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Stochastic networks a.k.a. Markov chains allow us to model phenomena in
systems arising in many applications. The appeal of stochastic networks is that they
offer a mathematically tractable and robust model focused on the most important
features of the system. Nevertheless, stochastic networks approximating complex
systems can be huge and unstructured, and an effective description of their dynamics
is a challenging mathematical problem.

This dissertation is motivated by our study of two models of a gene regulatory
network (GRN), one deterministic [1] and one stochastic [2], which describes the
budding yeast cell cycle. A GRN with N nodes can be straightforwardly converted
into a Markov chain with 2V states. Our scientific goal is to understand how the
stochasticity affects the stability of the cell cycle in the GRN. This gives rise to
our mathematical goal: to develop efficient tools for quantifying dynamics of large
time-irreversible Markov chains.

Our methodological developments are built upon the transition path theory



(TPT) [16] which is a general framework for describing transitions in Markov chains
between two subsets of states. In TPT, the transition process is described by the so-
called effective current. We have realized that the effective current gives a lopsided
description of the transition process in the case of time-irreversible networks where
elementary cycles of length greater than two are present. Thus, we have introduced
the so-called acyclic current that gives a quantitative description of a transition
process and proposed an algorithm to compute it. Moreover, we have developed
a general recipe to modify the generator matrix of a given Markov chain in order
to make the stationary probability current and the invariant distribution in the
modified chain coincide with a desired current and a desired invariant distribution
in the original chain.

Finally, we have applied these tools to the budding yeast cell cycle GRN.
Our results show which edges are essential and which ones are redundant. Our
computations eloquently demonstrate that stochasticity makes the GRN much more
stable with respect to edge removals. This conclusion is consistent with Q. Nie’s

statement [26] that stochasticity plays a fundamental role in biological processes.
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Chapter 1: Introduction

1.1 Overview

Over recent years, the use of large graphs or networks has emerged as a popular
tool for data representation and organization [3]. Through networks, one is able
to identify patterns and structure within the data. The use of networks can be
applied in many fields of science, including economics [4], chemical physics [5], social
sciences [6,7] and biology [8,9]. Data points are mapped onto the set of nodes
in the network and edges or links in the network indicate pairwise relationships
between the nodes. For instance, webpages on the World Wide Web can be linked
according to URLs, banks and businesses across the country can be linked according
to investments made, and proteins in a cell can be linked according to their action
on other proteins.

The size and complexity of such networks exceeds by far those of graphs con-
sidered in the classic graph theory [8]. This fact led to the emergence of research in
network science. Network science is a relatively new discipline that has only been
able to blossom because of computer technologies. With computers, scientists are

capable of analyzing large-scale networks such as the World Wide Web which has



approximately 500 billion nodes [10]. Network science draws on theories and meth-
ods from graph theory, statistical mechanics, inferential modeling and information
visualization to solve challenging problems in various real-world applications [3].

While detecting structure in a network is crucial for finding relationships within
the data [11,12], important questions that we would like to answer arise from un-
derstanding the dynamics of a network. For instance, in modeling Lennard-Jones
particle configurations [5], where nodes correspond to local potential minima and
edges represent transition states between them, one can find probabilities from one
configuration to another. In this work, we consider dynamical networks arising from
gene regulatory networks (GRNs). One way of analyzing the dynamics of these net-
works is to represent these positive weighted networks as a Markov chain. Hence,
tools for studying Markov chains can be used for understanding the dynamics of
GRNs and validating the GRN models. Furthermore, in this work we address the
question of robustness of the system modeled by a GRN with respect to edge re-
movals.

Several approaches for quantifying the dynamics of complex networks have
been introduced. Bovier et al. developed the potential theoretical approach and
advanced the mathematical spectral theory of metastability [13,14]. This theory is
built upon an analogy with electric circuits. This work derived sharp estimates for
low-lying spectra of time-reversible Markov chains. Another approach is the tran-
sition path theory (TPT) which was originally proposed by E and Vanden-Eijnden

in the context of stochastic differential equations [15] and then transferred and ex-



tended to networks in [16,17]. Like the potential theoretical approach, TPT was
inspired by an analogy with electric circuits. However, TPT does not assume time-
reversibility and focuses on the statistical analysis of so-called reactive trajectories
(see next paragraph). An alternative approach for analyzing reactive trajectories
based on a set of recurrence relationships proposed by Manhart and Morozov [18,19].

After considering several options, we found TPT meets our needs to the largest
extent. The basic idea of TPT is to single out two specific subsets of nodes, a
“reactant” set A and a “product” set B, and analyze the statistical properties of the
trajectories by which transitions between these sets occur. Those trajectories that
travel strictly from A to B without returning to A in between are called reactive.
Statistical analysis of reactive trajectories gives a quantitative description of the

transition process between the sets A and B.

1.2 Goals

In this dissertation, we are mainly interested in applications where the given
Markov chain is time-irreversible. Time-irreversible Markov chains often arise in
biological models, in particular gene regulatory networks (GRN) [2,20]. In a GRN,
the nodes are a collection of molecular regulators that govern gene expression levels
which describe a biological process of a given cell. Edges between nodes represent
interactions. These interactions can be considered “activating”, with an increase in
the concentration of one leading to an increase in the other, or “inhibiting”, with

an increase in one leading to a decrease in the other. The nodes could also reg-



ulate themselves directly, creating feedback loops. Gene regulatory networks have
recently attracted a great deal of interest [20-23]. In particular, budding yeast have
been under investigation since the underlying molecular machinery regulating this
process has been highly studied and mathematical models of how the interacting
proteins control each stage of the process already exist [1,2,24,25]. While there
are ~ 800 genes involved in the process of the budding yeast cell cycle, there are
only 11 key regulators that are responsible for the control and regulation of this
process. Hence, the budding yeast GRN consists of only 11 nodes [1]. Our goal is
to develop computational tools in the framework of TPT that would allow us to
analyze the dynamics of a stochastic budding yeast GRN. We wish to understand
and quantify the effects of stochasticity in this GRN. In particular, we would like to
establish which edges are critical for the proper function of the cell cycle, and which
are not, and understand how stochasticity effects these subsets of edges. To bench-
mark the effect of stochasticity, we first answer this question for the corresponding

deterministic GRN.

1.3 A Brief Summary of Main Results

In the context of TPT, the effective current is defined as the net average
number of reactive trajectories per unit time making a transition from one node 7
to another node j on their way from A to B. If a Markov chain is time-reversible,
the effective current is acyclic and we can effectively describe the transition process

of the induced graph. If a Markov chain is time-irreversible, the effective current



may be cyclic. As a result, the effective current along a single edge along the path
from A to B might be larger than total reactive current coming out of A which
is the same as the total reactive current going into B. This was first observed
when applying the tools from TPT to the stochastic model of the gene regulatory
network in [2]. This dissertation involves three major parts: (1) we propose a general
framework for designing modified Markov chains in order to quantify transitions in
time-irreversible Markov chains, (2) we introduce an algorithm for obtaining an
acyclic current and generating acyclic reaction pathways, and (3) we propose a so-
called “mutation analysis” for gene regulatory networks allowing one to access their
robustness and use the proposed tools to analyze a stochastic budding yeast gene
regulatory network.

We develop a general framework for modifying the original time-irreversible
irreducible Markov chain to make it have a desired stationary current and a desired
invariant distribution. We apply our recipe to time-irreversible networks so that the
stationary currents in the modified Markov chains are equal to the effective currents
and acyclic currents in the original ones. Our construction generalized Propositions
1 and 2 in Ref. [17]. We can then sample acyclic trajectories using an acyclic current.

In order to design a modified Markov chain and generate the desired trajec-
tories, we propose a cycle removal algorithm which introduces a so-called acyclic
current. While an acyclic current may not be unique, we devoted substantial ef-
fort to address this issue in our application to the gene regulatory network. Our

algorithm is designed for generating a weighted directed acyclic graph from a graph



G(S,{f"}) where S is the set of vertices inherited from the original Markov chain,
and fT > 0 is the effective current used for the weights of the arcs.

Our methodology for quantifying transition processes in Markov chains is ap-
plied to the stochastic GRN representing the budding yeast cell cycle to determine
essential edges in the network. The cell cycle is a process in which one cell grows and
then proceeds to divide into two cells. The cell cycle consists of four phases: growth
(G1), DNA synthesis (S), gap (G2) and mitosis (M). We consider two models of the
gene regulatory network for the budding yeast cell cycle: one deterministic and one
stochastic. Li et al. (2004) [1] developed a deterministic model which uses boolean
functions as update rules to model the dynamics of the GRN. The GRN consists of
only 11 proteins/protein complexes. The dynamics of the gene regulatory network is
defined by (i) the influence matrix constructed by the interaction between nodes and
(ii) the transition rules defined in [1]. In 2006, Zhang et al. [2] modified the deter-
ministic model [1] by making the transition rules stochastic. The stochastic model
builds upon the deterministic model by adding certain degrees of unpredictability
or randomness that may happen due to the environment and allows for the model to
self-organize. Stochasticity plays a fundamental role in biological processes [26—-28].
Due to internal noise, genetically identical cells may assume different fates within
a consistent environment. This can be caused by the inherently random nature of
the biochemical reactions of gene expression which can cause noisy gene expression
levels [29].

The models [1,2] allow us to describe the dynamics of the GRN through what



we call the dynamical network. Each node can be in one of two states, either active
or passive. Each phase of the cell cycle is described by certain protein/protein
complexes being active. For any GRN with n nodes, the dynamical network is the
graph with 2" vertices representing all possible cell states, and edges representing
transitions between the states. This dynamical network produces a discrete-time
Markov chain. In particular, one that is time-irreversible. Thus, for the stochastic
GRN, we use transition path theory and our cycle removal algorithm to quantify
the transitions starting at the excited growth state, through all cell cycle phases,
then arriving at the stationary growth state right before the process repeats.

Finally, we perform a “mutation analysis” in order to identify redundant edges
in the GRN. For the deterministic GRN, we apply the following steps: We first
distort the GRN by removing one edge and adjusting the influence matrix. We
then apply the transition rules described in [1] to obtain the dynamical network and
explore it using the depth-first search (DFS) algorithm. Finally, we check if there
is a pathway corresponding to the cell cycle going from the excited growth phase
to the stationary growth phase. If such a pathway exists, we compare it to the one
in the original dynamical network and mark changes in it if any. We repeat this
process for all edges of the regulatory network in order to determine which edges
can be removed without a major effect on the cell cycle.

The stochastic transition rules create a dense stochastic matrix. This results
in a complete weighted dynamical network. Since DFS ignores the weights of a

weighted graph, this method alone is unsuitable here. To identify essential edges in



the stochastic GRN, we remove an edge and use the transition path theory (TPT)
and our cycle removal algorithm to the respective dynamical network to obtain path-
ways between the excited growth phase and the stationary growth phase carrying
at least 20% of the normalize acyclic current. We repeat this process for each edge
in the GRN to determine essential and non-essential edges.

We found that in the deterministic GRN, about 41% of edges can be removed
without a major effect on the cell cycle. In the stochastic one, this is true for 88%
of edges. This suggests that stochasticity renders the cell cycle much more robust.
This is consistent with Q. Nie’s statement that stochasticity plays a fundamental
role in biological processes [26].

The rest of this dissertation is organized as follows. Chapter 2 gives an
overview of Markov chains and Markov jump processes as well as introduces the
key concepts and definitions of transition path theory. Throughout this work we
consider Markov jump processes but our results are also applicable to discrete-time
Markov chains. In Chapter 3, we introduce our construction for designing modified
Markov jump processes to generate desired reactive trajectories. This is accompa-
nied with a theorem and proof justifying this construction. In Chapter 4, we propose
our algorithm for generating an acyclic current from the original time-irreversible
Markov jump processes. Chapter 5 applies this methodology to the stochastic GRN
for the Budding yeast cell cycle to analyze the dynamics of the model under muta-

tions. Chapter 6 summarizes the project and gives avenues for future research.



Chapter 2: Background

Markov chains are among the most well known and established probabilistic
models. Dating back to the early 20th century, they have long been developed,
studied and applied to real world problems. In Sections 2.1 and 2.2, we present
definitions and basic properties of both discrete-time and continuous-time Markov
chains.

An important arsenal of tools for analysis of transitions taking place in Markov
chains is offered by the transition path theory (TPT). The TPT was originally in-
troduced in 2006 by W.E. and E. Vanden-Eijnden [15] as a framework for analysis
of rare reactive events in systems evolving according to stochastic differential equa-
tions. It was adopted for continuous-time Markov chains also known as Markov
jump processes by Metzner et al. in 2009 [16]. The TPT was motivated by the
transition state theory (T'ST) developed by Eyring in 1935 [30] to quantify chemical
reactions. In Section 2.3, we give an overview of TPT and discuss basic definitions

and theorems that will be necessary throughout this dissertation.



2.1 Discrete-time Markov Chains

Let S denote the state space which is finite or countable. We consider discrete
moments of time 0, 1, 2, ... and denote the state of the system at time n by X,,. A
discrete-time Markov chain is defined as a sequence of random variables, (X,,)n>0
taking on values in S, that is characterized by the Markov property, which means
the future state of the process is only dependent on its present state [31]. In other
words, given the present state X,,, any future state X, is independent of any past
state X,,_,,. Thus a Markov chain is characterized by a transition matrix P where
P, ; is the probability that the Markov chain will be in state j in the next time step
given that it is currently in state ¢. Note that the ¢th row of P is the probability
distribution for X, conditioned on the fact that X,, = i. Therefore, all entries of

the matrix P are nonnegative, and the row sums are equal to one i.e.

',jZO, VZ,]ES,Z#]
(2.1)

Yjesbij=1 Vies

Any matrix P satisfying these conditions in called stochastic. A formal definition of

a Markov chain is:

Definition 1. A sequence of random wvariables (X,)n>0 is a Markov chain with

wnitial distribution N and stochastic matriz P if
o Xq has distribution A = {\;|i € S} and
e the Markov property holds

]P(Xn—i-l = Z‘n—i—1|)(n = ina ceey XO = ZO) = P(Xn—i-l - ZAn—&—1|)(n = Zn) = pin,in+1-
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1 0 0 0
_|3 0 13 13
0 1/2 0 1/2
0 1/2 1/2 0

1/ 2
Figure 2.1: Graph representation of a discrete-time Markov chain with 4 nodes. The

probability to move from one state to another is given along each arc. The matrix
representation is given by matrix P.

A probability distribution in a Markov chain is called equilibrium and denoted
by m if

P =m. (2.2)

Markov chains can be divided into time-reversible and time-irreversible. A
Markov chain is time-reversible if and only if it satisfies the detailed balance condi-

tions

'/TiPi,j = 71'ij71' VZ,j

In other words, for each pair of states i, j, as the length of time interval tends to
infinity, the expected numbers of transitions from ¢ to j and from j to ¢, divided by
the length of the time interval, approach the same limit equal to m; P, ; = m; P ;.

In this dissertation, we are mainly interested in applications where the given
Markov chain is time-irreversible. The stochastic matrix for the time-reversed chain

is defines as follows.: Let P be the transition matrix for the time-reversed process,
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then

A

Pi,j :P(Xm :j|Xm+1 :Z>
_ P(Xm:.]7Xm+1:Z)

P(Xm+1 - 'l)
_ P(Xm :j)P(Xm-i-l - Z|va :])
P(Xm+1 - Z)
¥
= lip, 2.3
“p, 23)

using Bayes’ theorem.

2.2 Markov Jump Process (MJP)

In discrete-time Markov chains, the transitions can occur only at discrete mo-
ments of time. More general models allowing the transitions to happen at any
moment of time and enabling faster simulations are continuous-time Markov chains
also known as Markov Jump Processes (MJPs). The dynamics of a MJP is charac-

terized by the generator matrix L where

L;; >0, Vi,je S,i#j
(2.4)

ZjeSLiyj:O’ VZES

The entries of the generator matrix are interpreted as follows: L; = > i L;; is the
escape rate from ¢. The ratio L;;/L; is the probability to jump from i to j. For
brevity we call L; ; pairwise rates.

We assume L is irreducible, meaning it is possible to get to any state from any

other state in the system. It has a unique equilibrium distribution satisfying

mL=0, Y m=1 (2.5)
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Figure 2.2: Graph representation of a Markov jump process with 4 nodes. The
pairwise rate to move from one state to another is given along each arc. The matrix
representation is given by matrix L.

Moreover, independent of the initial distribution, the probability distribution in the
system approaches 7 as time tends to infinity. The generator for the time-reversed
MJP is defined by

Lij=-L;,. (2.6)

2.3 Transition Path Theory (TPT)

The discrete transition path theory (TPT) offers a framework to give a quan-
titative description of the transition process between two given disjoint subsets of

states in systems evolving according to MJPs [16].

2.3.1 Motivation

The transition state theory (TST) [30], [32] was introduced in the 1930’s to
provide a framework for the description of rare events. The TST was derived in the

context of analyzing the rate of chemical reactions R — P, where R denotes the

13



reactant state and P the product state. The idea is to pick the optimal dividing
surface where the number of crossings from R to P is minimal. However, it is not
clear where the optimal surface is. Even if the dividing surface is picked optimally,
the number of crossings can be significantly larger than the number of transitions
from the reactant state to the product state within any interval of time. This hap-
pens due to recrossings. While TST was primarily used to understand qualitatively
how chemical reactions take place, some applications require a more quantitative
description.

Another relevant approach for describing rare events is the transition-path
sampling (TPS) [33]. Instead of counting the number of crosses of some dividing
surface as in the TST, the TPS generates an ensemble of reactive trajectories, i.e.,
those pieces of trajectories that leave the reactant state and enter the product state.
Figure 2.3 depicts a few reactive trajectories between two subsets of states repre-
senting the reactive state and the product state respectively. Thus, all the relevant
information can then be extracted from the ensemble, such as the reaction mech-
anism and the transition states. However, these reactive trajectories may be very
complicated and hard to sample.

An alternative approach to analyze the reactive trajectories that does not in-
volve either of the mentioned issues is the transition path theory (TPT) [15]. The
TPT provides a framework for quantifying rare events and enables us to efficiently
generate reactive trajectories. The TPT gives precise answers to the following ques-

tions:

14



Figure 2.3: Examples of Reactive Trajectories. Given two disjoint subsets denoted
A and B, the reactive trajectories (red arrows) are those trajectories that go from
A to B without returning to A in-between.

What is the probability to observe a reactive trajectory at a given state?

What is the net amount of reactive current going through a given state?

What is the reaction rate, i.e., the transition rate between two substates, say

A (reactant) and B (product)?

What are the mechanisms of the reactions and how to describe them effec-

tively?

The TPT relates to Bovier and collaborators’ [13, 14] works on quantification
of transitions in continuous-time and discrete-time Markov chains and built upon
the classic potential theory. Contrary to the work of Bovier, TPT does not rely on

the assumption the Markov chain is time-reversible.
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2.3.2 Basic Concepts of the TPT

We are interested in transitions from one subset A C S to another disjoint
subset B C S. The TPT gives a conceptual apparatus for describing statistical
properties of the reactive trajectories, i.e., those trajectories that start at A and go
to B without returning to A in-between. We define the key functions of the TPT
describing the reactive trajectories on the state space S.

The cornerstone functions of the TPT are the forward and backward commit-
tors denoted by ¢" = (¢ )ics and ¢~ = (q; )ics respectively. The answers of the
aforementioned questions are given in terms of them. The forward committor is the
probability that the process starting at a state ¢ € S will first reach B rather than
A. One can readily check that the forward committor function satisfies the following

system of linear algebraic equations:

(

j€s
g =0, icA (2.7)
q =1, 1€ B

\

The backward committor is the probability that the process arriving at state ¢ last

came from A rather than B. It satisfies:

(

S Lijg; =0, i€ S\(AUB)

JES

q; =1, i€ A (2.8)
g =0, i€ B

16



with f’u being the generator for the time-reversed process. Once the committors
are computed, one can express some basic statistical properties of the reactive tra-

jectories.

e The probability distribution of reactive trajectories is given by [16]:

mf = mq; g (2.9)

m? is the probability to find a reactive trajectory at state i € S at time t.

)

S"mft is equal to the probability for a trajectory to be reactive. Note that

this sum: Y mf < 1.
i€s

e The probability current of reactive trajectories is defined as the average num-
ber of transitions per unit time from state 7 to j performed by reactive trajec-

tories. It is proven in [16] that it can be expressed as

miq; Lijq), ifi#j

0, otherwise

e The effective current gives the net average number of reactive trajectories per
time unit making a transition from i to j on their way from A to B. It is

defined in [16] as

vy = max{fi; — fis, 0} (2.11)

e The transition rate from A to B is the average number of transitions per unit

time performed by an infinite trajectory:

. Nap(T)
Vg = lim ——~
T—o00 T
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where Nap(T) is the total number of transitions from A to B up to time
T. This transition rate is equal to the total reactive current coming out of
A which is the same as the total reactive current going into B. It is proven

in [16] that:

VAB = Z f;rj: Z fig = Z i (2.12)

ieA,jes icA,jes i€S,jeB
It is also proven in [16] that the probability current of reactive trajectories is
conserved at each reactive state i € (AUB)°. This theorem is important for deriving

our results and is given below.

Theorem 1. The probability current is conserved at each reactive state i.e.

Z(fi’j - fj,’i) =0 f07" all 1 € (A U B)C (213)

jeSs

2.3.3 Sampling Techniques for Reactive Trajectories

In 2013, M. Cameron and E. Vanden-Eijnden [17] proposed tools to generate
reactive trajectories as well as the special kind of reactive trajectories called no-
detour reactive trajectories for time-reversible MJPs. No-detour reactive trajectories
for time-reversible networks are those along which the committor function is strictly
increasing. Note that, for time-reversible networks, ¢/ = 1 — ¢; and L = L. The
generation of no-detour reactive trajectories relies on the concept of the reactive

current given by

F;i= fi;— fji (2.14)
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In general, reactive trajectories can be very long, but in the time-reversible case
the no-detour reactive trajectories are much shorter. The extension of the con-
cept of the reactive current to the case of time-irreversible Markov chains is not
straightforward. In time-reversible MJPs, the effective current accurately describes
the reactive current. However in time-irreversible MJPs, the definition of the ef-
fective current given in [16] might lead to undesirable consequences such as the
reactive current along some edges of a reactive trajectory may exceed the transition
rate v4p. In this dissertation, we resolve this issue and introduce a counterpart of
the effective current and no-detour reactive trajectories for time-irreversible Markov
chains. Moreover, we propose an algorithm to generate such trajectories and offer

its theoretical justification.

2.3.4 Analyzing Markov chains using TPT

One can quantify the transition process in the MJP using the TPT as follows.
1. Solve forward and backward committor equations.
2. Find probability current of reactive trajectories.
3. Find transition rate.

In Chapter 3, we propose a methodology for designing MJPs with desired
stationary currents from time-irreversible MJPs and provide their theoretical justi-

fication.
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Chapter 3: Designing MJP with Desired Stationary Currents

In [17], two modified MJPs were designed for the original time-reversible ir-
reducible MJP. The stationary probability current in the first of them coincided
with the probability current of reactive trajectories, and the invariant probability
distribution matched the one for reactive trajectories. The second MJP was con-
structed so that the stationary current in it was equal to the reactive current in the
original MJP. These modified MJPs justified the algorithms for generating reactive
trajectories and the so-called no-detour reactive trajectories. We remind that the

stationary probability current in a MJP is given by

Jij = miLij — L.

Note that this current is always zero for time-reversible MJPs and nonzero otherwise.

In this chapter, we propose a general framework for designing modified MJPs
with desired stationary current and desired invariant distribution and prove a the-
orem justifying our construction. We introduce a so-called acyclic current that is a
counterpart of the reactive current for time-irreversible MJPs. We apply our recipe
to time-irreversible networks so that the stationary currents in the modified MJPs

are equal to the effective currents and acyclic currents in the original ones.
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3.1 Motivation

In many applications, it is of interest to obtain an effective description of the
transition process between subsets of states. If the underlying Markov process is
time-reversible, the transition process between subsets of interest can effectively
be described by the reactive current defined by (2.14). However, the concept of
reactive current has not been defined for time-irreversible networks for a reason
that we discuss below. Note that Metzner et al. [16], where time-reversibility is
not assumed, does not contain the term “reactive current”. It introduces only the
probability current of reactive trajectories (2.10) and the effective current (2.11).
Thus, we propose an extension of the reactive current.

We first consider a simple example that will allow us to highlight some im-
portant facts about time-irreversible MJPs and understand how to resolve some
issues regarding the definition of the reactive current and reaction pathways. Let us
quantify the transitions between the states a and b in the MJP depicted in Fig. 3.1
(top left). We define the time-reversed MJP shown in Fig. 3.1 (top right), and set
A ={a} and B = {b}. Then we calculate the forward and backward committors,
¢" and ¢, and compute the probability current of reactive trajectories, f; ;. For
this MJP, the effective current f* coincides with the reactive current. We see that
the directed graph G(S,{f*}) induced by f* contains a cycle, which would never
happen for a time-reversible MJP. Moreover, if we follow a single trajectory of this
chain starting at A, the effective current along some of its edges may exceed the

total effective current emanating from A, i.e., the transition rate. This happens in
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Original MJP Time-reversed MJP

Forward committor, Backward committor and Effective current

2/3,2/3 2/3,2/3

4/27

1/9
e 127\ /1/27
- \Vi - Transition rate:

0,1 e g
0 é o L0 Vap = 1/9

Figure 3.1: An illustrative example. Top left: the original MJP. The black numbers
next to the arcs are the L; ;’s. Top right: the time-reversed MJP. The black numbers
next to the arcs are the f)i,j’s. Bottom: The green numbers next to the arcs are the
effective currents. The red and blue numbers next to the states are the forward and
backward committor values respectively.

our example: the effective current fir , = 4/27 is greater than the total current of
1/9 leaving a and arriving at b (see Fig. 3.1 (bottom)). A similar phenomenon
was encountered in the network originating from a budding yeast gene regulatory
network (see Chapter 5) and its discovery motivated us to devise a procedure for
removing cycles from the graph G(S,{f*}). Moreover, we will propose a frame-
work for constructing modified MJPs with desired stationary currents and invariant
probability distributions. Propositions 1 and 2 in [17] will be corollaries from our

theorem (see Theorem 2 in Section 3.3).

22



3.2 Setup and Assumptions

We develop a general framework for modifying the original time-irreversible
irreducible MJP to make it have a desired stationary current and a desired invariant
distribution. Our construction generalized Propositions 1 and 2 in Ref. [17]. Again,
we consider a MJP on a finite state space S with infinitesimal generator L. As

in [17], we assume that direct jumps from A to B are impossible, i.e.

L;; =0 whenever 1 € A and j € B.

This allows us to simplify the discussion, however we abandon the other two as-
sumptions from [17]. Let A, B C S, with AN B = (). The set of reactive states will
be denoted by Sg := S\ (AU B). Suppose we have defined a current e satisfying

the following properties:
Assumption 1. Non-negativity: e; ; > 0

Assumption 2. The conservation of current: Vi € Sg, > (e;; — €j:) = 0.
jes

Assumption 3. Transition rate: Y > e;; = >, >, €, j = vap where vap is the
i€A jes i€S jeB
rate from A to B.
It should be noted that both the probability current of reactive trajectories, f,

and the effective current, [, satisfy assumptions 1 - 3. We will extract the subset

of Sk with positive current emanating from them and denote it by R, i.e.,

R = {ZESREU ES:ei,j >O}

23



We will call the states in R the progress states for current e. The rest of the
states in Sk will be called the left-out states, and their set will be denoted by
So :So = Sr\ R. As in [17], we combine all the pieces of non-reactive trajectories
in the original MJP into an artificial state we call s. We define the process obtained
in this way the transition path process originally introduced in the context of SDEs
by Lu and Nolen [34]. This definition ensures all trajectories in the reactive process

are reactive trajectories.

3.3 Designing Modified MJP

Theorem 2. Suppose that assumptions 1 - 3 hold. Consider the process on the state

space S = RU {s} defined by the generator M with off-diagonal entries given by

Mi,j = %7 27] ER
M, =3 =, i€R (3.1)
jeB i

Ms,j = _1—1PR E ei,ja ] € R

\ €A

where pr = Y. p; < 1 and p; > 0 for all i € R. Then the desired invariant
i€R

probability distribution of the transition path process is given by

i 1ER
fli = (3.2)

1 - PR; (A
and the stationary current in the network with state space S and the generator matriz

M coincides with the current e in the original network.

Proof. 1. We will first show that the invariant distribution in the modified MJP
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is given by fi, that is > fi;M;; = 0.
1€RU{s}

Let 7 € R. We rewrite the summation as

> M= M + i M

i€ RU{s} i€ER

By removing the jth term from the summation we have

Z ﬂzM Z,U/ZM”LJ +,U/]M +ﬂsMsj‘

7 s 1€ER
€RU{s} z’Séj
Using the fact that M;; = — >~ Mj;;, we get
i#j
Z i M Z:uz ij — Iy Z i + s M,
1€ RU{s} Zlgﬁjj% i#£]

Removing the state s from the second summation on the right-hand side gives

D My = My — i Y My — i, M+ fisMy.

i€RU{s} ZiR ;';AIJ%
17 1€

Next, we factor out fi; from the middle two terms and rearrange the order.

Thus,

Z i Mi; = Z/]“ZMU + s Mgy — i Z M;; + M

i€RU{s} ZiR @'7&]]%
17£) 1€

We now rewrite the generator M in terms of the current e and invariant

distribution p using 3.1. Thus,

Z ﬁiMij:Zﬂi%“‘(l—pR Zem I Zeﬂ—l-zeﬂ

i€ RU{s} féR ‘ R ea z;R Hi - e P
1%£] (v
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By simplifying we obtain

Z piMi; = Zeij + Zeij - Zeji - Zeji-

1€ RU{s} i€ER €A i€ER i€B
i#] i#]

Finally, using assumption 3 for the second and fourth terms and assumption
2 for the first and third terms we have
Z fiiMij = vap — vap = 0.
1€ RU{s}
Now let j = s. We rewrite the summation as
Z :[lZMz] = Z /lezs + ﬂsMss-
i€RU{s} i€R

Using the fact that Mg, = — > My;, we get
i#£s

Z ﬂzMz] = Z IELZMZS - ﬂs Z M,;.
i€RU{s} i€R i€R

Similarly, we rewrite the generator M in terms of the current e and invariant

distribution g using 3.1. Therefore,

> ﬁiMij:ZMiZ%_(l_PR)Zl : > i

ieRU{s} ek jen M icr - PReA
By simplifying we obtain
DIETIES ) SIS 9 38
1€RU{s} t€ER jeB i€ER €A
Finally, using assumption 3 we obtain

Z fiMi; = vap — vap = 0.
1€RU{s}
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2. Next we show the stationary probability current, J;; in the MJP with gener-

ator matrix M coincides with the current F; ; =e; ; —e;; for all 4, j € R:

Jig = miMij — piMji = €5 —eji = B

i’j
[l

Theorem 2 can be used to generate the reactive trajectories which in turn
can be analyzed using statistical tools. In Chapter 4, we develop an algorithm
for generating a weighted directed acyclic graph G(S, {F*}) where S is the set of
vertices inherited from the original MJP, and F'* > 0 are the weights for the arcs.
The current defined by F* possesses properties 1 - 3 and hence we can design a
modified MJP with the desired invariant probability distribution.

Next, we show that the transition rate can be computed using an arbitrary
cut in the graph G(S, {E;]L ) separating the sets A and B. Here we have used the
notation K} := max{e;; — ¢;;,0}. Cameron and Vanden-Eijnden [17] defined an
AB-cut as any partition or cut in the network G(S, E') such that sets A and B are
on different sides of the partition. An AB-cut leads to decomposing S such that
S =S,4USp where A C Sy, BC Sgand SqxNSp=0. As a result, the transition

rate, v4p, can also be expressed in terms of an AB-cut.

Theorem 3. The transition rate, vag, 1S given by

vap =Y > (e —eji) (3.3)

’iESA jESB

The proof of this statement is as follows:
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Proof. For brevity, we will denote E;; := ¢;; — ¢e;,. We will use the fact that for

any subset S’ C S,

> Ej,=0. (3.4)

i€8’,5e8"

Since Sq = AU (S4\ A) and Sp = 5\ S4 we can rewrite the summation as
ID SIS D o
1€S4 jESB 1€AU(SA\A) jeS\Sa
By separating the union under the first summation, we obtain
2.2 Bu=2 ) Byt ), ) By
i€S4 jESp i€A jeS\Sa i€Sa\AjES\Sa

Using the fact that in general Y = >  — >, we rewrite the above statement as
i€A\B icA ieB

DD B =) D Bi=y Y Bt D ) By=) ) Eut) ) B

1€S4 jJESEB €A jES i€A jeSa i€Sa\A jES 1€54 jESA 1€EA jESH

We now use the facts that the third summation on the right-hand side above is zero
by current conservation and the fourth summation is zero by 3.4. We cancel the
second and fifth terms to obtain

Z Z E;; = ZZEH = VU4p.

1€SA JESB i€EA jES
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Chapter 4: Generating Acyclic Current

In this chapter, we explore the possibility to extend the notion of the reactive
current for time-irreversible MJPs. Unfortunately, as it was shown in chapter 3, the
signed effective current is not a good candidate because it can be cyclic and some
pathways generated according to it can have larger effective current along some
of their edges than the transition rate. To reconcile this issue, we propose a cycle
removal algorithm and introduce a so-called acyclic current. The acyclic current will
enable us to sample no-detour reactive trajectories introduced in [17]. To find the
acyclic current, we use two algorithms from graph theory, namely the Depth-First
Search algorithm and Tarjan’s algorithm. The details of these algorithms are given
in Sections 4.1 and 4.2. Note that we do not call the acyclic current the reactive
current because in some cases the acyclic current may be nonunique. We discuss

this issue in Section 4.3.1.

4.1 Depth-First Search

Depth-first search (DFS) is a recursive algorithm for traversing or searching
tree or graph data structures [35]. Depth-first search starts at an undiscovered

vertex and recursively proceeds down a path of adjacent vertices. Once the last

29



node in the path no longer has an adjacent vertex or reaches a discovered vertex,
the algorithm then backtracks until it finds an unexplored path, and then explores
it. This process continues until all the vertices that are reachable from the original
source vertex has been discovered. If any undiscovered vertices remain, then depth-
first search selects one of them as a new source, and it repeats the search from
that source. The algorithm repeats this entire process until it has discovered every

vertex.

Initialization: Label all vertices in graph G as undiscovered
Input: Graph G and a vertex v of G
Output: All vertices reachable from v labeled as discovered.
The main body: DSF(G,v)
Label v as discovered
for each vertex u that is adjacent to v do

if vertex u is not labeled as discovered then

| DSF(G,u)

end

end

Algorithm 1: Depth-First Search Algorithm

4.2 Tarjan’s Algorithm

Tarjan’s algorithm [36] is designed for finding strongly connected components
(SCCs) of a directed graph. A strongly connected component of a directed graph
G(V, E) is a subgraph G(V’, E’) with maximal set of vertices V' such that for every
pair of vertices u and v in V’, there is a directed path from u to v and a directed
path from v to u. Tarjan’s algorithm implements the depth-first search algorithm

(Algorithm 1) to search the graph. Each visited node has two variables associated
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with it. The first variable, index, indicates the order in which the nodes are visited.
Once the index is assigned it will never change. The second variable, lowlink,
represents the smallest index reachable from the current node. Each time a visited
node is encountered, the lowlink is updated. A stack, .S, is used to keep track of
the visited nodes. While tracking back from the DFS, if a vertex v’s lowlink equals
its index value, it means that none of the vertices v can reach a vertex discovered
before v, so all these vertices form a SCC. Thus all vertices up to v need to be
popped from the stack. Below is a pseudocode (Algorithm 2) summarizing Tarjan’s

algorithm.

4.3 Cycle Removal Algorithm

We start with developing an algorithm for generating a weighted directed
acyclic graph G(S,{f"}) where S is the set of vertices inherited from the original
MJP, and f* > 0 is the effective current used for the weights of the arcs. If a MJP
is irreversible, the effective current may be cyclic. As a result, the effective current
along a single edge along the path from A to B might be larger than the transition
rate, v4p, along some arcs. To ensure that the effective current along a single edge
does not exceed the transition rate, we design an algorithm that removes all cycles
from the MJP. To find cycles in our graph G(S,{f*}), we apply the DFS algorithm.
Once we find a cycle, we subtract the minimum current from every edge in the cycle
thus breaking this cycle. We continue this process until no more cycles are found.

The resulting current is an acyclic current.
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Input: Directed graph G(V, E') where V is the set of vertices and E is the
edge list.
Output: Strongly connected component (SCC)

Initialization:Vv € V' : index|v] := lowlink[v] := 0
count = 0
S =10

The main body: Tarjan(v)
count = count + 1
index[v] := lowlink[v] := count
for each (v,w) € E do
if index/w] = 0 then
Tarjan(w)
lowlink[v] = min(lowlink[v], lowlink[w])
else if w € S then
| lowlink[v] = min(lowlink[v], index[w])
end
end
end
f lowlink[/v] = index[v] then
w := S.pop()
add w to SCC
while index[w] > index[v] do
w := S.pop()
Output the SCC
end

o

end

Algorithm 2: Tarjan’s Algorithm

The computational cost of the cycle removal algorithm depends on the cost

of using a depth-first search algorithm. DFS is typically used to traverse an entire
graph and takes time O(|V|+|E|) with |V| being the number of vertices in the graph

and |E| being the number of edges in the graph. Thus, the worst-case scenario cost

of Algorithm 3 is

Cost(Algorithm 3) = O(|E|)Cost(DFS) = O(|V||E|) + O (|E[?) .

A graph on which the cost of Algorithm 3 will be the worst case scenario case is
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Input: Weighted directed graph G(S,{f*}) where S is the set of states and
f7T is the effective current.
Initialization: Set {e} = {f"}
The main body:
for k=1,2,...do
Find cycle, Cy, in G(S, {e}) using DFS algorithm;
if Cy is nonempty then
Chin = MG )ecy il
for all (i — j) € Cx do
(k) .

end
k=Fk+1,;
else

‘ Break;
end

end

{F7} = {e}s
Output: Weighted directed graph G(S, {F*})

Algorithm 3: Cycle Removal Algorithm: an algorithm for obtaining an
acyclic current from the effective current by means of removing cycles.

shown in Fig. 4.1.

Typically, the cost of Algorithm 3 is much less than Eq. (4.1) since the DFS
algorithm terminates as soon as a cycle is found. However, since the number of states
in the network under consideration can be large, we are motivated to reduce the cost
of this algorithm. To do so, we find the set of strongly connected components (SCCs)
of G(S, f*) using Tarjan’s algorithm [36], and then apply Algorithm 3 to each SCC
consisting of more than one state separately. Thus, we propose a two-step process
for generating an acyclic current.

The cost of Tarjan’s algorithm is O(|V |+ |E|). Hence, the cost of our two-step
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Figure 4.1: Visual example of worst-case scenario cost of Algorithm 3. The given
graph has N nodes and 2(/N — 1) edges. We start Algorithm 3 with vertex 1. With
one iteration, Algorithm 3 passes through N nodes and N edges before obtaining a
cycle. Algorithm 3 will remove a total of N — 1 cycles and with each iteration we
traverse all NV vertices and N edges. Thus, the computational cost for this graph
will be (N —1)(N + N) = O(|V||E|) + O(|E|?)
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Initialization Start with a graph G(S,{f*}) where S is the set of states
and f* is the effective current.

The main body

Step 1: Find all SCCs.

Step 2: Apply cycle removal algorithm to each SCC.

Algorithm 4: Two-step process for generating acyclic current: an algorithm
for obtaining an acyclic current from the effective current by means of finding
the set of SCCs and removing cycles from each of them.

process for finding F'* does not exceed

Nscc

Cost (Tarjan (G (S, {f"})) Z N(k Cost (DFS (G (S™, {f~®11))) (4.2

where Ngoe is the number of SCCs with more than one state in G(S,{f"}), and
G(S® {fH#1) is the k-th SCC with more than one state of G(S,{f*}). While
either algorithm does give an acyclic current, it may not be unique as we show in

Section 4.3.1.

Remark. This cycle removal algorithm s closely related to the decomposition of
flow vectors to the sum of simple paths (see Bertsekas, 1998 [37]). This algorithm
decomposes a graph to a set of simple paths by subtracting the minimum flow found
i a given simple cycle and terminates when the graph only contains simple paths. A
path is said to be simple if it contains no repeated arcs and no repeated nodes. The
outputs of the cycle removal algorithm and the simple path decomposition algorithm

are different, but their main bodies resemble.

4.3.1 Non-uniqueness in Cycle Removal Algorithm

Once we have introduced the acyclic current as an output of Algorithm 3, a
natural question arises: is the acyclic current unique? Unfortunately, the answer is
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Original MJP Effective current

Solution 1 Solution 2

Figure 4.2: An example illustrating nonuniqueness of acyclic currents. Top left:
The given MJP. The black numbers next to the arcs are the L; ;’s. Top right: The
nonzero effective current along each arc is indicated by a blue number. Bottom:
The different acyclic currents resulting from the removals of cycles {3, 5, 4} and {1,
2, 4, 3}respectively.

no. The acyclic current obtained by Algorithm 3 or 4 may depend on the order in
which the cycles have been removed. This is demonstrated by the example in Fig.
4.2.

Let us consider a MJP with states a, b, and 5 states in between (Fig. 4.2 (top
left)). All nonzero off-diagonal entries of the generator matrix L are written next
to the corresponding arcs. The invariant probability distribution in this MJP is

1219 2 8 7 4

T 55711755 11557 557 55
The generator matrix L of the corresponding time-reversed MJP (defined by Eq.
2.6) is computed. Solving equations 2.7 and 2.8, we find the forward and backward

committors:

12121 44414
R I | [ — 1 =112 2 2 = =
q {07 3 3 3 7 ]7 q [757975727770}



The probability current of reactive trajectories and the effective current shown in
Fig. 4.2 (top right) coincide for this example and are cyclic. The two cycles formed
in this example are {1,2,4,3} and {3,5,4}. In either case, the minimum current
along any arc in either of the cycles is along arc (4, 3). Algorithm 3 finds the acyclic
current shown in Fig. 4.2 (bottom left) if it eliminates cycle {3,5,4}. It results in
the acyclic current in Fig. 4.2 (bottom right) if it eliminates cycle {1,2,4,3}. Thus,
applying the cycle removal algorithm to this MJP can give two different currents
depending on the enumeration of the vertices. While this may be the case, any
acyclic current produced by Algorithm 3 still satisfies the conservation of current
property as each state i € S\ (AU B). However, due to the non-uniqueness, we

only refer to this current as an acyclic current and not the reactive current.

4.4 An illustrative example: a discretized Maier-Stein model

We would like to demonstrate the results of our cycle removal methodology
on a visual example with a large number of states. To create such an example, we

discretize the Maier-Stein SDE [38], a nongradient bistable system, given by:

be(,y) x — 2% — 102>
dz. = b(z)dt + /edw, b(z)= = : (4.3)
by(,y) —y(1+4?)
where dw is the standard 2D Brownian motion. We restrict this system to the

rectangle —1.2 < x < 1.2, —0.6 < y < 0.6 and assign reflective boundary conditions,

i.e. the homogeneous Neumann conditions. The generator matrix L is obtained by
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discretizing the generator for (4.3)

0 o e[ 0? 0?
L= bx(x,y)ngby(x,y)a—eri (@+6_?J2) : (4.4)

Next, we obtain an irreversible MJP by discretizing this generator by finite differ-

ences on an N x N mesh. The nonzero off-diagonal entries of L are

1 €
L g, +1.9) Ibz(l’z,yj)ﬁJrW, <i<N-1,1<j<N,
1 € ]
L g1y = ba(wi, yj)ﬁ +55 1SS,
1 € . ‘
Lag-1a) = =bal@isyj) 55—+ 535 2SiSN -1 1<j<N,
1 € )
Livgyv-1g) = =ba(@i,yj) 57— + 75, 1< j <N, (4.5)
1 € . .
L g G+1) = by<$iayj)2_}Ly + 2 1<i<N,2<j<N-1,
L by (i, ) e+ <i<N
,1),(6,2) = O\ Ti, Y5) 57— T 75 <1< N,
( vl)v( 72) Yy y] 2hy hzgj
1 €
Ligj-1 = —by(ziyj)=— + =5, 1<i<N, 2<j<N-1,
A v 7"2h, 2R3
L by(rny) e+ =, 1<i<N
(#,N),(i,N=1) = — TiyY;) 5 -, <1 < IV.
P 2h, b2

We have chosen N = 70 and ¢ = 0.3. This combination of parameter values sat-
isfies the requirements that (i) € is small enough so that the invariant probability
distribution 7 is bimodal (Fig. 4.3(a)), (i7), for this €, N is large enough so that the
off-diagonal entries of L are nonnegative, and (i7i) N is small enough to make the
mesh visual. The subsets A and B are the mesh points lying within the circles of
radius 0.2 centered at (F0.8,0), respectively.

Three reactive trajectories are displayed in Fig. 4.3(b). We see that they tend
to wonder around the set of reactive states Si for a long time prior to reaching
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B. The probability density of reactive trajectories is shown by the contour plots.
The graph G (S, {f*}) induced by the effective current contains four SCCs shown in
Fig. 4.3(c). These SCCs were found using Tarjan’s algorithm. We have computed
an acyclic current F'* using Algorithm 4. The graph G (S,{F™}) is depicted in
Fig. 4.3(d), while the intensity of F'* is displayed in Fig. 4.3(e). Ten samples of

no-detour reactive trajectories are shown in Fig. 4.3(f).

Remark. This example shows that, contrary to the time-reversible case, neither the
forward committor increase nor the backward committor decrease along no-detour
reactive trajectories. Zoom in Fig. 4.3(d) and observe that (i) directed up blue arcs
near x =y = —0.4 crossing the level set g7 = 0.3 of the forward committor from
larger values to smaller values, and (ii) directed left magenta arcs near x = 0.5, y =
+0.6 crossing the level set ¢ = 0.1 from smaller values to larger values. Therefore,

for time-irreversible MJPs, neither committor serves a good reaction coordinate.
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Figure 4.3: (a): The invariant probability distribution 7 for the Maier-Stein MJP
with the generator defined by (4.5). (b): Three reactive trajectories and the level sets
of the probability density of reactive trajectories. (c¢): The four strongly connected
components of the graph G (S,{f*}) are shown by red, blue, purple, and yellow.
(d): An acyclic graph G (S,{F*}). The arcs directed right, left, up, and down
are shown by red, magenta, blue, and green arrows respectively. The white areas
outside A and B contain the left-out states. The red curves are the level sets of
the forward committor, while the black ones are those of the backward committor.
(e): The intensity of the acyclic current F'*. (f): Ten no-detour reactive trajectories
sampled in the graph G (S, {F*}).
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Chapter 5: Application to Gene Regulatory Network (GRN)

The theoretical and algorithmic developments in Chapters 3 and 4 were mo-
tivated by our desire to analyze the dynamics of a stochastic budding yeast gene
regulatory network (GRN). Now we will apply this machinery to check which edges
of the GRN are essential, and which ones are redundant. In particular, to better
understand the effect of stochasticity, we first answer this question for the corre-
sponding deterministic GRN. We start this chapter with presenting a background

on the cell cycle and the GRNs.

5.1 Background

5.1.1 Cell Cycle

The cell cycle is a process in which one cell grows leading to the division into
two cells. A cell must duplicate all of its components such that the two cells which
derive after division each have the information and machinery necessary to repeat
the process [25]. The cell cycle consists of four phases. During the first growth phase,
known as G1, the cell grows and performs its usual functions. Synthesis or the S

phase consists of the DNA in the cell being synthesized and the chromosomes copied.
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Figure 5.1: Schematic of budding yeast cell cycle.

This is followed by the gap phase, G2, in which the cell prepares for mitosis. Col-
lectively these phases are known as interphase. Finally, during mitosis, or M phase,
the chromosomes are separated and the cell divides into two identical cells (see Fig.
5.1). Mitosis can be divided into four subphases: prophase, metaphase, anaphase,
and telophase. Chromosomes condense during prophase, align during metaphase,
separate during anaphase, and decondense during telophase. After mitosis, each of
the new cells enters its own G1 phase and the process repeats.

The cell cycle of budding yeast has been under investigation in many various
settings [1,2,25,39,40]. Researchers find budding yeast to be particularly interesting
because (1) a great deal is known about the molecular machinery regulating the
events of the budding yeast cell cycle, (2) comprehensive mathematical models of the
budding yeast cell cycle have been built and studied, (3) the genes and pathways for
cell cycle control seem to be very similar in all eukaryotes, including mammals, and
(4) the cycle of DNA replication, mitosis, and cell division is crucial to all aspects of
biological growth, development, and reproduction [41]. The budding yeast cells are
also interesting in that they divide asymmetrically creating a mother and daughter

cell after division. Shortly after division, the mother cell will begin a new division
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process. However, the daughter cell must first grow to a critical size [25].

The cell cycle is mainly controlled by a family of proteins called cyclin-dependent
kinases (or CDKs). CDKs interact with proteins called cyclins that are oscillatorily
expressed during the cell cycle. The main CDK in yeast is coded by the gene Cdc28.
Cdc28 can form a complex with two families of cyclins known as CLNs and CLBs.
Once a cell reaches a certain size, a CLN called Cln3 is released and activates Cdc28,
initiating all of the processes that lead cell cycle through G1 and into S phase. The
rising activity of the Clb1,2/Cdc28 complex induces mitosis. The proper completion
of mitosis is facilitated by Cdc20 [25,40].

There are several checkpoints during the cell cycle of any organism to ensure
that the next phase will not occur until the previous one has completed. For a
yeast cell, the cell cycle halts at two major checkpoints: (i) the G1 checkpoint if
DNA damage is detected or the cell has not reached the critical size or (i7) the
spindle assembly checkpoint if DNA damage is detected, DNA is not replicated
completely, or chromosomes are not aligned on the metaphase plate [25,40]. The
models considered here have chosen to include only the G1 checkpoint governed by

cell size for simplicity.

5.1.2  Gene Regulatory Network (GRN)

Chen et al. (2000) [25] developed a kinetic model for the cell cycle of budding
yeast. This model consisted of 10 nonlinear ODEs, three algebraic equations, and a

rule for separating cells at division. There are ~800 genes involved in the cell cycle
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Figure 5.2: Gene regulatory network of budding yeast cell cycle.

of the budding yeast. However, the number of key regulators that are responsible for
the control and regulation of this complex process is much smaller. While this model
proposed a realistic mechanism for regulating cell division, it involved approximately
50 parameters that needed to be determined to fit experimental observations. In the
model, overall cell growth is exponential and the main phases of the budding yeast
division cycle are driven by including activities of cyclin-dependent kinases. The 50
parameters used are estimated by trial and error. As a result, [25] only claim the
equations and parameter set for the model are sufficient to account for the many
properties of cell cycle control. Testing the model on different genotypes of budding
yeast, give enough data to provide meaningful confirmation of the model. However,
it is not for certain the parameter set is optimal nor do they quantify the robustness
in the system.

Li et al. (2004) [1] dramatically simplified the kinetic model proposed by
[25] by converting the system of ODEs to a gene regulatory network (GRN). This
eliminated the need to estimate the unknown parameters. The GRN consisting

of only 11 proteins/ protein complexes was constructed based on literature studies
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[39,41,42]. A visual of this GRN is shown in Figure 5.2. There are three classes of

nodes in the regulatory network:

e Cyclins (CInl,2, Cln3, Clbl,2, Clb5,6, which bind to the kinase Cdc28);

e Inhibitors and competitors of the cyclin complexes (Sicl, Cdh1, Cdc20, Cdcl4);

e Transcription factors (SBF, MBF, Mcml, SFF, Swib).

There are three types of edges in the GRN:

e Activation (represented by green arrows);

e Repression (represented by red arrows);

e Self-degradation (represented by self-loops).

There are n = 11 nodes in the budding yeast GRN [1]. Let s € S denote
the state of the GRN with S being the set of all possible states of the GRN. Each
node 7 can be in one of two states, active or passive, denoted by s; = 1 or s; = 0
respectively. Thus, s is a vector of 11 components and |S| = 2!! = 2048. The
dynamics of the gene regulatory network is defined by (7) the influence matrix A
(5.1) and (i¢) the transition rule (5.3). The 11 x 11 influence matrix A = (a; ;) is

defined as follows:

§
1, if there is green arrow from j to ¢
@ij = § —1, if there is red arrow from j to i (5.1)
0, otherwise
\

45



Table 5.1: The 11 different protein/ protein complexes, node identification and their
function.

Protein/ Node# Function
Protein complexes

Cln3 1 G1l-cyclins initiating Start event.

SBF 2 Transcription factor for Clnl,2.

MBF 3 Transcription factor for Clb5,6.

Cln1,2 4 Cyclins involved in budding.

Sicl 5 Stoichiometric inhibitor of Cdc28/Clb2 and Cdc28/Clb5.
Clb5,6 6 B-type cyclins appearing late in G1, involved in DNA synthesis.
Cdhl 7 Activator of the APC; protein involved in Clb2 proteolysis.
Clb1,2 8 B-type cyclin essential for mitosis, present in S/G2/M phase.

Mcml1/SFF 9 Transcription factor for Clb2, Cdc20 and Swib.
Cdc20/Cdcl4 10 Activator of the APC; protein involved in
Cl1b2, Clb5 and proteolysis, and required for exit from mitosis.
Phosphatase required for exit of mitosis.
Swib 11 Transcription factor for Sicl.

For each state s € S, we compute the influence vector
vi=As (5.2)

and define transition of the node state at the next time step ¢t 4+ 1 by the following

rule.
4

]., if v; > 0
st+1)=190.  ifv <0 (5-3)

Si(t>, if V; = 0

\

where t is a non-negative integer and time steps are discrete. Throughout this
dissertation, this model will be referred to as the deterministic model.

The temporal evolution of the protein states, presented in Table 5.2, follows
the cell-cycle sequence. Highlighted in each row are the necessary protein/ protein

complexes that must be activated in order to be in that particular phase as described
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Table 5.2: Protein state over time determined by the deterministic model reproduced
from Li et al. [1]. Colors denote the different phases of the biological pathway. Row
indicates the time step, Phase indicates the cell-cycle phase, and the remaining
columns represent the protein state at the given time.

Row Cln3 SBF MBF CInl,2 Sicl Clb5,6 Cdhl CIbl,2 Mcml Cdc20 Swib Phase
SFF Cdc14
1 1 0 0 0 1 0 1 0 0 0 0 START
2 0 1 1 0 1 0 1 0 0 0 0 G1
3 0 1 1 1 1 0 1 0 0 0 0 G1
4 0 1 1 1 0 0 0 0 0 0 0 G1
5 0 1 1 1 0 1 0 0 0 0 0 S
6 0 1 1 1 0 1 0 1 1 0 0 G2
7 0 0 0 1 0 1 0 1 1 0
8 0 0 0 0 0 0 0 1 1
9 0 0 0 0 1 0 0 1 1
10 0 0 0 0 1 0 0 0 1
11 0 0 0 0 1 0 1 0 0
12 0 0 0 0 1 0 1 0 0 1
13 0 0 0 0 1 0 1 0 0 0 0 G1*

in Section 5.1.1. The cell cycle starts with a signal from “cell size” that excites the
stationary growth state G1 resulting in the state called “START”. The states of
the 11 nodes in the GRN at the START state are listed in row 1 of Table 5.2. The
cell cycle transforms back to the stationary G1 state, denoted as G1* in row 13 of
Table 5.2, through a sequence of states determined by the deterministic model. We
will refer to this temporal evolution as the biological pathway. The phases of the
biological pathway are denoted with different colors: purple, the start of the cell
cycle; blue, the other G1 states; green, the S state; yellow, the G2 state; and red,
the M states.

The main result of [1] is that with the use of a simple deterministic model, the
GRN representing the budding yeast cell cycle is stable and robust. The biological
stationary state G1* is the attractor with the largest basin size. This property is

largely preserved with respect to small perturbations to the dynamic trajectories of
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all 1,764 protein states that flow into the stationary state G1*. Particularly, when
either removing edges, adding edges or switching edges from activating to inhibiting
(or vice versa), the relative changes of the basin size of the biggest attractor are
small (Fig. 4 in [1]). This was also compared to ones obtained from the ensemble
of random networks. While Li et. al. looked at the effect of edge deletion to the
basin size of the largest attractor, they left unaddressed the exact changes to the

biological pathway caused by these perturbations.

5.1.3 Dynamical Network

For any GRN with n nodes, the dynamical network is the graph with 2"
vertices representing all possible states, and edges representing transitions between
the states. Since the evolution of the network over time has the Markov property,
edges in the dynamical network define a transition probability of a Markov chain.
The dynamical network gives us a way to quantify most likely transitions between
cell states which is the key idea behind TPT.

In order to understand the dynamical network of the deterministic GRN we
have reproduced the results from [1]. Since we are looking at the deterministic
model of this GRN, each cell state in our dynamical network has a unique outgoing
arc, i.e. there is a unique possible transition from each state. Hence, the dynamical
network is a directed graph whose connected components have at most one loop.
Its exploration by the DFS algorithm shows that this graph is forest-like consisting

of 7 subtrees.
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Figure 5.3: The dynamical network for the deterministic GRN that matches the
network in Fig. 2 in [1]. The pathway corresponding to the cell cycle from the
START state to G1* are shown with large dots. Their colors correspond to different
phases of the cell cycle: purple, START; blue, other G1 states; green, S state; yellow,
G2 state; and red, M states.

The results of the DFS algorithm are shown in Fig. 5.3. Each cell state is
represented by a black node, with the arrows between them indicating dynamic flows
from one state to another. The phases of the biological pathway are denoted with
different colors: purple, START state; blue, the other G1 states on the biological
pathway; green, the S state; yellow, the G2 state; red, the M states.

The discrete-time dynamics of the gene regulatory network defined by the
deterministic rules in [1] has seven attractors (stationary states) of the network.
Hence, all of the initial states eventually flow into one of the seven stationary states
shown in Table 5.3. Dynamic trajectories starting from 1764 out of the 2048 possible

states, end up at one particular attractor, G1*. The cell’s stationary state being
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Table 5.3: Fixed points and basin size determined by deterministic model. Each
fixed point is found on a given row. Sink # is the row index, Size is the size of the
basin of attraction, and the remaining columns represent the protein state of the
fixed point. This table coincides with Table 1 from [1] as it should.

Sink # | ClIn3 SBF MBF CInl,2 Sicl CIb5,6 Cdhl CIbl,2 Mcml Cdc20 Swib | Size
SFF Cdcl4
1 0 0 0 0 0 0 0 0 0 0 0 7
2 0 1 0 1 0 0 0 0 0 0 0 151
3 0 0 0 0 1 0 0 0 0 0 0 9
4 0 0 1 0 1 0 0 0 0 0 0 7
5 0 0 0 0 0 0 1 0 0 0 0 1
6 0 0 0 0 1 0 1 0 0 0 0 1764
7 0 0 1 0 1 0 1 0 0 0 0 109

the most common attractor of the network insures the stability of the cell state is
guaranteed. While this model accurately depicts the cell cycle, it does not capture
the intrinsic randomness of this biological process. Thus, a stochastic model was

introduced.

5.1.4 Stochastic model of GRN

Zhang et al. (2006) [2] modified the deterministic model [1] by making the
transition rules stochastic. We will refer to this model as the stochastic model or
stochastic GRN. The stochastic model builds upon the deterministic model by tak-
ing into account certain degrees of unpredictability or randomness that may happen
due to the environment and allows for the model to self-organize. Stochasticity
plays a fundamental role in biological processes. At the intracellular level for exam-
ple, randomness can be caused by low copy numbers of chemical reactants and an
inhomogeneous distribution of the chemical reactants inside the cell [43]. This ran-

domness occurring in biological processes justifies the use of a stochastic approach
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to investigate them.

As in the deterministic model, the time steps here are logic steps that depend
on the current state of each node, s;, rather than depict actual times. We com-
pute the influence vector v as defined by Eq.(5.2). Under these assumptions, the

transition probability is given by:

P{si(t + 1), ..., s11(t + 1|51 (8), ., 511 (£)} = H]P’{si(t +1)[s1(t), oy s (8)} (5.4)

where

p eBvi
{Sl(t + ].) = 1|81(t), ...7811(t>} = m (55)

e—Bvi
P{Sz(t + 1) = O|81(t), ceey 811(t>} = m (56)

if V; = 0

1

P{Sl@ + 1) = si(t)\sl(t), ceey Sll(t)} = 1 Lea (57)

As opposed to the deterministic model, in this model if the protein ¢ has a
self-degradation loop, a; = —0.1 as in [2]. The positive number § in the system
is an inverse temperature-like parameter which accounts for random factors coming
from environment. The positive number « is used to characterize the stochasticity
in the system when the input to a node is zero. This parameter is important in
controlling the likelihood for a protein to maintain its state when there is no input
to it from surrounding nodes. Note that, when (5, — oo, these transition rules
converge to the deterministic rules in [1].

The main result of [2] is that in addition to the dynamical and structural sta-
bility of the GRN found by [1], the GRN is also stable against stochastic fluctuations
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for a wide range of “temperatures” characterized by the parameter 5. For large S
values, which corresponds to low “temperatures”, the stationary state G1* is the
most probable state of the system. For small § values or high “temperatures”, the
system behaves randomly and cannot carry out the main biological function. This
transition temperature is found at around = 1.03. While they found values for
[ for the model to be stable, they did not look at how perturbations in the GRN,

particularly through edge deletion, effects the main biological function of the system.

5.2 A “Mutation Analysis” of the Deterministic GRN

5.2.1 Identifying Redundant Edges

We’ve developed the following algorithm in order to identify redundant edges
in the GRN and test the robustness of the model. We distort the GRN shown in Fig.
5.2 by removing one edge and adjust the influence matrix A defined by Eq.(5.1). We
apply the transition rules of Eq.(5.3) to obtain the dynamical network and explore
it using the DFS. We keep track of the number and sizes of the subtrees of the
dynamical graph and check if there is a pathway corresponding to the cell cycle
going from START to G1*. If such a pathway exists, we compare it to the one in
the original dynamical network and mark changes in it if any. We then repeat this
process for all edges of the regulatory network in order to determine which edges
can be removed without destroying the cell cycle.

As shown in Table 5.4, we have established that 11 of the 34 edges of the

GRN in Fig. 5.2 can be removed without destroying the cell cycle. The removal of
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Initialization Start with the influence matriz A for the GRN defined by
(5.1). Each nonzero entry in A corresponds to an edge in the GRN.
Result: List of pathways from any node in the dynamical network to a
stationary state.
The main body

for each edge in the GRN do
Step 1: Make the corresponding entry a 0 in the influence matrix A.

Step 2: Update the transition rules defined by (5.3).
Step 3: Run DSF algorithm to find all pathways from “START” to

G1* carrying at least 20% of the normalized current.
end

Algorithm 5: Edge Removal Algorithm for Deterministic GRN.

these edges will have little to no effect on the main cycle described in Table 5.2 and
may only affect the number of attractors and number of states in their basins. One
reason for the little to no effect is due to the fact that the roles of certain proteins
tend to overlap. Particularly, ones in the families of cyclins (CLNs and CLBs). Any
one of the pairs of cyclins (Cln1,2, Clb1,2, Clb5,6) can do the essential jobs of the
other two if the cell is large enough. For example, CIb1,2 can trigger DNA synthesis
in the absence of Clb5,6 [25]. This explains why the removal of edges which have
no effect all involve at least one member of the family of cyclins. Removal of edge
Mcem1/SFF — Clb1,2 and edge Mcm1/SFF — Cdc20/Cdc14 both involve reducing
the number of steps in the mitotic phase. Hence the removal of these edges does
not destroy the cell cycle but in fact decreases the number of time steps in the cell
cycle. The removal of the remaining edges in Table 5.4 all have a slight change in
one or two of the rows but all still have the necessary proteins active for each of the
cell cycle phases. Thus, the removal of any of these edges does not effect the overall

biological pathway.
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Table 5.4: The edges of the gene regulatory network that can be removed without
destroying the cell cycle modeled by the deterministic model. Ng,ks represents
the number of attractors and Ngq+ represents the number of states converging to
the stationary state G1*. The effect on the cell cycle corresponds to differences in
protein state over time shown in Table 5.2 and s refers to the cell state (i.e. s; =1
or 0 if protein i is active or inactive). “Row” corresponds to the row in Table 5.2
and we show how a row is modified according to the edge removal.

|

Removed edge ‘ Effect on the main cycle ‘ Nainks ‘ Ngi+ ‘

1 Clb5,6 — Sicl No effect 7 1747
2 Clb5,6 — Cdhl No effect 8 1738
3 Clb5,6 — Mcm1/SFF Row 6: s = [01110101000] 7 1734
4 Cdhl — Clb1,2 No effect 7 1819
5 Clb1,2 — Sicl No effect 7 1761
6 Clb1,2 — Cdhl Row 9: s = [00001011111] 7 1760
Row 10: s = [00001010111]
7 Clbl,2 — Mcm1/SFF Row 9: s = [00001001011] 7 1635
Row 10: s = [00001000010]
Skips Row 11
8 Clbl,2 — Cdc20/Cdcl4 No effect 7 1814
9 CIb1,2 — Swib Row 7: s = [00010101111] 7 1764
10 Mem1/SFF — Clbl,2 Skips Row 9 8 1567
11 | Mem1/SFF — Cde20/Cdcl4 Skips Row 11 7 1650
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Table 5.5: The edges of the gene regulatory network that when removed do not
include all phases of the cell cycle when modeled by the deterministic model. Ny
represents the number of attractors and Ngp+ represents the number of states con-
verging to the stationary state G1*. The effect on the cell cycle corresponds to
differences in protein state over time shown in Table 5.2 and s refers to the cell
state (i.e. s; = 1 or 0 if protein 7 is active or inactive). “Row” corresponds to the
row in Table 5.2 and we show how a row is modified according to the edge removal.

’ \ Removed edge \ Effect on the main cycle \ Ninks \ Ngy+

1| Clnl,2 — Cdhl | Between Row 3 and Row 8&: 9 1755
s = [01110010000]
s = [01110110000]
s =[01110100100]
s =[01110101111]
s = [00010101111]
2| Sicl — Clb5,6 | Between Row 2 and Row &: 8 1836
s =[01111110000]
s = [01110100100]
s =[01110101111]
s = [00010101111]
3 | Clb5,6 — Clbl,2 | Between Row 5 and Row &: 8 1585
s =[01110100100]
s =[01110101111]
s = [00010101111]
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Table 5.5 shows the 3 edges that when removed lead to the skip of the gap
phase G2. While the cell states when modeled by the deterministic model still evolve
from START to G1*, the states do not go through all phases of the cell cycle as
described in Section 5.1.1. In the removal of each of these edges, the cell goes from
G1, to S phase, to M phase and finally to stationary G1* but never goes through
G2. Specifically, the protein Cdc20/Cdcl4 becomes active sooner than expected
which causes the cell to go directly from synthesis to mitosis. All other proteins do
become active in the correct sequence.

Removal of any of the other 20 edges results in the absence of the main cycle.
This means that starting from any state s, the pathway including the START state
does not reach G1*. For example, the removal of the edge Clnl,2 — ClInl,2 in
particular results in a biological pathway consisting of G1 states, S state, G2 state,
and stopping at M state. This would indicate that the cell grows, stops in mitosis
and never reaches G1* in order to restart the cell cycle. Since the inactive Clnl,2
protein is essential for completion of mitosis and has no neighboring proteins to

repress its expression level, it forces the cell to stay in mitosis.

5.3 A “Mutation Analysis” of the Stochastic GRN

5.3.1 Exploring Dynamical Network

The stochastic transition rules (Eqgs.(5.4)-(5.5)) create a dense transition ma-
trix P. This results in a complete dynamical network with the degree of each vertex

being 2048 and exploring the graph using DFS would take too long to search in its
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Figure 5.4: Acyclic current through cell cycle for a = 5, = 6 using stochastic
model. Using Algorithm 3, 284,460 cycles were removed. As in Table 5.2, the
phases of the biological pathway are denoted with different colors: purple, the start
of the cell cycle; blue, the other G1 states; green, the S state; yellow, the G2 state;
and red, the M states.

entirety. We want to extract only the most likely transitions to occur that give all
phases of the cell cycle. Thus, to analyze the dynamical network, we use the tran-
sition path theory (TPT) (Section 2.3) to single out two specific sets of nodes and
analyze the statistical properties of the reactive trajectories by which transitions
between these sets occur.

We first preprocess the dynamical network to reduce the computational ef-
forts. While the transition matrix of the dynamical network is dense, most of the
pairwise rates have extremely low probabilities. This is because even after introduc-
ing stochasticity to the model, transition between certain cell states are still very

unlikely to occur. We eliminate all probabilities less than 107* which leads to a
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Figure 5.5: The minimax current in pathways from START to G1* for various «
and [ using stochastic model. Blue dots: pathway carrying a minimum of 20% of
the current has been produced. Red dots: no pathways carrying a minimum of 20%
was produced. The numbers near the blue dots indicate the minimax current for
that particular a and 5.
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better conditioning of the generator matrix. This decreases the number of edges in
our dynamical network from 4,194,304 to 655,195.

We compute the necessary quantities in order to use TPT to analyze the
network. Let the set A consist of the single START state and let the set B con-
sist of the single G1* state. We compute the forward and backward committors,

* = (¢ )ies and ¢~ = (q; )ies. Using the committor functions we compute the

q
probability current of the reactive trajectories, f;;, and the effective current, ;“J
The effective current is cyclic and thus we use the cycle removal algorithm (Algo-
rithm 3) to compute an acyclic current. Tarjan’s algorithm showed that the network
G(S,{f"}) consists of only 3 SCCs, namely: excited G1 state; stationary G1* state;
and all remaining 2046 states. Hence, we cannot reduce the cost of Algorithm 3 by
preprocessing its input with Tarjan’s Algorithm.

Finally, we use DFS on the graph G(S,{e*}), where e;; is an acyclic current
carried from i to j, in order to find pathways only from START to G1*. We normalize
the current by dividing each entry by the total current leaving A. This ensures that
the total current leaving A sums to 1. We refer to this as the normalized current.
Since the graph G(S,{e*}) has many pathways from START to G1*, we chose a
threshold of 20% to extract only those pathways that carry significant amount of
the normalized current. Using a threshold less than 20% gave many pathways and
made it difficult to account for differences between the pathways.

Figure 5.4 shows the pathway of cell states that carries at least 20% of the

normalized acyclic current for parameters & = 5 and 5 = 6 in Eq.(5.5). Parameter
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values « = 5 and 8 = 6 were chosen in order to compare our results to that of Fig.
3 in [2]. We removed 284,460 cycles from the graph G(S,{f"}) using Algorithm 3
to obtain an acyclic current. Figure 5.4 shows that the pathway in which most of
the current is carried is the biological pathway of the cell cycle shown in Table 5.2.

Figure 5.5 gives a table of the minimax current for various o and S values.
For a given a and 3, we find the minimax current by finding the minimum current
in a particular pathway, then finding the maximum min current from all pathways.
For larger v and (3, the minimax current is also larger. This is as expected since
again, as a and  — oo, the stochastic model recovers the deterministic model and

most of the current will be carried along the main biological pathway (Table 5.2).

5.3.2 Addressing the Issue of Nonuniqueness of the Acyclic Current.

Section 4.3.1 illustrates an example where Algorithm 3 does not give a unique
solution for the acyclic current. To reiterate, the acyclic current obtained by Al-
gorithm 3 depends on the order in which the cycles are removed. In this section,
we investigate the issue of nonuniqueness by applying Algorithm 3 to our stochastic
dynamical network where we randomly change the order in which the cycles are
removed.

Parameter values @« = 5 and = 6 were chosen in order to compare with
Fig. 5.4. These values were used primarily by Zhang et al. [2] as they are large
enough so that the stochastic model behaves closely to the deterministic model

while still adding some stochasticity. In order to remove cycles in a different order,
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Figure 5.6: Biological pathway found after 20 iterations of removing cycles in dif-
ferent order. The values on each edge are the mean and standard deviation of the
acyclic current respectively.

we randomly permute the indexes of the states of the dynamical network. Using a

permutation matrix (), we compute

+ _ DT ¢+
permuted ~ Q f Q

+

We then run our cycle removal algorithm on fJ e, Obtain our original enumera-

tion using
= Qf fmuea®@”
and run depth first search to find pathways. This was repeated 10 times.

Figure 5.6 illustrates the result of this nonuniqueness analysis. For each ran-
dom permutation of rows and columns, the main biological pathway was found.
Next to each edge in the main biological pathway is the mean and standard devi-
ation of currents through each edge over all permutations. The largest standard

61



99,,/0

<=259%
<=24% 989, .
700 o

%

74% .
79,,/
960/
<=24% °. 700
96'0/0 6
<=22% N \990/
=y 5
LS
e i
%% g 905,
3o 4 ~
o, B
~92,,

Figure 5.7: All pathways from START to G1* found after 20 iterations of removing
cycles in different orders. The values on each edge are the range of acyclic current
values found (minimum value - maximum value) after applying Algorithm 3 on the
permuted network.
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Figure 5.8: All pathways from START to G1* found after 20 iterations of removing
cycles in different orders. The values on left each edge are the effective current
(green), acyclic current (black), and the difference (red) found from the original
enumeration. On the right of each edge is the range of differences between the
effective current and the acyclic current from the 20 iterations (red).
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deviation value being 0.0232. All pathways from START to G1* found after 10 iter-
ations of randomly permuting the indexes of the states is shown in Figure 5.7. Each
edge shows the range of acyclic current values that were found from the different
permutations. While the order the cycles are removed changes the acyclic current,
in any permutation the main biological pathway was still found. None of the acyclic
currents found deviated significantly from the acyclic current found in the original

enumeration (Fig. 5.4).

5.3.3 Identifying Redundant Edges

The algorithm developed for identifying redundant edges in the stochastic
GRN is similar to Algorithm 5 for the deterministic model except for the TPT tools
and the computation of the acyclic current that are used to analyze GRNs with
missing edges instead of solely the DFS algorithm. We distort the GRN shown in
Fig. 5.2 by removing one single edge and adjust the influence matrix A defined by
Eq.(5.1). We apply the stochastic transition rules (Eqs.(5.4)-(5.5)) to obtain the
transition matrix. We preprocess the stochastic matrix by zeroing out all entries
that are less than 10~ and compute the effective current. Finally, we use our cycle
removal algorithm to obtain the acyclic current and explore the resulting graph
G(S,{et}). We keep track of pathways from START to G1* that carry a significant
amount of current (at least 20% of the normalized current). If such a pathway exists,
we compare it to the one in the original dynamical network and mark changes in

it if any. We then repeat this process for all 34 edges of the regulatory network in
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order to determine which edges can be removed without destroying the cell cycle.

Input: Cut-off for the transition probability in P

Initialization Start with the influence matriz A for the GRN defined by
(5.1). Each nonzero entry in A corresponds to an edge in the GRN.

Output: List of pathways from START to G1* carrying a minimum of
20% of the normalized current.

The main body

for each edge in the GRN do

Step 1: Make the corresponding entry a 0 in the influence matrix A.
Step 2: Update the stochastic transition rules defined by (5.4)-(5.7).
Obtain matrix P.

Step 3: Remove all entries in P less than cut-off.

Step 4: Compute effective current, er, defined by (2.11).

Step 5: Run cycle removal algorithm (Algorithm 3) to obtain acyclic
current.

Step 6: Run DFS algorithm to find all pathways carrying at least 20%
of the normalized acyclic current.

end

Algorithm 6: Edge Removal Algorithm for Stochastic GRN

As shown in Table 5.6, we have established that 26 of the 34 edges in the GRN
can be removed from the network without destroying the cell cycle described by the
stochastic GRN. This means the removal of these edges will have little to no effect
on the biological pathway described in Table 5.2. 6 of the remaining 8 edges can
be removed and a pathway from A to B can be achieved but does not follow the
biological pathway (Table 5.7). The removal of only 2 of the edges, Cln3 — SBF
and SBF — Cln1,2, results in no path found carrying at least 20% of the normalized
acyclic current. Thus, even when stochasticity is added to the model, no meaningful
pathway is produced in the removal of these edges. These results suggest that these

edges are essential to the survival of the cell cycle.
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Table 5.6: The edges of the gene regulatory network that
can be removed without destroying the cell cycle modeled
by the stochastic model [2]. All pathways carrying a
minimum of 20% of the current was found after each
removal in the GRN. Parameter values « =5 and =6
were used. The dominant pathway (pathway carrying
most current) in each case was compared to the biological
pathway described in Table 5.2. The effect on the main
cycle corresponds to differences in protein state over time
show in Table 5.2 and s refers to the cell state (i.e. s; =1
or 0 if protein 7 is active or inactive). “Row” corresponds
to the row in Table 5.2 and we show how a row is modified
according to the edge removal.

Removed edge

Effect on the main cycle

Cln3 — CIn3

Row 2: s = [11101010000]
Row 3: s = [11111010000]
Row 4: s = [11110000000]
Row 5: s = [11110100000]
Row 6: s = [11110101100]
Between Row 6 and Row 7

s = [11110101110]

s = [11110101111]

s =[01110101111]

s = [00010101111]

Cln3 — MBF

Row 2: s = [01001010000]
Row 3: s = [01011010000]
Row 4: s = [01010000000]
Row 5: s = [01010100000]
Row 6: s = [01010101100]

CIn1,2 — ClInl,2

Between Row 7 and Row &:
s = [00010001111]

Sicl — CIb1,2

Between Row 9 and Row 11
s = [00001011111]
s = [00001010111]

Clb5,6 — Sicl

No effect

Clb5,6 — Cdhl

No effect

Clb5,6 — Mcm1/SFF

Row 6: s = [01110101000]

Cdhl — CIbl,2

No effect

O| 0O | O Ot

CIbl,2 — SBF

Between Row 6 and Row 8
s =[01010101110]
s = [01010001111]
s = [00010001111]

10

CIb1,2 — MBF
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s = [00110101110]
s = [00100101111]
s = [00000101111]

11

Clb1,2 — Sicl

No effect

12

CIb1,2 — Cdhl

Row 9: s = [00001011111]
Row 10: s = [00001010111]

13

Clb1,2 — Mcml/SFF

Between Row 8 and Row 12
s = [00001001011]
s = [00001000010]

14

CIb1,2 — Cdc20/Cdcl4

No effect

15

CIb1,2 — Swis

Row 7: s = [00010101111]

16

Meml1/SFF — Clbl,2

Skips Row 9

17

Mcm1/SFF — Mcml1/SFF

Between Row 7 and Row &:
s = [00010001111]

18

Meml/SFF — Cde20/Cdcl4

Skips Row 11

19

Meml/SFF — Swib

Row 8: s = [00000001110]
Row 9: s = [00001001110]
Row 10: s = [00001000110]

20

Cdc20/Cdcl4 — Sicl

Row 9: s = [00000011111]
Row 10: s = [00000010111]

21

Cdc20/Cdcl4 — Clb5,6

Between Row 6 and Row 9
s = [01000101110]
s = [00000101111]
s = [00001101111]

22

Cdc20/Cdc14 — Cdhl

Between Row 7 and Row 8
s = [00010001111]
Between Row 10 and Row 13
s = [00001000011]

s = [00001000001]

s = [00001000000]

23

Cdc20/Cdcl14 — Clb1,2

Between Row 9 and Row 11
s = [00001011111]
s = [00001010111]

24

Cdc20/Cdcl4 — Cdc20/Cdcl4

Between Row 7 and Row &:
s = [00010001111]

25

Cdc20/Cdcl4 — Swib

Row 8: s = [00000001110]

Row 9: s = [00001001110]

Row 10: s = [00001000110]
Skips Row 12

26

Swib — Swib

Between Row 7 and Row &:
s = [00010001111]
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Table 5.7: The edges of the gene regulatory network that when removed do not
include all phases of the cell cycle when modeled by the stochastic model. All path-
ways carrying a minimum of 20% of the current was found after each removal in
the GRN. Parameter values & = 5 and § = 6 were used. The dominant pathway
(pathway carrying most current) in each case was compared to the biological path-
way described in Table 5.2. The effect on the main cycle corresponds to differences
in protein state over time shown in Table 5.2 and s refers to the cell state (i.e. s; =
1 or 0 if protein ¢ is active or inactive). “Row” corresponds to the row in Table 5.2
and we show how a row is modified according to the edge removal.

’ \ Removed edge \ Effect on the main cycle ‘

1| MBF — CIb5,6 | Between Row 4 and Row 8&:
s = [01110001000]

s = [00010001110]

2| CInl,2 — Sicl | Between Row 3 and Row &:
s = [01111000000]

s = [01111100000]

s =[01110100100]

s =[01110101111]

s = [00010101111]

3| CInl,2 — Cdhl | Between Row 3 and Row 8:
s = [01110010000]

s = [01110110000]

s = [01110100100]

s =[01110101111]

s =[00010101111]

4 | Sicl — CIb5,6 | Between Row 2 and Row 8:
s =[01111110000]

s =[01110100100]

s = [01110101111]

s = [00010101111]

5| Clb5,6 — Clbl,2 | Between Row 5 and Row &:
s =[01110100100]

s =[01110101111]

s =[00010101111]

6 Swib — Sicl Skips Row 2 - Row 12
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5.4 Comparison of the Deterministic and Stochastic Models

Figure 5.9 shows a closer comparison of the results of the edge removal algo-
rithms for the deterministic and stochastic models. Edges colored green/red corre-
spond to ones with green/red arrows in the GRN shown in Fig. 5.2 respectively.

We see that 5 of the edges can be individually removed from the GRN without
having any effect on the main cycle described by Table 5.2 when modeled by both
the deterministic and stochastic model. Namely these edges are Clb5,6 — Sicl,
Clb5,6 — Cdhl, Cdhl — Clbl,2, Clbl,2 — Sicl, and Clb1,2 — Cdc20/Cdcl4.

There are 11 edges that can be removed from the GRN when modeled by
the deterministic model having little to no effect on the cell cycle and 3 edges that
when removed do not go through all phases of the cell cycle as described in section
5.1.1. These same 11 edges can also be removed from the GRN when modeled
by the stochastic model having little to no effect on the cell cycle and the same 3
edges can be removed when modeled by the stochastic model resulting in skipping
the gap G2 phase. These 3 edges are again Clnl,2 — Cdhl, Sicl — CIb5,6, and
Clb5,6 — Clb1,2. In both models, when removing any of these 3 edges, the protein
complex Cdc20/Cdcl4 activates sooner than expected resulting in the G2 phase
being skipped.

There are additional 15 edges that can be removed from the stochastic model
with little to no effect on the cell cycle and additional 3 edges that can be removed
but do not go through all the cell cycle phases. These additional 3 edges are MBF

— CIb5,6, CInl,2 — Sicl, and Swi5 — Sicl (Rows 1,2 and 6 from Table 5.7). In
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the removal of MBF — CIb5,6, the protein Clb5,6 never activates causing the cell
to never reach synthesis or the G2 phase. Synthesis being a crucial step in the
cell cycle, the removal of this edge completely destroys the process. The removal of
ClIn1,2 — Sicl results in the G2 phase being skipped due to the premature activation
of Cdc20/Cdc14. Finally, the removal of Swi5 — Sicl results in a jump directly from
the excited G1 state to the stationary G1* state. This removes all states in between
including those involved in synthesis and mitosis, both being crucial phases in the
cell cycle. Thus, while we still find a path from START to G1%*, the removal of this
edge also destroys the cell cycle.

Our analysis shows that the stochastic model is much more robust than the
deterministic one since it allows for the individual removal of more than double the
number of edges than the deterministic model allows. We use the term robust in the
sense that when applying Algorithm 3 to the model, the biological pathway can be

extracted under a wide range of edges being individually removed from the GRN.
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Deterministic l

Clb5,6 — Cdhl

Cdhl - Clb1,2

Clb1,2 - Sicl
Clb1,2 — Cdc20/Cdc14

Small effect:

Clb5,6 —» Mcm1 /SFF
Clb1,2 - Cdhl
Clb1,2 - Mcml /SFF
Clb1,2 - Swi5
Mcm1 /SFF — Clb1,2
Mcml /SFF - Cdc20/Cdcl4

Loss of G2 phase:
Cin1,2 - Cdh1l
Sicl - Clb5,6
Clb5,6 — Clb1,2

No effect: Small effect:
Clb5,6 - Sicl CIn3 — CIn3
CIln3 - MBF

Cln1,2 - Cin1,2
Sicl - Clb1,2
Clb1,2 - SBF
Clb1,2 > MBF
Mcml /SFF —» Mcm1/SFF
Mcm1 /SFF — Swi5
Cdc20 /Cdc14 - Sicl
Cdc20 /Cdc14 — Clb5,6
Cdc20 /Cdc14 - Cdhl
Cdc20 /Cdc14 - Clb1,2
Cdc20 /Cdc14 - Cdc20 /Cdc14
Cdc20 /Cdcl4 — Swi5
Swi5 = Swi5

Loss of G2 phase:
Cinl,2 - Sicl

Loss of S and G2 phases:
MBF - Clb5,6

Loss of S, G2 and M phases:
Swi5 - Sicl

Figure 5.9: Comparison of edge removal algorithms for deterministic and stochastic
models. The edges are categorized by their removal having either no effect on the
cell cycle, a small effect on the cell cycle or the loss of some particular phases of the
cell cycle. Edges are colored according to being an activating or inhibiting edge as

described in Section 5.1.2.
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Chapter 6: Conclusion

6.1 Summary of Methodological Advances

We have developed a set of analytical and computational tools based on
transition path theory (TPT) to analyze flows in time-irreversible Markov chains.
Our developments are equally applicable to both discrete-time and continuous-time
Markov chains. Since the concept of reactive current has not been defined for time-
irreversible networks, we proposed an extension of this. We propose a general recipe
for designing modified Markov chains with desired stationary current and desired
invariant distribution. With this, we are able to apply our recipe to time-irreversible
networks so that the stationary currents in the modified Markov chains are equal to
the effective currents and acyclic currents in the original ones. We call the currents
generated in this manner the acyclic currents which can be used as a counterpart of
the reactive current for time-irreversible Markov chains. To generate these acyclic
currents in practice, we developed a cycle removal algorithm (Algorithm 3). As a
result, we are able to apply our tools based on TPT to quantify the transitions from
one user defined subset of states to another.

As a visual example, we applied Algorithm 3 to the Maier-Stein SDE. With
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this example, we were able to reduce the computational efforts of our cycle removal
algorithm (Algorithm 3) by applying the algorithm to strongly connected compo-
nents separately. This example also shows that in time-irreversible Markov chains,
the forward (or backward) committor values does not have to strictly increase (or de-
crease) along no-detour reactive trajectories which is contrary to the time-reversible

case.

6.2 Summary of Application to GRN

We investigate the dynamics of the GRN using two algorithms: (1) depth-first
search algorithm used for the deterministic model and (2) TPT and the cycle removal
algorithm used for the stochastic model. TPT and the cycle removal algorithm allow
us to find acyclic currents where only the most likely transitions that occur between
cell states are found. We then use these algorithms to test the robustness of the GRN
by identifying redundant edges in the models. In order to identify redundant edges
in models we apply the following steps. We first distort the GRN by removing one
edge and adjusting the influence matrix. We then apply the appropriate transition
rules for each model to obtain the dynamical networks. We explore these dynamical
networks using algorithms (1) and (2) described above. Finally, we check if there
is a pathway corresponding to the cell cycle going from the excited growth phase
to the stationary growth phase. If such a pathway exists, we compare it to the one
in the original dynamical network and mark changes in it if any. We repeat this

process for all edges of the regulatory network in order to determine which edges
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can be removed without a major effect on the cell cycle. Our methodology can be
used as a deterministic computational tool for analysis of the dynamical network.

We conclude the removal of 11 out of 34 edges make no significant effect on the
cell cycle modeled by the deterministic GRN. Thus, if a mutation occurs in protein
A that does not allow for protein B to be turned on, the cell cycle will still proceed
as expected. In some cases, there may only be minor modifications to the size of the
basin of attraction or main cycle pathway. There are 3 edges that when removed
only result in the loss of the gap phase G2. The remaining 20 edges are very essential
to the gene regulatory network. Therefore, removing any of the remaining 20 edges
causes the cell cycle to be destroyed and cell states converge to states not on the
biological pathway. We also conclude that 26 out of the possible 34 edges can be
removed without notable effects on the cell cycle modeled by the stochastic model.
There are 4 edges that result in the loss of the gap phase, 2 edges that result in
the loss of synthesis and/or mitosis, and removing either of the remaining 2 edges
produce no pathway. Overall, this shows that the stochastic model is notably more
robust than the deterministic one.

The GRN for the budding yeast cell cycle is a robust network. From a biologi-
cal point of view, it is important for us to perform mutation analysis on GRNs since
it would be beneficial to be able to specifically determine which mutations allow for
the survival of the biological process of interest and which mutations aid in their
destruction. Future research would include testing the robustness and investigating

the dynamics of more complex GRNS.
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6.3 Future work

One question that arises is, can this methodology be used if we are unable to
store the entire dynamical network for a GRN into computer memory? With an
N-node GRN, the dynamical network consist of 2V nodes. Hence, given a GRN
with say 50 nodes, we are unable to store the entire network with 2% ~ 10'® nodes
and apply our methodology. However, even when the network is large and complex,
we would like our tools to still be efficient in analyzing these networks. Through
our analysis, we have observed that even though the dynamical network for some
GRNs become huge, the vast majority of states are biologically meaningless. Thus,
if we can incorporate in our algorithm a way to extract meaningful states, say
through Monte Carlo sampling, then we can apply our methodology to larger and
more complex networks. We would like to explore this idea through more examples
involving larger networks [9,44].

Gene regulatory networks are becoming an increasingly-popular tool for the
modeling and analysis of biological processes [45-47]. One goal is to use our method-
ology to answer questions arising in more complicated GRNs. One network of in-
terest is the GRN model representing the segment polarity genes [48,49]. These
genes are a group of genes involved in embryonic pattern formation in the fruit
fly Drosophila Melanogaster. Homologs of the segment polarity genes have been
identified in vertebrates, including humans, which suggests strong evolutionary con-
servation. This GRN is more complex in that these genes refine and maintain their

expression through the network of intra- and intercellular regulatory interactions
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and consists of 16 nodes. Moreover, some models of the GRN introduce a time-
delay in the activation or inactivation of nodes [50]. It would be of interest to us to
see how these time-delays effect the dynamic of the network and overall robustness.

Finally, our analytical and computational tools can also be applied to time-
irreversible Markov chains arising in other applications. One application of interest
comes from investigating the aggregation process of Lennard-Jones atoms. In 2017,
Forman and Cameron [51] proposed expected initial and pre-attachment distribu-
tions to analyze the aggregation/deformation in the L.Js_ 14 network, where LJy is
the N-atom Lennard-Jones cluster and the network representing its energy land-
scape (this was later extended to the L.Js_15 network). With this they answered
the question: If the aggregation process starts at the bicapped tetrahedron local
minimum of LJg, formed as a result of the attachment of an additional atom to
the only minimum of L.Js, what configurations are most likely to be observed in
each LJy as the aggregation process proceeds to LJy4. This LJg_15 network is not
only time-irreversible but also reducible. However, allowing for the attachment and
detachment of particles gives rise to the irreducible network we desire. Thus, we
would like to explore the use of our methodology to answer similar questions for this

extended network.
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