
ABSTRACT

Title of dissertation: Pig Squeal:
Bridging Batch and Stream Processing
Using Incremental Updates

James Holmes Lampton, Jr.,
Doctor of Philosophy, 2015

Dissertation directed by: Professor Ashok Agrawala
Department of Computer Science

As developers shift from batch MapReduce to stream processing for better

latency, they are faced with the dilemma of changing tools and maintaining multiple

code bases. In this work we present a method for converting arbitrary chains of

MapReduce jobs into pipelined, incremental processes to be executed in a stream

processing framework. Pig Squeal is an enhancement of the Pig execution framework

that runs lightly modified user scripts on Storm.

The contributions of this work include: an analysis that tracks how informa-

tion flows through MapReduce computations along with the influence of adding and

deleting data from the input, a structure to generically handle these changes along

with a description of the criteria to re-enable efficiencies using combiners, case stud-

ies for running word count and the more complex NationMind algorithms within

Squeal, and a performance model which examines execution times of MapReduce

algorithms after converted.

A general solution to the conversion of analytics from batch to streaming

impacts developers with expertise in batch systems by providing a means to use

their expertise in a new environment. Imagine a medical researcher who develops a

model for predicting emergency situations in a hospital on historical data (in a batch

system). They could apply these techniques to quickly deploy these detectors on

live patient feeds. It also significantly impacts organizations with large investments

in batch codes by providing a tool for rapid prototyping and significantly lowering

the costs of experimenting in these new environments.

Pig Squeal:
Bridging Batch and Stream Processing Using Incremental Updates

by

James Holmes Lampton, Jr.

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Professor Ashok Agrawala, Chair/Advisor
Professor Jeffrey Herrmann
Professor Joseph JaJa
Professor William Rand
Professor Alan Sussman

c© Copyright by
James Holmes Lampton, Jr.

2015

Acknowledgments

It is with great pleasure that I write this section because I get to thank many

of the people who made this possible. Appologies in advance to those I omit.

First and foremost I would like to thank my spouse, Andrea for all your love

and support through the (longer than promised) years. This accomplishment would

not have been possible without your help. I look forward to spending more time

with you and Henry as I stop moonlighting as a grad student.

I would also like to thank my advisor, Professor Ashok Agrawala for acting as

my guide through the mysterious forest of academia. As an undergraduate in Dr.

Larry Dowdy’s (thank you!) Distributed Operating Systems course, I was captivated

by the elegance of the Ricard-Agrawala algorithm. Little did I know I would later

take your Information Dynamics course and find such a kindred spirit. Thank you

for accepting me under your tutelage, for your sage advice, and for our enlightening

discussions. It has been a great pleasure to work with you.

I would like to thank my boss, Dr. Pat for planting and nurturing the idea of

pursuing a Ph.D. You have a knack for seeing possible outcomes and for saying the

right things at the right times to make those possibilities a reality. Thank you for

your support, advice, and understanding when my mind was many places at once.

I look forward to bringing my focus back to making the “impossible” a reality.

I joke that Pig Squeal is the result of a bet with a Professor – an idea so

absurd it seemed doomed to failure. That Professor, Dr. Jimmy Lin, deserves

special thanks. Thank for taking the time to listen to my half-developed ideas and

ii

for pushing me to form a rigorous treatment of this work.

Thank you Professor Bill Rand for serving on both my preliminary and thesis

committees and for the interest in this work through the years. Thank you Professor

Jeffrey Herrmann, Professor Alan Sussman, and Professor Joseph JaJa for serving

on my thesis committee and for taking the time to review my manuscript and provide

insights to improve this work. Thank you Professor Amol Deshpande for being my

Masters advisor.

Thank you to my colleagues in the MIND Lab: Dr. Matthew Mah, Ravin-

dra Passan, Nick Gramsky, Preeti Bhargava Shroff (you’re next!), Dr. Shiv Kr-

ishnamoorthy, and Dick Baer. Thank you to the graduate staff, Jennifer Story

and Fatima Bangura, for helping navigate the University’s process. Thanks to the

UMIACS support staff for keeping the NationMind virtual machine running.

Thank you to my work colleagues for amazing technical discussions and sup-

port – specifically Charles, Rudy, and Roger. Thank you to those who shared their

thoughts on the Ph.D. experience: Dr. Mark, Dr. Tom P., Dr. Tom D., Dr. Todd,

and Dr. Ed. A huge thank you to someone who helped launch my careers: Dr.

LeRoy.

Finally, I owe thanks to my family: my parents Stella, Don, and Jim; my

siblings April, Andy, and Mary; my grandparents Katherine, Sidney and Ada; and

my aunts and uncles. You are responsible for my existence and shaping me into who

I am today.

iii

Table of Contents

List of Tables vi

List of Figures vii

List of Listings viii

1 Introduction 1
1.1 Background . 4
1.2 Problem Statement . 9
1.3 Scope and Significance . 10
1.4 Outline . 12

2 System Reviews 15
2.1 MapReduce and Google File System 15

2.1.1 Word Count in MapReduce 16
2.1.2 Hadoop Architecture . 18

2.2 Apache Pig . 24
2.2.1 Word Count in Pig . 25
2.2.2 Language Overview . 27
2.2.3 Conversion Steps . 32

2.3 Apache Storm . 33
2.3.1 Storm Architecture . 34
2.3.2 Trident, Transactions, and Streaming Word Count 38
2.3.3 Trouble in (Streaming) Paradise 40

3 Streaming Aggregates 42
3.1 MapReduce as Message Sequences . 42

3.1.1 Adding Information . 46
3.1.2 Subtracting Information . 50

3.2 General MapReduce with Deltas using Counting Sets 53
3.2.1 Extending MapReduce . 55
3.2.2 Trident Functions Implementing MapReduce with Deltas . . . 57

3.3 Combiners . 60
3.3.1 Generalized Combine for Abelian Groups 63
3.3.2 Abelian Group Proof of Base Reduce Structure 67

3.4 Windows . 71
3.5 Chapter Summary . 73

4 Squeal: Pig on Storm 76
4.1 Word Count . 77

4.1.1 Implementation . 79
4.1.2 Performance . 85

4.2 NationMind . 86

iv

4.2.1 Implementation . 89
4.2.2 Performance . 94

4.3 Issues Surrounding Batch Codes in a Streaming Environment 95

5 Performance Modeling 99
5.1 Trident Execution Algorithms . 102
5.2 Performance Model . 107
5.3 Experiment: Word Count . 113

5.3.1 Modeling Map . 120
5.3.2 Modeling Combine . 122
5.3.3 Modeling State Management 126
5.3.4 Modeling Reduce . 129
5.3.5 Results . 130

5.4 Chapter Summary . 134

6 Literature Review 136
6.1 Big Data Processing . 136

6.1.1 Incremental Updates . 137
6.1.2 Launguages, APIs, and Pig Modifications 143

6.2 Stream Processing . 145
6.3 Performance Modeling . 151

7 Conclusion 155
7.1 Discussion of Trade-offs . 156
7.2 Future Work . 159
7.3 Closing Remarks . 161

Bibliography 162

v

List of Tables

1.1 Outputs for a word count algorithm. 8

2.1 Example of tuple expansion within Trident. 38

5.1 Statistics for various parallelisms . 117
5.2 Map Statistics and Fitness Measures 121
5.3 Combine Statistics and Fitness Measures 125
5.4 Get/Put State Statistics and Fitness Measures 128
5.5 Reduce/Key Count Statistics and Fitness Measures 130
5.6 Measured and Modeled Summary Statistics for Response Time 131
5.7 Result T-test Comparison . 133
5.8 Result Percentage Error Comparison 134

vi

List of Figures

1.1 Word count histogram in a streaming context 8

2.1 Hadoop architecture diagram . 19
2.2 File placement in Hadoop Distributed File System 20
2.3 Job execution within Hadoop MapReduce 20
2.4 The shuffle phase of a MapReduce job 22
2.5 Data flow-based view of a MapReduce execution 23
2.6 Storm architecture diagram . 34
2.7 Storm sample topology . 35

3.1 MapReduce with Deltas implementation in Storm’s Trident 57

4.1 Selected word scores during Boston Marathon Take Down 78
4.2 Determining context from tweets . 87
4.3 Screen shot of NationMind from the second 2012 Presidential debate 89
4.4 Storm topology for NationMind after optimization 94
4.5 Storm topology for word count . 96
4.6 Storm topology for word count after optimization 98

5.1 Comparing tweet rates of 2012 Presidential Debates and Hurricane
Sandy . 100

5.2 Expected tweets per hour . 101
5.3 Storm topology created from NationMind case study 104
5.4 CDF of Batch Elapsed Milliseconds for varying parallelism 116
5.5 CDF of Batch Relative Start and Stop Times for Computation Stages

for m=1 . 118
5.6 Count of Combine Events for m=1 123
5.7 Count of Combine Events for m=8 124
5.8 CDF of Measured and modeled batch elapsed ms for m=1 132
5.9 CDF of Measured and modeled batch elapsed ms for m = 8 135

6.1 Taxonomy of MapReduce improvements from Doulkeridis and Nørv̊ag.138
6.2 The functional architecture of an IFP system as depicted by Cugola

and Margara. 146
6.3 A graphical depiction of word count running in S4 from [53]. 151

vii

List of Listings
2.1 MapReduce word count example in Python. 17
2.2 Word count example in Pig that calculates the histogram of word

frequencies. 27
2.3 COUNT implementation that supports combine 31
2.4 Trident implementation of word count histogram 39
3.1 CollectorWrapper and TriMap implementations 58
3.2 Persistence pseudo-code . 59
3.3 TriReduce implemenation . 60
3.4 TriCombine implemenation for general combiners. 64
3.5 COUNT implementation that supports subtracting information . . . 65
3.6 Pig code to demonstrate issues with converting basic COUNT to an

invertable streaming computation. 66
4.1 Tweet loading and text extraction . 80
4.2 Removal of common words using replicated join 81
4.3 Word score generation . 82
4.4 Grouping words and accumulating metrics 83
4.5 Word count output . 84
4.6 Tweet sentiment . 90
4.7 Streaming distributed join . 91
4.8 Streaming Co-GROUP . 92
4.9 Concepts per minute calculation . 93

viii

Chapter 1

Introduction

The inspiration for this work is to build systems that enhance people’s lives.

Information is a fundamental element in the advancement of human kind. Whereas

a species may improve through evolution in time, humans have developed the ability

to transfer knowledge to one another and advance at a much faster pace through our

shared knowledge and application of tools. Communication is the carrier of informa-

tion. Initial forms of communications came from oral traditions, apprenticeships, or

written/drawn form. The written word provided resiliency and timelessness to infor-

mation but requires manual and expensive duplication through transcription. The

Gutenberg Press created the means to cheaply copy information and provide much

wider distribution. Fast forward to where we are today: it is extremely inexpen-

sive to produce and store information. The cost now lies in finding and consuming

information.

We are amidst a tipping point in computer science. The combination of

Moore’s law, advancements in distributed computing, capacity, as well as ubiq-

uitous computing and sensing have provided the circumstances necessary for this to

take place. It is common to hear “This year, more data will be measured than has

been ever measured in the past”. New techniques in data storage and analysis have

made it possible to measure, store, and reason about data at greater scales than

1

previously possible. In addition to the ability to reliably store petabytes of data,

new programming constructs have made it possible to harness large clusters of re-

sources with comparatively less training than previously possible. Finally, providers

such as Amazon Web Services1 and Rackspace2 provide large amounts of computing

resources available to anyone for a modest price.

The evolution of the creation and consumption of information has changed

very rapidly in the past twenty years. We’ve come a long way from getting our

information from word of mouth, radio, TV news, and news papers and magazines.

These forms of information transfer were at a fairly low rate and often curated by

an editorial process. Even early forms of communicating across the internet were

limited in scale (again due to human curation) and adoption rate. The growth of

social media has changed everything.

Changes can be traced through the evolution of internet search. When search-

ing the internet as a source of reference the information being sought is typically

static (“What kills bacteria?”). However, when interacting with the internet in a

social manner (e-mail, chat, etc.) the information is highly dynamic, personalized,

and isn’t explicitly sought (“What did George think about his breakfast?”). To

handle this shift, Google has re-engineered it’s backend processes to lower the la-

tency from discovery to availability in search [58]. Systems such as e-mail, chat,

application notifications, Twitter, Facebook, eBay, and Craigslist allow users to

generate content and interact with one another. A major issue with various streams

1http://aws.amazon.com/
2http://www.rackspace.com/

2

of information is collection and aggregation of content. Thankfully, many of these

applications have started providing Really Simple Syndication (RSS) feeds which

can be used to handle updates in a consistent manner. The next challenge then

becomes filtration, prioritization, and otherwise managing the incoming deluge of

information in a personalized way (such as Google’s Priority Inbox [7]).

The current use of computers and the internet, fueled by social media and a

global economy, generate immense amounts of information. However, the increase in

data availability comes with costs. If you combine these trends with the ubiquitous

mobile platforms (smart phones), along with e-mail, social media, and various other

means of notifications, it can be very easy to become overwhelmed and fatigued due

to being “always on”. This fatigue arises from the interruption of thought processes

necessary to process a new update. These interruptions can have a significant neg-

ative effect for tasks that require concentration. Once interrupted, it takes time

before a person returns to the same level of concentration and work efficiency. If

these interruptions come in the middle of performing complex tasks, these context

switches can lead to errors, either by missing steps in a process or by forgetting a

previously established assumption. The rate of information creation should acceler-

ate and continue to do so as adoption of ubiquitous computing platforms increases.

You will spend your life sifting through this information.

The same companies that collect and catalogue information are always trying

to adapt to user needs. For Google, this includes the augmenting query based

indexing with more user preferential delivery information such as Google Now. This

is called context aware computing which aims to deliver the right information at

3

the right time. The key elements of a context aware system are context - know

how information relates to a situation, relevance - what information is relevant to a

situation, and change - context changes constantly.

Within the information management realm, systems are designed to process

data in large batches and store it in a manner that makes it easier to answer questions

at a later time. In “Data Finds Data” [39], Jonas and Sokol make the argument

that the best time to reconcile questions of interest is as soon as the information is

known by the system. The realm of answering and processing information in flight

is the realm of Information Flow Processing Systems [22, 4, 9, 53]. The focus of

this work is on change: handling constantly changing information by addressing the

shift in architectures from batch processing to information flow processing systems.

The following section will open with an example application that is commonly

found in information processing system literature. The aim is to use one of the most

basic computations to describe the nature of the problem at hand and to establish

nomenclature to be used throughout this work. This will be followed by a problem

statement and discussions of scope and significance. The chapter will close with an

outline of the rest of this dissertation.

1.1 Background

This work lies within the cross section of three major areas of computer science:

batch data processing, stream data processing, and performance modeling. While

more detailed discussions of the particular systems being used are available in a later

4

chapter, we feel that a basic description of each is necessary to ground the research

questions discussed in this chapter.

Batch processing is concerned with analyzing static chunks of data. Such

systems usually accumulate information and execute analytics at some later time

– triggered by elapsed time, accumulated data volumes, or user interaction. The

defining characteristics of batch systems are: high throughput and relatively high

latency. MapReduce [23, 24] is the batch processing system that this dissertation

focuses on. MapReduce provides a framework for distributing computations across

a cluster of commodity computers. It is usually paired with complementary systems

to address the issue of latency. One such example is using MapReduce to compute

inverted indexes to be host by a low latency query system. Once analysts understand

how data must be manipulated to answer specific questions, other techniques such

as stream processing can be used to produce answers in a more timely manner.

Stream processing is concerned with analyzing data as it arrives. Histori-

cally, streaming frameworks have focused on pattern/action pairs in Complex Event

Processing systems [47, 22] or on extending the SQL dialect to include various mech-

anisms to manage the unbounded nature of the data, such as windowing operations

[30]. Streaming has recently made a resurgence in the form of more generalized

programming frameworks [53, 4, 75, 32]. Stream processing systems are chiefly con-

cerned with the tradeoffs of space and time. Storm [4] is the stream processing

framework studied in this dissertation.

Performance modeling is a deep field focused on the application of mathemat-

ical models to provide a structed analysis of system performance. The aspects of

5

performance modeling that relate to batch systems centers around scheduling and

makespan analysis [28]. Makespan is the difference in time between the start and

finish of a sequence of jobs. Scheduling is the mechanism for granting access to

resources by tasks to complete some measure of work. Queueing theory is a subarea

of performance modeling concerned with analyzing systems with continous arrival

and exit of work which is the case for streaming environments. The Storm system

has a special abstraction called Trident which makes use of mini-batches to provide

transactional processing of incomming data. Because of this, we use aspects of both

batch processing [45, ?, 76] and queueing theory [70, 41] to analyze the runtime of

converted codes. The ultimate goal of this analysis is to understand the cause of the

observed performance characteristics of this system. This knowledge will help de-

velopers focus their development time on the appropriate sections for optimization

and can provide insight as to where to add or reduce resources.

While SQL has long provided a means for analysts to store, retrieve, and

analyze data other mechanisms exist for describing analytics [18]. For MapReduce

environments, one such language is Apache Pig [55] which decomposes user provided

scripts into MapReduce stages. While various mechanisms exist for converting SQL

queries to streaming queries [30, 3, 15] the conversion of Pig work flows into stream-

ing computations is an area of open research. The major issue of direct conversion

centers around the synchronization mechanism of MapReduce. When a MapReduce

task starts it is assumed that all the input for the execution is available and static.

This aspect of the contract is broken when data arrives continously. To better un-

derstand the impact of continous data, let us consider a simple example of data

6

processing: word count.

Word count is easily the “Hello World” of batch data processing. The idea is

that you have a body of text that you want to analyze by examining the frequency of

words within. Let us consider a particular implementation’s handling of the popular

pangram “the quick brown fox jumps over the lazy dog”. The first step for word

count is to tokenize the text – basically break the input into individual words. The

second step is to group like tokens together. The final step is to count the occurrence

of each to produce the answer. While the concept is simple, the devil is in the details

when attempting to run any computation on a cluster of computers.

Table 1.1 provides the state of the computation through each step. The pair

(the, 1) is a tuple of length two. Tuples are akin to fixed length arrays in computer

science where the values can be referenced by position (zero based) or by optional

field name. The columns “tokenized”, “grouped”, and “summed” represent aliases

to bags of tuples. Bags are un-ordered, non-distinct, lists of tuples. The element

(the, {(1), (1)}) is a tuple with a scalar key and a bag value containing two identi-

cal tuples. In some cases, the extra parenthesis may be omitted for brevity when the

tuples are of length one – such as (the, {1, 1}). The three steps depicted here are

modeled after the MapReduce [23, 24] mechanism for distributing a computation

onto a cluster. The details of this mechanism will be explained in detail shortly,

but for now it is important to know that results are generated by chaining together

these three phases: map, shuffle, and reduce which are represented by the columns

of this table. We have adopted the structure names and definitions from Apache

Pig [55] (a data flow language that uses MapReduce to answer questions).

7

Table 1.1: Outputs for a word count algorithm.

Tokenized Grouped Summed
Key Value Key Values Key Value

the 1 brown {(1)} brown 1
quick 1 dog {(1)} dog 1
brown 1 fox {(1)} fox 1
fox 1 jumps {(1)} jumps 1
jumps 1 lazy {(1)} lazy 1
over 1 over {(1)} over 1
the 1 quick {(1)} quick 1
lazy 1 the {(1), (1)} the 2
dog 1

Let us expand the simple word count to include a second stage that counts

the frequency of the word counts for the sake of exploring chained aggregation in a

streaming context (such as Storm [4]). Imagine our original input is now streamed

into the system in four-word chunks. Figure 1.1a shows the counts for each word

along with the resulting histogram after the first set of words are processed: there

are four words that have been seen once.

the
quick
brown
fox
…

the, 1

quick, 1

brown, 1

fox,1

1,4

MapReduce1: count MapReduce2:hist

1,4

(a) MapReduce states after the first four
words

lazy, 1

the, 1 2

over, 1

jumps, 1

MapReduce 2: hist

jumps
over
the
lazy
… 2, 1

1, 4 6

MapReduce 1: count

1, 4

1,6

2,1

(b) States after the next four words with
corrections

Figure 1.1: Word count histogram in a streaming context

Figure 1.1b shows the updated states and changes necessary to produce the

correct results after the second set of words is seen (any unchanged states are omit-

ted). For the first MapReduce job there are two major changes: the new count

for the word “the” is two and there are three new words that occur once. These

8

changes must be propagated to the second state: decrement “1” because the word

“the” no longer contributes, increment “2” by one (again to account for “the”), and

increment “1” by three to account for the newly seen hapax legomena. This results

in new outputs for the second MapReduce stage which would also be propagated

as: “subtract” the previously seen emission (1, 4) and “add” the new emissions

(1, 6) and (2, 1). Thus the correct histogram after the second batch of words is

calculated.

1.2 Problem Statement

The advent of big data platforms has enabled analysis of otherwise unap-

proachable data sets. The largest investment in development resources has been in

batch processing systems. As information consumption shifts from question oriented

to alert driven interaction this leads a large technical debt in transferring existing

codes and expertise from batch environments where most historical data resides into

streaming environments where data first becomes available.

While techniques exist for running stream jobs in batch environments, for

handling updates within batch systems [44, 60, 12, 54], and for annotation of existing

codes for custom streaming environments (such as HStreaming), there are still open

questions regarding the transition to streaming environments. A general solution

to the conversion of analytics from batch to streaming impacts developers with

expertise in batch systems by providing a means to use their expertise in a new

environment. Imagine a medical researcher who develops a model for predicting

9

emergency situations in a hospital on historical data (in a batch system). They

could apply these techniques to quickly deploy these detectors on live patient feeds.

It also significantly impacts organizations with large investments in batch codes

by providing a tool for rapid prototyping and significantly lowering the costs of

experimenting in these new environments.

This study contributes to the body of knowledge necessary to address these

problems by answering the following questions: Does a general mechanism exist

for converting batch MapReduce algorithms to streaming algorithms? Can such a

mechanism support a wide range of computations? When converted, what are the

factors that impact their performance?

1.3 Scope and Significance

The scope of this work is to discover and analyze a general solution to the

problem of converting batch MapReduce codes to support streaming data through

incremental updates. To demonstrate the efficacy of these mechanisms we imple-

mented Pig Squeal: an execution engine for running Pig scripts within Storm. Pig

Squeal is then used to perform a deep analysis of the runtime performance of con-

verted scripts. The aim of this analysis is to fully understand the execution of the

current implementation of Pig Squeal on Storm. This analysis can be used in fu-

ture work to improve the performance of Pig Squeal to make it a viable alternative

for streaming development in enterprise environments. That is to say, the current

implementation is meant to be correct and analyzable while optimzing the overall

10

performance of the system is outside the scope of this dissertation.

To understand the significance of this work, it is necessary to discuss a focused

subset of the related work. The notion of tracking differences between multiple ver-

sions of state has long been used in computer science [35]. The idea of delta compu-

tations have been used to address updates within batch executions of MapReduce

tasks. In MapReduce with Deltas [44, 60] Lämmel and Saile introduce the notion

of delta computations for propagating updates through MapReduce computations.

They implement delta computations in a few case studies and propose the possibility

of a general delta layer to aid in the development of delta-aware computations. The

Incoop [12] system implements such a delta layer along with modifications of various

components of the Hadoop architecture to track dependencies between inputs and

outputs to allow for partial computation on the block boundary to speed up update

processing. By careful analysis of the algebraic properties of MapReduce calcula-

tions and use of key-value stores (such as Hbase3 which resembles BigTable [17]) we

demonstrate that it is possible to track dependencies without explicit memoization.

Both of these works address the response time of computations within the Hadoop

framework while this work exploits delta computations to convert batch codes into

streaming environments.

Delta computations have been used recently in iterative processing systems.

The Naiad [52] system uses differential dataflow [49] to provide a general framework

for implementing numerous data processing abstractions. Differential dataflow es-

tablishes a mechanism for decomposing a computation into a series of incremental

3http://hbase.apache.org

11

updates. This work focuses on the specific issues of automatic conversion of MapRe-

duce calculations to incremental computations for use in streaming environments.

The specific structures introduced in this work (the use of counting sets and ex-

tentions to the Pig API to re-enable combine functionality) fit within the general

constructs of differential dataflow (as outlined in section 6.1.1). However, the win-

dow functionality and the use of external stores through the Trident mechanism ad-

dress issues of continuous expansion of state and the ability to have an online/offline

approach to state management. These represent optimizations specific to running

MapReduce codes in an incremental fashion.

Recent applications of updates for the Pig scripting language include the

NOVA [54] workflow engine to allow developers to explicitly manage delta records.

The Squeal execution environment handles delta computations natively, freeing the

developer from such considerations. There has also been work at Yahoo which also

converts Pig scripts to Trident topologies. They use window operations to allow

the developer to reason about changes instead of using delta calculations. Window

operations have issues when data can be delayed or arrive out of order. The delta

computation presented in this work provides a means for calculating the correct

answer in spite of delayed or out of order arrival.

1.4 Outline

Chapter two provides in depth background for the three major systems used

in this work by examining implementations of word count in each. The first system

12

is MapReduce, the second is Pig, and the last is Storm. This chapter closes with a

discussion of issues encountered when implementing chained aggregate computations

in a streaming environment.

Chapter three provides an analysis of MapReduce as a message passing system

and establishes how data flows through the system. This model is then used to

describe what changes take place as information is added and removed from the

original input set. This is followed by a discussion of a generic structure for managing

value lists for the reduce stage which can be used to enable delta computations for

any MapReduce algorithm. We then discuss the properties necessary for enabling

Combine functions in a streaming fashion. Finally, we discuss a simple windowing

mechanism to enable stateful operations (such as JOIN) to discard information over

time.

Chapter four explores the features of Squeal by examining two case studies.

This includes word count and the NationMind analytics. Each implementation is

used to highlight various features and a performance analysis is discussed. This

chapter concludes with a discussion of how intuition from batch systems does not

necessarily carry over to streaming environments.

Chapter five discusses how Trident performs it’s calculations and uses this

knowledge to present a simple performance model. Each element of this model is

then described using the example of word count. This is followed by a discussion of

the results when this model is compared to various traces.

Chapter six provides a literature review covering related papers in the areas

of Big Data Processing, Streaming, and Modeling. This is followed by chapter

13

seven which provides the conclusion, a discussion of future work, and some closing

thoughts.

14

Chapter 2

System Reviews

This chapter provides some background on the three systems that this dis-

sertation builds upon: MapReduce, Pig, and Storm. Each is a representative of a

whole class of systems – MapReduce is a batch data processing platform, Pig is a

high level language for analyzing data (by producing MapReduce jobs), and Storm

is a clustered streaming environment. The following sections will discuss these three

systems in greater detail using the word count example from the previous chapter.

This chapter provides the foundation necessary to understand the rest of the dis-

sertation. If you are familiar with these systems, this chapter can be skimmed for a

review.

2.1 MapReduce and Google File System

From the very beginning, Google has designed its architectures for horizontal

scalability [13]. The cornerstone of this architecture is a distributed storage system

called Google File System [27]. Designed as a means of providing reliable storage

with high throughput from a cluster of commodity gear, it enabled the company

to ride the wave of cheap hardware. Developing software for distributed systems

is quite challenging on highly reliable hardware; when faced with the failure rate

of commodity hardware, these challenges become a significant barrier to entry. To

15

address these issues, Google introduced MapReduce [24] as a mechanism for dis-

tributing a work flow across a cluster of machines.

The beauty of MapReduce lies within its simplicity. By providing two func-

tions map and reduce the developer is able to process petabytes of information on

computer clusters that can fill a building. The MapReduce framework manages

scheduling, job placement, and failure resolution. These functions require a specific

form:

map : (key, value) 7→ {(keym, valuem), · · ·} Given a key and value, emit a list of new

key/value pairs.

combine : (key, {value0, · · ·}) 7→ {(keyc, valuec)} Optional function that may be ap-

plied at the mapper before transmitting data across the network. Allows for

pre-processing of reduce input to cut down on network traffic.

reduce : (key, {value0, · · ·}) 7→ {(keyr, valuer, · · ·)} Given a key and a sorted list of

values, produce a list of key/value pairs. The input values are those from the

map stage that shared the same key.

2.1.1 Word Count in MapReduce

To understand how these functions are used in practice, consider our word

counting algorithm implemented in MapReduce. Listing 2.1 provides a simple im-

plementation of word count in Python; the code necessary to setup this program is

omitted:

16

1 # MR #1 -- word count

2 def WCMap(k, v):

3 for word in v.split ():

4 emit(word , 1)

5
6 def WCReduce(k, v_lst):

7 emit(k, sum(v_lst))

8
9 WCCombine = WCReduce

10
11 # MR #2 -- frequency analysis

12 def HistMap(k, v):

13 emit(v, 1)

14
15 HistCombine = HistReduce = WCReduce

Listing 2.1: MapReduce word count example in Python.

The WCMap function receives a key/value pair from the system, in this case the

key is the source file (which is ignored) and the value is a line of text from that

file. This function splits the string on whitespace and emits the number one for

each word (which can be seen in the tokenized column of table 1.1). The WCReduce

function received a key representing a word emitted from map and a list of integers

represented the occurrences of this word (as seen in the grouped column from table

1.1). This function merely emits the sum of the input list along with the word

(as seen in the summed column of table 1.1). Finally, WCCombine is exactly equal

to WCReduce. Consider an input set consisting of English text: there are words

that occur with significant frequency such as the word “the”. Any given input

slice should have a considerable number of occurrences of these frequent words

which will be “compressed” by the Combiner. Thus instead of receiving a series

of ones ({1, 1, 1, · · ·}) the combiner would run at the various map stages to produce

partial sums ({4, 8, 20, · · ·}) which requires less resources to transmit and shares the

17

execution load of this calculation with the mappers.

Next, we address the second stage of our example to calculate a histogram of

word frequencies. Another map function is provided to set the stage for execution

pipelines. The purpose of this second calculation is to calculate the distribution of

word frequencies. The HistMap function takes the key, in this case a word from the

previous execution (which is ignored), and a value, representing the word frequency,

and emits the frequency along with a one. The combine and reduce functions for

the secondary calculation are the same as the previous example.

2.1.2 Hadoop Architecture

Apache Hadoop is an open source implementation of the ideas presented in

the Google research papers [27, 23, 24]. The 1.0 implementation provides Hadoop

Distributed File System (HDFS) [62] and an implementation of MapReduce. The

2.0 implementation improved the features of HDFS and provided a generic resource

scheduler called YARN [71] that allows for other computation paradigmns such as

Batch Synchronous Parallel (BSP) [2], interactive workloads (such as HIVE) [66, 67],

or even continous execution mechanisms such as stream processing [4].

Figure 2.1 shows the components of the Hadoop architecture. For storage,

the Name Node tracks the filesystem metadata: filenames, directory structures, and

block membership. The Data Nodes (DN) store the data blocks that compose the

contents of the files. The Job Tracker maintains a queue of executing and pending

jobs; it coordinates with Task Trackers (TT) to execute jobs. The Name Node and

18

Job Tracker

M1

DN

TT

M2

DN

TT

M3

DN

TT

M4

DN

TT

Name Node

Figure 2.1: Hadoop architecture diagram

Job Trackers are the entry point for clients into the Hadoop system and provide

cluster coordination. The individual machines (M1, M2, . . .) form the storage and

execution resources of the Hadoop system.

Figure 2.2 shows a file stored within HDFS. In this specific case, “File 1” is

made up of three sequential chunks; the chunk size is configurable, but generally

ranges between 64 and 256 megabytes. When a file is inserted into the system, each

chunk is sent to a data node for storage. These data nodes then begin replicating the

chunks for resiliency and to increase parallelism when processing. The replication

policy of Hadoop attempts to place one replica within the same rack as the initial

copy while placing another replica in another rack. This balances performance (by

limiting cross-rack communication) with resiliency (assuming that whole racks are

susceptible to correlated failures due to power supply or switch failure).

19

M1 M2 M3 M4

Name Node

File 1: 1 2 3

1 1 1

2 2 2

3 3 3

Figure 2.2: File placement in Hadoop Distributed File System

Figure 2.3 shows placement of a map phase on the example cluster. The Job

Tracker attempts to assign the map task upon the same machine as the input data;

absent the availability of a data-local task slot, it will then attempt to place the map

task within the same rack, as a last resort it will use any available task slot. This

optimizes the utilization of the intra-rack network capacity and allows for progress

in less than optimal situations.

Job Tracker

M2 M3 M1 M1’

1 1 1

2 2 2

3 3 3

Figure 2.3: Job execution within Hadoop MapReduce

20

In this particular case the first execution of the map phase for the “1” input

chunk had to be rescheduled to a secondary node (labeled M1′). This can occur

because of node failure or in cases of “Preemptive Execution”. Preemptive execu-

tion is a means for compensating for slow execution times of any of the tasks (map

or reduce). Within a cluster of computers, the chance of a misbehaving (i.e. slow)

machine becomes quite likely. Because map and reduce tasks are supposed to be de-

terministic (or “acceptably non-deterministic” such as in Monte Carlo simulations)

a duplicate task can be started to correct for misbehaving nodes. In this case, de-

terministic means that when a map or reduce function is given the same input it

should provide output that is functionally equivalent. This is important if a task

fails which would cause the job tracker to spawn a task to replace the missing results.

Repeatability becomes important later when we start tracking changes through var-

ious stages. Preemptive execution can provide a significant performance boost as

noted in [23] when you consider that the reduce phase cannot start execution until

all mappers have completed.

The number of map tasks is determined by the number of chunks in the input

set. If there are more tasks than task execution slots, the non-assigned tasks are

queued up for execution. This provides an important distinction from typical High

Performance Computing (HPC; particularly MPI) workloads. HPC computations

generally require scheduling of all necessary resources for a particular step at the

same time. This leads to executions that are rectangular in space and time [71].

Scheduling in this case becomes an exercise in bin-packing whereas some tasks are

tall and skinny (requiring large compute resources for a short amount of time) and

21

out(M2)

R2

out(M3)

R1 M1

out(M1)1

2

3

Shuffle

Figure 2.4: The shuffle phase of a MapReduce job

some are short and wide (requiring fewer compute resources for a long time). In

multi-tenant environments systems, this necessitates prioritization and check point-

ing (to maintain progress in the face of preemption). Within MapReduce clusters,

tasks of multiple jobs can be interleaved [71] (when using a round-robin or “fair”

schedulers) with the atomic boundary of execution being the sub tasks (map or

reduce). This allows for job executions that expand and contract in time and space

depending on cluster utilization. Both execution paradigms have their strengths

and weaknesses.

Figure 2.4 shows the shuffle stage of the MapReduce execution where interme-

diate results are transmitted to the reduce tasks. The map output is temporarily

stored on the node that performed the map computation; if one of these nodes dies

before the results can be transfered, the map task will need to be rescheduled for

execution. Although the reduce tasks cannot start processing the intermediate re-

sults before all map tasks are completed, they can start to transfer these results and

begin sorting them. As with the map phase, any tasks that cannot acquire a task

22

…

M

M

M

M

R

R

R

…

Input Output

Figure 2.5: Data flow-based view of a MapReduce execution

slot immediately are queued for later execution. Upon completion, the reduce task

will write its output into HDFS for follow-on processing.

Whereas the number of map tasks are determined by the size of the input

set, the number of reduce tasks is specified by the developer or framework. For

example, the Pig scripting language uses the following heuristic to specify the num-

ber of reduce tasks. A common mistake of Hadoop neophytes is to set the number

of reducers to a significantly large number (perhaps thinking “more is better?”).

However, this can cause the total runtime of the job to increase due to the latency

between task assignment and execution. In a multi-tenant environment once a job

has been given a task slot, it must go to the back of the wait queue. On the flip side,

if a reduce task has too much data and takes a long time to execute the scheduler

loses the ability to improve total cluster throughput because it cannot interleave

task executions to allow short jobs to complete in a timely manner. If preemption

is used to avoid such situations it can waste execution time on long tasks and lead

to situations where some jobs will never complete.

Figure 2.5 provides a data flow-based logical view of a MapReduce computa-

tions. Often, this simplified conceptual view is all that is necessary to begin writing

23

MapReduce programs. Data flows from the left to the right – in the simplest case,

data is loaded from HDFS, processed by each individual map task, shuffled to the

appropriate reduce tasks, and finally processed and written back into HDFS. This

figure also illustrates issues surrounding the cardinality of the reduce input groups.

The top reduce task has more data being transmitted to it, the middle task less, and

the bottom task less still. Ahmdal’s law tells us that the execution time of a multi-

process algorithm is limited by the execution time of the atomic (non-splittable)

parts of the execution. Even with infinite task slots and negligible latencies for

startup and data transfer the execution times of any MapReduce job is dominated

by the slowest individual task.

Finally, this figure also shows that reduce tasks can have a non-uniform dis-

tribution in the sizes of the output they generate. In this particular case there is

a correlation of input and output sizes, but that doesn’t have to be the case (the

reduce task with the smallest input could produce the most output). This doesn’t

create any particular issues with follow-on processing because the system will start

more map tasks for any particular output file based on the chunk boundaries. How-

ever, this can be an important issue to consider later when we consider streaming

computations where operations may be pipelined.

2.2 Apache Pig

Apache Pig [55] is a high-level imperative data-flow language for analyzing

data using Hadoop’s implementation of MapReduce. By abstracting the data oper-

24

ations further than Java MapReduce, Pig allows for rapid development of algorithms

using significantly less code. Pig provides a set of operations for loading, organiz-

ing, manipulating, and storing information. Within each of these steps, Pig provides

built-in functions for handling typical uses and provides mechanisms for extension.

These built-in functions are written in a way that allows for the full use of the

optimization mechanisms of MapReduce (specifically combiners) providing for effi-

cient code with very little effort. Ultimately, this provides a softer learning curve

for neophytes as well as a strong tool for more seasoned developers. The following

section uses our word count example to focus the discussion of language features

and execution. Subsequent chapters will provide details necessary to proceed.

2.2.1 Word Count in Pig

Listing 2.2 provides a Pig implementation of the word count example seen

in section 2.1.1. Though longer than the Python code from listing 2.1, this code is

complete and is ready for execution. First, an alias, sents, is created by loading data

from the path specified in $input (a parameter that must be specified at runtime).

By default, Pig assumes that data is tab separated and newline terminated. The

data can be compressed and processed automatically provided the filenames end

with the appropriate extension (gz or bz). The data is returned as a list of tuples

with a single field sentence. The next line creates a bag of words by splitting each

sentence within sents on white space (using TOKENIZE) and generates a new alias

words by flattening the bag which creates one row for each element within the bag

25

of words. The next line creates a new alias lowerWords by applying the LOWER

function to the first value in words, resulting in rows of lowercase words (equivalent

to the tokenized column of table 1.1 – with an implicit one for each row). Line 10

groups all rows of lowerWords by the value in the field word. This results in a new

alias countGr that has an automatically populated field group that represents the

value of the group expression that partitions the values of lowerWords (similar to

the grouped column of table 1.1). The second field of countGr is named after the

grouped bag, lowerWords and contains all rows within the partition.

Next the alias count is created by iterating through each partition and counting

the number of rows within the lowerWords bag (which is equal to the summed

column in table 1.1). In a similar fashion, histGr is created by grouping the rows in

count by the wordCount field; hist is created by counting the number of rows that

share the same wordCount. Finally, these values are stored to disk in the specified

output directory.

26

1 -- Read $input into a bag of sentences.

2 sents = LOAD ’$input ’ AS (sentence:chararray);

3 -- Create a bag of words.

4 words = FOREACH sents GENERATE FLATTEN(TOKENIZE(sentence));

5 -- Convert the words to lowercase.

6 lowerWords = FOREACH words GENERATE LOWER($0) AS word;

7 -- Group the words together.

8 countGr = GROUP lowerWords BY word;

9 -- Count the number of times each word appears.

10 count = FOREACH countGr GENERATE

11 group , COUNT(lowerWords) AS wordCount;

12 -- Group by word count.

13 histGr = GROUP count BY wordCount;

14 -- Calculate the number of times each word count occurs.

15 hist = FOREACH histGr GENERATE group , COUNT(count) AS freq;

16 STORE hist INTO ’$output ’;

Listing 2.2: Word count example in Pig that calculates the histogram of word fre-
quencies.

This script results in a two stage MapReduce execution much as the Python

code. The first MapReduce calculates the count alias while the second calculates

hist. The Pig framework will materialize the results of count temporarily within

HDFS and use it as input for the second stage of execution. If the script stopped

by storing lowerWords Pig would not use a reduce phase. Reduce stages are only

necessary when interaction between rows is necessary. Thus, any operations that

requires data to interact in some way (i.e. GROUP, ORDER BY, or JOIN) will induce a

MapReduce operation within the execution plan. The next section will provide an

overview of the language.

2.2.2 Language Overview

A full description of every aspect of Pig is well beyond the scope of this work,

but it is necessary to explain a few key aspects as they relate to understanding

27

this work. This section will discuss the data model for Pig along with how data is

loaded, manipulated, and stored. The Pig project1 has high quality documentation

that provides examples of each of these operations in much greater detail.

Pig supports many data types2 which can be considered scalar or complex. A

subset of the scalar data types include:

int a signed 32-bit integer.

float 32-bit floating point number.

chararray a character array in UTF-8.

bytearray a raw byte array.

There are three complex (or nested) types in Pig:

tuple an ordered set of fields that can be referenced by position or an optional

name.

bag a collection of tuples (think of it as a non-distinct set).

map a set of key/value pairs.

As demonstrated by listing 2.2 data is loaded into the system using the ap-

propriately named LOAD operator. By default, Pig uses the PigLoader User Defined

Function (UDF) to load information. The PigLoader function is a Pig built-in and

implements the LoadFunc interface to interact with HDFS. The load function also

1http://pig.apache.org/
2http://pig.apache.org/docs/r0.10.1/basic.html under Data Types

28

translates the information into the Pig data model. By default, the PigLoader will

treat each line (terminated by a newline) as a record with fields separated by tabs.

The separator can be overridden by specifying an alternative – PigLoader(’,’)

would look for comma delimited fields. Without specifying a schema, Pig will store

everything as bytearray unless various operations require an implicit cast (such as

string comparison, which would cause a cast to a chararray). The developer can

specify the schema on the load line or throughout the script using C-style casting:

(chararray)expression. The results of the load function are represented by an alias.

This alias can be thought of as a representation of a bag of tuples.

Once data is loaded, it can be manipulated using various operations such as

FOREACH or FILTER. The FOREACH allows for an expression to be evaluated against

each tuple in the specified input. These expressions can be simple such as rela-

tional projection or complicated such as the application of sophisticated UDFs. Pig

comes with quite a few built in functions including mathematical functions (ABS,

LOG. . .), string manipulation (INDEXOF, SUBSTRING, . . .), and complex type routines

(TOTUPLE, TOBAG, TOP. . .).

When parsing a script, Pig doesn’t perform operations until a side-effect occurs

either through a DUMP operation or a STORE operation. The DUMP operator executes

the portions of the Pig script necessary to materialize the results to the screen.

The STORE operator performs the same execution but passes the information to

a storage UDF. The default StoreFunc is PigLoader which writes with the same

default format as it reads. As with reading, an alternative separation character can

be passed in as an argument. By default, Pig creates a directed acyclic graph (DAG)

29

where the LOAD routines represent sources and the STORE routine represents a sink.

If there are multiple STORE routines in a script, each is treated as an independent

DAG.

All of the operations mentioned so far could operate without a reduce step –

all data is processed independently of each other (there is no interaction between

tuples). The real strength of MapReduce (and thus Pig) lies in grouping data to-

gether by some partitioning function and applying aggregate functions. Pig includes

standard JOIN operations (left, right, inner, and outer) and an ORDER BY operation

to perform a total ordering of the data set based on some expression. The opera-

tor that makes Pig unique (when compared to SQL) is GROUP BY (or COGROUP BY)

which partitions one or more aliases by the specified expression(s). The word count

example seen in listing 2.2 has already demonstrated grouping a single alias by an

expression. Allowing developers to group or join multiple sources of information

together allows Pig to mix many different types of information together to answer

an analytical question.

When data is grouped together, many aggregation functions become avail-

able to the user such as MIN, MAX, or COUNT. These built-in functions implement

the Algebraic interface from Pig which requires three functions: getInitial,

getIntermed, and getFinal that return names of classes that implement EvalFunc

and perform each step of a combinable computation. The initial class is passed a tu-

ple containing the information as produced by the map function – it preps the data

for no or more executions of the intermediate evaluation function. The intermediate

function accepts bags of initial or intermediate values and returns values that can be

30

processed by further intermediate stages or by the final function. The final function

takes one or more of the outputs from initial or intermediate and produces the final

result.

Listing 2.3 provides a simplified implementation of these constructs in Python

for COUNT. First, notice the implementation of an exec method (lines 14 to 16). This

is necessary if Pig encounters cases where the combine functionality cannot be used

(such as when combinable and non-combinable operations are used after a GROUP BY

operation – Pig falls back to standard MapReduce). The initial method (line 3-4)

takes a tuple containing a bag of values and returns the size. The intermediate

and final methods sum these values producing the count of the elements within.

Ultimately, this allows Pig to produce very efficient execution plans from very simple

user-provided scripts.

1 class COUNT:

2 @staticmethod

3 def initial(tuple_in):

4 return len(tuple_in.get (0))

5 @staticmethod

6 def intermediate(tuple_in):

7 # tuple_in contains a bag of numbers

8 return sum(tuple_in.get (0))

9 @staticmethod

10 def final(tuple_in):

11 # Same as intermediate.

12 return self.intermediate(tuple_in)

13 @staticmethod

14 def exec(tuple_in):

15 # Fall back method.

16 return len(tuple_in.get (0))

Listing 2.3: COUNT implementation that supports combine

Pig ships with a core set of features for very basic data manipulation. However,

31

members of the community such as Twitter3 and Linkedin4 have provided additional

functionality through third party libraries. These libraries feature advanced func-

tionality for built-in types such as treating Bags as Sets or LOAD/STORE routines for

manipulating advanced storage schemas or mechanisms. This allows institutions to

tailor Pig to their specific needs by implementing functions to access proprietary

data formats or algorithms.

2.2.3 Conversion Steps

When the Pig interpreter encounters an operator that produces a side effect

(such as STORE or DUMP) it begins the process of query conversion. There are three

distinct instances of an execution plan: logical, physical, and MapReduce. The

logical plan is basically a parse tree of all the operators that lead to the result. The

logical plan undergoes a series of optimizations – pushing operators up or down,

merging FILTER statements, and other adjustments to improve the performance of

the execution plan. Finally, the logical plan is converted into a physical plan which

is a configuration of operators that implements the logical plan.

The next phase is execution which leads to the generation of the MapReduce

plan. The MapReduce plan spreads the physical plan across multiple stages of

MapReduce executions as necessary to produce the results. Once converted to a

MapReduce plan, further optimization occurs such as using combiners if possible.

Finally, the jobs of the plan are dispatched (in parallel where possible) to Hadoop

3https://github.com/twitter/elephant-bird
4http://datafu.incubator.apache.org/

32

for execution. The map and reduce tasks for Pig are parameterized to instantiate a

section of the physical plan to perform the calculations of the Pig script. The input

is unmarshalled and placed at the top of the sub-tree and the results are drained

from the bottom, marshalled, and passed to the MapReduce framework.

2.3 Apache Storm

Storm [4] is part of a new wave of stream processing frameworks along with

IBM InfoSphere Streams [9, 26, 32] and Yahoo’s S4 [53]. These platforms run on

local clusters of computers and are geared for producing results at low latencies.

Nathan Mars (one of Storm’s initial creators) advocates what he calls “the lambda

architecture”5. The purpose of streaming in this architecture is to bridge the hour

long gap before the batch processing system is run. The results of the batch system

are treated as the source of record so any hiccups that may occur in the streaming

system only have a short impact. Storm was selected due to ease of deployment,

access to source code, and a feature set that eased the development (notably the

transaction handling and state management). The techniques presented in this

work are applicable to other streaming frameworks and for other incremental up-

date mechanisms such as Google’s Percolator [58]. The following sections describe

the Storm architecture, discuss a streaming word count implementation using the

Trident APIs, and discuss a fundamental issue with updates that is the core of this

research.

5http://lambda-architecture.net/

33

2.3.1 Storm Architecture

Figure 2.6 shows the architecture of the Storm processing system. The main

components are Nimbus and Supervisors (labeled SV). Nimbus is similar to the

Hadoop Job Tracker in that it maintains a list of running topologies and man-

ages failures. Supervisors are similar to the Hadoop Task Trackers in that they

host the processing components and manage communications between each. These

components rendezvous using a system called Zookeeper [40] (labeled ZK) which is

designed to mimic Google’s Chubby [14] locking service.

Nimbus

M1

SV

M2

SV

M3

SV

M4

SV

ZK
ZK
ZK

Figure 2.6: Storm architecture diagram

Figure 2.7 shows a hypothetical Storm topology. Storm applications consist

of topologies of spouts (labeled S) and bolts (labeled B). When launched, Nimbus

examines the topology and assigns the components to worker slots (labeled W) on

the Supervisor nodes. A worker slot represents a JVM containing a communica-

tion channel and thread pools for servicing requests. Spouts represent sources of

34

information, they provide a getNext routine which is called by the worker to pull

a tuple into the system. As with Pig, Storm’s tuples are ordered, named, relations

of data. The data within can be of any type supported by Java provided it is seri-

alizable or has a serialization mechanism registered with Storm. Tuples are carried

on streams which are unbounded sequences of tuples that originate from spouts and

bolts. Spouts are declared within a topology by providing an instance of the spout

to the topology builder along with a name and a parallelism hint (which determines

how many instances to create when the topology is instantiated). Spouts also im-

plement the declareOutputFields routine which specifies the output streams and

field names produced within each stream.

SV SV SV SV

W W W W W W W W W W W W

S
S
S
S

B
B
B

B
B
B

B
B
B
B

Figure 2.7: Storm sample topology

Much like spouts, bolts are declared using the topology builder by providing an

instance, name, and parallelism hint. Bolts also implement a declareOutputFields

routine like spouts. However, unlike the spout, the bolt can subscribe to other

streams of information by performing a grouping on a named source (spout or bolt)

and stream. A subset of the grouping mechanisms provided by Storm includes:

35

all grouping – send each tuple to every instance of the receiver.

shuffle grouping – send each tuple to one randomly chosen instance of the receiver.

fields grouping – send each tuple to one instance of the receiver based on the value

of the specified fields (1-to-1).

custom grouping – send each tuple to destinations based on the specified grouping

function.

In MapReduce, the default partitioning style is equivalent to Storm’s fields

grouping (where the field would be the key). Also like MapReduce, Storm provides

the ability to specify a custom grouping function. In MapReduce such functions

partition the data into separate bins whereas Storm permits more general specifica-

tion allowing a tuple to be routed to multiple nodes if necessary (such as the system

provided all grouping which broadcasts tuples to every receiver).

While tuples are pulled from spouts, they are pushed to bolts via the execute

routine. Tuples provide routines to determine their source along with various access

routines for the data within. Bolts ultimately produce new tuples by emitting them

via the collector provided when the bolt is prepare-ed during the topology setup.

These emissions don’t have to be directly tied to an execute. There are cases where

a bolt may delay emission such as time or size based windowing. However, if Storm’s

at least once semantics are used, any new messages must be transmitted before any

of the influencing messages are acknowledged.

Storm has a unique acknowledgement mechanism worth mentioning6. When

6http://storm.incubator.apache.org/documentation/Guaranteeing-message-processing.html

36

a tuple is emitted from a spout or bolt, it is given a random 64-bit id. For each

spout tuple, a special bolt called the “acker” keeps a map of id to a pair of numbers

representing the source spout (for transmitting acknowledge or fail messages) and

an “ack value”. The ack value is initialized to zero. When a message is received at a

bolt, it can be used to chain any emissions to the original source message. For each

chained message, a new random id is created and this value is XORed to the id of the

inbound message. When the inbound message is acknowledged, this combination of

ids is sent to the acker which XORs this combined value to the ack value. If the ack

value ever becomes zero, we know (with a high degree of certainty) that the changes

introduced by the source message have been successfully processed.

If a timeout occurs for the message (due to overload or intermediate bolt

failure), the acker transmits a failure response to the spout (which may have died).

In any case, the message would be retransmitted at a later time – this may apply the

information more than once if the message (or one of its ancestors) was successfully

consumed. There is also a remote possibility that the ack value can become zero

out of chance. This would only be an issue if there was a failure along with this rare

event.

These are the building blocks for anything running in Storm. While it is

possible to write highly efficient (and complicated – and unmaintainable!) code

using raw spouts and bolts, there are other mechanisms for achieving these results.

The following subsection describes the Trident APIs which provide a higher level

abstraction for building analytics on Storm.

37

2.3.2 Trident, Transactions, and Streaming Word Count

Trident is included with the Storm distribution and provides a different way

to compose topologies. Listing 2.4 shows an implementation of word count using

Trident. For this example, we will be processing a stream of tweets that are loaded

in line 7. Lines 10-13 calls the TriTokenize function on the twitterJSONb field

from the tweets stream. This function’s output will be appended to the tuple with

the field name “word”. When there are multiple emissions for a given input, Trident

duplicates the rest of the tuple and appends the new values to each. Thus, the string

“the quick brown” will produce three tuples – each with a copy of the input along

with the unique tokens as seen in table 2.1 (which is an expanded for of the tokenized

column of table 1.1).

Table 2.1: Example of tuple expansion within Trident.

twitterJSONb word

the quick brown the
the quick brown quick
the quick brown brown

38

1 // Java boilerplate omitted ...

2
3 public class WordCount {

4 public static TridentTopology setupTopology(String queueName) {

5 TridentTopology topology = new TridentTopology ();

6
7 Stream tweets = topology.newStream(

8 "tweets", new TwitterRMQSpout(queueName));

9
10 Stream tokens = tweets.each(

11 new Fields("twitterJSONb"),

12 new TriTokenize (),

13 new Fields("word"));

14
15 Stream counted = tokens.groupBy(new Fields("word"))

16 .persistentAggregate(

17 new LRUMemoryMapState.Factory (1000) ,

18 new Count(),

19 new Fields("word_count"))

20 .newValuesStream ();

21
22 Stream hist = counted.groupBy(new Fields("word_count"))

23 .persistentAggregate(

24 new LRUMemoryMapState.Factory (1000) ,

25 new Count(),

26 new Fields("freqency"))

27 .newValuesStream ();

28
29 return topology;

30 }

31 }

Listing 2.4: Trident implementation of word count histogram

Line 15 performs a global partitioning of the tuples by the field “word”. This

will send all tuples with the same “word” to the same worker (similar to the grouped

column of table 1.1). Lines 16-19 perform a persistent aggregation – effectively

counting the occurrences of the specific word. Trident provides a state tracking

mechanism which can be seen in this segment of code. For this example, we are

using the LRU Memory Map State with 1,000 memory slots. When a new key comes

in, Trident attempts to fetch the previous value (for the key) from the state. If no

39

previous state exists, the aggregation functions zero method is used. Updated as

applied in bulk to this value and staged for commit.

Trident supports many types of aggregation including basic reduction and

combination. Count, as we’ve seen previously, is combinable and is implemented as

such. Once the count has been produced, a new value stream is created (which is

equal to the summed column of table 1.1). Lines 22-27 perform the second grouping

on the count field to produce the histogram. If the tuple successfully reaches the end

of the calculation, Trident performs a commit phase to push all updates in bulk to

the state system. Upon failure, Trident is able to discard the updates and mark the

input tuples for re-processing. Because of this two-phase commit mechanism, Tri-

dent can provide at most once execution semantics (there are additional constraints

on the spout and state implementations but this is beyond the scope of this work).

2.3.3 Trouble in (Streaming) Paradise

The issue with the code in listing 2.4 is that there is no coordination between

the count and histogram phases. Reconsider figures 1.1a and 1.1b – when the second

batch of words enter into the system, the intermediate values undergo changes which

must be propagated to the second stage. In our current implementation of word

count within Trident, only the “positive” information is transmitted. Thus, when

the word “the” arrives in the second batch, it will be reported with a count of two.

This will then be passed to the histogram section of code with will report that there

is one occurrence of the frequency two. After the second batch of words is seen,

40

the histogram results will be (1, 7) (not (1, 6)!!!) and (2, 1). This leads us to

the core contribution of this dissertation: propagating changes through aggregation

pipelines.

41

Chapter 3

Streaming Aggregates

This chapter will focus on describing a generalized solution to the issue of

change propagation and explain how it can be applied to running Pig scripts in

a streaming environment. First, we will describe MapReduce as a message pass-

ing system and describe how information flows through the system. We will then

examine what happens when information is added to the input set and track the

influence of this information through our flow description followed by a similar anal-

ysis of the influence of removing information. This will be followed by a discussion

of implementing MapReduce with deltas using a counting set to maintain value lists

to be used by opaque reduce calculations. This will lead into a section that gen-

eralizes these techniques to combinable calculations. We will conclude with a brief

discussion of a simple window algorithm for managing unbounded accumulation in

intermediate results.

3.1 MapReduce as Message Sequences

A general solution emerges from close examination of the way information

propagates through a MapReduce calculation. The input to a map phase is usually

produced from a chunk of a file in HDFS. While each chunk represents an ordered

sequence of key/value pairs, this discussion will consider the more general case of

42

unordered key/value pairs. Knowledge of the underlying order can lead to opti-

mizations such as map-side merge joins but such optimizations have little bearing

on infinite streams of tuples from a streaming context. Let us define I, the input to

a MapReduce job, as an unordered input sequence:

I ⊆ KI × VI

Because there can be duplicate key/value pairs, I isn’t a more restrictive set.

In our word count example let us assume the input keys are unimportant (they are

generally the name of the source file) and that the values are strings of words. So,

our initial input using the example depicted in 1.1 would be: {(∅, ‘‘the quick

brown fox’’)}.

Let us recall that map is a function that maps from key/values into a sequence

(or list) of key values. Here, we define M i
key(k, v) to be the ith key in the output

sequence for the input (k, v). We use p to denote the total number of key/value

pairs in any distinct execution of Map(k, v). Likewise, M i
val(k, v) is the ith value in

the output sequence:

Map(k, v) =
{

(M0
key(k, v),M0

val(k, v), · · · , (Mp
key(k, v),Mp

val(k, v)
}

If we let
⋃

represent sequence concatenation, then the map phase transforms

the input sequence, I, into a new sequence, M :

43

M =
⋃

(k,v)∈I

Map(k, v)

M =
⋃

(k,v)∈I

p⋃
i=0

(M i
key(k, v),M i

val(k, v))

For our example, Mk would be the tokens of the values from I and Mv will

be a sequence of ones (the same as the tokenized column of table 1.1). The shuffle

phase partitions M using the key field into value lists vlkey. This is equivalent to

the grouped column of table 1.1. The reduce phase operates on these partitions to

produce the final output sequence, R:

vlkey = {val|∀(key, val) ∈M}

R =
⋃

key∈Mkey

Reduce(key, vlkey)

Where vlkey represents the sorted sequence of values from Mval with the same

key (such as (the, {1, 1, 1, · · ·})). Much like Map, Reduce produces a list of key/value

pairs for each input. Let Rj
key(key, vlkey) and Rj

val(key, vlkey be the jth key and value

in the sequence produced by the Reduce function. We use q to represent the length

of the sequence produced by the reduce function for any distinct key/value list pair

(like p it changes with the input). Then, the output sequence from the reduce phase

is:

44

R =
⋃

key∈Mkey

q⋃
j=0

(Rj
key(key, vlkey), R

j
val(key, vlkey))

The first stage of our example has a single output value (1, 4). This establishes

a description of basic MapReduce as a series of message sequences. Before we

proceed, we will show that combiners are a simple extension of this mechanism. We

will borrow the Pig constructs of Init, Intermed, and Final to explain the changes.

These functions are defined as:

Init : Mval 7→ Cval

Intermed : {c|c ∈ Cval} 7→ Cval

Final : {c|c ∈ Cval} 7→ Rval

The Init function is used directly after the map function to convert the values

of Mval to a new structure Cval which is accepted by Intermed and Final (Init can

be the identify function where Mval = Cval). The Intermed function can be called

during the map phase after the values have been partitioned by key and accepts lists

of values from the sequence Cval. The Final function accepts lists of values from

the sequence Cval and produces a value in Rval. The final value can then be used

along with the key to produce the sequence R.

The following list provides values for the named elements after the first set

45

of words have been seen in our example (corresponding to figure 1.1a – without

combiners):

Mstage1 = {(the, 1), (quick, 1), (brown, 1), (fox, 1)}

vlthe = {(the, 1)}

Rstage1 = {(the, 1), (quick, 1), (brown, 1), (fox, 1)}

Mstage2 = {(1, 1), (1, 1), (1, 1), (1, 1)}

vl1 = {(1, 1), (1, 1), (1, 1), (1, 1)}

Rstage2 = {(1, 4)}

The value lists for words other than “the” have been omitted because they do

not change for the remainder of this exercise.

3.1.1 Adding Information

Now, assume that we have a new key/value pair to add to our existing input

series:

I+ = I ∪ (k+, v+)

In our example, this corresponds to the addition of the next four words “jumps

over the lazy” to the input set. Our goal is to analyze the contribution of this new

46

data to the new result sequence, R+:

R+ = R + ∆+ −∆− (3.1)

Where ∆+ are new key/value pairs seen because of the new data and ∆− are

key/value pairs from R that are not present in R+. If Map is a function (in that it

returns the same sequence every time the same input is provided), then I+ would

produce M+ with separable values for the data from I:

M+ =
⋃

(key,val)∈I+
Map(key, val) = Map(k+, v+) ∪

⋃
(key,val)∈I

Map(key, val)

This holds because the map functions are applied independently of one an-

other. If Map was non-functional the input from I could produce different values

and would not be separable. Because of the shuffle stage, the results for R+ are a

bit more complicated:

vlkey =
{
val|(key, val) ∈M+

}

R+ =
⋃

key∈M+

Reduce(key, vlkey)

To simplify the following equation, let kv+ be equal to the new pair (k+, v+).

The series M+
key is composed of three distinct partitions: 1

1For two sets, A and B, the set subtraction operator has the following value: A \ B =
{x|x ∈ A ∧ x 6∈ B}.

47

M+
key = M

I\kv+
key ∪Mkv+∩I

key ∪Mkv+\I
key

The partition, M
I\kv+
k represents the keys produced by the original input I

but not by Map(k+, v+). These keys produce identical value lists as the first com-

putation and thus produce the same values as R; we will label these results R
I\kv+
∅

because they don’t change their influence on subsequent computations. The keys

M
kv+\I
key represent keys seen only in Map(k+, v+); they will produce an independent

portion of the new result sequence which we will label Rkv+\I .

The keys Mkv+∩I
key represent keys seen both in the original key space and in the

new key space produced by Map(k+, v+). For keys in this set, there will be updated

value lists, vl+, for Reduce to process. In our example:

M
I\kv+
key = {quick, brown, fox}

Mkv+∩I
key = {the}

M
kv+\I
key = {jumps, over, lazy}

Generically tracking the influence of new values through a Reduce computa-

tion would be challenging. However, if the original value lists are available we can

generically analyze the resulting sequences to produce three distinct partitions:

48

Rkv+∩I
+ =

⋃
key∈Mkv+∩I

key

[Reduce(key, vl+key) \Reduce(key, vlkey)]

Rkv+∩I
∅ =

⋃
key∈Mkv+∩I

key

[Reduce(key, vl+key) ∩Reduce(key, vlkey)]

Rkv+∩I
− =

⋃
key∈Mkv+∩I

key

[Reduce(key, vlkey) \Reduce(key, vl+key)]

The sequence Rkv+∩I
+ consists of new values produced because of the change

in input; the sequence Rkv+∩I
∅ consists of values seen in both executions; finally

the sequence Rkv+∩I
− represents values that are no longer produced by the updated

input. It is worthwhile pointing out the specifics surrounding the key “the” for the

first MapReduce stage for our example:

vlthe = {(the, 1)}

vl+the = {(the, 1), (the, 1)}

Reduce(the, vlthe) = {(the, 1)}

Reduce(the, vl+the) = {(the, 2)}

These sequences can be combined to form the delta sets:

∆+ = Rkv+\I +Rkv+∩I
+

49

∆− = Rkv+∩I
−

Values from the R∅ sequences are already accounted for by previous emissions

in R and do not need to be retransmitted. For our example, the values for each are:

R
kv+\I
stage1 = {(jumps, 1), (over, 1), (lazy, 1)}

Rkv+∩I
stage1+ = {(the, 2)}

Rkv+∩I
stage1− = {(the, 1)}

The values of ∆+ can be transmitted to follow-on MapReduce stages and

treated by added information. It is worth noting that adding information has no

bearing on the operation in MapReduce – information is always added to a combine

function through the Intermediate or Final stages. The function of reduce acts in

the same fashion and can be treated with the same message arithmetic mechanism

presented in this section. The following section will address issues surrounding

information subtraction (which is necessary before we consider the output values

for the second MapReduce stage).

3.1.2 Subtracting Information

When data needs to be deleted from an input set, we can consider a single key

value being removed:

50

I− = I \ (k−, v−)

For this section, we will consider the single tuple (the, 1) slated for removal

from the first MapReduce stage. As with adding information, if Map is functional,

then we can consider the contribution to the output of the map phase separately:

M− =
⋃

(key,val)∈I−
Map(key, val) =

⋃
(key,val)∈I

Map(key, val) \Map(k−, v−)

As before, let us define a value to represent the subtracted key/value pair:

kv− = (k−, v−). This leads to three distinct partitions for the series M−
key:

M−
key = M

I\kv−
key ∪Mkv−∩I

key ∪Mkv−\I
key

The keys in M
I\kv−
k will produce the same partitions and value lists as in

the original case and thus can be ignored. Likewise, keys in M
kv−\I
key will produce

partitions and executions of reduce that we will call Rkv−\I . In this case, the only

non-empty set for our example is:

Mkv−∩I
key = (1, 1)

That is, the word “the” contributed a single count to the frequency, “1” (which

is being nullified). As with addition, the challenge lies in considering the case where

51

we have an intersection in the key space in Mkv−∩I . Assuming the previous value

lists, vl, are available there are three distinct partitions to consider for the results

when the new value lists, vl−, are considered:

Rkv−∩I
+ =

⋃
key∈Mkv−∩I

key

[Reduce(key, vl−key) \Reduce(key, vlkey)]

Rkv−∩I
∅ =

⋃
key∈Mkv−∩I

key

[Reduce(key, vl−key) ∩Reduce(key, vlkey)]

Rkv−∩I
− =

⋃
key∈Mkv−∩I

key

[Reduce(key, vlkey) \Reduce(key, vl−key)]

As before, Rkv−∩I
∅ are values that are seen both in the original and the trimmed

executions; these values can be ignored when considering changes downstream. The

other values are used in our delta definitions:

R− = R + ∆+ −∆− (3.2)

∆+ = Rkv−∩I
+

∆− = Rkv−\I +Rkv−∩I
−

Our example produces the following non-empty sequences:

Rkv−∩I
+ = (1, 3)

Rkv−∩I
− = (1, 4)

52

That is, we are replacing the count for (1, 4) with (1, 3) because we’ve

removed the contribution of (the, 1). This differs from the results from figure

1.1b because it doesn’t account for the new contribution of {(jumps,1), (over,1),

(lazy,1)} which are all in ∆+ from the previous section. As before, the elements of

∆+ can be treated as information added to follow-on processes as considered in the

preceding section. Likewise, the elements of ∆− would undergo the same treatment

as outlined in this section. The following section will consider the general case

where multiple values are added and deleted in the same execution. The discussion

of combiners will follow in section 3.3.

3.2 General MapReduce with Deltas using Counting Sets

In this section we will explore an algorithm for generically handling the case

of adding and removing information sequences from a MapReduce calculation:

I ′ = I + ∆+ −∆− (3.3)

The strategy of the algorithm is to carry the “sign” of the tuples through the

MapReduce calculation and to perform appropriate actions given this information.

To do so, we apply an isomorphism between sequences of value pairs (partitioned

by key) into what we call counting sets:

Init : (V) 7→ {V× Z}

53

Unroll : {V× Z} 7→ (V)

Because this mechanism is used during the combine to reduce phase of the

streaming computation, it is possible to discard the key (which is used to partition

the value lists). By focusing on the management of value lists we are able to reason

about this extended structure as a simple extension of any MapReduce algorithm

(in which the value carries a sign value). To start, we have an Init function that

takes raw key/value pairs and produces signed components:

Init(key, value) =


{(value,+1)} if (key, value) ∈ ∆+

{(value,−1)} if (key, value) ∈ ∆−

In general, the first set of input consists of “positive” messages; which is to

say the information is being added to the input set. However, there are cases where

information may be “negative”; for instance, a stream of data from Twitter contains

both “positive” tweets and “negative” delete signals. When a user deletes a tweet,

a special message is transmitted that says “the tweet with id x has been deleted”.

Once the information has been sent through the first MapReduce with delta stages,

“negative” messages become commonplace.

The Unroll function takes a counting set and produces a sequence of values:

Unroll(S) =
⋃

(v,c)∈S

[
c⋃
i=0

v]

When given a set, S, of signed elements Unroll expands into a sequence of

54

values pairs based on the count, c, of the signed element. If c is negative or zero, no

values will be emitted for that component.

Finally, we will define a binary operation, � – or Combine, that combines

counting set elements.

vals(S) = {v|(v, c) ∈ S}

getc(v, S) =


c if ∃(v, c) ∈ S

0 otherwise

A�B = {(v, c = getc(v, A) + getc(v,B))|∀v ∈ vals(A) ∪ vals(B) if c 6= 0}

The vals function returns the set of values for a given counting set. The getc

function returns the count of a given value for a given counting set or zero if none

exists. The � operation combines two counting sets. For any distinct value from A

or B it will pass the count along unaltered. For values in both A and B the combine

function returns the sum of the count values if it is not zero.

3.2.1 Extending MapReduce

Using the counting sets structure, we can extend an existing MapReduce cal-

culation to support delta calculations. First, all input needs to pass through the

55

Init function:

Iδ = {(k, Init(k, v))|∀(k, v) ∈ I}

Given a Map function we create a MapDelta function:

Mδ = MapDelta(k, v, c) =

p⋃
i=0

(M i
key(k, v), (M i

val(k, v), c))

This has the effect of carrying the signed count through the map phase. Be-

cause the MapDelta function maintains the key/value output signature of a typical

map phase, the shuffle phase is the same. The reduce phase is slightly different; first

regardless of the combinable state of the native reduce calculation, the counting set

is combinable. As such, the combine is applied to the outgoing (from map) and

incoming (to reduce) counting sets partitioned by key at each stage:

M ′
δ =

⊙
s∈Mδ

s

Where � represents the counting set combine operator. Finally, after the

shuffle, reduce proceeds as follows:

vl′ = Unroll(
⊙
s∈vl

s)

Rδ =
⋃

key∈Mkey

Reduce(key, vl′key)

56

The output of the reduce stage is used to calculate the delta sets for any

follow-on processes using equations 3.1 and 3.2.

3.2.2 Trident Functions Implementing MapReduce with Deltas

Now that we have the machinery necessary to generically handle MapReduce

operations with updates, this section describes the algorithms to implement this

functionality in Storm’s Trident. Figure 3.1 provides a graphical representation of

what follows. The calculation is broken down into three separate segments: TriMap,

persistence, and ReduceDelta. The TriMap function takes signed key/value pairs

and executes the map phase of the calculation. The persistence phase handles

tracking of value lists before the reduce stage. The TriReduce function takes a key

and a list of values and produces a set of positive and negative messages.

TriMap(Key, Value, Sign)

Positive
Pipeline

Negative
Pipeline

Combine
(inv)init

(K,V,S)

Group/Collect/Persist

Trident
State

Persistence:
• Basic
• Combine
• Window

(KM ,VM ,S)

ReduceDelta(last, cur)

Rlast - Rcur

Rcur - Rlast (KR,VR,+)

(KR,VR, -)

Rx=reduce(x)

Figure 3.1: MapReduce with Deltas implementation in Storm’s Trident

Listing 3.1 shows the algorithm running in TriMap. First we define CollectorWrapper

which augments any emitted values with a sign. Next, we have the actual TriMap

function which passes a wrapped collector to the real map function.

57

1 # Wrapper to tag emissions with the appropriate sign

2 class CollectorWrapper:

3 def __init__(self , collector , sign):

4 self.collector = collector

5 self.sign = sign

6 def emit(self , key , value):

7 self.collector.emit(key , value + (self.sign ,))

8 # Sign -aware map function.

9 class TriMap:

10 def __init__(self , realMap):

11 self.realMap = realMap

12 def execute(self , tuple_in , collector):

13 key , value , sign = tuple_in

14 self.realMap.map(key , value ,

15 CollectorWrapper(collector , sign)

Listing 3.1: CollectorWrapper and TriMap implementations

If there is a reduce phase of the calculation, it is preceded with a persistence

step. The Trident persistence mechanism supports combinable calculations and is

thus broken into three stages: “map-side” combine (called stage zero in later chap-

ters) within a batch of messages, “reduce-side” combination (called stage one), and

emission. Listing 3.2 provides an implementation of the basic persistence mechanism

based on counting sets (the combine and window mechanisms will be discussed in

later sections). After the TriMap function has been executed on each tuple within a

batch, the tuples are partitioned by destination key, initialized, and combined before

transmission to the “reduce-side” node. Initialization takes each tuple and converts

it into a counting set. At the “reduce-side” node, the existing state for the specified

key is retrieved (from cache if available, backing store upon miss, or initialized to

an empty state if previously unseen). The incoming batch of tuples is merged into

the current state. The current and previous state are then passed to the TriReduce

function.

58

1 class BasicReducePersistence:

2 def __init__(self , backingStore):

3 self.backingStore = backingStore

4 @staticmethod

5 def initialize(tuple_in):

6 # Separate the value from the sign.

7 value , sign = tuple_in

8 return {value: sign}

9 @staticmethod

10 def merge(A, B):

11 ret = A.copy()

12 for value , count in B.items ():

13 ret[value] = ret.get(value , 0) + count

14 if ret[value] == 0: del ret[value]

15 return ret

16 def update(self , k, incomming):

17 # Caching is in backingStore

18 last = backingStore.get(k)

19 if last is None: last = {}

20 cur = self.merge(last , incomming)

21 return last , cur

22 # backingStore.put(k, cur) would happen later.

Listing 3.2: Persistence pseudo-code

Listing 3.3 shows an implementation of the reduce phase. The reduce phase

is fairly straightforward: run reduce on last and cur to determine the delta mes-

sages. The CountingCollector implementation first accumulates values emitted

when executing against last. Once reduce returns, the TriReduce class switches

the collector so that it can capture the values from cur. As values are emitted from

cur, the collector decrements the counts from last res if available, otherwise counts

are collected under cur res. Finally, any values in last res and cur res are unrolled

and emitted as negative and positive records respectively.

59

1 class CountingCollector:

2 def __init__(self):

3 self.last_res = {}

4 self.cur_res = {}

5 self.in_last = True

6 def emit(self , kv):

7 if in_last:

8 # Count up the times we see the specific kv pair.

9 self.last_res[kv] = self.last_res.get(kv , 0) + 1

10 else:

11 last_c = self.last_res.get(kv , None)

12 if last_c is None:

13 # We are creating positive messages now.

14 self.cur_res[kv] = self.cur_res.get(kv , 0) + 1

15 else:

16 last_c -= 1

17 if last_c == 0:

18 # All previous occurrences are accounted for.

19 del self.last_res[kv]

20 else:

21 # Still some outstanding occurrences.

22 self.last_res[kv] = last_c

23 class TriReduce:

24 def __init__(self , realReduce):

25 self.realReduce = realReduce

26 def execute(self , tuple_in , collector):

27 last , cur = tuple_in

28 counter = CountingCollector ()

29 self.realReduce(last.getTuples(), wrapped)

30 wrapped.in_last = False

31 self.realReduce(cur.getTuples(), wrapped)

32 # unroll last_res as negative messages.

33 # unroll cur_res as positive messages.

Listing 3.3: TriReduce implemenation

3.3 Combiners

In section 3.1.1 we briefly mentioned that adding information does not present

issues to combiner functionality. This is true because the combiner functionality

is designed specifically to incorporate partial information in a manner that makes

it possible to calculate a final value. Listing 2.3 provides an implementation of

COUNT that combines values (listing 3.5 which follows has been augmented to support

60

subtracting information).

Consider the value list for “1” from the second stage MapReduce after the first

batch of information has been seen:

vl1 = {(1, 1), (1, 1), (1, 1), (1, 1)}

The storage and execution overhead for this list is linear based on the input

size. When using a combiner, after data leaves the map phase it is partitioned by

destination key and initialized (in the case of count, it is replaced by the length of

the field). Hadoop and Trident will then opportunistically execute the intermediate

function on any lists available before transmission. The intermediate function com-

bines values in some way (for COUNT the intermediate function returns the sum of

the input values). Finally, once transfered to the reduce phase, the final method is

called to produce the same value that would be produced without using a combiner

(again, using sum for COUNT). The combined version of the previously mentioned

value list is:

Combine(vl1) = {(4)}

The savings for COUNT are quite significant in space and time. A single value

is tracked instead of lists of values – this lowers network pressure between “map”

and “reduce” nodes and between “reduce” and “storage” nodes. It also lowers the

execution time of the calculation – updates need only consider a single value for all

61

previously seen data. The issue we face is what to do when information needs to be

removed. The counting set seen in section 3.2 provides an example of the mechanism

necessary to achieve these goals. Where combiners in general MapReduce must

be abelian monoids, to function under MapReduce with deltas combiners must be

abelian groups. An abelian group is a set S along with a binary operation + that

satisfies the following axioms (for abelian monoids, the inverse elements condition

is discarded):

Closure – ∀a, b ∈ S : a+ b ∈ S

Associativity – ∀a, b, c ∈ S : (a+ b) + c = a+ (b+ c)

Commutativity – ∀a, b ∈ S : a+ b = b+ a

Identity element – ∃id ∈ S : ∀a ∈ S, a+ id = a = id+ a

Inverse elements – ∀a ∈ S,∃ − a ∈ S : a+−a = −a+ a = id

Closure is necessary for combine operations because the combine function can

be called multiple times at the map phase. Associativity and Commutativity are

necessary because there is no guarantee to the boundaries between map tasks or the

order of the results produced by map operators. The contract for reduce ensures

that the value lists are ordered, thus the associativity restriction can be relaxed

for reduce operators. Identity elements are generally used as initial states for the

Trident storage mechanism. Also, when information is annihilated by it’s negative,

the identity element is used to show the absence of information. Inverse elements are

necessary to carryout the information removal function of MapReduce with deltas.

62

Many of the built-in combinable functions for Pig are also invertible such as

SUM and COUNT. To remove the contribution of a specific element, we transmit the

negative of its value for SUM or negative one for COUNT. Others, such as MIN and MAX,

do not have inverse elements; when you remove specific items (such as the current

min or max value), there is no way to properly recover. Others can be converted

to abelian groups by introducing some overhead. This includes the use of counting

sets to implement DISTINCT or to use counting Bloom filters in place of traditional

Bloom filters. Such changes require re-implementation of the intermediate and final

functions to produce the same results as the traditional implementations. Finally,

in the worst case, counting sets provide an abelian group that can produce value

lists to be used with any reduce operator. In the next section, we will discuss a

solution for applying abelian group combiners in Trident.

3.3.1 Generalized Combine for Abelian Groups

Listing 3.4 provides an outline of a general technique for handling abelian

group combiners in Trident. Before information is passed into the merge routine, it

must be initialized. This corresponds to translating values from those seen from map

output Mval to combine-able values Cval. If the tuple represents negative informa-

tion, the inverse initializer is used. After converting to Cval, the positive/negative

distinction must be carried within the values themselves. There are two distinct

phases of combination: those that occur before data has been transmitted to the re-

duce node (stage zero) and those that occur right before TriReduce is called (stage

63

one). The combine phase before network transmission has no observable side effects

or emissions beyond the store, thus it is incorrect to track the last state (which is

used to determine what delta emissions are necessary to correct any side effects).

This implementation has a flag that will disable tracking of the last state for use

before network transmission occurs. However, when used at the reduce node, it be-

comes necessary to track the last state so it can be properly passed to TriReduce.

1 class CombineWrapper:

2 def __init__(self , agg , trackLast):

3 self.agg = agg

4 self.trackLast = trackLast

5 def initialize(self , tuple_in):

6 value , sign = tuple_in

7 if sign > 0:

8 return {’cur’: self.agg.initial(value)}

9 return {’cur’: self.agg.initialInv(value)}

10 def merge(self , A, B):

11 ret = {}

12 if self.trackLast:

13 # Assume A came from backing store.

14 ret[’last’] = A[’cur’]

15 ret[’cur’] = self.agg.merge(A[’cur’], B[’cur’])

16 return ret

Listing 3.4: TriCombine implemenation for general combiners.

Listing 3.5 provides an invertible implementation of Pig’s COUNT function. The

difference between this function and the non-invertible one seen in 2.3 is the addition

of the initialInv function. Because the negative values will naturally update the

integer count of the objects, it is unnecessary to alter the intermediate and final

routines.

64

1 class COUNT:

2 @staticmethod

3 def initial(tuple_in):

4 return len(tuple_in.get (0))

5 @staticmethod

6 def initialInv(tuple_in):

7 # The following is necessary to support

8 # information removal.

9 return -len(tuple_in.get (0))

10 @staticmethod

11 def intermediate(tuple_in):

12 # tuple_in contains a bag of numbers

13 return sum(tuple_in.get (0))

14 @staticmethod

15 def final(tuple_in):

16 # Same as intermediate.

17 return self.intermediate(tuple_in)

18 @staticmethod

19 def exec(tuple_in):

20 # Fall back method.

21 return len(tuple_in.get (0))

Listing 3.5: COUNT implementation that supports subtracting information

The program in listing 3.6 demonstrates issues with our current implementa-

tion of COUNT. Imagine we have a text file named seq.100.txt containing the

integers in the range [1, 100]. The first line creates a bag containing these inte-

gers. The second line determines if the number is even (is even = 1) or odd

(is even = NULL). The third line groups the values based on this property.

The fourth line counts the even and odd numbers using basic COUNT as well as

COUNT STAR. The final line dumps the results.

The output of this program is: (1, 50, 50) for the even values and (NULL,0,50)

for the odd values. The reason for the difference (and the existence of COUNT STAR)

is because the basic COUNT routine only counts non-null values. For our histogram

example this presents a significant problem: assume the next batch of data only

65

contains the word “the”, this will update the histogram for this key to be (the,

3) which will cause the values {(2,-1), (3, 1)}. When the histogram for “2”

is updated in the second stage, the result will be (2,0) when the resulting tuple

should no longer exist. The solution to this issue is to track the number of tuples

that contribute to a combined value – if it ever reaches zero, ReduceDelta should

produce the empty sequence as the current output for reduce. This has yet to be

patched in the current code base and is an outstanding bug.

1 seq = LOAD ’seq .100. txt’ AS n:int;

2 parity = FOREACH seq GENERATE (n%2==0?1: NULL) AS is_even;

3 gr = GROUP parity BY is_even;

4 counts = FOREACH gr GENERATE group ,

5 COUNT(parity), COUNT_STAR(parity);

6 dump counts;

Listing 3.6: Pig code to demonstrate issues with converting basic COUNT to an
invertable streaming computation.

The mechanism presented in this section provides a means for more efficient

executions when processing streams of data. As stated, some functions that would

combine under general MapReduce cannot be combined when negative messages are

used. However, the base reduce functionality using counting sets does provide an

abelian group that handles value lists that allows any reduce function to work in a

streaming environment. The following section proves that counting sets provide an

abelian group.

66

3.3.2 Abelian Group Proof of Base Reduce Structure

The counting set has the nice property of being combinable – this allows some

positive/negative pairs to annihilate each other before being transmitted across the

network. The compression-like functionality has the potential to recover some of the

storage savings lost when functions are not invertible – consider a MAX call against

highly repetitive data – the counting set will accumulate like values and transmit

them only once. This section provides a proof that the counting set is an abelian

group.

Theorem 1. Counting sets are commutative under combine.

Proof. Consider:

A�B = {(v, c = getc(v, A) + getc(v,B))|∀v ∈ vals(A) ∪ vals(B) if c 6= 0}

Due to commutativity of integer addition and set union:

A�B = {(v, c = getc(v,B) + getc(v,A))|∀v ∈ vals(B) ∪ vals(A) if c 6= 0} = B�A

Thus:

A�B = B � A

Theorem 2. The identity element of the counting set is the empty set id = ∅.

Proof. Consider the definition of the combine operator for some counting set A ∈ S:

67

A�B = {(v, c = getc(v, A) + getc(v, id))|∀v ∈ vals(A) ∪ vals(ids) if c 6= 0}

Now, the union of values between A and id is exactly the values in A (because

vals(id) = ∅).

A�B = {(v, c = getc(v, A) + getc(v, id))|∀v ∈ vals(A) ∪∅ if c 6= 0}

A�B = {(v, c = getc(v, A) + getc(v, id))|∀v ∈ vals(A) if c 6= 0}

Likewise, getc on the empty set will always return 0 for any value in A.

A�B = {(v, c = getc(v,A) + 0)|∀v ∈ vals(A) if c 6= 0}

A�B = {(v, c = getc(v, A))|∀v ∈ vals(A) if c 6= 0}

The getc function will always return the c component for any (v, c) ∈ A.

Because vals(A) will return all possible values from A, we have:

A� id = {(v, c)|∀(v, c) ∈ A if c 6= 0}

Because A ∈ S, c is never zero:

A� id = {(v, c)|∀(v, c) ∈ A} = A

68

Due to commutativity of the combine operator:

A� id = A = id� A

Theorem 3. Counting sets are closed under combine.

Proof. Consider:

A�B = {(v, c = getc(v, A) + getc(v,B))|∀v ∈ vals(A) ∪ vals(B) if c 6= 0}

First, only valid values v will be permitted because vals(A)∪ vals(B) ∈ V by

definition. Second, the sum of the counts c ∈ Z by definition. So, elements that

have a non-zero count will create valid members of S. The final consideration is the

case where no elements have non-zero count – this produces the identity element

∅ ∈ S. Thus:

A�B ∈ V× Z

Theorem 4. Counting sets are associative under combine.

Proof. If we expand (A�B)� C (and move the non-zero condition), we get:

expanded = {(v, c = (getc(v,A) + getc(v,B)) + getc(v, C))|∀v ∈ (vals(A) ∪ vals(B)) ∪ vals(C)}

69

(A�B)� C = {(v, c) ∈ expanded if c 6= 0}

With the non-zero condition in place, vals(A�B) ⊆ (vals(A)∪vals(B)) (that

is, there can be missing elements from the union). However, this expanded form will

be exactly equal to the value obtained by calculating the values piecewise. Now,

using the associative properties of integer addition and set union:

expanded = {(v, c = getc(v, A) + (getc(v,B) + getc(v, C)))|∀v ∈ vals(A) ∪ (vals(B) ∪ vals(C))}

(A�B)� C = {(v, c) ∈ expanded if c 6= 0} = A� (B � C)

Theorem 5. For any counting set A, there exists an inverse:

−A = {(v,−getc(v, A))|∀v ∈ vals(A)}

Proof. Expanding A�−A yields:

{(v, c = getc(v,A) + getc(v,−A))|∀v ∈ vals(A) ∪ vals(−A) if c 6= 0}

We know that vals(A)∪vals(−A) = vals(A) by definition. We also know that

getc(v,−A) will return −getc(v, A) for all key/value pairs in A, which yields:

{(v, c = getc(v, A) +−getc(v,A) = 0)|∀v ∈ vals(A) if c 6= 0}

70

Because the count portion always equals zero, we find that:

A�−A = ∅ = id

The reverse is also true due to the commutativity of the combine operator.

Thus:

A�−A = id = −A� A

By proving that the counting set is an abelian group we have shown that it

can be used as a combinable structure within MapReduce with deltas. Using this

structure, we are able to generically manage the value lists passed to the reduce op-

erator which makes it possible to remove information and propagate further changes

through chained aggregations.

3.4 Windows

Windows are a natural way of handling infinite sequences in a stream. There

are many different types of windows as outlined in [22]: time based, element based

(sliding, cascading, batch, etc.) with many different semantics for interaction be-

tween slides. They are applied to many streaming constructs (notably streaming

SQL) to put a bound on the number of elements for consideration. The delta prop-

agation techniques presented in this chapter provide an alternative to windowing –

one that requires no modification of the script to be run. However, there are cer-

tainly cases where windowing is still an appropriate mechanism for handling streams

of information. The NationMind case study presents an example where you have

a stream of data joined against a large static data set. Using counting sets, the

71

value lists in this join will grow without bound, ultimately requiring prohibitive

storage and execution time. To address this issue, we have introduced a windowing

mechanism to the storage layer of our implementation of MapReduce with deltas.

This section outlines the algorithm used and describe how it interacts with the delta

propagation mechanism.

First, there is a difficulty with window operations and Trident. Unlike Storm’s

bolt which can emit a record at any time, a Trident operator can only produce

results when input occurs. So, if you wanted to have a time-based window that

closed after five minutes there could be no notification that the window has closed

without external input. This problem is relatively simple to solve with the delta

propagation mechanism: use non-blocking windows that produce results on every

iteration. So, if you were wanted to trigger an alarm after five minutes if you didn’t

receive a second event, you would emit a “triggered event” with a timestamp in the

future (that is calculated from the original event). If the second event comes in,

the system would transmit a negative version of the “triggered event”. External

consumers would need to handle their own alarm mechanism and treat any trigger

events as suspect until the specified time has elapsed.

Our main goal was limiting item overhead in the system, so we implemented

count-based windows that age off. However, the second wrinkle to deal with is the

fact that a window could fill and close while in the stage zero combiner. To solve

this issue, we keep all closed windows around for some specified amount of time.

Due to issues with time jitter in a distributed system it is best to set the age-off to

a value that allows the window to reach the reduce phase and isn’t too sensitive to

72

delays caused by burst activity. The default timeout is 10 seconds (from the close

time), once the expiry is reached, the window is discarded. We couple this with

TTL’s on our values in our external state mechanism to ensure that stale values

that aren’t updated in a timely fashion are expired at the storage layer (say after

30 seconds).

While a window is open, it can have items added or deleted. Once closed, no

value changes can occur – this presents a corner case where a negative message for

a specific record arrives while the original value is held in a closed window. For our

current use cases, we are only windowing on positive-only streams of information.

Finally, when a window is created it is given a random id. This id is used

to pair windows in cur and last persistence mechanism. These pairs are used to

create independent tuple bundles to be processed by the reduce delta mechanism.

Because windows share an id and an expiration if they have been closed, they will

both expire at the same time without producing negative messages for downstream

processing. This prevents the window mechanism from draining the state of any

follow-on processes. While it is true that the data used to produce the follow-on

results has expired, the side effects are allowed to perish at a different rate.

3.5 Chapter Summary

This chapter outlines one of the major contributions of this work – the algebraic

foundation for handling changes through chains of aggregates. This chapter opens

with a two-stage calculation to determine the histogram of word count frequencies

73

from a stream of text that provides a concrete example for the remaining sections

of the chapter. We then present a model of MapReduce calculations based on

message passing and proceed to show what occurs when information is added and

subtracted. What follows is an introduction of counting sets as a general mechanism

for managing value lists between map and reduce. We show a simple extension

of the MapReduce mechanism to incorporate attributes denoting the “addition”

and “subtraction” of information. We then describe the algorithms necessary to

implement this extended model in Storm’s Trident. We then discuss the properties

necessary to enable combiners in generic and extended MapReduce. We describe

extensions to the Pig API to enable combiners in streamed MapReduce. We also

provide a proof that the counting set mechanism meets the criteria of combiners for

MapReduce with deltas. Finally, we discuss how window computations are necessary

under certain circumstances and describe how they interact with MapReduce with

deltas.

By providing a generic mechanism for handling negative messages, we are able

to stream any existing MapReduce algorithm correctly. However, switching from

batch to stream processing requires concessions. First, there is the change in behav-

ior of combiners which can impact performance. For some cases, the combiners still

function efficiently and no concessions must be made. However, some simple calcula-

tions (such as MIN and MAX) cannot be made to run perfectly and efficiently. In such

cases, one must make a choice – approximate the solution and hope that informa-

tion removal doesn’t completely obliterate that answer or store more information

and calculate the correct value. Such decisions are always necessary for system

74

design. Another important consideration: when a batch job is written poorly, it

just takes longer – the MapReduce system is fairly resilient to bad programming.

When a stream processing algorithm is written poorly it can cause instability in

feeding queues, overload backing stores, obliterate networks and system memory –

ultimately failing hard (versus graceful degradation). Because of this, it is necessary

to understand the performance implications of a running analytic. However, before

we discuss such things, we must have case studies to ponder. The following chap-

ter will show interesting case studies using the techniques outlined in this chapter

followed by a chapter that addresses performance concerns.

75

Chapter 4

Squeal: Pig on Storm

Squeal1 is an execution environment for Pig that converts Pig scripts into

Storm topologies. This chapter discusses some of the capabilities of Squeal through

a series of case studies using Twitter data. The case studies are presented in order

of simplicity and functionality. We open with the humble word count, followed by

NationMind, and finish with a discussion the limits of automatic conversion. Each

section will open with a scenario motivating the study, progress into a description

of implementation, and close with a discussion of runtime performance.

Twitter data is one of the most abundant sources of publicly available streamed

data. For our studies, we had two sources of tweets: a random sample and a focused

query. The random sample (often called the “garden hose”) is the free version of

the “fire hose”. The focused query uses specific keywords to provide information.

Due to the initial use case of tracking the response to the 2012 US Presidential

Elections, the term “Obama” has always been included in this filter. Later, terms

were added and removed in response to events (Superbowls, Grammys, the election

of the Pope, etc.). In steady state, we collect around 100 tweets per second but

have seen significant spikes surrounding events (which will be seen in the following

chapter).

1Available on github: https://github.com/JamesLampton/piggybank-squeal

76

4.1 Word Count

On Monday April 15, 2013, two explosions erupted near the finish line of the

ongoing Boston Marathon leaving three dead and an estimated 264 wounded2. After

a very rapid investigation of pictures and video footage from the scene of the crime,

the FBI was able to release photographs of the suspects on April 18. During the

evening of the 18th, the suspects were located and confronted leading to the death

of one suspect. The second suspect fled and was believed to be in the vicinity of

Watertown, MA. On the evening of the 19th, the second suspect was discovered

hiding in a boat stored in a back yard and apprehended.

I experienced this event, like many others, live through breaking coverage from

a national news sources. Previously, I had been working on tracking the response to

specific concepts in tweets but was concerned with tracking unexpected concepts as

they happened. After seeing the breaking news, I decided to finally implement the

most humble of text-based analytics – word count. I developed a small Pig script to

tokenize tweets, count the word occurrences in time, and store them in a database.

After running a test of a static batch of tweets in Hadoop, I then used Squeal to

begin processing the live feed of tweets.

Friday evening I sat down to watch the news with my spouse. The reporter on

CNN was recounting the events leading up to the massive manhunt underway. There

was a pause as they heard what they thought was gunfire. This was followed by

police cruisers racing past in the background. I decided to connect to my database

2http://en.wikipedia.org/wiki/Boston Marathon bombings

77

to see how people were responding on Twitter.

Figure 5.2 shows a graph of a few terms that popped out. First, the word

“boat” had a very high score at the time – being a common word, I ignored it.

However, I found the word “scanner” to be odd. I pulled up Twitter and fed it

into the live search mechanism. During the night of the 18th, someone took a

police scanner in the Boston area and wired it up to an internet streaming service.

Basically, people were live tweeting the capture of the suspected Boston Marathon

Bomber.

23:33:00 00:03:00 00:33:00 01:03:00 01:33:00

Time (night of April 19, 2013) in UTC

0

500

1000

1500

2000

2500

3000

3500

4000

4500

W
or

d
S

co
re

scanner
boat
custody
captured
flash
bang

Figure 4.1: Selected word scores during Boston Marathon Take Down

CNN and other news outlets knew exactly what was going on – they had

cameras focused on the scene the whole time. However, these organizations have

blackout policies for these situations so they don’t make them worse. The mild

bumps for “flash” and “bang” would make a tactical team’s blood run cold. Such

78

devices disorient their targets and provide brief opportunities of surprise.

Another interesting feature of this graph is the initial bump of “custody”

followed by a larger bump and a bump in the use of the word “captured”. The initial

bump is the internet reporting that the suspect was in custody – 15 minutes before

the official announcement. At 8:59PM, the Boston Police department tweeted3

“CAPTURED!!! The hunt is over. The search is done. The terror is over. And

justice has won. Suspect in custody.”

Ultimately Twitter provided unfiltered updates on the situation. The case of

the Boston Marathon Bombing does provide some cautionary tales – specifically

incorrect identifications of the suspects from various crowd-sourced websites. The

take down itself could have gone very differently if this feed of information was

exploited for ill gain. Society will have to adjust to this new normal – people will

need to explicitly delay response to and scrutinize information where these were

previously handled by the throughput limitations and curation of traditional media.

4.1.1 Implementation

To illustrate how completely Squeal is able to convert Pig scripts, I will ex-

plain this example in great detail. Listing 4.1 shows the code to load tweets in

JSON format and extract the words therein. This specific example shows the batch

version of the load statement. Switching to a streaming version requires a spout

that produces tweets in JSON format. The SpoutWrapper loader provides hints to

the compiler that the specific alias is being streamed.

3https://twitter.com/bostonpolice/status/325413032110989313

79

1 tweets = LOAD ’$input ’ AS (tweet:chararray);

2 --tweets = LOAD ’’ USING SpoutWrapper (..) AS (tweet:chararray);

3
4 x = FOREACH tweets GENERATE JSONPath(’id created_at text’, tweet);

5 x = FILTER x BY $0#’error ’ IS NULL;

6 x = FOREACH x GENERATE $0#’id’ AS id,

7 $0#’created_at ’ AS created_at , CleanTweet($0#’text’) AS text;

8
9 x = FILTER x BY created_at IS NOT NULL AND created_at != ’’;

10 words = FOREACH x GENERATE id,

11 ISOToMinute(CustomFormatToISO(

12 created_at , ’$time_format ’)) AS timestamp ,

13 FLATTEN(BiTOKENIZE(text)) AS (word1 , word2 , pos , ngramlen);

14
15 words = FILTER words BY

16 word1 MATCHES ’^#.*’ OR

17 word2 MATCHES ’^#.*’ OR

18 (LENGTH(word1) > 2 AND (

19 ngramlen == 1 OR LENGTH(word2) > 2) AND

20 LENGTH(word1) < 32 AND LENGTH(word2) < 32);

Listing 4.1: Tweet loading and text extraction

What follows is the extraction of the id, created at and text fields of the tweet.

If the current records contains an error it is filtered out. In a batch environment, it

may be necessary to stop all processing and clean up the input data. However, such

hard failures are troublesome for real time flows of information. Sources of error

are numerous but mainly center around stalled connections or other edge conditions

(services outages, etc.). Any surviving records are passed through the CleanTweet

routine which strips punctuation (collapsing contractions such as “we’ll” to “well”)

and URLs from the text. This is followed by tokenization by word unigram and bi-

grams (annotated with position and n-gram length). Finally, any bigrams containing

hashtags are kept while short unigrams and long words are discarded.

Listing 4.2 shows how common words are removed from consideration using a

mechanism called “replicated joins”. In MapReduce, the stop list would be loaded

80

into memory at the map operators allowing for the join operation to be performed

without a reducer. This requires that the replicated list fit in memory and pro-

vides significant savings by preventing unnecessary network traffic associated with

a reduce-based join. Squeal examines the MapReduce plan, extracts any static

branches and dispatches them to Hadoop for execution. For replicated joins, the

temporary load files are copied over to a configured temp path to be loaded later

when the topology is executed – providing the same benefits as in MapReduce.

This logic keeps any record where one of the words is not stopped. These words are

concatenated and ready for further analysis.

1 stop_words1 = LOAD ’$stop_list ’ AS (stop_word1);

2 stop_words2 = LOAD ’$stop_list ’ AS (stop_word2);

3 words_stj1 = JOIN words BY word1 LEFT ,

4 stop_words1 BY stop_word1 USING ’replicated ’;

5 words_stj = JOIN words_st_join1 BY word2 LEFT ,

6 stop_words2 BY stop_word2 USING ’replicated ’;

7 words = FILTER words_st_join BY stop_word1 IS NULL AND

8 (ngramlen == 1 OR stop_word2 IS NULL);

9 words = FOREACH words GENERATE

10 id, timestamp , CONCAT(word1 , word2) AS word ,

11 pos , ngramlen;

Listing 4.2: Removal of common words using replicated join

Listing 4.3 takes each record and expands it into five different records with

varying scores. When the timestamps were extracted in listing 4.1, they were trun-

cated to the minute. This code will generate a score of 1.0 for that minute (and

a real count of 1), a score of 0.8 for the following minute (with no contribution to

the count for that minute), and so on. This has the effect of having a word create

an impulse signal that degrades over time. These accumulated scores provides a

smoothing mechanism and a value that takes into account the recent history of a

81

word. This technique also provides an alternative to an explicit windowing function

in Pig at the expense of transmitting additional records.

1 -- Generate a word count in time.

2 words_time = FOREACH words GENERATE

3 word , ngramlen , timestamp , FLATTEN(TOBAG(

4 TOTUPLE(0, 1.0), TOTUPLE (60000 , 0.80),

5 TOTUPLE (120000 , 0.60), TOTUPLE (180000 , 0.40),

6 TOTUPLE (240000 , 0.20))) AS (offset , score);

7 --words_time = FILTER words_time BY offset == 0;

8 words_time = FOREACH words_time GENERATE

9 word , ngramlen ,

10 UnixToISO(ISOToUnix(timestamp)+ offset) AS timestamp ,

11 score , (score == 1.0?1:0) AS real_count;

Listing 4.3: Word score generation

Listing 4.4 groups the n-grams together by minute and computes the score

and real count for each. The first few lines provide hints to the compiler on how

many parallel tasks to launch for the preceding calculations which make up the

first map task. In subsection 2.1.2 we mentioned that the number of map tasks

was determined by the number input chunks, there is no corresponding a priori

mechanism for automatically scaling the tasks for streaming data. In fact, the

number of tasks will depend on the input rate and the service time of the individual

tasks. Understanding these constraints is the subject of the following chapter.

82

1 -- These are for the map named after this alias.

2 set words_time_gr1_parallel ’$parallel_big ’;

3 set words_time_gr1_shuffleBefore ’true’;

4
5 -- Now for the combine.

6 %default words_time_gr1_store_opts ’’;

7 set words_time_gr1_store_opts ’$words_time_gr1_store_opts ’;

8 words_time_gr1 = GROUP words_time BY (word , ngramlen , timestamp)

9 PARALLEL $parallel_big;

10 words_count = FOREACH words_time_gr1 GENERATE FLATTEN(group),

11 SUM(words_time.score) AS score ,

12 SUM(words_time.real_count) AS real_count;

Listing 4.4: Grouping words and accumulating metrics

The “shuffle before” hint is used to decouple the spout from the map operators

(allowing each to have independent parallelisms). The shuffle before hint can also be

useful to decouple a reduce task with non-uniform output rates from the following

map operators (allowing for improved parallelism at the cost of a network transfer).

An example of such disparity was illustrated by figure 2.5 on page 23. MapReduce

handles this case by spawning more mappers in the following MapReduce cycle due

to more input chunks being produced by that particular reducer.

The “store opts” hint is used to specify how intermediate results are to be

stored using Trident’s persistence mechanism. For this specific example, the MapRe-

duce compiler will use the combiner mechanism. Because of this, the intermediate

results will be a float and an integer keyed by the grouping constraints (word, n-

gram length and minute). The storage mechanism will be discussed in greater detail

in the following chapter.

Listing 4.5 formats the records for later consumption, filters out records that

don’t have a score above 6 (which represents the upper 2.1% of the scores as mea-

83

sured from offline analysis of historical data), and stores the results. The active

STORE command would store the results of the calculation into HDFS. The disabled

STORE command would stream the results out to the RabbitMQ messaging system.

In this particular case, negative messages are filtered out because the records have

a natural primary key: time, word, and n-gram length. Because these results are

destined for a database, any updates to the score and count can replace previous val-

ues. More complicated follow-on processing may require both positive and negative

messages.

1 words_count = FOREACH words_count GENERATE

2 ISOToUnix(timestamp), word , ngramlen , real_count , score;

3 words_count = FILTER words_count BY score > 6.0;

4
5 STORE words_count INTO ’$output ’;

6 --explain words_count;

7 /*

8 STORE words_count INTO ’$output ’ USING

9 NegFilterSignStoreWrapper(

10 ’org.apache.pig.piggybank.storage.RMQStorage ’,

11 ’amqp :// $rmqup@$rmqserver/twitter ’, ’$exch -words_count ’);

12 */

Listing 4.5: Word count output

This is a good time to talk about process failure. Trident only releases the

final stage of execution at the end of a final commit. Because the STORE routine

is the last node in a Pig graph any side effects will only be seen upon a successful

commit. Thus, any system consuming results from a Pig Squeal script have some

guarantees that the information seen is from a clean execution. However, there is a

corner case where the output function may fail. This may cause the batch to be re-

executed in Trident, which would produce the same results but may have duplicate

84

transmissions if the original output function was able to transmit some messages.

4.1.2 Performance

The following chapter will explore the metrics for word count at a very low

(per processing element) level along with a full discussion of the experimental setup

and trace collection setup. This section will focus on summarize word count per-

formance on a cluster of 16 nodes on Amazon’s EC2. The nodes are identical VM

configurations with four vCPUs, 15 GB of memory, and two 40 GB SSD-backed

drives. Unlike the following section, an extra VM was used to host the metrics

collection and RabbitMQ messaging system.

The word count example listed in the following section includes additional

emissions created in listing 4.3 that aren’t included in the standard word count

explored in most literature. This significantly increases the workload on the network

and was disabled for these tests. Also, testing was performed with an external store

using HBase as well as a basic LRU ejecting in-memory store to examine the effects

of the storage subsystem on performance. Finally, we have some traces with full

metrics enabled but found that they negatively impacted the performance of the

messaging system by consuming extra network and CPU resources. To reduce the

impact of the metrics collection we only enabled tracking of the batch times for most

measurements.

We found that with Storm active on only eight machines with the HBase

storage system enabled (on all sixteen machines) we were able to max out the

85

capacity of the RabbitMQ messaging system at around 3.3 thousand tweets per

second. There was a peek rate of 4,000 which was the max rate allowed by our

configuration of storm (eight spouts with a batch size of 250 releasing every 500

ms). We used 32 workers (one per CPU) along with 16 map tasks and 16 reduce

tasks. At four thousand tweets per second the word count analytic produces 22

thousand records per second of output which was the cause of the overload. The

average batch latency was 660 ms with a standard deviation of 257 ms (the storage

accounted for 128 ms). This caused a load of 70-78 thousand requests per second

to the HBase storage system. This also pushed the network at an aggregate of 422

MB/s.

Various other treatments were tested to examine the effects of varying different

parameters but a test of the full capabilities of this system would require the use

of a different messaging system such as Kafka[43]. While the overall performance

of the system against known benchmarks is very important for practical use, the

following chapter attempts to examine why an analytic performs as it does. By

understanding the critical performance path it becomes possible to wisely focus

optimization efforts.

4.2 NationMind

Consider the tweet: “stuck in traffic”. By itself, it informs us that someone is

caught one of the hazards of modern life. If I provide you with the author’s profile,

you may be able to guess what city the traffic is occurring in (barring a frequent

86

long distance traveler). If this tweet was authored from a mobile device with GPS

enabled, we can determine which intersection is having issues. Figure 4.2 shows an

example along with a map of the location. While the text of a tweet is limited to

140 characters, the entire tweet available from the stream is 2.4 kilobytes on average

(including profile information, location if enabled, etc.).

(a) Geo-tagged tweet about traffic

(b) Location of tweet on Google Maps

Figure 4.2: Determining context from tweets

Sadly for this branch of experimentation, the rate of geo-tagged tweets is far

too small to reliably tell how bad a commute will be. During the month of October

2012, we collected 127 million tweets; of those only 2,238 tweets mentioned traffic

with geo-location. However, at the same time the 2012 US Presidential Election

was starting to heat up. In a speech to the 2012 Democratic National Convention,

Former President Bill Clinton said the following: “People ask me all the time how

we delivered four surplus budgets. What new ideas did we bring? I always give

a one-word answer: arithmetic.” Twitter responded as expected with a burst of

activity – the word “arithmetic” entered into modern political discourse.

There are certain things you can’t say to your advisor without expecting to

87

complete the work. The following sentence is a prime example: “Hey! Wouldn’t

it be cool to track the response to the Presidential debates in real time?” Within

a week I created a prototype using native Trident functions (in time for the first

debate). For the Vice Presidential debate, we had a simple dynamic chart on a

web page for a small cadre of users. By the second Presidential debate we had a

stream graph tracking concepts from Wikipedia. Figure 4.3 shows a screen shot of

the NationMind website showing the concepts discussed during the second debate4.

The top part shows the number of tweets associated with Mitt Romney (Obama’s is

off-screen) while the bottom shows a stream graph summarizing the relative counts

of other concepts. The debate opens with a discussion of the debate itself, followed

by discussion of clean coal and taxes, which is then followed by Romney’s statement

“I love Big Bird, but I want to de-fund PBS” (at around 1 : 30 in the figure). The

lower purple stripes are for the concepts “Big” and “Bird”.

In total, the original NationMind in Trident is 1, 445 lines of Java code spread

across 14 modules. The current version of NationMind is 213 lines of Pig along with

559 lines of Java in four User Defined Functions (three of which have been seen in

the previous example – TwitterRMQSpout, CleanTweet and BiTOKENIZE). The cur-

rent version performs more advanced calculations than the original implementation

including n-gram analysis with a maximum likelihood concept resolver. The rest of

this section will discuss how these features use more of the Squeal functionality.

4A snapshot of this data is available for exploration at http://nationmind.umiacs.umd.edu/nm-
debate-1/

88

Figure 4.3: Screen shot of NationMind from the second 2012 Presidential debate

4.2.1 Implementation

The first third of the NationMind script includes boilerplate definitions along

with the same calculations necessary to create a list of bi-grams broken out by

minute that we saw in the previous example (up to listing 4.2). Once we have the

words broken out by tweet, listing 4.6 shows how we calculate simple sentiment.

Lines 1-10 are executed in Hadoop because the sentiments are static dictionaries

[46]. The alias sent is calculated by joining the word list with the sentiments. Each

word is considered to have a positive, negative, or no sentiment. The id is reversed

to make lookups more efficient in HBase (ids seem to be correlated in the higher

order bits).

Lines 20-24 were added after the performance was measured while streaming.

For a batch execution, this would result in an additional MapReduce execution

89

which would result in longer execution times. However, when streaming, the lack of

the additional grouping all of the words would be transmitted across the network

causing the batch service time to double. Due to the nature of this specific data

and computation the expansion (from tweet to words) and collapse (from sentiment

values to tweet) occurs all within the map node. This leads to a 5x reduction in

messages emitted due to this portion of the calculation.

1 positive = LOAD ’$positive_fn ’ USING PigStorage(’,’) AS

2 (sent_word:chararray , version:int);

3 positive = FOREACH positive GENERATE sent_word , ’pos’ AS sentiment;

4 negative = LOAD ’$negative_fn ’ USING PigStorage(’,’) AS

5 (sent_word:chararray , version:int);

6 negative = FOREACH negative GENERATE sent_word , ’neg’ AS sentiment;

7
8 sentiment_words = UNION positive , negative;

9 sentiment_words = FOREACH sentiment_words GENERATE

10 LOWER(sent_word) AS sent_word , sentiment;

11
12 sent = JOIN words BY word LEFT ,

13 sentiment_words BY sent_word USING ’replicated ’;

14 sent = FOREACH sent GENERATE Reverse(id) as rev_id , timestamp ,

15 (sentiment IS NOT NULL AND sentiment == ’pos’?1:0) AS pos ,

16 (sentiment IS NOT NULL AND sentiment == ’neg’?1:0) AS neg ,

17 (sentiment IS NULL ?1:0) AS none;

18
19 -- Additional group for streaming efficently.

20 set sent_gr_store_opts ’$sent_gr_store_opts ’;

21 sent_gr = GROUP sent BY (rev_id , timestamp) PARALLEL $psmall;

22 sent = FOREACH sent_gr GENERATE FLATTEN(group),

23 SUM(sent.pos) AS pos , SUM(sent.neg) AS neg ,

24 SUM(sent.none) AS none;

Listing 4.6: Tweet sentiment

Listing 4.7 loads the Google concept data [63] which provides a mapping from

words to concepts represented by Wikipedia articles along with probabilities for the

link, substring, and concepts. This data set has been used with great success in

performance context free recovery of concepts from text. What is important for

90

this example is that we have a static set of data being used outside the context

of replicated join. The concept data is 2.6 GB compressed and doesn’t lend itself

well to being replicated for lookups. In this case, the compiler pulls the static

portions up to the reduce (line 9). For the static execution, the reduce operator

is replaced with code that stores the results into the backing store specified by

the “store opts” hint. When the streaming topology begins execution, the static

information is pre-populated and is used for performing the join. Another unique

feature of this segment of code is the use of the window capability (which is activated

by the “window opts” hint) to stream the infinite sequence of tweets across the static

concept data.

1 concepts = LOAD ’concepts.prepped.bz2’ AS (conc_word:chararray ,

2 conc_prob:double , concept:chararray , support:chararray ,

3 log_prob_conc:double);

4 concepts = FILTER concepts BY conc_prob > 0.21 AND

5 conc_word MATCHES ’^.*[a-z].*$’;

6
7 set conc_words_store_opts ’$conc_words_store_opts ’;

8 set conc_words_window_opts ’{"0": 200}’;

9 conc_words = JOIN words BY word ,

10 concepts BY conc_word PARALLEL $pbig;

11 conc_final = FOREACH conc_words GENERATE id, timestamp , word ,

12 conc_prob , concept , log_prob_conc , position , ngramlen;

Listing 4.7: Streaming distributed join

Listing 4.8 shows where the sentiments meet the concept data. In this case,

GROUP is bringing the two data sets together in much the same way that JOIN

does (without calculating the Cartesian products). The summing of the sentiment

information is necessary to get scalar values for each. The ConceptLatticeCompute

looks at each word position and determines if two uni-grams or a single bi-gram

91

would provide a higher score. The lattice computation isn’t combinable – even if it

was Pig’s optimizers don’t appear to activate combine functionality for the COGROUP

operator (if it did, the extra group by from listing 4.6 may not be necessary).

1 set sent_concept_store_opts ’$sent_concept_store_opts ’;

2 sent_concept = GROUP

3 sent BY (rev_id , timestamp),

4 conc_final BY (Reverse(id), timestamp) PARALLEL $psmall;

5 tw_complete = FOREACH sent_concept {

6 GENERATE FLATTEN(group),

7 SUM(sent.pos) AS pos ,

8 SUM(sent.neg) AS neg ,

9 SUM(sent.none) AS unkn ,

10 FLATTEN(

11 ConceptLatticeCompute(

12 conc_final .(word , conc_prob , concept ,

13 log_prob_conc , position , ngramlen)

14). concept);

15 };

16 tw_complete = FOREACH tw_complete GENERATE Reverse($0) AS id, $1..;

Listing 4.8: Streaming Co-GROUP

While listing 4.8 shows two streams being grouped together (where listing 4.7

showed a stream meeting a static data set) the Trident batch mechanism along with

how tweets are handled ensures this code will execute only once for each tweet.

Their n-grams are generated and processed within the same batch. Couple this

with the fact that the reduce operation will only run once all upstream producers

have executed means that we will execute this data once for a tweet. The only

way this would execute a second time (and produce negative information) is if the

tweet was seen by both the filter source and the query source in a way that would

span two batches. If the n-gram extraction code was generalized for word count

and NationMind it is highly likely that the n-grams of a tweet would span multiple

batches. This has impacts on the selection and use of backing store for key/value

92

pairs that appear only once in a stream.

Listing 4.9 shows the final computation for NationMind – determining the

number of mentions (with sentiment) of concepts in time. For this implementation,

this is where negative messages are generated as many batches will span a minute.

Interestingly, because the lattice computation is run once per tweet, the concepts

generated will always be the same. This means that the counts for concepts in time

will only increase (as in the word count example) providing for a natural primary

key and simple database updates. If the n-grams for any given tweet were to span

multiple batches you would see some concepts disappear from consideration (as

better information comes in). In such a case, any updates to an external source

would have to handle these updates in a more sophisticated manner.

1 set nm_final_gr_store_opts ’$nm_final_gr_store_opts ’;

2 nm_final_gr = GROUP tw_complete BY (concept , timestamp);

3 nm_final = FOREACH nm_final_gr GENERATE

4 FLATTEN(group),

5 SUM(tw_complete.pos) AS pos_tot ,

6 SUM(tw_complete.neg) AS neg_tot ,

7 SUM(tw_complete.unkn) AS unkn_tot ,

8 COUNT(tw_complete) AS time_total;

Listing 4.9: Concepts per minute calculation

This example makes use of many of the features of Squeal: replicated join,

distributed join (with static data), streaming co-group, and information updates

through positive/negative messages. The following section will discuss how well this

calculation performs in micro benchmarks as well as a brief discussion of scaling

issues when attempting to run this analysis on a cluster.

93

4.2.2 Performance

Figure 4.4 shows the logical flow of information through the NationMind ana-

lytic (the actual topology of spouts and bolts can be seen in figure 5.3). The nodes

are colored by type: light blue for spouts, purple for map, red for combine, green

for reduce. The edges are sized by the median latency between processing nodes

and colored by blending the colors of the endpoints. The critical execution path

follows the lower branch through the concept computation. Interestingly, the top

(sentiment grouping) nodes are hosted using the same machines (and using the same

network) which implies that the latency may be caused by some internal queueing

or delay (given the difference between edge widths).

words42

sent_gr30

sent_concept28

TwitterRMQSpout43

sent_gr29

nm_final_gr15

nm_final_gr16
nm_final_gr17

nm_final_gr18
tweet_conc_sent38

START
words39

sent19

sent21

sent22
words40

conc_words5

conc_words6conc_words7

conc_words8

conc_words9

sent20

conc_final1

sent_gr33

conc_final3

conc_final2

sent_gr36

conc_final4

sent_gr34

sent_gr35

conc_words12

db14

conc_words10

conc_words11

db13

words41
sent_concept23sent_concept27

sent_concept26

sent_concept25

sent_concept24

sent_gr31

sent_gr32

tweet_conc_sent37

Figure 4.4: Storm topology for NationMind after optimization

The NationMind topology does not improve performance when running on

multiple nodes. The performance peeks at 200 to 300 tweets per second. This

corresponds to a load of around 135 thousands requests per second within HBase.

The bottleneck for this computation lies in the concept and sentiment processing

bolts. Using Storm’s UI it was observed that one of the bolts was showing much

more load than others. The notion of hot spots and stragglers can have significant

94

impact on the runtime of MapReduce computations. Within stream processing the

hot spot issue persists along with the notion of a micro-straggler[52].

The input distribution to these bottleneck nodes appears to be roughly uni-

form. The selectivity of the join is 0.58 (a little over half of the words produce

concept hits). This is higher than those seen in small scale testing and may be pro-

ducing noisy results (further grooming of the Wikipedia concept data would help).

The output distribution of these bottleneck nodes is not uniform though each seems

to be paired with a unique down stream process (there doesn’t appear to be network

pressure caused by all to one communication).

Further exploration and benchmarking would be necessary to attempt to ad-

dress these issues. This work is not focused on establishing a new benchmark, so

this avenue of work was not explored. One possible improvement would be the use of

Bloom filters to prevent unnecessary transmissions and lower service demand during

the replicated join. There is a Bloom filter UDF available in Pig which would func-

tion in a similar fashion as the map side joins seen in the word count example but

this modification was not attempted. The UDF would need to be reworked if the

NationMind analytic was modified to support dynamic concept updates. Optimizing

the backing store for each specific operator is another avenue for improvement.

4.3 Issues Surrounding Batch Codes in a Streaming Environment

The main issue surrounding developing batch codes that later run in a stream-

ing environment is that some assumptions and intuitions change when running in

95

a streaming environment. The modification of NationMind to use an extra group

by statement causes more work in a batch environment but cuts latency in half for

streaming computations. Another case study in how intuition fails can be seen by

examining the use of combiners in an expanded word count analytic. We modified

our word count code to take the source (filter or sample) into consideration. The

idea is that we could examine the difference in word ranks between two sources to

detect events.

The basic strategy of the initial implementation was to ensure that combiners

were applicable using the stock Pig functions (SUM and COUNT) at the cost of an

extra MapReduce cycle. Figure 4.5 shows the topology generated by the original

implementation of word count. As before, nodes are colored by type (purple for

spouts, red for map, green for combine, blue for reduce) while edges are a blend of

the source and destination colors and are weighted by latency of the link. Nodes

are arranged vertically by the Storm worker each task was executing.

words_time_gr9
START

words_time_gr124

words_time_gr122

words_time_gr123

words_time_gr121

words_time_gr12

words_time_gr11

words_time_gr10

words_count4

words_count1

words_count3

words_count2

TwitterRMQSpout25

words_time_gr119

words_time7

words_time_gr15

words_time_gr120
words_time8

words_time_gr16

words_time_gr117
words_time5

words_time_gr13

words_time_gr118
words_time6

words_time_gr14

Figure 4.5: Storm topology for word count

The first MapReduce cycle groups by word, timestamp to the minute, and

data source to calculate the word frequency. The second MapReduce cycle re-

96

groups by word and timestamp to calculate a single record for word/minute. Note

the imbalanced weights leaving and entering the top workers between the second

map and reduce stage. The second grouping operation is being performed on a

subset of the first (stripping off the source). The second from top and the bottom

pathways show barely visible latencies – this is because the tuples don’t leave the

worker (the latency is just the queue time between threads in the same JVM). The

mean latency for such transitions is 11.8 ms, with a standard deviation of 30.27 ms

and a median of 2 ms. However, the top and the second from bottom pathways

cross one another and provide significantly more latency with a mean of 69.6 ms,

a standard deviation of 106.8 ms, and a median of 40 ms. The average latency of

each batch of 250 tweets is 892.1 ms with a standard deviation of 623.1 ms and a

median of 756 ms.

Figure 4.6 shows the topology after the word count script is modified to per-

form the calculation in a single MapReduce cycle without the use of combiners.

This is achieved by grouping by word and timestamp to the minute, then filtering

by source within the reduce operator and producing the merged count. The specific

calculation is still combinable, but would require the implementation of a custom

UDF. The nodes are positioned vertically by worker as before however, they are now

colored by worker as well. The edges are weighted by latency as before and colored

as a blend of the source and destination.

In this case, the latency for each batch of tweets was 594.3 ms with a standard

deviation of 445.8 ms and a median of 480 ms. The median reduce execution time

only increased by a few microseconds (4.1 to 6.9). While Pig Squeal provides lowers

97

words_count4

TwitterRMQSpout13

words_count1

words_count3

words_count2

START
words_time_gr112

words_time_gr111

words_time_gr110

words_time_gr19

words_time_gr18

words_time_gr17

words_time_gr16

words_time_gr15

Figure 4.6: Storm topology for word count after optimization

the barriers between batch and streaming the environments are different enough

to warrant additional analysis and tweaks to improve performance. The following

chapter attempts to shed light on what contributes to the service time of these codes

to provide better insight for optimizations.

98

Chapter 5

Performance Modeling

On Monday, October 29, 2012, Hurricane Sandy hit New York City flooding

the streets and cutting power to parts of the city. Some argue that Hurricane

Sandy significantly influenced the outcome of the 2012 Presidential Election. The

first debate was rough for President Obama. Mitt Romney had just spent the

past year on his toes, debating other Republicans for the chance to be the GOP

candidate for President. In contrast, President Obama seemed out of character and

off balance [29]. Though he was able to recover in later debates, it seemed he lost

some momentum.

Figure 5.1 shows the tweets per hour for the weeks of October 2012 which

happen to be the same time frame as the 2012 Presidential debates. You can see

the spikes during each week corresponding to the various debates. What is even more

significant is the night Sandy hit New York City – an event that would personally

impact millions of people [73]. While the debates provided an opportunity for each

candidate to take a stance on the various issues facing the nation, Sandy provided

an opportunity for President Obama to act, well, presidential [37].

Now, contrast these rates with those seen in figure 5.2. This figure shows

the average (plus and minus one standard deviation) number of tweets collected

within specific hours of the week from our sample feeds. It is very easy to see the

99

0 20 40 60 80 100 120 140 160 180

Hour in week (0 = Monday)

0

50

100

150

200

250

300

350

400

450

Tw
ee

ts
R

ec
ei

ve
d

(th
ou

sa
nd

s)

Debate 1
VP Debate
Debate 2
Debate 3
Huricane Sandy

Figure 5.1: Comparing tweet rates of 2012 Presidential Debates and Hurricane
Sandy

diurnal pattern of volume. You can see other trends – one looks like lunch time and

another dip which may be dinner/commutes. Finally, we can see these secondary

dips missing on the weekend along with a smaller dip in the night time volumes.

This data can be used to model the input rates of tweets at any given time.

These rates can then be used with a performance model to understand if a particular

calculation would run along with the resources necessary to consume the input.

Furthermore, if you mix in a utility model (that is, what is the return on being able

to process information in soft real time) you can make concessions. For instance,

perhaps the demographic you’re studying is only active at night – this would allow

you to size your compute cluster significantly smaller than those necessary to process

the feed in real time during the day. During the day you could allow messages to

100

0 20 40 60 80 100 120 140 160 180

Hour in week (0 = Monday)

100

150

200

250

300

350

Tw
ee

ts
R

ec
ei

ve
d

(th
ou

sa
nd

s)

mean
+std
-std

Figure 5.2: Expected tweets per hour

queue or load shed in some fashion (say with a message TTL).

This data also provides some insight into the slack necessary to handle burst

traffic. As data starts to pass certain thresholds (say half a standard deviation)

additional capacity could be spun up to address the potential burst. Again, consider

figure 5.1 – the debate peaks are at worst an hour or four before returning to normal.

Plenty of time to queue and recover as rates return to normal. If you were somehow

sitting on some “I Love Big Bird” T-shirts, you may have lost some money by

missing the sudden burst of interest. However, if you’re in charge of Public Safety

in New York City, you are facing significant volume for a long time during a Sandy-

like event. Furthermore, the information within (reports of fires or transformer

explosions) have a short shelf-life.

The aim of this chapter is to discuss a performance model for Squeal scripts.

101

The goal of this modeling is to understand why a particular calculation performs as

it does and to then provide hints to get the best performance from these calculations.

While tuning parameters such as number of workers or maximum outstanding mes-

sages can improve system utilization and response time these models also provide

insights necessary to optimize the scripts themselves. This has certainly been true

for the case studies from the previous chapter.

The following chapter will discuss the specifics of the way Trident structures

computations and how that impacts modeling, this is followed by a discussion of

a simple performance model, which is then followed by a detailed breakdown of

the model components as they relate to word count. Finally, this model is checked

against various traces of word count on a cluster which is followed by a discussions

and chapter summary.

5.1 Trident Execution Algorithms

This section provides high level descriptions of the various components running

in a Trident topology. Trident builds an execution graph starting from the spouts

and adds a node for each operation (each, filter, groupby, etc). Much like Pig,

Trident constructs each low level operator (Storm bolts) by chaining local operations

and partitioning the graph along synchronizing operations (such as groupby). This

removes unnecessary inter-bolt hops to perform operations that can be called directly

in a chain. Trident also provides other features used by Squeal – specifically the

transaction mechanism that provides at most once execution semantics and the state

102

system that is used to track intermediate results. There are four types of nodes to

consider in a Storm topology generated by Trident:

Coordinators – This includes the master and spout controllers.

Spouts – There are spouts in Trident-built topologies but they actually run in bolts.

Executors – These nodes run the part of the subgraph that can be pipelined at each

point.

Acker – Exactly the same as a Storm topology.

Figure 5.3 shows the Storm topology for the NationMind case study. The

“master” coordinator node is the only spout in the topology. It is responsible for

starting, committing, and completing each transaction. There is a configuration

option for the number of outstanding batches (which defaults to one). When a

batch can be started, the master emits a message to notify the spouts to release

tuples. All tuples emitted during a batch will be rooted to the batch id when

tracking acknowledgements (which significantly reduces the overhead of the acker).

Each spout releases up to a maximum number of tuples, each linked by the

batch id. For some reason, Trident does not chain operators directly off the spouts

themselves. Oddly still, Trident uses a direct grouping to hop between the spout

bolt (which may cause the tuple to travel between workers or machines). This detail

cannot be seen in this particular graph and isn’t really an issue in later cases because

of the use of the “shuffle before” hint to spread this load.

103

__acker-0$mastercoord-bg0-0

spout0-1

b-2-sent_gr-conc_words-se...

b-2-sent_gr-conc_words-se...

b-2-sent_gr-conc_words-se...

b-2-sent_gr-conc_words-se...

spout0-2

$spoutcoord-spout0-0

spout0-0

spout0-3

b-3-nm_final_gr-1

b-3-nm_final_gr-0

b-1-sent_concept-nm_final...

b-1-sent_concept-nm_final...

b-0-TwitterRMQSpout-words...

b-0-TwitterRMQSpout-words...

b-0-TwitterRMQSpout-words...

b-0-TwitterRMQSpout-words...

Figure 5.3: Storm topology created from NationMind case study

The executors provide the most interesting features when modeling the per-

formance of the topologies. It is hard to see in figure 5.3, but each bolt’s name is the

concatenation of the Pig aliases being calculated. Operator chaining can make it

challenging to understand the performance of the specific map or reduce tasks being

executed. Because of this, a more fine-grained transition graph is used to perform

analysis (as we saw in figures 4.5 and 4.4).

The bolts directly following the spouts are all map operators. When a batch

of tuples arrive from the spout, the map functions are applied immediately. If any

of the follow-on operations are map operators, these functions are called directly in

a chain including partitionging by key and partition combine. Once the subgraph of

executions are complete the partition combines are completed. The combined results

are then queued and transmitted across the network to the reduce nodes. Once all

tuples have been processed for a particular batch, a COORD tuple is transmitting

to successor nodes (if any). If there are no successor nodes, the first stage of a batch

is acknowledged (which leads the master to enter the commit stage).

104

At successor (reduce) nodes, there is a different set of operations to consider.

There are four stages of execution at a reduce node:

Accumulate any inbound messages are accumulated using a second-stage combiner.

Get/Update the state mechanism is activated to retrieve and manipulate the current

batch of keys.

Put/Commit the updated values are committed to external storage.

Release/Reduce the reduce phase runs along with any follow-on map operators (in

a pipeline).

In the accumulate phase each batch of tuples is partitioned by key and passed

to another combiner immediately. Once the COORD message has been received

from all preceding nodes (or a COMMIT message for the last executor in the

graph), the keys from all partitions are retrieved using the multi-get mechanism

from the Trident state. Once all keys are retrieved, the updates are applied to the

existing state (in memory). In Squeal the states (with cur and last) are passed to

the TriReduceDelta function to process the update and produce delta messages.

This leads to the most significant observation of this chapter: Squeal topologies

executing in Trident are basically running as chains of mini MapReduce operations.

For the example in figure 5.3, the only active processes at a given time consist of a

series of bipartite subgraphs. This is similar to the coordination between producers

and consumers seen in Naiad [52]. In the first stage, the b-0 nodes will execute

and emit tuples; the b-2 nodes will accumulate and combine these results until all

105

b-0 nodes have exhausted their work for the current transaction. Then, after the

b-2 nodes execute the get/update phase (which is blocking), they will enter into

the release phase. Once in the release phase, the bipartite subgraph of b-2 and b-1

nodes will be producing and accumulating tuples. This continues until the b-1/b-3

nodes complete up to the end of the accumulate phase.

This observation has bearings on many different aspects of execution and mod-

eling. For instance, this knowledge could be used by the Storm scheduler to exploit

the execution affinity of various groups of nodes: adjacent nodes have the potential

to be active at the same time whereas non-adjacent nodes will never be active at

the same time (if only one transaction is allowed to run at once). Also, this allows

us to break the performance model into disjoint parts that only impact each other

by influencing the release time of tuples within various stages.

Another interesting point is the effect of final reduce on external side effects.

The last nodes in the topology only enter the release phase during the COMMIT

phase of a transaction. When a transaction starts the COMMIT phase, each node

performs PUT operations to the backing store. Only when the COMMIT message

propagates to the final nodes in the graph, b-3, will they enter the final two phases.

Because of this, we know that any side effects (e.g. STORE) for a Pig script in

Squeal will only transmit as a part of the COMMIT phase of a transaction.

The final point to consider when analyzing Trident-built topologies is that the

transition doesn’t complete until all of the released tuples complete. This allows us

to focus our modeling efforts on the critical execution path – that which takes the

most time. One interesting artifact of the determinism of MapReduce is that the

106

trajectory of a tuple and it’s dependents is fixed after the initial shuffle phase (if

no “shuffle before” hints are used within the topology). This has implications when

considering the minimum response time possible for a particular calculation.

5.2 Performance Model

To create a performance model for Pig scripts running in Storm, we will make

use of many of the conventions from queuing theory. Specifically, we will approxi-

mate the bolts within Storm using M/M/m queues. The first M stands for Marko-

vian (as opposed to G for General, E for Erlang, etc.) which means that the input

can be modeled as a memoryless Poisson process with average arrival rate λ. The

second M also stands for Markovian, which means that the m processors consum-

ing items from the queue can be modeled as a memoryless Poisson process with

mean service rate of µ. When the traffic intensity defined by ρ = λ/(mµ) is less

than one, the M/M/m queue is said to be stable. Stable M/M/m queues are well

understood [70, 41] and have closed-form solutions for many properties (expected

response time, queue size, utilization, etc.). When the traffic intensity is greater

than one, the queue becomes unstable and will grow without bounds.

There are many factors of the Trident execution model that cause divergence

from the standard models. While data arrives at the edge of the topology at some

average rate, the information is released into the topology in batches (also, a well

studied topic [41, 42]) at configured intervals (defaulting at 500 ms). Queueing the-

ory is generally concerned with the steady state of a system while Trident undergoes

107

ramp up (where ρ may be greater than one), steady state, and ramp down (where

λ goes to zero) phases every time a batch is released. Because a batch of data isn’t

marked as complete until all the elements within are finished, we are more concerned

with the total time necessary to process a batch (as opposed to the response time

of a particular “tagged” job). This presents numerous problems, specifically careful

tracking of which metrics are run in parallel versus serially and also which metrics

are overlapping.

Because Squeal builds topologies based on the MapReduce plan of a Pig script

and because Trident has gating mechanisms around the persistence layer, a Squeal

topology can be modeled as pipelines of independent executions that have five dis-

tinct phases:

Map/Stage zero (S0) Combine – tuples flow from the spout into map operators for

processing, partitioned by key and combined.

Shuffle/Stage one (S1) Combine – Stage zero combine completes and tuples are

transmitted to “reducers” where they undergo stage 1 combine.

Get – previous values for the current key set are retrieved or initialized.

Put – updates are stored (during the batch commit phase).

Reduce/(Map) the reduce operators are run and chained to the next map phase (if

any).

The first map tasks receive their tuples from the Storm Spout, apply the map

function and partition the output by key. At the map task, these keys undergo stage

108

zero combine which performs initialization of values and combination of any values

at the mapper that share the same key. When the spout has released all tuples

for the current batch, the stage zero combiners are completed and the shuffle phase

begins where tuples are transmitted to the reduce nodes.

At the reduce nodes, incoming tuples are grouped by key and combined. Once

all tuples from the map phase have been transmitted, the stage 1 combiners are

completed. Each reduce node then activates the get phase which pulls previous

values from the state mechanism. Though all keys are retrieved at once, no further

processing is performed until all values are available (which reduces parallelism).

After the current values are combined by key with the previous values, the

state mechanism is updated. The actual order of this operation occurs after the

batch has successfully finished the first stage of a two-stage commit. If there is only

a single MapReduce operation, it will occur before the reduce phase. Otherwise, all

the put phases (before the final MapReduce operation) will be executed during the

batch commit phase. The final reduce operation executes upon a successful commit.

The specific order of these events isn’t important because they are non-overlapping

and merely contribute to the overall batch elapsed time.

For each phase of computation, the contribution to the total batch time can

be described as functions that could depend on the following:

Map(· · ·) - Map elapsed time:

• µmap - the service rate of the specific map calculation.

• λspout - the output rate of the spout.

109

• mmap - the parallelism (number of tasks) of the map operator.

• bs - the number of outstanding tuples per batch (the batch size).

CS1(· · ·) - Combine Stage 1 elapsed time:

• µcS0 - the service rate of the map-side combiner.

• µcS1 - the service rate of the reduce-side combiner.

• λshuffle - the effective rate of transmission from map to reduce.

• mmap - the number of map tasks.

• mreduce - the number of reduce tasks.

• emitmap - the number of records emitted by map.

• emitcS0 - the number of records to survive the combiner.

• distcS0 - the distribution of keys (how many values are transmitted to

each individual reduces – important if there is a skewed distribution of

keys).

Get(· · ·) - Bulk key/value retrieval elapsed time:

• µget - the service rate of retrievals (on cache failure).

• emitcS1 - the number of keys to be retrieved.

• cache rate - the effectiveness of the storage cache.

• distcS1 - the distribution of keys (which may influence storage perfor-

mance).

110

Put(· · ·) - Bulk key/value storage elapsed time:

• µput - the service rate of stores.

• emitcS1 - the number of keys to be stored.

• distcS1 - the distribution of keys.

Reduce(· · ·) - Reduce elapsed time:

• µreduce - the service rate of the specific reduce calculation.

• mreduce - the parallelism of the reduce operator.

• emitcS1 - the number of keys from the combine stage.

• distcS1 - the distribution of keys.

• emitreduce - the number of keys emmitted by reduce.

• µmap... - the service rate of any follow on map operations (if any).

It is important to note that there are only two λ’s to consider in a general

model for squeal scripts: λspout and λshuffle. After the first stage of execution, there

is only λshuffle because follow on maps are chained directly off of reduce. Each

placeholder variable from the list above may represent a parameter to a distribution

(such as the service rate µ’s) or may be a function of other variables (such as the

number of values produced by the map stage which is a function of the batch size:

emitmap(bs)). Finally, some of these variables are directly observable (such as the

service times of the various elements) whereas some can only be measured indirectly

(such as λshuffle).

111

A complete model would allow for many interesting questions to be answered,

such as: what is the performance of a specific topology as we vary the batch size,

the parallelisms, or the number of outstanding batches allowed in the system (in

increasing order of complexity). Unfortunately, a complete model of the system has

proven elusive for the amount of time budgeted for this part of this dissertation’s

work. Instead, we present a simple model that attempts to reproduce the batch

latencies from trace data. While not as useful as a more sophisticated model, it

still provides insights into many interesting aspects of system performance: the

ability to understand what parts of the execution are taking up the most amounts

of times (which is important for optimization). Furthermore, it provides a basis

for comparing the trade offs of various tuning parameters (such as batch size and

parallelism) by ocmparing separate execution traces.

Let Exp(x) represent an independent exponentially distributed random vari-

able with rate x, then the simplified model is the sum of the following components:

Map(µmap, bs,mmap) =
1

mmap

bs∑
Exp(µmap)

emitmap = emitcS1 =
bs∑
Exp(λmapEmit)

CS1(emitmap, λshuffle) = emitmap · Exp(λshuffle)

Get(µget) = Exp(µget)

Put(µput) = Exp(µput)

112

Reduce(µreduce, emitcS1,mreduce) =
1

mreduce

emitcS1∑
Exp(µreduce)

The following section will explain each component in greater detail and explore

how effective it is in modeling our simple word count example.

5.3 Experiment: Word Count

This section outlines an experiment to test the efficacy of the simple per-

formance model in simulating batch elapsed time using trace data from running

topologies. The experiment is also designed to measure the strong scalability of the

word count analytic as more resources are added to the topologies. Strong scaling

is measured by holding the total work constant while varying the number of proces-

sors. The work load in this case is a set of 53 thousand tweets fed through a single

spout with a batch size of 50. This rate is significantly smaller than what would

be expected in a production run. Even the configuration for single tasks for map

and reduce (m = 1) which is spread across multiple machines is non-ideal because

there are sufficient resources on one node to handle the whole topology. The goal of

these configurations was to get a “clean room” measurement of each of the various

components of the model and not to run load tests (as seen in the previous chapter).

This experiment was run on a 10-node m3.xlarge cluster running in Amazon’s

Elastic Compute Cloud (EC2) over the course of a day. The m3.xlarge instance

types has four vCPUs, 15 GB of memory, and two 40 GB SSD drives. Each test

run was execute three times to account for variance caused by executing in a shared

113

environment1. While there are many shortcomings of running such tests in such an

uncontrolled environment, we believe that experiments run in EC2 provides a much

more realistic result set than those measured in controlled lab environments.

The cluster was loaded using the Ambari management environment2 (version

1.6.1 with storm version 0.9.1). All nodes were configured as potential work hosts

(without standalone configurations of controller nodes such as Nimbus, the Hadoop

Name Node, etc.). Once the topologies have been initialized, the workload on the

controllers is negligible. Data was fed into the system using RabbitMQ. When a

topology was started, it was allowed to initialize and run for a few seconds before the

data was fed into RabbitMQ at maximum rate. Because the input rate far exceeded

the service rate of the topologies, the messages were queued in memory until the

topology was able to consume them. Once the work was completed, the topology

was destroyed and the system was reset for the next run.

There were five treatments, each repeated three times producing 15 separate

traces to analyze. For each treatment, the number of map and reduce tasks (which

we call the parallelism or m) was set to the same value (m = mmap = mreduce)

and increased across treatments (m = {1, 2, 4, 8, 16}). HBase was used to provide

the state management for the reduce phase. For each test, the number of resources

(in the form of region servers) was kept constant to control storage throughput

between experiments. The backing tables were pre-split based on the distribution of

frequencies of the letters of the latin alphabet seen in the Wikipedia concept data.

1http://hbase.apache.org/book/perf.ec2.html
2http://ambari.apache.org/

114

This led to fairly uniform load across the regions except for the first and last region

which carried the majority of load associated with numbers and non-latin characters.

Because the input data was the same for each experiment, this imbalance effected

each experiment in the same way.

For each experiment, the first minute of batches was discarded to allow the

topology to complete initialization. The startup time for the word count example

is greatly effected by loading the stop lists from HDFS. This occurs the first time

map is called with input. There are other factors such as establishing connections

to the state mechanism and the message queue system. There is also load on the

queueing system while the data is being loaded into memory.

Storm has a metrics aggregation and collection mechanism that is used to

populate statistics in the UI. However, to increase the granuality we opted to also

collect metrics within the Squeal components themselves. One of the reasons for

doing so was to get better precision in the time measurments (Storm tracks at

milliseconds resolution). For tracking time within a function call (map, reduce,

get, put) we made use of Java’s System.nanoTime() function which prevides higher

precision measurements from subsequent calls. There is no documentation on the

precision of these measurements but most of the measurements presented here are

greater than one microsecond. These metrics were transmitted across the network

to the head node of the cluster (which was also running RabbitMQ). While this

network traffic influenced previous measurments under load, it was not seen as a

significant load for these experiments to influence the message bus. Each component

measured was sampled at a five percent rate except for the batch emission and

115

acknowledgements which were tracked at 100% rate.

Figure 5.4 shows the batch elapsed milliseconds response time for all treat-

ments (grouped by parallelism). The same information is also summarized in table

5.1. The most significant decreases in response time can be seen when the number

of workers increases from one to two and then from two to four. At a parallelism

of four, we have eight tasks running on ten machines (which each runs two Storm

worker processes). As we increase to a parallelism of eight, we have sixteen tasks

running on ten machines – while there is machine sharing, there are still some idle

worker processes. Finally, at a parallelism of 16, we have 32 tasks running on 20

CPUs – this case has both processor sharing and worker sharing in play.

0 500 1000 1500 2000
Elapsed Milliseconds

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

Parallel 1
Parallel 2
Parallel 4
Parallel 8
Parallel 16

Figure 5.4: CDF of Batch Elapsed Milliseconds for varying parallelism

116

While examining table 5.1 quite a few changes are apparent as we increase

available resources. First, there are more batches summarized for parallelisms of

one and two. This can be explained by the fact that each of these configurations

take longer to process each batch and thus have more surviving batches when the

first minute of execution is discarded. Once a batch is processed in less than 500

ms, the system will be limited by the timer function for Trident’s batch release

mechanism which fires twice a second. This limits the total system throughput to

100 tweets per second at parallelism of four and above. We can also see that the

variance drops until we reach a parallelism of eight and increases slightly when we

double the parallelism to sixteen.

Table 5.1: Statistics for various parallelisms

Batch response time in milliseconds

m Count Mean Std Min 25% 50% 75% Max

1 3,020 920 200 380 780 910 1,050 1,970
2 2,950 590 120 310 510 580 660 1,620
4 2,870 310 90 130 250 300 350 1,370
8 2,880 280 80 150 230 260 310 1,700
16 2,860 230 100 110 170 200 240 1,580

Figure 5.6 shows the contribution of each phase to the total execution time.

This plot was generated by taking each class of event and grouping by their batch.

The batch start time was then used to produce a batch-relative timestamp for each

event and we can see the summary of the first and last executions of each event

type. So, on the left we see the first stage zero (S0) combine happens directly after

the first map. Next, we can see that the first map occurs nearly instantaneously

when the batch starts with some delay in the slowest case. This is followed very

117

quickly by the last map execution (which ends around 100 ms into the batch).

0 200 400 600 800 1000 1200 1400 1600 1800

Elapsed Milliseconds

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
ba

bi
lit

y

First Map
First S0 Combine
Last Map
First S1 Combine
Last S0 Combine
Last S1 Combine
Get
Put
First Reduce
Last Reduce
Batch Elapsed

Figure 5.5: CDF of Batch Relative Start and Stop Times for Computation Stages
for m=1

As the map phase finishes, the S0 combines begin to complete and transmit

messages to the reduce nodes. This allows the first stage one (S1) combines to

start executing. The span between the start and finish of the S1 combine is quite

significant. The combine operation executes in around 14 microseconds on average,

with an average map emission of 2,200 words this only leads to 61 milliseconds of

CPU demand (half in stage zero, half in stage one) whereas the gap between the

first and last combine is 395 ms (accounting for a third of the average batch elapsed

time). The missing time is caused by the latency of moving the tuples between

the nodes and presents many modeling challenges which will be discussed in a later

section.

118

Once the final combine has executed, the get phase starts to retrieve previous

states from the backing store. When the get phase completes, the batch starts the

commit phase. This allows the put phase to update the state values before allowing

reduce to produce side effects. Finally, the reduce phase executes – the completion

of the reduce phase marks the end of the batch.

When comparing the recorded CPU time from the various components to those

reported by Storm, we can account for 95 percent of Storm’s recorded CPU time.

The missing five percent occurs in the coordination bolts (the master coordinator,

the acker) and in the spout bolts (which also perform de-serialization of input to

Pig types). While we have most of the CPU time covered, there is a significant

amount of batch time spent in queues between nodes. Getting direct measurements

of the various queues and sub-systems that perform this functionality is challenging

for various reasons (mainly due to API layering and datastructure design [65] which

is designed for high performance and not easy to monitor). However, the latencies

they induce is measured by tracking the absolute difference between the clocks of

the Squeal components. While the machines are synchronized with NTP, there is

still significant noise in these measurements.

The following sections will describe the measurements of each phase of execu-

tion along with how they are modeled. This is followed by a section discussing the

results when these models are combined to simulate batch elapsed times.

119

5.3.1 Modeling Map

The map phase of word count takes the JSON representation of a tweet and

extracts word bigrams. Because this map routine treats each tweet atomically and

has no accumulation of state (aside from the initial stop list load), it is an ideal

candidate to be modeled as a Poisson process. Table 5.2 shows statistics for each of

the treatments. The left side of the table summarizes the service demand necessary

for each tweet to be processed. We can see that for m = 1 the tweets take around

2.2 ms on average to process. The p-value is produced by applying Welch’s T-test 3

to check the hypothesis that two populations have equal means. Welch’s variation

of the T-test is used when the samples have different variances. The first sample in

this case is the measured elapsed time recorded from each trace. The second sample

is created using an exponential distribution fit to the first sample. In effect, this

gives us some notion of how well the exponential distribution models the data.

The right side of table 5.2 shows information on how many records are emitted

by the bi-gram extraction process. If you recall, for each word extracted five records

are produced to generate a decaying score for the word over the timespan of five

minutes. This means that while there is an average of 43 records produced by

the map phase, this means that we see an average of 8.6 words per tweet. The

variance we see between runs can be explained by the five percent sampling which

would pick up different individual tweets to sample between runs with the same

parallelism. The exponential distribution was found to model this data with high

p-values from Welch’s T-Test.

3http://en.wikipedia.org/wiki/Welch%27s t test

120

Table 5.2: Map Statistics and Fitness Measures

Service Time in Milliseconds Positive Message Output

m Trace Mean Std Med p-value Mean Std Med p-value

1 2.159 2.993 1.625 0.254 42.671 36.722 35 0.892
1 2 2.175 3.144 1.560 0.981 41.673 36.036 35 0.948

3 2.199 3.167 1.614 0.770 43.559 36.822 35 0.718

1 2.392 3.306 1.678 0.626 43.294 37.872 35 0.991
2 2 2.417 3.194 1.736 0.355 44.650 37.379 35 0.871

3 2.331 2.777 1.722 0.588 43.136 36.652 35 0.975

1 2.493 2.830 1.771 0.805 43.717 37.703 35 0.138
4 2 2.458 2.612 1.802 0.666 43.036 36.773 35 0.192

3 2.487 3.842 1.807 0.698 43.386 36.708 35 0.568

1 3.587 19.606 2.077 0.890 41.968 35.871 35 0.566
8 2 3.227 4.324 2.103 0.765 41.882 36.378 35 0.380

3 4.422 43.058 2.099 0.791 43.486 37.375 35 0.808

1 4.797 9.474 2.651 0.844 42.540 36.349 35 0.481
16 2 4.907 16.788 2.495 0.645 41.748 36.322 35 0.316

3 5.394 17.088 2.683 0.675 42.909 36.888 35 0.640

Before we move on to the next phase it is worth pointing out the upward

trend in service times as parallelism increases. While the individual map tasks

don’t interact with one another, they are using the same cluster resources as things

such as HBase. In higher parallelisms they may also share a machine, core, or JVM

(specifically the garbage collector). This has significance for any generalized model

of execution (where you would assume µmap is constant). Further experimentation

would be necessary to understand this phenomenon. One potential avenue would

be to examine the mean service demand versus the server load as reported by the

operating system. This anomaly does not impact our study of the simple model

because we only examine pairs of runs with the same parallelism.

Now, revisiting the formulas that relate to map:

121

Map(µmap, bs,mmap) =
1

mmap

bs∑
Exp(µmap)

emitmap = emitcS1 =
bs∑
Exp(λmapEmit)

We treat the elapsed time for the map phase as a simple division of labor across

the mappers uniformly. This has weaknesses if the distribution of input counts is too

far from uniform (which may be the case following a reduce operator). The random

shuffle in Storm from the spout to the mappers was sufficiently normal for this to

hold in this case. The number of emissions from map is modeled as the sum of an

exponential distribution. The reason for setting the number of combine emissions

to the save value as the map emissions is explained in the reduce subsection.

5.3.2 Modeling Combine

The next phase is the shuffle/combine phase. Figure 5.6 provides a detailed

view of the executions during the shuffle phase. This particular plot is for a pair of

bolts hooked up in tandem across the network. Focusing on stage zero, we can see

that all of the executions occur before 200 ms and that most occur around 100 ms

(which is the average service time for 50 tweets). After the maps complete, we see

the stage zero completes begin – at this point the accumulators are finalizing results

before transmitting across the network. Next we see the stage 1 accumulators start

to process the incoming data (on the reduce node). Note that the peak frequency

122

is limited around 300 messages per millisecond and that the span of the curve is

much longer. This is caused by throughput capacity and queueing in the networking

subsystem. Once all messages have been transmitted from the map phase the stage

1 combiners start to complete.

0 200 400 600 800 1000

Batch Elapsed Milliseconds

0

200

400

600

800

1000

1200

M
ov

in
g

A
ve

ra
ge

of
Fr

eq
ue

nc
y

Stage 0 complete 0
Stage 0 complete 1
Stage 1 complete 0
Stage 1 complete 1

Figure 5.6: Count of Combine Events for m=1

Figure 5.7 shows the same plot for an experiment with m = 8. We can see

the impact of additional resources in the peak rates of stage zero combines. The

first spike represents the combine calls chained to the map operator. The second

spike represents completion and message release. In this case, the stage one combine

begins almost immediately and has very little throughput and queuing effects. The

second spike occurs once the COORD message arrives from all the mappers that

they are complete.

One important feature of both of these plots is that the map executions and

123

0 100 200 300 400 500 600 700 800

Batch Elapsed Milliseconds

0

500

1000

1500

2000

2500

3000

3500

4000

M
ov

in
g

A
ve

ra
ge

of
Fr

eq
ue

nc
y

Stage 0 complete 0
Stage 0 complete 1
Stage 1 complete 0
Stage 1 complete 1

Figure 5.7: Count of Combine Events for m=8

the stage 1 completions do not overlap and are adjacent. Because of this, we can

model each independently without concern of the multi-processing and network

effects. This provides a very clean formula for the simplified model, but presents

other limitations. Consider table 5.3: on the left we have the mean execution rate if

we model the stage 1 execution as independent executions against a queue of items

using the exponential distribution. The right side examines the time spans of the

stage 1 execution as if it were one large job (in this case, modeled using the beta

distribution).

First, we can see that the time spans and average rates do not decrease linearly

with the increase in resources. There are numerous effects discarded from the model

that may account for this discrepancy. Chief among them is a model of the network-

ing and task dispatch subsystems. This system has presented modeling issues due

124

Table 5.3: Combine Statistics and Fitness Measures

Mean Service Time in ms Span Time in ms

m Trace Mean Std Med p-value Mean Std Med p-value

1 0.199 0.066 0.201 0.930 405.219 134.398 406 0.635
1 2 0.192 0.065 0.195 0.626 391.141 132.275 391 0.860

3 0.193 0.063 0.197 0.509 395.346 131.610 400 0.996

1 0.179 0.049 0.171 0.525 364.223 103.037 347 0.670
2 2 0.126 0.038 0.120 0.372 255.620 78.545 243 0.416

3 0.177 0.052 0.168 0.629 362.038 104.146 346 0.492

1 0.105 0.043 0.096 0.837 211.883 83.258 196 0.704
4 2 0.079 0.029 0.072 0.565 160.050 57.490 146 0.838

3 0.091 0.035 0.082 0.748 184.448 73.546 167 0.997

1 0.093 0.044 0.083 0.976 189.087 85.477 168 0.818
8 2 0.096 0.045 0.085 0.960 194.297 89.185 171 0.541

3 0.090 0.051 0.080 0.566 182.492 91.806 163 0.035

1 0.081 0.056 0.065 0.743 163.920 110.139 131 0.709
16 2 0.080 0.055 0.066 0.357 161.300 105.251 133 0.536

3 0.081 0.052 0.067 0.673 163.771 98.168 136 0.756

to complexities surrounding message bundling between hosts and lack of visibility

into the underlying queues. The closest we came to being able to track the impact

of these systems is through tagging message between the hosts to track absolute

time differences between release and receive. A working network model is key to

answering questions about the impact of increasing or decreasing specific resources

in a topology (such as having different values for mmap and mreduce). However, such

a model has proven to be elusive and unobtainable in the time budgeted for such

efforts.

The resulting equation is as follows:

CS1(emitmap, λshuffle) = emitmap · Exp(λshuffle)

125

The stage one execution time is actually influenced by the effectiveness of the

stage zero emissions but because the batch size was so small it had very little effect

(as discussed in the following section on reduce). Because λshuffle was estimated by

dividing the time span of the stage one combine divided by the number of values

we decided to treat it as a service rate. If you switch over to using the value as a

service demand and sum the times expected it does not work as a good estimator of

the time span. Most of the model design was spent in discovering and attempting

to further analyze this section of the execution time. Treating this element as a

more traditional (unobserved) M/M/m queue was quite problematic due to lack

of direct visibility. After estimating parameters for the hidden queue it was found

to overestimate the span times significantly. This element of the model is a prime

candidate for future research – solving this element would provide the necessary

components to perform much more general analysis and prediction.

5.3.3 Modeling State Management

The Trident state management system allows stream processing systems to

benefit from off-line storage. After the stage 1 combiner completes, we have new

values to be merged with the previously known values. Trident dispatches a bulk

pull for the values associated with the currently active keys. A simple LRU cache

can be used to decrease the pressure on the backing storage system. During these

experiments, the cache hit rate depended on the parallelism (more workers meant

more cache space). For m = 1 the cache hit rate was around 1.7% for all keys

126

and 5.1% for keys that had values. That is, when a get issued, it missed 98.4% of

the time. However, most retrievals returned no results – for keys that had values,

the miss rate was 94.9%. For m = 16 the cache hit rate was around 15.6% for all

keys and 47% for keys that had values. This means that the cache missed 84.4%

of the time for all keys but only 53% of the time for keys that had values. The

simple model disregards the cache rate because for word count it isn’t viewed as a

significant factor.

Table 5.4 shows the service demands for get and put across the various treat-

ments. The times in this table represent the amount of time spent retrieving and

storing intermediate results per batch. The times are spent serially at each reduce

task (roughly 60 ms spent per batch retrieving data for m = 1 and only 10 ms spent

each batch for m = 16). The difference in time can be explained by the number of

keys per retrieval for each which can be seen in the right side of table 5.5. When

m = 1 all keys for a specific batch are retrieved and stored from a single machine.

When m = 16 the keys are spread across the reduce tasks and executed in paral-

lel. With more workers, the system is able to use more of HBase’s bandwidth and

increase the parallelism of the process because the per-node retrieval time is much

shorter.

For the simple model, we draw a single value to represent the time necessary

to complete this phase of execution. A more correct function would be to draw m

exponents and take the max, but the time contribution wasn’t seen as that significant

to warrant further investigation. Furthermore, the specific model for storage and

retrieval will vary significantly based on the underlying storage implementation.

127

Table 5.4: Get/Put State Statistics and Fitness Measures

GET Times in Milliseconds PUT Times in Milliseconds

m Trace Mean Std Med p-value Mean Std Med p-value

1 61.948 69.186 47.002 0.969 286.653 40.717 284.821 0.785
1 2 59.417 32.542 46.036 0.934 93.186 52.987 84.466 0.972

3 78.454 98.021 45.029 0.942 287.778 49.253 273.531 0.904

1 34.506 39.972 25.357 0.897 64.937 74.891 49.072 0.981
2 2 25.085 11.773 22.975 0.863 105.403 61.573 118.773 0.671

3 30.293 18.844 25.371 0.842 78.545 35.577 82.136 0.877

1 18.954 23.355 14.248 0.950 46.438 44.055 29.132 0.718
4 2 16.937 23.232 13.480 0.912 31.434 20.889 25.841 0.915

3 15.334 9.469 12.910 0.769 40.132 82.411 27.812 0.941

1 10.391 9.513 8.503 0.837 32.999 27.771 28.102 0.850
8 2 12.712 50.987 8.811 0.944 33.716 28.112 28.987 0.564

3 10.519 13.464 8.458 0.918 32.359 33.058 19.796 0.277

1 9.878 8.178 8.075 0.052 29.654 45.977 26.209 0.941
16 2 9.115 15.033 7.417 0.884 25.169 38.174 19.117 0.817

3 9.624 12.200 7.713 0.650 26.947 42.435 22.087 0.998

There are many different clustered storage mechanisms available, we chose HBase

because it came pre-installed with an Ambari setup. There are many studies that

consider the performance of other clustered storage mechanisms [1]. Provided they

can be wrapped in a key/value interface they should allow for drop in replacement.

The formulas for get and put times are as follows:

Get(µget) = Exp(µget)

Put(µput) = Exp(µput)

These could be easily generalized to include the distribution of keys and

counts to allow for more general analysis (across parallelisms and cases where

128

mmap 6= mreduce). This would be done by modeling the effect of key size on storage

performance as evident in the variation of mean service time across treatments.

5.3.4 Modeling Reduce

Reduce in word count can be modeled by a simple Poisson process using an

exponential distribution. Table 5.5 shows the service times along with p-values for

exponential distributions fit to the trace data. On the right side we see summaries for

the number of keys put into the storage mechanism at each node. In a more general

calculation, the storage key count provides a good estimate of the number of keys

surviving the combine phase. For word count, the combine phase didn’t produce a

significant cut down on the number of keys (consider map produces 2,200 records

on average while the storage mechanism manipulated 2,040 records on average).

For the simplified model, we set the number of executions to the number of

map output records. This over-estimates the reduce time, but doesn’t appear to

impact the results for such a small batch size. The amount of time spent in reduce

is small relative to the amount of time spent during the stage one combine. As

the batch size increases, the combine would become more effective in decreasing the

number of records bound for reduce. This would impact the combine stage one span

as well as the reduce. This results in the following formula:

Reduce(µreduce, emitcS1,mreduce) =
1

mreduce

emitcS1∑
Exp(µreduce)

129

Table 5.5: Reduce/Key Count Statistics and Fitness Measures

Reduce Times in Milliseconds PUT Key Count

m Trace Mean Std Med p-value Mean Std Med p-value

1 0.042 0.015 0.040 0.895 2050.262 257.976 2042 0.842
1 2 0.050 1.041 0.039 0.848 2038.750 240.581 2012 0.834

3 0.044 0.476 0.039 0.871 2067.980 276.711 2045 0.960

1 0.054 0.321 0.045 0.364 1033.452 112.299 1028 0.973
2 2 0.048 0.508 0.041 0.801 1045.111 149.813 1029 0.912

3 0.056 0.880 0.044 0.692 1030.455 137.163 1014 0.951

1 0.057 0.942 0.043 0.981 517.874 61.469 511 0.981
4 2 0.045 0.394 0.039 0.770 509.112 68.713 507 0.987

3 0.053 0.994 0.041 0.921 510.649 68.042 504 0.826

1 0.059 0.696 0.044 0.735 254.453 33.695 249 0.736
8 2 0.062 0.741 0.044 0.863 252.198 30.838 249 0.938

3 0.056 0.348 0.044 0.058 256.873 35.538 253 0.386

1 0.069 0.326 0.051 0.647 128.821 18.961 128 0.679
16 2 0.072 0.734 0.049 0.602 128.622 18.712 127 0.531

3 0.069 0.212 0.050 0.303 128.489 18.523 128 0.155

5.3.5 Results

Table 5.6 provides summary statistics for all traces and models generated. The

left side of the chart provides similar metrics as those seen from table 5.1 without

rolling up all the traces into a single metric per parallelism. We can see the variance

of mean within various treatment levels (such as m = 1 trace two). We can also see

that the model results are appropriately correlated to these changes (a significant

drop in mean for the trace leads to a drop in the modeled mean). Such correlations

are not perfect: trace one and three would swap places if ranked by mean under

measured or modeled.

Figure 5.8 shows the CDF of this data for m = 1. The differences between the

traces becomes much more stark. Though they share the same basic shape, they

130

Table 5.6: Measured and Modeled Summary Statistics for Response Time

Measured Modeled

m Trace Mean Std Med Mean Std Med

1 991.978 182.158 977 975.169 163.800 941.527
1 2 785.135 180.370 771 766.979 160.599 733.512

3 974.506 178.840 960 996.590 170.433 960.680

1 599.416 114.799 582 605.260 126.890 582.448
2 2 545.632 113.008 531 521.964 109.027 500.860

3 630.909 116.982 616 605.041 126.985 575.516

1 367.208 90.130 352 355.410 102.033 331.516
4 2 274.390 70.968 260 271.401 69.759 251.340

3 291.847 75.540 277 312.293 86.711 289.182

1 274.350 74.285 258 274.912 93.095 252.489
8 2 275.961 97.291 252 286.851 106.692 260.263

3 297.165 76.355 279 283.028 113.258 253.241

1 243.773 114.224 212 239.562 101.632 211.109
16 2 216.156 84.316 190 232.118 103.746 203.384

3 221.035 83.336 195 237.195 89.891 214.058

are offset by roughly 200 ms. We can see that the model curves share similar shape

but appear to under estimate the service rates in some places. Overall, these are

fairly close values and likely to be useful to practitioners, however we must analyze

things further to determine how significant these numbers are.

In the preceding sections we have used Welch’s version of the T-test to deter-

mine if a sample drawn from a specific distribution provides a good estimate of the

measured data. Table 5.7 provides an analysis of the T-test results for determining

how similar the various traces relate to each other within a specific treatment. What

we find is that very few trace pairs meet the conditions to pass the T-test. Within

m = 1 we find that trace one and three have the highest p-value of 0.041 (the mea-

sure is symmetric) which isn’t surprising given their proximity in 5.8. Furthermore,

131

0 500 1000 1500 2000 2500

Elapsed Milliseconds

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

Experiment 1
Modeled via 1
Experiment 2
Modeled via 2
Experiment 3
Modeled via 3

Figure 5.8: CDF of Measured and modeled batch elapsed ms for m=1

many of the models fail the T-test when compared to the generating trace or to

other traces within the same parallelism. Oddly for m = 1 we have cases such as

the model generated from trace one failing against that same trace but showing a

strong p-value with trace three. Given that the traces themselves don’t show sta-

tistically significant similarity we would be hard pressed to expect the same from

the models. However, there are other measures to consider when comparing these

results.

To put things in perspective we also provide calculations for the percentage

errors (as defined by |obs−exp|
exp

) for the means. Table 5.8 shows the results when

calculating percentage errors against the measured and modeled data sets. For

these calculations the row’s mean was used as the expected value while the column’s

mean was used as the observed. While high p-values are good for the T-test, lower

132

Table 5.7: Result T-test Comparison

Measured to
Measured p-value

Modeled to
Measured p-value

m Trace 1 2 3 1 2 3

1 1.0 0.0 0.041 0.0 0.0 0.233
1 2 - 1.0 0.0 - 0.003 0.0

3 - - 1.0 - - 0.134

1 1.0 0.0 0.001 0.078 0.0 0.0
2 2 - 1.0 0.0 - 0.0 0.0

3 - - 1.0 - - 0.0

1 1.0 0.0 0.0 0.001 0.0 0.0
4 2 - 1.0 0.0 - 0.013 0.0

3 - - 1.0 - - 0.04

1 1.0 0.79 0.001 0.001 0.0 0.0
8 2 - 1.0 0.003 - 0.089 0.0

3 - - 1.0 - - 0.0

1 1.0 0.0 0.001 0.0 0.689 0.228
16 2 - 1.0 0.523 - 0.059 0.005

3 - - 1.0 - - 0.67

percentage errors are actually better. This can be seen in the diagonal values where

the expected and observed means are the same. Using this metric, we can see that

the means for trace one and three (where m = 1) are within two percent of each

other. Furthermore, the model from trace one provides a near match for the mean

for trace three (which explains why this pair passed the T-test). We can also see

that a large percent error between pairs of traces generally leads to a large percent

difference in model performance.

Figure 5.9 shows the CDF for the case wherem = 8 which shows the best model

performance when measured using percentage error. We can see that the traces

are very tight fitting and that the model curves are close. The worst performing

model to measured pair (one to three) is still within 10 percent (the rest are within

133

Table 5.8: Result Percentage Error Comparison

Measured to
Measured Mean

%-error

Modeled to
Measured Mean

%-error

m Trace 1 2 3 1 2 3

1 0.0 20.9 1.8 1.7 19.5 0.1
1 2 26.3 0.0 24.1 29.3 2.4 27.1

3 1.8 19.4 0.0 0.5 21.2 2.2

1 0.0 9.0 5.3 1.0 9.9 4.2
2 2 9.9 0.0 15.6 14.8 4.5 20.9

3 5.0 13.5 0.0 0.9 9.8 4.3

1 0.0 25.3 20.5 3.3 22.8 17.9
4 2 33.8 0.0 6.4 35.3 1.1 7.5

3 25.8 6.0 0.0 17.6 12.1 6.5

1 0.0 0.6 8.3 0.2 0.4 8.1
8 2 0.6 0.0 7.7 4.4 3.8 3.6

3 7.7 7.1 0.0 3.1 2.5 5.0

1 0.0 11.3 9.3 1.8 9.8 7.7
16 2 12.8 0.0 2.3 5.0 6.9 4.8

3 10.3 2.2 0.0 2.8 8.9 6.8

5 percent). Ultimately, these results demonstrate the viability of modeling the

runtime performance of Pig scripts running in Storm. Also, by demonstrating that

large variance between traces leads to similar variance in modeled results we have

a means of judging the quality (or uniqueness) of a particular trace. The following

section will summarize the chapter and discuss more implications of this work.

5.4 Chapter Summary

In this chapter we discuss the variance in streaming rates seen from Twitter

and how it can impact the service requirements of a streaming computation. We then

discussed the specific execution algorithm used by Trident to provide coordination

134

0 200 400 600 800 1000 1200 1400 1600 1800

Elapsed Milliseconds

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

Experiment 1
Modeled via 1
Experiment 2
Modeled via 2
Experiment 3
Modeled via 3

Figure 5.9: CDF of Measured and modeled batch elapsed ms for m = 8

between stages within a topology and how this lends itselfs to modeling MapReduce

stages independently. We then discuss a simplified model that attempts to simulate

execution times seen in trace data. We discuss each component of the model in

great detail and show cases where generalization would be problematic (service rates

changing as resources are added). Finally, we show that the model is able to generate

mean performance that usually lies within 10% of the measured performance. The

next chapter will provide a focused literature survey that describes related work.

135

Chapter 6

Literature Review

This work lies within the intersection of three major topics: Big data (batch)

processing, Stream processing, and Performance Modeling. There is also a rela-

tionship to the incremental view maintenance which is a subcategory of database

systems. A deep review of any of these topics would take a large part of this docu-

ment, instead this review will focus on a more surgical view of the papers that most

influenced and relate to this work. For a broad examination of each of these topics,

I will recommend the surveys in each of the sections.

We open the chapter with a discussion of big data processing with a focus

on incremental updates. This is followed by a discussion of languages and APIs to

ease development which will focus on modifications to the Pig[55] dataflow language

After that we will have a discussion of stream processing and conclude with a small

section of performance modeling.

6.1 Big Data Processing

One would be hard pressed to write about big data and not cite the “Google

trifecta”: Google File System [27], MapReduce [23, 24], and BigTable [17]. Google

File System is a cluster-based file system with reduced POSIX semantics (read,

write, append, no overwrite) that was born from the experiences of building a web

136

search engine [13]. MapReduce is a method for distributing a computation across a

cluster of nodes. MapReduce takes care of many of the issues such as task schedul-

ing and placement, data moving and synchronization, check pointing and failure.

BigTable is a distributed B-tree that supports vertical partitioning, name spaces,

and versioning. This system is used at Google to modularize aspects of it’s business

in a way that separate teams (web crawl, link analysis, indexing and search etc.)

can focus on specific issues but still collaborate. These papers inspired the creation

of Apache Hadoop1 which has HDFS, MapReduce APIs as well as HBase2 which

mimics BigTable. They are not without their critics [64], but they are here to stay.

6.1.1 Incremental Updates

The research surrounding big data processing with MapReduce is quite a hot

topic and has produced numerous survey papers [25, 61, 11]. In [25], Doulkeridis

and Nørv̊ag present a taxonomy of MapReduce improvements for efficient query

processing which can be seen in figure 6.1. Using this taxonomy, this work falls

primarily within the “Interactive, Real-time Processing” domain with a secondary

goal being “Avoidance of Redundant Processing” due to the conversion of MapRe-

duce calculations to incremental streaming processes. What follows is a discussion

of the most closely aligned works that deal with incremental updates. Incremental

updates is one of the techniques used within DBMS to perform materialized view

maintenance [77].

1http://hadoop.apache.org/
2http://hbase.apache.org/

137

Data Flow
Optimization

Incremental
Processing

Redistribution
of keys

Additional
MR phaseStreaming,

Pipelining

Data
Layouts

In-memory
Processing

Batching

Repartitioning

Sorting

Techniques for improved processing in MapReduce

Data
Access

Intentional
Data

Placement

Partitioning Colocation

Avoidance of
Redundant
Processing

Batch
Processing
of Queries

Early
Termination

Iterative
Processing

Query
Optimization

Fair Work
Allocation

Recursion

Result
Materialization

Pre-
processing,
Sampling

Processing
Optimizations

Parameter
Tuning

Indexing

Result
Sharing

Sampling

Incremental
Processing

Looping,
Caching,
Pipelining

Interactive,
Real-time

Processing

Pre-
computation

Processing
n-way

Operations

Record
Duplication

Plan
Refinement,

Operator
Reordering

Code
Analysis

Figure 6.1: Taxonomy of MapReduce improvements from Doulkeridis and Nørv̊ag.

Differential dataflow [49] establishes a mechanism for decomposing a computa-

tion into a series of incremental updates. By maintaining the input and outputs as

a series of deltas they are able to update and propagate changes as new information

arises. There are two core formulas that relate to this work:

At =
∑
s≤t

δAs (6.1)

Which is equivalent to the recursive expansion of equation 3.3 seen in chapter

3. The formula:

δBt = Op(At−1 + δAt)−Op(At−1) (6.2)

Is equivalent to the reduce delta operator seen in chapter 3 where the Op func-

tion would be the reduce function and the output would be key/value sequences. In

fact, the difference values δB for reduce delta operator is equal to the concatenation

of the sequences: R+ +R− as defined by equations 3.1 and 3.2.

The core idea behind handling of incremental updates is the same. While

138

differential dataflow provides a generic description of this calculations, Squeal is

focused on automatic conversion of MapReduce calculations to be incremental cal-

culations. The counting set construct presented in chapter 3 establishes a generic

structure for maintaining value lists to be fed to opaque reduce operators. More effi-

cient implementation of delta computations is enabled by extending Pig’s Algebraic

interface to include an inverse initialization function which is used in an extended

combine calculation. While differential dataflow maintains Bt which is equivalent

to the message sequences produced by the reduce operators, Pig Squeal currently

discards these values. The current run times of the reduce operation is not seen as a

significant source of execution time to warrant the complexities of maintaining the

outputs given the constraints of the Trident state management.

Naiad [52] is a data workflow system that executes parallel, cyclic data flow

programs which implements iterative computing using differential dataflow compu-

tations. At it’s lowest level it provides callbacks on worker vertices that react to

messages transmitted within the system. These executions produce deltas which

are propagated through the graph until a fixed point is reached (which ends the

execution of a batch of input). This abstraction was then used to provide higher

level libraries that implement other well known programming abstractions such as

LINQ, Bloom [21], and Pregel [48]. They also implemented a distributed system

for scheduling and executing Naiad computations which resembles the Dryad [36]

system without some of the synchronization steps.

Neither of these works discuss the issue of discarding state or having online/of-

fline state. This is mainly because the aim of such systems is on performing iterative

139

processing on data structures in memory. Consider the word count example where

we track the occurrence over time (as in Chapter 4). There is a continuous process of

keys coming into existence (as time changes), are highly active (during that minute),

and become dormant (as the next minute becomes active). With a cache enabled

storage mechanism, Trident should be able to keep the active set in memory and

eject dormant keys as time passes. Furthermore, Pig Squeal isn’t sensitive to out of

order delivery of many window mechanisms. Ultimately, this coupled with the win-

dow functionality within Squeal should allow for long running processes that discard

values to long term storage and ultimately forget old data as storage time-to-lives

expire.

MapReduce with Deltas [44, 60] is a very interesting work that discusses how

delta computations (inspired by diff [35]) could be used handle incremental updates

within Hadoop. This work inspired me to formalize my description of the counting

set used to manage sign values for generic MapReduce programs to implement

what Saile calls a delta layer. They mention “streaming” as an I/O optimization

to avoid materializing some of their data set but it is still performed within the

confines of Hadoop. Much like the following work, there is significant cost incurred

by calculating the changes based on the content of the data being processed (one of

their examples uses two generations of a web crawl data). This does not effect this

work because updates are streamed in and can be marked with the sign values from

upstream providers. To manage changes of a web page it would be simple to group

by the URL and keep the top content value by time. Upon update, the reduce delta

mechanism would produce the appropriate delta information.

140

Incoop [12] appears to be the full realization of the delta layer for Hadoop

mentioned in [60]. They apply task-level memoization to track dependencies between

map inputs and reduce tasks. They use content fingerprinting techniques to generate

diff markers. The Incoop system includes a custom implementation of HDFS to track

difference markers, a memoization server to track dependencies from map chunks

to reduce output, custom hooks at storage to maintain output differences, and a

custom scheduler to exploit storage affinity and provide a means for task movement

to address stragglers. They were able to run Pig incrementally by re-compiling

the Pig executables with the custom HDFS libraries. They were also able to show

speedups against various compute and data intense applications.

There are many differences between the Pig Squeal implementation and In-

coop. When map or reduce tasks produce the same output for any given input,

there is no need to explicitly track the dependencies between map tasks and reduce

tasks. This allows Pig Squeal to use finer grained key-level memoization to track

maintain the last inputs to the reduce stage. By implementing Pig Squeal as a

Pig execution environment, it is able to run on stock Hadoop and Storm which has

significant benefits to maintainability and introduction into enterprise environments

(by relying on existing, battle-tested infrastructure). It would be possible to have

Pig Squeal run in other environments as well including Hadoop, Spark/Naiad, and

Percolator-like environments. The key to such executions is the use of a fine-grained

key value storage mechanism. Storage affinity could be regained in Hadoop by using

a storage-specific partitioning function (such as HBase which is used throughout this

work). However, Pig Squeal would suffer from the same scheduling issues as Incoop

141

or other small-job executions if using Hadoop directly.

NOVA [54] is a workflow engine that tracks incoming batches of data and gen-

erates template load functions to allow Pig developers to receive delta records from

HDFS. Unlike Incoop, no modifications were made to the underlying implementa-

tions of Hadoop, Pig, or Oozie3. NOVA implements changes on a block/execution

level and performs delta computation using join operations injected with the tem-

plate into the user specified Pig script. By using the Zebra4 columnar store, they

are able to perform map-side joins which perform well up to a point (20 million

records). The authors do note that low-latency processing is the realm of stream

processing and mention auto-rewriting of non-incremental workflows to implement

in an incremental fashion.

MapReduce Online [20] is a technique for continuously running MapReduce

tasks within a modified version of Hadoop that supports pipelined operations. While

Hadoop materializes intermediate results to disk to be pulled during the shuffle

phase, MapReduce Online changes the communications methods to push values

from map to reduce as soon as they are available. This requires enough reduce slots

to be available when the map phase is running as well as a TCP connection between

every mapper and reducer. They refined this technique to materialize data to disk

and pull in the traditional way if a reduce task must be delayed due to lack of task

slots. They also configured the reducers to pull from only a bounded number of

mappers at a time. Within Storm, all tasks must be online to process the data in

3http://oozie.apache.org/
4http://pig.apache.org/docs/r0.8.1/zebra overview.html

142

the topology and connections are only made between workers (which host numerous

tasks).

Eager transmission of results from map to reduce does not allow for combiner

use and also puts more work on the reducer because normal map operations send

sorted results (which can use a more efficient merge-sort on the reduce side). They

address this by buffering the data on the map side until a threshold is met where they

apply the combiner and sort the results. Trident currently accumulates all results

until the preceding tasks in the topology complete at which point the aggregators

running combine are completed and results start to flow to the next task set in the

graph. They discuss the possibility of pipelining from reduce into the next map

phase of a chained computation (which is commonplace with Pig). They transmit

“snapshot” outputs to represent partial answers at any given time (the notion of

partial answers is related to online aggregation [31] and is implemented in some

recent interactive analysis systems such as Dremel [50]). These snapshots require

recomputing of any follow-on MapReduce stages in a chained execution to produce

the answer. They mention that optimizations are possible if the reduce operators

in the chain have the appropriate algebraic properties (as outlined in chapter 3).

6.1.2 Launguages, APIs, and Pig Modifications

There are numerous languages to provide lower barriers to entry to using big

data systems [50, 59, 66, 67, 55]. Pig[55] was selected for further study because it is

most representative of general MapReduce computations. Furthermore, by having

143

Pig available in a streaming platform, we can leverage much of the existing work

available through scripts and UDFs. HIVE’s [66, 67] relationship with SQL gives

it a more natural transition to stream processing through the use of windows and

other techniques that are described later. HadoopDB [8] is a demonstration of this

strength.

There are some notable modifications to Pig: HStreaming is a technology for

migrating Hadoop jobs to a proprietary streaming platform. It added a WINDOW

keyword to the Pig programming language. HStreaming was purchased by Adello5

and does not appear to be generally available.

Spork6 is a port of Pig to the Spark [74] execution environment. They take the

MapReduce plan and use it to build a corresponding Spark plan. Spark provides

higher level functionality than Storm (such as FILTER) which Spork attempts to

leverage by going deep into the physical plan and replacing operators. The focus

of this work is on using Spark to provide more interactive interactions with Pig on

bulk data. Updates to the data through the use of Spark Streaming [75] have not

been discussed, but the techniques of Squeal could be applied to propagate changes

appropriately.

At the 2014 Hadoop Summit, Mridul Jain presented Yahoo’s work in convert-

ing Pig scripts to Storm topologies. They make use of Trident to process batches of

tuples. Each batch is treated as an independent execution of the Pig topology and

they make use of windows stores in HBase to provide across-batch synchronization.

5https://gigaom.com/2013/09/05/ad-platform-adello-buys-hadoop-startup-hstreaming/
6https://github.com/sigmoidanalytics/spork

144

They also have a hybrid mode which parts of the Pig script are run in Hadoop.

Squeal and Yahoo’s work seem to be closely related and complimentary (with a

potential for collaboration).

6.2 Stream Processing

Cugola and Margara present a survey[22] in which they coin the phrase In-

formation Flow Processing (IFP) Systems to describe systems that “process contin-

uously flowing data from geographically distributed sources at unpredictable rates

to obtain timely responses to complex queries.” This definition covers both Data

Stream Management Systems (DSMSs) and Complex Event Processing (CEP) Sys-

tems which have evolved separately to solve similar problems. The lineage of DSMSs

can be traced back to the database community while CEP systems came more from

messaging middle-ware. Cugola and Margara state that “. . . DSMSs focus on pro-

ducing query answers, which are continuously updated to adapt to the constantly

changing contents of their input data. Detection and notification of complex pat-

terns of elements involving sequences and ordering relations are usually out of the

scope of these systems.” Of Complex Event Processing Systems, they state that

“. . . they associate a precise semantics to the information items being processed:

they are notifications of events happening in the external world. . . The CEP engine

is responsible for filtering and combining such notifications to understand what is

happening in terms of higher-level events (sometimes also called composite events

145

or situations).” Modern IFP systems such as Streambase7 and Esper8 incorporate

both ideas: continuous query and detection/notification.

Decider ProducerRece iver Forwarder

Clock

Knowledge
Base

Rules

Seq

AAA

His tory

Figure 6.2: The functional architecture of an IFP system as depicted by Cugola and
Margara.

Complex Event Processing (CEP) can be thought of as a means of describing

a series of patterns and actions to react to data (or the passage of time). One of

the quintessential examples is “If smoke is detected and the temperature is above

a threshold trigger an alarm!” As the name implies, for CEP the main element of

concern is an event. Luckham [47] defines an event as an object that is a record of

an activity in a system. The events signify the activities and may be related to other

events. He describes three aspects of events: form (a representation), significance

(what activity the event signifies), and relativity. Relativity defines how an activity

relates to other activities by time, causality, and aggregation. By explicitly encoding

the causality of events, a CEP system can better reason about the state of the

observed system without relying on the implicit representations of causality which

may be apparent through timestamps on events. Time itself provides various issues

7http://www.streambase.com/
8http://esper.codehaus.org/

146

to consider, such as which clock is being observed, whether or not two clocks are

synchronized, and well as various issues due to the uncertainty principle.

Mühl, Fiege, and Pietzuch [51] define an event as “any happening of inter-

est that can be observed from within a computer” (similar to Luckham’s activity).

Luckham does explain that two confusions often arise with the common usage of the

word “event” and CEP: mixing up an activity (or “something that happens”) with

an object representing that activity and confusing an event with its form, such as

“An event is just a message.” Luckham explains that event processing is different

from message processing because it must deal with the relationships between events.

Events can either be processed in a semi-ordered stream (ordered along some at-

tribute with the possibility of out-of-order delivery, called stream disorder) or in

an un-ordered event cloud (typically stored on disk). Some systems require bounds

on the amount of stream disorder to be seen. These bounds typically influence the

amount of buffering necessary to ensure that answers remain consistent. The no-

tion of disorder strongly influenced my choices for switching from a window-style

execution model to a delta-based approach.

I think the ideas from CEP processing are important to understand as they

embody many of the concepts of context aware computing. Languages such as Pig

and data stream management systems provide the means for the analysis of observed

data. The notion of form, significance, and relativity are implicitly encoded into

these analytics by the writer where as CEP provides makes treats these notions

explicitly. While Squeal makes it possible to analyze data acting upon these results

(triggering an event) is left to follow on consumers of this information. Pig itself

147

could benefit from the inclusion of CEP concepts: manipulating data once grouped

often requires a UDF (where CEP queries may cover a significant portion of these

corner cases). I’ve done some exploration of embedding the Esper engine into Pig

as a UDF. There is also a project that wraps Esper in bolts for use in Storm.

There are many papers that cover first generation DSMSs. The STREAM

project[30] created CQL for describing continuous queries which is a combination

of SQL for relation-to-relation operations, windowing from SQL-99 and relation-

to-stream operators for creating streams from fixed tables. NiagaraCQ[19] allows

for continuous queries of geographically distributed information using XML-QL.

They focus on grouping queries together for efficient execution. TelegraphCQ[16] is

interesting in that it addresses issues associated with running continuous queries in

a cluster (routing and load balancing). They have decoupled the components of the

system (query operators and interconnect) which allow independent optimizations of

each. Aurora[6] is notable in its use of the boxes and arrows paradigm for graphically

describing continuous queries and for explicitly addressing the QoS problem. Stream

processing systems can become overwhelmed when a large burst of events occur.

When overload occurs, load shedding or external queuing must be used to keep

the system stable. Borealis[5] was created by merging Aurora with the Medusa

networking stack[15]. Borealis extends the QoS ideas from Aurora into any point in

a flow. By having per-message utility values Borealis is able to improve the quality

of results when overload occurs. Borealis was commercialized as Streambase.

The newest generation of IFP systems focus more on programming frame-

works and middleware. They are typically designed for clustered work environ-

148

ments to handle scale out. Recent work includes IBM’s SPC[9], SPADE[26], and

SPL[32], Yahoo’s S4 [53], and Storm[4]. Stream Processing Core (SPC) creates

an infrastructure that allows Processing Elements (PE) to be inserted into a flow

graph by registering input/output ports. PEs subscribe to streams based on a name

(StreamName = EmailTraffic) and receive selected elements from within using

a predicate filter (TransportType : value∗ = chat). Results are emitted through

output ports which have type information associated with them. SPADE expands

SPC’s functionality to include an intermediate language (SPADE) to bridge high

level languages, such as Stream SQL and the lower level APIs, a toolkit of pre-made

stream processing constructs, such as windowing and punctuation, and finally a

broad range of input adapters (sockets, DBMS, XML, etc.). IBM’s Stream Process-

ing Language (SPL) provides a declarative language for describing computations as

a graph-of-operators which is used to drive code generation for high performance

implementations of the specified analytic. These abstractions allow for entry at the

appropriate level of development based on need. Simple Stream SQL workloads can

be up and running quickly but still allow for optimization as necessary. Likewise,

complex data types (videos, images) can be processed using the lower level API’s

and composed using the stream processing constructs.

C-MR [10] is a system that adopts the MapReduce API to be used in com-

puting results in a multiprocessor environment. They use the notion of windows to

handle the notion that information is coming in a stream. They use combiners for

incremental computations of sub-windows which are sent to reduce for final compu-

tation. This is a strange reference in that makes use of the semantics of MapReduce

149

to describe a streaming computation which is more in the realm of SPL (which can

describe much richer relationships and is tied directly to a first-class DSMS).

Yahoo’s S4 applies similar ideas as SPC but focuses on hash partitioning to

implement data parallelism across a cluster. This idea is similar to the reduce

behavior in Google’s MapReduce [23] and is one of the fundamental building blocks

of any cluster-based stream processing framework [33]. Figure 6.3 shows a word

counting program running in S4. Apache Storm also uses a graph-of-operators

approach as we’ve seen in chapter 1. Storm differentiates the PE’s that produce

data (spouts) from those that process data (bolts). Though Trident alters this

distinction by using spouts to manage batches of tuples which are released later in

the processing graph.

There are other methods for processing updates as they arrive. Percolator [58]

is a method for triggering on updates in BigTable. It has been used at Google to

significantly decrease the latency from web crawl to index replacement. While it

lowers the latencies of these pipelines it is still focused on batch updates for perfor-

mance reasons. It also requires a re-write of the application to the new paradigm.

Exploring the use of Squeal in such environments will be interesting as they become

available and mature.

It is also worth noting that many of the frameworks designed for iterative in

memory processing are also alternatives when using incremental updates. This has

been demonstrated in Naiad [52] and Spark Streaming [75].

150

QuoteSplitterPE (PE1) counts unique
words in Quote and emits events for
each word.

A keyless event (EV) arrives at PE1 with quote:
“I meant what I said and I said what I meant.”, Dr. SeussEV Quote

KEY null
VAL quote="I ..."

EV WordEvent
KEY word="i"
VAL count=4

EV WordEvent
KEY word="said"
VAL count=2

MergePE (PE8) combines partial
TopK lists and outputs final
TopK list.

EV PartialTopKEv
KEY topk=1234
VAL words={w:cnt}

PE1

PE2

PE5

PE3 PE4

PE6 PE7

PE8

EV UpdatedCountEv
KEY sortID=2
VAL word=said count=9

EV UpdatedCountEv
KEY sortID=9
VAL word="i" count=35

WordCountPE (PE2- 4)
keeps total counts for
each word across all
quotes. Emits an event
any time a count is
updated.

SortPE (PE5- 7)
continuously sorts partial
lists. Emits lists at periodic
intervals

PE1 QuoteSplitterPE null

PE2 WordCountPE word="said"

PE4 WordCountPE word="i"

PE7 SortPE sortID=9

PE ID PE Name Key Tuple

PE5 SortPE sortID=2

PE8 MergePE topK=1234

Figure 6.3: A graphical depiction of word count running in S4 from [53].

6.3 Performance Modeling

Performance modeling is a deep field with a long history with many conferences

(including SIGMOD, SIGMETRICS), working groups (such as IFIP WG 7.3), and

text books [70, 41, 42]. This work’s foray into performance modeling was aimed at

understanding what resources would be necessary to handle a specific rate for a Pig

script running in Squeal. Analyzing the steady state and stability of systems with

flows of work is within the realm of Queueing Theory. However, the execution of

batch systems and the study of the total completion time of a batch job is within

the realm of Scheduling.

The queueing theoretical model chosen to represent a stage of a converted

151

MapReduce program is that of a tandem M/M/m queue [70, 41] with batch release

[41, 42]. There are significant differences to this model as outlined in chapter 5

namely that unlike a typical queueing model that assumes continuous release of

information, the Trident system only releases a single batch at once. This means

that Trident executions look more like sequentially scheduled jobs which lends itself

to other modeling techniques.

Lin et al.[45] examines the optimal scheduling of MapReduce tasks from the

map to shuffle phases and show that it is strongly NP-hard. They model map and

shuffle as tandem M/M/1 queues which inspired the experimental design for chapter

5. They also discuss the issues of analyzing the overlapping behavior of these stages.

This issue is less pronounced in Squeal because the map phase and the second stage

combine phases don’t overlap.

ARIA [72] provide formulas for modeling the three stages (map, shuffle, reduce)

using the Makespan Theorem [28]. They used roughly fixed sized input along with

recorded trace performance to measure the parameters for their formula: map task

min and average times, selectivity of the map phase, the average amount of data

per map task, the average and max times for shuffle tasks (they break these metrics

down by first wave and “typical”), and the reduce task average, max times, and

selectivity. Because these metrics were stable between runs and they were able to

successfully model traces from these formula and predict the run times when the

number of map and reduce slots was varied. These formula were used to find optimal

resource allocations for Service Level Oriented time bounds.

Zhang et al.[76] uses models inspired by ARIA to model multi-stage MapRe-

152

duce plans generated by Pig. They apply the Johnson algorithm for building an

optimal two-stage job schedule [38] to reduce the non-determinism of job execution.

They then examine the effects of modeling multiple stages and are successful in

predicting run times. They show that the techniques from ARIA are applicable to

multi-stage executions.

Tian and Chen [68] derive similar formulas to those seen in ARIA but allow

for variance in the task size. They overlay a cost model using prices from Ama-

zon’s Elastic MapReduce9 to find the resource allocation to optimize the cost of the

computation. All of these models assume that the performance of the operators

is independent of the number of resources assigned. The experimental results seen

in tables 5.2 and 5.5 imply that the service times would need to be a function of

the number of resources. Also, the shuffle performance is linearly dependent on the

number of reduce resources assigned. For Trident, this relationship does not hold

as we can see in table 5.3.

Other studies have examined the performance of Storm and Trident. Re-

searchers at Ericson [56] report decent performance in a micro-benchmark (25,000

records per second on three nodes) but find that the performance dropped signifi-

cantly when follow on aggregation stages are added (to 7,375 records per second).

They found that performance improvement was linear to a point but started to drop

off. They also found that the garbage collector caused significant delays to some

executions. This is assumed to be one source of the micro-stragglers we see in our

study but this has not been confirmed. This is followed up with another study [57]

9http://aws.amazon.com/elasticmapreduce/

153

that finds that hand written Storm and Trident topologies have similar performance.

They also note that events spend a long time in the waitFor method of Disruptor

[65] (the inter-thread communications used in Storm).

Toshniwal et al. [69] provide an excellent overview of Storm and discuss vari-

ous operational observations, enhancements, and benchmarks. Their work uses hand

written Storm topologies which they compared with purpose built streaming pro-

grams (without the use of a streaming framework). They found that with reliable

messaging disabled, that Storm utilized the same amount of CPU as the custom

written code. They found that three machines were necessary to process the 300K

messages per second when message reliability was enabled. They present a flow

control algorithm that auto tunes the number of messages active in the system at

once (which is equivalent to what we have called the batch size). They also perform

an empirical study of the latency for a calculation by varying the number of ma-

chines available to the topology. The physical machines used in this and the Ericson

studies were much larger than those used by the studies from chapters 4 and 5.

154

Chapter 7

Conclusion

We are in truly exciting times. As our troves of data open up to us through

the use of big data processing techniques we have started to shift the focus from

scale to latency. New and complementary processing systems [74, 52] are emerging

that address some of the shortcomings of MapReduce [25]. While HIVE [66] has

allowed some SQL queries to migrate into these new platforms its most important

contribution is that people can bring their existing knowledge and understanding

of analyzing data in SQL to a new environment. DBMS and MapReduce systems

are truly complementary [64] each with unique strengths and weaknesses. The same

can be said about MapReduce and iterative or streaming platforms. This work, like

others (such as Spork and Yahoo’s Pig on Storm) is attempting to build a bridge

between these systems.

What we know now is that we can bring batch algorithms described in Pig

Latin over to streaming environments using incremental techniques [49]. We know

that under certain conditions (map and reduce tasks that are mathematical func-

tions) it is possible to track changes through the system without explicitly storing

dependency information [12]. We also know the conditions which allow combiners

to be migrated over to incremental implementations and have a simple extension to

the Pig API to facilitate this change. Through our case studies we know that we can

155

significantly lower the latency from receiving our data and having answers to our

standing questions (we also know the throughput needs to be improved). Finally, we

understand the contributions each phase of computation make to the service time

of our system.

7.1 Discussion of Trade-offs

During the implementation of a solution to a problem there are many decisions

made that have consequences on the generality of that solution. Under different con-

ditions, different decisions may be made. The ultimate goal of this work is to provide

a bridge from batch to stream processing. In doing so, it becomes less “expensive”

to introduce low latency computation into an existing environment while providing

additional returns on investment in batch codes. The main considerations of discus-

sion of pros and cons centers around three dimensions: development costs, storage

costs, and runtime costs.

For development costs, the solution presented in this work displays strengths

in development time, maintainability, and extensibility while having weaknesses in

descriptiveness and intuition issues. For a Pig developer, using Squeal significantly

reduces the leap to stream processing – enabling streaming execution is a command

line switch. Existing code can be tested in a streaming environment very quickly and

tuned to the new operating environment. The maintainability and extensibility are

a carryover from using a scripting language: less code, strengths of a domain specific

language, ability to extend functionality with user defined functions (which can still

156

be optimized under the new execution environment). The cost of these benefits

is that there is an impedance mismatch of using a static/batch domain specific

language in a streaming environment: it lacks functionality that is typical of the

domain – pattern/action mechanisms of complex event processing systems [22] and

native windowing of data stream management systems [30]. Because the execution

environment is different, highly tuned codes will require some re-engineering as we’ve

seen in our case studies. These differences require re-consideration of developer

intuition – honing this intuition requires experience.

Storage costs for this implementation of MapReduce with Deltas requires a

key/value storage mechanism. When compared with Incoop [12] (which imple-

mented a block-level memoization mechanism to track the influence of updates on

previous computations) there is less impact on practical deployment of these codes

(because the existing enterprise systems are left intact) with the costs associated

with running a key/value store. Incoop requires custom versions of various compo-

nents of the Hadoop architecture which would be hard to deploy in an enterprise

environment. If the number of update records within a block is small, having a

key/value mechanism will be faster (having to only examine the specific updates).

There is likely a threshold of updates where it is faster to recompute a full block

instead of fetching the individual keys but this was not examined in this work.

When comparing this implementation to iterative computation mechanisms

such as Spark [74] and Naiad [52] which assume most of the working set is in

memory, Trident’s caching mechanism provides a good balance of maintaining the

working set in memory (if possible) while spilling to secondary, “offline”, storage

157

if necessary. This is quite important for time-based computations which have an

active state (surrounding the time) and then a dormant state (once all updates have

been received). An interesting property of the delta mechanism when compared to

standard windowing operations is that data can arrive out of order without having

significant impact on the correctness of the answer (there will be latency costs in

loading “old” data from the key/value store).

The final consideration surrounding the key/value store is the storage and net-

work costs themselves. While the combiner functionality can significantly reduce the

amount of information to be transfered across the network and stored, the counting

set functionality can have significant costs in memory and storage if the number

of unique values is great. While compression can alleviate some of these concerns

(at the cost of latency) the space/time trade-off is a core issue when considering

streaming applications.

As far as runtime costs and benefits there are a few to consider: delta overhead,

optimized code, and service time. Delta computations using counting sets requires

two executions of the reduce function (one for the last value list and one for the

current value list). Reduce functions can be quite expensive, there is the option to

cache the previous execution’s output (which would trade time for memory – which

is used by the Naiad system [52]). However, it is possible for the message sets to be

quite large (significantly larger than the input in the case of JOIN operations). The

combine operation provides a potential for optimizing execution. By extending the

combine interface within Pig to allow for inverse it is possible to enable combiners

to function within a delta environment. Performing delta computations for abelian

158

groups can greatly reduce the runtime overhead of performing updates. One of the

strengths of Pig is providing highly optimized operator code to be used by script

authors. The techniques described in this work allow for these optimized operators

to be run in a streaming environment.

The ultimate test of this technique is whether or not the service time of the

converted applications provides a stable execution – being able to service requests

at a rate faster than the input rate. At this point it is very simple to deploy a code

and measure the service rate of the resulting topology. There are still challenges in

determining what resources to tweak to improve the service rate. First, the existing

Storm User Interface only reports the CPU time of each worker. We have shown that

there are significant latencies between the components. Also, further development is

necessary to optimize the performance of converted topologies (which is discussed in

the following section). Any investment in optimizing the service time of converted

scripts will pay off in reuse across many scripts – similar to improvements in DBMS

query optimizers to produce better query plans.

7.2 Future Work

One treacherous aspect of working on a Ph.D. is the realization that the thread

you found and began to pull seems to go on forever. There are many outstanding

questions from this work. Some derive from implementation choices – could Squeal

be ported to other streaming platforms [32, 75]? Taking that a step further, could

Squeal be ported into a completely different (but still data driven) framework such

159

as Percolator[58]? There are certainly improvements that could be made to Storm:

new versions provide a graphical representation of the topologies along with bolt

execution latencies – tracking the latencies of the network would be hugely benefi-

cial in understanding the performance of running topologies (this has been a long

standing issue and has led the community to change the underlying communication

system). Can we lean on the incremental computations more to allow tuples to flow

more freely (without requiring upstream producers to finish – this would blend the

pure streaming and batch-based streaming approaches)?

In the realm of Pig: what new optimizations make more sense when executing

in a streaming environment? Perhaps implementing some of the known streaming

optimizations [34] would help (this holds true for Storm as well). As new execu-

tion environments come online it will be interesting to see how the Pig community

manages some of the conflicting goals of the various implementations – definitely

some areas of study for Software Engineering and Language design. There is also an

outstanding question of decomposing multiple queries to share work from common

sub-problems.

The discipline of mathematical modeling will never want for new problems,

but there are some interesting questions herein. There is certainly existing work

for studying the execution times of MapReduce programs to automatically optimize

resource allocation [72, 76, 68]. It would be interesting to see these models shift into

the streaming realm to help operators understand their system. Finally, it would be

interesting to feed these models back into the Pig compiler to assist in optimization

or more importantly to provide user feedback as to which part of their script costs

160

the most to run.

7.3 Closing Remarks

My hope is that this work will help organizations with large investments in

Pig (through scripts, UDFs, and developer knowledge) to begin to shift their op-

erations into streaming environments. This work is not an end in itself – much as

custom MapReduce code will usually outperform a Pig script (perhaps at the cost

of the developers sanity when faced with implementing JOIN again) the same can

be said about custom written Storm topologies (or IBM InfoSphere Streams[32] or

Spark[75]). Pig can provide a means of bridging the gap between developers and

analysts. With a working script in hand, the developer has a concrete set of re-

quirements to start from. Selfishly, I want this myself – I enjoy working in higher

level language to quickly solve my problems (who knows, I may be able to ride this

knowledge for a long time, much like COBOL programmers in 1999). Thank you

for your interest in this work.

161

Bibliography

[1] Apache cassandra nosql performance benchmarks.
http://planetcassandra.org/nosql-performance-benchmarks/.

[2] Apache giraph. http://giraph.apache.org/.

[3] Espertech - esper. http://www.espertech.com/esper/.

[4] Storm: Distributed and fault-tolerant realtime computation.
http://storm.incubator.apache.org/.

[5] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Mitch Cherniack, Jeong
hyon Hwang, Wolfgang Lindner, Anurag S. Maskey, Er Rasin, Esther Ryvkina,
Nesime Tatbul, Ying Xing, and Stan Zdonik. The design of the borealis stream
processing engine. In In CIDR, pages 277–289, 2005.

[6] Daniel J. Abadi, Don Carney, Ugur etintemel, Mitch Cherniack, Christian Con-
vey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Au-
rora: a new model and architecture for data stream management, 2003.

[7] D. Aberdeen, O. Pacovsky, and A. Slater. The learning behind gmail priority
inbox.

[8] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz, and
Alexander Rasin. Hadoopdb: an architectural hybrid of mapreduce and dbms
technologies for analytical workloads. Proceedings of the VLDB Endowment,
2(1):922–933, 2009.

[9] Lisa Amini, Henrique Andrade, Ranjita Bhagwan, Frank Eskesen, Richard
King, Philippe Selo, Yoonho Park, and Chitra Venkatramani. Spc: a dis-
tributed, scalable platform for data mining. In Proceedings of the 4th inter-
national workshop on Data mining standards, services and platforms, DMSSP
’06, pages 27–37, New York, NY, USA, 2006. ACM.

[10] N. Backman, K. Pattabiraman, R. Fonseca, and U. Cetintemel. C-mr: continu-
ously executing mapreduce workflows on multi-core processors. In Proceedings
of third international workshop on MapReduce and its Applications Date, pages
1–8. ACM, 2012.

[11] Edmon Begoli. A short survey on the state of the art in architectures and
platforms for large scale data analysis and knowledge discovery from data. In
Proceedings of the WICSA/ECSA 2012 Companion Volume, WICSA/ECSA
’12, pages 177–183, New York, NY, USA, 2012. ACM.

162

[12] Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umut A. Acar, and
Rafael Pasquin. Incoop: Mapreduce for incremental computations. In Pro-
ceedings of the 2Nd ACM Symposium on Cloud Computing, SOCC ’11, pages
7:1–7:14, New York, NY, USA, 2011. ACM.

[13] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. In COMPUTER NETWORKS AND ISDN SYSTEMS, pages
107–117. Elsevier Science Publishers B. V., 1998.

[14] Mike Burrows. The chubby lock service for loosely-coupled distributed sys-
tems. In Proceedings of the 7th symposium on Operating systems design and
implementation, pages 335–350. USENIX Association, 2006.

[15] U. Cetintemel. The aurora and medusa projects. Data Engineering, 51:3, 2003.

[16] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden,
Vijayshankar Raman, Frederick Reiss, and Mehul A. Shah. Telegraphcq: Con-
tinuous dataflow processing for an uncertain world. In CIDR, 2003.

[17] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R.E. Gruber. Bigtable: A distributed storage sys-
tem for structured data. ACM Transactions on Computer Systems (TOCS),
26(2):1–26, 2008.

[18] S. Chaudhuri and U. Dayal. An overview of data warehousing and olap tech-
nology. ACM Sigmod record, 26(1):65–74, 1997.

[19] Jianjun Chen, David J. Dewitt, Feng Tian, and Yuan Wang. Niagaracq: A
scalable continuous query system for internet databases. In In SIGMOD, pages
379–390, 2000.

[20] T. Condie, N. Conway, P. Alvaro, J.M. Hellerstein, K. Elmeleegy, and R. Sears.
Mapreduce online. In Proceedings of the 7th USENIX conference on Networked
systems design and implementation, pages 21–21, 2010.

[21] Neil Conway, William R Marczak, Peter Alvaro, Joseph M Hellerstein, and
David Maier. Logic and lattices for distributed programming. In Proceedings
of the Third ACM Symposium on Cloud Computing, page 1. ACM, 2012.

[22] G. Cugola and A. Margara. Processing flows of information: From data stream
to complex event processing. ACM Computing Surveys, to appear.

[23] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[24] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing
tool. Commun. ACM, 53:72–77, January 2010.

163

[25] Christos Doulkeridis and Kjetil Nørv̊ag. A survey of large-scale analytical query
processing in mapreduce. The VLDB Journal, 23(3):355–380, 2014.

[26] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, and Myungcheol
Doo. Spade: the system s declarative stream processing engine. In Proceedings
of the 2008 ACM SIGMOD international conference on Management of data,
SIGMOD ’08, pages 1123–1134, New York, NY, USA, 2008. ACM.

[27] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file
system. In ACM SIGOPS Operating Systems Review, volume 37, pages 29–43.
ACM, 2003.

[28] Ronald L Graham. Bounds for certain multiprocessing anomalies. Bell System
Technical Journal, 45(9):1563–1581, 1966.

[29] Alan Greenblatt. Five takeaways from the first presidential debate. National
Public Radio, Oct 2012. http://www.npr.org/2012/10/04/162265100/five-
takeaways-from-the-first-presidential-debate.

[30] The STREAM Group. Stream: The stanford stream data manager. Technical
Report 2003-21, Stanford InfoLab, 2003.

[31] Joseph M Hellerstein, Peter J Haas, and Helen J Wang. Online aggregation.
ACM SIGMOD Record, 26(2):171–182, 1997.

[32] M. Hirzel, H. Andrade, B. Gedik, G. Jacques-Silva, R. Khandekar, V. Kumar,
M. Mendell, H. Nasgaard, S. Schneider, R. Soulé, and K.-L. Wu. Ibm streams
processing language: Analyzing big data in motion. IBM J. Res. Dev., 57(3-
4):1:7–1:7, May 2013.

[33] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert
Grimm. A catalog of stream processing optimizations. ACM Computing Sur-
veys (CSUR), 46(4):46, 2014.

[34] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert Grimm.
A catalog of stream processing optimizations. ACM Comput. Surv., 46(4):46:1–
46:34, March 2014.

[35] James Wayne Hunt and M Douglas McIlroy. An algorithm for differential file
comparison. Bell Laboratories, 1976.

[36] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. In Proceedings of the
2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007,
pages 59–72. ACM, 2007.

[37] Frank James. Obama and romney respond to sandy with election
(and katrina) in mind. National Public Radio – it’s all politics, Oct
2012. http://www.npr.org/blogs/itsallpolitics/2012/10/29/163862168/obama-
and-romney-respond-to-sandy-with-election-and-katrina-in-mind.

164

[38] Selmer Martin Johnson. Optimal two-and three-stage production schedules
with setup times included. Naval research logistics quarterly, 1(1):61–68, 1954.

[39] Jeff Jonas and Lisa Sokol. Data finds data. Beautiful Data, The Stories Behind
Elegant Data Solutions, 2013.

[40] Flavio P Junqueira and Benjamin C Reed. The life and times of a zookeeper. In
Proceedings of the 28th ACM symposium on Principles of distributed computing,
pages 4–4. ACM, 2009.

[41] Leonard Kleinrock. Queueing systems, volume i: theory. 1975.

[42] Leonard Kleinrock. Queueing systems, volume ii: computer applications. 1976.

[43] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed messaging
system for log processing. In Proceedings of the NetDB, 2011.

[44] Ralf Lämmel and David Saile. Mapreduce with deltas. In Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and
Applications, PDPTA, volume 2011, 2011.

[45] Minghong Lin, Li Zhang, Adam Wierman, and Jian Tan. Joint optimization
of overlapping phases in mapreduce. Performance Evaluation, 70(10):720–735,
2013.

[46] Tim Loughran and Bill McDonald. When is a liability not a liability? textual
analysis, dictionaries, and 10-ks. The Journal of Finance, 66(1):35–65, 2011.

[47] David C. Luckham. The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2001.

[48] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale
graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 135–146. ACM, 2010.

[49] Frank McSherry, Derek G. Murray, Rebecca Isaacs, and Michael Isard. Differ-
ential dataflow. In Proceedings of CIDR 2013, January 2013.

[50] S. Melnik, A. Gubarev, J.J. Long, G. Romer, S. Shivakumar, M. Tolton, and
T. Vassilakis. Dremel: Interactive analysis of web-scale datasets. Proceedings
of the VLDB Endowment, 3(1-2):330–339, 2010.

[51] G. Muhl, L. Fiege, and P. Pietzuch. Distributed event-based systems. Springer-
Verlag, 2006.

165

[52] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martin Abadi. Naiad: A timely dataflow system. In Proceed-
ings of the 24th ACM Symposium on Operating Systems Principles (SOSP).
ACM, November 2013.

[53] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari. S4: Dis-
tributed stream computing platform. Data Mining Workshops, International
Conference on, 0:170–177, 2010.

[54] Christopher Olston, Greg Chiou, Laukik Chitnis, Francis Liu, Yiping Han,
Mattias Larsson, Andreas Neumann, Vellanki BN Rao, Vijayanand Sankara-
subramanian, Siddharth Seth, et al. Nova: continuous pig/hadoop workflows.
In Proceedings of the 2011 ACM SIGMOD International Conference on Man-
agement of data, pages 1081–1090. ACM, 2011.

[55] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and An-
drew Tomkins. Pig latin: a not-so-foreign language for data processing. In Pro-
ceedings of the 2008 ACM SIGMOD international conference on Management
of data, pages 1099–1110. ACM, 2008.

[56] Manoj P. Ericson research blog: Trident benchmarking per-
formance. http://www.ericsson.com/research-blog/data-knowledge/trident-
benchmarking-performance/ [Online; accessed 21-Nov-2014].

[57] Manoj P. and Laszlo Toka. Ericson research blog: Comparing apache storm and
trident. http://www.ericsson.com/research-blog/data-knowledge/comparing-
apache-storm-trident/ [Online; accessed 21-Nov-2014].

[58] Daniel Peng and Frank Dabek. Large-scale incremental processing using dis-
tributed transactions and notifications. In Proceedings of the 9th USENIX
conference on Operating systems design and implementation, OSDI’10, pages
1–15, Berkeley, CA, USA, 2010. USENIX Association.

[59] Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. Interpreting
the data: Parallel analysis with sawzall. Scientific Programming, 13(4):277–298,
2005.

[60] David Saile et al. Dissertation: Mapre-
duce with deltas. 2007. http://kola.opus.hbz-
nrw.de/volltexte/2011/687/pdf/diplomarbeit david saile.pdf.

[61] Sherif Sakr, Anna Liu, and Ayman G. Fayoumi. The family of mapreduce and
large-scale data processing systems. ACM Comput. Surv., 46(1):11:1–11:44,
July 2013.

[62] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
The hadoop distributed file system. In Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, pages 1–10. IEEE, 2010.

166

[63] Valentin I Spitkovsky and Angel X Chang. A cross-lingual dictionary for english
wikipedia concepts. In LREC, pages 3168–3175, 2012.

[64] Michael Stonebraker, Daniel Abadi, David J. DeWitt, Sam Madden, Erik Paul-
son, Andrew Pavlo, and Alexander Rasin. Mapreduce and parallel dbmss:
friends or foes? Commun. ACM, 53:64–71, January 2010.

[65] Martin Thompson, Dave Farley, Michael Barker, Patricia Gee, and Andrew
Stewart. DISRUPTOR:High performance alternative to bounded queues for
exchanging data between concurrent threads.

[66] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: a
warehousing solution over a map-reduce framework. Proceedings of the VLDB
Endowment, 2(2):1626–1629, 2009.

[67] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Ning Zhang, Suresh Antony, Hao Liu, and Raghotham Murthy. Hive-a petabyte
scale data warehouse using hadoop. In Data Engineering (ICDE), 2010 IEEE
26th International Conference on, pages 996–1005. IEEE, 2010.

[68] Fengguang Tian and Keke Chen. Towards optimal resource provisioning for
running mapreduce programs in public clouds. In Cloud Computing (CLOUD),
2011 IEEE International Conference on, pages 155–162. IEEE, 2011.

[69] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jig-
nesh M Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu,
Jake Donham, et al. Storm@ twitter. In Proceedings of the 2014 ACM SIG-
MOD international conference on Management of data, pages 147–156. ACM,
2014.

[70] Kishor S Trivedi. Probability & statistics with reliability, queuing and computer
science applications. John Wiley & Sons, 2008.

[71] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal,
Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah,
Siddharth Seth, et al. Apache hadoop yarn: Yet another resource negotiator.
In Proceedings of the 4th annual Symposium on Cloud Computing, page 5. ACM,
2013.

[72] Abhishek Verma, Ludmila Cherkasova, and Roy H Campbell. Aria: automatic
resource inference and allocation for mapreduce environments. In Proceedings
of the 8th ACM international conference on Autonomic computing, pages 235–
244. ACM, 2011.

[73] Wikipedia. Effects of hurricane sandy in new
york — Wikipedia, the free encyclopedia, 2014.
http://en.wikipedia.org/wiki/Effects of Hurricane Sandy in New York [On-
line; accessed 14-Nov-2014].

167

[74] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and
Ion Stoica. Spark: cluster computing with working sets. In Proceedings of the
2nd USENIX conference on Hot topics in cloud computing, pages 10–10, 2010.

[75] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica.
Discretized streams: an efficient and fault-tolerant model for stream processing
on large clusters. In Proceedings of the 4th USENIX conference on Hot Topics
in Cloud Ccomputing, pages 10–10. USENIX Association, 2012.

[76] Zhuoyao Zhang, Ludmila Cherkasova, Abhishek Verma, and Boon Thau Loo.
Optimizing completion time and resource provisioning of pig programs. In Clus-
ter, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM International
Symposium on, pages 811–816. IEEE, 2012.

[77] Yue Zhuge, Héctor Garćıa-Molina, Joachim Hammer, and Jennifer Widom.
View maintenance in a warehousing environment. In Proceedings of the 1995
ACM SIGMOD International Conference on Management of Data, SIGMOD
’95, pages 316–327, New York, NY, USA, 1995. ACM.

168

