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We study a microscopic model, the Mirror-Oscillator-Field (MOF) model pro-

posed in [1], for describing optomechanical interactions. In contrast with the con-

ventional approach where the mirror-field interaction is understood as arising from

the radiation pressure of an optical field inducing the motion of the mirror’s CoM,

the MOF model incorporates the dynamics of the internal degrees of freedom of the

mirror that couple to the optical field directly. Considering the mirror’s internal

and mechanical degrees of freedom as two separate degrees of freedom we derive

the optomechanical properties of the coupled mirror and field system. The major

advantage in this approach is that it provides a self-consistent treatment of the

three relevant subsystems (the mirror’s motion, its internal degrees of freedom and

the field) including their back-actions on each other, thereby giving a more accu-

rate account of the coupled internal and external dynamics. The optical and the

mechanical properties of a mirror arising from its dynamical interaction with the

field are obtained without imposing any boundary conditions on the field addition-

ally, as is done in the conventional way. We find that our results agree with those



from the boundary condition approach in the appropriate limits and more generally

the model provides a framework within which one can study optomechanical ele-

ments with different internal structures and mechanical properties, which makes it

suited for studying hybrid systems. Considering the quantum dynamics of the cou-

pled subsystems we look at the entanglement between the mirror’s motion and the

field, showing that the internal degrees of the mirror, in the appropriate parameter

regimes, can act as a means to coherently transfer quantum correlations between

the field and the mechanics thus leading to a larger optomechanical entanglement.

We then use the MOF model to study the entanglement between the motion of an

atom and a field for the setup in [95] and find a larger optomechanical entanglement

when the field is closer to the internal resonance. We also study the interaction

between two mirrors as described by the MOF model, specifically looking at the

entanglement between the motion of their centers of mass.

Conclusively, we see that including the dynamics of the internal degrees of

freedom of a mirror, which is the quintessential mediator of interaction between

the mirror center of mass and the field, leads to qualitatively different physics,

specifically in the quantum regime, thus giving a physically more complete treatment

of mirror-field interactions.
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Chapter 1: Introduction

Optomechanics describes the interaction of light with mechanical systems. His-

torically, the concept that light can exert a mechanical force dates back to Johannes

Kepler in 1619, when he put forward the concept of radiation pressure in order to

explain the tails of comets pointing away from the sun. To quote Kepler [2] –

“The direct rays of the Sun strike upon it [the comet], draw away with them a

portion of this matter, and issue thence to form the track of light we call the tail. In

this manner the comet is consumed by breathing out, so to speak, its own tail.”

Since Kepler the cometary dust has evolved into a diverse assortment of op-

tomechanical systems – ranging from the massive kg scale mirrors at the Laser

Interferometer Gravitational-Wave Observatory (LIGO), down to single atoms and

ions – upon which much light has been shed.

The first theoretical formulation of the mechanical effects of radiation was

due to Maxwell in 1862. Maxwell predicted that all electromagnetic waves carry

momentum and when reflected off of a surface exert a mechanical force on the

surface that goes as ∼ IA/c, with I being the intensity of radiation and A being the

surface area. The experimental demonstrations of the effect by Nichols and Hull [3]

and independently by Lebedew [4] in 1901, for the first time confirmed Maxwell’s

1



predictions. Given that the radiation pressure forces are typically very small, these

experiments, quite challenging for their time, were able to delineate the pressure

from radiation from that exerted by the thermal gases in the radiometer setup. To

get some idea of the magnitude of the radiation pressure force one can estimate

that the solar radiation pressure on earth is about 10µPa, which is roughly about

the pressure exerted by a housefly sitting on an elephant. It is this smallness of

the radiation pressure forces that makes optical cavities much befitting candidate

systems to study optomechanical phenomena, since a cavity allows the light intensity

to build up by a factor of the number of round trips a single photon makes before

leaking out. Thus, rightfully, cavity optomechanics has garnered a lot of interest

over the past few decades.

The first studies in cavity optomechanics can be attributed to Braginsky and

others in the late 1960s. Working with microwave Fabry-Perot cavities, they showed

that the dynamical backaction of the radiation pressure on the suspended end-mirror

of the cavity can experience a(n) (anti-)damping force depending on the detuning of

the resonator [5,6]. Later these studies led to the prediction of the standard quantum

limit (SQL) [7] and paved way for the design of interferometers for gravitational-

wave detection [8,9]. The first demonstration of cavity-optomechanical effects in the

optical domain was by Dorsel et al [10], wherein they showed a radiation pressure

induced optical bistability in the transmission of a Fabry-Perot interferometer.

At a somewhat disparate end of the parameter regime, in 1970 Arthur Ashkin

used radiation forces to trap micron-sized dielectric spheres, later proposing the

idea for laser cooling of atoms in 1978 [11,12]. In 1975, Hansch and Schawlow [13],
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and Wineland and Dehmelt [14] independently proposed the idea of using the non-

conservative nature of radiation forces to cool atoms. The ability to cool and trap

single particles at the atomic scale has since led to tremendous advances in atomic,

molecular and optical (AMO) physics, making the quantum regime readily accessible

to the (small enough) masses.

Meanwhile for the larger masses, there have been significant experimental de-

velopments in the field of cavity quantum optomechanics over the last decade that

have allowed us to bring to reality the gedankenexperiments of the early 20th cen-

tury and more. To give a sense of the accomplishments of the field, the experi-

ments today can access ground states of macroscopic mechanical oscillators [15,16],

achieve quantum-coherent coupling between a mechanical oscillator and an optical

field mode [21], observe squeezing of the optical field via non-linear interaction with

mechanical motion [22, 23], exhibit quantum coherent state transfer in micro- and

electro-mechanical systems [15, 24], entangle microwaves with a micro-mechanical

oscillator [25] and much recently squeeze the motion of a mechanical oscillator [26],

among other astounding feats. Indeed the incredible experimental progress has been

made possible both due to innovative theoretical proposals and ingeniously designed

optomechanical setups ranging from Fabry-Perot cavities that come in a variety

of sizes [27]– [32], to photonic crystals [16, 33, 34], microtoroidal resonators [35]–

[41], superconducting microwave circuits [42]– [44], levitated nanospheres, to cold

atoms [45]– [52]. As a thorough account of all the developments is beyond the scope

of this thesis, we point the reader to some of the review articles written on the sub-

ject [17–20]. However, as the experimental setups have grown to span a vast range
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of mass and length scales, we remark that the existing theoretical models fall short

in accessing the potential physical effects realizable with these systems. We discuss

these limitations and motivate the need for a microscopic theory for optomechanics

further in the following section.

1.1 Motivation for a Microscopic model for Optomechanics

When an optical field interacts with a mechanical object there is a redistri-

bution of the photon momentum upon reflection. At the microscopic level this

interaction results from the coupling of the EM field with the surface charges or the

internal degrees of freedom of the mechanical object, such as the electrons in an

atom. For instance, take a simplistic case from classical electromagnetism wherein

a field incident on a perfect conductor induces surface charge currents on the sur-

face of a mirror, which in turn experience a Lorentz force in the presence of the

magnetic field. This Lorentz force is the radiation pressure force on the mirror cen-

ter of mass (CoM). Upon time-averaging, it can be equivalently expressed in terms

of photon momentum imparted by the field on the mirror, thereby leading to the

semi-classical picture of radiation pressure as the transfer of momentum from the

photons to the mechanical element in consideration. While for a perfect conductor

the response of these surface charges to the applied field is instantaneous, more gen-

erally, the internal degrees of freedom respond with a lag, which can be accounted

for via the reflection and transmission coefficients of the optomechanical element in

consideration. However, allowing for the CoM to move, as the retarded response
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of its internal degrees gets convoluted with the mirror’s CoM motion one can no

longer use the reflection and transmission coefficients as an exact description for

the coupled optical and mechanical dynamics of the mirror. This necessitates an

explicit inclusion of the mirror’s internal dynamics. In the following we list a few

issues that help illustrate the relevance of including the internal degrees of freedom

of a mirror –

Time scale issues – It can be seen that as the center of mass moves, the surface

charges observe a Doppler shifted field and respond according to their velocity de-

pendent reflection properties, an effect that is typically not accounted for. Specially

as one probes closer to an internal resonance of the mirror, the retardation effect

becomes more pronounced and hence there is an increased discrepancy between the

boundary condition approach and what one would find from a proper account of

the coupled internal and external dynamics of the mirror. In other words, with the

slow internal dynamics being comparable to the timescales of the mirror motion

one can no longer adiabatically eliminate the internal degrees of freedom and use

the effective reflection and transmission coefficients to describe the dynamics of the

system. Still, the conventional approach towards studying optomechanical interac-

tions only considers the effective boundary conditions for the optical field at the

position of the mirror’s CoM that arise from the microscopic picture in the limit

where the internal dynamics has reached a steady-state. This implicitly assumes

that the internal degrees of the mirror are strongly damped, which is typically a

valid assumption for most of the optomechanical systems. However, for systems

that have well-isolated internal degrees of freedom this condition no longer holds
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true, rendering the boundary condition approach as inaccurate.

Novel “mirrors” – While the role of these internal degrees of freedom is uni-

versally acknowledged in the case of atom-field interactions when describing the

mechanical effects of a field on an atom [53, 54], their relevance in determining the

optomechanical properties of larger systems is seldom discussed. Among the lim-

ited examples, it has been shown in some recent works that the internal degrees

of freedom of a mirror can play a decisive role when it comes to optomechanical

cooling in a variety of physical setups ranging from photonic crystals wherein the

strong frequency dependence of the reflectivity coming from the internal structure

of the mirror can allow for efficient Doppler cooling [55], to semiconductor nano-

membranes where the intrinsic bandgap of the semiconductor can lead to an inno-

vative photothermal cooling mechanism [56]– [58]. One can see that the Doppler

effect would become prominent for the case of photonic crystals – or for that matter

any “mirror” with a sharp internal resonance – since the internal degrees of a moving

mirror observe a different field frequency than that in the laboratory frame. As a

consequence they exhibit a velocity dependent reflectivity which in turn leads to a

Doppler friction force. Such a force becomes particularly strong near the photonic

band gaps of a photonic crystal. Similarly, for the case of semiconductor mem-

branes, one can leverage the fact that the internal degrees of the mirror are coupled

to a bath that can be at a lower temperature than the mechanical bath, thus an

appropriate coupling of the mechanics to the internal dynamics could potentially

lead to an improved cooling limit. These are just a few examples that demonstrate

how the internal structure of an optomechanical element can be used to develop new

6



schemes for the purposes of optomechanical cooling.

Quantum correlations and entanglement – To systematically account for all

the quantum correlations between the individual subsystems, for example the quan-

tum entanglement between the mirror and the field [17]– [64], one needs to take into

consideration the full quantum nature of the macroscopic object including the dy-

namics of its quantal internal degrees of freedom. Such a treatment becomes one of a

practical necessity when studying the optomechanical entanglement for well-isolated

systems whose internal degrees preserve coherences for longer time scales, for exam-

ple when considering the quantum entanglement between the motion of atoms or

atomic ensembles and a field. Furthermore, acounting for the quantum fluctuations

of the internal degree of freedom one can properly describe all three-body processes

involving the field, the internal degree of freedom and the center of mass motion,

such as, say, an internal excitation splitting into a field photon and a mirror phonon.

This is similar to the case of an external field driving the blue-detuned mechanical

sideband of the cavity resonance in a typical cavity optomechanical setup [17]. In

the resolved sideband limit, the radiation pressure coupling between the drive, cavity

mode and the mirror motion leads to a process where a blue-detuned drive photon

splits into a cavity photon and a mirror phonon thereby entangling the cavity mode

and the mirror motion [63]. We elaborate on this issue further in chapter 2. More

generally, we remark that one can draw an analogy with the usual concepts from

cavity optomechanics, likening the cavity resonance to the internal resonance of the

mirror itself and use the intuition from the existing cavity optomechanical schemes

as a guide to illustrate new effects coming from the internal structure of the mirror.
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Hybrid systems – It is well-established that for a single atom as an optome-

chanical element whose internal degrees of freedom are represented by a two level

system the interaction between the field and the atom’s two-level internal degree

of freedom via photon emission and absorption is much stronger than the effective

interaction of the field with the atom’s center of mass degree of freedom. The cou-

pling between the optical field and atomic motion arises as the CoM motion alters

the field configuration, thereby affecting the atom’s internal level activities. Thus

when dealing with the case of atoms as an optomechanical element [45]– [52], one

needs to regard its internal level dynamics with careful consideration, including the

effects of the polarization and spatial structure of the field. Similarly, it has also

been shown that the atom’s motional degree of freedom can affect the activities of

its internal degrees of freedom such as spontaneous emission or motional decoher-

ence as in [76, 77]. While this might be an unarguable example of the relevance

of the internal degrees of freedom, one needs to clearly identify in what parameter

regimes and for what systems would the internal degrees play a role, and if they

do what new physics can be gleaned from their participation in the coupled optical

and mechanical dynamics of the optomechanical element. For this reason, we point

out the inadequacy in the studies of mirror-field interactions which generically rely

upon the effective interaction between the mirror’s CoM and the field that obscures

the full spectrum of physical effects one can potentially realize with optomechanical

systems. For example, when considering the optomechanics of atoms one typically

assumes that the field is far off-resonant with respect to the internal atomic reso-

nance, and one can therefore adiabatically eliminate the internal electronic degrees
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of freedom from the dynamics to arrive at an effective intensity-position coupling

between the field and the atomic CoM motion. We remark that the studies on

atom-optomechanics based on this assumption are restrictive in terms of accessing

the physical effects in the regime where one probes closer to the atomic resonance,

or in other words, one misses out on the scattering component of the total radiation

forces while only accounting for the dispersive part [53].

Quantum-Classical interface – Moreover, with a microscopic model one can

have a general theoretical framework within which one can study the optomechanics

of atomic scale systems and larger mechanical oscillators on the same footing. This

has also been emphasized in some previous works [70–72] that develop a scattering

theory approach towards optomechanics including the backreaction of the optome-

chanical element on the field self-consistently, an effect typically neglected for the

case of atoms. It was shown that such a self-consistent backreaction can lead to a

variety of interesting physical effects such as modifications to the optical forces and

cooling limit [70,71], access to strong single photon-mirror optomechanical coupling

and collective long-ranged interactions in an array of atomic mirrors [72]. Generally

for the case of atoms the theories rely on the assumption that atoms are weak scat-

terers of the field while larger optomechanical systems, on the other hand, affect the

field strongly by providing a moving boundary condition. A general theory which

can deal with both the cases as two extremes both in terms of including the backre-

action effects and the participation of the internal degrees of freedom is still needed,

as it would not only provide a more complete theoretical understanding but can

potentially also guide one to new physical effects yet to be accessed. Specially given
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the vast expanse of the existing optomechanics experiments in terms of parameter

regimes from the scale of LIGO down to single atoms and the burgeoning efforts

towards realizing and developing an understanding of hybrid quantum systems, a

theoretical treatment that can deal with a wide range of setups becomes all the more

necessary. A related benefit of using a microscopic model could be to use a “bottom

up” approach towards understanding macroscopic quantum phenomena.

Multimode effects – Furthermore, one of the ubiquitous assumptions of cavity

optomechanics is that of a single mode field, which assumes that the photons would

stay in the same cavity mode throughout the system evolution, or equivalently that

the mirror never moves fast enough to cause a transition between the different modes

of the cavity. However, for non-adiabatic motion of the mirror, one can indeed cause

the different modes of the cavity to couple with each other, which demands that one

takes into account the multimode nature of the field. One can estimate that this

would happen when the cavity mirror oscillates close to the frequency spacing be-

tween two adjacent cavity modes, surely enough such a resonant oscillation of the

cavity mirror can be used for experimentally relevant purposes such as making a high

sensitivity optomechanical displacement transducer [73]. Additionally, for relativis-

tically moving mirrors wherein one might want to study effects such as dynamical

Casimir effect, including the multimode vacuum field is inevitable. Not only that,

one can also surmise that for fast motion of the mirror’s CoM the retardation effects

in the response of the internal degrees would become significant, an effect that has

not yet been studied in the literature.

Thus, given the incompleteness of the existing theoretical treatments, a micro-
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scopic model for optomechanical interactions that can desirably provide a general

framework for optomechanical systems over a wide parameter range is much needed,

both in terms of furthering the existing theoretical understanding and to better guide

the ongoing experimental efforts. We discuss these models in the following section.

1.2 Microscopic Models for Optomechanics

In [1], Galley, Behunin and Hu proposed a microscopic model for mirror-field

interactions, called the mirror-oscillator-field (MOF) model that takes into account

the internal dynamics of the mirror, providing a physically more complete theory

for quantum optomechanics (QOM). The mirror as an optomechanical element is

described as a composite of two separate degrees of freedom corresponding to its

center of mass motion (mechanics) and the surface charge that couples with the field

(optics). We henceforth refer to these two degrees of freedom as the mechanical de-

gree of freedom (mdf ) and the internal degree of freedom (idf ) respectively. The

idf and the mdf are each depicted by a quantum oscillator, with the idf coupled

to an optical field that is modeled in [1] by a massless scalar field. The idf is what

provides the indirect interaction between the field and the mirror’s CoM motion,

with its amplitude taking on field values at the position of the CoM. Compared to

the traditional approach where the effect of the mirror on the field is represented by

imposing boundary conditions on the field at the position of the mirror, the MOF

model captures the mirror-field interaction in a more physically consistent way as

both the internal and mechanical degrees of freedom of the mirror enter in determin-

11



ing the dynamics self-consistently. In [1], it was shown that the different parameters

of the idf can describe a range of optical activities, from broadband to narrow band

reflectivity. With specific parameter choices the authors in [1] made connections to

well-known optomechanical models including those of Barton & Calogeracos [67],

Law [68] and Golestanian & Kardar [69]. Specifically, drawing a correspondence to

the “jellium-type” model for a moving mirror in [67], it can be shown that the model

in [1] in appropriate physically motivated parameter regimes mimics the Drude-

Lorentz response of bulk metals well. We discuss this correspondence in the optical

response in detail in section 1.4.2.

Recently, another mirror-model that invokes the internal degrees of the mirror

was also proposed by Wang and Unruh [80], wherein they model the internal degrees

of the mirror by a harmonic oscillator that interacts with a massless scalar field. As

emphasized in their work, including the coupling of the internal degrees to the field

explicitly allows one to describe the optical properties of the mirror self-consistently

without having to introduce high-frequency cut-offs artificially, as is often done

in perfect-reflector models [83, 91] or other approaches using boundary conditions

[81, 82]. Though in their description, the CoM motion is described by a prescribed

trajectory rather than being determined self-consistently, unlike the MOF model

where the mirror CoM motion is treated as a dynamical variable.

In a similar vein, the advantages of a microscopic model over the usual practice

of imposing boundary conditions and the role of the idf in capturing additional

physical phenomena is further expounded in this work. The model that we study is

a modification of the original MOF model in terms of the form of idf -field coupling.
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We use a coupling motivated by the electrodynamic form of interaction considering

that we can potentially use our model to study the optomechanics of atomic systems.

We then use our rendition of the MOF model to study the quantum entanglement

between the mechanical motion of the mirror and the field (2) and that between two

mirrors (4).

The motivation for looking at the mirror-field entanglement from a micro-

scopic perspective comes from the fact that the internal degrees of freedom are the

vital connection between the field and the CoM motion and including their quan-

tum fluctuations as a separate degree of freedom can be quite relevant in certain

parameter regimes. Given that the conventional mechanism of mirror-field entangle-

ment is by means of the effective radiation pressure coupling and there is virtually

no consideration of how the mirror’s internal structure that gives rise to its optical

properties affects the entanglement of its external or mechanical degree of freedom

with the field, such an analysis becomes crucial. Even though the full description

of this interaction at the microscopic level is quite complex, to gain a qualitative

understanding of the coupled interplay of the optical and mechanical degrees of

freedom the present relatively simple MOF model can serve the purpose aptly and

economically. As we shall see in this work, in some parameter regimes the dynamics

of a mirror’s idf play a nontrivial and even a decisive role in determining the trans-

fer of correlations and hence the entanglement between the mdf and the quantum

field. As for considering the entanglement between two mechanical oscillators from

a microscopic perspective one can think of this as a simplistic toy model to probe

into macroscopic quantum phenomena. Since while the presence of entanglement in
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the quantum world is well-established, its existence in the macroscopic domain still

remains to be observed, or its absence concretely understood.

In section 2.3.1, we generalize our model to 3+1 D and apply it to the case of

a single atom interacting with a field to study the entanglement between the motion

of the atom and the field, using the specifics from the setup of Maunz et al [95]. In

section 4.1.3, we use the MOF model to look at the motional entanglement between

two atoms. While we note that the internal electronic degrees of the atom are not

well-described by a harmonic oscillator, in the regime where the atom is very weakly

excited, our model should work well for the purposes of a rough estimate.

In the following section we present the MOF model, followed by a description

of the classical mechanical and optical properties of the MOF model in 1.4. 1.5

treats the quantum dynamics of the three interlinked subsystems – the idf, the mdf

and the field – which leads to all the interesting physical phenomena in QOM. In

particular we show that the usual radiation pressure coupling is recovered as an

approximation of the MOF model but one can go beyond these approximations to

see new physical effects. The role played by the internal degree of freedom of the

mirror is highlighted throughout our analysis.

1.3 The Mirror-Oscillator-Field (MOF) Model

Let us consider a point mirror interacting with a massless scalar field in (1+1)-

dimensional space-time, the mirror is described by the two independent degrees of

freedom - the mdf that has a mass M and is suspended in a harmonic potential of
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frequency f in addition to the idf described by another harmonic oscillator of mass

m and frequency Ω, as shown in Fig.1.1.

Figure 1.1: Schematic representation of the interaction of a mirror with a field via

its internal degree of freedom

While the mdf does not interact with the field itself, the idf is bilinearly

coupled to the quantum field and constrained to be at the center of mass position

leading to an effective interaction between the field and the mdf, what we observe as

the radiation pressure. The idf -field interaction determines all the optical properties

of the mirror as has also been studied in [1]. We assume that the idf -field dynamics

that represent the electronic excitations for the case of an atom happen at much

faster time scales compared to those of the mechanical motion of the atomic center

of mass, such that Ω� f.

For a non-relativistically moving mirror1 in the MOF model, the action is
1For relativistic motion which is required for the treatment of acceleration radiation such as

the Unruh effect, one needs to use the proper time, modify the kinetic terms, and take care of the

time-slicing scheme. Then the model will become a generalization of the Unruh-DeWitt detector

theory [78,79].
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given by

S =

∫
dt

[(
1

2
MŻ2 − 1

2
Mf2Z2

)
+

(
1

2
mq̇2 − 1

2
mΩ2q2

)
+

∫
dx
ε0
2

{
(∂tΦ)2 − c2 (∂xΦ)2 + λq̇Φδ(x− Z)

}]
(1.1)

where we denote the center of mass position of the mdf by Z(t), the amplitude of

the idf by q(t) and the scalar field by Φ(x, t). We note that λ represents the coupling

strength between the field and the idf , ε0 stands for the vacuum permittivity and c

for the speed of light. In drawing a correspondence between the scalar field and an

electromagnetic field, we observe that the free field Lagrangian would correspond

to that of an EM field if we choose Φ(x, t) to represent the vector potential A. We

have chosen a form of the bilinear coupling motivated by the electrodynamic form

of interaction
(
∼ e

m
p · A

)
, bearing in mind that the mirror’s idf can potentially rep-

resent the electronic level structure inside an atom. We note that this is different

from the form of coupling in the original MOF model [1] (∼ λqΦ). In 1+1 D, a

derivative coupling (q̇Φ) leads to a radiation reaction force that goes as ∼ q̇ instead

of ∼
...
q , also the derivative coupling ensures that the energy of the system remains

a positive-definite quantity [66]. A similar model for describing mirror-field interac-

tions has also been studied recently in [80]. Noticing that the free space permittivity

in (1+1)-dimensions scales as ε0 ∼ (Charge)2(Time)2(Mass)−1(Length)−1, the free

field Lagrangian in [1] has been rescaled here by a factor of ε0 for dimensional con-

sistency. The δ(x − Z) factor in the coupling restricts the idf -field interaction to

the center of mass position and the position dependence of the scalar field in turn

leads to an effective force on the mdf. We choose the coupling λ to have the dimen-
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sions of the electronic charge e and Φ(x, t) to have the dimensions of A. This is in

agreement with the correspondence of the MOF model with the Barton-Calogeracos

(BC) model [67], where in the limit of adiabatic idf evolution the coupling λ can be

physically identified as the surface charge density.

1.4 Classical Optomechanical properties

In this section we will illustrate how the MOF model can describe the classi-

cal optical and mechanical properties exhibited by a mirror, leading to the known

intensity-position radiation pressure coupling. We begin with deriving the cou-

pled equations of motion for the classical amplitudes of the mdf, idf and field

({Z̄, ˙̄Z, q̄, ˙̄q, Φ̄, ˙̄Φ} respectively) from the action in (1.1) (δS = 0)

¨̄Z + f2Z̄ =
λ ˙̄q

M
∂xΦ̄

(
Z̄, t
)

(1.2)

¨̄q + Ω2q̄ = − λ
m

˙̄Φ
(
Z̄, t
)

(1.3)

ε0

(
¨̄Φ (x, t)− c2∂2

xΦ̄ (x, t)
)

= λ ˙̄qδ(x− Z̄) (1.4)

It can be seen that the moving idf acts as a point source for the field and the idf

is in turn driven by Φ̇ at the center of mass position Z̄, which in the electromagnetic

correspondence represents the electric field at the CoM position
(

Φ̇ ∼ E
)
. Also,

with λ representing the charge density, it can be seen from (1.3) that the force on

the surface charge degree of freedom goes as ∼ λ ˙̄Φ. We have assumed here that the

mirror center of mass velocity is in the non-relativistic limit, such that
∣∣∣dZ̄dt ∣∣∣ � c.

For a relativistically moving mirror, the idf would more generally observe a Doppler
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shift of the field with respect to the moving center of mass as (1.3) becomes

¨̄q + Ω2q̄ = − λ

mc

(
˙̄Z0∂t + ˙̄Z1∂x

)
Φ̄(Z̄µ) (1.5)

where Z̄µ = (Z̄0(τ), Z̄1(τ)) is the worldline of the mirror parametrized by its proper

time τ , and Ȯ ≡ dO/dτ . As the motion of the mirror center of mass leads to

the motion of the charges sitting on the surface that interact with the field, the

surface charges experience a Doppler shifted field which in turn changes their optical

response leading to dynamically changing boundary conditions observed by the field.

If one prefers to think in terms of applying boundary conditions on the field,

in the MOF model it would correspond to the steady state response of the internal

degree of freedom. Thus our model captures the full coupled dynamical interplay

as opposed to the fixed boundary conditions in the conventional approach. In fact,

a simple generalization of the set up here can deal with a relativistically moving

mirror as in the dynamical Casimir effect (DCE), whereas the conventional method

of imposing a boundary condition on the field would fail to address dynamical sit-

uations wherein the time scales of the mechanical motion are comparable those of

idf-field interaction dynamics. In such situations one would expect that accounting

for the coupled dynamics of the internal and external degrees of freedom would lead

to an appreciable correction. 2

For now, we restrict our attention to a non-relativistically moving mirror. For

the case where the system dynamics is driven by an incident field (and not by any
2This is an important point long explored and resolved in cosmological particle creation which

results from the same mechanism but with the expanding universe playing the role of an external

agent as in DCE.
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external agent which accelerates the mirror as is in the setup of the Unruh effect),

this is ensured from the separation of the timescales for the internal and center of

mass degrees of freedom (Ω� f). We will demonstrate this further in Section 1.4.2

for the case of a single mode field.

Knowing the coupled system dynamics, below we first look at how the radiation

pressure force arises from our model in the non-relativistic limit.

1.4.1 Classical Radiation Pressure Force

As seen from (1.2), the mdf is driven non-linearly by both the idf and the

field. We now eliminate the idf from the picture to obtain the mechanical force on

the center of mass.

From spatially integrating the field equation of motion (1.4) around the mirror

center of mass position Z̄, we see that there is a discontinuity in the field spatial

derivative. This can be understood as the discontinuity in the magnetic field across

the mirror surface in the electromagnetic correspondence (∂xΦ ∼ B) coming from

the surface charge current ˙̄q. In the non-relativistic limit we find the surface charge

current as

λ ˙̄q = −ε0c2
[
∂xΦ̄

(
Z̄+, t

)
− ∂xΦ̄

(
Z̄−, t

)]
(1.6)

The surface charge current being induced by the discontinuous magnetic field across

the center of mass position can be interpreted as the Ampere’s law in 1+1 dimen-

sions. We eliminate the idf from the center of mass dynamics, defining the spatial
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derivative of the field at the center of mass position as

∂xΦ̄
(
Z̄, t
)
≡ 1

2

(
∂xΦ̄

(
Z̄+, t

)
+ ∂xΦ̄

(
Z̄−, t

))
(1.7)

Using this, we rewrite CoM dynamics as

¨̄Z + f2Z̄ = − 1

2M
ε0c

2(∂xΦ̄)2|Z̄+

Z̄− (1.8)

Thus, in the MOF model the radiation pressure force can be interpreted as the

Lorentz force arising from the interaction of the induced surface charge current (1.6)

with the magnetic field (∂xΦ). Such an interpretation of the radiation pressure force

as the Lorentz force on induced surface charge currents has been discussed in detail

in [75] and agrees with the simple description of radiation pressure on an electric

dipole. We notice that the right hand side corresponds to the well-known radiation

pressure force
(
∼ B2

2µ0

)
seen by a mirror in the non-relativistic limit [68]. This is

justified based on the fact that the electric field vanishes at the mirror position

in the co-moving reference frame and the force being proportional to the EM field

energy density then goes as ∼ B2

2µ0
. To compare with the expression in [68], we notice

that for a perfect mirror there is no field energy density on one side of the mirror(
∂xΦ

(
Z̄+, t

)
= 0
)
and we reduce to the known result. For an imperfect mirror there

is a finite energy density of the EM field on either side of the surface, hence the

net radiation pressure force is given by the difference in the field energy density on

either side of the surface as in (1.8).

To compare with the boundary condition approach in more detail, let us con-

sider the mirror-field interaction in terms of the radiation pressure force exerted by
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the field on the mirror. We assume that the mirror is generally imperfect and inter-

acts with a scalar field in a region of length L. Now similar to the approach of [84],

one can consider a co-moving frame of reference with respect to the mirror center

of mass to write the Lagrangian density of the field as ∼
(

1
2
εE ′2 − 1

2µ0
B′2
)
, with

E ′ and B′ being the electric and magnetic fields in the co-moving frame and the

dielectric permittivity is defined as, say, ε (x) = ε0(1 + χδ(x − Z)) for an infinitely

thin dielectric slab. Then in the laboratory frame, the Lagrangian for the oscillating

mirror+field system can be written as

LBC =
1

2
MŻ2 − 1

2
Mf2Z2 +

∫ L

0

dx

[
1

2
ε
(
(∂tΦ)2 − c2 (∂xΦ)2)+ Ż (ε− 1) (∂tΦ) (∂xΦ)

]
(1.9)

where we have kept terms upto first order in Ż from the inverse Lorentz transfor-

mation. Now in the non-relativistic limit, we drop the velocity dependent term and

obtain the Euler-Lagrange equation of motion for the mirror center of mass as

Z̈ + f2Z = − 1

2M
ε0c

2 (∂xΦ)2 |Z̄+

Z̄−
(1.10)

which agrees with what we found in (1.8) and also matches up with equation (8)

of [84] in the limit of an infinitely thin dielectric membrane where d→ 0 and χ→∞.

While [84] talks of a dielectric slab in a cavity, a more specific situation than what

we consider here in the simplistic MOF setup, at the level of the formal expression

for the radiation pressure force where we have left the boundary conditions arising

from the idf -field interaction unspecified we find an agreement between the two

approaches. This further reaffirms our intuition that the difference between the

boundary condition approach and a microscopic model arises when considering the
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dynamical participation of the idf explicitly, which in the above expression would

show up as the difference in the field configurations on the RHS.

Thus we have arrived at the classical radiation pressure force on the mirror

in the non-relativistic CoM motion limit as one would find from imposing fixed

boundary conditions on the field. Rather, in this case the boundary conditions

resulting from the mirror-field coupling arise self consistently from the dynamical

interaction between the moving idf and the field, as does the radiation pressure.

We note that the formal expression for radiation pressure would remain the same

also for a coupling of the form ∼ λqΦ. Though the important point to note is that

while the form of the radiation pressure force we obtain from including the idf is

identical to what we get from imposing the fixed boundary conditions, the boundary

conditions themselves rather than being fixed are determined by the dynamics of

the idf -field interaction which depends on the exact form of coupling. This more

generally includes retarded influence of the moving surface charges on the field in

a dynamical way. To see this more concretely, consider the idf amplitude solution

from (1.3)

q̄(t) = q̄h(t) +

∫ t

0

dt′Gi(t− t′)
(
− λ
m

˙̄Φ
(
Z̄(t′), t′

))
(1.11)

where we define q̄h as the homogeneous solution for the free idf evolution and Gi(t−

t′) ≡ sin(Ω(t−t′))
Ω

as the Green’s function for the idf. We use this to eliminate the idf
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from the field’s equation of motion to get

ε0
(
∂2
t − c2∂2

x

)
Φ̄ (x, t) +

λ2

m
δ
(
x− Z̄(t)

) ∫ t

0

dt′∂tGi (t− t′) ˙̄Φ(Z̄(t′), t′)

= λ ˙̄qhδ
(
x− Z̄(t)

)
(1.12)

We see that the idf is driven by the field and influences the field in return, as

captured in the second term on the left hand side that represents the retarded

influence of the idf on the field, meaning that the radiation pressure force depends

on the coupled non-Markovian dynamics of the field, center of mass and the idf.

Thus, we can identify the term ∂tGi (t− t′) ≡ χ (t− t′) as the susceptibility function

for the mirror. To compare with the case where one applies boundary conditions

as opposed to including the idf dynamics self-consistently one needs to include the

coupling of the idf with a bath so as to reach the steady state response of the damped

idf. We will further illustrate this point and the role of the internal degree of freedom

in determining the optical properties of the mirror in the following subsection.

1.4.2 Optical properties

To study the optical properties arising from the MOF model let us consider a

single mode field Φω(x, t) at frequency ω driving the mirror’s idf . We can write the

self consistent solution for the field dynamics from (1.4) as

Φ(x, t) = Φω(x, t) + λ

∫
dt′Gf (x, t;Z(t′), t′)q̇(t′) (1.13)
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where Gf (x, t;x
′, t′) refers to the Green’s function of the free field in 1+1 D. Using

this solution to determine the response of the idf from (1.3), we have

q̈ + Ω2q = − λ
m

(
Φ̇ω(Z(t), t) + λ

∫
dt′∂tGf (Z(t), t;Z(t′), t′)q̇(t′)

)
(1.14)

=⇒ q̈ + γf q̇ + Ω2q = − λ
m

Φ̇ω(Z(t), t) (1.15)

where we identified the second term in the RHS of (1.14) as the damping kernel

and we find that for non-relativistic mirror motion the damping is always ohmic.

The damping of the idf coming from its coupling to the continuum of field modes

is given by the coefficient γf ≡ λ2

2mε0c
. One can then write the solution for the idf

dynamics as

q = − λ
m

∫
dt′∂tGi(t− t′)Φ̇ω (Z(t′), t′) (1.16)

where the Green’s function for the idf is given as Gi(t−t′) = sin(Ωt)
Ω

e−γf (t−t′)/2. Thus,

knowing the response of the idf , we can rewrite the field solution from (1.13) with

the backreaction of the idf included as follows

Φ(x, t) = Φω(x, t)− λ2

m

∫
dt′Gf (x, t;Z(t′), t′)

∫
dt′′∂′tGi(t

′ − t′′)Φ̇ω (Z(t′′), t′′)

(1.17)

In the steady state limit, where the response of the idf is only at the drive frequency

and assuming that the mirror’s CoM is at the origin in equilibrium, we make the

following plane-wave ansatz for the field

Φ̄ (x, t) =
Ω

ω
Φ0e

−iωt (Θ(−x)
(
eikx +R(ω)e−ikx

)
+ Θ(x)T (ω)eikx

)
+H.C. (1.18)

where Φ0 is the amplitude of the field and we have introduced the frequency nor-

malization factor (Ω/ω) to take care of the fact that in the EM correspondence the
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electric field amplitude (E ∼ ∂tA) is independent of the frequency of the field. R (ω)

and T (ω) refer to the amplitude reflection and transmission coefficients of the point

mirror, such that T (ω) = 1 +R (ω). This can be readily seen from the continuity of

∂tΦ̄ across the center of mass position Z̄ from (1.4) in the limit of non-relativistic

center of mass motion. In considering the interaction of the idf with only a single

field mode, we include a damping (γf ) that arises from its coupling with the re-

maining field modes. For current purposes, we assume that the damping is small

(γf � Ω) so that one can ignore the dissipation of the incident plane wave. As in [1],

we assume that in the steady state regime the idf oscillates at the frequency of the

incident field. In which case, we find

q(t) =
−iωλ

m (ω2 − Ω2)

Ω

ω
Φ0T (ω)e−iωt +H.C. (1.19)

From the mirror center of mass dynamics (1.8), we can see that in the presence

of the incident drive the center of mass consists of a time-independent and a high

frequency (2ω) radiation pressure term, coming from the non-linear interaction of

the incident B field and the induced surface charge current. In the limit f � Ω,

the high frequency component of the mirror amplitude denoted by Z̄2ω scales as

|Z̄2ω| ∼ ε0Φ2
0Ω2

Mω2 , which, in the near field-idf resonance regime (ω ≈ Ω), is much

smaller compared with the mirror amplitude coming from the constant radiation

pressure part Z̄0 ∼ ε0Φ2
0Ω2

Mf2 , noting that Z̄0

Z̄2ω
∼ Ω2

f2 � 1. Thus we find that the mirror

position evolves essentially at its natural frequency f under the constant force.

We assume that at the classical level the center of mass motion does not affect
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the idf -field coupling and the resulting optical properties from the interaction. More

explicitly, the phase of the field mode that is resonant with the idf changes by

a very small amount over the length scales of one amplitude of the mdf, that is

∆φ ≡ (Ω/c) Z̄0 � 1. This restricts the field amplitude to

|Φ0|2 �
Mf2c

Ω3ε0
(1.20)

This is a self-consistent validity constraint which ensures that the optical prop-

erties of the mirror are unaffected by the center of mass motion to first order, to

reaffirm our plane wave ansatz (1.18). Physically speaking we assert that the mir-

ror CoM motion is much smaller than the wavelengths of the field that it interacts

with. The sub-wavelength motion approximation is valid for the case of trapped

atoms spatially confined in a harmonic trap (trap frequency being f in this case),

interacting with an optical field of frequency ω.

In the plane wave ansatz, we find the surface charge current for the idf (1.6)

as

λ ˙̄q = −ε0c2∂xΦ̄ (x, t) |Z̄+

Z̄− ≈ −2ikε0c
2Φ0

Ω

ω
e−iωtR (ω) +H.C.

= −2iε0ΩcΦ0e
−iωtR (ω) +H.C. (1.21)

We can notice here that the induced surface charge current is proportional to the

mirror reflectivity. Thus, as expected, a higher reflectivity leads to a larger radiation

pressure force.

Now within the non-relativistic and sub-wavelength CoM motion approxima-

tions, we consider the MOF model with the two different forms for the coupling term
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- (1) qΦ (as previously analyzed in [1]) and (2) q̇Φ - and study the optical properties

that arise from these two couplings in different parameter regimes. Through the

rest of this work we only consider the q̇Φ form of coupling.

1.4.2.1 qΦ coupling

Let us first consider the qΦ coupling as in [1] and start with drawing the

correspondence between the interaction term for the scalar field vis-a-vis an EM

field. As motivated in the section II.B.1 in [1] when comparing the MOF model with

the Barton-Calogeracos (BC) model, we choose the coupling λ to have dimensions

of the charge density such that dimensionally λ ∼ (Charge) (Length)−1. Going back

to the interaction term in the original action we use this to find the dimensions of

the scalar field as Φ ∼ (Mass)(Length)2(Time)−2/(Charge) and rescale the free field

term accordingly, we get for the free field action

SF =
ε0
2c2

∫
dt

∫
dx
(
(∂tΦ)2 − c2 (∂xΦ)2) (1.22)

This leads to the coupled idf-field equations of motion for a fixed center of mass as

ε0/c
2
(
∂2
t Φ− c2∂2

xΦ
)

= λqδ(x) (1.23)

mq̈ +mΩ2q = λΦ(0, t) (1.24)

For a plane wave incident on the mirror, using the ansatz (1.18) to solve for

the surface charge current as in (1.21) in the steady state limit we get the reflectivity
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for the case of qΦ coupling as

R(ω) =
−iλ2c

iλ2c+ 2mωε0(ω2 − Ω2)
(1.25)

=⇒ |R (ω)|2 =
1

1 + r2
pη

2 (1− η2)2 (1.26)

where we have defined the ratio of the field to the idf frequency as η ≡ ω/Ω and rp ≡(
2mΩ3ε0
λ2c

)
≡ Ω/ΩP . We identify the quantity ΩP ≡ λ2c

2mΩ2ε0
as the plasma frequency,

again motivated by the comparison with the BC model. As found in [1], the mirror

becomes perfectly reflecting for 1) infinitely strong idf -field coupling, λ → ∞, 2)

perfect resonance between the idf and the incident field, ω = Ω or 3) massless idf,

m→ 0. Now observing that the reflection spectrum is completely characterized by

the two frequency ratios rp (ratio of the idf to plasma frequency) and η (ratio of the

field to idf frequency), we consider different values for the parameter rp and look at

the reflectance as a function of the field frequency for a fixed plasma frequency, as

shown in Fig. 1.1.

To invoke the correspondence with the BC model [67] we need to assume that

the idf evolves adiabatically in the limit {m → 0,Ω → ∞} such that the quantity

mΩ2 ≡ κ that physically corresponds to the mass density of the surface charges

stays finite. In this limit since rp � 1 (Ω → ∞), we see a resonant behavior in

the reflection spectrum around the idf frequency Ω. In the regime where rp � 1,

the reflection spectrum shows a high frequency cutoff behavior similar to the case

of bulk metals with Drude-Lorentz response. As shown in Fig.1.1, given the plasma

frequency for silver (ΩP = 1.37 × 1016 Hz) [85], we compare the known optical

response with our model and find that a idf to plasma frequency ratio rp ≈ 0.3
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mimics the cut-off behavior reasonably well. Knowing that the charge carrier density

for silver is ns = 5.8×1028m−3 [85] and using the BC correspondence to find λ = nse,

we can deduce all three idf parameter values.
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Figure 1.1: Reflection properties from the two different forms of coupling (qΦ and

q̇Φ) (a) Reflectance as a function the incident field wavelength (in meters) for dif-

ferent idf to plasma frequency ratios (rp = Ω/ΩP ), the plasma frequency is fixed at

ΩP = 1.37×1016 Hz (for silver) from qΦ coupling, choosing rp ≈ 0.3 mimics the cut-

off behavior for silver (b) Reflectance and transmittance spectrum from q̇Φ coupling

to simulate the optical response for a photonic crystal as from the experimental re-

sults in [86]. Each resonance corresponds to a separate effective idf with resonance

frequencies Ω = {3.01 × 1015Hz, 2.51 × 1015Hz, 2.43 × 1015Hz} and corresponding

plasma frequencies ΩP = {0.5× 1014Hz, 0.2× 1014Hz, 0.1× 1014Hz}.
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1.4.2.2 q̇Φ coupling

As in the previous subsection we find the reflection coefficient for the q̇Φ

coupling as

R(ω) =
−iλ2ω

iλ2ω + 2mε0c(ω2 − Ω2)

=⇒ |R(ω)|2 =
ω2/Ω2

ω2/Ω2 +
(

2mε0cΩ
λ2

)2
(ω2/Ω2 − 1)2

=
η2

η2 + r2
p(η

2 − 1)2
(1.27)

where again we have defined the ratio of the field to idf frequency as η ≡ ω/Ω

and the ratio of idf to plasma frequency as rp ≡ Ω/ΩP = Ω/( λ2

2mε0c
), redefining the

plasma frequency as ΩP = λ2

2mε0c
. We see that mirror becomes perfectly reflecting

for the same conditions as in the case of qΦ coupling {λ → ∞, ω = Ω,m → 0}.

Unlike the qΦ coupling, we do not see a perfect reflection at ω = 0 which was an

artifact of the monopole coupling between the idf and the field.

The optical response exhibits a resonant behavior around the idf frequency

Ω, since the reflectivity is maximum for η = 1. For this reason it is natural to

consider optomechanical elements with built in resonances such as photonic crystals

or atoms as an application. We find that one can mimic the optical response of

a photonic crystal structure (see Fig.1.1) by choosing the resonant frequency of

the idf as the resonant mode of the photonic crystal, for multiple resonances we

choose multiple internal degrees of freedom such that Ωi = ωresi at each resonance

peak. The sharpness of the resonance is determined by the quantity rip, since the

parameter rip determines the coupling strength of the field to a particular resonance

mode of the structure. Thus one can determine the two parameters that characterize

31



the optical response in our model, namely rp and Ω. To completely determine all

the parameters of the internal degree of freedom {m,Ω, λ} we need to draw an

additional physical correspondence between the internal degree of freedom and the

physical setup as we did for the previous case of qΦ coupling by identifying the

coupling constant λ as the charge density. For the case of a photonic crystals, it has

also been shown that the large gradients of reflectivity near the photonic bandgaps

can modify the optomechanical damping by irreversibly converting the energy from

the thermal fluctuations of the motion to that of the optical field or vice versa via

Doppler effect [55].

As we had noticed previously, the mirror reflectivity characterized by the idf

parameters determines the strength of the induced surface charge current (1.21)

which in turn factors into determining the radiation pressure coupling. In the fol-

lowing section we will show that the same applies to the case of coupling between

the quantum fluctuations of the mirror and the field. We now turn to look at the

coupled quantum dynamics of the three subsystems in the MOF model.

1.5 Quantum Dynamics of the Coupled Mirror-Oscillator-Field (MOF)

System

Let us perturb the original action (1.1) about the classical solutions as {Z̄ +

Z̃, q̄ + q̃, Φ̄ + Φ̃}, with Õ being the deviations about the classical solutions Ō. As-

suming that the center of mass motion about Z̄ is small and restricted to the sub-

wavelength regimes
(
kZ̃ � 1

)
for the field modes below a certain high frequency
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cutoff, we expand the action up to third order in the fluctuations about the classical

solutions ignoring terms that are second order or higher in kZ̃. We go up to third

order to specifically include the term that couples the perturbations of all three

subsystems (labeled as MOF below) to arrive at the non-linear intensity-position

coupling. In the subsequent dynamics we shall only consider bilinear interaction

terms to preserve Gaussianity of the individual subsystems. As we will see, trun-

cating the action up to second order corresponds to the linearized approximation in

the limit of strong mean-field amplitude, also called a background field expansion

in field theory.

We write the perturbed action as

S3 =

∫
dt

(
1

2
M ˙̃Z2 − 1

2
Mf2Z̃2

)
︸ ︷︷ ︸

mdf (M)

+

(
1

2
m ˙̃q2 − 1

2
mΩ2q̃2

)
︸ ︷︷ ︸

idf (O)

+

∫
dx

ε02
((

∂tΦ̃
)2

− c2
(
∂xΦ̃

)2
)

︸ ︷︷ ︸
Field (F)

+ λδ
(
x− Z̄

)  ˙̃qΦ̃︸︷︷︸
OF

+ ˙̄q
(
∂xΦ̃

)
Z̃︸ ︷︷ ︸

MF

+ ˙̃q
(
∂xΦ̄

)
Z̃︸ ︷︷ ︸

OM

+ ˙̃q
(
∂xΦ̃

)
Z̃︸ ︷︷ ︸

MOF


 (1.28)

One can observe several points from the above expression, firstly, we find that there

is an effective coupling between the fluctuations of the mirror center of mass and the

field via the internal degree of freedom as denoted by the terms MF and MOF. To

the lowest order, the mirror-field coupling strength is proportional to the classical

surface current ˙̄q, implying that the fluctuations of the field are the most sensitive
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to the fluctuations of the mirror center of mass if the surface current is at its largest.

In the single field mode case this is proportional to the reflection coefficient of the

mirror as seen in (1.21), meaning that a highly reflecting mirror leads to large

effective MF coupling strength. Secondly, there is also an effective coupling between

the idf and the mdf fluctuations denoted by the terms OM and MOF, which to the

lowest order is proportional to the spatial derivative of the field (or the “magnetic

field” B) at the center of mass position. The coupling strengths of the interaction

terms between the idf and the mirror (OM), and the field and the mirror (MF) are

determined by the classical solutions of the field and idf amplitudes as found in the

previous sections.

We get the following equations of motion for the coupled mirror and field

dynamics

¨̃Z + f2Z̃ =
λ

M

[
˙̄q∂xΦ̃

(
Z̄, t
)

+ ˙̃q
{
∂xΦ̄

(
Z̄, t
)

+ ∂xΦ̃
(
Z̄, t
)}]

(1.29)

ε0

(
∂2
t Φ̃− c2∂2

xΦ̃
)

= λ ˙̃qδ
(
x− Z̄

)
− λ

(
˙̄q + ˙̃q

)
∂x
(
δ
(
x− Z̄

))
Z̃ (1.30)

It can be seen here that unlike the classical equations of motion, the field fluctuations

are not only driven by the idf but also by the fluctuations of the center of mass

position. From integrating (1.30) around the classical center of mass position Z̄, we

get the surface current fluctuation as

λ ˙̃q = −ε0c2∂xΦ̃|Z̄+

Z̄−
(1.31)

just as the classical version interpreted as the Ampere’s Law in 1+1 D in (1.6).

Using this and the classical surface current to eliminate the idf from the center of
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mass dynamics (1.29), we get

¨̃Z + f2Z̃ =
−ε0c2

M

[(
∂xΦ̄

) (
∂xΦ̃

)∣∣∣Z̄+

Z̄−
+

1

2

(
∂xΦ̃

)2
∣∣∣∣Z̄+

Z̄−

]
(1.32)

We can see that the first term on the right side corresponds to the radiation pressure

coupling in the linearized approximation which is valid for large photon numbers in

the presence of a classically driven field. The second term goes beyond this approx-

imation, which corresponds to the intensity-position coupling, required for treating

situations with small photon numbers. Considering Φ̃ represents the quantum fluc-

tuations of the field, we can understand the radiation pressure force at the quantum

level as arising from the asymmetry in the field fluctuations on either side of the

mirror. Say, if there were a cavity present on one side and free space on the other,

the radiation force from the cavity side would be stronger in comparison because of

the small quantization volume leading to asymmetry in the density of field modes

as in the case of Casimir force [87]. Such an interpretation of Casimir force as a

radiation pressure force from the vacuum field has been discussed by Milonni et al

in [88] for the case of two perfectly conducting plates.

We now restrict ourselves to second order perturbations in the original ac-

tion, to keep all the interaction terms bilinear such that starting out with Gaussian

initial states for the three subsystems, Gaussianity of the individual subsystems is
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preserved. We derive the conjugate momenta from the second order action as

p̃ = m ˙̃q + λΦ̃
(
Z̄, t
)

+ λ∂xΦ̄(Z̄, t)Z̃ (1.33)

P̃ = M ˙̃Z (1.34)

Π̃(x, t) = ε0
˙̃Φ(x, t) (1.35)

It can be seen that the fluctuations in the idf are influenced by both the

mdf and the field and hence mediate the effective interactions between the two.

Identifying the dynamical variables {Z̃, q̃, Φ̃} as the quantum fluctuations of the

mdf, idf and the field respectively about their mean-field amplitudes, we arrive at

the second order Hamiltonian

H̃2 ≡
P̃ 2

2M
+

1

2
M

(
f2 +

λ2

mM

(
∂xΦ̄(Z̄, t)

)2
)
Z̃2︸ ︷︷ ︸

mdf(M)

+
p̃2

2m
+

1

2
mΩ2q̃2︸ ︷︷ ︸

idf(O)

+

∫
dx

(
Π̃2

2ε0
+

1

2
ε0c

2
(
∂xΦ̃

)2
)

+
λ2

2m
Φ̃(Z̄, t)2

︸ ︷︷ ︸
Field (F)

− λ

m
p̃Φ̃(Z̄, t)︸ ︷︷ ︸

OF

− λ

m
∂xΦ̄(Z̄, t)p̃Z̃︸ ︷︷ ︸

OM

+
λ2

m
∂xΦ̄(Z̄, t)Φ̃(Z̄, t)Z̃ − λ ˙̄q∂xΦ̃(Z̄, t)Z̃︸ ︷︷ ︸

MF

(1.36)

We notice that the mdf now observes a renormalized oscillation frequency and the

scalar field sees a frequency shift coming from the term quadratic in Φ which is

analogous to the diamagnetic term ∼ e2

2m
A2 of the minimal coupling Hamiltonian.

The bilinear interaction terms represent the coupling between the idf and the field

(OF), mirror and the idf (OM) and mirror and the field (MF) respectively. Physi-

cally, the terms that are second order in λ arise from the field-field, mirror-mirror

and field-mirror couplings mediated via the quantum fluctuations of the idf. The
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terms that are first order in λ in the couplings between the idf-mdf (OM) and mdf-

field (MF) fluctuations come from the classically driven solutions for the field and

the idf respectively. Specifically, we note that the MF interaction contains two

terms, the first one of which represents the effective mirror-field interaction medi-

ated via the quantum fluctuations of the idf, while the second one represents that

from the classical surface charge currents. Since the conventional approach does not

include the fluctuations of this extra quantum degree of freedom, it misses out on

the fluctuation-mediated part of the effective mirror-field coupling. As we shall see

later, this term becomes dominant in the strong coupling regime where (ΩP � Ω).

It can also be seen that in the absence of a classical drive, the only interaction is

between the idf and the field (OF) up to second order. To be able to see an effective

mirror-field interaction one needs to include third order terms in the fluctuations as

illustrated before. These terms would be relevant when one wants to find the forces

coming from vacuum fluctuations, which, for example in the case of two mirrors

would correspond to the Casimir/ Casimir-Polder forces. Moreover, as our model

includes the fluctuations of the mechanical degree of freedom in addition to those of

the field, these would give some corrections to the Casimir/Casimir-Polder forces.

We note that such phonon loop corrections can possibly be significant if the mass

and the oscillation frequency of the mechanical degree of freedom are small, an effect

that has not yet been studied in the literature.

Thus far we have arrived at the general form for the quantized Hamiltonian

for the coupled subsystems and shall turn to a simpler specific case of a single field

mode, a typical assumption in cavity optomechanics, to study the entanglement
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dynamics of the system in the following chapter.
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Chapter 2: Entanglement in the Mirror-Oscillator-Field (MOF) Model

Entanglement between a field and a mechanical oscillator has been widely stud-

ied in cavity optomechanical setups in several contexts [17]– [64], with the essential

mirror-field coupling mechanism being radiation pressure coupling wherein the field

exerts a force on the mirror center of mass by means of photon-momentum transfer

and observes a phase shift proportional to the mirror displacement in turn. We now

look at the entanglement generation from a microscopic perspective as described by

the MOF model, considering only a single mode of the scalar field in our model as

in the usual cavity optomechanical setups to deduce some key physical features of

the mirror-field entanglement that arise from the inclusion of the idf.

The setup that we consider here consists of a mirror described by the MOF

model, interacting with a single mode of a cavity. For the sake of simplicity, we

choose a ring resonator so that the position of the mirror relative to the cavity

end mirrors does not enter as a separate parameter for the traveling wave mode

of the cavity. We note that in our model one can treat the quantum fluctuations

of the field within the cavity as those of a single field without having to consider

separate quantization volumes and boundary conditions on either side of the mirror

of interest, since the boundary conditions on the field fluctuations would emerge
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self-consistently as the idf -field interaction reaches a steady state.

Figure 2.1: Schematic of the setup in consideration – the mirror of interest described

by the MOF model, interacts with a single mode field Φω (x, t) at frequency ω in a

ring cavity of length L.

In the following, we first solve for the quantum dynamics of the coupled mirror-

oscillator-field system for a single mode of the scalar field in section 2.1 and discuss

the effective couplings between the three pertinent subsystems, then we show how

and in what limit one can recover the boundary condition approach for the case of an

imperfect mirror inside a cavity in section 2.2 and contrast it with the more general

case, in section 2.3 we outline our calculation of the mirror-field entanglement and

discuss how it depends on the various parameters involved, finally applying our

approach to the case of a single atom interacting with a field mode in 2.3.1 to study

the optomechanical entanglement between the atomic center of mass and a field.
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2.1 Single Field Mode interacting with the Mirror

We first simplify the Hamiltonian (1.36) for the case of a single field mode

that is being externally driven to look at the dynamics of the coupled MOF sys-

tem and then coarse-grain the idf to find the sought after mirror-field entangle-

ment. Consider the scalar field in a region of length L, the field fluctuations

can be written as the sum of all discrete modes of the cavity of length L as

Φ̃ (x, t) =
∑

n

√
~

2ωnε0L

(
ãne

iknx + ã†ne
−iknx

)
, with ã†n and ãn representing the di-

mensionless creation and annihilation operators for the nth field mode. We pick

a single field mode at frequency ω interacting with the point mirror at the origin(
Z̄ = 0

)
assuming that the center of mass motion is in the sub-wavelength regime

as before.

Φ̃ω (x, t) =

√
~

2ωε0L

(
ãωe

ikx + ã†ωe
−ikx) (2.1)

The above expression represents the fluctuations of the free field without any

imposed boundary conditions unlike the standard treatment where the quantum

fluctuations follow the mode functions of the classical field (see [97] for example). In

the steady state, the strength of the field fluctuations would be determined by the

boundary conditions as they emerge from the idf -field interaction self-consistently.
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For a single field mode, we rewrite the free Hamiltonian part in (1.36) as

H̃free ≡
P̃ 2

2M
+

1

2
Mf′2Z̃2︸ ︷︷ ︸

H̃M

+ ~Ω

(
b̃†b̃+

1

2

)
︸ ︷︷ ︸

H̃O

+ ~
(
ω +

λ2

2mωε0L

)(
ã†ωãω +

1

2

)
+

λ2

4mωε0L

(
(ãω)2 +

(
ã†ω
)2
)

︸ ︷︷ ︸
H̃F

(2.2)

where we have redefined the dynamical variables associated with the idf in terms

of the creation annihilation operators {b̃†, b̃} as q̃ =
√

~
2mΩ

(
b̃+ b̃†

)
and p̃ =

−i
√

~mΩ
2

(
b̃− b̃†

)
. The renormalized mechanical frequency is defined as f′2 ≡

f2 + λ2

mM

(
∂xΦ̄(Z̄, t)

)2. As mentioned in the previous chapter, the correction term(
λ2

mM

(
∂xΦ̄(Z̄, t)

)2
)
contains two contributions - a time dependent part oscillating at

a frequency ∼ 2ω and a time-independent part. In the rotating wave approximation

(RWA) the time dependent term can be neglected. However, if the field mode was

resonant with the mdf, one would see parametric amplification of the mirror center

of mass motion due to this time dependent part [89]. We estimate the correction

from the time independent term to the mechanical oscillation frequency for the case

of a single atom interacting with a field mode as ∆f/f ∼ 10−3, for some typical

experimental numbers taken from [95,96].

For the free field part we notice that the interaction leads to an energy correc-

tion ω → ω + λ2/(2mωε0L) that is second order in λ, this corresponds to the shift

coming from the diamagnetic contribution for the EM case
(
∼ e2

2m
A2
)
as indicated

in the previous chapter. This diamagnetic term also leads to the fast oscillating

terms for the free field (∼ 2ω), which correspond to the photon-pair production and

annihilation as in the case of dynamical Casimir effect [89–92].
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Moving to the interaction picture with respect to H̃0 = H̃O + H̃F to elimi-

nate the fast dynamics of the system and invoking RWA, we write the interaction

Hamiltonian in a simplified form as

H̃int ≡~
(
αOFb

†ae−i∆t + α∗OFba
†ei∆t

)
+ ~

(
αOMbei∆t + α∗OMb†e−i∆t

) (
c̃+ c̃†

)
+ ~

(
αMFa + α∗MFa

†) (c̃+ c̃†
)

(2.3)

Here the operators in the interaction picture are defined as {a,a†} ≡ {ãωeiωt, ã†ωe−iωt}

and {b, b†} ≡ {b̃eiΩt, b̃†e−iΩt} and the detuning ∆ ≡ ω − Ω represents the detun-

ing between the field and the idf. The operators {c̃, c̃†} correspond to the cre-

ation and annihilation operators for the phononic excitations of the mdf, with

Z̃ =
√

~
2Mf′

(
c̃+ c̃†

)
≡
√

~
Mf′Z and P̃ = −i

√
~Mf′

2

(
c̃− c̃†

)
≡
√
~Mf′P . The

operators Z and P are the dimensionless position and momentum fluctuations for

the mirror center of mass. In moving to the interaction picture we have ignored the

second order correction terms (∼ λ2/m) in the free field Hamiltonian H̃F .

The coefficients αijs represent the effective bilinear coupling strengths between

the single excitations of the three subsystems with

αOF ≡ −
iλ

2

√
Ω

mωε0L
= −i

√
ΩPΩc

2ωL
(2.4)

αOM ≡
ΩΦ0λ

2c

√
Ω

mMf′
= ΩΦ0

√
ΩPΩε0
2Mf′c

(2.5)

αMF ≡
ΩΦ0

2c

√
1

Mf′ωε0L

(
−iλ

2

m
+ 2ε0cωR

∗(ω)

)
=

ΩA0

L

√
~

2Mf′

(
−iΩP

ω
+R∗(ω)

)
(2.6)

where we have defined the dimensionless field amplitude A0 ≡ Φ0/
√

~
2ωε0L

.

It can be seen from (2.6) that for a perfectly reflecting mirror (R∗(ω)→ −1)
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the second term in the effective coupling strength αMF between the mdf and the

field is the same as what one finds from standard boundary condition approach [63].

We explain the correspondence with an imperfect mirror in section 2.2.

As we had pointed in (1.36) as well, the two terms in the effective mirror-field

coupling αMF denote the interaction mediated via the quantum fluctuations of the

idf and its classical amplitude respectively. It can then be seen that since the usual

boundary condition approach ignores the presence of the quantum fluctuations of the

internal degree of freedom, one misses out on the contribution from the first term.

Therefore, in the limit where |R(ω)| � |ΩP/ω|, the boundary condition approach

can no longer be a good description for the system dynamics.

We note that all the effective coupling strengths contain the idf mass and

charge parameters in the combination ∼ λ2/m which corresponds to the plasma

frequency ΩP (≡ λ2/(2mε0c)), meaning that one can deduce all the effective single

excitation couplings (αijs) from the two parameters that also completely character-

ize the reflection spectrum, Ω and ΩP as defined in section 1.4.2. Thus given the

reflection spectrum of a mirror, one can find the parameters ΩP and Ω, knowing

which at the various effective coupling strengths can be found. Fig.2.1 shows the

dependence of the reflection coefficient and these effective couplings on the dimen-

sionless plasma frequency (ΩP/Ω) and detuning (∆/Ω). This is expected since in

our treatment when considering the mean field solutions we assume that the center

of mass motion does not determine the idf -field interaction, particularly because

we assume non-relativistic center of mass motion and that the center of mass mo-

tion amplitude is restricted to the Lamb-Dicke limit such that it does not affect the
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classical optical properties. Therefore within the current approximations the mean

field amplitudes that determine the coupling between the quantum fluctuations of

the different subsystems can be deduced from the boundary condition approach.

It can also be observed from (2.4)–(2.6) that the coupling strengths increase as

the original idf -field coupling λ increases and decrease as the idf mass m increases,

meaning that a "lighter" idf leads to stronger effective coupling strengths. Also,

a heavier mirror CoM couples more weakly to the idf and the field. The effective

idf -field coupling αOF is independent of the driving field amplitude Φ0 as expected,

since as one sets the drive amplitude to zero it can be seen that there is no mirror-

field and idf -mirror interaction in second order except the idf-field coupling from the

direct interaction. To be able to see any coupling and hence entanglement between

the mirror and the field in that case one needs to include the higher order terms as

was discussed before.

We also note here that in the weak coupling regime where ΩP � 1, the mirror

reflectivity and the effective mirror-field coupling strength αMF as a function of

the idf -field detuning peaks sharply at resonance (∆ = 0) as seen from Fig.2.1(a)

and Fig.2.1(d). The field amplitude and detuning with respect to the idf change

the coupling strengths appreciably. While in the standard treatment of mirror-field

interactions via boundary conditions it is common to study the effect of the field

intensity on the mirror-field coupling, we highlight that including the presence of

idf lets us see the effect of the field-idf detuning on the mirror-field interaction,

allowing us to probe the effective coupling strength as a function of the reflection

properties of the mirror.
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(a)

(b)

(c)
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(d)

Figure 2.1: (a) Reflectance as a function of the dimensionless parameter ΩP/Ω

(ratio of the plasma frequency to the idf’s natural frequency) and the idf-field de-

tuning ∆/Ω. It can be seen that for weaker coupling corresponding to ΩP/Ω � 1,

the reflection spectrum has a sharper resonance. The effective bilinear coupling

strengths for both (b)idf -field (αOF ) and (c)idf -mdf (αOM) increase with increas-

ing plasma frequency as ∼
√

ΩP . (d)The effective mdf -field coupling coefficient

(αMF ) in the weak coupling limit is largely determined by the reflection coefficient,

while for strong coupling the fluctuation mediated part becomes relevant, as can be

seen from (2.6).

Now we use the interaction Hamiltonian (2.3) to write the equations of motion
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in terms of the coupling constants αijs as

dZ

dt
=f′P (2.7)

dP

dt
=− f′Z − 2 (ReαOMq− ImαOMp)− 2 (ReαMFΦ− ImαMFΠ)− ΓP + Ξ

(2.8)

dq

dt
=∆p− |αOF |Φ− 2ImαOMZ (2.9)

dp

dt
=−∆q − |αOF |Π− 2ReαOMZ (2.10)

dΦ

dt
=|αOF |q − 2ImαMFZ (2.11)

dΠ

dt
=|αOF |p− 2ReαMFZ (2.12)

wherein we have redefined the slow moving dimensionless idf and the field quadra-

tures as q ≡ bei∆t+b†e−i∆t
√

2
, p ≡ −ibei∆t−b†e−i∆t

√
2

, Φ ≡ a+a†√
2

and Π ≡ −ia−a†√
2
. Also,

to account for the fluctuation-dissipation mechanism for the mirror center of mass

resulting from its coupling to the thermal bath, we have introduced the mechanical

damping Γ and noise Ξ for the mirror. Invoking the Born-Markov approximation,

the correlation function of the noise is given as 〈Ξ (t) Ξ (t′)〉 = 4ΓkBTm
~f δ(t− t′), with

Tm as the temperature of the thermal bath.

Now let us consider that the idf is coupled to the continuum of field modes

with a coupling of the form q̇Φi, where Φi represents the ith field mode, leading to

a damping coefficient γf . Also, to mimic the scattering of surface charges by lattice

ions of the mirror, we introduce a dissipative bath of internal degrees of freedom

such that each bath oscillator is coupled to the idf with a coupling of the form q · qi,

where qi represents the position variable for the ith bath oscillator, giving an effective

damping coefficient of γi for the idf. We write the dynamics of the idf including the
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phenomenological damping and noise as

dq

dt
=∆p− |αOF |Φ− 2ImαOMZ − γfq + ξf (2.13)

dp

dt
=−∆q − |αOF |Π− 2ReαOMZ − γip + ξi (2.14)

where the correlators of the noise operators ξf and ξi in the Born-Markov approxi-

mation are given as 〈ξf (t) ξf (t′)〉 =
4γfkBTf

~Ω
δ(t−t′) and 〈ξi (t) ξi (t′)〉 = 4γikBTi

~Ω
δ(t−t′)

with Tf and Ti corresponding to the temperatures of the field and the idf bath.

Now using separation of time scales, we find the steady state idf amplitudes

as

qst = −γiĈ1 + ∆Ĉ2

∆2 + γiγf
(2.15)

pst =
∆Ĉ1 − γf Ĉ2

∆2 + γiγf
(2.16)

where the operators Ĉis stand for Ĉ1 ≡ |αOF |Φ + 2ImαOMZ − ξf and Ĉ2 ≡

|αOF |Π + 2ReαOMZ − ξi, considering that the dynamics of the idf happens at a

much faster timescale than all the other variables involved. We note that the steady

state amplitudes are small since {γi,f ,∆} exceed all the other time scales for the

separation of timescales to be self-consistent. For the case of near perfect reflection

since the detuning ∆ is small, for the steady state amplitudes to vanish, we must

have γi,f � ∆.

For the case of fast idf dynamics, we eliminate the idf from the equations of
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motion for the mdf to obtain the effective CoM motion as follows

d2Z

dt2
=− f′Z +

2

∆2 + γiγf

(
(ReαOMγi + ImαOM∆) Ĉ1 + (ReαOM∆− ImαOMγf ) Ĉ2

)
− 2 (ReαMFΦ− ImαMFΠ)− ΓP + Ξ (2.17)

=− f′′Z + gΦΦ + gΠΠ + Ξ′ (2.18)

where we have defined the new effective mechanical oscillation frequency and noise

as

f′′ ≡ f′ +
1

γiγf + ∆2

((
Reα2

OM + Imα2
OM

)
∆ + ReαOM ImαOM (γi − γf )

)
(2.19)

Ξ′ ≡ Ξ− 2

γiγf + ∆2
[(ReαOMγi + ImαOM∆) ξf + (ReαOM∆− ImαOMγf ) ξi]

(2.20)

and the effective mirror-field coupling coefficients are given by

gΦ ≡ −2ReαMF +
2 |αOF |
γiγf + ∆2

(ReαOMγi + ImαOM∆) (2.21)

gΠ ≡ 2ImαMF +
2 |αOF |
γiγf + ∆2

(ReαOM∆− ImαOMγf ) (2.22)

Here we note that the correction terms from that come from eliminating the idf

are small since we assume that for the validity of separation of timescales we have

{γi, γf ,∆} greater than all the other rates involved. Thus having eliminated the

idf from the equation of motion for the mirror CoM, we can rewrite the effective

radiation pressure force from (2.17) as

F st
RP ≡ gΦΦ + gΠΠ (2.23)

We note that while the dynamical variables corresponding to the idf have been

eliminated, the coefficients gΦ,Π are generally dependent on the idf parameters.
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To compare this with the case of an isolated idf, without any coupling to the

environment, we can identify the radiation pressure force from (2.8) as

F̃rad ≡ −2 (ReαOMq− ImαOMp)− 2 (ReαMFΦ− ImαMFΠ) (2.24)

Here we see that the linearized radiation pressure force depends on both the fluc-

tuations of the idf and the field variables. Hence as long as the idf fluctuations are

non-vanishing, the radiation pressure shot noise is determined by the shot noise of

both the field and the idf, meaning that in order to go below the standard quan-

tum limit for the radiation pressure force one needs to take into consideration the

squeezing of the idf quadratures in addition to those of the field [93,94].

Further, from (2.7)–(2.12) we write the solutions to the equations of motion

for the idf and the field variables as

q(t) = qh(t) +

∫ t

0

dt′Go(t− t′) (−∆|αOF |Π(t′)−∆αOMZ(t′) + 2|αOF |ImαMFZ(t′))

(2.25)

p(t) = ph(t) +

∫ t

0

dt′Go(t− t′) (∆|αOF |Φ(t′) + 2|αOF |ReαMFZ(t′)− αOMP(t′))

(2.26)

Φ(t) = Φh(t) +

∫ t

0

dt′Gf (t− t′) (∆|αOF |p(t′)− 2ImαMFP(t′)) (2.27)

Π(t) = Πh(t) +

∫ t

0

dt′Gf (t− t′) (−∆|αOF |q(t′)− |αOF |αOMZ(t′)− 2ReαMFP(t′))

(2.28)

Here we have defined the idf and the field Green’s functions asGO(t) ≡ sin(
√
|αOF |2+∆2t)√
|αOF |2+∆2

and Gf (t) ≡ sin(|αOF |t)
|αOF |

and the homogeneous solutions as {qh,ph,Φh,Πh}. It
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can be seen that the frequency of oscillations for the slow moving idf variables

is Ωidf ≡
√
|α2
OF |+ ∆2 and that for the slow moving field variables is Ωf ≡ |αOF |.

In the steady state limit, we can use these solutions to rewrite the equation of motion

for the late time mirror CoM dynamics as

M
(
∂2
t + f′2

)
Z(t) + Γ

dZ(t)

dt
+

∫ t

0

dt′Go(t− t′)
(
−∆α2

OM + 2αOF ImαMFαOM
)
Z(t′) =∫ t

0

dt′Go(t− t′) (2αOM∆|αOF |Π(t′)) +

∫ t

0

dt′Gf (t− t′) (2ReαMF∆|αOF |p(t′)

+2ImαMF∆|αOF |q(t′)) + Ξ (2.29)

On the left side one can identify the two terms in the integral as the retarded influ-

ence of mirror-idf-idf-mirror interaction and the mirror-idf-field-mirror interaction

respectively. The first term on the right side denotes the mirror being driven by

the idf-influenced field and the second term stands for the mirror being driven by

the field-influenced idf. We can see that in the absence of any detuning the CoM

motion is only driven by the thermal noise term.

At this point one can also make a crucial observation that for a strongly

damped idf coupled to two separate baths, if we compare the dynamics for the

mirror center of mass and the field with what one obtains from the usual boundary

condition considerations we obtain an agreement between the two if the steady state

idf amplitudes are vanishingly small. We illustrate this comparison in detail in the

following section.
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2.2 Comparison with the boundary condition approach

Let us consider the mirror-field interaction in terms of the radiation pressure

force exerted by the field on the mirror using the boundary condition approach, as

is prevalent in the literature. We assume that the mirror is generally imperfect and

interacts with a scalar field in a region of length L. Now similar to the approach

of [84], one can consider a co-moving frame of reference with respect to the mirror

center of mass to write the Lagrangian density of the field as ∼
(

1
2
εE ′2 − 1

2µ0
B′2
)
,

with E ′ and B′ being the electric and magnetic fields in the co-moving frame. Then

in the lab frame, the Lagrangian for the oscillating mirror+field system can be

written as

LBC =
1

2
MŻ2 − 1

2
Mf2Z2 +

∫ L

0

dx

[
1

2
ε
(
(∂tΦ)2 − c2 (∂xΦ)2)+ Ż (ε− 1) (∂tΦ) (∂xΦ)

]
(2.30)

where we have kept terms upto first order in Ż from the inverse Lorentz transfor-

mation, and the dielectric permittivity is defined as, say, ε (x) = ε0(1 + χδ(x− Z))

for an infinitely thin dielectric slab. Now in the non-relativistic limit, we drop the

velocity dependent term and obtain the Euler-Lagrange equation of motion for the

mirror center of mass as

Z̈ + f2Z = − 1

2M
ε0c

2 (∂xΦ)2 |Z̄+

Z̄−
(2.31)

which agrees with what we found in (1.8) in section 1.4.1 and also matches up with

equation (8) of [84] in the limit of an infinitely thin dielectric membrane where

d→ 0 and χ→∞. While [84] talks of a dielectric slab in a cavity, a more specific

53



situation than what we had considered in the simplistic MOF setup, at the level

of the formal expression for the radiation pressure force where we have left the

boundary conditions arising from the idf -field interaction unspecified we find an

agreement between the two approaches. This further reaffirms our intuition that

the difference between the a boundary condition approach and a microscopic model

arises when considering the dynamical participation of the idf explicitly, which in

the above expression would show up as the difference in the field configurations on

the RHS.

Now, we use the radiation pressure force
(
FRP ≡ − 1

2M
ε0c

2 (∂xΦ)2 |Z̄+

Z̄−

)
from

the above expression to write the linearized Hamiltonian for the mirror+field system

as

H̃BC =
~f
2

(
P 2 + Z2

)
+

∫ L

0

dx

(
Π̃2

2ε0
+
ε0
2
c2
(
∂xΦ̃

)2
)
− ε0c2

(
∂xΦ̄∂xΦ̃

)
|Z̄+

Z̄−
ZZPMZ

(2.32)

where we use the dimensionless position and momentum fluctuations Z and P for

the mirror center of mass as in (2.7)–(2.12).

Now assuming that the field has only one mode, we use the plane wave ansatz

in (1.18) for the classical part of the field and (2.1) for the quantum fluctuations to

rewrite the Hamiltonian as

H̃BC =
~f
2

(
P 2 + Z2

)
+ ~ωa†a− ~

(
Ω

L
ZZPMA0

)
(R∗ (ω)a +R (ω)a†)Z (2.33)

Here the pre-factor
(

Ω
L
ZZPMA0

)
in the interaction term is the standard optome-

chanical coupling as in [63] with ZZPM ≡
√

~
Mf as the zero point motion length for

the center of mass motion and A0 as the dimensionless field amplitude. We note
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that here we have implicitly assumed a weak mirror-field interaction so that the

quantum fluctuations of the field on the either side of the mirror remain uniform in

the space without any discontinuity across the mirror center of mass position.

Now moving to a rotating frame with respect to the free field Hamiltonian(
HF ≡ ~ωa†a

)
leads us to the following equations of motion for the dimensionless

field and mirror variables

dZ

dt
= fP (2.34)

dP

dt
= −fZ +

√
2ReβMFΦ−

√
2ImβMFΠ− ΓP + Ξ (2.35)

dΦ

dt
=
√

2ImβMFZ (2.36)

dΠ

dt
=
√

2ReβMFZ (2.37)

where we have defined the effective mirror field coupling strength from the boundary

condition approach as

βMF ≡
Ω

L
ZZPMA0R

∗ (ω) (2.38)

It can be seen that in the weak coupling limit (ΩP/Ω� 1), the effective mirror-

field coupling coefficient in (2.6) reduces to αMF ≈ −βMF/
√

2 and in the limit of

vanishingly small idf fluctuations the coupled mirror-field equations of motion in

(2.7), (2.8), (2.11) and (2.12) are the same as (2.34)–(2.37). From (2.15) and (2.16),

it can be seen that the steady state idf amplitudes are negligibly small in the strong

idf damping and/or large idf -field detuning regime.

To further demonstrate an agreement between the two approaches, in Fig. 2.2

we look at the mirror-field entanglement found from the boundary condition ap-

proach and the MOF model. We find that, as expected for a strongly damped
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internal degree of freedom one sees a perfect overlap of the log negativity from ei-

ther approach. More importantly, we also note that that when the idf is undamped

one can possibly get a larger steady-state optomechanical entanglement.
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Figure 2.2: Evolution of mirror-field entanglement as measured by the logarithmic

negativity EMF (see Appendix A for definition) as obtained from the boundary

condition approach and the coupled MOF dynamics. We find that for an isolated

idf the time scale for entanglement is largely determined by the effective idf-field

coupling (αOF ). The two approaches concur in the weak coupling limit for a strongly

damped idf as seen from the overlap of the solid blue and dashed yellow curves

(the differences between the two are too small for the resolution of the plot). The

parameters values, in natural units where c=1, ~ = 1 and e =
√

4πα used here are

m = 0.001, Ω = 100, M = 10, f = 0.1, ΩP = 0.05, A0 = 10−4 and Tm = Ti = 0.1.

The effective idf-field coupling strength, |αOF |/f ≈ 16, determines the time scale

for entanglement dynamics for the case of an undamped idf.
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2.3 Entanglement dynamics in the coupled MOF system

In this section we briefly outline a method for calculating the covariance matrix

for the coupled MOF system numerically and use it to obtain the entanglement

between the mirror CoM and the field as a function of various parameters involved.

To evaluate the covariance matrix of the three coupled subsystems one can find the

normal modes of the system from (2.7)–(2.12) and their time evolution to obtain

the expectation values of the operator correlations numerically. Defining the MOF

covariance matrix VMOF as

VMOF =


VMM VMF VOM

VT
MF VFF VOF

VT
OM VT

OF VOO

 (2.39)

where the on-diagonal sub-matrix Vkk stands for the covariance matrix of the kth

reduced subsystem, defined as (Vkk)ij ≡
1
2

〈
{X(k)

i , X
(k)
j }
〉
, with X

(k)
i and X

(k)
j

representing the i and j quadratures corresponding to the position and momentum

variables of the kth reduced subsystem, more explicitly X(k) ≡ {x̃(k), p̃(k)}. Here,

{O1,O2} denotes the anti-commutator between the operators O1 and O2. The off-

diagonal sub-matrix Vkl consists of the correlations between the kth and the lth

subsystems, such that (Vkl)ij ≡
1
2

〈
{X(k)

i , X
(l)
j }
〉
, where the i and j quadrature

components belong to different subsystems. The average is taken over the initial

density operator of the three subsystems at t = 0 which we assume to be in a

thermal state with a temperature determined by that of the corresponding bath.

57



More explicitly, the initial density matrix of the overall system can be written as

ρ(0) = ρTmM ⊗ ρ
Ti
i ⊗ ρ

Tf
f (2.40)

where the density matrix ρTkk for subsystem k corresponds to a thermal distribution

with temperature Tk.

To specifically find the CoM-field entanglement, we then choose to look at

the part of the covariance matrix that represents the mirror CoM and field reduced

covariance matrices and correlations, that is,

VMF =

 VM VMF

VT
MF VF

 (2.41)

and find the logarithmic negativity EMF
N as obtained based on the positive partial

transpose (PPT) criteria for determining separability (see Appendix A for details).

It can be shown that calculating the MF entanglement from the sub covariance

matrix VMF is equivalent to coarse-graining over the internal degree of freedom and

then finding the MF entanglement, we illustrate this point in detail in Appendix B.

Having found the reduced covariance matrix for the coupled mirror CoM and

field mode, we now consider the entanglement dynamics between the two as a func-

tion of the various parameters involved. The parameters pertaining to the three

subsystems and the assumptions made are summarized in table 2.1.

For example, in the previous section in Fig. 2.2, we looked at the entanglement

between the mirror center of mass and the field as a function of the idf damping

rates γi and γf . As pointed earlier the boundary condition limit is approached when

the internal degree of freedom is strongly damped, which makes physical sense since
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Mirror center of mass Mirror’s internal degree

of freedom

Field

f (Frequency of the me-

chanical oscillator)

Ω (idf resonance fre-

quency)

ω (Frequency of the

field mode)

M (Mirror mass ) ΩP (idf -field coupling) Φ0 (Field amplitude)

Γ (Mechanical damp-

ing)

γf , γi (idf damping

rates from interaction

with the two baths)

ΓF (Field mode damp-

ing)

Tm (Mechanical bath

temperature)

Tf , Ti (Field and idf

bath temperatures)

Tf (Field bath tempera-

ture)

Table 2.1: Parameters pertaining to the three subsystems – the mirror’s mdf , idf

and the single mode field Φω. The assumptions restricting these parameters in our

analysis are 1.) f� Ω, for a slow-moving mirror, 2.) weak-coupling between the idf

and the field such that ΩP � Ω, 3.) ∆ � Ω for the rotating-wave approximation,

4.) |Φ0|2 � Mf2c
Ω3ε0

for weak-driving to ensure small amplitude of the mirror motion

and 5.) Markovian noise and Ohmic dissipation for the three subsystems, such that

~Γ� kBTm and ~γi,f � kBTi,f .

one would expect that an instantaneous response from the idf should correspond to

the limit γi,f/Ω� 1. We note that in our simplistic model of the internal structure

of the mirror one requires two baths to see this correspondence, so that the steady

state amplitudes for the idf go to zero. For realistic mirrors, the effect of coupling
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to one of the baths would correspond to the presence of many internal degrees of

freedom as we suggested earlier. It can also be observed from Fig. 2.2 that for an

isolated idf there are faster oscillations at a frequency determined by the effective

idf -field coupling coefficient |αOF |. This can be understood from considering the

solutions to the equations of motion for an isolated idf (2.25)–(2.28). We also note

that on increasing the idf damping there is a smaller steady state entanglement

between the mirror CoM and the field for the chosen set of parameter values as

detailed in the caption of Fig. 2.2. Similarly, it can also be seen from (2.15) and

(2.16) that if the field mode is far detuned from the resonance of the idf , then

the idf amplitudes vanish as well. For a far detuned field, the boundary condition

limit can be observed with only one of the damping rates (γi or γf ) being large.

On the other hand, if the detuning of the field mode is small with respect to the

internal resonance and the idf is underdamped, we expect to see a deviation from

the boundary condition approach. For this parameter regime one can observe some

interesting features in the entanglement dynamics as shown in Fig. 2.3. As was

discussed before, at the idf -field resonance (∆ → 0) the reflection coefficient and

hence the effective mirror-field coupling strength goes to its maximum value (See

Fig.2.1(a) and Fig. 2.1(d)). As a result, we observe in Fig.2.3 that there is a peak in

the mirror-field entanglement near idf -field resonance. This effect is not considered

in the standard treatment of optomechanical interactions since the internal degree

is coarse-grained over a priori to arrive at the boundary conditions for the field. The

peak in the entanglement is more pronounced in the weak-coupling regime where

the reflection coefficient has a sharper peak at resonance as seen from Fig.2.1(a) and
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Figure 2.3: Mirror-Field entanglement given by the logarithmic negativity for an

undamped idf as a function of the dimensionless idf -field detuning (∆/f) and di-

mensionless time (Ωt). We observe that the entanglement peaks for a resonant

idf-field interaction at (∆/f = 0) and for ∆/f = −1 (Ω = ω + f), the entangle-

ment is sustained for longer times. The oscillation time scales are determined by

the effective idf-field coupling (|αOF |). The parameters values, in units where c=1,

~ = 1 and e =
√

4πα, used here are m = 0.001, Ω = 100, M = 10, f = 0.1,

ΩP = 0.05, A0 = 10−4 and T = 1000.

Fig.2.1(d). It can also be observed that for ∆/f = −1 or equivalently Ω = ω+f, the

entanglement is sustained for longer times. Physically, this pertains to the process

wherein a field photon and a mirror phonon combine to give a single idf excitation

(or vice versa), corresponding to the two-mode squeezing Hamiltonian which then

entangles the field and the mirror modes as a result of the interaction. Such an

observation had also been made in [63] for the case of a cavity driven with a red

detuned drive in the sideband resolved regime where it was shown that the steady

61



state entanglement goes to a maximum when the cavity-drive detuning was equal

to the mechanical oscillation frequency. Drawing an analogy between the two cases,

we find that cavity resonance for the usual cavity optomechanical setups is similar

to the idf in the MOF model in that they both mediate the interaction between the

mechanical motion of the mirror and the external field.

In the following subsection, we consider the case of an atom interacting with

a field as an example to make some numerical estimates for a realistic setup .

2.3.1 Atom-Field Optomechanical Entanglement from the MOF model

Let us consider an atom interacting with at single mode cavity field as an

optomechanical element described by the MOF model. As we have pointed earlier

for the case of an isolated atom the role of its internal electronic degrees of freedom

is indispensable. Here we use the MOF model to describe the atom-field interaction

within a cavity, using some typical numbers from the experiment by Maunz et

al. [95,96] to find the entanglement between the atomic CoM motion and the field.

First we show that our analysis is readily generalizable to 3+1 dimensions by

changing the normalization factors for the field appropriately. Rewriting the original

action as

S =

∫
dt

[(
1

2
MṘ

2 − 1

2
Mf2R2

)
+

(
1

2
mq̇2 − 1

2
mΩ2q2

)
+

∫
d3r

ε0
2

{
(∂tΦ)2 − c2 (∇r ×Φ)2 + λq̇ ·Φδ3(r −R)

}]
(2.42)

where R now refers to the mirror’s CoM coordinates, q is the 3 dimensional idf

amplitude, say, representing the motion of an electron within the atom and Φ is the
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vector potential of the EM field. We note here that the dimensions of the vacuum

permittivity change from ε
(1D)
0 ∼ (Charge)2(Time)2

(Mass)(Length)
to ε(3D)

0 ∼ (Charge)2(Time)2

(Mass)(Length)3 by a factor

of (Length)−2. In the following we shall argue that this factor roughly corresponds

to the cross sectional area of the driving field. Similarly, for the quantized field the

normalization factor becomes
√

~
2ε0ωL

→
√

~
2ε0ωAL . Also, for relating the power P

of the incident drive to the vector potential, one would use Φ0 = 1
ω

√
P
Aε0c instead of

Φ0 = 1
ω

√
P
ε0c

in 1+1 dimensions.

From (2.42) it can be seen that the equations of motion for the classical solu-

tions of the coupled field and idf degrees of freedom as in (1.3) and (1.4) for 3+1 D

become

¨̄q + Ω2q̄ = − λ
m

˙̄Φ
(
R̄, t

)
(2.43)

ε0

(
¨̄Φ (r, t)− c2∇2

rΦ̄ (r, t)
)

= λ ˙̄qδ3(r − R̄) (2.44)

Now considering that we have a driving field of the form Φ = Φ0
Ω
ω
f(x, y)g(z, t),

where f(x, y) represents the gaussian transverse mode function of the field and the

longitudinal part g(z, t) similar to the 1+1 D plane wave ansatz can be written as

g(z, t) = e−iωt
[(
eikzz + e−ikzzR(ω)

)
Θ(Z̄ − z) + eikzzT (ω)Θ(z − Z̄)

]
+H.C. (2.45)

For the purposes of rough estimation we assume that the atom does not scatter in the

transverse directions such that the transverse mode function f(x, y) is continuous

across the position of the atom. Integrating the field equation of motion (2.44)

around the position of the atom Z̄ in z and over the x-y plane, we obtain the

63



“electron current”

λ ˙̄q = −ε0c2Φ0
Ω

ω

(∫ ∞
−∞

dx

∫ ∞
−∞

dyf(x, y)

)
∂z (g(z)) |Z̄+

Z̄− (2.46)

= −2iε0kzcΦ0
Ω

ω
AR(ω)e−iωt +H.C. (2.47)

where in the last step we have replaced the integral over the transverse mode function

A ≡
(∫∞
−∞ dx

∫∞
−∞ dyf(x, y)

)
by defining the cross-sectional area of the incident

beam as A.

Also, solving for steady-state idf dynamics from (2.43) we find

λ ˙̄q =
−ω2λ2

m (ω2 − Ω2)

Ω

ω
Φ0f(X̄, Ȳ )T (ω)e−iωt +H.C. (2.48)

Further assuming that the normalized mode function f(X̄, Ȳ ) = 1 at the atomic

CoM position, from (2.47) and (2.48) one can obtain the reflection coefficient as

R(ω) =
−iλ2ω

iλ2ω + 2mAε0c(ω2 − Ω2)
=

−iΩ(3D)
P ω

iΩ
(3D)
P ω + (ω2 − Ω2)

(2.49)

where we have defined the 3D plasma frequency as

Ω
(3D)
P ≡ λ2

2mε0cA
(2.50)

Thus, from the above expression and general dimensional considerations it can be

seen that in going from 1+1 D to 3+1 D, one can replace the vacuum permittivity

by ε0 → ε0A, where A is some characteristic cross-sectional area, which in this case

corresponds to the cross section of the beam.

Now to identify the various degrees of freedom from our model in the given

setup, we note that the atomic CoM motion corresponds to the mechanical degree

of freedom, assuming that the atom sits in a harmonic trapping potential, such that

64



we have for the mdf parameters – M = 1.4 × 10−25 kg as the atomic mass of Rb85,

f ≈ 100 kHz as the trap frequency from [96], Γ ≈ 10s−1 from typical trap lifetimes

as in [95,96] and temperatures for the mechanical bath as Tm ∼ 1 mK.

For the field, we choose ω = Ω + ∆a, where ∆a ≈ 100 MHz is the detuning of

the cavity field with respect to the atomic resonance. The cavity damping rate for

a typical Q ≈ 5×105 is ΓF ∼ c
QL
≈ 2.5MHz, given the cavity length of L = 120µm.

We assume the input power to be P ≈ 0.01 pW, such that Φ0 = 1
ω

√
PQ
Aε0c ≈ 2×10−14

Vs/m, where the beam cross sectional area A ≈ 7× 10−10 m2. The vector potential

associated with a single photon is Φ00 ≈ 1.7× 10−13 Vs/m. We note that the power

inside the cavity is enhanced by the quality factor and one would like to ensure that

it remains small enough so that the higher lying levels in the harmonic oscillator

model of the idf do not get populated.

The internal degree of freedom can be identified as the electronic transitions

between the different levels of the atom, which we assume to be harmonic as well with

a frequency given by the transition frequency for the 52S1/2F = 3 ↔ 52P3/2F = 4

transition, such that Ω/(2πc) ≈ 1
780×10−9 m−1. While the linear model is not a very

good approximation generally, in the weak-excitation limit one can map it to the

two-level approximation, where it should work as well.

From (2.50), the “plasma frequency” is given as ΩP = e2

2meε0cA ≈ 7.5× 103 Hz.

Considering that the atom-electric field dipole coupling for a single photon (vac-

uum Rabi frequency) in our model can be expressed as ~g = e
me
pzpfΦzpf , where

pzpf =
√

~meΩ
2

and Φzpf =
√

~
2ωε0AL are the zero point fluctuations of the electron
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momentum and the field vector potential, such that

g(MOF ) =
e√

2meε0cA

√
Ωc

2ωL
=
√

ΩP

√
Ωc

2ωL
(2.51)

Evaluating this for the given parameter values we find g(MOF ) ≈ 97 MHz,

which agrees extremely well with the value of the vacuum Rabi frequency g ≈ 100

MHz from [95].

The damping rate for the idf is given by the cavity modified damping γf ≈

10 MHz from the coupling of the electron to the field mode continuum. We note that

there is only one bath for the idf in this case unlike what we had considered earlier

when comparing our model with the boundary condition approach. Thus setting

γi = 0, we observe that for small enough detunings the coupled motion-spin-field

dynamics for an atom interacting with the field will differ from those obtained from

boundary condition considerations, this can be seen from comparing (2.7), (2.8),

(2.11) and (2.12) to (2.34)–(2.37) respectively.

Using these parameter values we find the effective coupling strength between

the idf and the field as αOF ∼ 0.1 GHz, the effective idf-mdf coupling as αOM ∼ 60

MHz and the effective mdf- field coupling to be αMF ∼ 60 MHz. We note that the

reflection coefficient being small R(ω) ∼ 10−4, the imaginary part of the effective

mdf-field coupling coefficient from the fluctuation mediated coupling is much larger

than that mediated by the classical idf amplitude, such that ImαMF/ReαMF ∼ 1013,

which also alludes to the fact that one can not use boundary conditions to describe

the dynamics for the coupled atom-spin-field system.
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(a) Entanglement between the atomic CoM motion and the field mode as a function

of the detuning of the field with respect to the atomic resonance frequency Ω and

time. We fix all the other parameters as Q = 5 × 105 for the quality factor of the

cavity, L = 120µm for the cavity length, A ≈ π(15µ m)2 for the field cross sectional

area, P = 0.01 pW for the driving field power, 2πc/Ω = 780 nm for the idf resonance,

m = me for the idf mass, λ = e for the idf -field coupling strength, γf ≈ 18 MHz for

the idf damping, M = 1.4×10−25 kg for the atomic mass, f = 100kHz for the trap

frequency, Tm = 1 mK for the temperature of the mechanical and Ti = Tf = 100 K

for the field and the idf bath temperatures.
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(b) Entanglement between the atomic CoM motion and the field mode as

a function of the temperature of the mechanical bath, all the other values

being fixed as detailed in (a) and the field detuning set at 100 MHz.

(c) Atom-field optomechanical entanglement as a function of the cavity Q

factor, which changes the field damping rate and the field amplitude in turn,

all the other values being fixed as detailed in (a) and the field detuning set

at 100 MHz.

Figure 2.3: Optomechanical entanglement between the motion of a trapped atom in

a cavity and the cavity field, with parameter values taken from the experiment by

Maunz et al. [95]. We choose different values of the field detuning, temperature for

the mechanical bath and cavity Q factors.
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Chapter 3: TwoMirror Interaction in the Mirror-Oscillator-Field (MOF)

model

While quantum mechanics has been exceedingly successful in describing a

range of physical phenomena in the quantum realm, the emergence of classical be-

havior from quantum theory still remains to be understood at a concrete level. For

example, there is no detailed explanation as to why the quintessential features of

quantum theory such as superposition and entanglement disappear as one goes to

macroscopic scales. Several existing justifications for such observations range from

the lack of experimental sophistication, in that one can not isolate the system well

enough from its environment to prevent decoherence, to more fundamental con-

straints coming from models that allude to a more complete theory including grav-

itational effects [106]. As both experimental and theoretical efforts to gain more

insight into macroscopic quantum mechanics and quantum-to-classical transitions

grow, given its extensive range of experiments in terms of length and mass scales,

optomechanics provides an ideal testbed for studying these issues.

The issue that we address in this chapter is that of entanglement between

two mechanical degrees of freedom, which, given the susceptibility of quantum cor-

relations to environmental influences, is a challenging phenomenon to observe for
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macroscopic objects. Entanglement between two mechanical oscillators was first

experimentally demonstrated by Jost et al [107], with the vibrational modes of two

individual ion pairs representing the two mechanical degrees of freedom. The es-

sential idea of the experiment was to entangle the spins of two ion pairs which can

be accomplished with high fidelity, followed by transferring the spin-spin entangle-

ment on to the motional degrees of freedom of the ion pairs. While this experiment

explicitly leveraged the internal degrees of the mechanical oscillators to create two

entangled mechanical oscillators, other proposed experimental schemes that talk

about entanglement of larger mechanical systems such as that between two dielec-

tric membranes suspended in a Fabry-Perot cavity [108] and µg scale mirrors in a

ring cavity setup [109], are based on the conventional boundary condition approach

without any reference to the mirrors’ internal structures.

In this chapter we look at the entanglement between the mechanical degrees

of freedom of two mirrors in the MOF model. Introducing an additional mirror

that possesses an internal and a mechanical degree of freedom of its own to our

previous setup, we consider the classical and quantum dynamics of the coupled mir-

ror+field+mirror system and study the entanglement between the two mechanical

degrees of freedom pertaining to the two mirrors. As we have highlighted earlier,

one of the advantages of using the MOF model is that one can bridge the disparity

in the theoretical treatments of setups at different scales such as between atomic

scale mechanical oscillators and nanoscale mirrors. It can even allow for coupling

two different “kinds” of mirrors as in the state-of-the-art hybrid setups where, for

example, one can couple a dielectric membrane to an atomic ensemble [49, 50]. In
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the following, we first introduce the setup in consideration in section 3.1, study its

classical dynamics and optomechanical properties in section 3.2, then moving to a

quantum mechanical description of the system dynamics in section 3.3 we study

the specific case of a single mode field interacting with the two mirrors in section

4.1 to arrive at the entanglement between the mirrors’ centers of mass in 4.1.2. We

also demonstrate the correspondence between the boundary condition approach and

MOF model as applied to the two mirror setup in 4.1.1. Lastly, in 4.1.3 we apply

our theory to the case of two atoms interacting with a common field and study the

entanglement between the motion of two individual atoms.

3.1 The Mirror-Oscillator-Field-Oscillator-Mirror (MOFOM) setup

Let us consider two mirrors M1 and M2 interacting with a massless scalar

field in (1+1)-dimensional space-time. As before, each mirror is described by two

independent degrees of freedom – an internal degree of freedom (idfj) modeled by a

harmonic oscillator of massmj and frequency Ωj, and a mechanical degree of freedom

(mdfj) with a mass Mj in a harmonic potential of frequency fj, with j = {1, 2}, as

shown in Fig.3.1. We assume that the mirror M1 is located at x = 0 and M2 at

x = d, separated by a distance d.

As before, the two internal degrees of freedom of the mirrors idf1 and idf2 are

bilinearly coupled to the field and constrained to be at the center of mass positions

Z1 and Z2 respectively, leading to an effective interaction between the field and the

two mechanical degrees of freedom and, as a consequence, an effective interaction

71



Figure 3.1: Schematic representation of the interaction of two mirrorsM1 andM2

with a field via their internal degrees of freedom. A classical field incident from the

left onM1 gets reflected and transmitted at the two center of mass positions, x = 0

and x = d. Each mirror is a composite of an internal and a mechanical degree of

freedom, described by four separate harmonic oscillators of masses and frequencies

given by {mj,Ωj} and {Mj,fj} respectively.

between the two mechanical degrees of freedom as well. The optical properties of

the system arise from the coupling of the two internal degrees of freedom to the field

as in the case of a single mirror.

We allow the two mirrors to possess different mechanical properties and in-

ternal structures such that, in general, M1 6= M2,f1 6= f2,m1 6= m2,Ω1 6= Ω2 and

λ1 6= λ2, so that one can potentially study the entanglement between two different

kinds of mirrors. As before we assume that the idf -field dynamics happen at much

faster time scales compared to those of the mechanical motion, such that Ωj � fj
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for both the mirrors.

Assuming non-relativistic center of mass motion for the mirrors, we write the

action for the coupled mirrors+field system as

S =

∫
dt

[∫
dx
ε0
2

(
(∂tΦ)2 − c2 (∂xΦ)2)+

∑
j=1,2

{(
1

2
MjŻj

2 − 1

2
Mjf2

jZ
2
j

)

+

(
1

2
mj q̇

2
j −

1

2
mjΩ

2
jq

2
j

)
+

∫
dxλj q̇jΦδ(x− Zj)

}]
(3.1)

where we denote the center of mass positions of the two mdf s by Z1,2(t), the ampli-

tude of the idf s by q1,2(t) and the scalar field by Φ(x, t). There are two interaction

terms that couple both the idfs to the field depending on the respective center of

mass positions Zj, thereby giving a radiation force on the mirrors. We note that

there is no direct coupling between the degrees of freedom pertaining to separate

mirrors, internal or external, and all the interactions between the two mirrors are

mediated via the field. Thus, the separation of the two mirrors plays an important

role in determining the effective interaction between the mirrors as the relative cou-

pling of the field to each idf depends on the distance d between the two center of

mass positions.

Again, in the electromagnetic correspondence we identify λ as the surface

charge density, choosing the coupling λ to have the dimensions of the electronic

charge e and Φ(x, t) to have the dimensions of the vector potential A. In a more

generalized version of our present work, depending on the optical behavior of the

two mirrors, one could also allow for the individual mirrors to have different forms

of the idf -field coupling. For example, one might want to use a ∼ qΦ coupling term

for one of the two mirrors as in [1] and ∼ q̇Φ coupling for the other, choosing the
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appropriate form depending on the optical properties of the mirror as discussed in

section 1.4.2.

In the following section we study the classical dynamics of the coupled mir-

ror+field+mirror system, to obtain the optomechanical properties as in section 1.4.

3.2 Classical Optomechanical properties

In this section we consider the classical optical and mechanical properties

of the two mirror system in the MOF model, starting with deriving the coupled

equations of motion for the classical amplitudes of the two mdf s, the idf s and

the field {Z̄j, ˙̄Zj, q̄j, ˙̄qj, Φ̄,
˙̄Φ}, where j = {1, 2} stands for the variables pertaining

to the mirror Mj. Expanding the action (3.1) up to first order in the deviations

{δZj, δŻj, δqj, δq̇j, δΦ, δΦ̇} from the mean field values

S1 =

∫
dt

∫
dx
[
ε0

(
˙̄ΦδΦ̇− c2∂xΦ̄δ(∂xΦ)

)]
+
∑
j=1,2

[
Mj

˙̄ZjδŻj −Mjf2
j Z̄jδZj

+
(
mj ˙̄qjδq̇j −mjΩ

2
j q̄jδqj + λj ˙̄qjδΦ

(
Z̄j, t

)
+ λjΦ̄

(
Z̄j, t

)
δq̇j + λj ˙̄qj∂xΦ̄

(
Z̄j, t

)
δZj
)]

(3.2)

=

∫
dt

[∑
j=1,2

{(
− d

dt

(
Mj

˙̄Zj

)
−Mjf2

j Z̄j + λ ˙̄qj∂xΦ̄
(
Z̄j, t

))
δZj

+

(
− d

dt

(
mj ˙̄qj + λjΦ̄

(
Z̄j, t

))
−mjΩ

2
j q̄j

)
δqj

}
+

∫
dx

(
−ε0

d ˙̄Φ

dt
+ ε0c

2∂2
xΦ̄ +

∑
j=1,2

λj ˙̄qjδ(x− Z̄j)

)
δΦ

]
(3.3)
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one arrives at the following equations of motion for the two mirrors’ mechanical and

internal degrees of freedom (j = 1, 2) respectively

¨̄Zj + f2
j Z̄j =

λj ˙̄qj
Mj

∂xΦ̄
(
Z̄j, t

)
(3.4)

¨̄qj + Ω2
j q̄j = − λj

mj

˙̄Φ
(
Z̄j, t

)
(3.5)

and for the field we obtain

ε0

(
¨̄Φ (x, t)− c2∂2

xΦ̄ (x, t)
)

=
∑
j=1,2

λj ˙̄qjδ(x− Z̄j) (3.6)

One can make several observations at this point as for the case of a single mirror.

Firstly, as seen from (3.6), the two moving idf s act as point sources for the field,

each located at Z̄1,2(t). The idf s are in turn driven by the “electric field” evaluated

at the center of mass positions
(

˙̄Φ
(
Z̄j(t), t

))
for the respective mirrors, as can be

seen from (3.5). From (3.5) it can be seen that the two CoMs for the mirrors are

driven non-linearly by the respective Lorentz forces acting on their “surface charge

currents” (λj ˙̄qj) in the presence of a “magnetic field”
(
∂xΦ̄

(
Z̄j(t), t

))
at their center

of mass position. We also note from (3.6) that it is the field that carries the influence

of the dynamics of each mirror, hence mediating an effective interaction between the

two.

As before, we shall assume that the mirrors’ center of mass motion is non-

relativistic
(∣∣∣dZ̄j

dt

∣∣∣� c
)
, meaning that we ignore the corrections coming from the

Doppler shift seen by the surface charges and their consequent response. Further,

we assume that the center of mass motion for both the mirrors is small in amplitude

compared to the wavelength of the field modes that are nearly resonant with the
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internal degrees of freedom for the two mirrors, so that one can ignore the backreac-

tion of the center of mass motion on the interaction between the respective idf s and

the field. In the following two subsections we solve the coupled equations of motion

within these assumptions to obtain the classical amplitudes of the mirror and field

degrees of freedom for the case where an incident field drives the system.

3.2.1 Classical Radiation Pressure Force

Let us consider the dynamics of the center of mass motion for the mirror

Mj. From integrating the field equation of motion (3.6) around the center of mass

position Z̄j, we see that there is a discontinuity in the field spatial derivative. As

in section 1.4.1, this can be understood as the equivalent of Ampere’s law such that

a discontinuity in the magnetic field (∂xΦ̄ ∼ B) across the mirror center of mass

positions Z̄j, leads to an induced surface charge current ˙̄qj.

We find the surface charge current forMj as

λ ˙̄qj = −ε0c2∂xΦ̄|
Z̄+
j

Z̄−j
(3.7)

Eliminating the idf s from the center of mass dynamics in (3.4), defining the spatial

derivative of the field at each center of mass position as

∂xΦ̄
(
Z̄j, t

)
≡
(
∂xΦ̄

(
Z̄+
j , t
)

+ ∂xΦ̄
(
Z̄−j , t

))
2

(3.8)

we rewrite equation of motion for the two mdf s

¨̄Zj + f2
j Z̄j = − 1

2Mj

ε0c
2(∂xΦ̄)2|Z̄

+
j

Z̄−j
(3.9)
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It can be seen from above that the radiation pressure force on the mirrors’

CoMs is given by the discontinuity of the energy density across their center of mass

positions, which, considering that the electric field at either mirror CoM position

vanishes in the co-moving reference frame for a perfect mirror, goes as ∼ B2

2µ0

∣∣∣
Z̄−j

akin to [68]. The more general case of imperfect mirrors was discussed in section 2.2

where we showed that the radiation pressure force from the RHS of (3.9) does indeed

correspond to the formal expression that one obtains from a boundary condition

approach such as in [84]. However, we note that since the field configuration instead

of being governed by some fixed boundary conditions is determined by the dynamical

interaction between the field and the two moving idf s the radiation pressure force

evaluated from the two approaches is in fact different. To see this more explicitly,

we consider the coupled dynamics of the two idf s and the field, writing the solution

for the equations of motion for the internal degrees of freedom as

q̄j(t) = q̄
(h)
j (t) +

∫ t

0

dt′G
(i)
j (t− t′)

(
− λj
mj

˙̄Φ
(
Z̄j(t

′), t′
))

(3.10)

where we define q̄(h)
j as the homogeneous solution for the free evolution of idf j and

G
(i)
j (t−t′) ≡ sin(Ωj(t−t′))

Ωj
as the Green’s function for the idf j. We use this to eliminate

the two idf s from the field’s equation of motion to get

ε0
(
∂2
t − c2∂2

x

)
Φ̄ (x, t) +

∑
j=1,2

λ2
j

mj

δ
(
x− Z̄j(t)

) ∫ t

0

dt′∂tG
(i)
j (t− t′) ˙̄Φ(Z̄j(t

′), t′)

=
∑
j=1,2

λj ˙̄q
(h)
j δ

(
x− Z̄j(t)

)
(3.11)

Here one can identify the second term on the left hand side as the backreaction of
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the moving idf s on the field, thus the field configuration depends on the coupled

dynamics of the field, the internal degrees of the mirrors and their center of mass

positions. In contrast with the case where one applies boundary conditions on the

two mirrors, here one includes the full dynamics of the internal degrees instead of

assuming a steady state response. We will study this point further in the next

section as we look at the optical properties of the two mirror system for the case of

a single field mode.

3.2.2 Optical properties

Let us consider a single mode field at frequency ω and amplitude Φ0 driving the

two mirrors’ idf s. Assuming that the CoM motion for both the mirrors about their

equilibrium positions at x = 0 and x = d is small enough such that the interaction

of the field with the respective idf s remains unaffected by the CoM motion of the

mirrors, we make the following plane-wave ansatz for the field

Φω (x, t) = Φ0
Ω0

ω
e−iωt

[
Θ(−x)

{
eikx +R1 (ω) e−ikx

}
+ (Θ(x)−Θ(x− d))

{
T1 (ω) eikx +R2 (ω) e−ik(x−d)

}
+Θ(x− d)T2 (ω) eik(x−d)

]
+H.C. (3.12)

where we assume that the field is incident from the left onM1 as in Fig. 3.1, and

R1 (ω) and T2 (ω) are the overall reflection and transmission coefficients for the two

mirror system, while T1 (ω) and R2 (ω) represent the amplitudes of the left and right

moving field components in the region between the two mirrors. We note that the

absolute value of the coefficients T1 (ω) and R2 (ω) can exceed 1, meaning that there
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is a buildup of the field within the “cavity” formed between the two mirrors. The

reflection and transmission coefficients for the overall system (R1 (ω) and T2 (ω))

are indeed restricted to be less than 1 in magnitude. We have further assumed that

the damping coming from the interaction of the two idf s with the remaining field

modes is negligibly small. From imposing continuity on the field amplitude at x = 0

and at x = d we have

1 +R1 (ω) = T1 (ω) +R2 (ω) eikd

=⇒ T1 (ω) = 1 +R1 (ω)−R2 (ω) eikd (3.13)

T1 (ω) eikd +R2 (ω) = T2 (ω)

=⇒ T2 (ω) = (1 +R1 (ω)) eikd +R2 (ω)
(
1− e2ikd

)
(3.14)

where we have used (3.13) to arrive at (3.14). Assuming that in the steady state

limit the two idf s oscillate at the same frequency as that of the incident field, such

that q̄j = q
(0)
j e−iωt +H.C., then we have from (3.7) forM1

λ1q
(0)
1 (−iω) e−iωt = −ε0c2∂x Φω|

Z̄+
1

Z̄−1
(3.15)

=⇒ λ1q
(0)
1 (−iω) e−iωt = −ε0c2Φ0

Ω0

ω
e−iωt

[
(ik)

(
T1 (ω)−R2 (ω) eikd

)
− (ik) (1−R1 (ω))

]
(3.16)

=⇒ λ1q
(0)
1 = 2ε0cΦ0

Ω0

ω

[
R1 (ω)−R2 (ω) eikd

]
(3.17)

where we have used (3.13) in the last step. One can interpret this as the induced

surface charge current or the momentum kick from the field to the first mirror, which

goes as
(
R2 (ω) eikd −R1 (ω)

)
or (1− T1 (ω)). Similarly, from (3.7) for the second
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mirrorM2

λ2q
(0)
2 (−iω) e−iωt = −ε0c2∂x Φω|

Z̄+
2

Z̄−2
(3.18)

=⇒ λ2q
(0)
2 (−iω) e−iωt = −ε0c2Φ0

Ω0

ω
e−iωt

[
(ik)T2 (ω)− (ik)

(
T1 (ω) eikd −R2 (ω)

)]
(3.19)

=⇒ λ2q
(0)
2 = 2ε0cΦ0

Ω0

ω
R2 (ω) (3.20)

where again, we have used (3.13) and (3.14) to eliminate the transmission coefficients

in the last step. We note that the induced surface charge current for M2 goes as

R2 (ω).

Now using the plane wave ansatz to rewrite the equations of motion for the

two internal degrees of freedom, we get

q
(0)
1

(
Ω2

1 − ω2
)

= − λ1

m1

Φ0
Ω0

ω
(−iω) (1 +R1 (ω))

=⇒ λ1q
(0)
1 =

iωλ2
1

m1 (Ω2
1 − ω2)

Φ0
Ω0

ω
(1 +R1 (ω)) (3.21)

q
(0)
2

(
Ω2

2 − ω2
)

= − λ2

m2

Φ0
Ω0

ω
(−iω)

[
T1 (ω) eikd +R2 (ω)

]
=⇒ λ2q

(0)
2 =

iωλ2

m2 (Ω2
2 − ω2)

Φ0
Ω0

ω

[
(1 +R1 (ω)) eikd +R2 (ω)

(
1− e2ikd

)]
(3.22)

From comparing (3.17) with (3.21), and (3.20) with (3.22), we have

R1 (ω)−R2 (ω) eikd =
iωΩP1

Ω2
1 − ω2

(1 +R1 (ω)) (3.23)

R2 (ω) =
iωΩP2

Ω2
2 − ω2

[
(1 +R1 (ω)) eikd +R2 (ω)

(
1− e2ikd

)]
(3.24)

where we have defined the “plasma frequencies” ΩPj = λ2
j/(2mjε0c) for each of the

mirrors. Further, defining the dimensionless quantities ηj ≡ iωΩPj

Ω2
j−ω2 , we can obtain
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the reflection and transmission coefficients for the two mirrors as

R1 (ω) =
η1 + η2e

2ikd + η1η2

(
e2ikd − 1

)
1− η1 − η2 + η1η2 (1− e2ikd)

(3.25)

T1 (ω) =
1− η2

1− η1 − η2 + η1η2 (1− e2ikd)
(3.26)

R2 (ω) =
η2e

ikd

1− η1 − η2 + η1η2 (1− e2ikd)
(3.27)

T2 (ω) = − eikd

1− η1 − η2 + η1η2 (1− e2ikd)
(3.28)

It can be seen from the above expressions that if the coupling of the second mirror’s

idf with the field approaches zero as η2 → 0, then the reflection coefficient R1 (ω)→

η1

1−η1
which is consistent with what we had found for the single mirror case and

R2 (ω) → 0 as expected. Similarly for η1 → 0, we find R1,2 (ω) → η2e2ikd

1−η2
and

T2 (ω)→ −eikd
1−η2

. We look at the overall reflection and transmission coefficients of the

coupled system (R1(ω) and T2 (ω)) as a function of the field frequency in Fig. 3.2 (a)

for different separations between the two mirrors and for different values of the

plasma frequencies.
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(a) Reflectance and transmittance for the two mirror system as a function of the

incident field frequency plotted for different values of the mirror separation for fixed

plasma frequencies ΩP1/Ω1 ≈ 0.4 and ΩP2/Ω2 ≈ 0.3.
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(b) Reflectance and transmittance for the two mirror system as a function

of the incident field frequency plotted for different values of the plasma

frequencies for a fixed separation of the mirrors d = 0.8µm.

Figure 3.2: Optical properties of the two mirror system as for different separation

between the two mirrors and idf plasma frequencies. We note that the reflection

peaks at the internal resonance frequencies of the two mirrors, that is, for ω = Ω1 =

2πc/(600nm) and ω = Ω2 = 2πc/(800 nm).
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As before, we note that the reflection coefficient peaks when the field is res-

onant with the idf of either of the two mirrors. For the distance dependence, we

observe high frequency oscillations in the reflection coefficient corresponding to the

free spectral range of the cavity formed by the mirrors that scale as ∼ d. This comes

from the resonance condition of the cavity formed by the two mirrors. Also, one

can note from Fig. 3.2 (b) that on increasing the idf -field coupling strengths, the

reflection and transmission coefficients depend strongly on the mirror separation d,

whereas for weakly coupled idfs, the distance dependence does not play much of a

role. To illustrate this point better, we plot the reflection as a function of the mirror

separation and the field frequency in Fig. 3.3. More specifically, we observe from

Fig. 3.3 that for weak-coupling between the idfs and the field the distance depen-

dence of the reflection coefficients is prominent closer to the idf resonance. In the

following section we consider the quantum dynamics of the two mirrors coupled to

the field.

3.3 Quantum dynamics of the coupled mirror-oscillator-field-oscillator-

mirror (MOFOM) system

Let us perturb the original action (3.1) for the MOFOM system about the

classical solutions as
{
Z̄j + Z̃j, q̄j + q̃j, Φ̄ + Φ̃

}
, where Õ represent the deviations

about the classical solutions Ō. Assuming that the center of mass motion about

Z̄j is small for both the mirrors and restricted to the Lamb-Dicke limit
(
kZ̃j � 1

)
for the field modes below a certain high frequency cutoff, we expand the action up
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(a) ΩP1/Ω1 ≈ 0.04 and ΩP2/Ω2 ≈ 0.06

(b) ΩP1/Ω1 ≈ 0.004 and ΩP2/Ω2 ≈ 0.006 for the mirrors M1 and M2

respectively.

Figure 3.3: Total reflectance of the two mirror system |R1 (ω) |2 as a function of the

dimensionless mirror separation d/(2πc/Ω1) and field frequency for two different

values of the idf plasma frequencies. It can be seen that for weak idf -field coupling

strengths of the two mirrors there is almost no dependence of the reflectance on

the mirror separation away from the idf resonances Ω1,2, whereas for larger plasma

frequencies the distance dependence is more marked for all ω.
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to third order in the fluctuations about the classical solutions ignoring terms that

are second order or higher in kZ̃j. Going up to third order allows us to see the

intensity-position coupling between the field and the mirrors’ CoMs. When looking

at the dynamics we restrict ourselves to bilinear interaction terms so that starting

with initial Gaussian states for all subsystems the subsequent dynamics preserves

Gaussianity.

The perturbed action can be written as

S3 =

∫
dt


∑
j=1,2

(
1

2
Mj

˙̃Z2
j −

1

2
Mjf2

j Z̃
2
j

)
︸ ︷︷ ︸

mdfj( Mj)

+
∑
j=1,2

(
1

2
mj

˙̃q2
j −

1

2
mjΩ

2
j q̃

2
j

)
︸ ︷︷ ︸

idfj( Oj)

(3.29)

+

∫
dx


ε0
2

((
∂tΦ̃
)2

− c2
(
∂xΦ̃

)2
)

︸ ︷︷ ︸
Field (F)

+
∑
j=1,2

λjδ
(
x− Z̄j

) ˙̃qjΦ̃︸︷︷︸
OjF

+ ˙̄qj

(
∂xΦ̃

)
Z̃j︸ ︷︷ ︸

MjF

+ ˙̃qj
(
∂xΦ̄

)
Z̃j︸ ︷︷ ︸

OjMj

+ ˙̃qj

(
∂xΦ̃

)
Z̃j︸ ︷︷ ︸

MjOjF





(3.30)

One can observe several points from the above expression, firstly, as for the case of a

single mirror there is an effective coupling between the fluctuations of each mirror’s

center of mass and the field via its internal degree of freedom as denoted by the

terms MjF and MjOjF. From the mirror-field coupling terms MjF, we note that the

strength of coupling for each mirror’s center of mass is proportional to the classical

surface current ˙̄qj, implying that the fluctuations of the field are the most sensitive

to the fluctuations of the mirror center of mass if the surface current is at its largest.
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It can be seen from (3.17) and (3.20) that the surface current at the mirrorM1 goes

as ∼
(
R1 (ω)−R2 (ω) eikd

)
and at the second mirror as ∼ R2 (ω). Also, as for the

single mirror, the effective coupling between the idf and the mdf fluctuations for

each mirror denoted by the terms OjMj is proportional to the spatial derivative

of the field (or the “magnetic field” B) at the mirrors’ center of mass position Z̄j.

Again, for the mirror M1 this goes as ∼
(
1−R2 (ω) eikd

)
and for mirror M2 as

∼ T1(ω).

From (3.30) we obtain the equations of motion for the mirrors’ CoMs and the

field dynamics as

¨̃Zj + f2
j Z̃j =

λj
Mj

[
˙̄qj∂xΦ̃

(
Z̄j, t

)
+ ˙̃qj

{
∂xΦ̄

(
Z̄j, t

)
+ ∂xΦ̃

(
Z̄j, t

)}]
(3.31)

ε0

(
∂2
t Φ̃− c2∂2

xΦ̃
)

=
∑
j=1,2

[
λj ˙̃qjδ

(
x− Z̄j

)
− λj

(
˙̄qj + ˙̃qj

)
∂x
(
δ
(
x− Z̄j

))
Z̃j

]
(3.32)

Integrating (3.32) around the classical center of mass position Z̄j, we get the surface

current fluctuation for the mirrorMj as

λj ˙̃qj = −ε0c2∂xΦ̃|
Z̄+
j

Z̄−j
(3.33)

just as the classical version (3.7), this can be interpreted as the Ampere’s Law in

1+1 D . Using this and the classical surface current from (3.7) to eliminate the idf s

from the center of mass dynamics in (3.31), we get

¨̃Zj + f2
j Z̃j =

−ε0c2

Mj

[(
∂xΦ̄

) (
∂xΦ̃

)∣∣∣Z̄+
j

Z̄−j

+
1

2

(
∂xΦ̃

)2
∣∣∣∣Z̄+

j

Z̄−j

]
(3.34)

As in (1.32), we see that the first term on the right side corresponds to the

radiation pressure coupling in the linearized approximation and the second term

86



corresponds to the intensity-position coupling. We note that for the case of two

mirrors, the quantum fluctuations of the field on one side of the mirrorsMj would

be determined by the quantization volume of the cavity formed between the two

mirrors that depends on the separation d. The fluctuation force arising from the

asymmetry of the density of field modes on either side of the mirrors is the Casimir

force between the two [87,88].

We now restrict ourselves to second order perturbations in the original action,

to keep all the interaction terms bilinear such that for Gaussian initial states, the

reduced density operators of the individual subsystems remain Gaussian at all times.

We derive the conjugate momenta as

p̃j = mj
˙̃qj + λjΦ̃

(
Z̄j, t

)
+ λj∂xΦ̄(Z̄j, t)Z̃j (3.35)

P̃j = Mj
˙̃Zj (3.36)

Π̃(x, t) = ε0
˙̃Φ(x, t) (3.37)

It can be seen that the fluctuations in the idf s of each mirror are influenced by

those of their respective mdf s and of the field at the corresponding center of mass

position, thus mediating an effective interaction between the mechanical motion of

the two mirrors and the field. Identifying the dynamical variables {Z̃j, q̃j, Φ̃} as the

quantum fluctuations of mdfj, idfj and the field respectively about their mean-field
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amplitudes, we arrive at the second order Hamiltonian

H̃2 ≡
∑
j=1,2

 P̃ 2
j

2Mj

+
1

2
Mj

(
f2
j +

λ2
j

mjMj

(
∂xΦ̄(Z̄j, t)

)2
)
Z̃2
j︸ ︷︷ ︸

mdfj(Mj)

+
p̃2
j

2mj

+
1

2
mjΩ

2
j q̃

2
j︸ ︷︷ ︸

idfj(Oj)


+

∫
dx

(
Π̃2

2ε0
+

1

2
ε0c

2
(
∂xΦ̃

)2
)

+
∑
j=1,2

[
λ2
j

2mj

Φ̃(Z̄j, t)
2

︸ ︷︷ ︸
Field (F)

− λj
mj

p̃jΦ̃(Z̄j, t)︸ ︷︷ ︸
OjF

− λj
mj

∂xΦ̄(Z̄j, t)p̃jZ̃j︸ ︷︷ ︸
OjMj

+
λ2
j

mj

∂xΦ̄(Z̄j, t)Φ̃(Z̄j, t)Z̃j − λj ˙̄qj∂xΦ̃(Z̄j, t)Z̃j︸ ︷︷ ︸
MjF

 (3.38)

We note from the first term labeled Mj that two mdf s observe a renormalized oscil-

lation frequency that we will denote as f′j, such that f′2j ≡ f2
j +

λ2
j

mjMj

(
∂xΦ̄(Z̄j, t)

)2.

The scalar field sees a frequency shift coming from the terms quadratic in Φ̃
(
Z̄j, t

)
,

analogous to the diamagnetic term ∼ e2

2m
A2 of the minimal coupling Hamiltonian.

The bilinear interaction terms represent the coupling between the idf s and the field

(OjF), mdf s and the corresponding idf s (OjMj) and the mdf s and the field (MjF)

respectively. Again, we note that there are no terms that couple the internal or

external degrees of freedom betweenM1 andM2. The terms that are second order

in λj arise from the couplings mediated via the quantum fluctuations of the idf s and

the terms that are first order in λj come from the classically driven solutions for the

field and the idf s respectively. As in the single mirror case, we note that the MjF

interaction contains two terms, the first one of which represents the effective field

interaction mediated via the quantum fluctuations of the idfj, while the second one

represents that from the classical surface charge currents. Ignoring the fluctuations

of the internal degrees of freedom, one misses out on the fluctuation-mediated part
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of the effective mirror-field coupling.

In the absence of a classical drive, the only interaction up to second order

is between the idf s and the field (OjF). To be able to see an effective mdf -field

interaction and subsequently an interaction between the two mirrors one needs to

include third order terms in the fluctuations as illustrated before. To understand

the dynamics better, in the following section we study the above Hamiltonian for

the case of a driven single field mode and find the entanglement between the two

mirrors’ CoMs, coarse-graining over their internal degrees of freedom.
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Chapter 4: Two Mirror Entanglement in the Mirror-Oscillator-Field

(MOF) model

4.1 Single Field Mode interacting with the Two Mirrors

In typical optomechanical setups, when one talks about the entanglement be-

tween two mechanical oscillators the essential mechanism for entanglement is via

the radiation pressure exerted on the mirrors by a common EM field. One can think

of the CoMs of each mirror being correlated with the field by the means of radiation

pressure force and as a result of transfer of correlations, the two mechanical degrees

of freedom could be entangled as well. In the following, we look at the entanglement

between two mechanical oscillators taking into consideration their internal degrees

of freedom that couple to a common field. For simplicity we assume that the field

has a single mode, as is usual in cavity optomechanical setups. Like the single mir-

ror case, we expect that the inclusion of mirrors’ idf s would lead to new physical

features in the entanglement of the two mechnical degrees of freedom.
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Figure 4.1: Schematic of the setup in consideration – two mirrors described by the

MOF model interacting with a single mode field Φω (x, t) in a ring cavity.

We first simplify the Hamiltonian (3.38) for the case of a single field mode

that is being externally driven to look at the dynamics of the coupled MOFOM

system. Consider the scalar field in a region of length L, the field fluctuations

can then be written as the sum of all discrete modes of the cavity of length L as

Φ̃ (x, t) =
∑

n

√
~

2ωnε0L

(
ãne

iknx + ã†ne
−iknx

)
, with ã†n and ãn representing the creation

and annihilation operators for the nth field mode. We pick a single field mode at

frequency ω interacting with the two mirrors at Z̄1,2. The fluctuations of the free

field at the center of mass positions for the two mirrors are given as

Φ̃ω

(
Z̄1,2, t

)
=

√
~

2ωε0L

(
ãωe

ikZ̄1,2 + ã†ωe
−ikZ̄1,2

)
(4.1)

We note that unlike usual practice here we have not imposed any boundary
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conditions on the field fluctuations, which should arise self-consistently from the

interaction of the two idfs with the field in the steady state limit.

Redefining the dynamical variables associated with the idf s in terms of the

creation and annihilation operators {b̃†j, b̃j} as q̃j =
√

~
2mjΩj

(
b̃j + b̃†j

)
and p̃j =

−i
√

~mjΩj

2

(
b̃j − b̃†j

)
, we can rewrite the non-interacting part of the Hamiltonian

(3.38) for a single field mode as follows

H̃free ≡
∑
j=1,2

 P̃ 2
j

2Mj

+
1

2
Mjf′2j Z̃2

j︸ ︷︷ ︸
H̃Mj

+ ~Ωj

(
b̃†j b̃j +

1

2

)
︸ ︷︷ ︸

H̃Oj


+ ~

(
ω +

∑
j=1,2

(
λ2
j

2mjωε0L

))(
ã†ωãω +

1

2

)
+
∑
j=1,2

(
λ2
j

4mjωε0L

)(
(ãω)2 e2ikZ̄j +

(
ã†ω
)2
e−2ikZ̄j

)
︸ ︷︷ ︸

H̃F

(4.2)

where we have defined the renormalized mechanical oscillation frequency for the two

mirrors as

f′21 ≡ f2
1 +

λ2
1

m1M1

[
∂xΦ̄

(
Z̄1, t

)]2
= f2

1 −
λ2

1

m1M1c2
Φ2

0Ω2
0

[
(T1 (ω)−R1 (ω))2 e−2iωt + (T ∗1 (ω)−R∗1 (ω))2 e2iωt

−2 |(T1 (ω)−R1 (ω))|2
]
(4.3)

f′22 ≡ f2
2 +

λ2
2

m2M2

[
∂xΦ̄

(
Z̄2, t

)]2
= f2

2 −
λ2

2

m2M2c2
Φ2

0Ω2
0

[
(T1 (ω))2 e2ikde−2iωt + (T ∗1 (ω))2 e−2ikde2iωt − 2 |(T1 (ω))|2

]
(4.4)
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assuming that the ansatz (3.12) applies for the mean field and the reflection and

transmission coefficients R1,2 (ω) and T1,2 (ω) are as found in (3.25)–(3.28). The

correction term
(

λ2
j

mjMj

(
∂xΦ̄(Z̄j, t)

)2
)
contains two contributions – a time dependent

part oscillating at a frequency ∼ 2ω which can be neglected in the rotating-wave

approximation (RWA) and a time-independent part that contributes a correction

term to the mechanical oscillation frequency which goes roughly as ∼
√

ΩPjε0
Mj

Φ0Ω0.

However, if the field mode was resonant with either of the mdf s, one would see

parametric amplification of the corresponding mirror’s center of mass motion [89].

For the free field part in (4.2) we notice that the interaction leads to an energy

correction ω → ω+
∑

j=1,2 λ
2
j/(2mjωε0L) that is second order in λjs, this corresponds

to the shift coming from the diamagnetic contribution for the EM case
(
∼ e2

2m
A2
)
as

indicated in chapter 2 as well. This diamagnetic term also leads to the fast oscillating

terms for the free field (∼ 2ω), which correspond to the photon-pair production and

annihilation as in the case of dynamical Casimir effect [89–92].

Moving to the interaction picture with respect to H̃0 = H̃F +
∑

j=1,2 H̃Oj
to

eliminate the fast dynamics of the system and invoking RWA, we write the interac-

tion Hamiltonian in a simplified form as

Hint =
∑
j=1,2

[
~
(
αOjFab

†
je
−i∆jt + α∗OjF

a†bje
i∆jt
)

+~
(
αOjMj

bje
i∆jt + α∗OjMj

b†je
−i∆jt

)(
c̃j + c̃†j

)
+~
(
αMjFa + α∗MjF

a†
)(

c̃j + c̃†j

)]
(4.5)

where we have defined the operators in the interaction picture as {a,a†} ≡ {ãωeiωt, ã†ωe−iωt}

and {bj, b†j} ≡ {b̃jeiΩjt, b̃†je
−iΩjt} and the detuning ∆j ≡ ω − Ωj represents the de-
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tuning between the field and the idf for the mirror Mj. The operators {c̃j, c̃†j}

correspond to the creation and annihilation operators for the phononic excitations

of the mdf corresponding to Mj, with Z̃j =
√

~
2Mjf′j

(
c̃j + c̃†j

)
≡
√

~
Mjf′j

Zj and

P̃j = −i
√

~Mjf′j
2

(
c̃j − c̃†j

)
≡
√
~Mjf′jP j. The operators Zj and P j are the di-

mensionless position and momentum fluctuations forMj’s center of mass. In mov-

ing to the interaction picture we have ignored the second order correction terms(
∼
∑

j=1,2 λ
2
j/mj

)
in the free field Hamiltonian H̃F .

The effective coupling coefficients are given as

αO1F = −i λ1

2m1

√
m1Ω1

ωε0L
= −i

√
Ω1ΩP1c

2ωL
(4.6)

αO2F = −i λ2

2m2

√
m2Ω2

ωε0L
eikd = −i

√
Ω2ΩP2c

2ωL
eikd (4.7)

αO1M1 =
λ1

2m1c
Φ0Ω0

√
m1Ω1

M1f′1
(
1−R∗2 (ω) e−ikd

)
= Φ0Ω0

√
Ω1ΩP1ε0
2M1f′1c

(
1−R∗2 (ω) e−ikd

)
(4.8)

αO2M2 =
λ2

2m2c
Φ0Ω0

√
m2Ω2

M2f′2
T ∗1 (ω) e−ikd

= Φ0Ω0

√
Ω2ΩP2ε0
M2f′2c

T ∗1 (ω) e−ikd (4.9)

αM1F = −Φ0Ω0

√
ωε0

M1f′1ωL
(
R∗1 (ω)−R∗2 (ω) e−ikd

)
− iΩP1Φ0Ω0

√
ε0

ωLM1f′1
(
1−R∗2 (ω) e−ikd

)
= −Φ0Ω0

√
ε0

M1f′1L
[
ω
(
R∗1 (ω)−R∗2 (ω) e−ikd

)
+ iΩP1

(
1−R∗2 (ω) e−ikd

)]
(4.10)

αM2F = −Φ0Ω0

√
ωε0

M2f′2L
R∗2 (ω) eikd − iΩP2Φ0Ω0

√
ε0

ωLM2f′2
T ∗1 (ω)

= −Φ0Ω0

√
ε0

M2f′2ωL
[
ωR∗2 (ω) eikd − iΩP2T

∗
1 (ω)

]
(4.11)
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From the above expressions we can observe several key points, starting with the

effective mdf -field coupling in equations (4.10) and (4.11), we see that the first and

the second terms correspond to the interaction mediated by the mean field and the

field fluctuations respectively. In comparing with the boundary condition approach,

as we will show in section 4.1.1, one finds that while there is an agreement between

the mean field contribution in the MOFmodel and the boundary condition approach,

the latter ignores the fluctuation mediated term. The fluctuation mediated part

becomes relevant in the parameter regimes where |ΩP1/ω| �
∣∣∣R1(ω)−R2(ω)eikd

1−R2(ω)eikd

∣∣∣ ≡
|r1/r2| for M1, where we have defined r1 ≡ R1 (ω) − R2 (ω) eikd and r2 ≡ 1 −

R2 (ω) eikd. This condition is generally dependent on the mirror separation d as

opposed to the condition for M2, which requires |ΩP2/ω| � |R2 (ω) /T1 (ω)|. For

the mirror M1 the coupling strength is dependent on the separation d because of

the interference with the reflected field from the second mirror, while for the mirror

M2 the distance dependence only contributes up to a phase factor. In Fig. 4.2 and

Fig. 4.3 we show how the distance dependence determines which term dominates

among the two, by plotting the quantities Λ1 ≡ |r1/r2| /(ΩP1/ω) for the first mirror

and Λ2 ≡ |R2/T1| /(ΩP2/ω) for the second.

Again, all effective coupling strengths can be expressed as a function of the

idf resonance frequencies Ωj and plasma frequencies ΩPj which can be deduced

from the reflection and transmission properties of the system along with the mirror

separation.

Also, it can be seen that as one turns the classical field off, the effective

couplings between the mirrors’ mdfs and their respective idfs and the field vanish
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(a)

(b)

Figure 4.2: Mean-field vis-á-vis fluctuation mediated mdf -field coupling – the ratio

Λ1 ≡ |r1/r2| /(ΩP1/ω) that determines the relative contributions of the mean-field

mediated interaction to the fluctuation mediated interaction for the effective mdf

-field coupling coefficient αM1F of the first mirror’s CoM, for (a) ΩP1/Ω1 = 0.1 and

(b) ΩP1/Ω1 = 1 × 10−3. For a strong idf -field coupling there is an appreciable

dependence of the ratios Λj on the mirror separation d. For weak idf -field coupling,

the distance dependence is restricted to near the internal resonance of the mirrors,

which occur at Ω1 = 2× 1015 Hz and Ω2 = 3× 1015 Hz.
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(a)

(b)

Figure 4.3: Mean-field vis-á-vis fluctuation mediated mdf -field coupling – The quan-

tity Λ2 ≡ |R2/T1| /(ΩP2/ω) that determines the relative contributions of the mean-

field mediated interaction to the fluctuation mediated interaction for the effective

mdf -field coupling coefficient αM2F of the second mirror’s CoM, for (a) ΩP2/Ω2 = 0.1

and (b) ΩP2/Ω2 = 10−4. For a strong idf -field coupling there is an appreciable de-

pendence of the ratios Λj on the mirror separation d. For weak idf -field coupling,

the distance dependence is restricted to near the internal resonance of the mirrors,

which occur at Ω1 = 2× 1015 Hz and Ω2 = 3× 1015 Hz.
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while the coupling between the two idfs and the field remain unchanged. Thus, even

for no driving field, the fluctuations of the idfs and the field get entangled. Though

to see the entanglement of the field with the mechanical degrees of freedom or that

between the two mdfs, one needs to include higher order intensity-position coupling

terms.

Now, to solve for the system dynamics we write the equations of motion from

(4.5) as

dZj

dt
=f′jP j (4.12)

dP j

dt
=− f′jZj − 2

(
ReαOjMj

qj − ImαOjMj
pj
)
− 2

(
ReαMjFΦ− ImαMjFΠ

)
− ΓjP j + Ξj

(4.13)

dqj
dt

=∆jpj − |αOjF |Φ− 2ImαOjMj
Zj (4.14)

dpj
dt

=−∆jqj − |αOjF |Π− 2ReαOjMj
Zj (4.15)

dΦ

dt
=|αOjF |qj − 2ImαMjFZj (4.16)

dΠ

dt
=|αOjF |pj − 2ReαMjFZj (4.17)

wherein we have redefined the slow moving dimensionless idf and the field

quadratures as qj ≡
bje

i∆jt+b†je
−i∆jt

√
2

, pj ≡ −i
bje

i∆jt−b†je
−i∆jt

√
2

, Φ ≡ a+a†√
2

and Π ≡

−ia−a†√
2
. Also, to account for the fluctuation-dissipation mechanism for the mirrors’

mechanical motion resulting from coupling to their respective environments, we have

introduced the mechanical dampings Γj and noise Ξj. In the Markovian limit, the

correlation function of the noise is given as 〈Ξj (t) Ξj (t′)〉 =
4ΓjkBT

(m)
j

~f′j
δ(t− t′), with

T
(m)
j as the temperature of the thermal bath for the mirrorMj.

Now to account for the fluctuation and dissipation mechanisms for the two in-
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ternal degrees of freedom we consider the coupling of the two idfs to the continuum of

field modes with a coupling of the form q̇jΦi, where Φi represents the ith field mode,

leading to a damping coefficient γ(f)
j and noise ξ(f)

j , such that
〈
ξ

(f)
j (t) ξ

(f)
j (t′)

〉
=

4γ
(f)
j kBT

(f)

~Ωj
δ(t − t′), with T (f) as the temperature of the field bath. Additionally we

introduce baths of internal degrees of freedom for each idf such that each bath oscil-

lator is coupled to the idf with a coupling of the form qj · q(k)
j , where q(k)

j represents

the position variable for the kth bath oscillator for idfj, giving an effective damp-

ing coefficient of γ(i)
j and noise ξ(i)

j , such that
〈
ξ

(i)
j (t) ξ

(i)
j (t′)

〉
=

4γ
(i)
j kBT

(i)

~Ωj
δ(t − t′),

where T (i) corresponds to the temperature associated with the bath of the internal

oscillators. Rewriting the equations of motion for the two idfs (4.14) and (4.15)

including the phenomenological damping and noise we get

dqj
dt

=∆jpj − |αOjF |Φ− 2ImαOjMj
Zj − γ(f)

j qj + ξ
(f)
j (4.18)

dpj
dt

=−∆jqj − |αOjF |Π− 2ReαOjMj
Zj − γ(i)

j pj + ξ
(i)
j (4.19)

Now assuming that the dynamics of the internal degrees of freedom is much

faster than the other variables involved, we use separation of time scales to find the

steady state idf amplitudes as

qstj = −
γ

(i)
j Ĉ

(1)
j + ∆jĈ

(2)
j

∆2
j + γ

(i)
j γ

(f)
j

(4.20)

pstj =
γ

(f)
j Ĉ

(2)
j −∆jĈ

(1)
j

∆2
j + γ

(i)
j γ

(f)
j

(4.21)

where the operators Ĉ(k)
j s stand for Ĉ(1)

j ≡ |αOjF |Φ + 2ImαOjMj
Zj − ξ̂

(f)
j and

Ĉ
(2)
j ≡ |αOjF |Π + 2ReαOjMj

Zj− ξ̂(i)
j . It can be seen that the steady state idf ampli-

tudes are self-consistently negligibly small given that one requires {γ(i,f)
j ,∆j} to be
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greater than all the other frequencies involved to be able to invoke the separation

of timescales assumption.

4.1.1 Comparison with the boundary condition approach

In this section we consider the coupled dynamics for the mirrors’ centers of

mass and the field from the boundary condition approach, where we show how one

can find an agreement with what we obtain from the MOF model provided that the

idf amplitudes vanish.

As discussed in the section 2.2, we write the linearized Hamiltonian for the

mirror+field+mirror system in the boundary condition approach as

H̃BC =

[∑
j=1,2

~fj

2

(
P 2
j + Z2

j

)
+

∫ L

0

dx

(
Π̃2

2ε0
+
ε0
2
c2
(
∂xΦ̃

)2
)

−
∑
j=1,2

ε0c
2
(
∂xΦ̄∂xΦ̃

)
|Z̄

+
j

Z̄−j
ZZPM,jZj

]
(4.22)

where Zj and P j are the dimensionless position and momentum fluctuations for the

mirror center of mass as in (4.12)–(4.17).

Assuming that the field has only one mode, we use the plane wave ansatz in

(3.12) for the classical part of the field and (2.1) for the quantum fluctuations to

rewrite the Hamiltonian as

H̃BC = ~ωa†a +
∑
j=1,2

[
~fj

2

(
P 2
j + Z2

j

)
− ~

(
Ω0

L
ZZPM,jA0

)
(r∗j (ω)a + rj (ω)a†)Zj

]
(4.23)

where r1 (ω) ≡ R1 (ω)− R2 (ω) eikd and r2 (ω) ≡ R2 (ω). Now moving to a rotating
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frame with respect to the free field Hamiltonian
(
HF ≡ ~ωa†a

)
leads us to the

following equations of motion for the dimensionless field and mirror variables

dZj

dt
= fP j (4.24)

dP j

dt
= −fZj +

√
2ReβMjFΦ−

√
2ImβMjFΠ (4.25)

dΦ

dt
=
√

2
∑
j=1,2

ImβMjFZj (4.26)

dΠ

dt
=
√

2
∑
j=1,2

ReβMjFZj (4.27)

where βMjF ≡ Ω
L
ZZPMA0r

∗
j (ω) are the effective coupling coefficient for the mirror

Mj and the field. It can be seen from Fig. 4.2 and Fig. 4.3 that in the weak coupling

limit (ΩPj/ω � 1) where one can generally ignore the fluctuation mediated term

unless very close to resonance, the effective mirror-field coupling coefficient in (4.10)

and (4.11) then reduces to αMjF ≈ −βMjF/
√

2. Also for a negligibly small steady

state amplitudes of the two internal degrees of freedom as in (4.20) and (4.21) we

can see an agreement between the equations of motion for the mirrors’ centers of

mass and the field in the microscopic picture (4.12), (4.13), (4.16) and (4.17), and

those obtained from the boundary condition considerations above in (4.24)–(4.27).

We also illustrate this agreement in terms of the entanglement between the two mdfs

and that between the field and the CoM for mirrorM1 in Fig. 4.4, wherein we show

that for strongly damped internal degrees of freedom the entanglement found from

the boundary condition considerations matches with that from the MOF model.
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(a) Entanglement between the two mdfs as a function of time for

different damping rates for the mirrors’ internal degrees of freedom.

The overlap between the solid blue and dashed yellow curves indi-

cates that the boundary condition approach agrees with the MOF

model for strong enough damping of the two internal degrees of

freedom (any differences between the two curves are smaller than

the resolution of the plot).
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(b) Entanglement between the center of mass of mirror M1 and

the field as a function of time for different damping rates for the

mirrors’ internal degrees of freedom.

Figure 4.4: Comparison of the entanglement dynamics from boundary condition

approach and MOF model for the two mirror setup – the two approaches match in

the limit of strongly damped idfs. The parameter values (in units ~ = c = kB = 1)

were chosen as Ω1,2 = 100, ΩP1 = 0.05, ΩP2 = 0.2 for the two internal degrees of

freedom, M1,2 = 1 and f1,2 = 1 for the mechanical degrees of freedom, the field

frequency ω = Ω1,2 +f1,2 and the field amplitude Φ0 ≈ 10−3. The temperatures for

the mechanical baths T (m)
1,2 = 0.01 and for the field and idf baths T (i,f)

1,2 = 0.1.
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4.1.2 Entanglement dynamics in the coupled MOFOM system

The coupled MOFOM system dynamics can be solved from (4.12)–(4.17) by

finding the normal modes of the system and their time evolution. One can then

obtain the 10x10 dimensional covariance matrix for the dynamical variables per-

taining to the two mirrors and the field. We define the MOFOM covariance matrix

VMOFOM as

VMOFOM =



VM1M1 VM1M2 VM1F VM1O1 VM1O2

VT
M1M2

VM2M2 VM2F VM2O1 VM2O2

VT
M1F

VT
M2F

VFF VFO1 VFO2

VT
M1O1

VT
M2O1

VT
FO1

VO1O1 VO1O2

VT
M1O2

VT
M2O2

VT
FO2

VT
O1O2

VO2O2


(4.28)

Again, the on-diagonal matrix Vkk stands for the sub-covariance matrix of the kth

reduced subsystem, defined as (Vkk)ij ≡
1
2

〈
{X(k)

i , X
(k)
j }
〉
, with X(k)

i and X(k)
j rep-

resenting the i and j quadratures corresponding to the position and momentum

variables of the kth reduced subsystem, more explicitly X(k) ≡ {x̃(k), p̃(k)}. Here,

{O1,O2} denotes the anti-commutator between the operators O1 and O2. The

off-diagonal sub-matrix Vkl consists of the correlations between the kth and the

lthsubsystems, such that (Vkl)ij ≡
1
2

〈
{X(k)

i , X
(l)
j }
〉
, where the i and j quadrature

components belong to different subsystems. The expectation values of the corre-

lators are taken over the initial density operator of the five subsystems at t = 0,

which we assume to be in a thermal state with a temperature determined by that of

the corresponding bath. More explicitly, the initial density matrix of the MOFOM
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system can be written as

ρ(0) = ρ
T

(m)
1
M1
⊗ ρT

(m)
2
M2
⊗ ρT

(i)
1
O1
⊗ ρT

(i)
2
O2
⊗ ρTff (4.29)

where the density matrix ρTkk for subsystem k corresponds to a thermal distribution

with temperature Tk.

We now consider the part of the covariance matrix that represents the reduced

covariance matrix for the two mechanical degrees of freedom

VM1M2 =

 VM1M1 VM1M2

VT
M1M2

VM2M2

 (4.30)

and find the logarithmic negativity EM1M2
N using the positive partial transpose (PPT)

criteria for determining separability (see Appendix A). It can also be proved (Ap-

pendix B) that calculating the correlators for any two subsystems after coarse-

graining over the remaining degrees of freedom is equivalent to considering the

correlation values as in the sub-covariance matrix. With this result we do not

necessarily need to trace over the remaining subsystems to look at the entanglement

between any two subsystems of interest.

Similarly to compare the entanglement between the case of a single mirror and

the field in the presence of the second mirror with that from what we found earlier,

we also consider the covariance matrices for the individual mirrors and the field

VMjF =

 VMjMj
VMjF

VT
MjF

VFF

 (4.31)

Having found the reduced covariance matrix for the relevant subsystems that

we wish to study the entanglement between, we now list the various parameters

pertaining to the five subsystems and the assumptions made in table 4.1.
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Mechanical degrees of

freedom

Internal degrees of free-

dom

Field

f1,2 (Frequencies of the

mechanical oscillators)

Ω1,2 (idf resonance fre-

quencies)

ω (Frequency of the

field mode)

M1,2 (Mirror masses) ΩP1,2 (idf -field coupling

strengths)

Φ0 (Field amplitude)

Γ1,2 (Mechanical damp-

ing rates)

γ
(f)
1,2 , γ

(i)
1,2 (idf damping

rates from interaction

with the two baths)

ΓF (Field mode damp-

ing)

T
(m)
1,2 (Temperature of

the mechanical baths)

T
(f)
1,2 , T

(i)
1,2 (Field and idf

bath temperatures)

Tf (Field bath tempera-

ture)

Table 4.1: Parameters pertaining to the five subsystems – the mirrors’ mdfs, idfs

and the single mode field Φω. The separation between the two mirror CoM positions

d is an additional parameter. The assumptions restricting these parameters in our

analysis are 1.) fj � Ωj, for a slow-moving mirror, 2.) weak-coupling between

the idfs and the field such that ΩP,j � Ωj, 3.) ∆j � Ωj for the rotating-wave

approximation, 4.) |Φ0|2 �
Mjf2

jc

Ω3
j ε0

for weak-driving to ensure small amplitude of the

mirror motion and 5.) Markovian noise and Ohmic dissipation for all subsystems.

In the previous section we considered the effect of changing the idf damping

rates on the mdf 1-field and the mdf -mdf entanglement and found how in the limit

of strongly damped internal degrees one recovers the boundary condition results.
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It can also be seen from Fig. 4.4 that it takes a larger idf damping to reach the

boundary condition limit for the mirror-mirror entanglement, meaning that while for

a certain mirror the boundary condition approach might describe the optomechanical

entanglement well, it could possibly give inaccurate results when considering the

entanglement of the mirror motion with that of another mirror.

One could also ask how does the entanglement between a single mirror and

the field in the presence of the second mirror compare with the case when there is

no other mirror. We illustrate this comparison in Fig. 4.5, where we find that for

the given set of parameter values the entanglement between the mirror and the field

is smaller when a second identical mirror is present. We also note that as a function

of the mirror separation the entanglement dynamics is periodic after a distance

∆d = 2πc/ω, coming from the free spectral range of the cavity. Also, from comparing

Fig. 4.5(a) and Fig. 4.5(b) it can be seen that for larger idf -field detuning values

there is a smaller entanglement and the distance dependence is less pronounced

as well. This can be explained based on what we found in Fig. 4.2 and Fig. 4.3

as well, where we find that as one moves further away from idf -field resonance

the dependence of the effective mirror-field couplings on the mirror separation d

becomes less prominent.
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(a) Entanglement between the CoM of mirrorM1 and the field for different

values of the mirror separation, for an idf -field detuning of ∆1,2/f = −5
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(b) Entanglement between the CoM of mirrorM1 and the field for different

values of the mirror separation, for an idf -field detuning of ∆1,2/f = −10

Figure 4.5: Comparison of the entanglement between a single mirror and the field

with and without the second mirror’s presence – we note that for the chosen param-

eter values there is a smaller mirror-field entanglement for the two-mirror setup as

compared to the single mirror case, all the other parameters being identical. In units

where ~ = c = kB = 1 and e =
√

4πα, we have M1,2 = 1, f1,2 = 1, Γ1,2 = 0.1 and

T
(m)
1,2 = 0.1 for the two mdfs, Ω1,2 = 100, ΩP1,P2 = 0.05, γ(i,f)

1,2 ≈ 0.02 and T (i,f)
1,2 = 0.1

for the idfs, and Φ0 ≈ 10−4 and ΓF = 10−3 for the field.
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To study the entanglement between two mechanical degrees of freedom as a

function of some additional parameters, we consider the realistic setup of two atoms

interacting with common single mode cavity field in the following subsection.

4.1.3 Mechanical Entanglement between Two Atoms

Let us consider two atoms interacting with a single mode cavity field. Using

the MOF model to describe the atom-field interaction for each of the atoms, we find

the entanglement between the CoM motion of the two atoms. As in the previous

chapter we use the typical parameter values from [95, 96]. As we showed in section

2.3.1, for the purposes of rough estimation our analysis from the MOF model can be

easily extended from 1+1 to 3+1 D by replacing the vacuum permittivity ε0 → Aε0

whereA is the cross-sectional area of the driving field, assuming that the longitudinal

component of the field is negligibly small and that one can ignore scattering from

the atomic dipole in the transverse directions.

We rewrite the original action as

S =

∫
dt

[∑
j=1,2

(
1

2
MjṘj

2 − 1

2
Mjf2

jRj
2

)
+

(
1

2
mjq̇j

2 − 1

2
mjΩ

2
jqj

2

)

+

∫
d3r

ε0
2

{
(∂tΦ)2 − c2 (∇r ×Φ)2 +

∑
j=1,2

λjq̇j ·Φδ3(r −Rj)

}]

(4.32)

where Rj now refers to the CoM coordinates of the jth atom, qj is the 3 dimensional

idf amplitude of the mirrorMj, that represents the motion of an electron within the

jth atom and Φ is the vector potential of the EM field. One can obtain the following

equations of motion for the classical solutions of the coupled field and idf degrees of
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freedom

¨̄qj + Ω2
j q̄j = − λj

mj

˙̄Φ
(
R̄j , t

)
(4.33)

ε0

(
¨̄Φ (r, t)− c2∇2

rΦ̄ (r, t)
)

=
∑
j=1,2

λj ˙̄qjδ
3(r − R̄j) (4.34)

Assuming that we have a driving field of the form Φ = Φ0
Ω0

ω
f(x, y)g(z, t), with

f(x, y) as the transverse mode function of the field and the longitudinal part g(z, t)

similar to the 1+1 D plane wave ansatz given by

g(z, t) = e−iωt
[
Θ(−z)

{
eikzz +R1 (ω) e−ik−zz

}
+ (Θ(z)−Θ(z − d))

{
T1 (ω) eikzz +R2 (ω) e−ikz(z−d)

}
+Θ(z − d)T2 (ω) eikz(z−d)

]
+H.C. (4.35)

Here we have assumed that there is no scattering in the transverse direction and

no diffraction effects for the field, such that the transverse mode function f(x, y)

is continuous across the position of the atoms {X̄1,2, Ȳ1,2} in the x-y plane. We

integrate the field equation of motion (4.34) around the position of the atoms Z̄1,2

in z and over the x-y plane

λj ˙̄qj = ε0c
2Φ0

Ω0

ω

(∫ ∞
−∞

dx

∫ ∞
−∞

dyf(x, y)

)
∂z (g(z)) |Z̄

+
j

Z̄−j
(4.36)

= −2iε0kzcΦ0
Ω0

ω
A∂z (g(z)) |Z̄

+
j

Z̄−j
(4.37)

where in the last step we have replaced the integral over the transverse mode function

A ≡
(∫∞
−∞ dx

∫∞
−∞ dyf(x, y)

)
. One could also solve for steady-state idf dynamics

from (4.33) to find

λ ˙̄qj =
−ω2λ2

j

mj

(
ω2 − Ω2

j

)Ω0

ω
Φ0f(X̄j, Ȳj)g(Z̄j) (4.38)
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Further assuming that X̄1 = X̄2 and Ȳ1 = Ȳ2 such that the normalized mode function

f(X̄j, Ȳj) = 1 at both the atomic CoM positions, from (4.37) and (4.38) one can

obtain the reflection and transmission coefficients as before in (3.25)–(3.28) with the

plasma frequencies ΩPj replaced by

Ω
(3D)
Pj ≡

λ2
j

2mjε0cA
(4.39)

.

As in section 2.3.1, we identify the CoM motion of the two atoms as the

mechanical degrees of freedom, assuming that the atoms are in identical harmonic

traps, such that we have for the mdf parameters – M1 = M2 = 1.4 × 10−25 kg,

f1 = f2 ≈ 10 kHz as the trap frequency, Γ1 = Γ2 ≈ 10s−1 and temperatures for the

mechanical bath as T (m)
1,2 ∼ 0.1 mK. The internal degrees of freedom represent the

electronic transitions between the atomic levels, which as before we assume to be

linear as well with a frequency given by the transition frequency for the 52S1/2F =

3 ↔ 52P3/2F = 4 transition, such that Ω1/(2πc) = Ω2/(2πc) ≈ 1
780×10−9m−1. The

damping rate for the idfs is given by the cavity modified damping γ(f)
1,2 ≈ 10 MHz

from the coupling of the electron to the field mode continuum. We note that there

is no other bath for the electronic degrees of freedom in this case, thus γ(i)
1,2 = 0.

For the field, we choose ω = Ω1,2 + ∆a, where ∆a ≈ 10 MHz is the detuning of the

cavity field with respect to the atomic resonance. The cavity damping rate for a

typical Q ≈ 5× 105 is ΓF ∼ c
QL
≈ 2.5MHz, given the cavity length of L = 120µm.

We assume the input power to be P ≈ 0.1 pW and the beam cross sectional area

A ≈ 7×10−10 m2. We ensure that the power inside the cavity remains small enough
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so that the higher lying levels in the harmonic oscillator model of the idf do not get

populated and the linear approximation remains good.

Using these parameter values we find the effective coupling strength between

the idfs and the field as αO1,2F ∼ 0.1 GHz, the effective idf-mdf couplings as

αO1,2M1,2 ∼ 0.1 MHz and the effective mdf- field coupling to be αM1,2F ∼ 100

MHz. From Fig. 4.6 one can note that as expected moving away from the inter-

nal resonance of the atoms, one finds smaller motional entanglement. This can be

understood from the fact that for a single atom a larger idf -field detuning leads to

smaller mdf -field entanglement and knowing that the field is the only channel via

which the entanglement between the two separate atomic CoMs can be transferred,

one necessarily requires a large mdf -field entanglement for both the atoms to be able

to observe a large entanglement between the motion of the two atoms. Furthermore,

from Fig. 4.7 we note that the entanglement exists for very low temperatures of the

mechanical bath < 0.5mK.
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Figure 4.6: Entanglement between the motion of the two atoms as a function of the

detuning of the field with respect to the atomic resonance frequency Ω and time.

We fix all the other parameters as Q = 5× 105 for the quality factor of the cavity,

L = 120µm for the cavity length, A ≈ π(15µ m)2 for the field cross sectional area,

P = 0.01 pW for the driving field power, 2πc/Ω = 780 nm for the idf resonance,

m = me for the idf mass, λ = e for the idf -field coupling strength, γf ≈ 18 MHz for

the idf damping, M = 1.4× 10−25 kg for the atomic mass, f = 10kHz for the trap

frequency, Tm = 0.1 mK for the temperature of the mechanical and Ti = Tf = 100

K for the field and the idf bath temperatures.
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Figure 4.7: Entanglement between the atomic CoM motion and the field mode as

a function of the temperature of the mechanical bath, all the other values being

fixed as detailed in Fig. 4.6 and the field detuning set at 10 MHz. It can be seen

that, as expected, as one goes to low enough temperatures, one can find long-lived

entanglement between the two atoms.
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Chapter 5: Results and Discussion

The foremost theme of this study is to highlight the significance of the internal

degrees of freedom of a mirror that play the role of the essential intermediary when

it comes to the interaction between a quantum field and the mirror’s mechanical mo-

tion. We illustrate how a microscopic model of quantum optomechanics, such as the

MOF model proposed by Galley, Behunin and Hu [1] is a physically more complete

and intuitive description for optomechanical interactions, in that not only can it

agreeably reproduce the known optomechanical properties both in the classical and

quantum regimes, it also elucidates new physical aspects which are not accounted

for in the general description of optomechanical interactions via radiation pressure

coupling. We extend the analysis in [1] to study the quantum dynamics of the cou-

pled mirror and field system, identifying the parameter regimes where the role of

the internal degrees of the mirror becomes important and make connections with

relevant experimental setups. Specifically looking at the quantum entanglement be-

tween the mirror’s mechanical motion and the field, we find that there is a significant

and even a critical role played by the internal degree of freedom in certain parame-

ter regimes as it can act as a means to coherently transfer correlations between the

field and the mechanical degree of freedom. We also use the model to look at the
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entanglement between the motion of two mirrors interacting with a common field

via their internal degrees of freedom and implement our calculations to the case

of atom-field and atom-atom interactions. We summarize the main findings of our

work in the following section.

5.1 Summary of results

Radiation pressure force – When considering the classical CoM motion we find

that formally the radiation pressure force acting on the mirror center of mass agrees

with what one obtains from the boundary condition approach (equation (1.8) in

section 1.4.1). This is true for both qΦ [1] and q̇Φ couplings. Though while in the

conventional approach the field is determined by the fixed boundary conditions, in

the MOF model the coupled internal and external dynamics determine the value

of the field at the CoM position at any given instant. This allows one to look

at new physical effects that entail the coupled dynamics of the mirror’s optical and

mechanical degrees of freedom and can not be captured with the boundary condition

approach.

Optical properties – We find that the MOF model can exhibit a variety of

optical behavior (section 1.4.2). Depending on the optomechanical element in con-

sideration one can phenomenologically determine the form of coupling and the pa-

rameters pertaining to the internal degree of freedom from the reflection spectrum

(see Fig.1.1). For example, we use the qΦ coupling as in [1] to describe the optical

behavior of metal with a Drude-Lorentz response, while the reflection spectrum of
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a structure with a sharp internal resonance such as a photonic crystal or an atom

is well modeled by the q̇Φ idf -field coupling with appropriately chosen parameters.

Similarly, considering the reflection properties for a system of two mirrors inter-

acting with a common field via their internal degrees of freedom, we find that the

reflection peaks at the internal resonance of the two mirrors. Additionally there

is also an interference effect from the cavity formed between the two mirrors that

depends on the mirror separation (see Fig. 3.2). As shown in Fig. 3.3, we also

note that as expected for strong idf -field coupling, the distance dependence of the

reflectivity coming from the interference effect is more pronounced. The reflection

coefficients determine the effective coupling strengths between the fluctuations of

the center of mass motion and the field.

Corrections to the effective mirror-field coupling from the quantum fluctuations

of the idf – It can be seen from (1.36) and also (2.6) that the effective coupling

between the mirror center of mass and the field has two contributions – that from

the classical amplitude of the surface charge currents determined by the reflection

coefficient and additionally a separate contribution from the quantum fluctuations

of the idf . While the first part agrees with the boundary condition approach, the

latter is not accounted for if one does not allow the idf to be a separate quantum

degree of freedom. It can be seen that such a contribution from the fluctuation

mediated mirror-field coupling becomes significant in the strong coupling regime.

Radiation pressure shot noise – We also observe that for an undamped idf the

radiation pressure force is determined not only by the quantum fluctuations of the

field but also those of the idf as suggested by (2.24). While in the steady state limit
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the strength of these fluctuations is largely determined by the boundary conditions,

in the early time limit the idf being an independent quantum degree of freedom its

quantum fluctuations would influence the radiation pressure shot noise as well.

Agreement with the boundary condition approach – As shown in section 2.2,

from (2.34)–(2.37) and (2.7)–(2.12) it can be seen that the dynamics from the MOF

model reduce to those in the boundary condition approach in the appropriate limit,

i.e., when the idf is coupled to both the field continuum and an internal bath and

is in the over damped regime, or alternatively when the driving field is far detuned

from the internal resonance. We illustrate the effect of damping in Fig. 2.2, where it

can be seen that as the idf becomes overdamped there is a perfect agreement in the

system dynamics (represented in terms of the mirror-field entanglement dynamics)

between the boundary condition approach and the MOF model. This is expected

since for fast enough internal dynamics the boundary conditions can describe the

system adequately. Similarly when considering the entanglement between two mir-

rors as discussed in section 4.1.1, we find a perfect agreement between the dynamics

in the MOF model with those found from the boundary condition considerations

in the appropriate limit, that is, where the two internal degrees (1) couple weakly

to the field and (2) are overdamped or the driving field is far-detuned with respect

to the two internal resonances. This can be seen from comparing the equations of

motion for the mirror CoM and the field from either approaches ((4.24)–(4.27) with

(4.12)–(4.17)). Also, comparing the entanglement dynamics found from the bound-

ary condition approach with those from the MOF model in Fig. 4.4 for different idf

damping rates, we find that as expected both the mirror-mirror and the mirror-field
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entanglements from the two approaches concur in the overdamped idf limit.

Coherent transfer of excitations – As illustrated in Fig.2.2, isolating the idf

from the environment can provide an additional channel for coherent transfer of

mirror-field correlations and for an undamped idf we observe much larger steady

state entanglement. For example, in including the idf to the coupled quantum

dynamics of the MOF system we allow for the possibility of the field photon to

cause a Raman-scattering-like transition changing the internal state of the mirror

in addition to the Rayleigh scattering like processes. A process wherein one can

have a single excitation of the mirror’s internal degree split into a field photon and

a mirror phonon can be described by a two-mode squeezing Hamiltonian. Such an

interaction causes the mirror center of mass to be entangled with the field [98]. This

can specially be seen from Fig. 2.3 where if the field is red-detuned with respect to

the internal resonance by the mechanical resonance frequency (such that ω+f = Ω),

then one gets a larger steady state entanglement. This is much like a blue-detuned

drive in a typical cavity optomechanics setup generating an entangled cavity photon

and a phonon [63]. Such a dependence of the optomechanical interaction on the

idf -field resonance leading to an enhanced mirror-field entanglement is something

that can not be captured in the boundary condition treatment of optomechanical

interactions where one does not allow for the idf to be a separate quantum degree

of freedom.

Entanglement between atomic CoM motion and field – In section 2.3.1, showing

that our approach can be readily extended to 3+1 D, we implement our calculations

to the case of a single atom trapped in a cavity as in the experimental setup of
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[95] to find the entanglement between the atom’s center of mass motion and the

field. Assuming that the atom’s internal structure is given by a harmonic oscillator

for weak enough driving and considering the electronic excitations as the idf , we

find a very close agreement between the vacuum Rabi coupling found from the

considerations of our model and that in [95]. We then study the entanglement

between the atomic center of mass motion and the field as a function of the field

detuning, temperature of the mechanical bath and cavity Q-factor (Fig. 2.3). As

expected, the steady state entanglement increases as one decreases the idf -field

detuning and the temperature (Fig. 2.3 (a) and (b)) and increases with increasing

the cavity Q-factor. This is so because on increasing the Q-factor the field amplitude

builds up inside the cavity leading to larger effective coupling between the atomic

motion and the field. Although since we assume weak driving for the Lorentz atom

model to be valid, our analysis is only true for small enough Q factors and detuning

values such that the excitation probability for the atom remains small.

Motional entanglement between two atoms – As in the case of a single mirror,

we also implement our analysis to study the entanglement between the motion of

two atoms interacting with a common field. Similar to section 2.3.1, we use the same

parameters in section 4.1.3 to look at the entanglement dynamics between the center

of mass motion of the atoms as a function of the idf -field detuning and the temper-

ature of the mechanical baths. Again, as for the case of atom-field optomechanical

entanglement, the entanglement between the two atoms increases with decreasing

the field detuning and the temperature. We note the motional entanglement is

highly sensitive to the internal degrees’ parameters of the two mirrors.
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Field frequency shift – When looking at the quantized Hamiltonian of the

coupled mirror and field system, we note that there is an additional shift to the field

frequency from its second order interaction with the idf as seen from (1.36) and

(2.2), a feature that is not accounted for in the boundary condition treatment. Such

a diamagnetic term contribution can be significant in the strong coupling regimes,

even leading to change in the radiation pressure force from attractive to repulsive

as has been studied in [97].

5.2 Future directions

Hybrid setups – The MOF model provides a common framework to study

hybrid setups with disparate optomechanical elements such as atoms and larger me-

chanical oscillators. For example, it can be seen from section 1.4.2 that one can

describe different kinds of mirrors using the MOF model in terms of their optical

properties and based on our analysis in chapters 2 and 3 one can study the inter-

action between two different mirrors. Typically when considering the mechanical

effects of light on atomic scale systems one does not include the backaction of the

atomic motion on the field, while for the case of larger optomechanical elements

the field configuration is determined strongly by the position of the mirror via the

boundary conditions. On the other hand, while for atoms one acknowledges the

role of the internal degrees of freedom, usually there is no consideration of the in-

ternal structure of a mirror for larger systems. Thus, albeit being quite simplistic,

the MOF model can possibly provide a more general theory to include a range of
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setups with atomistic systems and larger mirrors as limiting cases, both in terms

of backreaction on the field and including the internal dynamics. In this work we

have implemented our model to the case of atoms, as an extension it would be inter-

esting to explore the possibility of describing larger systems which exhibit internal

resonances and combine the two elements to study a hybrid setup.

Fully dynamical description – For relativistically moving mirrors, as in the

case of dynamical Casimir effect [92], applying boundary conditions is an inadequate

description of the dynamics since in the time scales over which internal degrees and

the field reach a steady state thereby leading to an effective boundary condition, the

mirror center of mass moves appreciably enough to affect their interaction with the

field. In cases where the timescales of the mechanical motion and the field-internal

degree of freedom interaction are close to each other, including the internal degree

of freedom becomes relevant as the only means to capture the coupled dynamical

interplay of the three subsystems. The role of the internal degrees of freedom in

dynamical Casimir effect has not been studied in the literature yet and this could

potentially be an important extension of our work.

Backaction of the mechanics on the mirror-field interaction – It has been noted

in several works that the self-consistent backaction of an optomechanical element can

lead to interesting effects such as modifications to the cooling limit [70, 71], access

to strong single photon-mirror optomechanical coupling and collective long-ranged

interactions in an array of atomic mirrors [72]. In our current analysis we restrict

the center of mass motion to the Lamb-Dicke limit, assuming that the motion does

not affect the optical properties of the mirror. In addition to the backaction, the

121



MOF model can also include the internal degrees of the mirror thereby leading to

new physical effects and possibly a cooling scheme that exploits the backaction of

the idf on the field.

A microscopic model for Casimir forces – For the case of two mirrors interact-

ing with each other in the absence of a driving field, one can look at the corrections

to the Casimir/Casimir-Polder forces. It can be seen from (3.30) that the MOF

model allows one to take into account corrections that come from including the

fluctuations of the center of mass motion. We expect that these corrections would

become important for mirrors with a small enough mass. Such an effect that cor-

responds to processes such as the emission and absorption of a virtual phonon has

not yet been studied in the literature and can be analyzed with the MOF model.

5.3 Conclusion

In conclusion, we see that including the internal degrees of freedom of a mirror

naturally leads to a whole range of interesting physical features that one otherwise

misses out when using conventional approach to optomechanics. We show that the

MOF model allows us to go beyond the usual disjoint treatment of mirror-field

interactions wherein one imposes boundary conditions on the field and treats the

mechanical effects of the field arising from the radiation pressure force separately

to attain a self-consistent depiction where we see both the radiation pressure (sec-

tion 1.4.1) and the boundary conditions (section 1.4.2) emerge from a physically

motivated microscopic interaction. Not only does a microscopic model like the
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MOF model reproduce the known optomechanical properties and provide a more

self-consistent approach of studying optomechanical interactions, more importantly

it leads to qualitatively different physics, specifically in the quantum regime. For

example we show that including a whole other quantum degree of freedom that pro-

vides a means to coherently transfer quantum correlations between the field and the

mirror’s mechanical motion can, in appropriate parameter regimes, lead to a larger

optomechanical entanglement. We show that in the parameter regimes where the

idf is isolated from the environment, or if one probes close to the internal resonance

of the mirror, or for strong coupling, the role of the idf becomes more pronounced.

From studying the mirror-field entanglement as a function of the various parameters

of the model pertaining to the idf and otherwise, we find that the presence of the

idf can influence the entanglement dynamics to a significant extent. We conclude

that the internal degree of freedom being the quintessential mediator of interaction

between the mirror center of mass and the field, the MOF model gives a physically

more complete treatment of the mirror-field interactions.
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Appendix A: Logarithmic negativity

After t = 0 the interaction is turned on and the three subsystems (mdf , idf and

the field) begin to interact with each other as the reduced density matrices for each

of individual becomes a mixed state. The linearity of the interaction terms guaran-

tees that the quantum state of the three harmonic oscillators that starts Gaussian

remains Gaussian. Thus the dynamics of quantum entanglement can be studied

by examining the behavior of the quantity Σ [99] and the logarithmic negativity

EMF [100]:

Σ ≡ det

[
VMF

PT +
i~
2
M
]
, (A.1)

EMF ≡ max {0,− log2 2c−} . (A.2)

HereM is the symplectic matrix 1⊗ (−i)σy, VMF is the partial transpose of

the covariance matrix

VMF =

 VMM VMF

VT
MF VFF

 (A.3)

as defined in (2.41). (c+, c−) is the symplectic spectrum of VMF
PT +(i~/2)M, given

by

c± ≡
[
Z ±
√
Z2 − 4 detVMF

2

]1/2

(A.4)
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with

Z = det VMM + det VFF − 2 det VMF . (A.5)

For the quantum oscillators in Gaussian state, EMF > 0, Σ < 0, and c− < ~/2,

if and only if the quantum state of the two subsystems is entangled [101]. EMF is an

entanglement monotone [102] whose value can indicate the degree of entanglement.
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Appendix B: With or Without

A Trace, Of Doubt?

Here we consider the question of whether it is justified to use the joint covari-

ance matrix of N subsystems in order to deduce the entanglement between few, say

two, of the constituent subsystems. For example, in chapter 3 we found the joint

covariance matrix of the mirror CoM, idf and field and used it to calculate the log

Negativity between the mirror CoM and the field, without explicitly tracing away

the idf . We will show in the following that it is justified to do so.

Let us consider a density matrix ρ̂(0) = ρ̂1(0)⊗ρ̂2(0)⊗. . . ρ̂N(0) of N harmonic

oscillators, initially in a separable state. Where in some basis we can express the

reduced density matrices of the individual subsystems as

ρ̂k(0) =
∑
ikjk

α
(k)
ikjk
|ik〉 〈jk| (B.1)

Let us assume that the three systems begin to interact with each other at time t = 0

and evolve unitarily such that

ρ̂(t) = U ρ̂(0)U † (B.2)

= U ρ̂1(0)⊗ ρ̂2(0)⊗ . . . ρ̂N(0)U † (B.3)

= U
∑
i1j1

α
(1)
i1j1
|i1〉 〈j1| ⊗

∑
i2j2

α
(2)
i2j2
|i2〉 〈j2| ⊗ · · ·

∑
iN jN

α
(N)
iN jN
|iN〉 〈jN | U † (B.4)
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Now, say the time evolved state is given as

U |i1〉 |i2〉 . . . |iN〉 =
∑

m1m2...mN

ξm1m2...mN
i1i2...iN

(t) |m1〉 |m2〉 . . . |mN〉 (B.5)

which gives

ρ̂(t) =
∑

i1i2...in

∑
j1j2...jN

∑
m1m2...mN

∑
n1n2...nN

α
(1)
i1j1
α

(2)
i2j2

. . . α
(N)
iN jN

ξm1m2...mN
i1i2...iN

(t)
(
ξn1n2...nN
j1j2...jN

(t)
)∗

|m1〉 |m2〉 . . . |mN〉 〈n1| 〈n2| . . . 〈nN |

(B.6)

Now, say, we wish to trace away all the subsystems but the first and the second, so

that we can study their entanglement. Then, taking a trace over subsystems 3 to

N, the reduced density matrix of system 1 and 2 at time t becomes

ρ̂12(t) =
∑

p3p4...pN

〈p3| 〈p4| . . . 〈pN |
∑

i1i2...in

∑
j1j2...jN

∑
m1m2...mN

∑
n1n2...nN

α
(1)
i1j1
α

(2)
i2j2

. . . α
(N)
iN jN

ξm1m2...mN
i1i2...iN

(t)
(
ξn1n2...nN
j1j2...jN

(t)
)∗ |m1〉 |m2〉 . . . |mN〉 〈n1| 〈n2| . . . 〈nN | |p3〉 |p4〉 . . . |pN〉

(B.7)

=⇒ ρ̂12(t) =
∑

p3p4...pN

∑
i1i2...in

∑
j1j2...jN

∑
m1m2...mN

∑
n1n2...nN

α
(1)
i1j1
α

(2)
i2j2

. . . α
(N)
iN jN

ξm1m2...mN
i1i2...iN

(t)
(
ξn1n2...nN
j1j2...jN

(t)
)∗
δp3m3δp3n3 . . . δpNmN

δpNnN
|m1〉 |m2〉 〈n1| 〈n2|

(B.8)

Now summing over m3 . . .mN and n3 . . . nN , gives us

=⇒ ρ̂12(t) =
∑

p3p4...pN

∑
i1i2...in

∑
j1j2...jN

∑
m1m2

∑
n1n2

α
(1)
i1j1
α

(2)
i2j2

. . . α
(N)
iN jN

ξm1m2p3...pN
i1i2...iN

(t)
(
ξn1n2p3...pN
j1j2...jN

(t)
)∗ |m1〉 |m2〉 〈n1| 〈n2|

(B.9)
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Now, let us evaluate the expectation value of some operator Ô12 defined on the joint

subspace of system 1 and 2. In the Schrödinger picture we have

〈
Ô12ρ̂12(t)

〉
12

=
∑
p1p2

〈p1| 〈p2|
∑
p3...pN

∑
i1i2...in

∑
j1j2...jN

∑
m1m2

∑
n1n2

α
(1)
i1j1
α

(2)
i2j2

. . . α
(N)
iN jN

ξm1m2p3...pN
i1i2...iN

(t)
(
ξn1n2p3...pN
j1j2...jN

(t)
)∗ |m1〉 |m2〉 〈n1| 〈n2| Ô12 |p1〉 |p2〉

(B.10)

=⇒
〈
Ô12ρ̂12(t)

〉
12

=
∑
p1...pN

∑
i1i2...in

∑
j1j2...jN

∑
m1m2

∑
n1n2

α
(1)
i1j1
α

(2)
i2j2

. . . α
(N)
iN jN

ξm1m2p3...pN
i1i2...iN

(t)
(
ξn1n2p3...pN
j1j2...jN

(t)
)∗
δm1p1δm2p2O

n1n2p1p2

12 (B.11)

=⇒
〈
Ô12ρ̂12(t)

〉
12

=
∑
p1...pN

∑
i1i2...in

∑
j1j2...jN

∑
n1n2

α
(1)
i1j1
α

(2)
i2j2

. . . α
(N)
iN jN

ξp1...pN
i1i2...iN

(t)
(
ξn1n2p3...pN
j1j2...jN

(t)
)∗On1n2p1p2

12 (B.12)

Now consider finding the expectation value of the operator Ô12 without finding the

reduced density matrix of system 1 and 2, such that

〈
Ô12ρ̂(t)

〉
12...N

=
∑
p1...pN

〈p1| . . . 〈pN |
∑

i1i2...in

∑
j1j2...jN

∑
m1m2...mN

∑
n1n2...nN

α
(1)
i1j1
α

(2)
i2j2

. . . α
(N)
iN jN

ξm1m2...mN
i1i2...iN

(t)
(
ξn1n2...nN
j1j2...jN

(t)
)∗ |m1〉 |m2〉 . . . |mN〉 〈n1| 〈n2| . . . 〈nN | Ô12 |p1〉 . . . |pN〉

(B.13)

=⇒
〈
Ô12ρ̂(t)

〉
12...N

=
∑
p1...pN

∑
i1i2...in

∑
j1j2...jN

∑
m1m2...mN

∑
n1n2...nN

α
(1)
i1j1
α

(2)
i2j2

. . . α
(N)
iN jN

ξm1m2...mN
i1i2...iN

(t)
(
ξn1n2...nN
j1j2...jN

(t)
)∗
δm1p1 . . . δmNpN (δn3p3 . . . δnNpN ) 〈n1| 〈n2| Ô12 |p1〉 |p2〉

(B.14)
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=⇒
〈
Ô12ρ̂(t)

〉
12...N

=
∑
p1...pN

∑
i1i2...in

∑
j1j2...jN

∑
n1n2

α
(1)
i1j1
α

(2)
i2j2

. . . α
(N)
iN jN

ξp1p2...pN
i1i2...iN

(t)
(
ξn1n2p3...pN
j1j2...jN

(t)
)∗On1n2p1p2

12 (B.15)

Thus from comparing (B.12) and (B.14), we can see that to evaluate the expectation

value of an operator in a certain subspace we do not need to trace over the remaining

subsystems explicitly and all the influence from the interactions is accounted for

consistently.
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