE) < mem_maui.size)){

/* since we’re in here, we should issue a read for ra */

t_id = maui_add_transaction(dram_system.current_dram_time,

MEMORY_READ_COMMAND, MAUI_RA_SID);

if(t_id == INVALID){

/* do nothing, because transaction queue is full

printf("Full Transaction Queue\n"); */

return;

}

sent_ra++;

num_trans++;

/* printf("Sent out a read for ra. %d\n", sent_ra);*/

}

break;

case MEM_MAUI_FMULI:

if((sent_ra == 0) && (sent_rb == 0)){

/* here we’re just starting */

recieved_ra = recieved_rb = recieved_rc = 0;

mem_maui.finished = 0;
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}

if(sent_rc < recieved_ra){

/* since we’re in here, we should issue a write to rc */

/* but only after the add latency is finished */

if(lat_remain == -1){

/* Here we know that we’re just starting the add instr */

lat_remain = MAUI_FMUL_LAT - 1; /* minus 1 because it takes

one

cycle to get here after

recieving something from

ra or rb */

}

if(lat_remain == 0){

t_id = maui_add_transaction(dram_system.current_dram_time,

MEMORY_WRITE_COMMAND,

MAUI_RC_SID);

if(t_id == INVALID){

/* do nothing, because transaction queue is full */

/*printf("Full Transaction Queue\n"); */

return;

}

maui_add_cache(mem_maui.rc + (sent_rc * M_WORDLINE_SIZE));

sent_rc++;

num_trans++;

mem_maui.finished = mem_maui.finished + (M_WORDLINE_SIZE);
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/*printf("Sent a total of %d writes.\n", sent_rc);*/

lat_remain = -1;

if(mem_maui.finished >= mem_maui.size){

printf("We finished the MAUI FMULI instr!, %f\n",

dram_system.current_dram_time *

dram_system.config.cpu2mem_clock_ratio);

mem_maui.busy = 0;

return;

}

} else if(last_time != dram_system.current_dram_time){

last_time = dram_system.current_dram_time;

lat_remain--;

}

}

if(((sent_ra - recieved_ra) <= MAUI_READ_MAX) &&

(sent_ra * (M_WORDLINE_SIZE) < mem_maui.size)){

/* since we’re in here, we should issue a read for ra */

t_id = maui_add_transaction(dram_system.current_dram_time,

MEMORY_READ_COMMAND, MAUI_RA_SID);

if(t_id == INVALID){

/* do nothing, because transaction queue is full

printf("Full Transaction Queue\n"); */

return;

}
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sent_ra++;

num_trans++;

/* printf("Sent out a read for ra. %d\n", sent_ra);*/

}

break;

case MEM_MAUI_MULI:

if((sent_ra == 0) && (sent_rb == 0)){

/* here we’re just starting */

recieved_ra = recieved_rb = recieved_rc = 0;

mem_maui.finished = 0;

}

/* this is very similar to the add, except we only fetch

from ra */

if(sent_rc < recieved_ra){

/* since we’re in here, we should issue a write to rc */

/* but only after the add latency is finished */

if(lat_remain == -1){

/* Here we know that we’re just starting the add instr */

lat_remain = MAUI_MUL_LAT - 1; /*minus 1 because it takes a

cycle to get here after

recieving something from

ra or rb */

/* check to make sure lat remain doesn’t go negative */
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if(lat_remain < 0) lat_remain = 0;

}

if(lat_remain == 0){

t_id = maui_add_transaction(dram_system.current_dram_time,

MEMORY_WRITE_COMMAND,

MAUI_RC_SID);

if(t_id == INVALID){

/* do nothing, because transaction queue is full */

/*printf("Full Transaction Queue\n"); */

return;

}

maui_add_cache(mem_maui.rc + (sent_rc * M_WORDLINE_SIZE));

sent_rc++;

num_trans++;

mem_maui.finished = mem_maui.finished + (M_WORDLINE_SIZE);

/*printf("Sent a total of %d writes.\n", sent_rc);*/

lat_remain = -1;

if(mem_maui.finished >= mem_maui.size){

printf("We finished the MAUI MULI instr!, %f\n",

dram_system.current_dram_time *

dram_system.config.cpu2mem_clock_ratio);

mem_maui.busy = 0;

return;

}
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} else if(last_time != dram_system.current_dram_time){

last_time = dram_system.current_dram_time;

lat_remain--;

}

}

if(((sent_ra - recieved_ra) <= MAUI_READ_MAX) &&

(sent_ra * (M_WORDLINE_SIZE) < mem_maui.size)){

/* since we’re in here, we should issue a read for ra */

t_id = maui_add_transaction(dram_system.current_dram_time,

MEMORY_READ_COMMAND, MAUI_RA_SID);

if(t_id == INVALID){

/* do nothing, because transaction queue is full

printf("Full Transaction Queue\n"); */

return;

}

sent_ra++;

num_trans++;

/* printf("Sent out a read for ra. %d\n", sent_ra);*/

}

break;
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case MEM_MAUI_FADDI:

if((sent_ra == 0) && (sent_rb == 0)){

/* here we’re just starting */

recieved_ra = recieved_rb = recieved_rc = 0;

mem_maui.finished = 0;

}

if(sent_rc < recieved_ra){

/* since we’re in here, we should issue a write to rc */

/* but only after the add latency is finished */

if(lat_remain == -1){

/* Here we know that we’re just starting the add instr */

lat_remain = MAUI_FADD_LAT - 1; /*minus 1 because it takes

a cycle to get here after

recieving something from

ra or rb */

}

if(lat_remain == 0){

t_id = maui_add_transaction(dram_system.current_dram_time,

MEMORY_WRITE_COMMAND,

MAUI_RC_SID);

if(t_id == INVALID){

/* do nothing, because transaction queue is full */

/*printf("Full Transaction Queue\n"); */

return;

}
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maui_add_cache(mem_maui.rc + (sent_rc * M_WORDLINE_SIZE));

sent_rc++;

num_trans++;

mem_maui.finished = mem_maui.finished + (M_WORDLINE_SIZE);

/*printf("Sent a total of %d writes.\n", sent_rc);*/

lat_remain = -1;

if(mem_maui.finished >= mem_maui.size){

printf("We finished the MAUI FADDI instr!, %f\n",

dram_system.current_dram_time *

dram_system.config.cpu2mem_clock_ratio);

mem_maui.busy = 0;

return;

}

} else if(last_time != dram_system.current_dram_time){

last_time = dram_system.current_dram_time;

lat_remain--;

}

}

if(((sent_ra - recieved_ra) <= MAUI_READ_MAX) &&

(sent_ra * (M_WORDLINE_SIZE) < mem_maui.size)){

/* since we’re in here, we should issue a read for ra */

t_id = maui_add_transaction(dram_system.current_dram_time,

MEMORY_READ_COMMAND, MAUI_RA_SID);
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if(t_id == INVALID){

/* do nothing, because transaction queue is full

printf("Full Transaction Queue\n"); */

return;

}

sent_ra++;

num_trans++;

/* printf("Sent out a read for ra. %d\n", sent_ra);*/

}

break;

case MEM_MAUI_FMUL:

if((sent_ra == 0) && (sent_rb == 0)){

/* here we’re just starting */

recieved_ra = recieved_rb = recieved_rc = 0;

mem_maui.finished = 0;

}

if((sent_rc < recieved_rb) && (sent_rc < recieved_ra)){

/* since we’re in here, we should issue a write to rc */

/* but only after the add latency is finished */

if(lat_remain == -1){

/* Here we know that we’re just starting the add instr */
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lat_remain = MAUI_FMUL_LAT - 1; /* minus 1 because it takes

a cycle to get here after

recieving something from

ra or rb */

}

if(lat_remain == 0){

t_id = maui_add_transaction(dram_system.current_dram_time,

MEMORY_WRITE_COMMAND,

MAUI_RC_SID);

if(t_id == INVALID){

/* do nothing, because transaction queue is full */

/*printf("Full Transaction Queue\n"); */

return;

}

maui_add_cache(mem_maui.rc + (sent_rc * M_WORDLINE_SIZE));

sent_rc++;

num_trans++;

mem_maui.finished = mem_maui.finished + (M_WORDLINE_SIZE);

/*printf("Sent a total of %d writes.\n", sent_rc);*/

lat_remain = -1;

if(mem_maui.finished >= mem_maui.size){

printf("We finished the MAUI FMUL instr!, %f\n",

dram_system.current_dram_time *

dram_system.config.cpu2mem_clock_ratio);

mem_maui.busy = 0;
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return;

}

} else if(last_time != dram_system.current_dram_time){

last_time = dram_system.current_dram_time;

lat_remain--;

}

}

/* Don’t let ra get ahead of rb */

if(sent_ra <= sent_rb){

if(((sent_ra - recieved_ra) <= MAUI_READ_MAX) &&

(sent_ra * (M_WORDLINE_SIZE) < mem_maui.size)){

/* since we’re in here, we should issue a read for ra */

t_id = maui_add_transaction(dram_system.current_dram_time,

MEMORY_READ_COMMAND,

MAUI_RA_SID);

if(t_id == INVALID){

/* do nothing, because transaction queue is full

printf("Full Transaction Queue\n"); */

return;

}

sent_ra++;

num_trans++;

/* printf("Sent out a read for ra. %d\n", sent_ra);*/
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}

}

if(((sent_rb - recieved_rb) <= MAUI_READ_MAX) &&

(sent_rb * (M_WORDLINE_SIZE) < mem_maui.size)){

/* since we’re in here, we should issue a read for rb */

t_id = maui_add_transaction(dram_system.current_dram_time,

MEMORY_READ_COMMAND, MAUI_RB_SID);

if(t_id == INVALID){

/* do nothing, because transaction queue is full

printf("Full Transaction Queue\n"); */

return;

}

sent_rb++;

num_trans++;

/*printf("Sent out a read for rb. %d\n", sent_rb);*/

}

break;

case MEM_MAUI_MUL:

if((sent_ra == 0) && (sent_rb == 0)){

/* here we’re just starting */

recieved_ra = recieved_rb = recieved_rc = 0;

mem_maui.finished = 0;

}
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if((sent_rc < recieved_rb) && (sent_rc < recieved_ra)){

/* since we’re in here, we should issue a write to rc */

/* but only after the add latency is finished */

if(lat_remain == -1){

/* Here we know that we’re just starting the add instr */

lat_remain = MAUI_MUL_LAT - 1; /* minus 1 because it takes

a cycle to get here after

recieving something from

ra or rb */

}

if(lat_remain == 0){

t_id = maui_add_transaction(dram_system.current_dram_time,

MEMORY_WRITE_COMMAND,

MAUI_RC_SID);

if(t_id == INVALID){

/* do nothing, because transaction queue is full */

/*printf("Full Transaction Queue\n"); */

return;

}

maui_add_cache(mem_maui.rc + (sent_rc * M_WORDLINE_SIZE));

sent_rc++;

num_trans++;

mem_maui.finished = mem_maui.finished + (M_WORDLINE_SIZE);

/*printf("Sent a total of %d writes.\n", sent_rc);*/
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lat_remain = -1;

if(mem_maui.finished >= mem_maui.size){

printf("We finished the MAUI MUL instr!, %f\n",

dram_system.current_dram_time *

dram_system.config.cpu2mem_clock_ratio);

mem_maui.busy = 0;

return;

}

} else if(last_time != dram_system.current_dram_time){

last_time = dram_system.current_dram_time;

lat_remain--;

}

}

/* Don’t let ra get ahead of rb */

if(sent_ra <= sent_rb){

if(((sent_ra - recieved_ra) <= MAUI_READ_MAX) &&

(sent_ra * (M_WORDLINE_SIZE) < mem_maui.size)){

/* since we’re in here, we should issue a read for ra */

t_id = maui_add_transaction(dram_system.current_dram_time,

MEMORY_READ_COMMAND,

MAUI_RA_SID);

if(t_id == INVALID){

/* do nothing, because transaction queue is full

printf("Full Transaction Queue\n"); */
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return;

}

sent_ra++;

num_trans++;

/* printf("Sent out a read for ra. %d\n", sent_ra);*/

}

}

if(((sent_rb - recieved_rb) <= MAUI_READ_MAX) &&

(sent_rb * (M_WORDLINE_SIZE) < mem_maui.size)){

/* since we’re in here, we should issue a read for rb */

t_id = maui_add_transaction(dram_system.current_dram_time,

MEMORY_READ_COMMAND, MAUI_RB_SID);

if(t_id == INVALID){

/* do nothing, because transaction queue is full

printf("Full Transaction Queue\n"); */

return;

}

sent_rb++;

num_trans++;

/*printf("Sent out a read for rb. %d\n", sent_rb);*/

}

break;
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case MEM_MAUI_FADD:

if((sent_ra == 0) && (sent_rb == 0)){

/* here we’re just starting */

recieved_ra = recieved_rb = recieved_rc = 0;

mem_maui.finished = 0;

}

if((sent_rc < recieved_rb) && (sent_rc < recieved_ra)){

/* since we’re in here, we should issue a write to rc */

/* but only after the add latency is finished */

if(lat_remain == -1){

/* Here we know that we’re just starting the add instr */

lat_remain = MAUI_FADD_LAT - 1; /* minus 1 because it takes

a cycle to get here after

recieving something from

ra or rb */

}

if(lat_remain == 0){

t_id = maui_add_transaction(dram_system.current_dram_time,

MEMORY_WRITE_COMMAND,

MAUI_RC_SID);

if(t_id == INVALID){

/* do nothing, because transaction queue is full */

/*printf("Full Transaction Queue\n"); */

return;
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}

maui_add_cache(mem_maui.rc + (sent_rc * M_WORDLINE_SIZE));

sent_rc++;

num_trans++;

mem_maui.finished = mem_maui.finished + (M_WORDLINE_SIZE);

/*printf("Sent a total of %d writes.\n", sent_rc);*/

lat_remain = -1;

if(mem_maui.finished >= mem_maui.size){

printf("We finished the MAUI FADD instr!, %f\n",

dram_system.current_dram_time *

dram_system.config.cpu2mem_clock_ratio);

mem_maui.busy = 0;

return;

}

} else if(last_time != dram_system.current_dram_time){

last_time = dram_system.current_dram_time;

lat_remain--;

}

}

/* Don’t let ra get ahead of rb */

if(sent_ra <= sent_rb){

if(((sent_ra - recieved_ra) <= MAUI_READ_MAX) &&

(sent_ra * (M_WORDLINE_SIZE) < mem_maui.size)){

/* since we’re in here, we should issue a read for ra */
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t_id = maui_add_transaction(dram_system.current_dram_time,

MEMORY_READ_COMMAND,

MAUI_RA_SID);

if(t_id == INVALID){

/* do nothing, because transaction queue is full

printf("Full Transaction Queue\n"); */

return;

}

sent_ra++;

num_trans++;

/* printf("Sent out a read for ra. %d\n", sent_ra);*/

}

}

if(((sent_rb - recieved_rb) <= MAUI_READ_MAX) &&

(sent_rb * (M_WORDLINE_SIZE) < mem_maui.size)){

/* since we’re in here, we should issue a read for rb */

t_id = maui_add_transaction(dram_system.current_dram_time,

MEMORY_READ_COMMAND, MAUI_RB_SID);

if(t_id == INVALID){

/* do nothing, because transaction queue is full

printf("Full Transaction Queue\n"); */

return;

}
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sent_rb++;

num_trans++;

/*printf("Sent out a read for rb. %d\n", sent_rb);*/

}

break;

default:

panic("Tried to do the timing for an unimplemented MAUI instr");

}

if(num_trans == old){

/* if we get here, it means that there is nothing that

the maui can do */

/* printf("we’re exiting, because there’s nothing we can do\n");*/

return;

}

}

}

int

maui_finished()

{

#if 0

if(dram_system.current_dram_time > 500000){

printf("we’re in here though ... \n");
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}

#endif

if((sent_rc + 10 < recieved_rc) || (mem_maui.busy > 0))

return(0);

else

return(1);

}

void

maui_mem_trans(int sid, int trans_type, unsigned int address){

if(trans_type != MEMORY_WRITE_COMMAND){

if(sid == MAUI_RA_SID){

recieved_ra++;

maui_add_cache(address);

/*printf("Got a read from ra back! %d\n", recieved_ra);*/

} else if(sid == MAUI_RB_SID){

recieved_rb++;

maui_add_cache(address);

/*printf("Got a read from rb back! %d\n", recieved_rb);*/

}

} else if(sid == MAUI_RC_SID){

/*printf("Got a write back from rc!%d\n", recieved_rc + 1);*/

recieved_rc++;

}

}
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int

maui_add_transaction(tick_t now, int transaction_type, int slot_id){

transaction_t *this_t;

unsigned int address;

addresses_t this_a;

int transaction_id;

switch(slot_id){

case MAUI_RA_SID:

address = mem_maui.ra + (sent_ra * M_WORDLINE_SIZE);

if(maui_in_cache(address)){

/* Since we’re in here, we don’t have to look

all the way out in the memory */

recieved_ra++;

/* just need to return anything except invalid */

return(1);

}

break;

case MAUI_RB_SID:

address = mem_maui.rb + (sent_rb * M_WORDLINE_SIZE);

if(maui_in_cache(address)){

/* Since we’re in here, we don’t have to look all the way out

to the memory */

recieved_rb++;

/* Just need to return anything except invalid */
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return(1);

}

break;

case MAUI_RC_SID:

address = mem_maui.rc + (sent_rc * M_WORDLINE_SIZE);

break;

default:

panic("MAUI tried to add a transaction from an invalid SID");

return(INVALID);

break;

}

if(dram_system.transaction_queue.transaction_count >=

MAX_TRANSACTION_QUEUE_DEPTH){

return INVALID;

}

transaction_id = dram_system.transaction_queue.transaction_count;

this_t = &(dram_system.transaction_queue.entry[transaction_id]);

/* in order queue. Grab next entry */

this_t->status = VALID;

this_t->arrival_time = now;

this_t->completion_time = 0;

this_t->transaction_type = transaction_type;

this_t->slot_id = slot_id;

this_t->critical_word_ready = FALSE;

this_t->critical_word_ready_time= 0;
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this_t->physical_address = address;

this_a.physical_address = address;

convert_address(dram_system.config.mapping_policy, &(this_a));

this_t->chan_id = this_a.chan_id;

this_t->next_c = transaction2commands(now,

dram_system.transaction_queue.transaction_count,

transaction_type,

&(this_a));

dram_system.transaction_queue.transaction_count++;

return(transaction_id);

}

void

add_to_mem_wq(int biu_sid){

wqnode_t *new;

new = malloc(sizeof(wqnode_t));

if(new == NULL)

panic("AHHH! Couldn’t allocate memory for mem_maui queue!");

new->d1 = biu.slot[biu_sid].address;

new->d2 = biu.slot[biu_sid].field2;

new->type = biu.slot[biu_sid].access_type;

new->next = NULL;

mem_maui.waiting.size++;
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/* this first one takes care of the case

where this will be the first on the queue */

if(mem_maui.waiting.head == NULL){

mem_maui.waiting.head = new;

mem_maui.waiting.tail = new;

} else {

mem_maui.waiting.tail->next = new;

mem_maui.waiting.tail = new;

}

}

/* This function checks those instructions which are on the

waiting queue to

see if they conflict with the new address */

int

mlock_chk_waiting(int next_slot_id){

unsigned long loc_ra, loc_rb, loc_rc, loc_size;

int loc_busy;

wqnode_t *tmp;

/* Start out with current values */

loc_ra = mem_maui.ra;

loc_rb = mem_maui.rb;
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loc_rc = mem_maui.rc;

loc_size = mem_maui.size;

loc_busy = 0;

tmp = mem_maui.waiting.head;

/* Here we traverse the list of waiting MAUI instrs, updating the

local ra, rb, etc

and when we get an "action" instruction like ADD, ADDI, etc, then

check the lock.

if there is a violation, return 0. If we get to the end of the

function, that

means that the next_slot_id biu slot does not conflict with

what’s waiting in the

waiting queue, so we return a 1 */

while(tmp != NULL){

switch(tmp->type){

case MAUI_LD_A_BIU:

loc_ra = tmp->d1;

break;

case MAUI_LD_B_BIU:

loc_rb = tmp->d1;

break;

case MAUI_LD_AB_BIU:

loc_ra = tmp->d1;

loc_rb = tmp->d2;

break;

case MAUI_LD_C_BIU:
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loc_rc = tmp->d1;

break;

case MAUI_LD_SIZE_BIU:

loc_size = tmp->d1;

break;

/* The following four cases have the same thing happen*/

/* Notice that this is very similar to the main lock check

function */

case MAUI_ADD_BIU:

case MAUI_MUL_BIU:

case MAUI_FADD_BIU:

case MAUI_FMUL_BIU:

if((biu.slot[next_slot_id].address >= loc_rb) &&

(biu.slot[next_slot_id].address <= loc_rb + loc_size) &&

(biu.slot[next_slot_id].access_type == MEMORY_WRITE_COMMAND)){

/* since we’re in here, it means that the address falls

within RB which hasn’t

been read yet, and the command is a write. This violates

the "read" lock

placed on RB for any of the commands which look at both

ra and rb

*/

return(0);

}

/* these cases all fall through to the next block of code
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as do the next four cases */

case MAUI_ADDI_BIU:

case MAUI_MULI_BIU:

case MAUI_FADDI_BIU:

case MAUI_FMULI_BIU:

if((biu.slot[next_slot_id].address >= loc_ra) &&

(biu.slot[next_slot_id].address <= loc_ra + loc_size) &&

(biu.slot[next_slot_id].access_type ==

MEMORY_WRITE_COMMAND)){

/* since we’re in here, it means that the address falls in

RA which hasn’t been

read yet, and the command is a write. This violates the

read lock placed

on RA for the any command. */

return(0);

}

if((biu.slot[next_slot_id].address >= loc_rc) &&

(biu.slot[next_slot_id].address <= loc_rc + loc_size)){

/* since we’re in here, it means that the address falls in RC

which hasn’t been

written to yet. ANY command (read or write) violates this

write lock placed

on RC for the any command. */

return(0);

}

break;
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default:

panic("In waiting queue lock chk, major problems");

break;

}

tmp = tmp->next;

}

return(1);

}

int

maui_lock_chk(int next_slot_id){

if(mem_maui.busy == 0 && mem_maui.waiting.size == 0){

return(1);

} else if (mem_maui.busy == 1){

switch(mem_maui.cmd) {

case MEM_MAUI_ADD:

case MEM_MAUI_MUL:

case MEM_MAUI_FMUL:

case MEM_MAUI_FADD:

if((biu.slot[next_slot_id].address >= mem_maui.rb + (

sent_rb * M_WORDLINE_SIZE)) &&

(biu.slot[next_slot_id].address <= mem_maui.rb +

mem_maui.size) &&

(biu.slot[next_slot_id].access_type ==
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MEMORY_WRITE_COMMAND)){

/* since we’re in here, it means that the address falls

within RB which hasn’t

been read yet, and the command is a write. This violates

the "read" lock

placed on RB for any of the commands which look at both

ra and rb

*/

/*printf("locked on rb\n");*/

return(0);

}

/* The above look at A and C too, so it just falls through

into this case */

default:

if((biu.slot[next_slot_id].address >= mem_maui.ra +

(sent_ra * M_WORDLINE_SIZE)) &&

(biu.slot[next_slot_id].address <= mem_maui.ra +

mem_maui.size) &&

(biu.slot[next_slot_id].access_type ==

MEMORY_WRITE_COMMAND)){

/* since we’re in here, it means that the address falls in RA

which hasn’t been

read yet, and the command is a write. This violates the

read lock placed

on RA for the any command. */

return(0);
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}

if((biu.slot[next_slot_id].address >= mem_maui.rc + sent_rc *

M_WORDLINE_SIZE) &&

(biu.slot[next_slot_id].address <= mem_maui.rc +

mem_maui.size)){

/* since we’re in here, it means that the address falls in

RC which hasn’t been

written to yet. ANY command (read or write) violates

this write lock placed on RC for the any command. */

/*printf("locked on rc\n");*/

return(0);

}

break;

}

}

/* now we have to check the waiting queue to see if "future" this

address conflicts with

any of those */

return(mlock_chk_waiting(next_slot_id));

}

int

maui_in_cache_slot(int sid){

return(maui_in_cache(biu.slot[sid].address));

}
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int

maui_in_cache(unsigned int address){

int i;

/* We’re not using the cache, so we always return 0, for

no match, however I do assume that the cache exists

elsewhere in the code, so I don’t want to rip it out

entirely, so this is the workaround */

return(0);

for(i=0;i<MAUI_CACHE_SIZE;i++){

if((maui_cache.addresses[i] <= address) &&

((maui_cache.addresses[i] + M_WORDLINE_SIZE) >= address)){

/* then we have it in the cache! */

/*printf("FOUND SOMETHING IN MAUI CACHE!!\n"); */

maui_stat(M_CACHE);

return(1);

}

}

/* if we’re here, there was no match */

return(0);

}

void

maui_add_cache(unsigned int address){
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/* if it’s already in there, there’s nothing to do! */

if(maui_in_cache(address) == 1)

return;

maui_cache.addresses[maui_cache.next] = address;

maui_cache.next = (maui_cache.next + 1) % MAUI_CACHE_SIZE;

}

static long maui_lock_num = 0;

static long maui_cache_hit = 0;

void

maui_stat(int type){

switch(type){

case M_LOCK:

maui_lock_num++;

/*if(maui_lock_num > 500000 ){

printf("We’re in trouble\n");

}*/

break;

case M_CACHE:

maui_cache_hit++;

break;

default:

printf("Warning, undefined maui stat!\n");

break;
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}

}

void

print_maui_stat(){

fprintf(stderr,"\n");

fprintf(stderr,"Maui cache hits:\t%ld\n", maui_cache_hit);

fprintf(stderr,"Maui lock hits:\t\t%ld\n", maui_lock_num);

}

void

maui_biu_address(int next_slot_id){

printf("Locked on address: %d\n", biu.slot[next_slot_id].address);

}

A.7 Excerpt from MASE-EXEC.C pertaining to the MAUI architec-

ture

/* executes the instruction */

void

execute_inst(struct ROB_entry *re)

{

md_inst_t inst = re->IR;

enum md_opcode op = re->op;

union val_union mem_value;

union val_union reg_value;
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int annotate;

#ifdef TARGET_ARM

union val_union psr_value;

int setPSR = 0;

psr_value.w = PSR;

#endif

/* assume there is no branch */

/* execution of syscalls are delayed until commit */

#define DECLARE_FAULT(FAULT) { re->fault = (FAULT); break; }

#define SYSCALL(INST) ;

/* execute the instruction of non oracle mode */

/* read_idep_list & set_odep_list */

switch (op)

{

#define DEFINST(OP,MSK,NAME,OPFORM,RES,FLAGS,O1,O2,O3,I1,I2,I3,I4)\

case OP: \

SYMCAT(OP,_IMPL); \

break;

#define DEFUOP(OP,NAME,OPFORM,RES,CLASS,O1,O2,O3,I1,I2,I3,I4) \

case OP: \

SYMCAT(OP,_IMPL); \

break;

#define DEFLINK(OP,MSK,NAME,MASK,SHIFT) \
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case OP: \

panic("attempted to execute a linking opcode");

#define CONNECT(OP)

#include "machine.def"

default:

fatal("Invalid operation");

}

/* Here is where the MAUI instructions are detected and then

placed on the ROB

Added 2004, Teller

*/

annotate = (int) (inst.a >> 16);

if((annotate > 0) && ((op == ADDU) || (op == ADDIU))) {

/* This is a MAUI command! */

/* in this stage, we’re not loading everything into the BIU

* just yet.

* We need to make sure that we’re sending these things to the

* memory

* system in program order for this to work out right. So,

* here we’re

* just modifying the ROB entry for this instruction to make

* sure the

* commit stage knows that this instruction is a MAUI instruction,

* and is also
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* able to figure out what the register values were when it was

* "executed."

*/

/* load the operands into the reorder buffer entry */

re->maui_info.immed = IMM;

re->maui_info.rs = GPR(RS);

re->maui_info.rt = GPR(RT);

switch(annotate){

case 1:

if(op != ADDU) panic("Improper use of MAUI add");

/* the regular MAUI ADD instr takes no arguments */

re->maui_info.type = MAUI_ADD;

break;

case 2:

if(op != ADDU) panic("Improper use of MAUI load");

/* MAUI ST RA, RB */

re->maui_info.type = MAUI_ST_RA_RB;

break;

case 3: /* We’re loading RB */

if(op != ADDU) panic("Improper use of MAUI load");

/* RB */
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re->maui_info.type = MAUI_ST_RB;

break;

case 4: /* We’re loading RC with some value */

if(op != ADDU) panic("Improper use of MAUI load");

/* Loading it from the register value */

re->maui_info.type = MAUI_ST_RC;

break;

case 5: /* We’re loading the size register with some value */

if(op == ADDIU){

/* Immediate */

re->maui_info.type = MAUI_ST_SIZE_I;

}else if(op == ADDU){

/* Loading it from RS */

re->maui_info.type = MAUI_ST_SIZE;

}

break;

case 6:

if(op != ADDU) panic("Inproper use of maui mul");

re->maui_info.type = MAUI_MUL;

break;

case 7:

if(op != ADDU) panic("Inproper use of maui muli");
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re->maui_info.type = MAUI_MULI;

break;

case 8:

if(op != ADDU) panic("Inproper use of maui fadd");

re->maui_info.type = MAUI_FP_ADD;

break;

case 9:

if(op != ADDU) panic("Inproper use of maui faddi");

re->maui_info.type = MAUI_FP_ADDI;

break;

case 10:

if(op != ADDU) panic("Inproper use of maui fmul");

re->maui_info.type = MAUI_FP_MUL;

break;

case 11:

if(op != ADDU) panic("Inproper use of maui fmuli");

re->maui_info.type = MAUI_FP_MULI;

break;

case 12:

if(op != ADDU)

panic("Improper use of maui addi");

re->maui_info.type = MAUI_ADDI;

break;

case 13:

if(op != ADDU) panic("Improper use of maui load");
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re->maui_info.type = MAUI_ST_RA;

break;

case 14:

break;

default:

re->maui_info.type = MAUI_UNDEF;

panic("Invalid annotate field for MAUI instruction.");

break;

}

maui_ex(re->maui_info.type, re->maui_info.rs,

re->maui_info.rt, re->maui_info.immed);

} else re->maui_info.type = MAUI_UNDEF; /* added so that

non-maui instrs aren’t effected */

/* End of added code for MAUI instructions

*

* The annotated instructions do go through the pipeline

* and are executed as regular ADDU and ADDUI instructions.

* However, their target register is (and should be)

* $0, so it doesn’t actually change the state of the

* system $.

*/

#ifdef TARGET_ARM
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/* set PSR reg into dep_list */

if (setPSR != 0)

set_odep_list(re, DPSR, psr_value, vt_word);

#endif

}

A.8 Excerpt from MASE-COMMIT.C pertaining to the MAUI ar-

chitecture

void

mase_commit(void)

{

int i; /* loop traversal variable */

int lat; /* latency of store */

int events; /* summary of events */

int is_write; /* set if instr is store */

int lsq_chk_error; /* set if checker occurs for LSQ entry */

int n_committed = 0; /* number of instrs committed */

int dlite_made_check = FALSE;

md_addr_t mem_addr = 0; /* address of memory operation */

int done = FALSE;

md_inst_t inst;

struct ROB_entry *re, *lsq;

inst = MD_NOP_INST;

re = lsq = NULL;
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/********************************************************

* MAUI function call to make sure the MAUI waiting *

* queue is drained before we try to put any other *

* instructions onto the BIU. *

* *

* Added JT 4-2004

********************************************************/

maui_drain_wq();

/* end MAUI code */

/* all values must be retired to the architected reg file in

program order */

while (!done && n_committed < commit_width)

{

/* default values */

events = 0;

done = TRUE;

is_write = FALSE;

lsq_chk_error = 0;

/* retire the oldest: either the head of the ROB or LSQ */

if (ROB_num > 0 && (LSQ_num == 0 || LSQ[LSQ_head].seq >

ROB[ROB_head].seq))

{

163



/* retire ROB entry */

re = &(ROB[ROB_head]);

/* is ROB entry complete? */

if (!re->completed) break;

/*****************************************************

* This the code to deal with MAUI instructions and *

* put the instruction into the BIU *

* *

* Added by Justin Teller, March 2004 *

*****************************************************/

/* check to make sure it is a MAUI instr ...*/

if(re->maui_info.type != MAUI_UNDEF){

switch(re->maui_info.type) {

/*the check TLB happens in the add_maui_biu func */

case MAUI_ADDI:

add_maui_biu(re->maui_info.rs,0,MAUI_ADDI);

break;

case MAUI_ADD:

add_maui_biu(0,0,MAUI_ADD);

break;

case MAUI_ST_RA:

/* maui_check_tlb(re->maui_info.immed);*/
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add_maui_biu(re->maui_info.rs,0,MAUI_ST_RA);

break;

case MAUI_ST_RA_RB:

/* maui_check_tlb(re->maui_info.rs);

maui_check_tlb(re->maui_info.rt); */

add_maui_biu(re->maui_info.rs, re->maui_info.rt,

MAUI_ST_RA_RB);

break;

case MAUI_ST_RB:

/* maui_check_tlb(re->maui_info.immed);*/

add_maui_biu(re->maui_info.rs, 0, MAUI_ST_RB);

break;

case MAUI_ST_RC:

/* maui_check_tlb(re->maui_info.rs);*/

add_maui_biu(re->maui_info.rs, 0, MAUI_ST_RC);

break;

case MAUI_ST_RC_I:

/* maui_check_tlb(re->maui_info.immed);*/

add_maui_biu(re->maui_info.rs, 0, MAUI_ST_RC);

break;

case MAUI_ST_SIZE:

add_maui_biu(re->maui_info.rs, 0, MAUI_ST_SIZE);

break;

case MAUI_ST_SIZE_I:

add_maui_biu(re->maui_info.immed, 0, MAUI_ST_SIZE);

break;
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case MAUI_MUL:

add_maui_biu(0,0,MAUI_MUL);

break;

case MAUI_MULI:

add_maui_biu(0,0,MAUI_MULI);

break;

case MAUI_FP_ADD:

add_maui_biu(0,0,MAUI_FP_ADD);

break;

case MAUI_FP_ADDI:

add_maui_biu(re->maui_info.rs,0,MAUI_FP_ADDI);

break;

case MAUI_FP_MUL:

add_maui_biu(0,0,MAUI_FP_MUL);

break;

case MAUI_FP_MULI:

add_maui_biu(re->maui_info.rs,0,MAUI_FP_MULI);

default:

panic("Tried to execute an unimplemented MAUI operation!!");

}

}

/****************************************************

* End of added code, Teller *

****************************************************/
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/* skip ISQ entry of NOP */

if (ISQ[ISQ_head].op == MD_NOP_OP)

{

. . . with the remainder of the mase commit function following.

A.9 Excerpt from MEM-INTERFACE.C pertaining to the MAUI ar-

chitecture

. . .

void dram_update_system(tick_t now) {

int sid,rid, access_type;

unsigned int address;

int latency; /* latency is in terms of CPU cycles */

tick_t start_time;

/* here we need to update the MAUI */

/* Added by Justin Teller March 24, 2004 */

if((bus_queue_status_check(now) == BUSY) || (maui_finished() == 0)){

update_dram_system(now);

}

/* End of added/modified code */

. . .
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A.10 Excerpt from MEM-SYSTEM.C pertaining to the MAUI archi-

tecture

. . .

#define MEMORY_ACCESS_TYPES_COUNT 6

/* 5 different ways of accessing memory */

#define MEMORY_UNKNOWN_COMMAND 0

#define MEMORY_IFETCH_COMMAND 1

#define MEMORY_WRITE_COMMAND 2

#define MEMORY_READ_COMMAND 3

#define MEMORY_DTLB_FROM_COMMIT_IGNORE 4

#define MEMORY_PREFETCH 5

#define AUTO_REFRESH_TRANSACTION 6

#define AUTO_PRECHARGE_TRANSACTION 7

/* more ways with the maui! -Justin Teller */

#define MAUI_LD_A_BIU 8

#define MAUI_LD_B_BIU 9

#define MAUI_LD_AB_BIU 10

#define MAUI_LD_C_BIU 11

#define MAUI_LD_SIZE_BIU 12

#define MAUI_ADD_BIU 13

#define MAUI_ADDI_BIU 14

#define MAUI_MUL_BIU 15

#define MAUI_MULI_BIU 21

#define MAUI_FADD_BIU 17

#define MAUI_FADDI_BIU 18

#define MAUI_FMUL_BIU 19
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#define MAUI_FMULI_BIU 20

/* end maui code JT */

. . .

A.11 Excerpts from MEM-DRAM.C pertaining to the MAUI archi-

tecture

Within the update base dram function . . .

dram_system.dram_controller[chan_id].rank[rank_id].

bank[bank_id].last_command = PRECHARGE;

}

}

}

}

/***********************************************

* MAUI Handling function *

* Added March 2004, JT *

***********************************************/

update_mem_maui();

/***********************************************

* End added code for MAUI *

***********************************************/

while(dram_system.current_dram_time <= dram_stop_time){

/* continue to simulate until time limit */

. . .
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/* If this is a refresh or auto precharge transaction,

just ignore it. Else... */

/* Begin added code for MAUI simulation */

if(dram_system.transaction_queue.entry[0].slot_id >= 1000){

/* this means that it’s a MAUI instr */

/* This updates the MAUI and lets it know that another

transaction is finished */

maui_mem_trans(dram_system.transaction_queue.entry[0].slot_id,

dram_system.transaction_queue.entry[0].transaction_type,

dram_system.transaction_queue.entry[0].physical_address);

} else {

/* End of added code -- J. Teller March, 2004 */

. . .

/* If command bus is idle, see if there is another request

* in BIU that needs to be serviced.

* We start by finding the request we want to service.

* Specifically, we want the slot_id of the request

* and either move it from VALID to SCHEDULED or from

* SCHEDULED to COMPLETED

*/

/* the next few lines implement the MAUI pulling stuff

off the BIU */

/* Added JT, March 2004 */

if(get_access_type(next_slot_id) >= MAUI_LD_A_BIU){

/* This next line is taken care of by the sink func call */
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/* set_biu_slot_status(next_slot_id, COMPLETED); */

sink_maui_instr(next_slot_id);

} else {

/* now, check to make sure that the maui hasn’t locked

that piece of memory */

if(maui_lock_chk(next_slot_id) == 1){

/* since it returned a 1, we’re OK! */

transaction_id =

add_transaction(dram_system.current_dram_time,

get_access_type(next_slot_id),

next_slot_id);

if(transaction_id != INVALID){

set_biu_slot_status(next_slot_id, SCHEDULED);

if(transaction_debug()){

fprintf(stderr,"Starting New Transaction\n");

print_transaction(dram_system.current_dram_time,

transaction_id);

}

} else if (transaction_debug()){

fprintf(stderr,"Transaction queue full.

Cannot start new transaction.\n");

}

}

} else {

/*printf("LOCKED!!\n"); */

/*maui_biu_address(next_slot_id);*/
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maui_stat(M_LOCK);

}

/* if the MAUI has locked a piece of memory, do nothing */

}

/* end of added/modified code, JT */

}

. . .
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Appendix B: Benchmarks

Appendix B contains both the MAUI optimized and unoptimized code for the

MAUI-one, MAUI-two, and Stream benchmarks used to test the performance of

the MAUI architecture.

B.1 The MAUI-one benchmark

B.1.1 Unoptimized version of MAUI-one

#include<stdio.h>

#define ARR_SIZE 100000

int main(int argc, char *argv[]){

int a[ARR_SIZE], b[ARR_SIZE], c[ARR_SIZE];

int i, size;

if(argc == 1)

size = 100;

else

size = atoi(argv[1]);

/* First initialize */

for(i=0;i<size;i++){

a[i] = b[i] = i;

}
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/* Now the compute */

for(i=0;i<size;i++){

c[i] = a[i] + b[i];

}

}

B.1.2 MAUI optimized version of MAUI-one

#include<stdio.h>

#define ARR_SIZE 100000

int main(int argc, char *argv[]){

int a[ARR_SIZE], b[ARR_SIZE], c[ARR_SIZE];

int i, size, insize;

if(argc == 1)

insize = 100;

else

insize = atoi(argv[1]);

size = insize*sizeof(int);

/* First initialize */

for(i=0;i<insize;i++){

a[i] = b[i] = i;

}

__asm__ ("ADDU/15:0(2) \t$0,%0,%1 \t#MAUI load ra, rb\n\t"
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"ADDU/15:0(4) \t$0,%2,$0 \t#MAUI load rc\n\t"

"ADDU/15:0(5) \t$0,%3,$0 \t#MAUI load size\n\t"

"ADDU/15:0(1) \t$0,$0,$0 \t#MAUI add\n\t"

: : "r"(a), "r"(b), "r"(c), "r"(size));

/* putting in a read on rc to make sure that the simulation doesn’t $

end until the maui instruction is finished */

i = c[insize - 1];

}

B.2 The MAUI-two benchmark

B.2.1 Unoptimized version of MAUI-two

#include<stdio.h>

#define ARR_SIZE 100000

int main(int argc, char *argv[]){

int a[ARR_SIZE], b[ARR_SIZE], c[ARR_SIZE];

int d[ARR_SIZE], e[ARR_SIZE], f[ARR_SIZE];

int i, size;

if(argc == 1)

size = 100;

else

size = atoi(argv[1]);
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/* Now the compute */

for(i=0;i<size;i++){

c[i] = a[i] + b[i];

f[i] = d[i] + e[i];

}

}

B.2.2 MAUI optimized version of MAUI-two

#include<stdio.h>

#define ARR_SIZE 100000

int main(int argc, char *argv[]){

int a[ARR_SIZE], b[ARR_SIZE], c[ARR_SIZE];

int d[ARR_SIZE], e[ARR_SIZE], f[ARR_SIZE];

int i, size, insize;

if(argc == 1)

insize = 100;

else

insize = atoi(argv[1]);

size = insize*sizeof(int);

__asm__ ("ADDU/15:0(2) \t$0,%0,%1 \t#MAUI load ra, rb\n\t"

"ADDU/15:0(4) \t$0,%2,$0 \t#MAUI load rc\n\t"

"ADDU/15:0(5) \t$0,%3,$0 \t#MAUI load size\n\t"
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"ADDU/15:0(1) \t$0,$0,$0 \t#MAUI add\n\t"

: : "r"(d), "r"(e), "r"(f), "r"(size));

for(i=0;i<insize;i++){

c[i] = a[i] + b[i];

}

/* putting in a read on rc to make sure that the simulation doesn’t$

end until the maui instruction is finished */

i = f[insize - 1];

}

B.3 The Stream benchmark

B.3.1 The unoptimized version of Stream

#include<stdio.h>

#define N 2000000

#define OFFSET 0

#define NTIMES 10

static int a[N + OFFSET];

static int b[N + OFFSET];

static int c[N + OFFSET];

int main(){

int j,k;
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int scalar;

scalar = 3;

printf("This uses %d Bytes of memory\n",

(3*N * sizeof(int)));

for(j=0;j<N;j++){

a[j] = 1;

b[j] = 2;

c[j] = 0;

}

for(k=0;k < NTIMES; k++){

printf("Starting the %d time\n",k);

for(j=0; j<N; j++){

c[j] = a[j];

}

for(j=0; j<N; j++){

b[j] = scalar * c[j];

}

for(j=0; j<N; j++){

c[j] = a[j] + b[j];

}

for(j=0; j<N; j++){

a[j] = b[j] + scalar*c[j];
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}

}

}

B.3.2 The MAUI optimized version of Stream

#include<stdio.h>

#define N 2000000

#define OFFSET 0

#define NTIMES 10

static int a[N + OFFSET];

static int b[N + OFFSET];

static int c[N + OFFSET];

void maui_add(void *dst, void *src1, void *src2, int size);

void maui_mul_scalar(void *dst, void *src, int scalar, int size);

void maui_copy(void *dst, void *src, int size);

int main(){

int j,k;

int scalar;

int size;

int test;

scalar = 3;

size = N * sizeof(int);
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printf("This uses %d Bytes of memory\n",

(3*N * sizeof(int)));

for(j=0;j<N;j++){

a[j] = 1;

b[j] = 2;

c[j] = 0;

}

for(k=0;k < NTIMES; k++){

printf("Starting the %d time\n", k);

maui_copy(c, a, size);

maui_mul_scalar(b, c, scalar, size);

maui_add(c, a, b, size);

for(j=0;j<N;j++)

a[j]=b[j]+scalar*c[j];

}
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}

void maui_add(void *dst, void *src1, void *src2, int size){

__asm__("ADDU/15:0(2) \t$0,%0,%1 \t#MAUI load ra, rb\n\t"

"ADDU/15:0(4) \t$0,%2,$0 \t#MAUI load rc \n\t"

"ADDU/15:0(5) \t$0,%3,$0 \t#MAUI load size\n\t"

"ADDU/15:0(1) \t$0,$0,$0 \t#MAUI add\n\t"

: : "r"(src1), "r"(src2), "r"(dst), "r"(size));

}

void maui_mul_scalar(void *dst, void *src, int scalar, int size){

__asm__("ADDU/15:0(13) \t$0,%0,$0 \t#MAUI load ra\n\t"

"ADDU/15:0(4) \t$0,%1,$0 \t#MAUI load rc \n\t"

"ADDU/15:0(5) \t$0,%2,$0 \t#MAUI load size\n\t"

"ADDU/15:0(7) \t$0,%3,$0 \t#MAUI addi\n\t"

: : "r"(src), "r"(dst), "r"(size), "r"(scalar));

}

void maui_copy(void *dst, void *src, int size){

__asm__("ADDU/15:0(13) \t$0,%0,$0 \t#MAUI load ra\n\t"

"ADDU/15:0(4) \t$0,%1,$0 \t#MAUI load rc \n\t"

"ADDU/15:0(5) \t$0,%2,$0 \t#MAUI load size\n\t"

"ADDU/15:0(12) \t$0,$0,$0 \t#MAUI addi\n\t"

: : "r"(src), "r"(dst), "r"(size));
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}
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Appendix C: All Simulation Results

Appendix C contains all the simulation results generated in testing the per-

formance characteristics of the MAUI architecture.

Figure C.1: Simulation results of MAUI-one when run with a 100 MHz SDRAM

memory system.
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Figure C.2: Simulation results of MAUI-one when run with a 133 MHz SDRAM

memory system.

Figure C.3: Simulation results of MAUI-one when run with a 166 MHz DDR-

SDRAM memory system.
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Figure C.4: Simulation results of MAUI-one when run with a 232 MHz DDR-

SDRAM memory system.

Figure C.5: Simulation results of MAUI-one when run with a 331 MHz DDR-

SDRAM memory system.
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Figure C.6: Simulation results of MAUI-one when run with a 400 MHz DRDRAM

memory system.

Figure C.7: Simulation results of MAUI-one when run with a 600 MHz DRDRAM

memory system.
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Figure C.8: Simulation results of MAUI-one when run with a 800 MHz DRDRAM

memory system.

Figure C.9: Simulation results of MAUI-two when run with a 100 MHz SDRAM

memory system.
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Figure C.10: Simulation results of MAUI-two when run with a 133 MHz SDRAM

memory system.

Figure C.11: Simulation results of MAUI-two when run with a 133 MHz DDR-

SDRAM memory system.
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Figure C.12: Simulation results of MAUI-two when run with a 166 MHz DDR-

SDRAM memory system.

Figure C.13: Simulation results of MAUI-two when run with a 266 MHz DDR-

SDRAM memory system.
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Figure C.14: Simulation results of MAUI-two when run with a 333 MHz DDR-

SDRAM memory system.

Figure C.15: Simulation results of MAUI-two when run with a 400 MHz DR-

DRAM memory system.
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Figure C.16: Simulation results of MAUI-two when run with a 600 MHz DR-

DRAM memory system.

Figure C.17: Simulation results of MAUI-two when run with a 800 MHz DR-

DRAM memory system.
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Figure C.18: Graph comparing the speedup of MAUI-one, MAUI-two and Stream

due to MAUI optimizations.
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