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Chapter 1 

 

 

INTRODUCTION 
 

1.1 Motivation 

 

Polyurea elastomer generally used for protective coating purpose due to its advantages such 

as good damping quality, fast cure time and blast resistance properties. Polyurea provides 

corrosion and extreme abrasion resistance. Polyurea has proven to be a fast and efficient solution 

for hole and patch repairs on steel. It has a Fire Class A Rating, which means that when a 

continuous flame is on this material, it emits no toxic gases and will not drip when burned. And, 

once the source of the flame is removed, the material ceases to burn. In addition, when cured, it 

will not leach gases, so it is ideal for coating potable water tanks. It even provides UV protection. 

Because of its enormous elasticity and abrasion resistance, it stands up to rugged treatment. It is 

especially suitable in harsh environments and under extreme climates, where other materials fail. 

Its elastic nature also provides a shock-absorbing benefit.  

Polyurea has excellent mechanical properties including tensile strength, tear strength and 

elongation which make it very tough. Thus, its application has been extensively used to retrofit in 

aerospace and automotive industries, dynamic structural loading during earth quakes, high rate 

manufacturing process, cavitation erosion in tubing and marine propulsion, defense applications 

including projectile/armor, absorbing energy during structural crash and holding metal/brick 

fragments even after failure. 

Mechanical properties of Polyurea are strongly rate dependent under high loading 

conditions due to its very high viscosity which makes it suitable for these applications. Polyurea 
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has high toughness-to-density and very good chemical resistance. This is the main reason of our 

motivation of the current research.  

 

1.2 Split-Hopkinson pressure bar (SHPB) 

 

Material properties such as yield stress and ultimate strength are generally obtained under 

quasi-static loading conditions using common testing methods. Mechanical responses of materials, 

their reliability, and to quantify their sensitivity under impact conditions largely depend on 

mechanical characterization to enhance the energy absorption and dynamic performance. 

Particularly, applications like shock absorbing criteria, materials especially elastomers must be 

characterized for large strains and over a wide range of strain rates. 

Over the last five decades, Split-Hopkinson pressure bar (SHPB) technique has been widely 

used for dynamic material characterization of high strain-rate properties of many common 

engineering materials. One of the many benefits of employing this simple technique is that no prior 

knowledge of material behavior is needed as a small sample is used to establish a uniform stress 

and strain state in the specimen and thus avoiding detailed analysis of wave propagation. 

Since soft materials possess low mechanical impedances which will increase delays in 

attaining dynamic equilibrium resulting transmission pulses with extremely low signal-to-noise 

ratios.  
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1.3 Literature Review 

1.3.1 Split Hopkinson Pressure Bar (SHPB) tests: History and advancement 

 

Split Hopkinson Pressure Bar (SHPB) is the most prominent techniques of analyzing 

mechanical properties and behavior of different materials undergoing impact loading. 

 

In 1914, Bertram Hopkinson [1] formulated analytical expressions for the total increase in 

length of an impulsively loaded wire which is fixed at one end and introduced a pressure measuring 

method produced by a bullet like blow, thus originated the pressure bar technique after his father 

John Hopkinson (1872) introduced the Hopkinson bar technique while doing stress wave 

experiments in iron wires. 

 

In 1923, Landon and Quinney [2] included the various effects of length, diameter and 

materials of the bars on the pressure wave.  

 

Dennison Bancroft (1941) showed that velocity of longitudinal waves in cylindrical bars 

may be expressed as the velocity at infinite wave-length times a function of Poisson's ratio, and 

the ratio of the diameter of the bar to the wave-length. Velocities at very short wave-lengths were 

deduced and displacement variations were found as a function of the diameter. The value of 

Bancroft’s work applied towards Hopkinson bar testing was only realized much later when 

computers became integral tools for fast data processing.  

 

In 1948, Davies [3] modified the Hopkinson’s technique and introduced an electrical 

method to find correlation between applied pressure and time involving experiments on high 
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pressures of short duration. He used the longitudinal displacement created by the applied pressure 

to change in the capacity of a condenser which is charged to a high potential and connected through 

a feed circuit and an amplifier to a double-beam cathode-ray oscillograph. A vertical deflection 

occurs with the change in capacity of the condenser while the other beam is being used for time-

marking. The condenser output is proportional to strain-time relations which in turn proportional 

to the pressure-time relations, and thus made significant improvement in the certainties of the 

pressure histories through continuous record of very small displacement of the free end of the bar 

as introduced by Hopkinson’s original method. 

 

The name Split Hopkinson Bar was introduced by Kolsky [4] in 1949 who introduced a 

second pressure bar by modifying Davies’s work. Detonators were used to produce large transient 

stresses while the specimen was sandwiched between these two parallel pressure bars. Strain 

histories were measured by introducing a second condenser microphone to calculate specimen 

properties. Different lubricants were also used to eliminate large friction effects errors and thus 

had fairly uniform permanent deformations to measure stress-strain behavior of materials of the 

order of 20 micro seconds. Kolsky tested five different material behaviors (polythene, rubber, 

PMMA, copper, and lead) with four different thickness (0.025 cm, 0.048 cm, 0.086 cm, and 0.768 

cm, respectively) and produced stress-strain curves in Figure 1.1. Due to most vulnerable to 

dispersion effects, Kolsky omitted first two or three points on each curve. Kolsky bar technique 

has become the most widely used testing procedure for hard, soft and viscoelastic materials since 

then. 
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Figure 1.1: Dynamic Stress-Stain curves for ploythene (Kolsky, 1949) 

 

In 1970, Dharan and Hauser [5], modified the approach proposed of Kolsky by discarding 

the input bar to allow impact to occur in specimen directly and thus achieving high stresses to get 

dynamic plastic properties at strain rates as high as 105 𝑠𝑒𝑐−1 .  He was the first one to use the 

strain gauges to measure displacements.  

In 2004, Gama et al. [6] in a critical review summarized a step by-step methodology of 

recent developments the Research, experimental design criteria and data analysis of a valid SHPB 

test. Summary of the critical review are as follows: 

According to Kolsky, the main 1D assumptions of Hopkinson Bar technique are: i) the 

wave propagation in the bars is free of dispersion, ii) the effect of interface friction and inertia of 

the specimen is negligible, iii) the stress wave reverberation in the specimen is negligible, iv) the 

stress equilibrium in the specimen is achieved in 𝜋 travel/characteristic time, and v) the specimen-

bar interfaces remain planar at all time. 

Finite diameter bars are prone to dispersion effects which makes assumption (i) not valid. 

However, methodologies following the solution of the Pochhammer [7] frequency equation are 

available to correct this problem. 
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Assumptions (ii) and (iii) are not sufficient conditions for displacement and stress 

continuities in those interfaces to be valid and higher order analysis, considering the displacement 

and stress continuity conditions at the bar specimen interfaces are identified to be a possible area 

to compensate for. 

From 1D stress wave propagation theory, the dynamic deformation of specimens under 

SHPB loading conditions occurs under a non-equilibrium state of stress that makes assumption (iv) 

not generally correct. The stress non-equilibrium issues can be addressed by plotting stress-strain 

rate instead of stress-strain, and time averaging the non- equilibrium stress and strain rate data 

using a time window not less than one characteristic time of the specimen. 

Assumption (iv) is technically valid for soft specimens but these specimens have an 

inherent problem of poor transmission, which is generally addressed by the use of low-impedance 

bars or hollow transmission bars. 

In light of the validity of 1D Hopkinson bar assumptions, a step-by-step methodology of 

the Hopkinson Bar experiment is outlined. These steps are a) the calibration of the bars, b) the 

specimen design, c) the Hopkinson bar experiment, d) the dispersion correction, and e) the data 

representation.  

1.3.2 Current areas of Research: Effects of Geometry, Inertia, and Dimension   

 

In addition to the introduction of different experimental techniques, researchers have also 

put much effort on understanding the effects of specimen dimensions and geometry as well as 

wave propagation.  

In the past, there had been no standardized test specimens with differing dimensions and 

geometry so to make it difficult for other researchers to compare results of different tests. 
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Woldesenbet and Vinson [8] performed compression tests to determine if specimen 

geometry has an effect on high-strain rate tests by using graphite/epoxy composites. Their 

experiments focused not only on varying the length-to-diameter ratio (L/d) of the specimen from 

0.5 to 2.0, but also included the use of square/rectangular specimen geometry. In comparing the 

test results in multi-directions showed no statistically significant effect of either L/d or geometry 

could be found. 

Kolsky eliminated the axial inertia effects by using a very thin specimen of L/d of 0.1. 

Davies and Hunter [9] concluded that L/d should be close to unity to minimize friction effects. 

Due to the importance of the uniform stress assumption, few researchers had undertaken plastic 

wave propagation analysis.  

Frantz et al. [10], showed the advantage of a small dimension over a large one due to the 

stress within the specimen to equilibrate within the shortest possible time. He also suggested that 

a slow rising excitation is preferred over a steep rise. 

1.3.3 Current areas of Research: Wave Propagation 

 

A valid SHPB test requires a uniform stress throughout the specimen. As stress wave 

entering the specimen from the incident bar and thus creating the axial and radial inertia to oppose 

the stress equilibrium. It is essential since the tests involve propagation of elastic wave in the 

pressure bars and both elastic and plastic waves in the specimen. 

Davies [3] analyzed wave propagation through the pressure bar by applying the 

mathematical solutions derived by Pochhammer [7] and Chree [11] equations governing axial 

vibrations in bars in 1876 and 1889 respectively. These equations were later presented by Love 

[12] in 1927, and solved numerically by Bancroft [13] in 1941 who plotted the ratio of actual wave 

speed to minimum frequency propagation speed as a function of the ratio of wavelength to bar 
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diameter. This gave a better idea as to how higher frequency; lower wavelength waves travel 

slower and result in dispersion.  

Longitudinal stress wave propagation is dispersive for wavelengths with same order of 

magnitude as the bar diameter which caused distortion of short stress pulses and hence arising 

unnecessary signals registered by strain gauges. From the theoretical analysis of wave propagation, 

Gong et al. [14] showed that it is possible to reverse the effects of dispersion of moderately 

dispersed signals by applying appropriate phase shifts to each frequency components. 

Longitudinal stress dispersion while propagating in the pressure bar distorts the pulse 

shape. Gorham and Wu [15] proposed for a dispersion correction method for a pressure bar derived 

from phase characteristics of various sized metal spheres impact stress. In this method, a measured 

phase characteristic automatically takes into account any mechanical arrangements as well as any 

dispersive effects from electronic circuitry. 

1.3.4 Research Related to Polyurea and its Dynamic Characterization 

 

Characterization of the mechanical behavior of viscoelastic materials is essential to the 

proper design of effective damping treatments which are suitable for attenuating structural 

vibrations over a particular range of operating temperatures and frequencies. The mechanical 

behavior of polyurea under high rate conditions is relatively unknown.  

Boyce and Balizer [16] studied rate-dependent stress-strain behavior of polyurea by SHPB 

and found to have strong hysteresis, cyclic softening, and strong rate-dependence in both the quasi-

static and high strain rate regimes, from 103 − 104 𝑠−1. 

In order to perform SHPB tests at large strain rates, Shim and Mohr [17] modified the 

conventional SHPB striker bar with a hydraulic actuator to achieve almost infinite loading pulse 

durations. They used thermoplastic nylon bars along with aluminum bars to increase the total 



9 
 

duration of the loading pulse from 472 𝜇𝑠 𝑡𝑜 1255 𝜇𝑠. The use of nylon reduced the impedance 

mismatch between the bars and the polyurea specimen and improved the input force measurement 

accuracy. It was shown that intermediate strain rate SHPB experiments require very long bars (>20 

m) or very short bars (<0.5m) in order to achieve constant strain rate throughout the entire 

experiments. 

Johnson et al. [18] employed sensitive piezoelectric strain gauges, hollow transmission 

bars and lower impedance polymeric pressure bars in separate experimental set up to improve 

characterizing polyurea at high strain rates and were able to reduce noise levels and achieved better 

stress-strain curves. 

Naik et al. [19] showed that viscoelastic nature of the polymeric materials is responsible 

for the compressive strength increases as with strain rate to increase at high strain rate loading 

compared to quasi-static loading conditions. But, the rate of increase decreases. It was found that 

the actual behavior of the epoxy polymer in the stress-strain curve to be non-linear and a power 

law was used to characterize high strain rate behavior.  

Fu et al. [20] used SHPB to investigate mechanical behavior under dynamic compression 

at high strain rates of silica aerogel consisting of silica particles coated with thin polyurea layer 

and used Material Point Method (MPM) to simulate that nearly uniform deformation occurs at 

compression due to the low ratio of pore size to wall thickness and random distribution of the 

pores. It was also shown that different porosities, obtained by varying the skeletal wall thickness, 

affect the local stress distribution. Eventually, simulations confirm that the stress– strain behavior 

of aerogels under compression follows a power-law relationship with the initial bulk density, 

consistent with experimental results from SHPB tests. 



10 
 

Youssef and Gupta [21] used laser-generated stress waves with 1–2 ns rise times and 16 ns 

total duration to characterize polyurea properties. The total strain in the samples was less than 3%. 

Because of the transient nature of the stress wave, the strain rate varied throughout the deformation 

history of the sample. A peak value of 1.1×105 s−1 was calculated. It was found that the stress-

strain characteristics, determined from experimentally recorded incident and transmitted wave 

profiles, matched satisfactorily with those computed from a 2D wave mechanics simulation in 

which the polyurea was modeled as a linearly viscoelastic solid with constants derived from the 

quasi-static experiments. Thus, the test data conformed to the Time-Temperature Superposition 

(TTS) principle even at extremely high strain rates of our test. This then extends the previous 

observations of Zhao et al. 

Bai et al. [22] described hyper elastic and viscoelastic behaviors of polyurea with Ogden 

model and Standard Linear Solids (SLS) model and the K-BKZ model. By fitting the experimental 

data of split Hopkinson pressure bar (SHPB), the SLS model is more appropriate to describe the 

viscoelastic behaviors at strain rates below 1600 𝑠−1, but the K-BKZ model performs better at 

strain rates over 2100 𝑠−1 because of the substantial increase of Young’s modulus and the state of 

polyurea transforming from rubbery to glassy.  

Joshi and Milby [23] studied the effect of various composition of polyurea with varying 

molecular weights using a SHPB arrangement equipped with titanium bars with high strain rates 

of 6000/s. No hardening behavior was observed with higher molecular weight composition but 

showed lower yield while on the other hand, the blend of 250/1000 show higher load bearing 

capability but lower strain hardening effects than the 600 and 1000 molecular weight amine based 

materials. 
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Golla–Hughes method (GHM) parameters used in the characterization of Scott double-face 

adhesive 3M Scotch viscoelastic material as a sandwich beam were experimentally determined 

and GHM based finite element model was presented and validated through numerical comparisons 

with classic formulation results by Barbosa and Farage [24]. A numerical model using the 

proposed finite element model was dynamically tested and the obtained results were compared 

with experimental results counterpart, showing good agreement. Another important point was also 

observed that time-domain analysis through GHM formulation is very simple since the stiffness 

matrix is constant. 

Mohotti et al. [25] studied and quantified the behavior of polyurea coated composite 

aluminum plates under high velocity projectile impact and deduced the ability of multilayered 

composite plate systems in reducing the residual velocity of projectiles and found out that polyurea 

coatings have resulted in a higher residual velocity reduction per unit areal density than aluminum 

alloys and thus increasing the energy absorption.  

Mohotti et al. [26] also investigated the behavior of polyurea coated composite aluminum 

plates subjected to rigid blunt-nosed projectile impact both numerically and experimentally and 

concluded that polyurea coated plates showed a considerable reduction in out-of-plane 

deformation when compared to the uncoated plates. By increasing the thickness of polyurea 

coatings from 6 mm to a 12 mm, permanent deformation of the plates can be reduced significantly 

and thus makes it suitable as an efficient energy absorbing/damping material against low velocity 

impact. Mohotti et al. [27] also proposed a rate dependent term in the original Mooney-Rivlin 

model to predict the non-linear hyper-elastic strain energy variation and stress-strain variation 

behavior of polyurea and were validated using high strain material data for polyurea.  
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Under impulsive loads in direct pressure-pulse experiments, Amini et al. [28] modeled the 

response of monolithic DH-36 steel plates and bilayer steel-polyurea plates focusing on the effects 

of the relative position, thickness and interface bonding strength of polyurea and found out that it 

improved overall performance both in terms of failure mitigation and energy absorption as long as 

it remains bonded to the steel layer. They also concluded that presence of polyurea on the front 

face aggravates the initial shock loading effect versus on the front face of a bilayer plate, due to 

transmitting a greater amount of the impact energy due to a better impedance matching. Tekalur 

et al. [29] validated experimentally that weight addition of layered E-glass vinyl ester (EVE) with 

polyurea (PU) increase blast resistant properties by 60% but the performance enhancement in the 

layered material is about 25% better (when polyurea faces the blast) and in case of sandwich 

composite (EVE/PU/EVE), the blast performance is enhanced by more than 100%. 

Qiao et al. [30] carried out Dynamic mechanical analysis (DMA) (over the temperature range from 

80 to 70o C at five frequencies) and ultrasonic measurements (frequency range 0.5–2 MHz and the 

temperature range 60– 30o C) to formulate Master curves of Young’s storage and loss moduli and 

complex longitudinal, shear, bulk and Young’s moduli.  Combining these results provided an 

estimate of the complex bulk and Young’s moduli at high frequencies and concluded that at higher 

frequencies polyurea become resonators and therefore contributes to higher loss. It is expected that 

by varying the size, properties, and by introducing of materials, the loss spectrum can be enhanced 

and tailored towards specific applications.  
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1.4 Objectives and Tasks 
 

The objectives of the present dissertation are to develop comprehensive theoretical and 

experimental study of the characterization of Polyurea composites subjected to high strain impact 

loading.  The composites under consideration consist of multi-layers of polyurea/aluminum 

arranged in one dimension configuration.  Finite element models (FEM) to be developed describes 

the dynamics of the viscoelastic behavior of the polyurea using the Golla-Huges-Mctavish (GHM) 

mini-oscillator approach.  The model is intended to enable the predictions of the structural stress, 

strain, strain rate, relaxation modulus, loss factor of the polyurea composites for different layering 

arrangements.  The predictions of the developed FEM are to be compared to the predictions of the 

commercial finite element package ANSYS.  Also, the FEM predictions are to be validated 

experimentally using the Split Hopkinson Pressure Bar (SHPB) which is used to monitor the 

dynamics of the polyurea composites at different levels of strain rates. 

 

In order to achieve these objectives, the following tasks are set: 

• Develop a finite element model (FEM) of the polyurea/aluminum composites using the Golla-

Hughes-MacTavish (GHM) approach to account for the dynamics of the viscoelastic behavior 

of the polyurea.  

• Extend the developed FEM to simulate the impact operation and the high strain rate loading 

conditions encountered when using the Split Hopkinson Pressure Bar (SPHB). 

• Develop a finite element model (FEM) of the polyurea/aluminum using ANSYS commercial 

software package. In ANSYS, the viscoelastic characteristics of the polyurea and represented a 

Prony Series approach which is translates the GHM model to an acceptable form for ANSYS. 

• Establish comparisons between the predictions of the FEM/GHM approach with those of 

ANSYS. 
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• Experimentally validate the predictions of the models by testing several configurations of the 

polyurea composites by using the Split Hopkinson Pressure Bar (SPHB). 

• Quantify the stress-strain characteristics at different strain rate for different configurations of 

the polyurea composites. 

• Analytically develop a model based on transfer matrix approach to identify and compare 

dispersion curves and pass-stop band domains for the longitudinal wave propagation in 

polyurea composites by using Bloch wave method. 

 

1.5 Scope and Outline of the Dissertation 

 

This dissertation is arranged in six chapters.  In Chapter 1, a brief review of the literature 

of the operation of polymers, in general, and polyurea, in particular, under high strain loading 

conditions.  In Chapter 2, a brief review of the theory of viscoelasticity is presented.  The 

development of the finite element model of polyurea composites is presented in chapter 3 by using 

the Golla-Hughes-MacTavish (GHM) approach to account for the dynamics of the viscoelastic 

behavior of the polyurea.   Chapter 4 summarizes the experimental effort which aims at testing 

several configurations of the polyurea composites using the Split Hopkinson Pressure Bar (SPHB) 

and thus producing the stress-strain characteristics at different strain rate and configurations of the 

polyurea composites.  Chapter 5 presents the application of periodic arrangement of the polyurea 

composites in mitigating impact loading conditions. Chapter 6 presents a summary of major 

contributions, conclusions arrived with this study along with potential future directions for 

extending the present work. 
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1.6. SUMMARY  

 

This chapter has presented a brief review of the literature of the operation of polymers, in 

general, and polyurea, in particular, under high strain loading conditions.  The chapter has also 

outlined the scope of the dissertation and the contents of the individual chapters. 
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Chapter 2 

 
 
VISCOELASTICITY 
 

2.1 Viscoelasticity 

 
Viscoelastic materials (VEM) such as polymers, ceramics, rubbers, woods etc. exhibit a 

time/rate dependent stress-strain relationship which implies the combined presence of deformation 

characteristics associated with elastic solids and viscous fluids.  

The loading and unloading stress-strain path of a linear elastic material is identical and 

there is no dependence on the rate of loading or straining as shown in Figures. 2.1(a) and 2.1(b). 

This type of material returns to its original shape when the load is removed. 

 

Figure 2.1: Illustration of the (a) linear (b) non-linear elastic behavior with energy recovery 

 

The deformation behavior and the accompanying nature of the exchange of energy are quite 

different in the case of viscous materials. Viscoelastic materials exhibit non-constant stiffness and 

damping properties. The stiffness and damping can be described as frequency dependent. The 
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loading and unloading stress-strain curves of a viscoelastic material is not identical and there is a 

dependence on the rate of loading or straining as shown in Figures. 2.2(a) and 2.2(b).  

 

Figure 2.2: Illustration of the (a) loading and unloading with possible permanent 

deformation (non-zero strain at zero stress), (b) different rates of stretching 

 
 

The effect of stretching shows that the viscoelastic material depends on time whereas for 

an elastic material with a given stress level loaded for one second or for one day, the resulting 

strain will be the same.  

For viscoelastic materials, the relationship between stress and strain can be expressed as  

 σ = σ(ε, ε̇) (2.1) 

Eqn. (2.1) shows that stress 𝜎, is not only a function of strain 𝜀, but is also a function of 

the strain rate, 

          𝜀̇ =
𝑑𝜀

𝑑𝑡
 ,                where 𝑡 is time. 
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It is important to note here some of the basic phenomena encountered in viscoelastic materials 

are: 

 If the stress is held constant, the strain increases with time (creep). 

 If the strain is held constant, the stress decreases with time (relaxation). 

 The effective stiffness depends on the rate of load. 

 

2.2 Properties of viscoelastic material 

 

A strain of magnitude 𝜀0 is assumed suddenly applied at time 𝑡 = 0 and held constant 

thereafter. Mathematically, we express such a strain history by means of the Unit step function, 

𝐻(𝑡). 

 𝐻(𝑡) = {
0, 𝑡 < 0
1, 𝑡 ≥ 0

   (2.2) 

2.2.1 Creep 

 

It is the tendency of a VEM to slowly move or deform permanently under the influence of 

constant mechanical stress. The rate of deformation is called the creep rate which is the slope of 

the line in a Strain vs. Time curve. In one dimension, Time dependent stress 𝜎(𝑡) with a step 

function beginning at time zero is 

 𝜎(𝑡) = 𝜎0𝐻(𝑡) (2.3) 

 

The strain 𝜀(𝑡) in a viscoelastic material will increase with time. The ratio, 𝐽(𝑡) =
𝜀(𝑡)

𝜎0
 is 

called the “Creep Compliance”.         
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Figure 2.2:  Illustration of the creep behavior 

 

 

The creep response in Figure 2.2 is shown beginning at the same time as the stress history, 

which is the cause. If the load is released at a later time, the strain will exhibit recovery or a 

progressive decrease of deformation. Depending on the material, strain in recovery may or may 

not approach zero. 
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Figure 2.3:  Typical creep behavior at different temperatures (Chen et al., 1999) 

 

2.2.2 Stress Relaxation 

 

It describes how VEM relieve stress under constant strain. If we suppose the strain to be a 

step function of magnitude beginning at time zero: 

 𝜀(𝑡) = 𝜀0𝜀(𝑡)  (2.4) 

Stress 𝜎(𝑡) in a viscoelastic material will decrease as shown in Figure 2.4. The ratio,   

 𝐸(𝑡) =
𝜎(𝑡)

𝜀0
 (2.5) 

E(t) is called the “Relaxation Modulus”. In linear materials, it is independent of strain level, so 

𝐸(𝑡) is a function of time alone. The symbol E for Young’s modulus as stiffness in uniaxial 

tension. 



21 
 

                                                                  
Figure 2.4:  Illustration of the stress relaxation 
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Figure 2.5:  Typical relaxation behavior at different temperatures (Chae et al., 2010) 

 

2.3 Characterization of Dynamic Behavior of VEM 

 

The characterization and modeling of the mechanical behavior of viscoelastic materials is 

essential in proper designing and analysis of effective damping treatments which are suitable to 

avoid failure by attenuating structural vibrations or to ensure optimal operating conditions over a 

particular range of operating temperatures and frequencies. The dynamic response of viscoelastic 

materials to sinusoidal load is of paramount interest where applications like damping of vibration 

or the absorption of sound is important.  

 

 

2.3.1 Response to Step Input 

 

Considering the time histories of the creep stress applied to a VEM along with the resulting 

creep strains shown in Figure 2.6.   
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Figure 2.6: Superposition of the creep strains resulting from stepped creep stresses 

 

 

Assuming the compliance is only function of time and not stress, if a constant load 𝜎1 is 

applied to a viscoelastic specimen and the time dependent strain is recorded as  

 𝜀1(𝑡) = (𝜎1 − 0)𝐽(𝑡 − 𝑡1)  (2.6) 

as shown in Figure 2.6 and the load is removed.  

 

A larger stress 𝜎2 is applied. The time dependence of the strain 𝜀2 becomes: 

 𝜀2(𝑡) = (𝜎2 − 𝜎1)𝐽(𝑡 − 𝑡2)  (2.7) 

Then, the resulting creep response becomes:  

 𝜀(𝑡) = (𝜎1 − 0)𝐽(𝑡 − 1) + (𝜎2 − 𝜎1)𝐽(𝑡 − 𝑡2) + (𝜎3 − 𝜎2)𝐽(𝑡 − 𝑡3)…………. (2.8) 

 

In a compact form: 

 𝜀(𝑡) = ∑ Δ𝜎𝑖𝐽(𝑡 − 𝑡𝑖)

𝑛

𝑖=−∞

 (2.9) 
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Equation (2.9) is a mathematical representation of the discrete Boltzmann superposition 

principle whereby the time history of the strain is described by a superposition of the effects of the 

incremental stresses imposed on the VEM. 

 

Writing equation (2.9) in the continuous time domain: 

 𝜀(𝑡) = ∫
𝜕𝜎(𝜏)

𝜎(𝜏)

𝑡

−∞
𝐽(𝑡 − 𝜏)𝑑𝜏  (2.10) 

 

In a similar fashion, the effect of time varying relaxation strains on the time history of the 

resulting stress can be illustrated as shown in Figure 2.7. 

 

Figure 2.7: Superposition of the relaxation stresses resulting from stepped creep strains 

 

Mathematically, the superposition of the stresses can be described, in terms of the 

incremental strains and the relaxation modulus 𝐸(𝑡) by: 

 

 𝜎(𝑡) = ∫
𝜕𝜀(𝜏)

𝜎(𝜏)

𝑡

−∞
𝐸(𝑡 − 𝜏)𝑑𝜏   (2.11) 

2.3.2 Relationship between the Relaxation Modulus and Complex Modulus 

 

Substituting  𝑎 = 𝑡 − 𝜏 into Equation (2.11): 
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 𝜎(𝑡) = ∫
𝜕𝜀(𝑡−𝑎)

𝜎𝑎

∞

0
𝐸(𝑎)𝑑𝑎  (2.12) 

If the VEM is subjected to sinusoidal excitation such that: 
 

 𝜀(𝑡) = 𝜀0𝑒
𝑖𝜔𝑡  (2.13) 

Combining equations (2.12) and (2.13) gives: 

𝜎(𝑡) = ∫ 𝜀0𝜔𝑖𝑒
𝑖𝜔(𝑡−𝑎)

∞

0

𝐸(𝑎)𝑑𝑎 = 𝜀0𝑒
𝑖𝜔𝑡∫ 𝜔𝑖𝑒−𝑖𝜔𝑎

∞

0

 𝐸(𝑎)𝑑𝑎 

 𝜎(𝑡) = 𝜀∫ 𝜔[sin(𝜔𝑎) + 𝑖 cos(𝜔𝑎)]
∞

0
 𝐸(𝑎)𝑑𝑎 = [𝐸′ + 𝑖𝐸′′]𝜀  (2.14) 

Where,  

 𝐸′ = ∫ 𝜔[sin(𝜔𝑎)]
∞

0
𝐸(𝑎)𝑑𝑎   (2.15) 

And 

 𝐸′′ = ∫ 𝜔[cos(𝜔𝑎)]
∞

0

𝐸(𝑎)𝑑𝑎  (2.16) 

Equations (2.15) and (2.16) establish the relationship between the storage and loss moduli 

to the relaxation modulus.   It is important here to note that as: 𝜎(𝑡) = [𝐸′ + 𝑖𝐸′′]𝜀  

 

Then, from equations (2.13) and (2.14), 

 

 

 𝜎(𝑡) = [𝐸′(1 + 𝑖𝜂)]𝜀0𝑒
𝑖𝜔𝑡 = 𝐸′√1 + 𝜂2𝜀0𝑒

𝑖(𝜔𝑡+𝛿) = |𝐸∗|𝜀0𝑒
𝑖(𝜔𝑡+𝛿)  (2.17) 

 
 

where, 𝜂 = 𝑙𝑜𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 = tan 𝛿 and  |𝐸∗| = 𝐸′√1+ 𝜂2 = 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑢𝑠. 

  

with 𝜎0 = [𝐸
′(1 + 𝑖𝜂)]𝜀0  (2.18) 

 

Equation (2.17) indicates that the strain lags the stress by a phase angle  𝛿  as shown in 

Figure 2.8. 
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Figure 2.8: Time history of the Stress and Strain 

 

2.4 Conversion from time and frequency domain parameters 

 

Indirect conversion approach is a well-established approach for obtaining frequency 

dependent dynamic moduli from creep or relaxation measurements. In this approach, the 

experimental data are curve-fitted to a particular time-domain model such as the generalized 

Maxwell model or the generalized Kelvin-Voigt model which are shown in Figure 2.9. 

Subsequently, the resulting curve-fitted time-domain models are transformed to the frequency-

domain using Fourier transform in order to extract the complex viscoelastic modulus. 

 

2.5 Prony Series Representation of Linear Viscoelasticity 

 

Linear viscoelastic behavior can be described by the generalized Maxwell model shown 

in Figure 2.9.  
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Figure 2.9: Generalized Maxwell Model (GMM) 

 

An extra isolated spring 𝐸∞   is added to represent arrheodictic behavior that cannot exhibit 

steady-state flow. The behavior of each Maxwell element, where a spring and a dashpot are 

connected in series, is expressed as 

 𝜀𝑘̇ =
𝜎𝑘̇

𝐸𝑘
+
𝜎𝑘

𝜂𝑘
 , 𝑘 = 1, 2, … . . 𝑛  (2.19) 

If a constant strain 𝜖0 is imposed at t = 0, the solution of Eq. (2.19) is given by  

 𝜎𝑘(𝑡) = 𝜎𝑘,0𝑒
−𝑡

𝜏𝑘   (2.20) 

where 𝜎𝑘,0 = 𝐸𝑘𝜖0 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑡 𝑡 = 0 and 𝜏𝑗 = 𝑟𝑒𝑡𝑎𝑟𝑑𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑘
𝑡ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 

 

Then, the stress is given by: 

 𝜎(𝑡) = 𝐸∞𝜖0 + ∑ 𝜎𝑘,0
𝑛
𝑘=1 𝑒

−𝑡

𝜏𝑘 = 𝜖0 [𝐸∞ +∑ 𝐸𝑘
𝑛
𝑘=1 𝑒

−𝑡

𝜏𝑘]  (2.21) 

The relaxation modulus 𝐸(𝑡) is defined as  

 𝐸(𝑡) =
𝜎(𝑡)

𝜖0
= [𝐸∞ + ∑ 𝐸𝑘

𝑛
𝑘=1 𝑒

−𝑡

𝜏𝑘]  (2.22) 

which is essentially the Prony series representation. Here, 𝐸∞  is the final (or equilibrium) 

modulus, and 
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𝐸0 = [𝐸∞ +∑𝐸𝑘

𝑛

𝑘=1

] 

is the instantaneous modulus. A pair of 𝐸𝑘 and 𝜏𝑘 is referred to as a Prony pair.  

                            

The parameters 𝐸0, 𝐸𝑘 , 𝜌𝑘, 𝑎𝑛𝑑  𝜏𝑘 are all positive constants and are identified in order to 

optimally curve-fit the experimental data.  

Once these parameters are obtained, time domain equations are transformed to the 

frequency domain using Fourier transform yielding complex modulus 𝐸∗ as below: 

 𝐸∗(𝜔) = 𝐸0 +∑𝐸𝑘

𝑛

𝑘=1

𝑖𝜔𝜌𝑘
1 + 𝑖𝜔𝜌𝑘

   (2.23) 

   

2.6 Time Domain Characterization Method of the Dynamic Properties of Viscoelastic 

Material (VEM) by Split Hopkinson Pressure Bar (SHPB) 

 

There are two ways to characterize VEM properties. One way is Frequency Domain 

measurements in which dynamic responses are measured at multiple oscillation frequencies. Then 

the Storage and Loss modulus in the frequency domain can be converted into the relaxation 

modulus or creep in the time domain by using an appropriate conversion method. The other way 

is to characterize the relaxation or creep behavior directly in the time domain by applying a fixed 

load for certain duration of time. Time domain measurement techniques are equally as important 

as frequency domain measurements. Below Figure 2.10 shows Time Scale in time domain 

measurements. 
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Figure 2.10: Time Scale in Time Domain measurements (Ward, 1983) 

 

2.6.1 Fundamentals of Hopkinson Pressure Bar (SHPB) Testing in Time Domain 

 

A Hopkinson bar test apparatus usually consists of the following: 

 Two long symmetrical bars namely Incident and Transmitted Bars. Traditionally these bars 

are made of high strength structural metal because the yield strength of the material 

determines the maximum stress attainable within the deforming specimen. 

 Bearing and alignment fixtures to allow the bars and striking projectile to move freely 

while retaining precise axial alignment 

 Compressed gas gun for accelerating a controlled compressed pulse in the incident bar 

 Strain gauges mounted on both bars to measure the stress-wave propagation in the bars 

 Data acquisition system to control, record, and analyze the stress-wave data in the bars 

 

During a SHPB test, the test specimen is compressed between two bars which are called the 

incident bar and the transmitter bar as shown in Figure 2.11. The incident bar is then impacted by 

a striker bar which is launched at high speed using compressed gas. The stress-strain characteristics 

of the specimen are determined through measurements of resulting stress waves in the two bars as 

measured by strain gages which are bonded to the incident bar and the transmitter bar.   
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Figure 2.11: Schematic of Split Hopkinson Pressure Bar (SHPB) apparatus 

 

2.6.2 Theory of Split Hopkinson Pressure Bar (SHPB) 

Since Incident and Transmitted bars are identical to each other, it is only considered one of 

them in developing the equation of motion governing axial vibration. The stress-strain behavior of 

a VEM tested in a SHPB is based on the same Principle of 1-D wave propagation assuming bars 

are thin, long, linear, and dispersion free. 

The theory of SHPB can be understood using the diagram shown in Figure 2.12.  

 

Figure 2.12: Pressure bar shown with differential element prior to deformation 
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where                    𝑑𝑥 = 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎ, 

 𝐴 = 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎,  

𝜌 = 𝐷𝑒𝑛𝑠𝑖𝑡𝑦, 

𝐸 = 𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑢𝑙𝑢𝑠, 

𝑢 = 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑟 𝑎𝑡 𝑎𝑛𝑦 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

  

Compressive forces 𝐹1 𝑎𝑛𝑑 𝐹2 are acting on both sides of the element prior to impact. Hence 

strains can be expressed in terms of the elemental displacements by assuming uniaxial stress. 

Therefore, forces, 

  
  
𝐹1 = 𝐴𝐸

𝜕𝑢1

𝜕𝑥
  and 𝐹2 = 𝐴𝐸

𝜕𝑢2

𝜕𝑥
  (2.24) 

can be expressed in terms of strains of the incident, reflected and transmitted pressure bars as  

 

 𝐹1 = 𝐴𝐸(𝜀𝑖  + 𝜀𝑟) = 𝐹2 = 𝐴𝐸𝜀𝑡   (2.25) 

 

where, 𝜀𝑖 = 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑠𝑡𝑟𝑎𝑖𝑛, 𝜀𝑟 = 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 𝑠𝑡𝑟𝑎𝑖𝑛, and 𝜀𝑡 = 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑠𝑡𝑟𝑎𝑖𝑛. 

 

        Considering the specimen sandwiched between the incident and the transmitted bar, the 

average force and stress on the specimen are found from Equation (2.25) 

 
  
𝐹 =

1

2
(
  
𝐹1 +

  
𝐹2)  (2.26) 

 
  
𝜎 =

  
𝐹𝑎𝑣𝑔
  
𝐴𝑠
= 
𝐴𝐸

2𝐴𝑠
(𝜀𝑖  + 𝜀𝑟 + 𝜀𝑡  ) (2.27) 

 where, 𝐴𝑠 = 𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 

 

But from the compatibility condition of deflection, 
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 𝜀𝑖  + 𝜀𝑟 = 𝜀𝑡   (2.28) 

substituting Equation (2.28) into Equation (2.27),  

 
  
𝜎 =

𝐴𝐸

𝐴𝑠
𝜀𝑡   (2.29) 

Now, the equation describing the motion of the pressure pulse,  

 𝐴𝐸 (
𝜕𝑢1

𝜕𝑥
−
𝜕𝑢2

𝜕𝑥
) = 𝐴𝑑𝑥𝜌

𝜕2𝑢1

𝜕𝑡2
  (2.30) 

By simplifying Equation (2.30) yields the equation of motion of the bar 

 𝑐2 (
𝜕𝑢1

𝜕𝑥
−
𝜕𝑢2

𝜕𝑥
) =

𝜕2𝑢1

𝜕𝑡2
𝑑𝑥  (2.31) 

where 𝑐 =  √
𝐸

𝜌
= 𝑠𝑜𝑢𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑎𝑟 

        Now assuming the rate of change of displacement of both sides of the element are equal, we 

can write, 

 𝑢2 = 𝑢1 +
𝜕𝑢1

𝜕𝑥
𝑑𝑥  (2.32) 

          Differentiating Equation (2.32), we get  

 
𝜕𝑢2
𝜕𝑥

=
𝜕𝑢1
𝜕𝑥

+
𝜕2𝑢1
𝜕𝑥2

𝑑𝑥 (2.33) 

         Substituting Equation (2.33) into Equation (2.31) gives  

  𝑐2
𝜕2𝑢

𝜕𝑥2
=
𝜕2𝑢

𝜕𝑡2
  (2.34) 

 
𝜕2𝑢

𝜕𝑥2
−

1

𝑐2
𝜕2𝑢

𝜕𝑡2
= 0  (2.35) 

         Equation (2.35) which leads to theoretical wave velocity for a wave of infinite 

wavelength will be used to calculate the specimen strain and strain-rate.  The wave directions 

and idealized wave forms are shown in Figure 2.13 (a) and (b) 
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(a) 

 

  (b) 
 

Figure 2.13: (a) Wave directions in SHPB (b) Idealized wave forms  

 

      Now, the strain rate is defined as change of strain of a material with respect to time and 

indicates displacement over time which in turn indicates velocity. 

      Strain rate in the specimen (𝜀𝑠̇) is calculated from pressure bar – specimen interface velocities 

which in turn can be calculated from the strains in the pressure bars. 

Now,  

 
𝜕𝑣

𝜕𝑡
=

𝜕

𝜕𝑡
(
𝜕𝑢

𝜕𝑡
) =

𝜕2𝑢

𝜕𝑡2
   (2.36) 

where 𝑣 = 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

  𝑠 = 𝐸
𝜕𝑢

𝜕𝑥
  (2.37) 

   Differentiating Equation (2.37) with respect to x 

 

  
𝜕𝑠

𝜕𝑥
= 𝐸

𝜕2𝑢

𝜕𝑥2
  (2.38) 
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where  𝑠 = 𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑐𝑟𝑜𝑠𝑠 𝑡ℎ𝑒 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

By assuming a positive harmonic wave of the form: 

 

 𝑠(𝑥, 𝑡) = 𝑃(𝑥)𝑒𝑖(𝜔𝑡−𝑘𝑥)  (2.39) 

 

where 𝑃(𝑥) is spatial function of x and 𝑒𝑖(𝜔𝑡−𝑘𝑥) is a temporal function of the time t with 𝜔 denoting 

the frequency of oscillation of the waves and  

 𝑘 =  
𝜔

𝑐
= 𝑤𝑎𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟  (2.40) 

       Taking the first derivative of equation (2.39) with respect to x,  

 
𝜕𝑠(𝑥,𝑡)

𝜕𝑥
= −𝑖𝑘𝑃(𝑥)𝑒𝑖(𝜔𝑡−𝑘𝑥)  (2.41) 

 

      Substituting Equation (2.41) into equation (2.42) and pre-multiplying the RHS of equation 

(2.34) by the heavyside operator, one attains  

 𝜌𝑖𝜔𝑣(𝑥, 𝑡) = 𝑖𝑘𝑃(𝑥)𝑒𝑖(𝜔𝑡−𝑘𝑥)  (2.42) 

which yields,  

 

 𝑣(𝑥, 𝑡) =
𝑘𝑃(𝑥)𝑒𝑖(𝜔𝑡−𝑘𝑥)

𝜌𝜔
  (2.43) 

        

By substituting the values of 𝑘 𝑎𝑛𝑑 𝑣(𝑥, 𝑡) back in Equation (2.43) yields: 

 

 𝑣(𝑥, 𝑡) =
𝑠(𝑥,𝑡)

𝜌𝑐
  (2.44) 

        

Assuming pressure equivalent to stress across the bar and rewrite the particle velocity in 

terms of bar, we can write  

 𝑠(𝑥, 𝑡) = 𝐸𝜀(𝑥, 𝑡)   (2.45) 

 

Substituting Equation (2.45) into Equation (2.44) gives the velocity in terms of the bar strains 
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 𝑣(𝑥, 𝑡) = 𝑐𝜀(𝑥, 𝑡)  (2.46) 

    Now, the strain rate in the specimen  

 𝜀𝑠̇ =
(𝑢̇1−𝑢̇2)

𝑙𝑠
 (2.47) 

where, 𝑙𝑠 = 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 

Also,                                                    𝑢̇1 = 𝑣(𝑥, 𝑡) = 𝑐(𝜀𝑟 − 𝜀𝑖)  (2.48) 

and                                                   𝑢̇2 = −𝑐𝜀𝑡   (2.49) 

 

        By setting the reflected component of the wave = 0 due to the presence of an anechoic 

termination at the end of the transmitter bar. 

 

 

        Substituting these velocities back in Equation (2.47) yields,  

 𝜀𝑠̇ =
(𝑢̇1−𝑢̇2)

𝑙𝑠
=
𝑐(𝜀𝑟 − 𝜀𝑖 + 𝜀𝑡  )

𝑙𝑠
𝜀𝑠̇  

 𝜀𝑠̇ =
2𝑐𝜀𝑟

𝑙𝑠
  (2.50) 

         Equation (2.50) can be integrated to get the specimen strain as 

 𝜀𝑠(𝑡) =
2𝑐

𝑙𝑠
∫ 𝜀𝑟(𝑡)𝑑𝑡        (2.51) 

 

Accordingly, measuring the reflected strain 𝜀𝑟 and the transmitted strain 𝜀𝑡 can be used to 

calculate the strain 𝜀𝑠  and stress 𝜎𝑠 in the VEM as function of time. From such time histories, the 

stress-strain characteristics, the creep compliance, and complex modulus can be obtained. 
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2.7. SUMMARY 

 
This chapter has presented a brief review of the theory of viscoelasticity and in particular 

the emphasis is placed on the characterization of the stress and strain characteristics of the VEM 

using the Split Hopkinson Pressure Bar (SHPB) whereby the material is subjected to high strain 

rates. 
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Chapter 3 

 
FINITE ELEMENT MODELING OF POLYUREA COMPOSITES 
 

 

3.1 Advanced Model to incorporate VEM into FEM 

 

Classical Viscoelastic material models such as Maxwell, Kelvin-Voigt, and Zener, have 

limitations in modeling accurately the behavior of realistic viscoelastic materials as well as using 

the classical approach of the complex modulus to represent the dynamics of viscoelastic materials 

is limited to frequency domain analysis. Golla-Hughes and MacTavish (1985) used a Laplace-

domain model called GHM Model of the complex modulus in which parameters are determined 

by curve-fitting to experimental data which makes it easy to formulate Finite elements by retaining 

the familiar second order differential equations, constant coefficient form, at the expense of some 

extra scalar degrees of freedom. 

3.1.1 Golla-Hughes-McTavish (GHM) Model 

 

The Golla-Hughes-MacTavish (GHM) model describes the shear modulus of viscoelastic 

materials with a second order differential equation unlike the first order differential equations used 

to describe the Maxwell, Kelvin-Voigt, and Zener models. Such a distinction makes it easy to 

incorporate the dynamics of the viscoelastic materials into finite element models of vibrating 

structures. Such integration is essential to the prediction of the response of these structures both in 

the time and frequency domains. This enables the computation of the structural response to 

transient, shock, as well as sinusoidal loading. 

According to the GHM formulation, the shear modulus G of viscoelastic materials can be 

written in Laplace domain as 
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 𝐺(𝑠)  = 𝐺0  [1 +∑𝛼𝑛

𝑁

𝑛=1

𝑠2 + 2𝜉𝑛𝜔𝑛𝑠

𝑠2 + 2𝜉𝑛𝜔𝑛𝑠 + 𝜔𝑛2
]        (3.1) 

This corresponds to the time-domain relaxation function as 

 𝐺(𝑡)  = 𝐺0  [1 +∑𝛼𝑛

𝑁

𝑛=1

𝑏2𝑘 𝑒
−𝑏1𝑘𝑡 − 𝑏1𝑘 𝑒

−𝑏2𝑘𝑡

𝑏2𝑘 − 𝑏1𝑘 
]        (3.2) 

where   𝑏1𝑘 ,𝑏2𝑘 = 𝜔𝑛 [±√𝜉𝑛
2 − 1]  (3.3) 

 𝐺0 =Equilibrium value of the modulus,  

i.e., the final value of 𝐺(𝜔 = ∞) and 𝑠 is the Laplace domain variable.  

 

The parameters 𝛼𝑛, 𝜉𝑛, 𝜔𝑛are obtained from curve fitting the complex modulus data for a 

particular viscoelastic material at a given temperature. The summation may be thought of as 

representing the material modulus as a series of mini-oscillators (second order equations) as 

suggested by Golla and Hughes. These terms are representations of the internal variables necessary 

to describe the characteristics of the viscoelastic materials. The number of terms kept in the 

expansion is determined by accuracy needed to replicate the real behavior of the material and in 

many cases only two to four terms are necessary. 

3.1.2 Motivation of the GHM Model 

 

Consider a viscoelastic material described by one mini-oscillator (i.e. n=1) which is 

coupled with a mass such that the equation of motion in the Laplace domain is 

 𝑀𝑠2𝑋(𝑠) +  𝐾(𝑠)𝑋(𝑠) = 0  (3.4) 

where M = mass, K = complex stiffness of the VEM 
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Equation (3.4) can be written as  

 𝑀𝑠2𝑋(𝑠) + 𝐾̅  [1 + 𝛼𝑛
𝑠2+2𝜉𝑛𝜔𝑛𝑠

𝑠2+2𝜉𝑛𝜔𝑛𝑠+𝜔𝑛
2]  𝑋(𝑠) = 0       (3.5) 

Let 

 𝑧 =
𝜔𝑛

2

𝑠2+2𝜉𝑛𝜔𝑛𝑠+𝜔𝑛
2 𝑥  (3.6) 

 

Then, in the time domain, the Equation (3.6) reduces to 

 

 𝑧̈ + 2𝜉𝑛𝜔𝑛𝑧̇ = 𝜔𝑛
2(𝑥 − 𝑧)  (3.7) 

 

Substituting equation (3.7) into equation (3.5) gives equation of motion: 

 

 𝑀𝑠2𝑥 + 𝐾̅𝑥 + 𝐾̅𝛼𝑛 [
𝑠2+2𝜉𝑛𝜔𝑛𝑠

𝜔𝑛
2 ]  𝑧 =  0  (3.8) 

In the time domain: 

 𝑀𝑥̈ + 𝐾̅𝑥 + 𝐾𝛼𝑛𝜔𝑛
2 [
𝑥 − 𝑧

𝜔𝑛2
] = 0 (3.9) 

 

Equation (3.9) reduces to structural degrees of freedom, 

 𝑀𝑥̈ + 𝑥(𝐾̅ + 𝐾̅𝛼) − 𝐾̅𝛼𝑧 = 0  (3.10) 

 

Rewriting Equation (3.7) as follows VEM 1 DOF: 

 𝑧̈ − 𝜔𝑛
2𝑥 + 2𝜉𝑛𝜔𝑛𝑧̇ + 𝜔𝑛

2𝑧 = 0 (3.11) 

 

Combining Equations (3.10) and (3.11) in a matrix form, gives 

 [
 𝑀 0
0 1

] {
𝑥̈
𝑧̈
} + [

 0 0
0 2𝜉𝑛𝜔𝑛

] {
𝑥̇
𝑧̇
} + [

 𝐾̅ + 𝐾̅𝛼𝑛 −𝐾̅𝛼𝑛 

−𝜔𝑛
2 𝜔𝑛

2 ] {
𝑥
𝑧
} = 0  (3.12) 
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Equation (3.12) has asymmetric stiffness matrix. However, by multiplying last row by 𝐾̅
𝛼𝑛

𝜔𝑛 
2 , 

makes the stiffness matrix symmetric and as follows: 

 

 [
 𝑀 0

0 𝐾̅
𝛼𝑛

𝜔𝑛 
2
] {
𝑥̈
𝑧̈
} + [

 0 0

0
2𝐾̅𝜉𝑛𝛼𝑛

𝜔𝑛

] {
𝑥̇
𝑧̇
} + [

 𝐾̅ + 𝐾̅𝛼𝑛 −𝐾𝛼𝑛 

−𝐾̅𝛼𝑛 𝐾̅𝛼𝑛 
] {
𝑥
𝑧
} = 0  (3.13) 

 
Equation (3.13) governs the dynamics of the mechanical system shown in Figure 3.1. 

Hence, the viscoelastic material is represented by a spring-mass-damper assembly which is 

connected in parallel with another spring 𝐾̅ . Note that 𝐾̅ from Equation (3.5), represents the 

stiffness of the viscoelastic material under static conditions (i.e. at zero frequency 𝜔). 

 

Figure 3.1: Equivalent system of the GHM Model 

It is important here to note that z defines an “internal degree of freedom” (IDOF) which 

describes the motion of a VEM modeled by a single mini-oscillator. More IDOFs would be added 

when the VEM is modeled by N mini-oscillators. The addition of these damping IDOFs increases 

the size of the equations of motion of the structure considerably. Application of classical model 
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reduction techniques, such as Gaussian reduction, is essential to reduce the size of the 

structure/VEM model to include only the structural degrees of freedom in order to enhance the 

computational efficiency. 

For a VEM which is modeled with N mini-oscillator, the equivalent mechanical system will 

be as shown in Figure 3.2. 

 

Figure 3.2: GHM model with N mini-oscillators 

 

 

Accordingly, the equations governing a model with N mini-oscillators are given by: 

 

 𝑀𝑠2𝑥 + 𝐾̅ [1 + 𝛼1
𝑠2+2𝜉1𝜔1𝑠

𝑠2+2𝜉1𝜔1𝑠+𝜔1
2 + 𝛼2

𝑠2+2𝜉2𝜔2𝑠

𝑠2+2𝜉2𝜔2𝑠+𝜔2
2 +⋯……… . ]  𝑥 = 0  (3.14) 

 

 Let 𝑧1 =
𝜔1
2

𝑠2+2𝜉1𝜔1𝑠+𝜔1
2 𝑥; 𝑧2 =

𝜔2
2

𝑠2+2𝜉1𝜔2𝑠+𝜔2
2 𝑥;  (3.15) 
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Then, in matrix form with force F: 

 

[
 
 
 
 
 
 
𝑀 0 0 … 0

0 𝐾̅
𝛼1

𝜔1 
2 0 … 0

0 0 𝐾̅
𝛼2

𝜔2 
2 … 0

… … … … …

0 0 0 … 𝐾̅
𝛼𝑁

𝜔𝑁 
2 ]
 
 
 
 
 
 

{
 
 

 
 
𝑥̈
𝑧̈1
𝑧̈2
…
𝑧̈𝑁}
 
 

 
 

+

[
 
 
 
 
 
 
0 0 0 … 0

0
2𝐾̅𝜉1𝛼1

𝜔1
0 … 0

0 0
2𝐾̅𝜉2𝛼2

𝜔2
… 0

… … … … …

0 0 0 …
2𝐾̅𝜉𝑁𝛼𝑁

𝜔𝑁 ]
 
 
 
 
 
 

{
 
 

 
 
𝑥̇
𝑧1̇
𝑧2̇
…
𝑧𝑁̇}
 
 

 
 

+

[
 
 
 
 
 
𝐾̅(1 + 𝛼1 + 𝛼2 +⋯ ) −𝐾̅𝛼1 −𝐾̅𝛼2 … −𝐾̅𝛼𝑁

−𝐾̅𝛼1 −𝐾̅𝛼1 0 … 0

−𝐾̅𝛼2 0 −𝐾̅𝛼2 … 0
… … … … …

−𝐾̅𝛼𝑁 0 0 0 −𝐾̅𝛼𝑁]
 
 
 
 
 

{
 
 

 
 
𝑥
𝑧1
𝑧2
…
𝑧𝑁}
 
 

 
 

= 

{
 
 

 
 
𝐹
0
0
…
0}
 
 

 
 

  

(3.16) 

3.1.3 Computation of the Parameters of the GHM Mini-Oscillators 

 

The parameters 𝐺0 , 𝛼𝑛,, 𝜉𝑛 𝑎𝑛𝑑 𝜔𝑛  of the GHM mini-oscillators are determined in such a 

way that replicates closely the experimental behavior of actual VEM. The optimal values of these 

parameters are selected, on a rational basis, in order to minimize the deviations between the 

predictions of the GHM model and the experimental data. The optimization problem is formulated 

as follows 

𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝐺0 , 𝛼𝑛,, 𝜉𝑛 𝑎𝑛𝑑 𝜔𝑛 

𝑇𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒, 𝐹̅ = [(
𝐺′𝐺𝐻𝑀−𝐺

′
𝐸𝑋𝑃

𝐺′𝐸𝑋𝑃
)

2

+ (
𝜂𝐺𝐻𝑀−𝜂𝐸𝑋𝑃
𝜂𝐸𝑋𝑃

)
2

] 

Such that 𝐺0 , 𝛼𝑛,, 𝜉𝑛 𝑎𝑛𝑑 𝜔𝑛 > 0   and 𝐺∞ = 𝐺0 [1 + ∑ 𝛼𝑛
𝑁
𝑛=1 ] 

where 𝐺0 𝑎𝑛𝑑 𝐺∞ 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑚𝑜𝑑𝑢𝑙𝑖 𝑜𝑓 𝑡ℎ𝑒 𝑉𝐸𝑀 𝑎𝑡 𝜔 =  0 𝑎𝑛𝑑 ∞ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦, 

 𝑁 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝐻𝑀 𝑚𝑖𝑛𝑖 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟𝑠  



43 
 

         In the above equation, the objective function 𝐹̅ is formulated in order to minimize the sum of 

the prediction error of the GHM model of both the storage modulus and the loss factor as computed 

over the entire experimental frequency range. The errors are cast in a normalized and quadratic 

form in order to make the optimization problem well-conditioned. Furthermore, constraints are 

imposed to guarantee that the parameters are all nonnegative and that the model can predict the 

storage modulus at large frequencies. Figure 3.3 outlined the flow chart of the optimization 

process. 

Optimization Algorithms: 

 

Figure 3.3: Flowchart of the optimal selection of the GHM parameters 
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3.2 FEM Derivation of the Rod treated with VEM 

 

Figure 3.4 illustrates a Stainless Steel (Structure) rod treated with unconstrained VEM 

Polyurea layer. The structure /VEM is modeled by N one-dimensional finite elements. Each 

element is bounded by two nodes and each node has a single degree of freedom which is the 

longitudinal deflection u. 

              

Figure 3.4: Finite element model the rod/unconstrained VEM assembly 

 

Assumptions:  

 Displacements and forces are measurable only at its two ends 

 Rods experience longitudinal vibrations only 
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 All forces and displacements are axial 

 Uniform cross-sectional area 𝐴 𝑒 

 Spatially uniform stress 𝜎𝑒 

 Linearly elastic solid with modulus 𝐸𝑒 

 infinitesimal strains over the length 𝐿𝑒 

                             

Figure 3.5: Free body diagram of forces acting on a spring 

 

The spring forces and associated deflections as shown in Figure (3.5) are related by the 

following expressions: 

𝐹1 = 𝑘(𝑢1 − 𝑢2) 

𝐹2 = 𝑘(𝑢2  − 𝑢1) 

For the spring to be in equilibrium (net force acting on it must be zero): 

 

                           𝐹1 + 𝐹2 = 0 
Expressing the force balance with matrices and vectors: 

 

 {
𝐹1} = 𝑘 [

 1 −1
] {
𝑢1
𝑢2
} (3.17) 
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 {
𝐹2
} = 𝑘 [   

−1 1
] {
𝑢1
𝑢2
} (3.18) 

Combining Equations (3.17) and (3.18) yields: 

 {
𝐹1
𝐹2
} = [

 𝑘11 −𝑘12
−𝑘21 𝑘22

] {
𝑢1
𝑢2
} (3.19) 

 

𝑦𝑖𝑒𝑙𝑑𝑠
→    {𝐹𝑒} = [𝑘𝑒]{𝑢𝑒} 

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐹𝑖

𝑒 =∑𝑘𝑖𝑗
𝑒

𝑗

𝑢𝑗
𝑒 

The internal force in the Structure /VEM is given by, 

 

                            𝐹 = 𝜎𝑒𝐴𝑒 = 𝐸𝑒𝐴𝑒𝜀𝑒    
𝑦𝑖𝑒𝑙𝑑𝑠
→               𝐹 = 𝐸𝑒𝐴𝑒 [

𝑢2−
𝑒 𝑢1

𝑒

𝐿𝑒
] 

 

 
𝑦𝑖𝑒𝑙𝑑𝑠
→    {

𝐹1
𝑒

𝐹2
𝑒} =

𝐸𝑒𝐴𝑒

𝐿𝑒
[
 1 −1
−1 1

] {
𝑢1
𝑒

𝑢2
𝑒} 

This shows that 𝑘 =
𝐸𝑒𝐴𝑒

𝐿𝑒
. 

 

Using a linear shape function, one can write the deflection u at any location x, in terms of 

the nodal deflection as follows: 

 𝑢(𝑥) = ∑ 𝑁𝑖(𝑥)𝑢𝑖
𝑛𝑜𝑑𝑒𝑠 𝑝𝑒𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡
𝑖 = ⌈𝑁1 𝑁2 ⌉ {

𝑢𝑗
𝑢𝑘
} = ⌈𝑁⌉{Δ𝑖}   (3.20) 

 

where                   𝑁1(𝑥) = 1 −
𝑥

𝐿
 𝑎𝑛𝑑 𝑁2(𝑥) =

𝑥

𝐿
 are interpolating vector  

{Δ𝑖} = {𝑢𝑗  𝑢𝑘}
𝑇
𝑎𝑟 𝑛𝑜𝑑𝑎𝑙 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑖𝑡ℎElement 

𝑁𝑖(𝑥𝑗) = 𝛿𝑖𝑗 = {
1,     𝑖 = 𝑗
0,     𝑖 ≠ 𝑗

 

Now, the Potential Energy is given by: 
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 𝑃. 𝐸 = 𝑃. 𝐸𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 + 𝑃. 𝐸𝑉𝐸𝑀 =
1

2
∫ 𝐸𝑠𝐴𝑠

𝐿𝑒𝑠

0

𝑢𝑥
2𝑑𝑥 +

1

2
∫ 𝐸𝑣𝐴𝑣

𝐿𝑒𝑣

0

𝑢𝑥
2𝑑𝑥 (3.21) 

 

where, 𝐸𝑖 and 𝐴𝑖 are Young’s modulus and the area of  𝑖𝑡ℎ  layer with subscript s and v denoting 

the structure and the VEM respectively. Also, 𝑢𝑥 denotes partial derivative of the deflection u with 

respect to x. 

 

        From equations (3.20) and (3.21), the potential energy reduces to 

𝑃. 𝐸 =
1

2
{Δ𝑖}

𝑇∫ 𝐸𝑠𝐴𝑠

𝐿𝑒𝑠

0

{N𝑥}
𝑇{N𝑥}𝑑𝑥{Δ𝑖} +

1

2
{Δ𝑖}

𝑇∫ 𝐸𝑣𝐴𝑣

𝐿𝑒𝑠

0

{N𝑥}
𝑇{N𝑥}𝑑𝑥{Δ𝑖} 

𝑦𝑖𝑒𝑙𝑑𝑠
→    =

1

2
{Δ𝑖}

𝑇𝐸𝑠𝐴𝑠∫{N𝑥}
𝑇

𝐿𝑒

0

{N𝑥}𝑑𝑥{Δ𝑖} +
1

2
{Δ𝑖}

𝑇𝐸𝑣𝐴𝑣∫{N𝑥}
𝑇

𝐿𝑒

0

{N𝑥}𝑑𝑥{Δ𝑖} 

 𝑃. 𝐸 =
1

2
{Δ𝑖}

𝑇[𝐸𝑠𝐴𝑠 + 𝐸𝑣𝐴𝑣]∫ {N𝑥}
𝑇

𝐿𝑒

0

{N𝑥}𝑑𝑥{Δ𝑖}  =
1

2
{Δ𝑖}

𝑇[𝐾𝑠 + 𝐾𝑣]{Δ𝑖} (3.22) 

where 

 

[𝐾𝑠] = 𝐸𝑠𝐴𝑠 ∫ {N𝑥}
𝑇

𝐿𝑒𝐴𝑙

0

{N𝑥}𝑑𝑥 =
𝐸𝑠𝐴𝑠
𝐿𝑒𝑠

[
 1 −1
−1 1

]  𝑎𝑛𝑑 

 [𝐾𝑣] = 𝐸𝑣𝐴𝑣∫ {N𝑥}
𝑇

𝐿𝑒𝑠

0

{N𝑥}𝑑𝑥 =
𝐸𝑣𝐴𝑣
𝐿𝑒𝑣

[
 1 −1
−1 1

] 

(3.23) 

where [𝐾𝑠] and [𝐾𝑣] denote structural (steel) stiffness matrix (Real) and VEM stiffness matrix 

(Complex) as represented by the GHM model. Also, in equation (3.22), {Nx} denotes the partial 

derivative of {𝑁}with respect to x. 

Similarly, the Kinetic Energy: 
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 𝐾. 𝐸 = 𝐾. 𝐸𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 + 𝐾. 𝐸𝑣𝑒𝑚 =
1

2
∫(𝜌𝑠𝐴𝑠 + 𝜌𝑣𝐴𝑣)

𝐿𝑒

0

𝑢̇2𝑑𝑥 (3.24) 

where 𝜌
𝑠
 𝑎𝑛𝑑 𝜌

𝑣
  denote the density of the structure and the VEM respectively. 

 

But as, 𝑢(𝑥) = ⌈𝑁⌉{Δ𝑖},  then, 𝑢̇(𝑥) = ⌈𝑁⌉{Δ𝑖̇ } and equation (3.24) reduces to: 

 𝐾. 𝐸𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 =
1

2
{Δ𝑖̇ }

𝑇
(𝜌𝑠𝐴𝑠 + 𝜌𝑣𝐴𝑣)∫ {N𝑥}

𝑇{N𝑥}𝑑𝑥{Δ̇𝑖} =
1

2
{Δ𝑖̇ }

𝑇
[𝑀]

𝐿𝑒

0

{Δ̇𝑖} (3.25) 

where, [𝑀] =
(𝜌𝑠𝐴𝑠+𝜌𝑣𝐴𝑣)𝐿

6
[
 2 1
1 2

] =mass matrix of the structure /VEM assembly. 

From equations (3.22) and (3.25), the equation of motion of the element can be obtained 

using the Lagrangian dynamics as follows: 

𝑑

𝑑𝑡
(
𝜕𝐾𝐸

𝜕{Δ}̇
) +

𝜕𝑃𝐸

𝜕{Δ𝑖}
= {F𝑖} 

or [𝑀]𝑠2{Δ𝑖} + [𝐾𝑠 + 𝐾𝑣]{Δ𝑖} = {F𝑖} (3.26) 

 

where, {F𝑖} is the vector of the forces acting on the 𝑖𝑡ℎelement 

 

The equation of motion of the entire Structure /VEM system can then be determined by 

assembling the mass and stiffness matrices of the individual elements to yield: 

 

 [𝑀𝑜]𝑠
2{Δ} + [𝐾𝑠𝑜 + 𝐾𝑣𝑜]{Δ} = {F𝑜} (3.27) 

 

where [𝑀𝑜], [𝐾𝑠𝑜] and [𝐾𝑣𝑜] are the overall mass matrix, overall structural stiffness matrix, and 

overall VEM stiffness matrix as below from Figure 3.4: 

 [𝑀𝑜]𝑠
2{Δ} + [𝐾𝑠𝑜 + 𝐾𝑣𝑜]{Δ} = {F𝑜} (3.28) 
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Now, [𝑀𝑜] = 𝑀𝑠𝑜
(1)
+𝑀𝑣

(2)
+𝑀𝑠𝑜

(3)
 

 

[𝑀𝑜] =
(𝜌𝑠𝐴𝑠𝐿𝑒𝑠)

6
[

2 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0

] +
(𝜌𝑣𝐴𝑣𝐿𝑒𝑣)

6
[

0 0 0 0
0 2 1 0
0 1 2 0
0 0 0 0

]

+
(𝜌𝑠𝐴𝑠𝐿𝑒𝑠)

6
[

0 0 0 0
0 0 0 0
0 0 2 1
0 0 1 2

] 

  (3.29) 

where 

 [𝑀𝑜] =
(𝜌𝑠𝐴𝑠𝐿𝑒𝑠)

6

[
 
 
 
 
 
 
 
 
(𝜌𝑠𝐴𝑠𝐿𝑒𝑠)

3

(𝜌𝑠𝐴𝑠𝐿𝑒𝑠)

6
0 0

(𝜌𝑠𝐴𝑠𝐿𝑒𝑠)

6

1

3
[(𝜌𝑠𝐴𝑠𝐿𝑒𝑠) + (𝜌𝑣𝐴𝑣𝐿𝑒𝑣)]

(𝜌𝑣𝐴𝑣𝐿𝑒𝑣)

6
0

0
(𝜌𝑣𝐴𝑣𝐿𝑒𝑣)

6

1

3
[(𝜌𝑠𝐴𝑠𝐿𝑒𝑠) + (𝜌𝑣𝐴𝑣𝐿𝑒𝑣)]

(𝜌𝑠𝐴𝑠𝐿𝑒𝑠)

6

0 0
(𝜌𝑠𝐴𝑠𝐿𝑒𝑠)

6

(𝜌𝑠𝐴𝑠𝐿𝑒𝑠)

3 ]
 
 
 
 
 
 
 
 

 (3.30) 

[𝐾𝑠𝑜] = 𝐾𝑠𝑜
(1)

+𝐾𝑠𝑜
(2)

+𝐾𝑠𝑜
(3)
= 

𝐸𝑠𝐴𝑠

𝐿𝑒𝑠
[

1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

] + 0 + 
𝐸𝑠𝐴𝑠

𝐿𝑒𝑠
[

0 0 0 0
0 0 0 0
0 0 1 −1

0 0 −1 1

]  (3.31) 

[𝐾𝑠𝑜] =
𝐸𝑠𝐴𝑠

𝐿𝑒𝑠
[

1 −1 0 0
−1 1 0 0
0 0 1 −1

0 0 −1 1

]    (3.32) 

  

 

[𝐾𝑣𝑜] = 𝐾𝑣𝑜
(1)

+𝐾𝑣𝑜
(2)

+𝐾𝑣𝑜
(3)
=  0 +  

𝐸𝑣𝐴𝑣

𝐿𝑒𝑣
[

0 −0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

] + 0 = 
𝐸𝑣𝐴𝑣

𝐿𝑒𝑣
[

0 −0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

] (3.33) 

 

 

Also, {Δ} and {F𝑜} denote the deflection and load vectors of the entire Structure /VEM 

assembly. 
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Before describing the [𝐾𝑣𝑜] in terms of the GHM model, the boundary conditions are 

imposed on the structure to eliminate the rigid body modes. This is essential because these modes 

do to not contribute any damping to the flexible body modes.  

Introducing the I-DOF z to describe the dynamics of the VEM, and employing the approach 

outlined in Section 3.2.1, equation (3.6) reduces to: 

[𝐾𝑣𝑜]  = 𝐸𝑣𝑜   [1 + 𝛼1
𝑠2+2𝜉1𝜔1𝑠

𝑠2+2𝜉1𝜔1𝑠+𝜔1
2] [𝐾̅𝑣𝑜]       (3.34)  

 

Hence, equation (3.28) reduces to: 

 

[𝑀𝑇]{𝑋}̈ + [𝐶𝑇]{𝑋}̇ + [𝐾𝑇]{𝑋} = {𝐹𝑇}   (3.35)  

where,  

[𝑀𝑇] = [
[𝑀𝑜] [0]

[0]
𝛼1𝐸𝑣𝑜[𝐾̅𝑣𝑜]   

𝜔1
2

]; 

[𝐶𝑇] = [
[0] [0]

[0]
2𝜉1𝛼1𝐸𝑣𝑜[𝐾̅𝑣𝑜]   

𝜔1

]; 

[𝐾𝑇] = [
[𝐾𝑠𝑜] + 𝐸𝑣𝑜  (1 + 𝛼1)[𝐾̅𝑣𝑜] −𝐸𝑣𝑜𝛼1 [𝐾̅𝑣𝑜]

−𝐸𝑣𝑜𝛼1 [𝐾̅𝑣𝑜] 𝐸𝑣𝑜𝛼1 [𝐾̅𝑣𝑜]
]; 

{𝑋} = {
∆
𝑧
}; 

 {𝐹𝑇} = {
F𝑜
0
}; 

If the matrix [𝐾̅𝑣𝑜]  remains singular, then introduce the following transformation of the 

𝑧 𝑡𝑜 𝑧̅  IDOF such that 𝑧 = R𝑛𝑧̅ where, R𝑛 is the eigenvector matrix of the non-zero eigenvalues 

Λ of [𝐾̅𝑣𝑜] such that [𝐾̅𝑣𝑜] =  R𝑛Λ𝑅
𝑇
𝑛 with  𝑅𝑛

𝑇R𝑛 = 𝐼 [𝐾̅𝑣𝑜] can also be written as: 

[𝐾̅𝑣𝑜] = R𝑛Λ𝑅𝑛
𝑇 = [R𝑜 R𝑛] [

0 0
0 Λ

] [
𝑅𝑜
𝑇

𝑅𝑛
𝑇]   (3.36) 
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where, 𝑅𝑇 =  𝑡𝑜𝑡𝑎𝑙 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 [𝐾𝑣𝑜]  

which includes the eigenvector matrices for the zero and non-zero eigenvalues 𝑅𝑜  and 𝑅𝑛 

respectively. 

 

This yield,  

[𝑀𝑇] = [
[𝑀𝑜] [0]

[0]
𝛼1𝐸𝑣𝑜Λ  

𝜔1
2

]; 

 

 [𝐶𝑇] = [
[0] [0]

[0]
2𝜉1𝛼1𝐸𝑣𝑜Λ  

𝜔1

]; 

 

[𝐾𝑇] = [
[𝐾𝑠𝑜] + 𝐸𝑣𝑜  (1 + 𝛼1)[𝐾̅𝑣𝑜] −𝐸𝑣𝑜𝛼1 𝑅𝑛 Λ

−𝐸𝑣𝑜𝛼1 Λ𝑅𝑛
𝑇 𝐸𝑣𝑜𝛼1 Λ

]; 

 

         {𝑋} = {
∆
𝑧̅
};                      and                      {𝐹𝑇} = {

F𝑜
0
};   (3.37) 

 

The time and frequency responses of the full order Structure/VEM systems can be 

computed from Equation (3.35). Furthermore, the natural frequencies and corresponding damping 

ratios can be determined by casting the homogenous parts of the two equations in a state-space. 

3.3 Characterization results through FEM/MATLAB and ANSYS  

 

3.3.1    Material Properties 

 

The finite element model (FEM) developed in section 3.2 is now used to predict the 

dynamic behavior of the polyurea composites for different layering configurations and levels of 
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strain rates.  The main physical and geometrical parameters of the SHPB, polyurea, and the inserts 

used to form the polyurea composite are listed in Table 3.1.    

 
 

Table 3. 1: Geometric and structural properties of incident bar, transmitted bar and 

polyurea specimen 

 

 

Figure 3.6 shows the storage modulus and the loss factor of the polyurea at different 

temperatures and frequencies by Nouh et al. [31]. 

Table 3.2 lists the main parameters of the corresponding Generalized Maxwell model that 

models the viscoelastic behavior of the polyurea. 
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Figure 3.6: Storage Modulus and Loss Factor of polyurea at different temperatures and 

frequencies [(a) – experimental, (b) – Generalized Maxwell Model] 
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Mathematically, the VEM is represented by the following Generalized Maxwell model, in the 

time domain, as follows: 

 

/
0

1

( ) 1 i

n
t

i

i

E t E e
 



 
  

  
         (3.38) 

  

where E0 = the equilibrium modulus, i  = the ith relative modulus, and = the ith relaxation times 

= .  Note that E0, i , and are all positive constants. Also, the summation term 
/

1

i

n
t

i

i

e
 



 is 

designated as the “Relaxation Kernel”. 

 

 In the frequency domain, equation (3.38) reduces to: 

 

   

*
0

1

( ) 1
1

n
i

i
ii

s
E s E

s







 
  

  
        (3.39) 

 

where s is the Laplace complex variable. It can be seen that E0 is the limiting value of E(t) which 

is attained at t =when the VEM is totally relaxed. Equivalently E0 is attained when the VEM 

operates under static conditions at 0  .  

 

 Also, at time t = 0 or   , the relaxation modulus assumes a value E given by: 

 

         0

1

1
n

i

i

E E 



 
  

  
      (3.40) 

 

where E denotes the instantaneous modulus. 

 

 

*

1

( )
1

n
i

i
ii

s
E s E

s


 


 



 
  

  
     (3.41)  

 

Also, E defines the limiting value of E(t) which is attained at t = 0 with 
1

1
n

i

i

 



   . 

Equivalently E  is attained when the VEM operates at very high frequency such that .    

 

i

/i iE i
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The relative moduli i  and i are related by the following expressions: 

 

  0 /E E    and   0( / )i iE E      (3.42) 

 

The alternative form of the GMM, given by equation (3.41), is used in most of the 

commercial finite element codes, such as ANSYS, to express the behavior of the VEM. 

Table 3.2: Parameters of the Generalized Maxwell Model (GMM) 

( 1E MPa  , 0.0178   ) 

Term 1 2 3 4 5 6 7 8 

 i 0.3203 0.2491 0.1957 0.0712 0.0534 0.0427 0.0320 0.0178 

    i  (s) 1E-4 1E-3 1E-2 1E-1 1E-0 1E1 1E2 1E3 

 
 

Figure 3.7 shows the storage modulus and the loss factor of the polyurea at different 

temperatures and frequencies by Al Supie [32]. 

Table 3.3 lists the main parameters of the corresponding GHM model with one mini-

oscillators that models the viscoelasticity of the polyurea. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7: Storage Modulus and the Loss Factor of polyurea at different frequencies  

(       Generalized Maxwell Model,         GHM) 
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Table 3. 2: Parameters of the Golla-Hughes-McTavish (GHM) with a single mini-oscillator  

 

Geometric Specifications                 Value 

 

                 𝜔1                           8,000 rad/s 

                 𝜁1                                                 5 

                 𝛼1                       10 

 

3.3.2. Dynamic Behavior of the Polyurea Composites 

 

In this section, three configurations of the polyurea composites are considered.  These 

configurations are displayed in Figure 3.8. These configurations are 1 layer of polyurea (Figure 

3.8(a)), 2 layers of polyurea sandwiching an aluminum layer (Figure 3.8(b)), and 3 layers of 

polyurea sandwiching two aluminum layers (Figure 3.8(c)).  

 

 

 

(a) - 1 layer of polyurea 

 

 

 

(b) – 2 Layers Polyurea/1 Layer Aluminum 

 

 

 

(c) – 3 Layers Polyurea/2 Layers Aluminum 

Figure 3.8: Different configurations of the polyurea composites 

[P = Polyurea (0.0033 m thick), A = Aluminum (0.00071 m thick)] 

Transmitted Bar                       P                  Incident Bar 

1.75 m                                       0.0033 m                              1.75 m 

Transmitted Bar                      P     A    P                Incident Bar 

1.75 m                     0.0033 m    0.0033 m                          1.75 m 

0. 000711 m 

Transmitted Bar                        P   A   P   A    P               Incident Bar 

1.75 m                     0.0033 m    0.0033 m 0.0033 m                           1.75 m 

                              0.000711 m 0.000711 m   
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A. MATLAB 

Configuration 1 (One Polyurea Layer) 

 Figure 3.9 displays the stress and strain characteristics of configuration 1. Figure 3.9(a) 

shows the time histories of the incident and reflected strains as well as that of the transmitted strain.   

The calculated equivalent strain and stress of the polyurea layer are shown in Figure 3.9(b). These 

characteristics are used to plot the stress-strain behavior of the polyurea as shown in Figure 3.9c. 

    

 

 

 

 

 

                              

(a)                                                                                    (b) 

 

 

 

 

 

 

 

 

(c) 

Figure 3.9: Stress and Strain characteristics of Configuration 1 of the polyurea composites 
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Configuration 2 (Two Polyurea Layers/One Aluminum Layer) 

 Figure 3.10 displays the stress and strain characteristics of configuration 2. Figure 3.10(a) 

shows the time histories of the incident and reflected strains as well as that of the transmitted strain.   

The calculated equivalent strain and stress of the polyurea layer are shown in Figure 3.10(b). These 

characteristics are used to plot the stress-strain behavior of the polyurea as shown in Figure 3.10(c). 

 

 

 

 

 

 

                  

(a)                                                                                    (b) 

 

 

 

 

 

 

 

 

(c) 

Figure 3.10: Stress and Strain characteristics of Configuration 2 of the polyurea composites 
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Configuration 3 (Three Polyurea Layers/Two Aluminum Layer) 

 Figure 3.11 displays the stress and strain characteristics of configuration 3.  Figure 3.11(a) 

shows the time histories of the incident and reflected strains as well as that of the transmitted strain.   

The calculated equivalent strain and stress of the polyurea layer are shown in Figure 3.11(b).  These 

characteristics are used to plot the stress-strain behavior of the polyurea as shown in Figure 3.11(c). 

 

 

 

 

 

 

                  

(a)                                                                                    (b) 

 

 

 

 

 

 

 

 

(c) 

Figure 3.11: Stress and Strain characteristics of Configuration 3 of the polyurea composites 
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B. ANSYS 

i. Model 

 

Figures 3.12 and 3.13 display the finite element meshes of the ANSYS models of 

configurations 1 and 3.  In the development of these models, axisymmetric plane elements 183 are 

used.  These elements are higher order 2-D elements with 8 nodes with each node has two in-plane 

degrees of freedom (ux and uy). Note that the x direction is perpendicular to the longitudinal axis y 

of the incident and transmit bars as shown in Figures 3.12 and 3.13.   

In the analysis, the deflections of the incident and transmit bars are limited only along the 

y direction. Hence, all the DOF’s along the x direction are constrained.  Furthermore, the transmit 

bar is assumed to be fixed at its end which is located opposite to the impact end of the incident 

bar. The incident bar is assumed free to move. 

The incident bar is divided into 350 elements and so is the transmit bar.  Each of the 

polyurea layers is divided into 4 elements whereas the aluminum layer is divided 1 element. 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: ANSYS Finite Element Model of Configuration 1 of the polyurea composites 

Incident Bar 

Transmit Bar 

Polyurea Specimen 

x 
y 
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Figure 3.13: ANSYS Finite Element Model of Configuration 3 of the polyurea composites 

 

 

ii. Stress-Strain Characteristics 

 

Configuration 1 (one Polyurea Layer) 

  

Figure 3.14 displays the stress and strain characteristics of configuration 1.  Figure 3.14(a) 

shows the time histories of the incident and reflected strains.   The corresponding transmitted strain 

and stress of the polyurea layer is shown in Figure 3.14(b).   

 

 

x 
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(a) 

 

 

 

 

 

 

 

 

(b) 

 

Figure 3.14 - The Incident and Transmitted Strain signals for Configuration 1 

(single polyurea layer) 
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Configuration 2 (Two Polyurea Layers/One Aluminum Layer) 

   

Figure 3.15 displays the stress and strain characteristics of configuration 2. Figure 3.15(a) 

shows the time histories of the incident and reflected strains. The corresponding transmitted strain 

and stress of the polyurea/aluminum composite is shown in Figure 3.15(b).   

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

Figure 3.15 - The Incident and Transmitted Strain signals for Configuration 2 

(two polyurea layers and single aluminum layer) 
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Configuration 3 (Three Polyurea Layers/Two Aluminum Layers) 

  Figure 3.16 displays the stress and strain characteristics of configuration 3. Figure 3.16(a) 

shows the time histories of the incident and reflected strains.  The corresponding transmitted strain 

and stress of the polyurea/aluminum composite is shown in Figure 3.16(b).   

 

 

 

 

 

 

 

 

 (a) 

 

 

 

 

 

 

 

 

 

(b) 

Figure 3.16 - The Incident and Transmitted Strain signals for Configuration 3 

(three polyurea layers and two aluminum layers) 
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C.  Comparison between the predictions of MATLAB FEM and ANSYS 

 

 This section presents comparisons between the predictions of the developed MATLAB 

FEM and ANSYS. 

Configuration 1 (one Polyurea Layer) 

 

  Figure 3.17 displays the comparisons between the predictions of the stress and strain 

characteristics obtained by the MATLAB FEM and ANSYS for configuration 1. Figure 3.17(a) 

shows the characteristics predicted by ANSYS whereas Figure 3.17(b) displays the corresponding 

characteristics generated by MATLAB FEM.  The figures indicate close agreement between the 

predictions of the MATLAB FEM and ANSYS.  

 

Configuration 2 (Two Polyurea Layers/One Aluminum Layer)    

 Figure 3.18 displays the comparisons between the predictions of the stress and strain 

characteristics obtained by the MATLAB FEM and ANSYS for configuration 2.  Figure 3.18(a) 

shows the characteristics predicted by ANSYS whereas Figure 3.18(b) displays the corresponding 

characteristics generated by MATLAB FEM.   The figures indicate close agreement between the 

predictions of the MATLAB FEM and ANSYS.  

Configuration 3 (Three Polyurea Layers/Two Aluminum Layers)    

 Figure 3.19 displays the comparisons between the predictions of the stress and strain 

characteristics obtained by the MATLAB FEM and ANSYS for configuration 3.  Figure 3.19(a) 

shows the characteristics predicted by ANSYS whereas Figure 3.19(b) displays the corresponding 

characteristics generated by MATLAB FEM.   The figures indicate close agreement between the 

predictions of the MATLAB FEM and ANSYS.  
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(a) - ANSYS                                                            (b) - MATLAB FEM 

 

(a) – ANSYS                                                           (b) – MATLAB FEM 

 

 

Figure 3.17 - Stress-Strain characteristics for Configuration 1 

– ANSYS and (b) – MATLAB FEM 
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(a) – ANSYS                                                           (b) – MATLAB FEM 
 

Figure 3.18 - Stress-Strain characteristics for Configuration 2 

– ANSYS and (b) – MATLAB FEM 
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(a) – ANSYS                                                           (b) – MATLAB FEM 
 
 

Figure 3.19 - Stress-Strain characteristics for Configuration 3 

– ANSYS and (b) – MATLAB FEM 
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3.4. SUMMARY 

 

This chapter presented modeling of the dynamics of polyurea composites when subject to 

high strain loading.  The details of a finite element model (FEM) are outlined and developed in 

section 3.2.  The predictions of the FEM are determined for three configurations of the polyurea 

composites and presented in section 3.3.   The predictions of the MATLAB FEM are validated 

against the predictions of the commercial finite element package ANSYS.  

The comparisons between the predictions of the MATLAB FEM and ANSYS are presented 

in section 3.3.  The established comparisons indicate close agreements between these predictions. 

These predictions are further validated experimentally as will be presented in Chapter 4.  
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Chapter 4 

 

 
EXPERIMENTAL CHARACTERIZATION OF POLYUREA COMPOSITES 

 

4.1 Experimental Setup of Split Hopkinson Pressure Bar (SHPB) 

 

4.1.1 Construction of the SHPB 

 

In order to understand the construction and operation of the SHPB, it is useful to divide the 

setup into three systems namely: 

 The Pneumatic system 

 The Mechanical system 

 The Measuring system 

The pneumatic system can be understood using the circuit shown in Figure (4.1).                

 

Figure 4.1: Schematic of the construction of the SHPB 
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The striking bar is pressurized shown in above circuit in order to force the bar to move 

with high speed. 

Details of the circuit: 

 Compressed air is stored in a High-pressure tank acting as a reservoir to maintain a 

controllable constant pressure. 

 To control the pressure inside the tank there is a pressure controller. 

 To measure the pressure inside the tank there is a pressure transducer that feeds the output 

signal to the pressure controller. 

 A High-pressure source to fill in the air tank as needed when the pressure inside drops 

below the required value. 

 A pressure controller controls a pneumatic valve to open/close the gate for the pressure 

source to feed in the air tank. 

 The output of the air tank is connected by a pressure valve to the inlet of the SHPB striking 

bar to apply the required pressure forcing the striking bar to move with the required speed.  

 A vacuum source to pull the striking bar to its original position after the specimen is hit to 

make it ready for the next measurement. 

The Mechanical System of the SHPB 

The mechanical system consists of the striking bar, the incident bar, the transmission bar 

and the back stop. The sample is mounted between both the incident and striking bar and is 

maintained in contact with both bar ends (trapped between both ends). The other end of the 

transmission bar is backed with a heavily damped weight to prevent the transmission bar from 

flying away with high speed. The striking bar is moving inside a hollow cylinder that acts as a 
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guide for proper application of load. Both the incident and transmission bars are guided through 

sliding bearings. 

 

The Measuring system 

The measuring system consists of two strain gauges, one attached to incident bar and the 

other to the transmission bar. The wiring of both strain gauges is then fed to a Wheatstone Half -

Bridge for strain measurements. The circuit of the strain gauges is as illustrated in Figure 4.2. 

                 

 

 

 

 

 

 

 

 

            

Figure 4.2: Schematic of a half-wheatstone bridge Circuit 

 

A strain gauge produces a resistance change proportional to strain. The proportionality 

factor GF is called the gauge factor and depends on the strain gauge material.  

 
∆𝑅

𝑅
= 𝐺𝐹

∆𝐿

𝐿
 = 𝐺𝐹𝜖 (4.1) 
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We can therefore write for the resistance change in the Incident and transmitted bar strain gauges 

as: 

  𝑅2 = 𝑅𝐺0 + ∆𝑅 = 𝑅𝐺  (1 + 𝐺𝐹𝜖) (4.2) 

 𝑅4 = 𝑅𝐺0 − ∆𝑅 = 𝑅𝐺  (1 − 𝐺𝐹𝜖) (4.3) 

 

where 𝑅𝐺0 = nominal (unstrained) gauge resistance and assume that 𝑅𝑚 is the nominal value 

of 𝑅1 𝑎𝑛𝑑 𝑅3 . 

 

Substitution of these results into the equation for the bridge output voltage yields 

 
𝐸0
𝐸𝑖
=

𝑅𝑚
𝑅𝑚 + 𝑅𝑚

−
𝑅𝐺0 (1 − 𝐺𝐹𝜖)

𝑅𝐺0 (1 + 𝐺𝐹𝜖) + 𝑅𝐺0 (1 − 𝐺𝐹𝜖)
 (4.4) 

or 
𝐸0
𝐸𝑖
=
1

2
−
1 − 𝐺𝐹𝜖

2
=
𝐺𝐹𝜖

2
 (4.5) 

 

Equation (4.5) is linear in the strain and only depends on the gauge factor independent of 

the resistor values of the strain gauges or the opposing resistors. 

It is very important to note that the concept of the Whetstone Bridge lies in the electrical 

balance of the bridge, which two arms are connected to two strain gauges forming the half bridge. 

Therefore, at the beginning of the experiment the output voltage of the bridge has to be zero, to 

ensure proper balance is there for proper measurement. This balance can be forced using one of 

two methods; the first is by using an externally attached potentiometer that balances the circuit. 

The other method is using the on-board zero-adjusting resistance. The correct balance is detected 

using the oscilloscope by feeding the time-signal to the oscilloscope and changing the resistances 

until they reach zero on the oscilloscope screen. 
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The oscilloscope used, is a 4-channel 1GHz oscilloscope with 4 inputs. Two inputs are used 

to measure the time signals of the strain gauges. The oscilloscope has two modes of operation 

(continuous run mode) and (trigger mode). In the first mode (continuous run), the oscilloscope 

continuously measures the signals input to its ports and plots a real-time plot of them. In the second 

(trigger) mode, the oscilloscope is not capturing any data unless a certain voltage level is reached 

at one of its selected inputs. Therefore, we set the trigger source to be the signal measured by the 

incident strain gauge. Once the striking bar hits the incident bar and the pressure wave moves to 

the sample, it causes the incident strain gauge to deflect and sends a signal to the oscilloscope. At 

this specific moment, when the strain gauge signal reaches a certain level, the oscilloscope starts 

capturing the data from all its ports and records them. Once completed, the data plots can be saved 

on a floppy disk to be analyzed later on a computer. 

 

Auxiliary Measuring systems 

Two additional measuring systems are to be attached to the SHPB; the first is a load cell 

and the second is a temperature controlled chamber. The load cell is from OMEGA and is as 

illustrated in Figure 4.5. 

The load cell is to be mounted at the tip of the incident bar close to the sample. This way, 

not only the strain is measured but also the impact force. 

4.1.2 Operation of the SHPB 

 

The pressure inside the tank is controlled using the pressure controller, which has two set 

points (SP1 and SP2), which decides the lower and upper pressure values of the pressure inside 

the tank. A calibration chart is used to get the required speed of the striking bar by setting SP1 and 

SP2 to a specified value. Once set, the pressure source starts feeding in air to the tank via the inlet 
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pneumatic valve until the pressure inside reaches the required set value (which is detected by the 

pressure transducer) and thus the controller closes the inlet valve maintaining a stable and constant 

pressure inside the tank. 

 

A remote control is used to send a signal to feed to the controller that opens the second 

valve (outlet valve) causing the high pressure to flow to the striking bar and the impact takes place.  

Again, using the same remote control, the controller is sent a signal to close the second valve and 

the vacuum acts at this moment to withdraw the striking bar back to its position. 

 

The schematic of a typical SHPB is as illustrated in Figure 4.3, where a high-pressure air 

is forcing a striker bar to accelerate and strikes the incidence bar. The strike introduces a pressure 

wave that propagates through the incidence bar to the transmission bar passing through the 

specimen to be tested.   

Thus, an impact loading is applied to the specimen. In other words, high strain rate is 

introduced in the specimen. In order to measure the material properties, the time-dependent 

incident, reflected and transmitted waves must be measured simultaneously. This is achieved using 

two strain gauges; the first is attached to the incidence bar and the second is attached to the 

transmission bar. Both the signals from these two strain gauges are fed to a high sampling rate 

oscilloscope that captures the time domain signal of both the strain gauges.   
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Figure 4.3: Schematic of operation of the SHPB 
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A striker bar of various lengths will produce different loading durations, i.e., short striker 

bars impart short time duration loads as shown in Figure 4.4.  The impact of the striker bar triggers 

data collection from the strain gages located on the incident and transmission bars.  From the data 

collected by the strain gauges, stress, strain, and strain rate can be calculated. 

 

 

 

 

 

 

 

 

Figure 4.4: SHPB with gas cylinder 

 

 The striking speed is measured and calibrated for different levels of air pressure using a 

calibration tripod shown in Figures 4.5 and 4.6. 

 

 

 

 

 

 

 

 

 

Figure 4.5: SHPB with wheatstone bridge circuit 
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Figure 4.6: Incident and Transmitted bars of the SHPB  

 

4.2 Calibration of the SHPB 

Figure 4.7 displays the calibration curve of the striker speed as function of the applied air pressure. 

 
 

 

 

 
 
 
 
 
 

 

Figure 4.7: Calibration of the striker speed 

Also, Figure 4.8 displays the calibration characteristics of the incident and transmitted strain gages 

as functions of the striking force. 
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Figure 4.8: Calibration of the Incident and Transmitted Strain Gages 

4.3. Experimental Results  

 This section summarized the main experimental results which are obtained for the three 

configurations of the polyurea composites shown in Figure 4.9. 

Figure 4.9 indicates that the considered configurations include the configurations listed in 

Table 4.1.   In these configurations, the polyurea layers are 0.0033 m in thickness and the aluminum 

layers are 0.000711 m in thickness. 

 

Figure 4.9: Experimental Configurations of the polyurea composites 
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Table 4. 1– Configurations of the tested polyurea composites 

Configurations Number of Polyurea Layers Number of Aluminum Layers 

1 1 0 

2 2 1 

3 3 2 

 

 Figure 4.10 displays the incident and transmitted strain signals as measured for 

configuration 1 which is a single layer of polyurea.   

 Figures 4.11 and 4.12 show the corresponding characteristics of configurations 1 and 3, 

respectively.  In configuration 2, two layers of polyurea sandwich a single layer of aluminum while 

in configuration 3, three layers of polyurea are used to sandwich two layers of aluminum as shown 

in Figure 4.9. 

 

 

 

 

                    Configuration 1 

 

 

 

 

Figure 4.10 - Incident and Transmitted Strain signals for Configuration 1 

(single polyurea layer) 
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                   Configuration 2 

 

 

 

 

Figure 4.11 - Incident and Transmitted Strain signals for Configuration 2 

(two polyurea layers and single aluminum layer) 

 

 

 

 

 

               Configuration 3 

 

 

 

 

Figure 4.12 - Incident and Transmitted Strain signals for Configuration 3 

(three polyurea layers and two aluminum layers) 
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The time histories of the incident and transmitted strains ( ,i t   ) are used to generate the 

strain and stress in the different polyurea composite configurations using the flow chart outlined 

in Figure 4.13. 

 

 

 

 

 

 

 

 

 

Figure 4.13 - The flow chart for calculating the strain and stress in the polyurea composites 

Figures 4.14 through 4.16 display the calculated time histories of the strain and stress of 

configurations 1 through 3 respectively. 
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Figure 4.14 - Calculated time histories of the Strain and Stress for Configuration 1      

(single polyurea layer) 
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                   Configuration 2 

 

 

 

Figure 4.15 - Calculated time histories of the Strain and Stress for Configuration 2 

(two polyurea layers and single aluminum layer) 

 

 

 

 

 

 

 

 

 

                 Configuration 3 

 

 

 

 

 

 

 

 

Figure 4.16 - Calculated time histories of the Strain and Stress for Configuration 3 

(three polyurea layers and two aluminum layers) 

Figures 4.17 through 4.19 display the stress-strain characteristics of configurations 1 

through 3 respectively as obtained by eliminating the time from the time histories of Figures 4.14 

through 4.16. 
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                   Configuration 1 

 

 

 

Figure 4.17 - Stress-Strain characteristics for Configuration 1 

(single polyurea layer) 

 

 

 

 

 

                          Configuration 2 

 

 

 

Figure 4.18 - Stress-Strain characteristics for Configuration 2 

(two polyurea layers and single aluminum layer) 

 
 
 
 
 

 

0 0.01 0.02 0.03 0.04 0.05 0.06
-1

0

1

2

3

4

5
x 10

6

Strain

S
tr

e
s

s
, 

P
a

0 0.01 0.02 0.03 0.04 0.05 0.06
-1

0

1

2

3

4

5
x 10

6

Strain

S
tr

e
s

s
, 

P
a



85 
 

 

 

 

 

 

 

                        Configuration 3 

 

 

Figure 4.19 - Stress-Strain characteristics for Configuration 3 

(three polyurea layers and two aluminum layers) 

A better understanding of the effect of the configuration of the polyurea composite on the stress-

strain characteristics can best be understood by considering the combined plots displayed in Figure 

4.20. 

 

 

 

 

 

 

 

 

 

Figure 4.20 - Stress-Strain characteristics for the different Configurations of the polyurea 

composites 
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Figure 4.21 - Stress-Strain characteristics for the different Configurations of the polyurea 

composite at strain rate of 1,480 s-1 

 

4.5. Comparison between the Experimental Results and the Predictions of ANSYS 

 This section presents comparisons and validation of the predictions of the developed 

ANSYS model and the experimental results. 

Configuration 1 (one Polyurea Layer) 

 

  Figure 4.22 displays the comparisons between the experimental results and the predictions 

of the stress and strain characteristics obtained by ANSYS for configuration 1.  Figure 4.22(a) 

shows the characteristics predicted by ANSYS whereas Figure 4.22b displays the corresponding 

characteristics generated experimentally. The figures indicate close agreement between the 

experiments and the predictions of ANSYS.  
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Configuration 2 (Two Polyurea Layers/One Aluminum Layer)    

 Figure 4.23 displays the comparisons between the experimental results and the predictions 

of the stress and strain characteristics obtained by ANSYS for configuration 2. Figure 4.23(a) shows 

the characteristics predicted by ANSYS whereas Figure 4.23(b) displays the corresponding 

characteristics generated experimentally. The figures indicate close agreement between the 

experiments and the predictions of ANSYS.   

Configuration 3 (Three Polyurea Layers/Two Aluminum Layers)    

 Figure 4.24 displays the comparisons between the experimental results and the predictions 

of the stress and strain characteristics obtained by ANSYS for configuration 3.  Figure 4.24(a) 

shows the characteristics predicted by ANSYS whereas Figure 4.24(b) displays the corresponding 

characteristics generated experimentally. The figures indicate close agreement between the 

experiments and the predictions of ANSYS.   
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(a) – ANSYS                                                           (b) – MATLAB FEM 
 
 

Figure 4.22 - Stress-Strain characteristics for Configuration 1 

(a) – ANSYS and (b) – Experiments 
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(a) – ANSYS                                                           (b) – MATLAB FEM 
 
 

Figure 4.23 - Stress-Strain characteristics for Configuration 2 

(a) – ANSYS and (b) – Experiments 
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(a) – ANSYS                                                           (b) – MATLAB FEM 

Figure 4.24 - Stress-Strain characteristics for Configuration 3 

– ANSYS and (b) – Experiments 
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4.4. SUMMARY 

 

This chapter presented the experimental dynamic characteristics of polyurea composites 

when subject to high strain loading using the Split Hopkinson Pressure Bar (SHPB) method.  The 

details of experimental setup and calibration are outlined and developed in section 4.1 and 4.2.  

The experimental results are determined for three configurations of the polyurea composites and 

presented in section 4.3.   These results are used to validate the predictions of the commercial finite 

element package ANSYS.  

The comparisons between the predictions of ANSYS and the experimental are presented in 

section 4.4.  The established comparisons indicate close agreements between the experiments and 

theoretical predictions. 
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Chapter 5 

CHARACTERISTICS OF PERIODIC POLYUREA COMPOSITES 

 

INTRODUCTION 
 

The polyurea composites when arranged in periodic arrangements can possess unique wave 

propagation characteristics primarily because of their inherent design features.  These features 

include the inclusion of the polyurea as a damping ingredient as well as sources of locally resonant 

substructures by virtue of the aluminum layers. Because of such features, the periodic polyurea 

composites will have the ability to completely block the propagation of waves over broad 

frequency bands called “band gaps”. Such unique wave filtering capabilities render the periodic 

polyurea composites to be effective means for mitigating the effect of high strain loading such as 

blast wave loading. 

In this chapter, the theory that govern the wave propagation characteristics in periodic 

polyurea composites (PPM) is presented.  The effect of the configuration of the PPM, as is shown 

typically in Figure 5.1, on the wave propagation characteristics is investigated using the Bloch 

wave propagation approach.   

Numerical examples are considered to demonstrate the filtering capabilities of the PPM for 

various blast wave loading conditions. 

 

 

Figure 5.1: Typical periodic polyurea composite 

(P = Polyurea, A = Aluminum) 

Base Structure           P   A   P             Base Structure 

Unit Cell 
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5.1. Modeling of the Band Gap Characteristics of Polyurea Composites 

 

The theory of periodic structures was originally developed for solid state applications 

(Brillouin, 1946) and extended, in the early seventies, to the design of mechanical structures 

(Mead, 1970 and Cremer et al., 1973). Since then, the theory has been extensively applied to a 

wide variety of structures such as spring-mass systems (Faulkner and Hong, 1985), periodic beams 

(Mead, 1971 and 1975), stiffened plates (Sen Gupta, 1970), ribbed shells (Mead and Bardell, 1987) 

and space structures. Apart from their unique filtering characteristics, the ability of periodic 

structures to transmit waves, from one location to another, within the pass bands can be greatly 

reduced with the ideal periodicity. 

 

In this chapter, the theory of periodic structures will be applied to structures with periodic 

inserts that have built-in local sources of resonance in an attempt to shift the zones of stop bands 

to lower frequencies.  In this regard, the wealth of the new literature will be capitalized on. 

Examples of such recent publications include the work of Nouh et al. [31]. 

 

A. Analysis of Periodic Polyurea Composites using Transfer Matrix Method 

In order to develop the proposed approach, the viscoelastic damping is described in the 

time domain by the Golla-Hughes-McTavish model described in section 3.1. 

 

In this case, the finite element model of a unit cell of the polyurea composites can be 

written as given by equation (3.35) in Section 3.2, such that: 

 

           [𝑀 ]{𝑢}̈ + [𝐶 ]{𝑢}̇ + [𝐾 ]{𝑢} = {𝐹𝑇}   (5.1)  
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where M, C, and K denote the mass, damping, and stiffness matrices respectively. Also, FT and u 

define the forcing function acting on the composite and the resulting nodal deflection vector, 

respectively.  

 

 The nodal deflection vector of a unit cell u is defined as: 

      
T

L i Ru u u u      (5.2) 

where , ,L iu u and Ru denote the boundary, internal, and lower deflection vectors as shown in 

Figure (5.2).   

 

 

  

  

 

   

 

    

 

   

Figure 5.2 –Degrees of freedom of a unit cell of periodic polyurea composite 

(P = Polyurea, A = Aluminum) 

 

This vector is condensed to support Bloch wave propagation theory. Hence, the 

displacements at the boundaries are related as follows: 

     
ikL

R Lu e u       (5.3) 

where k and L denote the wave number and the length of the unit cell, respectively. 
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 Hence, define an independent nodal deflection vector u  such that: 

 
T

L iu u u       (5.4) 

 

The deflection vectors u and u are related as follows: 

 

    u T u       (5.5) 

 

where T is a transformation matrix such as: 

 

    
0

0 0

T
ikLI e I

T
I

 
  
 

     (5.6) 

  

 Substituting equations (5.5) and (5.6) into equation (5.1), it reduces to: 

 

    M u C u K u F        (5.7) 

 

where *M T M T , *C T CT , *K T K T , and *F T F . 

 

 Equation (5.7) is now cast in the following state-space form (Meirovitch 2010; Hussein 

2009; and Hussein and Frazier 2010): 

 

00 0

0

M M
y y

FKM C

     
      

   
    (5.8) 

 

where  
T

y u u .   Assuming the state-space solution: 

 

    ˆty e y        (5.9) 

 

This solution leads to the following eigenvalue problem: 

 

    
0 0

ˆ 0
0

M M
y

KM C


    
      
   

    (5.10) 

 

which can be rewritten in the following compact and standard form: 

 

    ˆ ˆAy y        (5.11) 

 

With the matrix A given by: 
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1
0 0

0

M M
A

KM C


   

     
  

     (5.12) 

 

 

Note that all the entries of the matrix A are function of the dimensionless wave number kL.  

Then, the eigenvalues of the matrix A can be determined for different values of the wave number 

kL.   The eigenvalues s are complex and generally assume the following form: 

    ( )s s rs dskL i       s =1..., n   (5.12) 

With , ,s rs  and ds denote the damping ratio, undamped resonant frequency, and damped 

resonant frequency, respectively. 

Hence, damped resonant frequency and the damping ratio can be extracted as follows: 

     ( )ds simag kL          (5.13) 

and     
 ( )

( )

s
s

s

real kL

kL





        (5.14) 

 Plotting the resonant frequency ds against the wave number kL, gives the dispersion 

characteristics of the unit cell of the periodic polyurea. It further defines the zones of stop and pass 

bands as will be illustrated. 

 

B. Numerical Examples 

Figure 5.3 displays a typical blast wave form with a maximum normal force defined as 

𝐹𝑚𝑎𝑥 = 1000 N.  The blast wave is assumed to be represented as follows (Barnhart IV, 2016): 
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0

max
d

t t

t
F F e

 
 
      (5.15) 

 where 𝑡0 = 0.5 ms, and 𝑡𝑑 = 0.2 ms.  

 

 

 

 

 

 

Figure 5.3 – Form of a typical blast wave form 

 

5.2. Dispersion Curves 

 

Determinant of matrix A can be set to zero to get the characteristics equation whose roots 

will give the propagation constant 𝜇 for any frequency 𝜔 .  

Equation (2.35) can be written in the following state-space form: 

𝑑

𝑑𝑥
{ 𝑈
𝑈𝑥
}   =  [

0 1

−𝑘2 0
]  = 𝐴 { 𝑈

𝑈𝑥
}  

Which has a solution:  

                                                                                    
 

The above solution can be put in a transfer matrix form by setting  𝑈𝑥  =
𝐹

𝐸𝐴
  and extracting 𝑒𝐴𝑥  

using symbolic manipulation software to give: 



98 
 

                                              

                                 

Accordingly, the transfer matrix [𝑇] is given by in a more compact form as:   

 

[𝑇] = [
cos (𝑘𝑥)

1

𝑧𝜔
sin (𝑘𝑥)

−𝑧𝜔𝑠𝑖𝑛(𝑘𝑥) cos (𝑘𝑥)
] 

 

𝑤ℎ𝑒𝑟𝑒, 𝑧 =  𝐴√𝐸𝜌 = 𝑖𝑚𝑝𝑒𝑑𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑟 

[𝑇] has the following two eigenvalues:  𝜆1 = 𝑒
−𝑖𝑘𝑥 and 𝜆2 = 𝑒

𝑖𝑘𝑥 = 𝜆−1  

 

Figure 5.4 – Configuration I with Unit Cell 

 

[𝑇𝑠] = [
cos (𝑘𝑠𝐿𝑠)

1

𝑧𝑠𝜔
sin (𝑘𝑠𝐿𝑠)

−𝑧𝑠𝜔𝑠𝑖𝑛 (𝑘𝑠𝐿𝑠) cos (𝑘𝑠𝐿𝑠)

]  𝑤𝑖𝑡ℎ 𝑠 = 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑏𝑎𝑟, 𝑃𝑜𝑙𝑦𝑢𝑟𝑒𝑎 

 

Combining the transfer matrices of the substructures of Incident Bar (IB) and Polyurea (P) for 

Configuration I, yields the transfer matrix [𝑇] for the unit cell as follows: 

[𝑇𝑐𝑒𝑙𝑙] = [𝑇𝑃][𝑇𝐼𝐵] 
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and for the complete rod [𝑇𝑟𝑜𝑑] = [𝑇𝑐𝑒𝑙𝑙]
𝑁𝑐𝑒𝑙𝑙 

𝑤ℎ𝑒𝑟𝑒 𝑁𝑐𝑒𝑙𝑙 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 

From the eigenvalue problem (5.10), we can determine the propagation parameter, 𝜇, which is 

related to the eigenvalue by 𝜆 = 𝑒𝜇. 

By definition of the hyperbolic cosine, 

𝑒𝜇 + 𝑒−𝜇 = 2cosh𝜇 

Thus, solving for 𝜇 leads to  

𝜇 = 𝐴𝑟𝑐 cosh [
𝑒𝜇+𝑒−𝜇

2
]= 𝐴𝑟𝑐 cosh [

𝜆+𝜆−1

2
]= 𝛼 + 𝑖𝛽 

where, 𝜇 = 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝛼 = 𝑇ℎ𝑒 𝑙𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐 𝑑𝑒𝑐𝑎𝑦 

𝛽 = 𝑃ℎ𝑎𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝐶𝑒𝑙𝑙𝑠 

5.3. Pass-band and Stop-band Mapping 

 

An efficient way for representing the geometrical and physical characteristics of the 

Polyurea composites on the width of the stop and pass bands are presented. The contours of the 

stop and pass bands are plotted for different values of frequency. 

5.4. Analysis of Dispersion curves and Pass-band and Stop-band Mapping 

 

From Figure 5.5 through 5.13 we notice that the eigenvalues of the transfer matrix appear as 

complex conjugate for all frequencies below the cut-off frequency of the cell. From frequencies 

above the cut-off frequency, the eigenvalues appear in real reciprocal pairs. 

Further, we may notice that the imaginary part varies from 0 to π then it stays constant for the 

frequency values at which the real part is non-zero. It indicates the presence of damping in the 

periodic rod that has resulted in eliminating the pass bands completely and extended the stop band 

over the higher frequency band (greater than 2900 Hz for configuration I).  
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Note that the width and location of the stop and pass bands depends primarily on the physical and 

geometrical properties of the periodic rod. 

 

Figure 5.5 – Pass and Stop Bands-Configuration I [𝑵𝒄𝒆𝒍𝒍 = 𝟏] 

 

 

Figure 5.6 – Pass and Stop Bands-Configuration II [𝑵𝒄𝒆𝒍𝒍 = 𝟏] 

 

Figure 5.7 –Pass and Stop Bands-Configuration III [𝑵𝒄𝒆𝒍𝒍 = 𝟏] 
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Figure 5.8 –Pass and Stop Bands-Configuration I [𝑵𝒄𝒆𝒍𝒍 = 𝟐] 

 

                 
Figure 5.9 –Pass and Stop Bands-Configuration II [𝑵𝒄𝒆𝒍𝒍 = 𝟐] 

 

          

Figure 5.10 –Pass and Stop Bands-Configuration III [𝑵𝒄𝒆𝒍𝒍 = 𝟐] 
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Figure 5.11 –Pass and Stop Bands-Configuration I [𝑵𝒄𝒆𝒍𝒍 = 𝟑] 

 

               
Figure 5.12 –Pass and Stop Bands-Configuration II [𝑵𝒄𝒆𝒍𝒍 = 𝟑] 

 

             

Figure 5.13 –Pass and Stop Bands-Configuration III [𝑵𝒄𝒆𝒍𝒍 = 𝟑] 

 
 
 

Figures 5.14 through 5.16 show the comparison of magnitude of the eigenvalues of the transfer 

matrix as function of the frequency for Configurations I, II and III with increased periodic cells 

from 1 to 3. Figure 5.14 shows for only a single periodic cell for configuration I, the passive system 
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has a pass band for frequency less than 270 Hz, and a stop band for frequency greater than 270 Hz.  

In other words, the system acts as a “low pass” filter with a cut-off frequency of 270 Hz.  The pass 

and stop band frequencies are being shifted to a higher value as we increase the number of periodic 

cells in figure 5.15 and figure 5.16 for all three configurations. 

It also shows the increase of the stop bands as we increase the layers of polyurea and aluminum 

and a decrease in pass bands in higher frequencies. 

                

  

 

Figure 5.14 –Comparison of Pass and Stop Bands-Configuration I, II and III [𝑵𝒄𝒆𝒍𝒍 = 𝟏] 
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Figure 5.15 –Comparison of Pass and Stop Bands-Configuration I, II and III [𝑵𝒄𝒆𝒍𝒍 = 𝟐]  

             

 
 

Figure 5.16 –Comparison of Pass and Stop Bands - Configuration I, II and III [𝑵𝒄𝒆𝒍𝒍 = 𝟑] 
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           Figure 5.17 through 5.25 presents plot for the variation of the real and imaginary parts of 

the propagation factor μ. Here the real part of the propagation factor is equal to zero for all 

frequency values below the cut-off frequency and continuous curve corresponds to the imaginary 

wavenumbers that are associated with waves that propagate or pass band modes. The dashed black 

line corresponds to the purely real wavenumbers, which do not propagate. The black solid curve 

corresponds to the imaginary wavenumbers that are associated with waves that propagate or pass 

band modes. The non-linearity of the curves indicates that the medium is dispersive for frequency 

values that make the wavenumber complex,  the amplitude of the displacement is attenuated  

exponentially.          

        

Figure 5.17 – Propagation Factor- Configuration I [𝑵𝒄𝒆𝒍𝒍 = 𝟏] 

           

Figure 5.18 –Propagation Factor- Configuration II [𝑵𝒄𝒆𝒍𝒍 = 𝟏] 
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Figure 5.19 –Propagation Factor- Configuration III [𝑵𝒄𝒆𝒍𝒍 = 𝟏] 

 
 

         

Figure 5.20 –Propagation Factor- Configuration I [𝑵𝒄𝒆𝒍𝒍 = 𝟐] 

 

            

Figure 5.21 –Propagation Factor- Configuration II [𝑵𝒄𝒆𝒍𝒍 = 𝟐] 
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Figure 5.22 –Propagation Factor- Configuration III [𝑵𝒄𝒆𝒍𝒍 = 𝟐] 

 

            

Figure 5.23 –Propagation Factor- Configuration I [𝑵𝒄𝒆𝒍𝒍 = 𝟑] 

 

             

Figure 5.24 –Propagation Factor- Configuration II [𝑵𝒄𝒆𝒍𝒍 = 𝟑] 



108 
 

            

Figure 5.25 –Propagation Factor- Configuration III [𝑵𝒄𝒆𝒍𝒍 = 𝟑] 

 
 

Figure 5.26 through 5.28 show the comparison of Propagation Factor for Configurations I, II and 

III with increased periodic cells from 1 to 3. A clear observation from these figures are that, the 

imaginary part varies from 0 to π and vice versa at the frequency band in which the real part is 

zero. Also, the imaginary part is constant with values of π or 0 when the frequency bands in which 

the real part is positive. 

Frequency less than 270 Hz for configuration I (black solid line), the attenuation parameter α = 0, 

i.e. the system has no apparent damping. This results in complete propagation of the waves or a 

“pass band”. But a frequency greater than 270 Hz, the attenuation parameter α ≠ 0, i.e. the system 

has an apparent damping that results in attenuating the propagation of waves in a manner 

equivalent to the presence of actual damping. This occurs over a broad frequency range which is 

called a “stop band”.  Under these conditions, the system behaves as a “low pass filter”. 
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Figure 5.26 –Comparison of Propagation Factor- Configuration I, II and III [𝑵𝒄𝒆𝒍𝒍 = 𝟏] 

                      

 
 

Figure 5.27 –Comparison of Propagation Factor- Configuration I, II and III [𝑵𝒄𝒆𝒍𝒍 = 𝟐] 
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Figure 5.28 –Comparison of Propagation Factor- Configuration I, II and III [𝑵𝒄𝒆𝒍𝒍 = 𝟑] 

 

 Figures 5.29 through 5.37 is a plot of the frequency response of the unit cell. In this plot, we note 

that the response of the cell becomes less than unity (0 dB) for higher frequencies. 

             
 

Figure 5.29 – Frequency Response of a single Cell for Configuration I [𝑵𝒄𝒆𝒍𝒍 = 𝟏] 
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Figure 5.30 – Frequency Response of a single Cell for Configuration II [𝑵𝒄𝒆𝒍𝒍 = 𝟏] 

 

           

Figure 5.31 – Frequency Response of a single Cell for Configuration III [𝑵𝒄𝒆𝒍𝒍 = 𝟏] 

 

            

Figure 5.32 – Frequency Response for Configuration I [𝑵𝒄𝒆𝒍𝒍 = 𝟐] 
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Figure 5.33 – Frequency Response for Configuration II [𝑵𝒄𝒆𝒍𝒍 = 𝟐] 

 
 

          

Figure 5.34 – Frequency Response for Configuration III [𝑵𝒄𝒆𝒍𝒍 = 𝟐] 

 

           

Figure 5.35 – Frequency Response for Configuration I [𝑵𝒄𝒆𝒍𝒍 = 𝟑] 
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Figure 5.36 – Frequency Response for Configuration II [𝑵𝒄𝒆𝒍𝒍 = 𝟑] 

 

         

Figure 5.37 – Frequency Response for Configuration III [𝑵𝒄𝒆𝒍𝒍 = 𝟑] 

 

Figures 5.38 through 5.40 show the comparison of Frequency Response for Configurations I, II 

and III with increased periodic cells from 1 to 3. From figure 5.56, It is clear that, the amplitude 

is decreasing to a factor of 2 as we increase polyurea and aluminum layer with same number of 

periodic cells and after that the increase is not much significant. On the other hand, frequency is 

increasing as we are increasing the number of periodic cells from 1 to 3. The natural frequencies 

of different configurations lie within the pass bands of the periodic rod. 
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Figure 5.38 –Comparison of Frequency Response for Configuration I, II and III [𝑵𝒄𝒆𝒍𝒍 = 𝟏] 

 
 

                
 
Figure 5.39 –Comparison of Frequency Response for Configuration I, II and III [𝑵𝒄𝒆𝒍𝒍 = 𝟐] 
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Figure 5.40 –Comparison of Frequency Response for Configuration I, II and III [𝑵𝒄𝒆𝒍𝒍 = 𝟑] 

 

Time response of a unit cell is shown in Figure 5.41, where we can see the displacement is slowly 

becoming zero once the impact load hits the Incident bar by the Striker bar. 

           

Figure 5.41 – Time Response of a single Cell for Configuration I [𝑵𝒄𝒆𝒍𝒍 = 𝟏] 
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Figure 5.42 – Time Response of a single Cell for Configuration II [𝑵𝒄𝒆𝒍𝒍 = 𝟏] 

         

Figure 5.43 – Time Response of a single Cell for Configuration III [𝑵𝒄𝒆𝒍𝒍 = 𝟏] 

 

The displacement is decreasing to the order of 2 and fast approaching zero as we increased the 

periodic cell units from 1 to 3 as evident from Figures 5.42, 5.43 and 5.44 through 5.49. 
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Figure 5.44 – Time Response for Configuration I [𝑵𝒄𝒆𝒍𝒍 = 𝟐] 

 

         

Figure 5.45 – Time Response for Configuration II [𝑵𝒄𝒆𝒍𝒍 = 𝟐] 

 

        

Figure 5.46 – Time Response for Configuration III [𝑵𝒄𝒆𝒍𝒍 = 𝟐] 
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Figure 5.47 – Time Response for Configuration I [𝑵𝒄𝒆𝒍𝒍 = 𝟑] 

 

           

Figure 5.48 – Time Response for Configuration II [𝑵𝒄𝒆𝒍𝒍 = 𝟑] 

 

           

Figure 5.49 – Time Response for Configuration III [𝑵𝒄𝒆𝒍𝒍 = 𝟑] 
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Figures 5.50 through 5.58 are drawn which shows the strain response between two adjacent nodes. 

Only a single strain gage was used for configuration I with 𝑵𝒄𝒆𝒍𝒍 = 𝟏 and two strain gages were 

used for the rest of the configurations I, II and III with 𝑵𝒄𝒆𝒍𝒍 = 𝟏 , 𝑵𝒄𝒆𝒍𝒍 = 𝟐 and 𝑵𝒄𝒆𝒍𝒍 = 𝟑 . The 

time domain strain signals of the two gages were obtained and transformed to the frequency 

domain using the Fast Fourier Transform to yield the strain response. 

 

            

Figure 5.50 – Strain Response of a single Cell for Configuration I [𝑵𝒄𝒆𝒍𝒍 = 𝟏]         

 

            

Figure 5.51 – Strain Response of a single Cell for Configuration II [𝑵𝒄𝒆𝒍𝒍 = 𝟏] 
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Figure 5.52 – Strain Response of a single Cell for Configuration III [𝑵𝒄𝒆𝒍𝒍 = 𝟏] 

         

Figure 5.53 – Strain Response for Configuration I [𝑵𝒄𝒆𝒍𝒍 = 𝟐] 

         

Figure 5.54 – Strain Response for Configuration II [𝑵𝒄𝒆𝒍𝒍 = 𝟐] 
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Figure 5.55 – Strain Response for Configuration III [𝑵𝒄𝒆𝒍𝒍 = 𝟐] 

 

        

Figure 5.56 – Strain Response for Configuration I [𝑵𝒄𝒆𝒍𝒍 = 𝟑] 

 
 

         

Figure 5.57 – Strain Response for Configuration II [𝑵𝒄𝒆𝒍𝒍 = 𝟑] 
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Figure 5.58 – Strain Response for Configuration III [𝑵𝒄𝒆𝒍𝒍 = 𝟑] 

 

 
 

5.5. SUMMARY 

 

This chapter has presented the theory of periodic structures in an attempt to determine the pass and 

stop band characteristics of these structures using the transfer matrix approach and Bloch wave 

theory. The approach is applied to various configurations of the periodic polyurea composites to 

demonstrate the effectiveness and filtering capabilities of the proposed configurations in mitigating 

the effect of blast waves on the wave propagation characteristics. This analysis shows that wave 

scattering and dispersion are phenomena due to the periodical arrangement of the structure and 

material properties.     
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Chapter 6  

CONTRIBUTIONS, CONCLUSIONS AND FUTURE WORK 

 

6.1. Major Contributions of the Dissertation 

 

 This dissertation has presented the concept of polyurea composites with periodic inserts 

that have built-in sources of local resonance along with their performance characteristics.  

The comprehensive presentation of the periodic polyurea composites through 

mathematical modeling, experimental realization and evaluation demonstrates the effectiveness of 

these composites in mitigating the effect of high strain rate loading.  Such effectiveness is 

attributed to the use of properly stacked layers of polyurea and metallic inserts that are designed 

in a periodic manner.  An analytical approach consists of extracting the variation of propagation 

constants with excitation frequency was modeled by solving a classical eigenvalue problem with 

dynamic stiffness matrices of different polyurea composite configurations. 

The developed theoretical finite element models which are integrated with the “Golla-

Hughes-McTavish” approach enable the predictions of the response both in the time and frequency 

domains.  Furthermore, the implemented approach enables the predictions of the band gap 

mapping characteristics of periodic polyurea composites when coupled with Bloch wave 

propagation theory.  Such a comprehensive model will enable us to characterize mechanical 

dynamic behavior and to apply a valid design criteria of different viscoelastic composite structures.  

This is considered the major contribution of this dissertation. 
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6.2. Conclusions 

 

This dissertation presented a comprehensive theoretical and experimental study of the 

characterization of various configurations of polyurea composites under high strain loading by 

using Split Hopkinson Pressure Bar (SHPB).  These characteristics are predicted theoretically by 

developing a comprehensive finite element model using the Golla-Hughes-Mctavish (GHM) 

approach in order to describe the damping behavior of the polyurea in the time domain. The 

predictions of the FEM model are validated against the predictions of the commercial software 

package ANSYS.  Further validations are carried out against experimental characterization of 

prototypes of configurations of the polyurea composites by using the Split Hopkinson Pressure 

Bar (SHPB) technique. 

 Close agreements are established between the theoretical predictions and the obtained 

experimental results. 

In Chapter 1, step by step development of the Split Hopkinson Pressure Bar technique 

including critical review of the experimental technique in chronological order was presented. In 

addition to the different experimental techniques, effects of specimen dimensions and geometry as 

well as wave propagation were also discussed.  

Literature reviews related to polyurea and its dynamic characterization including rate-

dependent stress-strain behavior of polyurea, use of sensitive piezoelectric strain gauges, 

introduction of power law to describe non-linear stress-strain behavior, effects of pore size to wall 

thickness and random distribution of polyurea pores, use of laser-generated stress waves, and 

behavior of polyurea coated composite aluminum plates under high velocity projectile impact were 

also presented. 



125 
 

In Chapter 2, general dynamic behavior of viscoelastic materials like creep and stress 

relaxation were discussed and equations describing these properties were summarized.  

In Chapter 3, the motivation behind the development of the finite element modeling (FEM) 

is discussed which is based on using the Golla-Hughes-Mctavish (GHM) approach to model the 

viscoelastic behavior of the polyurea. The developed FEM method is employed to simulate the 

dynamics of the SHPB to enable the computation of the incident and transmitted wave strains. 

These strains are employed to extract the stresses and strains experienced by the polyurea 

composites.   

In Chapter 4, the experimental characterization of the polyurea composites are determined 

by using the Split Hopkinson Pressure Bar (SHPB). The experimental results are utilized to 

validate the predictions of the developed theoretical FEM and ANSYS.  Close agreements are 

observed between the experiments and the predictions of the FEM and ANSYS. 

In Chapter 5, the developed FEM model is extended and applied to periodic polyurea 

composite structures.  The analytical results and the comprehensive parametric study demonstrate 

the influence of unit cell size and thickness of the polyurea composite layers in controlling the 

dynamics of wave propagation in rods. In addition, the obtained results provide a guideline for 

designing viscoelastic composites that are capable of filtering out selected excitation frequency 

ranges and the bandwidth of the gaps through proper adjustments of the number of unit cells and 

different composite configurations. 

6.3. Recommendations for Future Studies  

 

 Despite the fact that this dissertation has presented a theoretical and experimental study of 

the fundamentals and the underlying phenomena governing the operation of Split Hopkinson 

Pressure Bar (SHPB) to characterize the dynamic behavior of Polyurea, it has opened also the door 



126 
 

for few more problems that can be considered as a natural extension to the presented study.  For 

example, this dissertation has been limited to the study of basic structural elements such as rods.  

Therefore, a natural extension of this work is to consider using more complex structures like 

beams, plates and shales and use different polymeric incident and transmitted bars to characterize 

different viscoelastic materials. This will enable the study of dynamic behavior of viscoelastic 

material in higher strain rate scale inside automobiles, helicopters, aircraft, and other types of 

structures. 

The present study has been limited to structure which is excited with a step load. An 

extension of this work can deal with structures which are subjected to sinusoidal excitation. Active 

periodic structures can also be used with tunable characteristics by introducing impedance 

mismatch. Future work also requires experimental validation of the periodic structures for realistic 

application of vibration isolation devices and parts in aerospace and automotive industries. 

 

6.4. SUMMARY 

 

This chapter summarizes the major contributions of this dissertation, conclusions on each 

chapters and recommendations for future work which may be carried out to further characterize 

the effects of impact loads on strain rates with different viscoelastic materials. 
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