User's Guide for FSQP Version 3.0c:

A FORTRAN Code for Solving Constrained
Nonlinear (Minimax) Optimization Problems,
Generating Iterates Satisfying All
Inequality and Linear Constraints

by J.L. Zhou and A.L. Tits

TECHNICAL
RESEARCH
REPORT

Supported by the
National Science Foundation

Engineering Research Center
Program (NSFD CD 8803012),
Industry and the University

TR 92-107

User’s Guide for FSQP Version 3.0c:
A FORTRAN Code for Solving Constrained Nonlinear

(Minimax) Optimization Problems, Generating Iterates
Satisfying All Inequality and Linear Constraints'

Jian L. Zhou and André L. Tits

Electrical Fngineering Department
and

Systems Research Center

University of Maryland, College Park, MD 20742

Abstract

FSQP 3.0c is a set of FORTRAN subroutines for the minimization of the maxinmm of
a set of smooth objective functions (possibly a single one) subject to general smooth con-
straints. If the initial guess provided by the user is infeasible for some inequality constraint
or some linear equality constraint, FSQP first generates a feasible point for these constraints;
subsequently the successive iterates generated by FSQP all satisfy these constraints. Nonlin-
ear equality constraints are turned into inequality constraints (to be satisfied by all iterates)
and the maximum of the objective functions is replaced by an exact penalty function which
penalizes nonlinear equality constraint violations only. The user has the option of either
requiring that the (modified) objective function decrease at each iteration after feasibility
for nonlinear inequality and linear constraints has been reached (monotone line search), or
requiring a decrease within at most four iterations (nonmonotone line search). He/She must
provide subroutines that define the objective functions and constraint functions and may
either provide subroutines to compute the gradients of these functions or require that I'SQP
estimate them by forward finite differences.

FSQP 3.0c implements two algorithms based on Sequential Quadratic Program-
ming (SQP), modified so as to generate feasible iterates. In the first one (monotone line
search), a certain Armijo type arc search is used with the property that the step of one is
eventually accepted, a requirement for superlinear convergence. In the second one the same
effect 1s achieved by means of a (nonmonotone) search along a straight line. The merit func-
tion used in both searches is the maximum of the objective functions if there is no nonlinear

equality constraint.

UPhis research was supported in part by NSF's Engincering Research Centers Program No. NSFD-CDR-
88-03012, by NSF grant No. DM(-88-15996 and by a grant from the Westinghouse C'orporation.

Conditions for External Use

1. The FSQP routines may not be distributed to third parties. Intercsted parties should
contact the authors directly.

o

If modifications are performed on the routines, these modifications will be commu-
nicated to the authors. The modified routines will remain the sole property of the
authors.

3. Due acknowledgment must be made of the use of the FSQP routines in research reports
or publications. A copy of such reports or publications should be forwarded to the
authors.

4. The FSQP routines may not be used in industrial production, unless this has been
agreed upon with the authors in writing.

User’s Guide for FSQP Version 3.0c (Released September 1992)
Copyright (©) 1989 -—- 1992 by Jian L. Zhou and André L. Tits
All Rights Reserved.

Enquiries should be directed to

Prof. André L. Tits
Electrical Engineering Dept.
and Systems Research Center
University of Maryland
College Park, Md 20742

U. S, Al

Phone : 301-405-3669

Fax : 301-405-6707

E-mail: andre©@src.umd.edu

Contents
1 Introduction 2
2 Description of the Algorithms 3
3 Specification of Subroutine FSQPD 3.0b 11
4 User-Accessible Stopping Criterion 15
5 Description of the Output 16
6 User-Supplied Subroutines 18
6.1 Subroutineobyo 18
6.2 Subroutine constr 19
6.3 Subroutine gradobo 20
6.4 Subroutine gradeno 20
7 Organization of FSQPD and Main Subroutines 21
7.1 Main Subroutines 21
7.2 Other Subroutines 22
7.3 Reserved Common Blockso oo 22
8 Examples 23
9 Results for Test Problems 34

10 Limitations 36

o

1 Introduction

FSQP (Feasible Sequential Quadratic Programming) 3.0c is a set of FORTRAN subroutines
for the minimization of the maximum of a set of smooth objective functions (possibly a single
one) subject to nonlinear equality and inequality constraints, linear equality and inequality
constraints, and simple bounds on the variables. Specificallv, FSQP tackles optimization
problems of the form

(P) min 1_na$<{j}(;zr)} st e X

el

where I = {1,...,n;} and X is the set of point » € R" satisfying

bl < a <bu

g,(x) <0, j=1, 2%

g(2) = {cjmn,2) —dj_p, <00 g=n+1..... t;
h(x)=0, j=1..... N

hi(e)={a;_p.x)—b, . =0, J=n.+1...., ,

with 0/ € R*; bu € R"; fi + R* — R, ¢ =1,...,ny smooth; g, : R" — R, j =1
nonlinear and smooth; ¢, € R*, d; e R, y = 1,....t; —nis h, : " — R, j = 1.....n.
nonlinear and smooth; a; € R*, b; € R, j =1,...,t. — n..

If the initial guess provided by the user is infeasible for nonlinear inequality constraints
and linear constraints, FSQP first generates a point satisfying all these constraints by iter-
ating on the problem of minimizing the maximum of these constraints. Then, using Mayne-

Polak’s scheme [1], nonlinear equality constraints are turned into inequality constraints®

and the original objective function max;c;s{f:(x)} is replaced by the modified objective

function
Ne

Flp) = max{ fi(a)} — 3 prhile).
cIf =
where p;, 7 = 1,...,n., are positive penalty parameters and are iteratively adjusted. The
resulting optimization problem therefore involves only linear constraints and nonlinear in-
equality constraints. Subsequently, the successive iterates generated by FSQP all satisty
these constraints. The user has the option of either requiring that the exact penalty func-
tion (the maximum value of the objective functions if without nonlinear equality constraints)
decrease at each iteration after feasibility for original nonlinear inequality and linear con-

straints has been reached, or requiring a decrease within at most three iterations. He/She

2For every j for which hji(2o) > 0 (2o is the initial point), “h;(x) = 07 is first replaced by “—h;(2) = 0"
and —h; is renamed h;.

must provide subroutines that define the objective functions and constraint functions and
may either provide subroutines to cormpute the gradients of these functions or require that
FSQP estimate them by forward finite differences.

Thus, FSQP 3.0c solves the original problem with nonlinear equality constraints by solv-
ing a modified optimization problem with only linear constraints and nonlinear inequality
constraints. For the transformed problem, it implements algorithms that are described and
analyzed in [2], [3] and [4], with some additional refinements. These algorithms are hased
on a Sequential Quadratic Programming (SQP) iteration, modified so as to generate feasible
iterates. The merit function is the objective function. An Armijo-type line search is used
~ to generate an initial feasible point when required. After obtaining feasibility, either (i) an
Armijo-type line search may be used, yielding a monotone decrease of the objective func-
tion at each iteration [2]; or (¢7) a nonmonotone line search (inspired from [5] and analyzed
in [3] and [4] in this context) may be selected, forcing a decrease of the objective function
within at most four iterations. In the monotone line search scheme, the SQP direction is first
“tilted” if nonlinear constraints are present to yield a feasible direction, then possibly “bent”
to ensure that close to a solution the step of one is accepted, a requirement for superlinear
convergence. The nonmonotone line search scheme achieves superlinear convergence with no
bending of the search direction, thus avoiding function evaluations at auxiliary points and
subsequent solution of an additional quadratic program. After turning nonlinear equality
constraints into inequality constraints, these algorithms are used directly to solve the modi-
fied problems. Certain procedures (see, e.g., [6]) are adopted to obtain proper values of p;’s
in order to ensure that a solution of the modified problem is also a solution of the original
problem, as described below.

For the solution of the quadratic programming subproblems, FSQP 3.0¢ is set up to call
QLD [7] which is provided with the FSQP distribution for the user’s convenience.

2 Description of the Algorithms

The algorithms described and analyzed in [2], [3] and [4] are as follows. Given a [easible
iterate x, the basic SQP direction d° is first computed by solving a standard quadratic
program using a positive definite estimate H of the Hessian of the Lagrangian. d is a
direction of descent for the objective function; it is almost feasible in the sense that it is at
worst tangent to the feasible set if there are nonlinear constraints and it is feasible otherwise.

In [2], an essentially arbitrary feasible descent direction ' = d'(x) is then computed.
Then for a certain scalar p = p(z) € [0, 1], a feasible descent direction d = (1 — p}d® + pd*
is obtained, asymptotically close to d°. Finally a second order corvection d = d(x.d. H) is
computed, involving auxiliary function evaluations at .+ d, and an Armijo tvpe search is

performed along the arc .« + /d - #2d. The purpose of d is to allow a full step of one to be

taken close to a solution, thus allowing superlinear convergence to take place. Conditions are
given in [2] on d'(-), p(+) and (i(-) that result in a globally convergent. locally superlinear
convergent algorithm. ,

The algorithm in [3] is somewhat more sophisticated. An essential difference is that
while feasibility is still required, the requirement of decrease of the max objective value
is replaced by the weaker requirement that the max objective value at the new point be
lower than its maximum over the last four iterates. The main payoff is that the auxiliary
function evaluations can be dispensed with, except possibly at the first few iterations. First
a direction d' = d'(z) is computed, which is feasible even at Karush-IKuhn-Tucker points.
Then for a certain scalar p* = p’(z) € [0, 1], a “local” feasible direction d* = (1 — p")d® + p'd"
is obtained, and at r + d* the objective functions are tested and feasibility is checked. If the
requirements pointed out above are satisfied. = + d' is accepted as next iterate. This will
always be the case close to a solution. Whenever x + d* is not accepted, a “global™ feasible
descent direction d? = (1 — p9)d° + p?d* is obtained with p? = p?(x) € [0, p*]. A second order
correction d = d(z,d?, H) is computed the same way as in [2]. and a “nonmonotone™ search
1s performed along the arc x + td? + t2d. Here the purpose of d is to suitably initialize the
sequence for the “four iterate” rule. Conditions are given in [3] on d*(-), p"(-), p?(-). and
di, -) that result in a globally convergent, locally superlinear convergent algorithm. In [4],
the algorithm of [3] is refined for the case of unconstrained minimax problems. The major
difference over the algorithm ol [3] is that there is no need of d'. As in [3]. d is required to
initialize superlinear convergence.

The FSQP implementation corresponds to a specific choice of d'(-). p(-). d(-,-). p(-), and
p?(+), with some modifications as follows. If the first algorithm is used, d' is computed as a
function not only of z but also of d° (thus of H). as it appears beneficial to keep d' relatively
close to d°. In the case of the second algorithin, the construction of d* is modified so that the
function evaluations at different auxiliary points can be avoided during early iteration when
p? # p* the quadratic program that yields d involves only a subset of “active” functions,
thus decreasing the number of function evaluations. The details are given below. The
analysis in [2], [3] and [4] can be easily extended to these modified algorithms. Also obvious
simplifications are introduced concerning linear constraints: the iterates are allowed (for
inequality constraints) or are forced (for equality constraints) to stay on the boundary of
these constraints and these constraints are not checked in the line search. Finally, FSQP
automatically switches to a “phase 1”7 mode if the initial guess provided by the user is not
w the feasible set.

Below we call FSQP-AL the algorithm with the Armijo line search, and FSQP-NL the
algorithm with nonmonotone line search. We make use of the notations

Fri(e) = max{ fi(e))
zG]f

e,

f(x,d,p) = l}éelb;{{fz(l) +(Vfilz).d)} — frs(a) — Z])_;(Vh_,—(m),(b

g=1
and, for any subset [C I/,

e

fe+d,z.dp) = 1121€a[x{‘fil«(;r +d) + (Vfi(x).d)} — frle+d) - Z;{)A,‘(V/zj(lr), d).

At each iteration &, the quadratic program Q P(xy., Hy. py.) that yields the SQP direction d)
is defined at z, for Hy symmetric positive definite by

min %(dO,deO) + f(xp. d° pr)

d0eRn"
s.t. bl < a4+ d° < bu
g, (@) + (Vgi(ap).d®) <0, j=1.....1,
hi(ag) + (Vhj(ag), d®) <0, j=1,....n,
(aj,op +d°) =b;0 J=1.....1,—n..

Let (x;'s with Z?il Cu; = 1. &nj's, Ay's, and ;s denote the multipliers, for the various
objective functions, simple bounds (only n possible active bounds at each iteration), inequal-
ity, and equality constraints respectively, associated with this quadratic program. Deline the
set of active objective functions, for any ¢ such that (x; > 0, by

Hd) = {5 € x| f5(en) = filan)] S 020dull - IV filws) = V(o) |YU {5 € 172 Gy > 0}

and the set of active constraints by

[f(dk)z{]E{l,fl} : ‘gj(tl‘k)| S 02”(&” : ||ng(mk)|]} U {J & {1 fg} . /\L‘.,‘/ > 0}

Algorithm FSQP-AL.

Parameters. n = 0.1, v =001, a =01, =05k =21. 7y =70 =25, 1 =01, ¢ = 1.
€y — 10, 6 = J.

Data. x0 € R*, € >0, e >0 and po; =€y for j = 1.....n,.

Step 0: Initialization. Set k = 0 and Hy = the identity matrix. Set nset = 0. If xq is
infeasible for some constraint other than a nonlinear equality constraint, substitute a feasible
point, obtained as discussed below. For j = 1,....n.. replace hi;(x) by —h;(x) whenever
hi{xo) > 0.

Step 1: Computation of a search arc.

i. Compute d}, the solution of the quadratic program QP(xy. Hy.,pr). If [|d7]| < ¢ and
S ,
Step 2. If n, +n, = 0 and ny > 1, set dy = d)) and go to Step | v

hi(zp)| < e, stop. If n; +ne =0 and ny = 1, set d;, = d}) and d;, = 0 and go to

6

ii. Compute dl by solving the strictly convex quadratic program
I k DY g 3 | prog

Ltlerjri’l’é.rie}i Hdp —dlydy = d') + 5
s.t. bl < xp -+ db < bu
g, d' pr) <5
gi(zr) + (Vgj(ap), db)y <~, j=1...., N
<Cj,;73k+d1> < dj, j 1...., t; — n;

hj(xk) + <th(;lfk)7dl> <
(aj,x) + dl> =b,, j=.

R

i Set dy = (1—pe)dy+ prd}. with pr = ||dQ||"/(||d2]]" +vx). where vp = max(0.5. ||d}||™).

iv. Compute dg by solving the strictly convex quadratic program

élelli%nn T{(d + d), Hi(dy + d)) + f;{(dk)(g-k,(lk,(z,])k)
st. bl <ap+d,+d < bu
gi(zp + di) + (ng(;sz),(i> < —min(v||di|l, ||del|™). J € LH{d) Ny g < nd
(Cjmn, zp + di + d> <dj_p,. JETING)N{j:)>n}
hi(ze 4+ di) + (th(;rk)ﬂd» < —min(wlldill, |dll™), J=1.....n,
(aj xp +dp + (/> =b;, Jj=1,...,t.—n,

where f;f(d)(;U;g,(lk,d,pk) = o, dy + d,py) if ng = 1, and fl, (o dyndopp) =
N i (dk \ i lde)

! g + dy, g d,pe) if ny > 1. If the quadratic program has no solution or if
I{(dk) i f { ! S

||Jk|[> ||dg]|, set dy = 0.

Step 2. Arc search. Let 6y = f'(xg.di.pr) if n; + ne # 0 and &, = —(d, H.dJ) otherwise.
Compute t, the first number ¢ in the sequence {1, 4, #%....} satislving

-

Foly + tdy + t2dy, p) < S g pr) + oty
g lep +tdp +12d) <0, j=1.....n,
(o h + Ly + i) < djy V> & J F 1Ed)
hiler +td, + 2dy) <00 j=1,....n..

Specifically, the line search proceeds as follows. First, the linear constraints that were not
used in computing d; are checked until all of them are satisfied. resulting in a stepsize, say.
t;. Due to the convexity of linear constraints, these constraints will be satisfied for any

t < 4. Then, for ¢ = ti, nonlincar constraints are checked first and. for both o])jecﬁves and

constraints, those with nonzero multipliers in the QP yielding df are evalnated first. For
t < i, the function that caused the previous value of # to be rejected is checked first; all
functions of the same type (“objective” or “constraint”) as the latter will then he checked
first.

Step 3. Updates.

- If nset > bn and 1, < t, set Hyyy = Hy and nset = 0. Otherwise, set nsef = nset + 1
and compute a new approximation Hyyq to the Hessian of the Lagrangian using the
BFGS formula with Powell’s modification [3].

. Set Th4+1 = Tk + tk(lk + ti(zk.

- Solve the unconstrained quadratic problem in g

A€ Rte

) nf § ‘ t, t, B R
min || 3 G Vi(as) + &+ D ANV (e) 4+ 30 i, V()]
J=1 J=1 J=1

where the (;;’s, { and the A ;’s are the multipliers associated with QP (w s, Hy. py)

for the objective functions, variable bounds, and inequality constraints respectively.”

Update py as follows: for j =1,....n..

Dhtl, = Phag if pr, + 41, 2 @
o max{e; — ji;, Opy,,;} otherwise.

- Increase k by 1.

- Go back to Step 1.

Algorithm FSQP-NL.

Parameters. n = 3.0, v = 0.01, a = 0.1, 4 = 0.5, § = 0.2. ¢
(//_: 5.0, t = 01q €1 = Ol, €y = 10ﬂ (S = 5.
Data. zog € R", e >0, €. > 0 and pg, = ¢ for j =1,... . n..

gl
fl
<
it

)
I

2.5, C = 0.01,

Step 0: Initialization. Set k = 0, Hy = the identity matrix, and Cy = (. If xy is infeasible for
constraints other than nonlinear equality constraints, substitute a feasible point, obtained
as discussed below. Set z_3 = 2_9 = x_y = xg and nset = 0. TIor j = 1.....n.. replace
hj(z) by —h;(z) whenever h,(x¢) > 0.

Step 1: Computation of a new iterate.

3This is a refinement (saving much computation and memory) of the scheme proposed in [1].

i.

i

o0

. Compute d¥, the solution of quadratic program QP(x. Hy. ps).

If |[d}]| < € and Yy |hj(ee)] < €. stop. I ny +n. =0 and ny = 1. set d; = d} and
d, = 0 and go to Step 1 viti. If n; +n, = 0 and ny > L, set pi = p} = 0 and go to

Step 1 v.

Compute d} by solving the strictly convex quadratic program

] 20 1|12 .
pflhen 21T
s.t. bl < ap +d' < bu
gilee) + (Vgjlap).d') < v j=10omy
(cjyap +dY)Y <d;, j=1,....t —n,
holag) + (Vhj(ag), d') <~ / =1,.... "0,
(a; 00 +dYYy =b,, = l o=,
Set vy = min{Cy||d}||*. ||dQ]|}. Define values pf ; for j =1...., i by pf

if
gi(wk) + (Vgjlax) di) <~

- or equal to the maximum p in [0, 1] such that

w.

g5 (ww) + (Vgilai). (1= p)d + pdb) > —o

otherwise. Similarly, define values /)if‘] for y =1.....n.. Let

Py = max{ max {hhit max {p} /}} .
J J=1 0. e

eyt

Define p{ as the largest number p in [0, pi] such that

F(ap (1= p)ds + pdy, pi) < OF (. di. pp).

If (h>1& ty_y < 1)or (p}, > p), set pi, = min{p. pi}.

. Construct a “local” direction

di = (1= pp)d + pidi.
Set M =3, 6p = f(ap, d}) it ny +n. #£ 0, and M =2, 8, = —(d, Hpd)

o+ dy pr) < (Jiax {foti_ropi)) + oy

equal to zero

otherwise. If

VL.

V21,

VL.

9

gilap +dy) <0, j=1,....n,
and
hi(ep +di) <0, j=1,....n,

set tx =1, 2y = o + df\l and go to Step 2.
Construct a “global” direction
&= (1= p)d} + pld,.

Compute dy, by solving the strictly convex quadratic program

min ((df + J),}]k((li +d)) + (g dd,)
deRn I (dy)

s.t. blgxk+di+d§ bu
gi(ex+ &) + (Vg (en), d) < —min(uldll, Jd2]7). 7€ BN+ < i)

(Cjonyyr + df + d> < dj—jm Je l(d)ya{) j>n}

hi(zg + d]) + (Vhj(ap).d) < —min(v|d]|, |17, J=1.....n,
(ay,zp +di+d) =b;, j=1,...,t—n,

where f;f((;vk,d%,(i./pk) = fag, d} + d,pi) il ny = 1. and f (el d.pp) =

*!
N g dz) M [}{(df)
‘;f(dg)(xk + di,xp, d,py) if ny > 1. If the quadratic program has no solution or if
k\7k
||dk” > ”d‘ZH, set (lk = 0.

Set M =3, b, = f'(wr,dl, pp) if ni+ne #£ 0, and M = 2, 6, = —(d{, Hyd]) otherwise.
Compute {, the first number ¢ in the sequence {1, 3, 3%, ..} satisfving

gilwg +1d +) <0, j=1..... n;
(€, s xp + td] + t?‘cz@ <d;i .. j>n & & I(d])
h(g +tdd +12dy) <0, j=1.....n,

and set xpyq =) + tpd] + ti(ik.

Specifically, the line search proceeds as follows. First. the linear constraints that were
not used in computing dy are checked until all of them are satisfied. resulting in a
stepsize, say, 1. Due to the convexity of linear constraints, these constraints will be
satisfied for any ¢ < #;. Then, for ¢t = ;. nonlinear constraints are checked first and.,
for both objectives and constraints, those with nonzero multipliers in the QP vielding
dY are evaluated first. For t < #;, the function that causcd the previous value of # to
be rejected is checked first; all functions of the same type (“objective™ or “constraint”)
as the latter will then be checked first.

10

Step 2. Updates.

- If nset > dmn and (p < 1. set Hypyy = Hp and nset = 0. Otherwise, set nset = nset + 1
and compute a new approximation Hyy, to the Hessian of the Lagrangian using the
BFGS formula with Powell’s modification[8].

I || Y| > d, set Chryy = max{0.5Ck, C}. Otherwise. if g;(ap +df) <0, j=1,....,n,
set Cryy = C. Otherwise, set Cryq = 10,

- Solve the unconstrained quadratic problem in j

N

. nyo i t, o _
min | 5 GV fla) + &+ 2 Ay Vagilen) + 50 4, VA (o))2
AE R 7=1 J=1 g=1

where the (x;’s, & and the Ay ;’s are the multipliers associated with Q Py, Hy, pi)

for the objective functions, variable bounds, and inequality constraints respectively.*

Update py as follows: for y =1,...,n,,

it = Pry byt 2
Petta max{e; — ji;. Opp;} otherwise.

- Increase k by 1.
- Go back to Step 1.

d
Remark: The Hessian matrix is reset in both algorithms whenever stepsize is too small
and the updating of the matrix goes through n iterations. This is helpful in some situations
where the Hessian matrix becomes singular.

If the initial guess xy provided by the user is not feasible for some nonlinear inequality
constraint or some linear equality constraint, FSQP first solves a strictly convex quadratic
program

em (el

st bl <zog+v<bu
(i, +0) <dj, j=1,....1;,—n,
(a,,20+v)=b;. j=1,....t.—n,..

Then. starting from the point @+ = xo + v, it will iterate. using algorithm FSQP-AL, on the
problem

*See footnote to corresponding step in description of FSQP-AL.

11

e e tale)

5.t bl <2 < bu
(cjya) <d,, j=1.,....t—n,
(aj, 2y =0b,, j=1.....0f —n,

until max {g;(x)} <0 is achieved. The corresponding iterate x will then be feasible for all
7=1,...,n4

constraints other than nonlinear equality constraints of the original problem.

3 Specification of Subroutine FSQPD 3.0c

Only a double precision version of FSQP, FSQPD is currently available. The specification

of FSQPD is as follows:

subroutine FSQPD(nparam,nf,nineqn,nineq,neqn,neq,mode,iprint,miter,
* inform,bigbnd, eps,epseqn,udelta,bl,bu,x,f,g,
* iw,iwsize,w,nwsize,obj,constr,gradob,gradcn)
integer nparam,nf,nineqn,nineq,neqn,neq,mode,iprint,miter,inform,
* iwsize,nwsize

integer iw(iwsize)

double precision bigbnd,eps,epseqn,udelta

double precision bl(nparam),bu(nparam),x(nparam),

* f(nf),g(nineqg+neq) ,w(nwsize)

external obj,constr,gradob,gradcn

Important: all real variables and arrays must be declared as double precision in the routine

that calls FSQPD. The following are specifications of paramecters and workspace.

nparam (Input) Number of free variables, i.e., the dimension of x.
nf (Input) Number of objective functions (1 in the algorithm description).

nineqn (Input) Number (possibly zero) of nonlinear inequality constraints (n, in the

algorithm description).

nineq (Input) Total number (possibly equal to nineqn) of inequality constraints (¢;

in the algorithm description).

neqn (Input) Number (possibly zero) ol nonlinear equality constraints (. in the

algorithm description).

12
neq (Input) Total Number (possibly equal to neqn) of equality constraints (7. in
the algorithm description).
mode (Input) mode = 1 BA with the [ollowing meanings:

A=0: (P)isto be solved.
A=1: (PLy)istobesolved. (PL.)is defined as follows

file)] st ve X

(PL..) min max
€It
where X is the same as for (P). It is handled in
this code by splitting | f;(2)] as fi(x) and — f;(2') for
each . The user is required to provide only f;(x)
for i e IV,
B=0: Algorithm FSQP-AL is selected. resulting in a de-
crease of the (modified) objective function at each

iteration.

B=1: Algorithm FSQP-NL is selected, resulting in a de-
crease of the (modified) objective function within
at most four iterations (or three iterations, see Al-

gorithm FSQP-NL).
iprint (Input) Parameter indicating the desired output (see §4 for details):

iprint = 0 : No information except for user-input errors is dis-
played. This value is imposed during phase 1.

iprint = 1: At the end of execution, status (inform), iter-
ate, objective values, constraint values, number of
evaluations of objectives and nonlinear constraints.
norm of the Kuhn-Tucker vector, and sum of fea-
sibility violation are displayved.

iprint =2 : At the end of each iteration, the same information
as with iprint = 1 is displaved.

iprint =3 : At each iteration, the same information as with
iprint = 2, including detailed information on the
search direction computation. on the line search,
and on the update is displayed.

miter (Input) Maximum number of iterations allowed by the user belore termination

of execution.

inform

bigbnd

eps

epseqn

udelta

13

(Output) Parameter indicating the status of the execution of FSQPD:

inform = 0 : Normal termination of execution in the sense that
|d°| < eps and (if neqn # 0) X2, |hy(0)] <
epseqn.

inform =1 : The user-provided initial guess is infeasible for lin-
ear constraints and FSQPD is unable to generate
a point satisfying all these constraints.

inform = 2 : The user-provided initial guess is infeasible for non-
linear inequality constraints and linear constraints;
and FSQPD is unable to generate a point satisfy-
ing all these constraints.

inform = 3 : The maximum number miter of iterations has
been reached before a solution is obtained.

inform = 4 : The line search fails to find a new iterate (trial
step size being smaller than the machine precision
epsmac computed by FSQPD).

inform = 5 : Failure in attempting to construct .
inform = 6 : Failure in attempting to construct d*.

inform = 7 : Input data are not consistent (with printout indi-
cating the error).

(Input) (see also bl and bu below) It playvs the role of Infinite Bound.

(Input) Final norm requirement for the Newton direction df, (¢ in the algorithm
description). [t must be bigger than the machine precision epsmac (computed
by FSQPD). (If the user does not have a good feeling of what value should be
chosen, a very small number could be provided and iprint = 2 bhe selected so
that the user would be able to keep trace of the process of optimization and
terminate FSQPD at appropriate time.)

(Input) Maximum violation of nonlinear equality constraints allowed by the
user at an optimal point (e, in the algorithm description). It is in effect only
if n, # 0 and must be bigger than the machine precision epsmac (computed by

FSQPD).

(Input) The perturbation size the user suggests to use in approximating gra-
dients by finite difference. The perturbation size actually used is defined by

?

sign(z') x max{udelta, rteps x max(l, lt'/)} for cach component @’ of «

bl

bu

1w

iwsize

nwsize

14

(rteps is the square root of epsmac). udelta should be set to zero if the user
has no idea how to choose it.

(Input) Array of dimension nparam containing lower bounds for the compo-
nents of x. To specily a non-existent lower bound (i.e., b1l(y) = —oc for some
J), the value used must satisfy bl(y) < —bigbnd.

(Input) Array of dimension nparam containing upper bounds for the compo-
nents of x. To specify a non-existent upper bound (i.e., bu(j) = oo for some 7).

the value used must satisfy bu(y) > bigbnd.

(Input) Initial guess.
(Output) lterate at the end of execution.

Array of dimension max{1,nf}.

(Output) Value of functions f,,7 = 1.....ns, at x at the end of execution.

Array of dimension max{1,nineq + neq}.
(Output) Values of constraints at x at the end of execution.

Workspace vector of dimension iwsize.

(Input) Workspace length for iw. It must be at least as big as 6 x nparam+ 8 X
(nineq-+neq)+ 7 x nf 4 30. This estimate 1s usually very conservative and the

smallest suitable value will be displayed if the user-supplied value is too small.

(Input) Workspace of dimension nwsize.

(Output) Lagrange multipliers in the first nparam+nineq + neq + nff entries;
where nff = 0 if (in mode) A = 0 and nf = 1, and nff = nf otherwise. They are
ordered as £’s (variables), A’s (inequality constraints), pt's (equality constraints).
and ¢ (objective functions). A, >0 Vy =1,....f,and g, >0 V; =1,....%.
& > 0 indicates that x, reaches its upper bound and ¢, < 0 indicates that w;
reaches its lower bound. When (in mode) A = 0 and nf > 1. (; > 0. When
B =1, ¢; > 0 refers to +f;(x) and ; < 0 to —f;{w).

(Input) Workspace length for w. It must be at least as big as 4 X nparam® +
5 X (nineq + neq) X nparam+ 3 X nf X nparam+ +26 X (nparam+ nf) -+ 45 X
(nineq+mneq)+100. This estimate is usually very conservative and the smallest
suitable value will be displayed if the user-supplied value is too small.

obj (Input) Name of the user-defined subroutine that computes the value of the
objective functions fi(x), Ve =1....,n. This name must be declared as exter-
nal in the calling routine and passed as an argiment to FSQPD. The detailed

specification is given in §5.1 below.

constr (Input) Name of the user-defined subroutine that computes the value of the
constraints. This name must be declared as external in the calling routine and
passed as an argument to FSQPD. The detailed specification is given in §5.2
below.

gradob (Input) Name of the subroutine that computes the gradients of the objective
functions fi(z). Vi = 1....,n;. This name must be declared as external in
the calling routine and passed as an argument to I'SQPD. The user must pass
the subroutine name grobfd (and declare it as external), if he/she wishes that
FSQPD evaluate these gradients automatically, by forward finite differences.
The detailed specification is given in §5.3 below.

graden (Input) Name of the subroutine that computes the gradients of the constraints.
This name must be declared as external in the calling routine and passed as
an argument to 'SQPD. The user must pass the subroutine name grenfd (and
declare it as external), if he/she wishes that ['SQPD evaluate these gradients
automatically, by forward finite differences. The detailed specification is given
in §5.4 below.

4 User-Accessible Stopping Criterion

As 1s clear from the two algorithms, the optimization process normally terminates if both
|d2]] < ¢ and 377y hj(xr)| < e are satisfied. Very small value of either of these two
parameters may request exceedingly long execution time, depending on the complexity of
underlying problem and the nonlinearity of various functions. FSQP allows users to specify
their own stopping criterion in any one of the four user-supplied subroutines mentioned above
via the following common block

integer nstop
common /fsqpst/nstop

if (s)he wishes to. nstop = 0 should be returned to FSQP when the stopping criterion is
satisfied. FSQP will check the value of nstop at appropriate places during the optimization
process and will terminate when either the user’s criterion or the default criterion is satisfied.

16

5 Description of the Output

No output will be displayed before a feasible starting point is obtained. The following
information is displayed at the end of execution when iprint = | or at each iteration when

iprint = 2:
iteration Total number of iterations (iprint = 1) or iteration number (iprint = 2).
inform See §3. It is displayed only at the end of execution.
X Iterate.
objectives Value of objective functions fi(a), Vi=1.....n; at x.

objmax (displayed only if nf > 1) The maximum value ol the set of objective functions
(i.e., max f;(x) or max|fi(x)], Vi=1.....n;) at x.

objective max4 (displayedbnly it B = | in mode) Largest value of the maximum of
the objective functions over the last four (or three. sce FSQP-NL.) iterations

(including the current one).
constraints Values of the constraints at x.

ncallf Number of evaluations (so far) of individual (scalar) objective function f:(x) for
1 <o < ny.

ncallg Number of evaluations (so far) of individual (scalar) nonlinear constraints.
dOnorm Norm of the Newton direction dJ.

ktnorm Norm of the Kuhn-Tucker vector at the current iteration. The Kuhn-Tucker

vector 1s given by

Lo

T

4
VL(@p, Gy & Aks pay pr) = 20 GV filan) + & + Zl A Vyilay)
J=

J

Il
—

e t.
+ Zl(#/s._/ — e NI e+ 2 e, N ().
J=

J=n,+1
Scv Sum of the violation of nonlinear equality constraints at a solution.

For iprint = 3, in addition to the same information as the one for iprint = 2. the following

is printed at every iteration.

Details in the computation ol a search direction:

17

do Quasi-Newton direction dy.
d1 First order direction dj.

dinorm Norm of d}.

d (B =0 in mode) Feasible descent direction dj = (1 _ p1)dY + prd}.
dnorm (B =0 in mode) Norm of dj.

rho (B =0 in mode) Coefficient p; in constructing d.

dl (B =1 in mode) Local direction dj, = (1 — p})d{ + pidi.
dlnorm (B =1 in mode) Norm of d.

rhol (B =1 in mode) Coefficient pj in constructing dj,.

dg (B =1 in mode) Global search direction d? = (1 — p)dy + pid;.
dgnorm (B =1 in mode) Norm of d.

rhog (B =1 in mode) Coefficient p{ in constructing dj.

dtilde Second order correction d.

dtnorm Norm of (Zk.

Details in the line search:

trial step Trial steplength ¢ in the search direction.

trial point Trial iterate along the search arc with trial step.

trial objectives This gives the indices 7 and the corresponding values of the functions
file) =252, pihya) for 1 <o < nyup to the one which fails in line search at the
trial point. The indices ¢ are not necessarily in the natural order (see remark

at the end of Step 2in FSQP-AL and of the end of Step 1 viii in FSQP-NL).

trial constraints This gives the indices 7 and the corresponding values of nonlinear
constraints for 1 < 7 < n; 4+ n, up to the one which is not feasible at the trial
point. The indices j are not necessarily in the natural order (see remark at the

end of Step 2in FSQP-AL and of the end of Step 1 viiiin FSQP-NL).

Details in the updates:

ot
o9

delta Perturbation size for each variable in finite difference gradients computation.
gradf Gradients of functions f;(x), Vi =1,...,ny, at the new iterate.

gradg Gradients of constraints at the new iterate.

p Penalty parameters for nonlinear equality constraints at the new iterate.

multipliers Multiplier estimates ordered as £’s, A's, p’s, and (s (from quadratic pro-
gram computing d). A; >0 Vj=1,....f,and y; >0 Vj=1.....0. & >0
indicates that a; reaches its upper bound and ¢; < 0 indicates that x; reaches
its lower bound. When (in mode) A = 0 and nf > 1, ¢, > 0. When (in mode)
A=1,(> 0refers to +f;(z) and ¢; < 0 to —f;(x). (cf. §3 under item w.)

hess New estimate of the Hessian matrix of the Lagrangian.

Ck The value C'; as defined in Algorithm FSQP-NL.

6 User-Supplied Subroutines

At least two of the following four Fortran 77 subroutines, namely obj and constr. must be
provided by the user in order to define the problem. The name of all four routines can be
changed at the user’s will, as they are passed as arguments to I'SQPD.

6.1 Subroutine obj

The subroutine obj, to be provided by the user, computes the value ol the objective functions.
A (dummy) subroutine must be provided due to Fortran 77 compiling requirement if nf =
0 (This may happen when the user is only interested in finding a feasible point). The
specification of obj for FSQPD is

subroutine obj(nparam,j,x,fj)
integer nparam, j
double precision x(nparam),fj

c
c for given j, assign to fj the value of the jth objective
c evaluated at x
c

return

end

Arguments:

19

nparam (Input) Dimension of x.

] (Input) Number of the objective to be computed.
X (Input) Cuwrrent iterate.
fj (Output) Value of the jth objective function at x.

6.2 Subroutine constr

The subroutine constr, to be provided by the user, computes the value of the constraints.
If there are no constraints, a (dummy) subroutine must be provided anyway due to Fortran
77 compiling requirement. The specification of constr for FSQPD is as follows

subroutine constr(nparam,j,x,gj)
integer nparam,j
double precision x(nparam),g]

c
c for given j, assign to gj the value of the jth constraint
C evaluated at x
C
return
end
Arguments:

nparam (Input) Dimension of x.

j (Input) Number of the constraint to be computed.
X (Input) Current iterate.

g]j (Output) Value of the jth constraint at x.

The order of the constraints must be as follows. First the nineqn (possibly zero) nonlinear in-
equality constraints. Then the nineq — nineqn (possibly zero) linear inequality constraints.
Finally, the neqn (possibly zero) nonlinear equality constraints followed by the neq — neqn
(possibly zero) linear equality constraints.

6.3 Subroutine gradob

The subroutine gradob computes the gradients of the objective functions. The user may
omit to provide this routine and require that forward finite difference approximation be
used by FSQPD via calling grobfd instead (see argument gradob of FSQPD in §3). The
specification of gradob for FSQPD is as follows

subroutine gradob(uparam,j,x,gradfj,dummy)
integer nparam, j

double precision x(nparam),gradfj(nparam)
double precision dummy

external dummy

c
c assign to gradfj the gradient of the jth objective function
c evaluated at x
c
return
end
Arguments:

nparam (Input) Dimension of x.
] (Input) Number of objective for which gradient is to be computed.
X (Input) Current iterate.
gradfj (Output) Gradient of the jth objective function at x.
dummy (Input) Used by grobfd.
Note that dummy is passed as arguments to gradob to allow for forward finite difference

computation of the gradient.

6.4 Subroutine gradcn

The subroutine gradcn computes the gradients of the constraints. The user may omit
to provide this routine and require that forward finite difference approximation be used by
FSQPD via calling grenfd instead (see argument graden of FSQPD in §3). The specification
of graden for FSQPD is as follows

O 0 0 0

Arguments:
nparam
J
X

gradgj

dummy

21

subroutine gradcn (nparam,j,x,gradgj,dummy)
integer nparam, j

double precision x(nparam),gradgj(nparam)
double precision dummy

external dummy

assign to gradgj the gradient of the jth constraint
evaluated at x

return
end

(Input) Dimension of x.

(Input) Number of constraint for which gradient is to be computed.
(Input) Current iterate.

(Output) Gradient of the jth constraint evaluated at x.

(Input) Used by grenfd.

Note that dummy is passed as arguments to gradcn to allow lor {orward finite difference

computation of the gradients.

7 Organization of FSQPD and Main Subroutines

7.1 Main Subroutines

FSQPD first checks for inconsistencies of input parameters using the subroutine check.

It then checks if the starting point given by the user satisfies the linear constraints and

if not, generates a point satisfying these constraints using subroutine initpt. It then calls

FSQPD1 for generating a point satisfying linear and nonlinear inequality constraints. Finally,

it attempts to find a point satisfying the optimality condition using again FSQPDI.

check

Check that all upper bounds on variables are no smaller than lower bounds;
check that all input integers are nonnegative and appropriate (nineq > nineqn,
etc.); and check that eps (¢) and (if neqn # 0) epseqn (¢.) are al least as large
as the machine precision epsmac (computed by FSQPD).

initpt

FSQPD1

22

Attempt to generate a feasible point satisfying simple bounds and all linear

constraints.

Main subroutine used possibly twice by FSQPD. first for generating a feasible
iterate as explained at the end of §2 and second for generating an optimal iterate

from that feasible iterate.

FSQPD1 uses the following subroutines:

dir

step

hesian

out

grobfd

grenfd

Compute various directions df, dj and dj.

Compute a step size along a certain search direction. It is also called to check
if 1 + df, is acceptable in Step I v of Algorithm FSQP-NL.

Perform the Hessian matrix updating.
Print the output for iprint =1 or iprint = 2.

(optional) Compute the gradient of an objective [unction by forward finite differ-
ences with mesh size equal to sign(a) x max{udelta, rtepsx max(l, |x'])} for
each component @' of z (rteps is the square root of epsmac, the machine pre-
cision computed by FSQPD).

(optional) Compute the gradient of a constraint by forward finite differences
)} for cach

with mesh size equal to sign(x') x max{udelta, rteps x max(l,
component x' of & (rteps is the square root of epsmac. the machine precision
computed by FSQPD).

7.2 Other Subroutines

In addition to QLD. the following subroutines are used:

diagnl ditl dqp error estlam fool fuscmp 1indexs matrcp

matrvc

nullvc resign sboutl sbout2 scaprd shift slope small

7.8 Reserved Common Blocks

The following named common blocks are used in FSQPD and QLD:

fsqppl

fsqpp?2 fsqpp3 fsqpql fsqpq2 fsqplo fsqpqp fsqpst CMACHE

8 Examples

The first problem is borrowed from [9] (Problem 32). 1t involves a single objective func-
tion, simple bounds on the variables, nonlinear inequality constraints. and linear equality
constraints. The objective function f is defined for x € R* by

f(l') = (a1 + 32, + &3)2 + A — 172)2
The constraints are

OSZL'Z‘7 '27:1.,...,3
] —6zg —da3+3<0 l—a;—ay—a3=0

The feasible initial guess is: o = (0.1, 0.7, 0.2)T with corresponding value of the objective
function f(zo) = 7.2. The final solution is: 2~ = (0, 0, 1)7 with f(+*) = 1. A suitable

main program is as follows.

problem description
program sampll

integer iwsize,nwsize,nparam,nf,nineq,neq
parameter (iwsize=29, nwsize=219)
parameter (nparam=3, nf=1)
parameter (nineq=1, neq=1)
integer iw(iwsize)
double precision x(nparam),bl(nparam),bu(nparam),
* f(nf+1),g(nineq+neq+1) ,w(nwsize)
external obj32,cntr32,grob32,grcn32

integer mode,iprint,miter,nineqn,neqn,inform
double precision bigbnd,eps,epseqn,udelta

mode=100
iprint=1
miter=500
bigbnd=1.d+10
eps=1.d4-08
epseqn=0.d0
udelta=0.4d0

c nparam=3

c nf=1
nineqn=1
neqn=0
nineqg=1
neq=1

b1(1)=0.40
b1(2)=0.40
b1(3)=0.d0
bu(1)=bigbnd
bu(2)=bigbnd
bu(3)=bigbnd

give the initial value of x

x(1)=0.1d0
x(2)=0.74d0
x(3)=0.240

call FSQPD(nparam,nf,nineqn,nineq,neqn,neq,mode,iprint,

* miter,inform,bigbnd,eps,epseqn,udelta,bl,bu,x,f,g,
iw,iwsize,w,nwsize,obj32,cntr32,grob32,grcn32)

end

Following are the subroutines defining the objective and constraints and their gradients.

subroutine obj32(nparam,j,x,fj)
integer nparam, j
double precision x(nparam),f]

C
f3=(x(1)+3.d0*x(2)+x(3)) **2+4 . d0* (x (1) -x(2)) **2
return
end

C

subroutine grob32(nparam,j,x,gradfj,dummy)
integer nparam,j
double precision x(nparam),gradfj(nparam) ,dummy,fa,fb

o
[\ |

external dummy

C
fa=2.d0*(x(1)+3.d0*x(2)+x(3))
fb=8.d0*(x(1)-x(2))
gradfj(1)=fa+fb
gradfj(2)=fax3.d0-fb
gradfj(3)=fa
return
end

C
subroutine cntr32(nparam,j,x,gj)
integer nparam,]
double precision x(nparam),gj
external dummy

c

go to (10,20),]
10 gj=x(1)**3-6.0dO*X(2)~4.0dO*X(3)+3.dO

return
20 gj=1.0d0-x(1)-x(2)-x(3)
return
end
c
subroutine grcn32(nparam,j,x,gradgj,dummy)
integer nparam, j
double precision x(nparam),gradgj(nparam),dummy
c

go to (10,20),]

10 gradgj(1)=3.d0*x(1)**2
gradgj(2)=-6.d0
gradgj(3)=-4.d0
return

20 gradgj(1)=-1.d40
gradgj(2)=-1.d0
gradgj (3)=-1.d0
return

end

The file containing the user-provided subroutines is then compiled together with fsqpd.f
and qld.f. After running the algorithm on a SUN 1/SPARC station |. the following output

is obtained:;

FSQP Version 3.0c (Released September 1992)
Copyright (c) 1989 --- 1992
J.L. Zhou and A.L. Tits
All Rights Reserved

The given initial point is feasible for inequality
constraints and linear equality constraints:
0.10000000000000E+00
0.70000000000000E+00
0.20000000000000E+00

iteration 3
inform 0
X -0.98607613152626E-31

0.00000000000000E+00
0.10000000000000E+01

objectives 0.10000000000000E+01
constraints -0.10000000000000E+01

0.00000000000000E+00
SCV 0.00000000000000E+00
dOnorm 0.13945222387368E~30
ktnorm 0.10609826585190E~29
ncallf 3
ncallg 5

Normal termination: You have obtained a solution !!

O
-1

Our second example is taken from example 6 in [10]. The problem is as follows.

min max |fi(e])]

s.t. —x(l) +5<0
(1) — a(2) +5<0
z(2) — x(3) + 35 <0
z(3) — x(4) +s5 <0
2(4) — x(5) +s<0
x(5) — x(6) +s5<0
x(6) —3.54+s5<0
where 7 ‘]
file) = fg-+»f%(EDjZICOS(QWJUSiHQZ)%—cos(TwsinHZ)L
0, = 15(8.5+0.52), v = 1...., 163
s = 0.425
The feasible initial guess is: @9 = (0.5,1,1.5,2,2.5,3)7 with the corresponding value of

ey

follows.

problem description
program sampl2

integer iwsize,nwsize,nparam,nf,nineq,neq
parameter (iwsize=1029, nwsize=7693)

parameter (nparam=6, nf=163)

parameter (nineq=7, neq=0)

integer iw(iwsize)

double precision x(nparam),bl(nparam),bu(nparam),
* f(nf+1) ,g(nineq+neq+1) ,w(nwsize)

external objmad,cnmad,grobfd,grcnfd

integer mode,iprint,miter,nineqn,neqn, inform
double precision bigbnd,eps,udelta

mode=111
iprint=1
miter=500

[N
[0.8)

bigbnd=1.d+10
eps=1.0d-08
epseqn=0.d0
udelta=0.d0

nparam=6
nf=163
nineqn=0
neqn=0
nineq=7
neq=0

bl(1)=-bigbnd
bl(2)=-bigbnd
bl (3)=-bigbnd
bl(4)=-bigbnd
bl(5)=-bigbnd
b1(6)=-bigbnd
bu(1)=bigbnd
bu(2)=bigbnd
bu(3)=bigbnd
bu(4)=bigbnd
bu(5)=bigbnd
bu(6)=bigbnd

give the initial value of x

x(1)=0.5d0
x(2)=1.d0
x(3)=1.540
x(4)=2.40
x(5)=2.5d0
x(6)=3.40

call FSQPD(nparam,nf,nineqn,nineq,neqn,neq,mode,iprint,
* miter,inform,bigbnd,eps,epseqn,udelta,bl,bu,x,f,g,
* iw,iwsize,w,nwsize,objmad,cnmad,grobfd,grenfd)

end

29

stop

We choose to compute the gradients of functions by means ol finite difference approximation.

Thus only subroutines that define the objectives and constraints are needed as follows

10

10

20

30

40

50

60

70

*

subroutine objmad(nparam,j,x,fj)
integer nparam,j,i
double precision x(nparam),theta,pi,f]

pi=3.14159265358979d0

theta=pi*(8.5d0+dble(j)*0.5d0)/180.40

£§=0.40

do 10 i=1,6
fj=fj+dcos(2.d0*pi*x(1)*dsin(theta))

£i=2.d0* (£j+dcos(2.d0*pi*3.5d0*dsin(theta)))/15.d0
+1.d0/15.40

return

end

subroutine cnmad(nparam,j,x,gj)
integer nparam,j

double precision x(nparam),ss,gj

ss=0.425d0
goto(10,20,30,40,50,60,70),]
gj=ss-x(1)
return
gj=ss+x(1)-x(2)
return
gj=ss+x(2)-x(3)
return
gj=ss+x(3)-x(4)
return
gj=ss+x(4)-x(5)
return
gj=ss+x(5)-x(6)
return
gj=ss+x(6)-3.5d0
return

end

30

After running the algorithm on a SUN 4/5PARC station [, the following output is obtained
(the results for the set of objectives have been deleted to save space)

FSQP Version 3.0c (Released September 1992)
Copyright (c) 1989 --- 1992
J.L. Zhou and A.L. Tits
All Rights Reserved

The given initial point is feasible for inequality
constraints and linear equality constraints:
.50000000000000E+00
.10000000000000E+01
.15000000000000E+01
.20000000000000E+01
.25000000000000E+01
.30000000000000E+01

O O O O O O

iteration 7
inform 0
.42500000000000E+00
.85000000000000E+00
.12750000000000E+01
.17000000000000E+01
.21840763196688E+01
.28732755096448E+01
.11421841325221E+00
.11310472749826E+00
.00000000000000E+00
.00000000000000E+00
.00000000000000E+00
.00000000000000E+00

-0.59076319668817E-01

~0.26419918997596E+00

-0.20172449035522E+00
SCV 0.00000000000000E+00
dOnorm 0.15662162275640E-09
ktnorm 0.20564110435030E-10

X

objective max4
objmax

constraints

O O O O O O O O O O O O

31

ncallf 1141

Normal termination: You have obtained a solution !!

Our third example is borrowed from [9] (Problem 71). It involves both equality and
inequality nonlinear constraints and is defined by
min xyz4(x] + Ty + 23) + T3
rER*
st 1<z <5, 1=1,...,4
L1Xox3Ty — 25 >0
x4 a2 42t 4 a2 - 10 = 0.

The feasible initial guess is: @y = (1,5,5,1)7 with the corresponding value of the objective
function f(z¢) = 16. A suitable program that invokes FSQP to solve this problem is given
below.

problem description

integer iwsize,nwsize,nparam,nf,nineq,neq

parameter (iwsize=33, nwsize=284)

parameter (nparam=4, nf=1)

parameter (nineq=1, neqg=1)

integer iw(iwsize)

double precision x(nparam),bl(nparan),bu(nparam),f(nf+1),
* g(nineqg+neq+1) ,w(nwsize)

external obj,cntr,gradob,gradcn

integer mode,iprint,miter,neqn,nineqn,inform
double precision bigbnd,eps,epseqn,udelta

mode=100
iprint=1
miter=500
bigbnd=1.d+10
eps=1.0d4-07
epseqn=7.d-06
udelta=0.d0

neqn=1
nineqn=1

b1(1)=1.d0
b1(2)=1.40
b1(3)=1.d0
b1(4)=1.d0
bu(1)=5.40
bu(2)=5.40
bu(3)=5.40
bu(4)=5.40

give the initial value of x

x(1)=1.d0
x(2)=5.40
x(3)=5.d0
x(4)=1.4d0

call FSQPD(nparam,nf,nineqn,nineq,neqn,neq,mode,iprint,

* miter,inform,bigbnd,eps,epseqn,udelta,bl,bu,x,f,g,
* iw,iwsize,w,nwsize,obj,cntr,gradob,gradcn)

end

Following are the subroutines that define the objective. constraints and their gradients.

subroutine obj(nparam,j,x,fj)
integer nparam,j
double precision x(nparam),f]

c
fi=x (1) *x(4)*(x (1) +x(2)+x(3)) +x(3)
return
end

c

subroutine gradob(nparam,j,x,gradfj,dunny)
integer nparam,j

double precision dummy,x(nparam),gradfj(nparam)
external dummy

33

gradfj(1)=x(4)*(x(1)+x(2)+x(3))+x(1)*x(4)
gradfj(2)=x(1)*x(4)
gradfj(3)=x(1)*x(4)+1.d0
gradfj(4)=x(1)*(x(1)+x(2)+x(3))

return
end
c
subroutine cntr(nparam,j,x,gj)
integer nparam, j
double precision x(nparam),gj
c

goto (10,20),j

10 gj=25.d0-x(1)*x(2)*x(3)*x(4)
return

20 gi=x(1)**k2+x(2)**2+x (3) **2+x (4) **2-40.4d0
return

end

subroutine gradcn(unparam,j,x,gradgj,dummy)
integer nparam, j

double precision dummy,x(nparam),gradgj(nparam)
external dummy

goto (10,20),]

10 gradgj(1)=-x(2)*x(3)*x(4)
gradgj (2)=-x(1)*x(3)*x(4)
gradgj (3)=-x(1)*x(2)*x(4)
gradgj (4)=-x(1)*x(2)*x(3)
return

20 gradgj(1)=2.d0*x(1)
gradgj(2)=2.d40*x(2)
gradgj (3)=2.40%*x(3)
gradgj(4)=2.d0*x(4)
return
end

After running the algorithm on a SUN 4/SPARC station 1. the following output is obtained

34

FSQP Version 3.0c (Released September 1992)
Copyright (c) 1989 --- 1992
J.L. Zhou and A.L. Tits
A1l Rights Reserved

The given initial point is feasible for inequality
constraints and linear equality constraints:

0.10000000000000E+01
0.50000000000000E+01
0.50000000000000E+01
0.10000000000000E+01
iteration 8
inform 0
X 0.10000000000000E+01
0.47429996518112E+01
0.38211499651796E+01
0.13794082958030E+01
objectives 0.17014017289158E+02
constraints -0.35171865420125E-11
-0.35100811146549E-11
SCV 0.35100811146549E-11
dOnorm 0.23956399867788E-07
ktnorm 0.34009891628142E-07
ncallf 9
ncallg 24

Normal termination: You have obtained a solution !!

9 Results for Test Problems

These results are provided to allow the user to compare FSQP with his/her favorite code (see
also [2-4]). Table 1 contains results obtained for some (non-minimax) test problems from [9]
(the same initial points as in [9] were selected). prob indicates the problem number as in [9],
nineqn the number of nonlinear constraints, ncallf the total number of evaluations of the

objective function, ncallg the total number of evaluations of the (scalar) nonlinear constraint

functions, iter the total number of iterations, objective the final value of the objective,
ktnorm the norm of Kuhn-Tucker vector at the final iterate. eps the norm requirement of
the Kuhn-Tucker vector, SCV the sum of feasibility violation ol linear constraints (see §4).
On each test problem, eps was selected so as to achicve the same field precision as in [9].
Whether FSQP-AL (0) or FSQP-NL (1) is used is indicated in column “B™.

Results obtained on selected minimax problems are summarized in Table 2. Problems
bard, davd2, f&r, hettich, and wats are from [11]; cb2, cb3, r-s. wong and colv are from
[12; Examples 5.1-5] (the latest test results on problems bard down to wong can be found
in [13]); kiwl and kiw4 are from [14] (results for kiw2 and kiw3 are not reported due to
data disparity); madl to mad8 are from [10, Examples 1-8]; polkl to polk4 are from [15].
Some of these test problems allow one to freely select the number of variables; problemns
wats-6 and wats-20 correspond to 6 and 20 variables respectively, and mad8-10, mad8-30
and mad8-50 to 10, 30 and 50 variables respectively. All of the above are either unconstrained
or linearly constrained minimax problems. Unable to find nonlinearly constrained minimax
test problems in the literature, we constructed problems p43m through p117m from problems
43, 84, 113 and 117 in [9] by removing certain constraints and including instead additional
objectives of the form

filw) = o) + aigila)

where the «;’s are positive scalars and ¢;(x) < 0. Specifically, p43m is constructed from
problem 43 by taking out the first two constraints and including two corresponding objectives
with «; = 15 for both; p84m similarly corresponds to problem 84 without constraints 5 and 6
but with two corresponding additional objectives, with a; = 20 for both: for p113m, the first
three linear constraints from problem 113 were turned into objectives, with a, = 10 for all;
for p117m, the first two nonlinear constraints were turned into objectives, again with a; = 10
for both. The gradients of all the functions 'were computed by finite difference approximation
except for polkl through polk4 for which gradients were computed analytically.

In Table 2, the meaning of columns B, nineqn, ncallf, ncallg, iter, ktnorm and SCV is
as in Table 1 (but ncallf is the total number of evaluations of scalar objective [unction). nf
is the number of objective functions in the max, objmax is the final value of the max of the
objective functions. Finally, as in Table 1, eps is the stopping rule parameter. Herce however
ils specific meaning varies from problem to problem as we attempted to best approximate the
stopping rule used in the reference. Specifically, for problems bard through kiw4, execution
was terminated when ||d?]| becomes smaller than the corresponding value of ¢ in the column
of eps (this was also done for problems p43m through p117m); for problems mad1 down to
mad8, execution was terminated when ||d}|| is smaller than |||l times the corresponding
value of € in the column eps (cxcept mad?2 for which I'SQPD was terminated when the 14
digits of the maximum objective value carried out by our code did not change); for problems
polkl through polk4, execution was terminated when log, ||y — 7] becomes smaller thau

36

the corresponding value of ¢ in the column of eps. FSQPD with monotone line scarch failed
to reach a solution for mad8-30 when QLD was used. but it succeeded when QPSOL [16]
was used.’

Table 3 contains results of problems with nonlincar equality constraints from [9]. All
symbols are the same as described before. eps is the norm requirement on d and epseqn
is chosen close to the corresponding values in [9], with 107 replacing 0. An asterisk (*)
indicates that FSQP failed to meet the stopping criterion before certain execution error is
encountered. It can be checked that the second order sufficient conditions of optimality are
not satisfied at the known optimal solution for problems 26, 27, 46 and 47.

10 Limitations

It is important to keep in mind some limitations of I"'SQP. First. similar to most codes
targeted at smooth problems, it is likely to encounter difficulties when confronted to non-
smooth functions such as, for example, functions involving matrix eigenvalues. Second,
because FSQP generates feasible iterates, it may be slow if the feasible set is very “thin”
or oddly shaped. Third, if A,(x) > 0 for all « € R" and if h,(2vg) = 0 for some ; at the
initial point zo, the interior of the feasible set defined by A, (a) < 0 for such ; is empty.
This may cause difficulties for FSQPD because, in FSQPD, A;(2) > 0 is directly turned into
h,(x) < 0 for such j. The user is advised to either give an mltml >oint that 1s infeasible for
all nonlinear equality constraints or change the sign of /; so that & ;(2) < 0 can be achieved

at some point for all such nonlinear equality constraint.
Acknowledgment

The authors are indebted to Dr. E.R. Panier for many invaluable comments and sugges-
tions.

References

[1] D.Q. Mayne & E. Polak, “Feasible Directions Algorithms for Optimization Problems with
Equality and Inequality Constraints,” Math. Programming 11 (1976) . 67-30.

[2] E.R. Panier & A.L. Tits. “On Combining Feasibility, Descent and Superlinear Conver-
gence in Inequality Constrained Optimization.” Math. Prograniming (1993. to appear)

SBut on most problems, according to our experience, QLD is significantly faster than QPSOL. A subrou-
tine to interface FSQP with QPSOL can be obtained {rom the authors.

3]

[10]
[11]
[12]

13]

37

J.F. Bonnans, E.R. Panier, A.L. Tits & J.L. Zhou, *Avoiding the Maratos Effect by Means
of a Nonmonotone Line Search. II. Inequality Constrained Problems -- Feasible Iterates,”
SIAM J. Numer. Anal.29(1992) , 1187-1202.

J.L. Zhou & A.L. Tits, “Nonmonotone Line Search for Minimax Problems.” .J. Optin.
Theory Appl. 76 (March 1993, to appear) . "

L. Grippo, F. Lampariello & S. Lucidi, “A Nonmonotone Line Scarch Technique for
Newton’s Method,” SIAM J. Numer. Anal. 23 (1936) , 707-716.

D. Q. Mayne & E. Polak, “A Superlinearly Convergent Algorithm for Constrained Opti-
mization Problems,” Math. Programming Stud. 16 (1982) , 45-61.

K. Schittkowski, QLD : A FORTRAN Code for Quadratic Programmming, User’s Guide.
Mathematisches Institute, Universitit Bayreuth, Germany, 19586,

M.J.D. Powell, “A Tast Algorithm for Nonlinearly Constrained Optimization Calcula-
tions,” in Numerical Analysis, Dundee, 1977, Lecture Notes in Mathematics 630, G.A.
Watson, ed., Springer-Verlag, 1978, 144-157.

W. Hock & K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lecture
Notes in Economics and Mathematical Systems (187), Springer Verlag, 1981.

K. Madsen & H. Schjeer-Jacobsen, “Linearly Constrained Minimax Optimization,” Math.
Programming 14 (1973) , 208-223.

G.A. Watson, “The Minimax Solution of an Overdetermined System of Noun-linear Equa-
tions,” J. Inst. Math. Appl. 23 (1979) . 167-180.

C. Charalambous & A.R. Conn, “An Efficient Method to Solve the Minimax Problem
Directly,” SIAM J. Numer. Anal. 15(1978) , 162-187.

AR.Conn & Y. Li, *An Efficient Algorithim for Nonlinear Minimax Problems,” University
of Waterloo, Research Report CS-83-41, Waterloo, Ontario, N2L 3G1 Canada. November.
1989 .

K.C. Kiwiel, Methods of Descent in Nondifferentiable Optimization, Lecture Notes in
Mathematics #1133, Springer-Verlag, Berlin, Heidelberg, New-York, Tokyo, 1985.

E. Polak, D.QQ. Mayne & J.E. Higgins, A Superlinearly Convergent Algorithm for Min-
max Problems,” Proceedings of the 28th [EEE Conference on Decision and Control (De-
cember 1989) .

P.E. Gill, W. Murray, M.A. Saunders & M.H. Wright. “User’s Guide for SOL/QPSOL:
A FORTRAN Package for Quadratic Programming.” Stanford Univ., Technical Report
SOL 83-7, 1983.

33

prob B ninegn ncallf ncallg iter objective ktnorm eps SCvV
pi2 O 1 7 14 7 —.300000000E+02 .72E-06 .10E-05 .0
i 7 12 7 —.300000000E+02 .79E-06 _10E-05 .0
p29 O 1 11 20 10 —.226274170E402 . 41E-05 .10E-04 .0
1 12 16 12 —.226274170E402 .63LE-05 .10E-04 .0
p30 O 1 13 25 13 .100000000E+01 .26E-07 .10E-06 .0
1 14 14 14 .100000000E+4-01 43E-07 .10E-06 .0
p31 0 1 10 21 8 .600000000E+01 .34E-06 .10E-04 .0
1 10 18 10 .600000000E+01 50E-06 .10E-04 .0
p32 0 1 3 5 3 .100000000E+01 .I5E-14 .10E-07 .0
1] 4 3 .100000000E4+01 .64E-16 .10E-07 .0
p33 0 2 4 11 4 -.400000000E4+01 .13E-11 .10E-07 .0
1 5 10 5 —.400000000E4+01 47E-11 .10E-07 .0
p34 0 2 7 28 7 —.834032443E4+00 .19E-08 .10E-07 .0
1 9 24 9 —.834032445E400 .38E-11 .10E-07 .0
r43 0 3 11 51 9 —.440000000E4-02 .12E-05 .10E-04 .0
1 12 49 12 —.440000000E4-02 .16E-06 .10E-04 .0
p44 O 0 6 0 6 —.150000000E4+02 .0 J0E-07 .0
1) 6 —.150000000E4+02 .0 A0E-07 .0
ps51 0 0 8 0 6 505655658 —~15 A6E-06 .10E-05 .22E-15
1 9 8 H05655668E—15 .34E-08 .10E-05 .22E-15
p57 O 1 3 7 3 306463061 E-01 .29E-05 .10E-04 .0
1 5 7 3 306463061E—-01 .28E-05 .10E-04 .0
pe6 0 2 8 30 8 518163274E+00 .50E-09 .10E-07 .0
1 9 24 9 H18163274E+00 .14E-08 .10E-07 .0
p6é7 0 14 21 305 21 —.116211927E4+02 .88E-06 .10E-04 .0
1 61 854 61 —.116211927E402 .58E-05 .10E-04 .0
p70 0 1 32 39 30 940197325E-02 5HRE-08 10E-06 .0
1 31 31 31 940197325E-02 19E-07 10E-06 .0
p76 O 0 6 0 6 —.468181818E+01 .34E-04 .10E-03 .0
1 6 6 —.468181818E+401 .34E-04 .10E-03 .0
p84 O 6 4 30 4 —.528033513E+07 .0 A0E-07 0
1 4 29 4 —.528033513E+4+07 38E-09 .10E-07 .0
p8s 0 38 34 1347 34 —.240000854E+01 .35E-03 .10E-02 .0
1 80 3040 80 —.240000854E401 81E-03 .10E-02 .0
p86 O 0 8 0 6 —.323486790E402 .22E-08 .10E-05 .0
1 7 6 —.323486790E4+02 53E-06 .10E-05 .0
p93 0 2 15 58 12 135075968E+03 37E-03 .10E-02 .0
1 15 36 15 135075964E+03 .24E-04 .10E-02 .0
pio0 0 4 23 114 16 .680630057E+03 .62E-06 . 10E-03 .0
1 20 102 17 .680630057E4+03 49E-04 .10E-03 .0
pt10 0 0 9 0 8 — 457784697402 H0E-06 .10E-05 .0
1 9 8 —.457784697E+02 50E-06 .10E-05 .0
p1i3 0 d 12 108 12 243063768E+02 8IE-03 .10E-02 .0
1 12 99 12 .243064357E+02 .83E-03 .10E-02 .35E-14
pit7 0 d 20 219 19 323486790E4+02 58E-04 .10E-03 .0
1 18 93 17 323486790E4+02 .34E-04 . 10E-03 .0
piigs 0 0 19 0 19 .664820450E4+03 .13E-14 10E-07 .0
1 19 19 6648204506403 17E-14 .10E-07 .0

Table 1: Results for Inequality C'onstrained Problems with FSQP Version 3.0

39

prob B ninegn nf ncallf wncallg iter objmax ktnorm eps ScV
bard 0 0 15 168 0 8 508163265E-01 .61E-09 .50E-05 .0
1 105 7 50816363GE—01 .22E-06 .50E-05 0
cb2 0 0 3 30 0 6 1952224496401 37FE-06 .50E-05 0
1 18 6 1952224495401 .20E-05 .50E-05 .0
cb3 0 0 3 15 0 3 .200000157E4+01 40E-05 .50E-05 .0
1 15 5 .200000000E+01 47E-08 .50E-05 .0
colv 0 0 6 240 0 21 .323486790E+02 46E-05 .50E-05 .0
1 102 17 323486790402 12E-04 .50E-05 .0
davd2 0 0 20 342 0 12 .115706440E4+03 .62E-06 .50E-05 .0
1 220 11 115706440E4+03 (11E-05 .50E-05 .0
f&r 0 0 2 32 0 9 494895210E+01 .90E-09 .50E-05 .0
1 20 10 494895210E4-01 .7OE-07 .50E-05 .0
hettich 0 0 5 125 0 13 .245935695E—-02 .10E-07 .50E-05 .0
1 75 11 .245936698E—-02 .18E-07 .50E-05 .0
r-s 0 0 4 71 0 9 .440000000E4+02 .98E-06 .50E-05 0
1 68 12 .440000000E4-02 .28E-06 .50I2-05 .0
wats-6 0 0 31 623 0 12 127172748E-01 . 42E-07 .50E-05 .0
1 433 13 127170913E-01 .84E-10 .50E-05 .0
wats-20 O 0 31 1953 0 32 .895554035E~07 .13E-05 .50E-05 .0
1 1023 32 898278737TE—-07 .13E-05 .50E-05 .0
wong 0 0 5 182 0 19 .B80630057E403 40E-04 .50[-05 .0
1 171 26 680630057E4+03 L13E-03 .50K-05 .0
kiwi 0 0 10 159 0 11 2260016215402 .32E-05 .11E-05 .0
1 130 13 .226001621E402 54E-05 .60E-06 .0
kiwd 0 0 2 42 0 9 .222044605E 15 18E-07 42E-07 .0
1 23 9 .0 ATE-07 15E-07 .0
madl 0 0 3 24 0 5 3896595165400 .22E-10 .10E-09 .0
1 18 6 .389659516E4+00 48E-10 .10E-09 .0
mad2 0 0 3 25 0 5 .330357143E4-00 .22E-10 10E-09 .0
1 21 6 .330357143E4+00 .86E-09 .10E-09 .0
mad4 0 0 3 29 0 6 .448910786K+00 .31E-17 .10E-09 .0
1 24 3 448910786400 .38E-16 .10E-09 .0
mad5 0 0 3 31 0 7 100000000E401 2115-11 .10E-09 .0
1 24 8 .100000000E+01 .7T8E-14 .10E-09 .0
mad6é 0 0 163 1084 0 G 113104727E400 81E-11 .10E-09 .0
1 1141 7 113104727400 21E-10 10E-09 .0
mad8-10 O o] 13 291 0] 10 .381173963E4+00 .89E-11 .10E-09 .0
1 252 14 381173963E+00 L16E-14 .10E-09 .0

mad8-30 O ¢l * .10E-09
1 1102 18 B547620496E4+00 12E-14 10E-09 .0
wad8-50 0 0 93 3056 0] 21 B5T9276202E4-00 86E-15 10E-09 .0
1 2084 21 579276202E4+00 91[-16 10E-09 .0
polkl 0 0 2 42 0 10 .271828183E+01 .50E-04 —10.00 .0
1 22 10 .271828183E4+01 .68E-04 —10.00 .0
polk2 0 0 2 203 0 42 .545981839E+02 .28E-03 — 9.00 .0
1 116 33 545981500E402 . 14E-02 — 9.00 .0
polk3 0 0 10 188 0 12 370348302401 .23E-02 - 5.50 .0
1 141 12 370348272E401 26E-02 — 5.50 0
polk4 0 o] 3 45 0 7 0 39E-04 —10.00 .0
1 24 7 .364604254E4+00 .37E-06 —10.00 .0
p43m 0 1 3 80 43 15 .440000000E+02 .11E-05 .50E-05 .0
1 63 25 16 .440000000E4+02 46[-05 .501-05 0
p84m 0 4 3 17 20 4 .528033513E4+07 .28E-09 .50E-05 .0
1 9 12 3 52803351 1E+07 76E-05 .50E-05 .0
pli3m 0 5 4 108 127 14 243062091E+02 14E-04 .50E-05 .0
1 84 105 14 243062091 E4+02 29E-04 .50E-05 .0
pl117m 0 3 3 124 144 21 323486790K+02 .43[5-05 50E-05 .0
1 57 54 17 323486790E402 .26E-04 .A0E-05 .0

Table 2: Results for Minnmax Problems with FSQP Version 3.0¢

40

prob B ncallf ncallg iter objective ktnorm eps epseqn SCV
p6 O 17 22 10 274055126E—11 42E-05 .10E-03 .40E-06 .20E-09
1 21 23 10 116074629E—-12 .35E-05 JA0E-03 40E-06 .28E-06
p7 0 o7 57 13 —.173205081E4+01 .12E-06 .10L-03 .35E-08 .70E-09
1 27 25 15 —.173205081E+4-01 .6815-08 J0E-03 .35E-08 .15E-09
p26 O 127 138 51 270576724E—-13 . 15E-08 JA0E-03 (16E-04 .12E-09
1 38 38 31 322181110E—13 .49E-08 A0E-03 (16E-04 43E-OR
p27 0 153 147 44 .399986835E—01 .24E-02 Jd0E-02 (10E-02 .38E-04
1 999 996 130 .399916645E—-01 .39E-03 J0E-02 .10E-02 .21E-03
p39 O 23 49 17 —.100000000E+01 .39E-04 A0E-03 .75E-04 .90E-08
1 12 25 12 —.100000000E+01 .50E-04 A0E-03 .75E-04 .64E-06
pdo O 5 15) —.250000002E4-01 .26E-05 A0E-03 .85E-04 .96E-08
1 5 17 > —.250000000E4+01 41E-04 .10E-03 .85E-04 .43E-05
p42 0 9 10 6 138578644E4+02 27E-05 .10E-03 .45E-05 .51E-09
1 7 12 7 .138578652E-+4+02 .26E-03 JA0E-03 45E-05 .33E-06
pi6 O 62 135 26 224262538E~10 . 11E-04 J0E-03 50E-04 57E-10
1 26 25 14 461984187E—-04 .19E-02 J10E-03 .50E-04 .95E-06
p47 O 74 241 38 16224154411 56E-06 JA0E-03 .60E-04 .41E-09
1 50 282 36 .308185534E—-01 .11E-04 A0E-03 .60E-04 .26E-08
ps6 O 31 147 15 —.3456000004-01 . 46E-08 J0E-03 .25E-06 .34E-10
1 14 60 14 —.345600000E+01 .88E-05 J0E-03 25E-06 .11E-08
p60 0 10 13 10 320682003E—-01 .29E-05 A0E-03 B5E-04 .2TE-09
1 9 14 9 325687946E—-01 21E-03 J0E-03 55E-04 55E-04
p61 0 18 38 8 —.143646142E+03 .35E-04 A0E-03 25E-06 13E-07
1 38 17 9 —.143646142E403 .67E-07 A0E-03 25E-06 27E-12
p63 O 8 10 3 9617151726403 [12E-06 JA0E-03 .60E-05 15E-10
1 6 10 6 961715172E4+03 .25E-04 A0B-03 .60E-05 .65E-07
p71 0 9 24 8 170140173E402 .34E-07 A0E-03 .70E-05 .35E-11
1 6 19 6 170140173E4+02 .79E-09 A0E-03 70BE-05 .28E-08
p74 O 14 43 14 BH12649811E+04 .65E-06 A0E-03 .65E-05 21E-10
1 41 123 41 012649811E4+04 31E-04 A0E-03 .6BE-05 .16E-08
p75 0 13 39 13 H17441270E4+04 34FE-08 A0E-03 10E-07 .25E-11
1 28 84 28 H517441270E404 .35E-08 A0E-03 10E-07 19E-08
p77 0 15 37 15 241505129E4+00 .30E-05 .10E-03 .35E-04 .68E-0O7
1 18 48 19 2415052115400 .61E-04 JOE-03 35E-04 . 14E-05
p78 O 9 41 9 —.291970041E+01 .83E-07 A0E-03 (15E-05 45E-10
1 8 26 8 —.291970041E4-01 .11E-03 JA0E-03 (15E-06 (11E-OR
p79 O 7 24 T 97434033601 . 12E-04 A0E-03 15E-03 A41E-07
1 10 34 10 974340336E—01 .66E-05 A0E-03 15E-03 40E-07
p80 0 66 198 20 .539498478E—-01 .25E-08 A0E-03 (1I5I-07 25E-12
1 7 21 7 .039498478E—-01 91E-0¥ JA0E-03 15E-07 111-07
p81 0 59 177 20 .539498478E—-01 .BHE-05 J10E-03 .80E-06 .36E-09
1 8 24 8 .539498419E—-01 .63E-05 J0E-03 B0E-06 .17E-06
ps9 0 111 269 38 —.831079886E+09 . 17TE+03 .10E-03 .10E-07 .92E-09
1 130 1229 130 —.831079886E+09 .33E401 .10E-03 .10E-07 .50E-01
p1o7 0 16 116 14 .5055601180E+04 .56E-02 A0E-03 10E-07 48E-09
1 16 109 16 .505501180E+04 .69E-03 J0E-03 10E-07 .39E-09
p109 O * A0E-03 10E-07
i * JA0E-03 .1015-07
pii4 O * A01-02 10E-03
1 18241 941 924 —. 1768806961404 .511E-05 JOE-02 0 101E-03 22E-12

Table 3: Results for General Problems with FSQP Version 3.0¢

