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Abstract

In semiconductor manufacturing, run-to-run (RtR) control is paid more and more
attention. In this paper a set-valued RtR control scheme is introduced. Different from
conventional RtR control methods, the set-valued method first calculates the feasible
parameter set at the beginning of each run, then estimates the model parameters within
this set. Compared to other RtR control schemes, it does not assume any statistical
property of the noises. In simulation it was shown that it is robust to model and sensor
errors, and it has the potential to be applied to highly nonlinear processes. Furthermore
the set-valued method can be applied to other fields such as signal processing and
chemical processes.

1 Introduction

In semiconductor manufacturing, run-to-run (RtR) control is paid more and more attention.
The processes that could be applied the RtR control method are photolithography, chemical
mechanical planarization (CMP), light pressure chemical vapor deposition (LPCVD), sputter
deposition, ion implantation, photoresist and epi etch processes, etc.

A good RtR controller should be able to compensate for various disturbances, such as
process drifts, process shifts due to maintenance or other factors, model or sensor errors,
etc. Moreover, it should be able to deal with limitations, bounds, cost requirement, multiple
targets, time delays that are often encountered in real processes.

*This work was supported by the Center for Satellite and Hybrid Communication Networks, under NASA
cooperative agreement NCC3-528



At present there are the following RtR control methods available:

1. EWMA (Exponential Weighted Moving Average) method. The most common method
in RtR control is the EWMA method [6],[15]. The EWMA method is applicable to some
processes that can be approximated by linear models in a small range. Sometimes multiple
linear models are used and a supervisory module is used to switch the models. For a detailed
theoretical analysis of the EWMA method, please refer to [9]. There are lots of modifications
to the EWMA method such as double exponential forecasting filter method [13]. It uses a
predictor corrector controller (PCC) to eliminate the impact of machine and process drift.
ANN EWMA [10] method makes the EWMA method applicable to some higher order linear-
in-parameter processes. It will be discussed later. J. A. Mullins [26] uses a discrete process
model for a linear process that has the ability of model-predictive control.

2. KIRC. It is the abbreviation of knowledge based interactive controller [29]. It is a
machine learning algorithm for run-to-run control that uses leaves in a classification decision
tree to suggest control actions. The algorithm generates a decision tree by using an infor-
mation space with attribute tests. The starting operating point is chosen from the largest
leaf in the decision tree where all outputs are inside the target range. It was shown that it
can only be applicable to linear processes in a comparative simulation[29].

3. Least square recursive (LSR) method. It uses least square error to recursively ap-
proximate the process model. Typical examples are the optimized adaptive quality control
(OAQQC) [5] method and the Kalman Filter approach [18]. They are limited to polynomial
processes that are not higher than 2nd order.

4. A probabilistic approach is proposed to RtR control too [11]. It uses probability
theory to analyze the process. The concept of probability of stability and confidence of
reliability are defined. Analytic formulas for the probability of stability were given in the
particular case of an EWMA controller. However there is a key question of reliability of this
methodology. Furthermore it assumes that the noises are Gaussian to derive the formulas,
which limits the practical meaning of this method. At present it is limited to first order
processes, though it has the promise to be used in higher order processes.

5.Artificial neural network method. It has the promise to be applied to severe nonlinear
processes in principle. It was shown that ANN has great potential in modeling severe nonlin-
ear semiconductor processes [34], [35], [36]. However a drawback to ANN method is that it
does not supply an explicit model for the process. Thus it causes difficulties when one tries
to apply optimal control method to adjust recipes. Wang[19] used Taylor expansion to find
a first-order linear model to describe the ANN model. But it finally became a linear RtR
control method. Its performance is only comparable to the EWMA method in the linear
case. It may not be applied to high order linear-in-parameter processes. T. H. Smith [10] etc
used ANN EWMA method to control a 2nd order process. It is successful for small distur-
bances or parameter variations in a limited run numbers(only 40). For large model error or
disturbance, the process will become unstable. The reason is that it used an EWMA module
to feed into the ANN model, which limit the ability of ANN to approximate a nonlinear



process. D. Dong and Zafiriou used ANN approach to control batch-to-batch processes in
chemical engineering, which may include reactors, crystallizers distillation towers and bio-
chemical processes, etc, that can be modeled by a first principle model [27]. The processes
are nonlinear chemical processes, but not the semiconductor process, which are usually much
more complex and delicate. Therefore so far to the best of the author’s knowledge, there is
not a successful scheme to apply the ANN approach to the RtR control of semiconductor
manufacturing nonlinear processes.

6. The set-valued approach. The set-valued based RtR controller can be used on both
linear and nonlinear models. The main difficulty of the set-valued based RtR controller
is the excessive computational time required to calculate the feasible sets and solve the
optimization problem within this set.

Generally the feasible parameter set of linear or linear-in-parameter process can be esti-
mated by set membership approach in the following ways [30]: 1. Ellipsoidal approach. It
will be discussed in detail in the next part. 2. Orthotopic bounding. The feasible parameter
set S is bounded with an orthotope aligned with the co-ordinate axes. S is defined by a set
of 2N (N is the output parameter vector dimension) linear inequalities. Each bound can
be obtained by solving a linear programming problem (e.g. simplex method). 3. Exact
bounding. Some approaches are applicable to obtain the exact description of the set S in
some specific situations [31], [32].

It is natural to use ellipsoids to approximate the region of indeterminacy. Because it
has the following advantages: An ellipsoid is characterized by a vector center and a ma-
trix; for convex regions ellipsoids can be used to obtain a satisfactory approximation; linear
transformations map ellipsoids into ellipsoids.

In application of the ellipsoid algorithms, the minimum bounding ellipsoid which bounds
the parameter set is desired. According to the difference of the search for the minimum
bounding ellipsoid, there are mainly two different kinds of ellipsoid algorithms: Optimal
Volume Ellipsoid Algorithm (OVE algorithm)[1] and Optimal Bounded Ellipsoid (OBE
algorithm)[4]. The OVE algorithm was developed by M. F. Cheung, etc. It is based on
the Khachiyan’s ellipsoid algorithm[2] developed for solving the linear programming prob-
lem.

The OBE algorithm was developed by Fogel and Huang as a set-membership parameter
estimation algorithm[3]. It is important because of its relationship to the LSE techniques.
A main OBE algorithm is the Dasgupta and Huang OBE algorithm (DHOBE algorithm).
It differs from the previous OBE method by introducing a forgetting factor which tries to
shrink the ellipsoid each time the model is updated.

In the next we first introduce the OVE algorithm and the DHOBE algorithm. In section 3,
the application of the set-valued RtR control with OVE approximation on LPCVD process is
discussed. Then it follows the application of the set-valued OVE algorithm on the photoresist
process. The OVE algorithm and the DHOBE algorithm are compared in simulation and
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theory in section 5. In section 6 conclusions are given.

2 The OVE algorithm and the DHOBE algorithm

For a linear-in-parameter system, it can be rewritten as the following form:
_ T
Yk = Xy Ok + mi (1)

where y; is the output, X} is the vector of inputs, 6, is the vector to be estimated and
Mk is the noise. The noise bound is assumed to be 7. It means that

lyr — X 0] < v (2)

The ellipsoid algorithm then produces, at each time step k, a set of estimates bounded
by the ellipsoid: R R
Ek = {gk . (gk - gk)TPk_l(gk — 91:) S 0',3} (3)

Where P, and o, determine the volume of the ellipsoid, and ék is the center of the ellipsoid
at run k.

1. The OVE algorithm.
In the OVE algorithm, o7 = 1.

step 1. Calculate the following parameters

gty = X0
o=

_ (4)
VX Pre—1 Xk

B=—~_ (5)
\/X,Z’Pk,le

If @ > 1, then reset § to f — (o —1)/2 and o = 1. If 20 — « > 1, then reset 5 to (1 + «)/2.
step 2. Calculate 3 intermediate variables.

If oo # (3, then find the real solution 7 of

(1+a)la—26+1
0 —«

(n+1)7* +{ +2[n(B —a) + 1]}7 +na(a —26)+1=0 (6)



such that o — 23 < 7 < a. Here n is the dimension of the estimated vector 0.

(r+1)?%*B—a)—7(1+a)28—a—1)

0= 7
T+ -« (7)
—T
0= ﬁ — (8)
If « = (3, then 7 =0, and
n
§ = 1- 5
(1 - ) @
1 —np?
step 3. Update the ellipsoid.

. . P, 1 X

Oy = Oy + —— L2k (11)

VXFPeo1 Xy,

P 1 Xp X[ Py

P, =0(Py—y —
k (k) 1 o XIZ’P]C_IX]C

(12)
The algorithm can be initiated with a sufficiently large E, containing the feasible param-
eter set.
2. The OBE algorithm.

step 1. X
O = Yr — Xj 01 (13)

step 2. If
Of_1 +0; <7 (14)

then it is thought as a noise disturbance and there is no update of the ellipsoid, otherwise
go to step 3.

step 3.

step 3a. Compute two intermediate scalar variables:

Gy = X} P11 X}, (15)

step 3b.
B = (v = 04_1) /0 (16)
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step 4. Compute an update factor \;. Here 1 — )\ is the forgetting factor. It is confined
to the range 0 < A\ < 1.

A = min(Amaz, Uk) (17)
where
Aas if 62 =
) 1= 52 if Gy — 1 N
Uk = (1—\/Gk/(l—Fﬂk(Gk—l)))/(l—Gk) lfﬂk(Gk—1)+1>0 ( )
Amas it Bu(G — 1) +1<0

step 5. Update the parameter uncertainty factor

O'I% = (1 — )‘k)o—%—l + )\k’)/2 — )\k(l — )\k)é,z/(l — )\k + )\ka) (19)

step 6.This is the rescue procedure. When o7 > 0, proceed to step 7, otherwise:

Compute
SF 4% — 276 if \p # Aaz
o= A U (20)
Amax[l*Amaz‘i‘)\maka o lfAmaz] lf Ak - )‘max
Reset the uncertainty parameter for time k-1
op =K+ (21)
then return to step 3b.
step 7. Update the ellipsoid parameters.
Pl =(1— \) P + M X XF (22)
1 NP 1 Xp X[ Py
Po=——[Py— 23
LTS WL Rl T WS WA (23)
Or = Op_1 + \e P X105 (24)

The initial conditions of the OBE algorithm can be set as 02 = 100,P; " = I to include
the optimal estimation point.



For more details about the OVE algorithm and DHOBE algorithm, please refer to [1],
(3] and [4].

3 Application of the set-valued RtR controller with
OVE approximation on LPCVD process

The idea of the controller here is to use the OVE algorithm to approximate the set of the
feasible states. The set is updated each time when new measurements are available. Once
the set is updated, the process model is updated within this region. Usually the center of
the ellipsoid is an estimate of the process model. However the OVE algorithm may not
propagate the center of the ellipsoid as the estimate. For example, the estimate may be
based on worst case|[7].

In the linear case, the set-valued RtR controller with OVE approximation works very
well. Its performance is comparable to the EWMA method when the disturbance is a drift.
Under a shift disturbance, its performance is better than the EWMA method. We can
validate this performance from simulation results. The model we used is the following light
pressure chemical vapor deposition (LPCVD) process. Here equation (1) can be simplified
to a linear process by taking “logarithm” operation. But equation (2) is a nonlinear model.
In this process we control two target rates R; and Ry. They are the deposition rates in

A /min on the first and last wafer respectively. The target rates are fixed at 169.75 A /min
and 141.7 A /min respectively.

Rl — e{L‘p(Cl + CQZTLP + Cg]ﬂ'_1 + C4Q_1) (25)

1— S'CpR Q"
1+ 5'CpyRiQ"

Ry =Ry (26)

T stands for the temperature in K, P the pressure in mtorr, Q the silane flow rate in
sccm. They are the inputs (recipes) to the process. We adjust them to maintain the process
outputs on targets. The process parameters are ¢; = 20.65, co = 0.29, ¢3 = —15189.21,
cy = —47.97, 8" = 4777.8, C,s = 1.85 x 107°, where the units are omitted for convenience[7].

The simulation results are shown in Figure 1, Figure 2 and Figure 3. The target, the 30
upper bound and lower bound are shown in these figures by three straight lines.

In Figure 1, there is large model error. However it can be seen that the controller returns
the process output to the target value immediately.

7



Set valued RtR Controller with OVE approximation for LPCVD Process Under Large Model Error
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Figure 1: Set-valued RtR controller with OVE approximation for LPCVD process with large
model error

Set—valued RtR controller with OVE approximation for LPCVD process Compared with the EWMA algorithm Under Drif
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Figure 2: Set-valued RtR controller with OVE approximation for LPCVD process under
drift

In Figure 2 and Figure 3, the set-valued RtR controller is compared with the EWMA
controller under the disturbance of drift and shift separately. The weight parameter for the
EWMA algorithm is 0.35. It was obtained by selecting the optimal performance among
multiple weight parameters. The EWMA method is used to control only the single target
R,. The set-valued RtR controller is used to control the two targets R; and Ry. From Figure
2, it can be seen that both methods control R; well. Figure 3, it shows that the set-valued
RtR controller returns the output to the target immediately after detecting the disturbance;
The EWMA controller needs more steps to return the output within the 30 bound.



Set—valued RtR controller with OVE approximation for LPCVD process Compared with the EWMA algorithm Under shit
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Figure 3: Set-valued RtR controller with OVE approximation for LPCVD process under
shift

4 Application of the set-valued RtR controller with
OVE approximation on photoresist process

In semiconductor manufacturing, many processes can be subjected to small shifts or drift
changes. These perturbations can be compensated using the EWMA method. But, un-
fortunately, this is not always the case[5]. For example, many plasma processes have been
shown to exhibit small to large nonlinearity in behavior. Further, the photoresist process
and the chemical mechanical planarization (CMP) process require dynamic process models
too. Thus it is necessary to develop non-linear algorithms to solve this type of problems.

The EWMA method updates only the constant term of the linear equation. Because
many semiconductor processes are slow processes, suffering from noises such drifts, updating
the constant term is usually enough to track the process. Since the ellipsoid algorithm
originates from a linear model with quadratic bounds, the idea here is to only update the
constant and the linear part of the nonlinear models for the photoresist process[17].

The following is the model used in the photoresist process. After changing process vari-
ables, it can be simplified to a second order nonlinear process.

2.54-106 1.95- 107 6.16 - 107
— 3.78BTI — 0.28SPT — ——— (27)

T =—-13814 + +
VSPS BTEvVSPS SPS

Where T is the resist thickness in Angstroms, SPS the spin speed in RPM, SPT the
spin time in seconds, BTI the baking time in seconds, and BTE the baking temperature
in degrees Celsius. They are the inputs (recipes) to the process. They are confined to the
following bounds:
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Figure 4: Set-valued RtR controller with OVE approximation for photoresist process under
drift

4500 < SPS < 4700
15 < SPT <90

105 < BTE < 135
20 < BTT < 100

The simplified model is shown in the following equation:

T = —13814 + 2.54 - 10%; + 1.95 - 107wy - up — 3.78 - uz — 0.28 - uy — 6.16 - 107w, > (28)

where:
1
U, =
VSPS
1
“2 = BTE
us = BTI
Uy = SPT

The simulation results for the set-valued RtR controller with OVE approximation to
control the resist thickness are shown in Figure 4 and Figure 5. It shows that the set-valued
RtR controller can control the second order process very well under the disturbance of drift
or shift.
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Figure 5: Set-valued RtR controller with OVE approximation for photoresist process under
shift

5 Comparison of the set-valued RtR controller with
OVE approximation and the set-valued RtR con-
troller with OBE approximation

The derivation of the OVE algorithm is based on a geometrical point of view, but the OBE
algorithm uses a RLS type scheme to update the center of the ellipsoid. The distinction
between the OVE and the OBE algorithm lies in that the new ellipsoid from the updating
is optimal under no constraints for the OVE, and the center of the ellipsoid is a “modified”
recursive least square estimate (LSE) for the OBE[1]. Furthermore, the OVE algorithm
always update the ellipsoid even when it is unnecessary, but the OBE algorithm only update
the ellipsoid when it is necessary. However a smaller bound in the OBE algorithm usually
leads to the update of the ellipsoid in each run.

The comparison was made by simulation for a different target in the photoresist process.
The process is a second-order process with higher non-linearity. After some simplification,
it has the following form:

R= 134.4 — 0.046u; + 0.32uy — 0.17uz + 0.023uy — 4.34 x 10~ u usy
+ 519 x 10 Puquz — 1.07 x 10 Sugus
+ 515 x 107%7 — 4.11 x 10~ upuy (29)

Where R is the reflectance in % and the other variables are defined as in previous section.

More simulations have been made for different processes and it was found that both
algorithms work well in the linear case or low order nonlinear case. However in the high
order nonlinear case, the OVE algorithm performs better than the DHOBE algorithm. From
the Figure 6 and Figure 7 it can be seen that the DHOBE algorithm has some overshooting.
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Figure 6: Set-valued RtR controller with OVE approximation for photoresist process II under
drift
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Figure 7: Set-valued RtR controller with OBE approximation for photoresist process II under
drift

Actually it was found that even in the linear case, the over shooting may appear when the
noises exist.

6 Summary

The set-valued RtR control scheme with ellipsoid approximation is applicable to various
semiconductor manufacturing processes. The simulation results show that it is robust to
model and sensor errors. The advantage of the set-valued method lies in the fact that it
does not assume any statistical distribution for the noise. Knowing the bound of the noise
is sufficient for applying this method. By using the ellipsoid approximation, the set-valued
method is made easily applicable in practice.

The ellipsoid algorithm usually requires an estimate of the error bound, which makes it
difficult to realize in some sense. It was shown that an OBE estimator is not theoretically
consistent with conservative bounds[12]. Practical application of the OBE identification is
made possible by some new algorithms such as automatic estimation of the model error
bounds. For example, the OBE algorithm with automatic bound estimation (OBE-ABE)
was developed by T. M. Lin, etc[12]. It is the first OBE algorithm to solve the difficult
problem of blindly estimating error bounds. It may remove the major obstacle preventing
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the application of ellipsoid algorithms. However in simulation with LPCVD process it was
shown that the OBE-ABE algorithm does not work well. It may only be applied to time-
invariant processes or slow changing processes. In general the OVE algorithm works better
than the OBE algorithm because of the existence of overshooting in the OBE algorithm.

Further research needs to be done on the generalization of the set-valued methods to
the larger set of semiconductor processes. For those processes with dynamic nature that
can not be expressed in a polynomial form, a much more general scheme is still needed.
The immediate goal is to develop a general set-valued RtR controller for semiconductor
manufacturing processes. A promising way is to introduce intelligent control and neural
network into the framework of the set-valued method. It may lead to an exciting new field
in the future.
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