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Preface 

Survey sampling, with its own theory and methodology, has been considered as a 

small niche within standard statistics. This situation has produced a disconnect 

between theory and practice. For example, nonresponse is one of the most important 

challenges facing survey sampling theory; however, most textbooks dedicate only a 

few pages to this problem. As noted by Tillé (2006), a concept as common as simple 

random sampling is often not defined, although it can be described mathematically as 

a discrete random vector with a probability density mass and a characteristic function. 

In this dissertation, we call for a change of perspective in the current approach to 

estimation in survey sampling. We extend Tillé’s idea and postulate that sample 

designs are uniquely defined as a multivariate discrete random variable with an 

expected value and a variance-covariance matrix with specific properties that 

determine the type of design. The observed sample is also a multivariate discrete 

distribution with a probability mass function that inherits the properties from the 

random vector that describes the sample selection. Furthermore, all estimators are 

functions of these random variables. Since there are no differences between a sample 

design and design-based estimators and other random variables and functions of 

random variables, we can use standard statistical analysis for studying design-based 

estimators. This approach justifies the use of tools from standard statistics and other 

fields such as engineering and physics. The introduction of matrix notation and 
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matrix operations provides new insights into the performance of estimators without 

the use of simulations. 

As shown in this research, the proposed methodology, called Parametric (PA) 

Approach, has been useful for the design of algorithmic estimators that address the 

problem of working model building and variable selection for calibration. The 

algorithm was engineered based on the observations of the mathematical relationship 

between the outcome variable and the probability of inclusion using orthogonal 

components, a tool commonly used in other fields. Under this approach, we have a 

better understanding of when estimators are efficient or when they underperform. 

These ideas also provide a methodology to develop new design-based estimators from 

any model that is capable of reproducing the classical design-based estimators. Using 

the same tools, we revisit the survey sampling asymptotic theory and provide a more 

intuitive way to study the large sample properties of estimators. We also revisited 

some unreproducible results reported in the literature. 

The main consequence of this change in perspective is the rethinking of concepts 

such as the role of models within the design-based paradigm while questioning 

engrained concepts in the current theory. However, developing a new unifying 

framework is not the goal of this endeavor. The main goal is to provide tools for 

addressing the current problems facing the field. 
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Chapter 1 The Parametric Approach to Survey Sampling 

Estimation 

1.1 Introduction 

This dissertation extends the model-assisted theory for estimating enumerative finite 

population characteristics such as totals and means from complex survey data in the 

presence of full response. In the model-assisted approach, the working model for the 

outcome variable guides the form of the estimator, and the inferences are design-

based (Särndal, Swensson, & Wretman, 1992). This approach allows for 

incorporating auxiliary information to improve the efficiency of the estimators. 

Although the working model does not need to be true for design-consistency, the gain 

in efficiency depends on how well the model fits the observed data. 

We propose a new framework for developing design-based estimators of finite 

population characteristics called a Parametric (PA) approach in the presence of full 

response. The PA framework is a data-driven methodology for (1) developing the 

working model (i.e., choosing the auxiliary variables and functional form of the 

model) given the realized sample, and (2) incorporating the auxiliary variable 

population totals directly into the model. Unlike most design-based estimators, the 

PA estimator is not a single estimator, but a class of estimators called algorithmic 

estimators that result from applying an unambiguous set of steps or procedures to the 

observed sample. The PA framework is similar to, and motivated in part by, the data-
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driven methods from statistical learning theory (Hastie, Tibshirani, & 

Friedman, 2009). 

As an algorithmic-based methodology, the PA framework has these key steps. 

1. Postulate a collection of well-defined parametric working models based on the 

available auxiliary variables. Two models are considered. The first is the standard 

model of the outcome variable(s). The second is a model of the probabilities of 

inclusion, even though these may be known. This second modeling activity differs 

from the model-assisted paradigm. The rationale for modeling inclusion 

probabilities is three-fold. First, the estimated probabilities may produce more 

efficient estimators than those using the known probabilities (Lumley, Shaw, & 

Dai, 2011). Second, the modeled probabilities of selection can stabilize estimators 

such as the Horvitz-Thompson (HT) estimator (Horvitz & Thompson, 1952) in 

some designs (Rao, 1966); for example, estimators with poststratified weight to 

the total population size. Third, this modeling step is essential when uncontrolled 

nonresponse is present, although this topic is not addressed here. 

2. Evaluate the goodness of fit for both models and then identify the common 

variables that explain both the outcome variable and the inclusion probabilities in 

both models. 

3. Refit a model of the inclusion probabilities using only the common variables that 

explain the outcome variable and inclusion probabilities. Using this model, 



 

3 

predict the fitted mean of the inclusion probabilities and adjust the original sample 

design weights. 

4. Using the adjusted weights from the previous step, evaluate the goodness of fit of 

the models of the outcome variable to identify the auxiliary or predictor variables 

of the model that give the best fit. 

5. Fit a model for the outcome variable using the predictors identified in the 

previous step using the original sampling weights and then adjust the regression 

coefficients of the parameters of this model using population totals of the selected 

auxiliary variables. 

6. Construct the PA estimator as the weighted sum of the adjusted pseudo-

maximum-likelihood (PML) estimates of the mean of the selected working model 

and estimate its variance. 

Although the PA estimators are solutions of the likelihood of parametric models, we 

show that they are design-consistent irrespective of the fit of the working model, and 

the inference depends only on how the sample is drawn. Since the algorithm measures 

the goodness of fit of the models, the resulting PA estimator is likely to be one of the 

most efficient estimators among those from the evaluated working models. Because 

the algorithm defines the PA estimator, the asymptotic properties such as design 

consistency under suitable regularity conditions are given using the generic form of 

the PA estimator. 
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The PA framework uncovers interesting relationships between some PA estimators 

under specific models and well-known, design-based estimators. Most classical 

design-based estimators are shown to be weighted sums of adjusted PML estimates of 

parameters of the assumed working model. This relationship between the estimators 

and their parametric working models justifies the use of standard statistical modeling 

techniques within the design-based context in the PA framework. 

The PA framework is applied in this paper to address three estimation problems 

reported in the literature. The first problem is the identification of the functional form 

of a design-based estimator based on the observed data. The second problem is the 

identification of the variables that should be used in calibration. This problem is also 

known as working or assisting model development. The third problem is the 

methodology to develop new design-based estimators. The PA algorithm provides a 

recipe for deriving new estimators. Since the PA framework provides a guide to 

“engineer” new estimators, we propose an alternative estimator for Poisson sampling 

designs, and two new classes of estimators called algebraic PA estimators and non-

linear PA algorithmic estimators. All these PA estimators only require the auxiliary 

variable population totals. We evaluate and compare the PA estimator to alternative 

estimators described in the literature using simulations by varying factors such as 

sample design, working model misspecification, and sample size. 
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1.2 Background and the Need for Change 

The survey sampling literature describes numerous estimators for finite population 

characteristics that rely on auxiliary information to improve the efficiency of the HT 

estimator. These estimators are constructed by assuming that the underlying working 

model is known and correctly specified. Frequently, the estimators are evaluated 

under optimal conditions (e.g., the working model is correctly specified) through 

simplistic simulations. Little guidance is available for identifying the auxiliary 

variables in the model, nor are diagnostics given to determine if the underlying 

assumptions hold. As a result, it is difficult to assess the efficiency of the proposed 

estimators in practical situations. For example, calibration estimators have been 

shown to be efficient compared to estimators based on PML estimators (Kott, 2006; 

Kim & Riddles, 2012). However, in practice, some calibration estimators may not be 

feasible, the auxiliary variables may have low predictive power, or the auxiliary 

variables may have to be selected from a large pool of variables without any 

guidance. It is unclear if the calibration estimators would be better in these situations. 

Most current research searches for the functional form of the best estimator in a 

particular situation, often leading to a single functional form or expression of the 

estimator. However, this approach does not recognize that no single estimator works 

well for all conditions and sampling strategies (Rao, 2008). Another issue is that 

survey statisticians do not have a predetermined set of auxiliary variables for their 

working models and must rely on some form of data dredging to identify these 
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variables. Addressing these issues requires a new approach that can adapt the 

estimation process to what the sample or observed data reveals about the population. 

The PA framework does not assume that the working model is known; instead, it 

focuses on the methodology for model development or model building based on the 

observed data. The PA estimators are the result of an algorithmic process where a 

single form of the estimator may not even exist under repeated sampling. In this 

regard, the PA methodology is similar to the Targeted Maximum Likelihood 

Estimation (TMLE) for observational studies (van der Laan & Rose, 2011), and the 

Double Machine Learning (DML) for treatment and causal parameters 

(Chernozhukov et al., 2017). The PA approach, the TMLE, and DML methodologies 

only target model parameters related to the outcome. The PA approach differs from 

the TMLE and DML because it uses these parameter estimates to produce design-

based estimators of finite population characteristics. 

1.3 Example of an Algorithmic PA Estimator 

The PA framework for estimation with full response provides tools to determine the 

best functional form of an estimator from the single realization of the sample and the 

set of auxiliary variables that should be used in the estimator.1 To illustrate the use of 

                                                 

1  The best functional form of an estimator and the set of auxiliary variables are related because the auxiliary 

variables determine the form of the estimator. See Section 3.1. 
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the PA methodology, we use the example from Section 14.3.2 in Valliant, Dever, & 

Kreuter (2013) denoted as VDK to compute two different algorithmic PA estimators. 

EXAMPLE 1.1. VDK discusses the selection of covariates as control totals 

for generalized linear regression estimators (GREG) (see Cassel, Särndal, & 

Wretman, 1977). VDK illustrates the differences in efficiency of GREG estimators 

using different sets of auxiliary variables by computing two estimators using the 

1998 Survey of Mental Health Organizations data set smho.N874 from the R 

package PracTools (Valliant, Dever, & Kreuter, 2018). The renamed variables 

with renumbered levels and their description from the file smho.N874 used in this 

example are listed in  Table 1.1. 

In the VDK example, the population consists of N =  725 hospitals2 and a systematic 

sample of n =  80 hospitals is selected with a probability proportional to size (PPS) 

from the frame randomly ordered before sample selection. The measure of size 

(MOS) of a hospital is { } ( )
2 255 5

kk kxm x>= + −1  for k U∈  where { }2 5kx >1  is the 

indicator function for 2 5kx >  where { }2 5 1
kx > =1  if 2 5kx >  or { }2 5 0

kx > =1  if 2 5,kx ≤  

and 2kx  is the number of inpatient beds in hospital k  for k U∈ . The inclusion

                                                 

2  The original frame is the file smho.N874 with 874 hospitals but 149 records coded as hosp.type=4 for 

outpatient and partial cases hospitals are removed before the analysis. The variable 1x  contains the renumbered 

levels of hosp.type and 1x  is the vector of dummy variables for each hospital type as indicated in  

Table 1.1. 
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 Table 1.1 Variables in the frame from the 1988 Survey of Mental Health 
Organizations 

 
Variable Type Description Levels/values 

1y   Dependent 
/continuous 

Hospital total 
expenditures in 
1998  
 

99,000 to 197,210,630 

2y  Dependent 
/binary 

Indicator for 
whether the 
hospital received 
financing from the 
state mental health 
agency in 1998 
 

2 1y = : Hospital received 
financing 

2 0y = : Hospital did not receive 
financing 

 

( )1 11 12 13 14, , ,x x x x=x
 

Auxiliary 
/categorical 

Hospital type 
 

1,1 1x = : Psychiatric, 

1,1 0x = : Otherwise 
 

1,2 1x = : Residential/ veterans, 

1,2 0x = : Otherwise 
 

1,3 1x = : General, 

1,3 0x = : Otherwise 
 

1,4 1x = : Multiservice/ substance 
abuse 

1,4 1x = : Otherwise 
 

2x  Auxiliary 
/discrete 
(assumed 
continuous) 
 

Total inpatient 
beds 

0 to 1,357 

3x  Auxiliary 
/discrete 
(assumed 
continuous) 
 

Unduplicated 
client/ patient seen 
during the year 

0 to 28,993 

4x  Auxiliary 
/discrete 
(assumed 
continuous) 
 

End of year count 
of patients on the 
roll 

0 to 14,239 
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 probability is k
k

k
k U

mn
m

π

∈

=
∑

 where n  is the sample size. We use the same random 

seed for the sample selection to reproduce the results from VDK for the comparison 

with the algorithmic PA estimators. 

The first VDK estimator is ,1V̂DKY , the estimator of the total expenditures in 1998 for 

all hospitals in the frame, 1Y , based on the variable 1y , which is the individual 

hospital expenditures. The second estimator is ,2
ˆ
VDKY , the estimator of the proportion 

of hospitals that received financing from the state mental health agency in 1998, 

2
2

YY
N

= , based on the variable 2y , which is the indicator of whether or not the 

hospital received financing from the state agency. The population totals of the 

auxiliary variables of the estimators ,1V̂DKY  and ,2
ˆ
VDKY  are ( )1 3 4 5, , , ,N X XX X  and 

( )1 2 3 4, , , ,N X X XX , respectively, where 5 1 2X= ∗X X  represents the population 

totals of the interaction between the variables 1x  and 2x ; that is, the total number of 

beds by hospital type shown in Table 1.2. (See Section 1.5.2 for notation of models 

and variables). 

VDK selected the auxiliary variables for ,1V̂DKY  using the results of an analysis of the 

dependent variable 1y  based on the full population. After fitting a generalized linear 

model (GLM) to the outcome 1y  and examining the slope of the variable 2x  (number 

of beds) by 1x  (hospital type), they decided to include these variables as main effects 
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in the working model of ,1V̂DKY . Their population analysis for 2y  showed different 

slopes by hospital type so 1x  (hospital type) was selected as the main effects and the 

interaction terms between 1x  and 2x  were excluded from the working model of 

,2
ˆ
VDKY . These analyses are not possible in practice since the dependent variables are 

only observable for the sampled cases after sample selection. 

Table 1.2 Auxiliary variable for the number of inpatient beds by hospital type,
5 1 2x= ∗x x  where 1x  is hospital type and 2x  is the total inpatient 

beds in the hospital in the 1988 Survey of Mental Health 
Organizations data 

 
Variable Levels/values 

( )
5 1 2

51 52 53 54, , ,
k k k

k k k k

x
x x x x

= ∗

=

x x
 

 

51 2kx x= : If hospital k  is psychiatric, 
51 0kx = : Otherwise. 

 
52 2kx x= : If hospital k  is residential/ veterans, 
52 0kx = : Otherwise. 

 
53 3kx x= : If hospital k  is general, 
52 0kx = : Otherwise. 

 
54 4kx x= : If hospital k  is multiservice/ substance abuse, 
52 0kx = : Otherwise. 

 
  

The goal of the PA algorithm is to identify the relevant variables that explain the 

outcome variable from the observed sample considering the sample selection. After 

these variables are identified, the algorithm incorporates the population totals of these 

variables into the pseudo-log-likelihood (PLL) of the data for an assumed working 

model with these variables. This information is currently ignored in the regular PML 
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approach (Binder & Roberts, 2009). Then the PA estimator is derived as the sum of 

the expanded adjusted fitted means of the working model. 

We describe how to compute two separate algorithmic estimates of the total 1Y , 

,1
ˆ ,paY  and the proportion 2Y , ,2

ˆ
paY , using the PA approach. As in the VDK example, 

we expect to use different sets auxiliary variables in the PA working models of 1Y  

and 2Y . The PA estimators ,1
ˆ
paY  and ,2

ˆ
paY  are derived following the steps of 

Algorithm 1.1 on page 61. The algorithm consists of 10 steps classified into four 

separate groups with specific goals: 

A. Identification of the best-fit Maximum Likelihood/ Pseudo-Maximum 

Likelihood working models of the outcome variable and probabilities of 

inclusion (Steps 1 to 4). 

The PA algorithm starts by fitting separate models for the sample membership 

indicator kS  in Steps 1 and 2, and the outcome variable ky  in Steps 3 and 4 to 

identify a working model with the auxiliary variables that are predictors of both the 

probability of inclusion π  and the outcome variable y . 
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STEP 1. Propose the collection of working models πM  for the sample membership 

indicator kS  for k U∈ . 

In the first step, we define the distribution function of the working model for kS . In 

this example, we assume that the population is available (see Section 1.6 for 

alternatives for modeling kS  when only the sample is available). Let { }0,1kS ∈  be a 

discrete random variable for the sample membership indicator and ks  be the 

realization of kS  (e.g., k kS s= ) that takes the value of one if the unit k  is selected in 

the sample or zero if the unit k  is not selected for k U∈ . Let [ ] ( ) 10,1 N
kS ×= ∈S  be 

the discrete random vector with the sample membership indicator kS  for all the 

elements in the population. We assume that the observed sample (e.g., all cases with 

1ks = ) is a realization of kS  for k U∈ , which is assumed to follow a Bernoulli 

distribution ( )iid
k kS e π∼ Be  where ( )1logitk kπ −= x β , 1 P

k
×∈x ¡ , ( )1,..., Px x=x  is 

the vector of auxiliary variables associated with the element k U∈ , 1P×∈β ¡ , 

( )T
1,..., Pβ β=β  is the vector of the regression coefficients, and T  is the transpose 

operator. 

Let πM  be the true model for S  and πM  the set or collection of working models 

for S  generated by the linear combinations of the auxiliary variables ( )1,..., Px x=x  

and any values of 1 P×∈β ¡  (see Definitions 1.1 and 1.3). In this example, the vector 

of auxiliary variables is ( )1 2 3 4 51, , , , ,x x x=x x x . The population totals for the models 
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in πM  are the combination of the totals ( )1 2 3 4 5, , , . ,N X X X=X X X . There are an 

infinite number of models in πM  and none of the models in πM  is correctly 

specified since the true model of S  is a nonlinear function of 1kx . However, the 

algorithm does not require the correct working model of S  because the model is only 

used to identify the relevant auxiliary variables that explain the sample selection. 

Since the models in πM  are defined at the population level, the parameters of these 

models are estimated using Maximum Likelihood (ML) where the sampling weights 

do not play any role in the estimation (Casella & Berger, 2002). 

The key outcome of Step 1 is πM , the collection of working models for the sample 

membership indicator kS . 

STEP 2. Identify the ML model ¶π π∈MM  for S  that minimizes the loss function 

( )L S . 

The expression for the log likelihood (LL) of the models for =S s  in πM  fitted to 

the complete population is 

 ( ) ( )( )( )log ; , log 1 expk k k
k U

S
∈

= − +∑β S x x β x βL = , (1.1) 

where ( )T
1,..., Pβ β=β  are the regression coefficients for the auxiliary variables 

( )1,...,k k kPx x=x . Let ¶πM  be the set of all ML models in πM ; then the maximum 
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likelihood estimates (MLE) of the regression coefficients, ¶ˆ
mle π∈β M  are the 

solutions to 

 ( )ˆ arg max logmle
π∈

=
β

β β
M

L =. (1.2) 

Let ¶ ¶π π∈MM  be the ML model for S  among the models in ¶πM  with the lowest 

value of the loss function ( )L S . In the PA algorithm, we do not fit all ML models 

¶
ππ ⊂M M  to identify the model ¶πM ; instead, we use a forward stepwise variable 

selection where Lπ  is the AIC , the Akaike information criterion (Akaike, 1981) to 

generate and fit a subset of ML models ¶πM  from πM  (see details of the variable 

selection and the AIC in Section 1.7). In this example, the same ML model ¶πM  is 

fitted for 1y  and 2y  since ¶πM  does not depend on the dependent variable. The ML 

working model for S  with the best fit is ¶ ( )11 12 41, , ,x x xπ =M  with a loss value of 

( )L S = − 481.46. 

The key outcome of Step 2 is ¶πM , the ML model with the specification of the 

auxiliary variables of the best-fit working model of the sample membership 

indicator kS  for k U∈ . 
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STEP 3. Propose the collection of working models yM  for the outcome y . 

Similar to Step 1, we first assume distribution functions for the models for the 

outcomes variables 1y  and 2y .  

Let yM  be the true model for y  and yM  be the set or collection of working 

models for y  where ( )2| ~ ,iid
k k ky σx x βN . The models in yM  are generated by 

the linear combinations of the auxiliary variables ( )1,..., Px x=x  and any values of 

1 P×∈β ¡ . We also use this collection of models for 2y  even though they are 

misspecified because 2y  is a binary variable. For the PA estimators, we define the 

collection of models 
1yM  and 

2yM  for 1y  and 2y  using the same set of auxiliary 

variables ( )1 2 3 4 51, , , , ,x x xx x  and population totals ( )1 2 3 4 5, , , . ,N X X XX X  in πM  

from Step 1. The models in 
1yM  and 

2yM  include those for 1,
ˆ VDKY  and 2,

ˆ
VDKY , in 

addition to the Hájek (HJ) estimator, among others. 

The key outcome of Step 3 is yM , the collection of models of the outcome(s). 
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STEP 4. Identify the PML model ¶ ¶y y∈MM  for y  that minimizes the loss function 

yL  using the sampling weights 1
k

k
d

π
= . 

The expression of the PLL of the models of ky , in yM  fitted to the observed sample 

is 

 ( ) ( ) ( ) ( )2
2

log 2 1log , ; , , | log
2 2

k k k k
k U

dS y
π

σ σ
σ∈

 
= − + + − 

 
∑β S d x x βL F , (1.3) 

where ( ) 1T
1,..., P

Pβ β ×∈=β ¡  are the regression coefficients for the auxiliary 

variables ( )1,...,k k kPx x=x  and 1
k kd π −=  are the sampling weights for k U∈ . Let 

¶ yM  be the collection of all PML models in yM  where the PMLE of the regression 

coefficients ¶ˆ ypmle ∈β M  are the solutions to 

 ( )ˆ arg max log |
y

pmle
∈

=
β

β β
M

L F =. (1.4) 

Let ¶ ¶y y∈MM  be the PML model for y  among the models in ¶ yM  with the lowest 

value of the loss function ( )L y . As in Step 1, we do not fit all PML models in ¶ yM  

to identify ¶ yM . We use a forward stepwise variable selection based on the dAIC , a 

sample-based estimator of the AIC, to generate and fit a subset of the PML models 

¶ yM  from yM  (see details of dAIC  in Section 1.7 and Section A.4 in 

Appendix A). 
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In this example, the PML working model for 1y  with the best fit is 

¶ ( ) ( )1 11 2 3 521, , , ,y y x x x x=M  with a loss value of ( )1L y = − 2,843.2. The ML 

working model of 1y  includes the variables 2x  (number of hospital beds), 3x  

(unduplicated number of client/ patients seen during the year), the indicator 11x  

(indicator for psychiatric hospitals) and 52x  (number of beds in residential/veterans 

hospitals, see Table 1.2). The PML working model for 2y  with the best fit is 

¶ ( ) ( )2 12 15 4 521, , , ,y y x x x x=M  with a loss value of ( )2L y = − 58.40. The working 

model of 2y  includes the indicators 12x  and 14x  (indicators for residential/veterans 

and multiservice/substance abuse hospitals), the variable 4x  (end of year count of 

patients on the hospital roll), and the variable 52x  (number of beds in 

residential/veterans hospitals). The PML working model for 2y  is reasonable since 

substance abuse hospitals and large residential/veteran hospitals (measured by the 

number of beds) tend to receive funding from the state agency. 

The key outcome of Step 4 is ¶ yM  with the specification of the variables of the 

working model of the outcome(s) with the best fit. 

B. Targeting of relevant variables for y  and S  (Steps 5, 6, and 7) 

The second group of steps of the PA algorithm (Steps 5, 6, and 7) identifies the 

explanatory auxiliary variables for both the outcome and the sample membership 

indicators. This step is done by examining the auxiliary variables in the working 
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models ¶ yM  and ¶ πM . Once the common auxiliary variables in both models are 

identified, a new collection of working models with these variables, ,yπM  for S  is 

proposed. The best fit ML model working ¶
,yyπ π∈M M  is used to produce 

estimates of kπ , ˆkπ , that are used to produce estimates of the sampling weights as 

1ˆ ˆk kd π −= . The estimated sampling weights ˆ
kd  are used to adjust the original 

sampling weights kd  to produce the adjusted weights ˆkw . The adjusted weights, ˆkw  

ensure that the predictors of both the outcome variable and inclusion probabilities are 

retained in the models produced in the subsequent steps of the algorithm. 

STEP 5. Identify the set of models ,yπM  for S  using the auxiliary variables that 

explain both y  and S  as ¶ ¶
, yy ππ = ∩M M M . 

Let ,yπM  be the set of models generated by common auxiliary variables that 

explain both y  and S . The common auxiliary variables are the variables that appear 

in both ¶πM  and ¶ yM  models from steps 2 and 4. In the case of simple random 

sampling (SRS), the common variable may be the intercept term, , 1yπ =M . 

In this example, the models in ,yπM  for 1y  are 

 ( ) ( ) ( ) ( ), 1 11 12 4 11 2 3 52 111, , , 1, , , , 1,y y x x x x x x x xπ = =∩M .  



 

19 

Note that all working models for S  in ( ), 1y yπM  have a distribution ( )ke πB  with 

( )
( )

0 11 11

0 11 11

exp
1 exp

k
k

k

x
x

β β
π

β β
+

=
+ +

 where 0 0β ≠  and 11 0β ≠ . The relevant predictors for 

both π  and 1y  are the auxiliary variables ( )111, x . 

The models in ,yπM  for 2y  are 

 ( ) ( ) ( ) ( )4, 2 11 12 412 15 524 121, , , 11, , , , , ,y xx x xy x x x xxπ = =∩M ,  

where all working models for S  in ( ), 2y yπM  have a distribution ( )ke πB  with 

( )
( )

0 12 12 4 4

0 12 12 4 4

exp
1 exp

k k
k

k k

x x
x x

β β β
π

β β β
+ +

=
+ + +

 where 0 0β ≠ , 12 0β ≠ , and 4 0β ≠ . The 

relevant predictors for both S  and 2y  are the auxiliary variables ( )12 41, ,x x . Note 

that relevant predictors for S  and 1y  are not the same as the relevant predictors for S  

and 2y . 

The key outcome of Step 5 is ,yπM , the ‘reduced’ set of working models with the 

specification of the auxiliary variables that explain both the sample membership 

indicators and the outcome(s). 

STEP 6. Fit the ML working ¶ yπM  for S  using the auxiliary variables from the 

collection of models yπM  identified in Step 5. Using the model ¶ yπM , compute the 

fitted probability of selection ˆkπ  to produce the estimated weights 1ˆ
ˆk
k

d
π

=  for the 
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sampled units. Use these estimated weights ˆ
kd  to adjust the sampling weights as 

ˆˆ ˆ
kk U

k k k
k kk U

d
w d d

d d
∈

∈

=
∑

∑
. The adjusted weight ˆkw  is the expanded estimated weight 

ˆ
k kd d  poststratified to the total k

k U
d

∈
∑ . In the case of SRS, the estimated probability 

of selection is ˆk cπ =  where c  is a constant, then the adjusted weight ˆk kw d=  which 

is the design weight without adjustment. In other words, for noninformative designs 

with respect to y  and S , there is no need to follow steps 1 to 6 of the algorithm. 

We implement this step in the same way as in Step 2 but considering only the models 

in ,yπM . This step is important for informative designs where the auxiliary 

variables used to estimate π  are at the same time predictors of the outcome. The 

function of the adjusted weights is to ensure that the variables that explain both y  

and S  are retained in the model in the following steps of the algorithm. 

The key outcome of Step 6 is the adjusted sampling weight, ˆkw . 

STEP 7. Identify the PML model ¶*
ˆ,y wM  for y  that minimizes the loss function 

( )L y  among models in yM  using the adjusted weights ˆkw  computed in Step 6. 

We repeat the same procedure from Step 4 but using the adjusted weight ˆkw  when 

fitting the models in ˆ,y wM . The expressions of the PLL and ¶*
ˆ,ˆ y wpmle ∈β M  are given 



 

21 

in (1.3) and (1.4) after replacing yM  by ¶*
ˆ,y wM  and d  by ŵ , respectively. In this 

example, the PML model ¶*
ˆ,y wM  for 1y  is ¶ ( ) ( )*

ˆ, 1 2 3 511, , ,y w y x x x=M  with a loss 

value of ( )1L y = −  2,812.4. The PML model ¶*
ˆ,y wM  for 2y  is 

¶ ( ) ( )*
ˆ, 2 12 14 4 511, , , ,y w y x x x x=M  with a loss value of ( )2L y = −  58.4. 

The key outcome of this step is the model ¶*
ˆ,y wM  with the specification of the 

variables of the working model with the best fit of both the sample membership 

indicator and the outcome variables(s) using the weight ˆkw . 

C. Creation of the PA estimator and inference (Steps 8 to 10) 

In Step 8, the final PLL model for y , ¶*
yM , is fitted using the sampling weights kd  

and the auxiliary variables from the model ¶*
ˆ,y wM  identified in Step 7. In Step 9, the 

vector of the PMLE of the regression coefficients of the parameters of the final model 

¶*
yM  are adjusted by a matrix µ XΓ  with the PA adjustments (see Section 1.5 for the 

definition of the PA adjustment). In Step 10, the PA adjusted model ¶ ,y paM  is used 

to produce the PA adjusted fitted means, ,ˆ pa kµ , for the sample. In the last step, the 

fitted means are substituted into the generic form of the PA estimator, and the 

estimates of variance are computed using the appropriate formula. 
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STEP 8. Fit the PML model ¶*
yM  for y  using the auxiliary variables from the model 

¶*
ˆ,y wM  identified in Step 7 using the sampling weight 1

k
k

d
π

= . 

The expressions of the PLL and ¶*ˆ ypmle ∈β M  are given in (1.3) and (1.4) after 

replacing yM  by ¶*
yM . In this example, the PMLEs of the regression coefficients 

ˆ
pmleβ  of the models ¶ ( )

*
1y yM  and ¶ ( )

*
2y yM  for the observed sample are shown in 

the second column of Table 1.3. 

The key outcomes of Step 8 are the auxiliary variables associated with the regression 

coefficients ˆ
pmleβ  of the working model of the outcome with the best fit. 

STEP 9. Create the PA model ¶ ,pa yM  by adjusting the PMLE of the regression 

coefficients ˆ
pmleβ  of the model ¶*

yM  by the PA adjustment ˆ XXΓ . 

In this example, because the distribution only includes linear regression coefficients 

for the location parameter, then the PA adjustment ˆ P P×∈XXΓ ¡  is a square matrix 

where the entries of the main diagonal contain the ratios of the auxiliary variable 

population total kX  and the HT estimate of the auxiliary population total ,
ˆ

HT pX  for 

the auxiliary variables ( )1, , Px x…  in the model *ˆ yM  as  



 

23 

 1

,1 ,

ˆ diag ,...,ˆ ˆ
P

HT HT P

X X
X X

 
=   

 
XXΓ ,  

where , ,
ˆ HT p k p k

k A
X d x

∈
= ∑  for { }1,...,p P∈ . The PA adjusted regression coefficients 

1ˆ P
pa

×∈β ¡  are 

 

1
,1

,1

,
,

ˆ
ˆ

ˆ ˆˆ ...

ˆ
ˆ

pmle
HT

pa pmle

P
pmle P

HT P

X
X

X
X

β

β

 
 
 
 = =
 
 
 
 

Xβ Γ β ,  

where ( )T 1
,1 ,

ˆ ˆ ˆ,..., P
pmle pmle pmle Pβ β ×= ∈β ¡  are the PMLE estimates of the 

regression coefficients β  of the model ¶*
yM . Note that the PA adjustment ˆ XXΓ  is not a 

calibration adjustment since it does not benchmark the regression coefficients ˆ
pmleβ  

to a population total. This step incorporates the information of the population totals 

into the PLL and the PMLE estimates of the regression coefficients. 

The key outcomes of Step 9 are the values of the PA adjusted regression coefficients 

ˆ
paβ  of the model *ˆ yM . 

The values of ˆ
pmleβ , ˆ

paΓ , and the PA adjusted regression coefficient ˆ
paβ  for the PA 

models ¶*
yM  of 1y  and 2y  in this example are shown in the last two columns of 

Table 1.3. 
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STEP 10. Estimate the PA adjusted fitted means ,ˆ pa kµ  for the sample cases using the 

PA model ,
ˆ pa yM  from Step 9, and substitute the values ,ˆ pa kµ  into the generic form 

of the PA estimator for the total Y , ,
ˆ ˆPA k pa k

k A
Y d µ

∈
= ∑ , or the generic form for the 

mean or proportion Y , 
ˆˆ PA

PA
YY
N

= . Then compute the variance estimate of the PA 

estimator using the appropriate expression (see Section 1.7). 

The key outcomes of Step 10 are P̂AY  and ( )ˆ
P̂AYV  or ˆ

PAY  and ( )ˆˆ
PAYV . 

Table 1.3 Estimates of the regression coefficient of the model ¶*
yM  and the PA 

adjustment of two PA algorithmic estimates in Example 1.1 
 

Model 
ˆ

pmleβ  

PA 
adjustment 

ˆ XΓ  ˆ
paβ  

1y : Total hospital expenditures    
Regression coefficient Auxiliary variable    

0β ×10-3 1 1,116.04 1.03 1,154.25 

11β ×10-3 11x  -5,753.23 0.96 -5,515.55 

2β ×10-3 2x  51.44 1.07 55.05 

3β ×10-3 3x  166.94 0.79 131.80 

52β ×10-3 52x  114.94 1.22 140.18 

2y : Indicator of whether hospital received state 
agency funding    

Regression coefficient Auxiliary variable    
0β ×103 1 34.93 1.03 36.13 

12β ×103 12x  204.82 0.93 189.58 

15β ×103 15x  965.07 1.08 1,041.57 

52β ×103 52x  1.85 1.22 2.25 
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Since the assumed distribution of 1y  is normal with and identity link function, the PA 

adjusted fitted mean of 1y , 
1, ,ˆ pa y kµ , for the observed sample is 

 1, , ,0 ,11 11 ,2 2 ,3 3 ,52 52
ˆ ˆ ˆ ˆ ˆˆ pa y k pa pa k pa k pa k pa kx x x xµ β β β β β= + + + +

.  

Similarly, the PA adjusted fitted mean for 2y , 
2, ,ˆ pa y kµ  is 

 1, , ,0 ,12 12 ,15 15 ,52 52
ˆ ˆ ˆ ˆˆ pa y k pa pa k pa k pa kx x xµ β β β β= + + +

.  

The algorithmic PA estimates ,1P̂AY  and ,2
ˆ
PAY  for the selected sample listed in  

Table 1.4 are computed by substituting the PA means 
1, ,ˆ pa y kµ  and 

2, ,ˆ pa y kµ  in the 

appropriate generic formula for population total or proportion. The table includes the 

VDK GREG estimates ,1V̂DKY  and ,2
ˆ
VDKY , the estimates of the canonical forms of 

the HT estimators ,1ĤTY  and ,2
ˆ
HTY , and the Hájek (HJ) estimates ,1ĤJY  and ,2

ˆ
HJY  

for reference (see Definition 1.2). The results in  Table 1.4 show that for this 

realization of the sample, for the total 1Y , the relative bias (difference between the 

estimate and the population value as a percent of the population value) of ,1P̂AY  is 

17 percent larger than the relative bias of ,1V̂DKY . The standard error of ,1P̂AY  is 

14 percent larger than ,1V̂DKY . For the proportion 2Y , the relative bias of the PA 

estimate ,2P̂AY  is slightly larger than the VDK GREG estimate ,2V̂DKY ; however, the 

standard error is 63 percent smaller than the standard error of ,2V̂DKY . Although these 

results are interesting, comparing estimates, bias, and standard errors for one 

realization is not appropriate for evaluating the performance of the estimators. An 
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alternative is to compute the same summary statistics under repeated sampling. The 

empirical statistics for samples of size 80 drawn 100,000 times according to the 

sample design are summarized in Table 1.5. The table shows the relative bias (RB), 

relative root mean squared error (RRMSE), the empirical coverage of the 95 percent 

confidence interval assuming normality, the Kish’s design effect (deff) (assuming that 

system of weights are created using the identified working models) and the relative 

efficiency (RE) with respect to the HT estimator (see the definitions of these 

empirical summary measures in Section A.4 in Appendix A on page 302). 

 Table 1.4 Estimates of total 1Y  and proportion 2Y  based on a single observed 
sample in Example 1.1 

 

Population characteristic 
/Estimator Estimate Standard error 

Kish’s  
design effect 

(deff) 

Relative 
bias 
(%) 

Total 1Y : 8,774,651,373     

,1ĤTY  9,322,853,858 915,126,365 1.31 6.25 

,1ĤJY  9,642,021,099 1,241,508,671 1.31 9.88 

,1V̂DKY  9,563,682,688 748,596,001 1.30 8.99 

,1P̂AY  9,697,094,833 852,327,681 1.41 10.51 
     
Proportion 2Y :0.337     

,2
ˆ
HTY  0.313 0.058 1.31 -7.08 

,2
ˆ
HJY  0.323 0.059 1.31 -3.90 

,2
ˆ
VDKY  0.340 0.051 1.41 1.07 

,2
ˆ
PAY  0.340 0.032 1. 27 1.09 

     
     

Table 1.5 shows that all estimators have very small empirical biases as expected even 

though the working model is misspecified for the binary outcome 2y . The 
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algorithmic PA estimators ,1P̂AY  and ,2
ˆ
PAY  are slightly more efficient than the VDK 

estimators ,1V̂DKY  and ,2
ˆ
VDKY  despite the uncertainty of the model selection in the 

PA approach. The differences in efficiency between the estimators of 1Y  and 2Y  are 

0.5 and 3.0 percentage points; that is, the PA estimators ,1P̂AY  and ,2
ˆ
PAY  are 7.3 

percent and 4.0 percent more efficient than the estimators ,1V̂DKY  and ,2
ˆ
VDKY , 

respectively. Furthermore, the expected Kish’s design effects of the weights based on 

the PA estimators are smaller than the design effect of the weights based VDK 

estimators. 

Table 1.5 Empirical summary results* for 100,000 draws for Example 1.1 
 

Population 
characteristic  

/Estimator 

Relative 
Bias (RB) 

 
(%) 

Relative 
Root Mean 

Squared 
Error 

(RRMSE) 

Empirical 
Coverage of 

95% 
Confidence 

Interval 

Kish’s 
Design 
effect 
(deff) 

Relative 
efficiency 

(RE) 
(%) 

Total 1Y       

,1ĤTY  -0.03 9.28 0.946 1.463 0.00 

,1ĤJY  0.60 12.49 0.956 1.463 -44.81 

,1V̂DKY  0.58 8.97 0.919 1.502 7.04 

,1P̂AY  0.59 8.95 0.911 1.494 7.56 

Proportion 2Y        

,2
ˆ
HTY  -0.08 19.21 0.935 1.463 0.00 

,2
ˆ
HJY  0.01 18.04 0.943 1.463 13.40 

,2
ˆ
VDKY  -0.82 14.53 0.923 1.535 74.75 

,2
ˆ
PAY  0.13 14.41 0.924 1.486 77.76 

*See Section A.4 in Appendix A for the definitions of the summary measures. 
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The observed reduction of variance of the GREG and algorithmic PA estimators of 1Y  

in Table 1.4 for a single sample is not typical under repeated sampling. In 

expectation, these estimators are around 7 percent more efficient than the 

HT estimator. The HT estimator for the total 1Y  is very efficient is due to the high 

correlation between kπ  and 1y . The HJ estimator for the total 1Y , which is also a 

GREG/PA estimator, is much more inefficient than the HT estimator. Using the 

population size reduces the efficiency of the HJ estimator of 1Y  considerably. 

In contrast, the GREG and PA estimators for the proportion 2Y  achieve substantial 

gains of efficiency over the HT estimator, with gains close to 80 percent. The 

HJ estimator for 2Y  is around 13 percent more efficient than the HT estimator. 

This example shows how the algorithmic PA estimators are developed, and further 

shows that the algorithmic PA estimators can be more efficient than the VDK GREG 

estimators based on an in-depth analysis of the full population. 

1.4 Principles of the PA Framework 

There are four principles of the PA framework that define the roles of working 

models, auxiliary variable selection, and sample selection. 



 

29 

1. All PA estimators are weighted sums of fitted means of well-defined working 

models. The fitted mean is a function of linear regressions of auxiliary variables3 

of the parameters of a working model. Different functional models and sets of 

auxiliary variables yield different PA estimators. Section 3.1 shows that most of 

the well-known design-based estimators are a subclass of PA estimators. 

2. The working models are well defined, but either the functional form or the 

auxiliary variables of the models (or both) are not known. Most estimators in the 

survey sampling literature assume the opposite, that is, the functional form is 

known and the working model is correctly specified (See Deville & Särndal, 

1992; Rao, 1994, Lehtonen & Veijanen, 1998; Montanari, 1998; Chen & Sitter, 

1999; Wu & Sitter, 2001; Montanari & Ranalli, 2005; Kim, 2009, 2010; Kott, 

2016; and Breidt & Opsomer, 2017). Assuming that the working model is correct 

does not guarantee that the estimator is efficient when the working model is 

misspecified. 

3. The identification of the working model is based on the observed sample. The PA 

framework produces an estimator that is likely to be efficient based on the sample, 

but because both the generation of the finite population and the sample selection 

from it are stochastic processes, there is no guarantee that either the identified 

working model is the best or that the form of the estimator is unique. 

                                                 

3 The technical definition of this principle is that all estimators are functions of the inverse link function of the 

linear predictors of the parameters for the location, scale, and shape of the working model. See Definition 1.1 in 

Section 1.5 for more details. 
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4. Inferences using the PA estimator are based on the random vector of the sample 

membership indicator of the element of the population to be selected in the 

sample. All PA estimators, their variances, and estimates of variances are 

functions of this random vector; i.e., they are design based. The sequence of a PA 

estimators for a sequence of increasing population and sample size are model-

assisted, so they are asymptotically unbiased and design-consistent under suitable 

regularity conditions described in Section 5.9. 

1.5 Concepts, Definitions, and Notation 

The PA framework for estimation with full response assumes two stochastic 

processes; one is an unobservable process that generates the finite population from a 

superpopulation model, and the other is based on random sampling from the finite 

population. Inferences, however, are based only on the random sampling process. In 

this section, we define the models for these stochastic processes and introduce the 

notation to facilitate the description of these models in the PA framework. Since a 

large number of models are defined and evaluated in this approach, we propose a 

precise notation to describe the working models in the PA framework. We also 

introduce concepts related to the framework such as the canonical form of an 

estimator, model misspecification, and valid PA models that are used to describe the 

PA estimators. 
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1.5.1 Superpopulation Models 

DEFINITION 1.1 Working or assisting model yM  for the outcome y . Let 

yM  be the working model for an outcome y  that describes a stochastic process that 

generates a finite population F  of size N  (i.e., N=F ) as N  independent 

identically distributed (iid) realizations from a assumed distribution function f y  

defined as  

 ( )f |iid
k Y ky θ x∼ , (1.5) 

for k U∈ , where ( )T
| , ,k β σ γθ θ θ=θ x  is the vector of the parameters for location, 

scale, and shape, βθ , σθ , and γθ , respectively. We assume that the model 

parameters are functions of linear predictors of auxiliary variables, then the vector 

| kθ x  can be expressed as  

 ( )
( )
( )
( )

1
,

-1 1
,

1
,

g

| g

g

k

k k k

k

β β

σ σ

γ γ

η

η

η

−

−

−

 
 
 = =  
  
 

θ x g η , (1.6) 

where -1 3 3: →g ¡ ¡  is a vector-to-vector function with the inverse of the link 

functions where gβ , gσ , and gγ  are the link functions of the parameters for 

location, scale, and shape, respectively, kη  is the vector of the linear predictions 

( )T
, , ,, ,k k k kβ σ γη η η=η  with elements defined as  
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 ( ), , .,k k kβ β β βη = η =x β x β , (1.7) 

 ( ), , ,,k k kσ σ σ ση = η =x σ x σ , and  

 ( ), , ,k k kγ γ γη = η =x γ x γ ,  

where : P
θη →¡ ¡  is the function ( ), p p

p P
u vθ

∈
η = ∑u v  for { }, ,θ β σ γ∈  where 

1
,

P
k kθ

×⊂ ∈x x ¡  are the subset vectors of the auxiliary variable vector kx  and the 

parameters β , ,σ  and γ  are the coefficients of the linear regressions ,kβη , ,kση , and 

,kγη , respectively. 

REMARK 1.1. In all models, we are interested in the expected value of ky  defined as  

 ( ) ( )f
Y

k k k Y k kR
y y y d yµ = = ∫E = , (1.8) 

where ( ){ }| f 0Y k Y kR y y= ∈ >¡ . If the population is available, then the estimate of 

kµ  is computed by plugging the MLEs of β , σ , and γ  into the expression of 

( ).k kyµ = E = If only the sample is available, then the estimate of kµ  is computed by 

plugging the PMLEs of β , σ , and γ  into the expression of kµ . 

The definitions presented above are for the general case. In practice, not all 

distribution functions have all these parameters defined, as illustrated in the following 

examples. 
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EXAMPLE 1.2.  Let y  be an outcome variable with a distribution 

( )2
0,iid

k ky σx β∼ N . This distribution can be described by the vector 

( )T
| ,k β σθ θ=θ x  with only two parameters: location and scale. The location 

parameter is ,| k kβ βθ η=x , the linear predictor is ,k kβη = x β , the vector of auxiliary 

variables is 1 P
k

×∈x ¡ , and the link function is the identity function. The scale 

parameter is ( ),| expk kσ σθ η=x , the linear predictor is , 0kση σ= , the auxiliary 

variable is the one vector N∈1 ¡ , and the link function is ( ) ( )g logt tσ = . Since for 

this model, ( )k k kyµ = = x βE , then ,
ˆˆmle k k mleµ = x β . 

EXAMPLE 1.3.  Define the outcome y  as a log-normal random variable

( )2 2,iid
k k ky σx β x∼ Nlog . For this distribution, the vector ( )T

| ,k β σθ θ=θ x  contains 

only the location and scale parameters. The location parameter is ,| k kβ βθ η=x , the 

linear predictor is ,k kβη = x β , the link function is the identity function, and the 

auxiliary variables are kx . The scale parameter is ( ),| expk kσ σθ η=x , the linear 

predictor is , 2k kση = x σ , the link function is ( ) ( )g logt tσ = , and the auxiliary 

variables are kx . Since for the lognormal distribution 
2

exp
2k
σ

β
θµ θ

 
= +  

 
, then 

( )2

,
ˆˆˆ exp
2

k mle
mle k k mleµ

 
 = +
 
 

x σ
x β . 
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EXAMPLE 1.4. In the example in Section 2.4 on page 152, the outcome y  is 

assumed to be normally distributed ( )2
, ,| ~ ,iid

k k k ky β σθ θx N  where 

 , 0 1 2k k k kdβθ µ β β π β= = + +  and (1.9) 

 ( )( ) 022
, 0 1 2expk k k kd γ

σθ σ σ π σ µ= + + .  

The model of ky  is appropriate for normally distributed regression models where the 

variance of the response variable is proportional to a power of the mean. The 

auxiliary variables are ( )1, ,k k kdπ=x . The elements of the vector 

( )T
| , ,k β σ γθ θ θ=θ x  are the location parameter ,| k kβ βθ η=x  with a linear predictor 

, 0 1 2k k kdβη β β π β= + + , the link function is the identity; the scale parameter is 

( ),| expk kσ σθ η=x  with a linear predictor , 0 1 2k k kdση σ σ π σ= + +  with the link 

function ( ) ( )g logt tσ = , the shape parameter ,| k kγ γθ η=x  with a linear predictor 

, 0kγη γ= , and the link function is the identity. Since for this model 

0 1 2k k kdµ β β π β= + + , then , ,0 ,1 ,2
ˆ ˆ ˆˆmle k mle mle k mle kdµ β β π β= + + . 

REMARK 1.2. The parametric models described in the expressions (1.5), 

(1.6), and (1.7) are a subset of the models known as generalized additive models for 

location, scale, and shape (GAMLSS) proposed by Stasinopoulos et al. (2017). The 

GAMLSS is an extension of the GLM proposed by McCullagh & Nelder (1989)4. In 

                                                 

4A similar extension of the GLM is the Vector generalized linear model (VGLM) proposed by Yee (2015). 
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the GLMs, only the location parameter θ  is a function of the linear regression of the 

auxiliary variables, but in GAMLSS, the location, scale, and shape parameters are 

also modeled using linear combinations of auxiliary variables and link functions. The 

GAMLSS allows distributions where ( ) ( )1gy µ −= ≠ xβE =  such as the lognormal and 

zero-inflated Poisson. Although the GAMLS includes a large number of models, most 

models we study include just a location parameter and, in a few instances, a scale 

parameter. 

DEFINITION 1.2 Working model πM  for the sample membership indicator 

=S s . In the PA framework for estimation with full response, we assume working 

models for S  that do not need to be correctly specified because these models are only 

used to identify explanatory auxiliary variables of S . These models are 

approximations of the sample design in Definition 1.5. The definition of πM  is 

similar to the definition of the outcome working model yM  described above. The 

model πM  may have simpler distributions without separate scale and location 

parameters. The probability mass function of πM  for a random vector of the sample 

membership indicator k kS s=  (e.g., 1ks =  if the element k  was selected in the 

sample or 0ks =  otherwise) is generally modeled using the Bernoulli distribution 

( )ke πB  where ( )Pr 1|k k k kS s π= = =x  and ( )Pr 0 | 1k k k kS s π= = = −x  with link 

functions such as the logit model, ( )logit k kπ = x β  or the linear probability model, 

k kπ = x β , (Cox, 1970). Finding the MLE of the parameters of the working 
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model πM  requires access to the entire population. If this is the case, the parameters 

β  are estimated using logistic regression with { }0,1ks ∈  as the dependent variable. 

Then ˆkπ  is computed by plugging the estimates β̂  into the formula for ( )kSE . If 

only the sample is available, then the model πM  is fitted using PL logistic regression 

using the sampling weight kd . 

REMARK 1.3. An alternative for modeling kS , the random variable with the 

membership sample indicator, is directly modeling the inclusion probability assuming 

that kπ  for k U∈  are the realizations of a random variable from the superpopulation 

model ( )~ f |k kπ θ x . Some distributions for the working models for ( )0,1kπ ∈  are:  

1. The beta distribution ( ),eta α βB  with location parameter β
αθ

α β
=

+
 and scale 

parameter 1
1σθ

α β
=

+ +
, where ( ) ( )1| logitk k kβπ θ −= =x x βE  (Ferrar & 

Cribari-Neto, 2004). The regression coefficients ˆ
mleβ  in ( )1 ˆˆ logitk k mleπ −= x β  

are computed using GLM beta regression using the entire population 

(Stasinopoulos, Rigby, Heller, Voudouris, & De Bastiani, 2017). 

2. The “fractional logit” model for fractional response variables ( )0,1kπ ∈  (Papke 

& Wooldridge, 1996). The parameters β̂  in ( )1 ˆˆ logitk kπ −= x β  are computed 

using quasi-maximum likelihood (QL) with kπ  as the dependent variable 
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(Wedderburn, 1974). The QL estimators are used when the form of distribution is 

unknown but can be approximated by the mean and variance. Although the QL is 

related to the likelihood, it is not the same since the exact distribution is not 

known. A quasi-maximum likelihood estimator (QMLE) of the parameter θ  of a 

model is computed by maximizing the QL. Finite sample properties of QMLE 

and QL have not been fully studied in survey sampling although they are 

currently used in practice (see Lumley, 2010). 

3. A misspecified Bernoulli distribution with the dependent variable ( )0,1kπ ∈  

computed as ( )1 ˆˆ logitk k qmleπ −= x β . Strictly speaking, the Bernoulli distribution 

for kπ  is misspecified because the support of the distribution is { }0,1  while kπ  

takes fractional values between zero and one. However, Gourieroux, Monfort, & 

Trognon (1984) show that the MLEs of the parameters of misspecified models 

with a distribution from the linear exponential family are consistent estimates of 

the MLE parameters of any other linear exponential family distribution including 

the parameters of the correct model. These results justify the use of both the 

logistic regression and the linear probability model for the fractional values of .π  

4. The linear probability model ( )2,β σθ θN  for kπ  where ( )k kβπ θ= = x βE  and 

σθ σ=  (Greene, 2008). The estimated MLE parameters ˆ
mleβ  in ˆˆk k mleπ = x β  are 

computed using linear regression. This model is misspecified since the values of 

ˆkπ  may be outside the support of kπ . 
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5. Any other distribution that fits the shape of kπ , for example, the logistic 

distribution  

 ( ) 2

exp
1f | ,

1 exp

β

σ
β σ

σ β

σ

π θ
θ

π θ θ
θ π θ

θ

− 
− 

 =
 −  

+ −     

f ,  

where ( )k kxβπ θ= = βE  and σθ σ=  (Johnson, Kotz, & Balakrishnan, 1994). 

The MLE parameters ˆ
mleβ  in ˆˆk k mleπ = x β  are computed using GAMLSS 

regression (Stasinopoulos, Rigby, Voudouris, Akantziliotou, Enea, Kiose, 2017). 

REMARK 1.4. If only the sample is available and kπ  for k A∈  are known, 

then the model πM  is fitted using PLL and the sampling weights kd . See 

Section 1.6 for the empirical properties of algorithmic PA estimators that directly 

model the probabilities of selection π  for the population and sample design in the 

example in Section 1.3 on page 6. 

REMARK 1.5. Beaumont (2008) proposes a method to improve the 

efficiency of the estimators by smoothing design or calibration weights using an 

appropriate model. His method produces a single set of smoothed weights for 

multipurpose surveys with estimators ˆ ˆ
k k

A
B

k
Y w y

∈
= ∑ %  where ˆ

kw%  is the estimated 

smoothed weight. This approach differs from the PA algorithm that models the 

sample membership indicators and uses the fitted means of the working model of the 
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probabilities of inclusion to produce adjusted weights, but these adjusted weights are 

not used in to create the PA estimator ,
ˆ ˆPA k pa k

k A
Y d µ

∈
= ∑  in Step 10. The PA 

estimator can be seen as an estimator with improved efficiency that results from 

smoothing the outcome variable y . 

There are other differences between the two approaches. For example, Beaumont 

(2008) states that any classical model selection and validation techniques can be used 

to determine an appropriate model and does not use the design weights in the 

modeling. Furthermore, the smoothed-weight estimators can be biased as shown in 

his simulation study, while the PA estimators are design consistent with small bias, 

even in relatively small samples.  

DEFINITION 1.3 The collection of working models yM  for the outcome 

variable y . Let yM  be the collection of, at most, three sets of working models for 

the scale, location, and shape of the distribution of y  denoted as 

 ( ) ( ) ( )y y y yβ σ γθ θ θ= ∪ ∪M M M M , (1.10) 

where each set of models ( )y θM  for { }, ,β σ γθ θ θ θ∈  is defined as  

 ( ) ( )
1

span | , ,
P

y p p p p PA
p

x P xθ θθ θ θ
=

  = = ∈ ∈ ∈Θ 
  
∑x x¥M , (1.11) 

where Pθ
θ ∈x ¡  such as θ ⊆x x  is the set of auxiliary variables associated with the 

parameter θ . Each ( )y θM  is a spanned subspace with all linear combinations of 
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the auxiliary variables θx  and the parameters pθ  for { }1,..,p Pθ∈  that produce a 

valid PA model in the set PAΘ . In other words, by definition, the vector space with 

all models generated by the vector x  excludes the invalid PA models (see Definition 

1.19). Note that despite the finite number of linear combinations, there is an infinite 

number of models in yM  because the parameters can take any valid value in their 

support depending on the distribution fY  of y  and link functions. 

The collection of working models πM  for sample membership indicator S  or for 

the inclusion probability π  is defined the same way as yM . 

1.5.2 Notation for the Collection of Models yM  

Since the number of models described by yM  or πM  is large, we need a precise 

notation for describing the model. Since the spanned set of models in (1.11) includes 

the models formed by linear combinations of the auxiliary variables for the 

parameters { }, ,β σ γθ θ θ θ∈ , then each model in the collection ( )y θM  can be 

uniquely identified by the auxiliary variables or parameters of linear predictions β̂η , 

σ̂η , and γ̂η . Based on this idea, we can use two notations for identifying these 

models as illustrated in the following examples. 
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EXAMPLE 1.5. The collection of models yM  for the outcome y . Let ky  

be a random variable assumed to follow a normal distribution ( )2~ ,iidy γθ
β σθ θN  

where 0 1 1kxβθ β β= + , 0 2 kxσθ σ σ= + , and 0 4 4kxγθ γ γ= + , with the vector of 

auxiliary variables ( )2 3 41, , ,x x x=x . The first notation or full notation of all possible 

models in the collection of models yM  uses the matrix ( )T T T, ,β σ γθ θ θ  with model 

membership indicators for the regression coefficients using the position of the 

associated variable in the vector of the auxiliary variables x  as shown in the fourth 

column of Table 1.6. For this example, the full notation for the collection of models is 

the matrix 

 
1 1 0 0
1 0 1 0
1 0 0 1

y

 
 =  
 
 

M , (1.12) 

where the entries of the rows of the matrix with values of one indicate the variables 

that appear in the linear predictors of the location parameter (first row), scale 

parameter (second row), and shape parameter (third row) of the model yM . If the 

auxiliary variable does not appear in the linear predictor, the entry has a value of zero. 

The main disadvantage of the full notation is that the order of the auxiliary variables 

in the vector x  needs to be known. Furthermore, as the number of auxiliary variables 

increases (e.g., including dummy indicators for each level of categorical variables or 

variables for interaction terms), the matrix yM  becomes difficult to read. 
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We propose a simplified notation or short notation that only lists either the nonzero 

regression coefficients or their associated auxiliary variables in each parameter 

model, as shown in the last two columns of Table 1.6. Using the short notation, the 

collection of models yM  in Example 1.5 is either ( ) ( ) ( ){ }1 2 31, , 1, , 1,y x x x=M  or 

( ) ( ) ( ){ }0 1 0 2 0 3, , , , ,y β β σ σ γ γ=M . We prefer to list the auxiliary variables of the 

models because the values of the regression coefficients are not relevant except for 

the models fitted in the last steps of the algorithm.  

Table 1.6 Full and Simplified Notations for the collection of models yM  for 
Example 1.2 

 

Collection of 
models 

Model 
parameter 

Linear 
prediction 

( )η  

Model notation 
Full Simplified 

Membership 
indicators based 

on 
( )1 2 31, , ,x x x=x  

Regression 
coefficients 

Auxiliary 
variables 

( )y βθM  Location 0 1 1kxβ β+  ( )1,1,0,0  ( )0 1,β β  ( )11, x  

( )y σθM  Scale 0 2 2kxσ σ+  ( )1,0,1,0  ( )0 2,σ σ  ( )21, x  

( )y γθM  Shape 0 3 3kxγ γ+  ( )1,0,0,1  ( )0 2,γ γ  ( )31, x  

      

If we extend the short notation, then the auxiliary variables for categorical variables 

are written in boldface since they represent a vector of membership indicators (e.g., 

dummy variables with one and zero values) for each categorical level. For interaction 

terms, we write the product of the two variables. For example, suppose that there are 

sampling stratum indicators ( )1,..., ,...,k k kh kHh h h′=h  for { }1,...,h H′∈  where 

1khh ′ =  if the element k  belongs to stratum h′  and zero otherwise, and H  is the 

number of strata. If we want to describe the collection of models where the linear 
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predictor for the location parameter βη  includes the sampling stratum indicators kh  

and the interaction between the 1x  and kh , then the collection of models for y  is 

written as  

 ( ) ( ) ( ){ }1 1 2 31, , , , 1, , 1,y x x x x= ∗h hM ,  

where ( )1 1 1 1 1,..., ,...,k k k k kh k kH kx h x h x h x′∗ =h  for k U∈ . 

The short notation can be further simplified by including only the auxiliary variables 

of the model parameters used to compute ˆkµ . Returning to the example, since ky  is 

assumed to be normally distributed, then the short notation of the model only includes 

the auxiliary variables of location parameter as ( )1 11, , ,y x x= ∗h hM . 

EXAMPLE 1.6. Let kS  be the random variable for the sample membership 

indicator for a stratified design with two strata with indicators ( )1 2,k k kh h=h  and one 

continuous auxiliary variable 2x . We assume that the distribution of kS  is 

( )iid
k kS e π∼ Bee  with a link function ( )logit log

1
k

k
k

π
π

π
 

=  − 
. Using the simplified 

notation, the collection of models for π  is ( )2 21, , ,x xπ = ∗h hM  or 

( )2 31, , ,xπ = h xM  where 3x  is the vector for the interaction terms between h  and 

2x , defined as ( )3 2 1 2 2 2h ,hk k k k k k kx x x= ∗ =x h . In this case, since the distribution 

of y  does not have a shape parameter and the scale parameter is a function of the 

location parameter, there is no need to include these parameters in πM . 
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1.5.3 Finite Populations and Sample Designs 

The following definitions are related to the finite population assumed to be N  iid 

realizations of a superpopulation model. 

DEFINITION 1.4. Finite population F . We follow the Fuller (2009) notation. 

Let { }1, ,U N= …  be the labels identifying each element of a finite population of 

known size N . Associated with the element k U∈  is a row data vector 

( ) ( )1 1, P
k ky × +∈x ¡  where ky ∈¡  is the study variable and 1 P

k
×∈x ¡  is the vector of 

the auxiliary variables ( )1,...,k kp k kPx x x = = x  with P∈¥ , { }1,...,p P∈ , and 

P N= . The finite population is defined as the entire set 

( ) ( ) ( ){ }1 1 2 2, , , ,..., ,N Ny y y= x x xF= , which is assumed to be generated by a working 

model yM . We assume that population totals denoted by 1 P×∈X ¡  where 

( )1, ,k P
k U

X X
∈

= =∑X x …  of the auxiliary variables kx  are known. 

DEFINITION 1.5. Model for the sample design ( )p A a=  (see Fuller, 2009). 

Let A  be a subset of U  and let A  be the collection of subsets of U  that contains all 

possible samples. Let ( )Pr A a=  denote the probability that a , a∈A , is selected. 

A sampling design is the function that maps the event that a∈A  is selected to [ ]0,1  

such that ( ) ( )Prp a A a= =  for any a∈A . Let kπ  be the first-order inclusion 
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probabilities for element k U∈  where ( ) ( )
( )

Pr
i

k
a A

k A p aπ
∈

= ∈ = ∑  and ( )kA  is the 

set of samples that contain the element k . In this dissertation, we consider only 

single-stage, without replacement sample designs. 

Let ( ) { }T
1, , 0,1 N

NS S= ∈S …  be a vector of discreet random variables for the sample 

membership indicators, { }0,1kS = , for all elements of the frame where ks  is the 

realization of kS  defined as  

 
1 if unit  is selected in the sample
0 Otherwisek k

k
S s 

= = 


. (1.13) 

The sample design determines the probability structure of S  that determines the 

probability behavior of functions of the sample for k U∈ . Let kπ  be the first order 

inclusion probability of unit k  defined as ( ) ( )| 0,1k kS π= ∈E F . We use A  as the 

set of indices subset of U  that appear in the sample. The (observed) sample size is 

defined as o k k
k U k A

n s s
∈ ∈

= =∑ ∑ . 

Using the Tillé (2006) notation, the sample design is defined by a random vector 

{ }0,1 N∈S  with discrete random variables, kS , that follows as a multinomial 

distribution with an expected value ( ) [ ] ( )| 0,1 N
kπ= = ∈S πFE  where π  is the 

vector of the probabilities of inclusion kπ  for k U∈  and the variance-covariance 

matrix of S , Δ  defined as 
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( )

( ) ( ) ( )T T

T

|

| | |

=

= −

= −

Δ S

SS S S

Π ππ

F

F F F

C
E E E , (1.14) 

where [ ] N N
klπ ×= ∈Π ¡  is the matrix with the second-order probability of inclusion 

klπ  of units k  and l  defined as the probability the 2-tuple ( ),k l  is selected in the 

sample at the same time, ( ), |kl k lS Sπ = E F  for k l U≠ ∈  or kk kπ π=  for k l U= ∈ . 

In matrix notation, the population F  or frame is the matrix ( ),y x , and the matrix of 

auxiliary variables x  is the design matrix. The observed data in the sample 

correspond to the matrices ( ),y S xe  or ( ),y S x Se e , the latter if the values of kx  

are only observed in the sample. The operator e  is the Hadamard-Schur or element-

wise matrix product (Horn & Johnson, 2013). The expected sample size is Tn = 1 π , 

and the variance of the sample size is ( ) T|n = 1 Δ1FV . 

DEFINITION 1.6. Sample designs where the variance of the sample size 

( )| 0n =FV  are called fixed size or fixed sample size designs. Those designs that do 

not meet this condition are called variable size, random size, or random sample size 

designs. 
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1.5.4 The Log-Likelihood and Pseudo-Likelihood 

DEFINITION 1.7. The log-likelihood function and the maximum likelihood 

estimators of the working model fitted to the full population. The expression of the 

LL of the model yM  for the variable y  fitted to the finite population U  (e.g., 

census fit) is  

 ( ) ( )log ; , logf , |Y k k
k U

y
∈

= ∑θ y x x θL f . (1.15) 

The MLE of θ  is computed as  

 ( )arg max logˆ
mle

θ ∈ Θ
∈

  
 
  

θθ L . (1.16) 

See Cheng (2017) for the regularity conditions for the asymptotic properties of the 

MLEs. Under these regularity conditions, the MLE ˆ
mleθ  exists and is unique. A 

similar expression is available for the MLE of the sample membership indicator S  

(see Section 1.6 for models for π ). 

DEFINITION 1.8. The collection of ML working models ¶ ,mle yM  for the 

outcome variable y . Let ¶ ,mle y y⊆M M  be the collection of MLE models of y  

defined as the subset of the models in yM , where the estimates of the regression 

coefficients of the parameters are MLEs. Using the simplified notation, 

¶ { }, , , ,
ˆ ˆˆ, ,mle y mle mle mleβ σ γ

= x x xβ σ γM , where ,
ˆ

mle βxβ , ,ˆ mle σxσ , and ,ˆ mle γxγ  are the 
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MLEs of the location parameters β , scale parameters σ , and shape parameters γ  of 

the models in yM  and θ ⊆x x  for { }, ,θ β σ γ∈  are the subsets of the auxiliary 

variables x  for the location, scale, and shape parameters. The auxiliary variables θx  

are not necessarily the same for the location, scale, and shape parameters in yM . 

See Section 1.6 for the method for generating the models in yM  and computing the 

models ¶ ,mle yM . The collection of ML models for S , ¶ ,mle πM , has a similar 

expression as ¶ ,mle yM . For notation convenience, we drop the subscripts of the 

auxiliary variables of the parameters with the understanding that different subsets of 

auxiliary variables are associated with these parameters. 

DEFINITION 1.9. The best-fit ML model ¶ ¶y y∈MM  for y . All models in 

¶ yM  are created using the MLE ( )Tˆ ˆ ˆˆ, ,mle mle mle mle=θ β σ γ ; however, some ML 

models have a better fit to the observed sample than others. The ML models in ¶ yM  

can be ranked based on the values of a loss function ( )L y  that measures goodness of 

fit of the models. Let ¶ ¶y y∈MM  be the ML model that achieves the lowest value of 

the loss function ¶( )L yM  (see Section 1.6 for the definition of the loss function and 

how the model in ¶ yM  is found among the models in ¶ yM ). The MLE of 

( )k kyµ = E  is obtained by plugging the ML estimates ˆ
mleβ , ˆ mleσ , and ˆ pmleγ  into 

the expression of kµ  of the specific distribution of the working model. The 
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expressions of the collection of ML models ¶ πM  and the best-fit model ¶ πM  for S  

is similar to the expressions of ¶ yM  and ¶ yM  for y . 

DEFINITION 1.10. The pseudo-log-likelihood function and the pseudo-

maximum likelihood estimators fitted to the sample. The PL of the model yM  for y  

of fitted to sample A  is defined as  

 ( ) ( )log ; , , | logf , |A k Y k k
k A

d y
∈

= ∑θ y x d x θL F f , (1.17) 

where [ ]kd=d  are the sampling weights for k A∈ . The PMLE of θ  is 

 ( )arg max logˆ
pmle A

θ ∈ Θ
∈

  
 
  

θθ L . (1.18) 

See Binder (1983) for the regularity conditions for the asymptotic properties of the 

PMLEs. Under these conditions, the PML estimate ˆ
pmleθ  exists and is unique. 

A similar expression is available for the PL and PMLE of the sample membership 

indicator S  and the inclusion probability π . 

DEFINITION 1.11. The collection of PML models ¶ yM  for y . The collection of 

PML models, ¶ yM  is defined in the same way as the ML models for y , but 

replacing the MLEs of β , σ , and γ  by the corresponding PMLEs. Using the 

simplified notation, ¶ ( ), , ,
ˆ ˆˆ, ,y pmle pmle pmleβ σ γ

= x x xβ σ γM  where ,
ˆ

pmle βxβ , ,ˆ pmle σxσ , 
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and ,ˆ pmle γxγ  are the PMLEs of the location parameters β , scale parameters σ , and 

shape parameters γ  of the models in yM  with the auxiliary variables θ ⊆x x  for 

{ }, ,θ β σ γ∈ . The auxiliary variables θx  are not necessarily the same for the 

location, scale, and shape parameters in yM . The collection of PML models for S  

(or π ), ¶ πM , has an expression similar to the models ¶ yM  for y . 

DEFINITION 1.12. The best fit PML model ¶ ¶y y∈MM  for y . The best fit 

PML model ¶ ¶y y∈MM  for y  is defined in the same way as the ML model in 

Definition 5.3 but using a loss function ¶( )L yM  based on the sample estimate of the 

goodness of fit of the PML model. In the current implementation of the PA approach, 

we use the sample-based AIC as dAIC . See Section A.2 in Appendix A for details on 

the dAIC . 

REMARK 1.6. We assume that the finite population is a realization of a 

superpopulation model yM ; however, the parameters and their values are unknown 

(See Principle 2 in Section 1.4). When identifying the superpopulation model, we 

need to determine its functional form and the parameters (and their associated 

auxiliary variables). See Definition 1.1 and Principle 1 in Section 1.4. When the 

entire population is analyzed, multiple sets of MLEs { } ¶ ,,
ˆ ˆˆ, , mle ymle mle mle ∈β σ γ M  can 

be fitted to the population data F  since they are formed by the combinations of the 
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parameters and auxiliary variables. These sets of MLE of the regression coefficients 

are efficient and consistent estimators of their corresponding regression coefficients, 

{ }, , y∈β σ γ M  of the superpopulation models (assuming that each model is the true 

model). To identify a single model among all ML models, we use the goodness of fit; 

that is, we assume that the true superpopulation model has the lowest discrepancy 

between the observed population values and the expected values from the fitted 

model as measured by a loss function. We denote the best-fit ML model as ¶ yM  

where the MLEs of the regression coefficients ( ) ¶ˆ ˆˆ, , ymle mle mle ∈β σ γ M  are efficient 

and consistent estimators of the regression coefficients ( ), , y∈β σ γ M  and yM  is the 

assumed true superpopulation model. 

In reality, neither the model ¶ yM  nor any of the models ¶ yM  are unidentifiable 

because the values of y  are not observed for the entire population. Since we cannot 

fit the ML models to the entire population, we fit the PML models ¶ yM  to the 

sample. The PMLEs of the regression coefficients ( ) ¶
,

ˆ ˆˆ, , ypmle pmle pmle ∈β σ γ M  are 

consistent estimators of the MLEs of the regression coefficients ( ),
ˆ ˆˆ, ,mle mle mleβ σ γ . 

In order to identify the true model yM , we use a sample-based loss function. This 

function does not measure the goodness of fit of the model fitted to the sample. 

Instead, it is an estimate of the goodness of fit of the model fitted to the entire 

population. Fitting the PML models and examining the values of the sample-based 
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loss function is intended to approximate fitting the ML models to the entire 

population and measuring the model goodness of fit of the population model. 

Since this estimate of the population model's goodness of fit depends on the selected 

sample, there is uncertainty when using the models in ¶ yM  to identify the true model 

yM . However, we are not interested in measuring this uncertainty. Instead, we rank 

the models based on the value of the loss function and select the model with the 

smallest value (e.g., the best-fit model) as the sample-based estimate of the true 

model. In most cases, the best-fit model is the most parsimonious among the models 

with the lowest loss values. 

1.5.5 PA Framework Definitions 

DEFINITION 1.13. The PA adjustment factor is the square diagonal matrix 

ˆ P P×∈XΓ ¡  defined as  

 1
ˆˆ

w
−=X XXΓ D D , (1.19) 

where ( )diag P P×= ∈XD X ¡  is a diagonal matrix where the function

diag : P P P×→¡ ¡  is defined as ( ) T Tdiag k k k
k P∈

= ∑X Xε ε ε  and P
k ∈¡ε  is the k -basis 

vector of P¡  for { }1,...,k P∈  and P∈X ¡  is a row vector ( )1,. , PX X=X … . The 

function ( )diag X  transforms the vector X  into a squared matrix in P P×¡  in which 
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the elements outside of the main diagonal are zero, and the elements on the main 

diagonal are the elements the vector ( )1,. , PX X=X …  as 

 ( )

1

2

1

0 ... 0 0
0 ... 0 0

diag ... ... ... ...
0 0 ... 0
0 0 ... 0

P

P

X
X

X
X

−

 
 
 
 =
 
 
  

X O .  

( )Tˆ
w k k k

k U
w S

∈
= = ∑X w x S xe  is the vector of the HT estimators of x  using the 

weights [ ] 1N
kw ×= ∈w ¡  (these may be the sampling weights 1)k kd π −=  and 

( )ˆ ˆdiag
w w=XD X  is the diagonal matrix with the elements of the main diagonal being 

the elements of the vector ˆ wX . 

The large sample properties of the PA adjustment factor ˆ XΓ  are given by the 

following theorem. 

THEOREM 1.1. Assume a sequence of finite populations { } 1N N
∞

=F  of 

increasing size { } 11,...,N N NU N ∞
==  and samples { } 1N Nn ∞

=  drawn according to a 

sample design ( ){ } 1N N N Np A a ∞
=

=  satisfying the regularity conditions in Section 5.9 

on page 252. Then the sequence of PA adjustment factors { }, 1
ˆ N N

∞

=XΓ  converges to 

the identity matrix P P×∈I ¡  as 
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 ( ),
ˆlim |N

N
n

→∞
→∞

− =XΓ I 0E F . (1.20) 

See proof in Section A.3.1 in Appendix A on page 292. 

DEFINITION 1.14.  The PA adjusted regression coefficients 

( )Tˆ ˆˆ, , .ˆ
pa pa pa pa= β σθ γ  The adjustment factor ˆ XΓ  incorporates the population totals 

into the PMLEs of the regression coefficients ( )Tˆ ˆˆˆ , ,pmle ppmle mle pmle= βθ σ γ . 

Let ( )Tˆ ˆˆˆ , ,pa pp a paa = β σ γθ  be the PA adjusted PMLEs of the regression coefficients 

of the parameters of the working model ¶ yM  computed as 

 ˆ ˆˆ
pa pmleθ

= X θΓθ , (1.21) 

for { }ˆ ˆ ˆˆ, ,pmle pmle pmle pmle∈θ β σ γ , where the subscripts { }, ,θ β σ γ∈  of ˆ
θXΓ  indicate 

different subsets of auxiliary variables in the PA adjustment for the location, scale, 

and shape parameters. Note that the model ¶ ,pa yM  with the adjusted parameters 

( )Tˆ ˆˆˆ , ,pa pp a paa = β σ γθ  is a different model from ¶ yM , except for the case when the 

estimated totals of the auxiliary variables match exactly to their corresponding 

population total for each parameter of the distribution. In this case, ˆ ˆ
pa pmle=θ θ  

because ˆ
θ

=XΓ I . The large sample properties of ( )Tˆ ˆ ˆˆ, ,pa pa pa pa=θ β σ γ  are given in 

the next theorem. 
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THEOREM 1.2. Assume a sequence of finite populations { } 1N N
∞

=F  of 

increasing size { } 11,...,N N NU N ∞
==  and samples { } 1N Nn ∞

=  drawn according to a 

sample design ( ){ } 1N N N Np A a ∞
=

=  satisfying the regularity conditions in Section 5.9 

on page 252. The sequence of PA adjusted parameters { }, 1
ˆ

pa N N

∞

=
θ  with 

( )T
,

ˆ ˆ ˆˆ, ,pa N pa pa pa=θ β σ γ  is design-consistent for the MLE parameters ,
ˆ

mle Nθ  in the 

sense that ( )1/2
, ,

ˆ ˆ |pa N mle N p Nn−− =θ θ F O . This result implies that 

 ( )1/2
, ,

ˆ ˆ |pa N mle N p Nn−− =β β F O ,  

 ( )1/2
, ,ˆ ˆ |pa N mle N p Nn−− =σ σ F O , and (1.22) 

 ( )1/2
, ,ˆ ˆ |pa N mle N p Nn−− =γ γ F O .  

The proof is in Section A.3.3 in Appendix A. Note that the sequence of the PA 

adjusted parameters ,
ˆ

pa Nθ  converges in probability to the MLEs of parameters 

,
ˆ

mle Nθ  of the model fitted to the N -th population in the sequence. 

DEFINITION 1.15. The fitted mean ,ˆ pa kµ  under the PA model ,y paM . In the 

PA framework, we are only interested in ,ˆ pa kµ , the estimate of ( ), |mle k kyµ = E F , 

computed by plugging the PA estimators ( )Tˆ ˆˆ, ,pa pa paβ σ γ  in the appropriate 

expression of kµ  depending of the assumed model. The large sample properties of 

,ˆ pa kµ  are given in the next theorem. 
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THEOREM 1.3. Assume a sequence of finite populations { } 1N N
∞

=F  of 

increasing size { } 11,...,N N NU N ∞
==  and samples { } 1N Nn ∞

=  drawn according to a 

sample design ( ){ } 1N N N Np A a ∞
=

=  satisfying the regularity conditions in Section 5.9 

on page 252. The sequence of PA fitted means { }, , 1
ˆ pa k N N

µ
∞

=
 is design consistent for 

the MLE of the mean , ,ˆmle k Nµ  in the sense that  

 , , , ,ˆ ˆlim Pr 0pa k N mle k N N
N

µ µ ε
→∞

 − > =  , (1.23) 

for every Nε . Note that the sequence of PA estimators , ,ˆ pa k Nµ  converges in 

probability to the MLE estimator of the mean , ,ˆmle k Nµ  fitted to the N -th population 

in the sequence. 

1.5.6 Miscellaneous PA Framework Definitions 

DEFINITION 1.16. The canonical form of an estimator T̂  of a population 

parameter T  is the function f  of π  as 

 ( )ˆ fT = π .  

The canonical form is independent of the sample design. For example, the canonical 

form of the HT estimator for the total is  

 ( )1ˆ k
HT

kk A

yY
π

−

∈
= = ∑π y Se e ,  



 

57 

where ( ) ( ) ( )
T1f −=π π y Se e . The HT estimator for a SRS design is 

ĤT k
k A

NY y
n ∈

= ∑ . The canonical form of the HJ estimator (Hájek J. , 1971) is  

 
( ) ( )

( )

T1

T1
ˆ

1

k

kk A
HJ

kk A

y

Y N N
π

π

−
∈

−

∈

= =
∑

∑

π y S

π S

e

e

e
,  

where ( )
( ) ( )

( )

T1

T1
f N

−

−
=

π y S
π

π S

e

e

e
. Notice that although the HJ and the HT estimators 

have different canonical forms, the estimators are identical for a SRS design. The 

canonical forms of the HT and HJ estimators of the mean are ( )1
ˆ
HTY

N

−
=
π y Se e

 

and 
( ) ( )

( )

T1

T1

ˆ
HJY

−

−
=

π y S

π S

e

e

e
, respectively. Although the canonical forms of the HT 

and HJ estimators of the population mean Y  are different, the estimators have the 

same expression in SRS designs. Note that this does not necessarily hold for other 

designs. 

DEFINITION 1.17. There are different types of model misspecification (Rao, 

1971), and we are only interested in two types. The first is when the working model 

has the incorrect functional form of the distribution of y . For example, let { }0,1y ∈  

be the outcome with a Bernoulli distribution but the distribution of the working model 
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is a normal distribution, and the predictions ˆkµ  of this model may take values 

different from zero or one. The second type of model misspecification includes 

omitted and extraneous auxiliary variables. These model misspecifications have a 

different impact on the efficiency of the estimators. The misspecification does not 

affect the consistency of the estimator because all model-assisted estimators are 

asymptotically unbiased and design consistent (Särndal, Swensson, & Wretman, 

1992). 

DEFINITION 1.18. Oracle estimator is the estimator where the functional form 

and auxiliary variables of the working model are not misspecified. 

DEFINITION 1.19. Assuming that the same working model is fitted in the 

population and the sample, valid PA models are those that meet the following 

conditions. Both the sum of population ML residuals ˆ mle= −E y μ  and the weighted 

sum of the sample-based PML residuals ˆ ˆ pmle= −E y μ  are asymptotically zero, that is 

 ( )T 1
N

 =  
 

1 EE O , and  

 ( )( )T 1ˆ
n

 =  
 

1 d S Ee eE O .  

This definition includes models where the sum of the residual in ML models and the 

weighted sum of the residuals in PML models is zero. To ensure that the models are 

valid, we require the intercept term to be kept in the linear regressions of all 

parameters of the model. 
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DEFINITION 1.20. A PA estimator with a working model with the vector of 

auxiliary variables ( )1, , Px x=x …  and population control totals X  is incomplete if at 

least one population total of an auxiliary variable px  is estimated as ,
ˆ

HT pX  rather 

than being known. The PA adjustment for such auxiliary variable is 

,

,

ˆ
ˆ 1ˆp

HT p
X

HT p

X
X

Γ = = . 

DEFINITION 1.21. We describe the principles to assist estimation with full 

response (adapted from the principles to assist estimation in the presence of 

nonresponse by Särndal & Lundström, 2005). Although the PA framework can create 

models using many variables, it is advisable to reduce the number of candidate 

auxiliary variables in the collection of models by selecting variables that 

i) explain the main study variable y , and 

ii) explain the inclusion probabilities π  if the sampling design is informative 

for .y  

If PA estimates by domain are needed, then the auxiliary variables should also 

iii)  identify as closely as possible the most important domains. 

Implementing the principles for estimation may require the help of subject matter 

experts who can determine the initial set of auxiliary variables since the PA algorithm 

identifies those variables that meet both conditions (i) and (ii). Implementing (iii) 

requires either forcing these variables in the collection of models even if they do not 
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explain y  and π , or including the domain related variables in the selected model at 

the end of the PA algorithm. 

REMARK 1.7. The PA framework uses matrix notation, matrix algebra, and 

matrix calculus to express the form of the estimators and derive their variances and 

estimates of variances. Dol, Steerneman, & Wansbeek (1996) show the convenience 

of matrix-algebra for proving the asymptotic properties of the HT estimator. Our 

notation emphasizes the random nature of the vector S  that follows a discrete 

multinomial distribution (Tillé, 2006). The estimators and their variances are 

functions of S , and are treated as random variables in multivariate statistical analysis. 

1.6 Computing Algorithmic PA Estimators 

As an algorithmic framework, the algorithm is the core of the production of PA 

estimators. The PA algorithm identifies the relevant variables that explain the 

outcome, taking into account the variables that explain the sample selection. 

When producing the PA estimator, the algorithm incorporates the population totals of 

auxiliary variables into PLL of the data for an assumed working model. This 

information is currently ignored in the regular PML approach (Binder, 1983). The 

algorithm consists of 10 steps that are listed in Algorithm 1.1. 
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Algorithm 1.1  Algorithm for the derivation of the PA estimator 
 
Algorithmic PA estimators 

(A
) 

M
od

el
 id

en
tif

ic
at

io
n 

1: Propose the collection of working models πM  for the inclusion 

probabilities kπ . 
 

2: Identify the ML model ¶
ππ ∈M M  of π  that minimizes the loss 

function Lπ . 
3: Propose the collection of working models yM  for the outcome 

variable y . 
 

4: Identify the PML model ¶
yy ∈M M  of y  that minimizes the loss 

function yL . 

(B
) 

Ta
rg

et
in

g 
of

 re
le

va
nt

 v
ar

ia
bl

es
 

5: Identify the model ,yπM  with the set of auxiliary variables that 

explain both y  and π  as ¶ ¶
, yy ππ = ∩M MM . 

 

6: Fit the PML model ¶ , ,y yπ π∈M M  for π  using the auxiliary 

variables in ,yπM  identified in Step (5). Use ¶ yπM  to compute the 

fitted values ˆkπ  and the adjusted weights 

( ) ( )ˆ ˆˆ /k k k k k kk U k Uw d d d d d∈ ∈= ∑ ∑ . 
 

7: Identify the PML model ¶*
ˆ,y wM  of y  among all models yM  that 

minimizes the loss function yL  using the adjusted weights ˆkw  
computed in Step (6). 

(C
) 

C
re

at
io

n 
of

 th
e 

es
tim

at
or

 
an

d 
in

fe
re

nc
e 

 

 

8: Fit the PML model ¶*
yM  of y  using the variables of the model 

¶*
ˆ,y wM  identified in Step (7) using the sampling weight kd . 

 

9: Create the PA model ¶ ,pa yM  by adjusting the PMLE of the 

regression coefficients of ¶*
yM  from Step (8) by the PA adjustment 

ˆ XΓ . 
10: Estimate the adjusted PA fitted mean ,ˆ pa kµ  for k A∈  using the PA 

model ¶
,pa yM  from Step (9) and substitute ,ˆ pa kµ  in the generic form 

of the PA estimator ,
ˆ ˆpa k pa k

k A
Y d µ

∈
= ∑ . Make inferences for P̂AY  

using ( )ˆ
P̂AYV . 
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The steps were explained in detail through the example in Section 1.3 for estimates of 

a total of a non-negative continuous outcome and a proportion for a binary outcome. 

In this section, we provide additional information on computing algorithmic 

estimators, such as the types of outcomes and distributions of working models, 

alternatives for modeling the sample membership indicators such as modeling the 

probabilities of inclusion directly when only the sample is available, and the 

mathematical definition of the loss function used in the algorithm. 

The algorithm is specially designed for informative sample designs, a feature not 

addressed by previous approaches such as Nascimiento Silva & Skinner (1997) and 

McConville, Breidt, Lee, & Moisen (2017). For noninformative designs, like SRS we 

would expect the targeted relevant variables in Steps 5 to 7 to be null, and we could 

skip directly to Step 8 for these designs. However, we recommend going through all 

steps even with noninformative designs because any particular sample outcome may 

be unbalanced. Going through all steps protects against unusual sample outcomes. 

1.6.1 General Considerations before Computing 

Algorithmic PA Estimators 

Before executing the algorithm, we first define the target outcome variable y  and the 

characteristic to estimate such as a population total or population mean. The PA 

framework permits all types of outcomes (e.g., categorical, ordinal, continuous) and 

distributions of working models, although current software may limit their 



 

63 

computation for some distributions and variable types. The outcome variable can be a 

single quantity or a vector with multiple outcomes. 

The complexity of the models evaluated in the PA algorithm is a function of the 

parameters of the working model. Although very complex models can be fitted, large 

samples may be needed for the PA estimator to be well-behaved (e.g., converge to a 

normal distribution). Since the regularity conditions for design consistency of the PA 

estimator require that 0n P? , where 0n  is the observed sample size and P  is the 

number of estimated parameters of the working model, working models with a large 

number of parameters relative to the sample size are not recommended. We advise 

following common sense rules for model building such as excluding highly correlated 

variables (e.g., auxiliary variables that lie entirely within the column space of X ) and 

variables that do not explain the outcome (e.g., the component of the candidate 

auxiliary variable lying outside the column space of X  is orthogonal to y ). 

The standard error of the PA estimator is estimated using the variance formulas based 

on Taylor series linearization (see Section 1.7). However, other methods such as 

replication can be used. An important element of the PA framework is the 

development of methods that account for the model uncertainty in the estimate of 

variance. Specifically, the methods should account for the effect on the variance when 

the models have many parameters. 

REMARK 1.8.  In Step 2 of Algorithm 1.1, we assume a functional form of 

the collection of models yM  for the outcome variable y . In situations where more 
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than one functional form is feasible, e.g., yM  and ′yM , the PA algorithm can be 

modified to select not only the auxiliary variables of the working model but also the 

functional form that best fits the observed sample. The AIC  and dAIC , which are 

used to compare the goodness of fit among models, are based on likelihood/pseudo-

likelihood that can accommodate models with different distributions. However, 

special care is needed when comparing the AIC for these models because some 

software packages compute the AIC  ignoring the constant terms of likelihood. The 

difference between the AIC values of two models with the same functional form is 

not affected when the constant term is excluded. However, if the likelihoods of 

different functional forms have different constants, then the selection of the functional 

form is likely to be incorrect. 

EXAMPLE 1.7. Returning to the estimators from Example 1.1 on page 7, 

algorithmic PA estimates of both the total of 1Y  (total hospital expenditures in 1998) 

and the proportion 2Y  (proportion of hospitals that received financing from the state 

agency) that are likely to be efficient for both 1Y  and 2Y  can be produced by 

identifying the common predictors of the model for both outcome variables. For 

example, we assume a bivariate working model yM  with 
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where the outcome vector is ( )T
1 2,k k ky y=y , 

1 1 1k kβ βη = x β  is the linear predictor 

associated with 1y , 
2 2 2k kβ βη = x β  is the linear predictor associated with 2y , 

1kβx  is 

the vector of auxiliary variables associated with 1y , and 
2kβx  is the vector of 

auxiliary variables associated with 2y . Note that the working models in the collection 

of yM  are misspecified because the support of the variable 1y  (total hospital 

expenditures) is 1 0ky ≥  while 1ˆ ky ∈¡ , and the support of 2y  (indicator whether or 

not the hospital received state agency funds) is { }0,1  while 2ŷ ∈¡ . Since we want to 

identify common variables that explain both ky  and kS , we recommend using the 

same vector of auxiliary variables for 
2kβx , 

2kβx , and kπx  when defining the 

collections yM  and πM . If there are no common variables among the models 

except for the intercept term, then the PA estimator is the poststratified estimator to 

the total population size. The models are fitted using multivariate regression 

subroutines or by fitting the models for the outcome separately. 

EXAMPLE 1.8. In Example 1.1 on page 7, the PA adjusted fitted means 

,ˆ pa kµ  for 1y  (hospital expenditures in 1998) can be negative because the assumed 

working model is normal with a linear location parameter. The negative values may 

be an issue for totals of some small domains. We discuss two ways to ensure that 

,ˆ pa kµ  for 1y  is always nonnegative (assuming that the regularity conditions for the 

MLE estimators for ,ˆ pa kµ  hold). The first is to use the same linear model but with a 
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different link function; for example, ( )1log k ky = x β  so ( )1, ,
ˆˆ exp 0pa y k k paµ = ≥x β  for 

k A∈ . The second is to assume a different working model with an appropriate 

support; for example, the exponential distribution ( )iidy xp βθ∼ E  with a probability 

density function ( ) ( ) { }0f ; exp 1Y yy yβ β βθ θ θ ≥= −  where kβθ = x β . A similar 

approach is used to ensure ( ),ˆ 0,1pa kµ ∈  for the binary variable 2y . For example, we 

can assume a working model ( )2 ~ky e βθBe  where ( )logit k kβθ = x β . The previous 

three working models yield nonlinear algorithmic PA estimators (see Definition 1.23 

on page 90). However, even though linear and nonlinear estimators converge to the 

same limit for working models with the same number of auxiliary variables, the MSE 

of a nonlinear estimator is larger than the MSE of a linear estimator with the same 

size when the sample size is small. In other words, when the sample sizes are small, 

the sample size of a nonlinear estimator needed to achieve the same MSE of a linear 

estimator is larger than the sample size of the linear estimator. The difference in MSE 

is also a function of the sample design and the complexity of the distribution of the 

working model. The differences in efficiency between linear and nonlinear PA 

estimators are empirically studied in Section 2.2. 
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1.6.2 Alternative Models for S 

As mentioned in Definition 1.2, there are different ways to model S  depending on the 

availability of the frame and probability of inclusions for the PA models. We identify 

four situations: 

A. When the sample selection indicator kS  for k U∈  is modeled using the complete 

population or frame, 

B. When the inclusion probability kπ  for k U∈ , instead of the sample selection 

indicator, is modeled directly using the complete frame, 

C. When the sample selection indicator kS  for k A∈  is modeled using the sample, 

and 

D. When the inclusion probability kπ  for k A∈ , instead of the sample selection 

indicator, is modeled directly using the sample. 

Algorithm 1.1 creates the algorithmic PA estimator for situation A and is described in 

detail in Example 1.1. In this example, the sample membership indicator kS  for 

k U∈  is the dependent variable with a collection of models πM  with an assumed 

working model ( )| iid
k ks e π∼F B  where ( )1logitk kπ −= x β  that are fitted using ML 

since the frame is available. In situation B, kπ  is fitted, instead of kS , assuming a 

different working model since kπ  is a continuous variable in a range ( )0,1kπ ∈ . One 
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possible model for kπ  is the fractional logit with ( )1logitk kπ −= x β  (See Remark 1.3 

for a discussion of alternative models for kπ ). The working models of kS  or kπ  in 

situations A and B are fitted using ML using the frame. In situations C and D, the 

working models of kS  or kπ  are fitted using PML using the sample (see 

Remark 1.6). 

EXAMPLE 1.9 We illustrate the impact on the precision of the algorithmic 

PA estimators under situations A through D using alternative working models for kS  

or kπ  (Bernoulli, fractional logistic, and linear models) fitted to either the population 

or sample using the sample design and population from Example 1.1. 

Table 1.7 shows the empirical relative efficiency (RE) of nine algorithmic PA 

estimators of 1Y  and nine estimators of 2Y  compared with the HT estimator using 

100,000 draws (see the definition of the RE in Section A.4 in Appendix A). The 

algorithmic PA estimators are identified by the number in the rows named 

"Estimator #" on the table. The last column of the table shows the RE of the GREG 

VDK estimators for the same population characteristics. The table shows that all 

algorithmic PA estimators fitted to either the population or the sample using MLE or 

PMLE are more efficient than the HT estimators of 1Y  and 2Y . The algorithmic PA 

estimators are also more efficient than the HJ estimators, which are not included in 

the table. 
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Table 1.7 shows that the algorithmic PA estimators for 1Y  and 2Y  (estimators 2 and 6, 

respectively), with a assumed fractional logistic working model fitted to the frame 

using ML, are slightly more efficient than the PA estimators 1 and 5 with an assumed 

Bernoulli working model also fitted to the frame using ML. When the model is fitted 

to the observed sample, the algorithmic PA estimators of 1Y  and 2Y  (estimators 4 and 

8), with aa assumed fractional logistic working model fitted using PML, are slightly 

more efficient than the PA estimators 3 and 7 with an assumed Bernoulli working 

model fitted using PML fitted to the sample. 

Although the differences are very small, all algorithmic PA estimators with assumed 

Bernoulli or fractional logistic working models fitted to either the frame or sample 

(estimators 1 to 8) are more efficient than the VDK estimators despite the uncertainty 

in identifying the model. The minimum and maximum RE differences between the 

PA estimators and VDK estimators are 0.51 and 0.64 percentage points for 1Y , and 

2.43 and 3.26 percentage points for 2Y . The largest differences correspond to the PA 

estimators with the fractional logistic model for kπ  fitted to the sample (PA 

estimators 3 and 7). 

When the assumed working model of kπ  is the linear probability model (estimators 9 

through 16, see Remark 1.3), the algorithmic PA estimators are slightly more efficient 

than the VDK estimators except for the PA estimators of 1Y  with the linear models 

k kS = x β  and k kπ = x β  fitted to the sample (estimators 9 and 10). In contrast, the 

same PA estimators of 1Y  fitted to the frame are more efficient than the VDK 
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estimators (11 and 12) with somewhat larger differences in RE. For the estimators of 

2Y  with a linear probability model, the maximum and minimum differences in RE 

between the PA estimators 13 to 16 and the VDK are generally less than one 

percentage point. 

Table 1.7 Relative efficiency compared to HT of the algorithmic PA estimators 
and VDK by alternative models for estimating ˆ

πM  in Example 1.1 

Method 
Estimator 

Algorithmic PA VDK  
MLE PMLE GREG 

Data file Population Population Sample Sample Sample 
Dependent variable kS  kπ  kS  kπ  N/A 
Situation A B C D N/A 
      
Model ˆ

πM  Bernoulli Fractional 
logistic 

Bernoulli Fractional 
logistic 

N/A 

Relative efficiency (HT)      
Estimator # (1) (2) (3) (4)  
Total 1Y  7.56 7.63 7.63 7.68 7.04 

Estimator  (5) (6) (7) (8)  
Proportion 2Y  77.76 77.87 77.19 78.02 74.76 
      

Model ˆ
πM  Linear Linear Linear Linear N/A 

Relative efficiency (HT)      
Estimator # (9) (10) (11) (12)  
Total 1Y  6.19 6.72 8.24 7.68 7.03 

Estimator # (13) (14) (15) (16)  
Proportion 2Y  77.19 77.71 77.66 78.02 74.76 
      
      

Although no generalizations are possible based on the results of one simulation study, 

the gains in efficiency may be larger if we assume a more complex working model 

that matches the type of data for kπ . However, these gains may be very small as 
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illustrated in this example. These results also suggest that modeling kπ  instead kS  

may yield more efficient algorithmic PA estimators independently of fitting the 

model to the frame or the sample. One reason may be that k kS s=  is a dichotomized 

version of kπ , which generally leads to a loss of information (Kotsiantis & 

Kanellopoulos, 2006). Since the goal of the PA algorithm is to identify the relevant 

auxiliary variables that explain the sample selection, modeling kS  may add 

unnecessary noise. Although there are no differences in RE between the algorithmic 

PA estimators fitted to the frame with assumed Bernoulli and fractional logistic 

working models, we hypothesize these models are practically the same because of the 

large frame. 

1.6.3 The Loss Function 

In the PA algorithm, the comparisons among the fitted models in M  in Steps 2, 4, 

and 7 use a loss function, ( )L : →¡ ¡M , that measures the goodness of fit of the 

models ∈MM  being evaluated. In the PA algorithm, when the model is fitted using 

ML, the loss function is based on the Akaike information criterion (AIC), see 

Akaike (1981). The AIC is an estimator of the quality of a model relative to others for 

a given set of data. The AIC is used for variable selection in model building (Hastie, 

Tibshirani, & Friedman, 2009). The AIC is computed as  

 ¶( ) ¶( )AIC 2 2P= −M L M , (1.24) 
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where P  is the number of parameters fitted in the model ¶M  and ¶( )L M  is the 

maximum value of the likelihood of the fitted model ¶M . Smaller values of the AIC 

indicate better goodness of fit. The first term in (1.24) penalizes the AIC by the 

number of estimated parameters to prevent overfitting. 

In the PA algorithm, when the model is fitted to the observed sample using PML, the 

loss function is a design-based version of the AIC defined as  

 ¶( ) ¶( )dAIC 2 2 |P= −M L M F ,  

where ¶( )|L M F  is the maximum value of the PL of the fitted model ¶M . The 

¶( )dAIC M  is an estimate of the ¶( )AIC M , that is, the AIC of the model M  fitted to 

the entire population. The loss function for the model yM  fitted to the population is 

¶( ) ¶( )AICL =M M  and for the model fitted to the sample is 

¶( ) ¶( )| dAIC |L =M F M F . 

Although πM  and yM  are collections of infinite number of working models, the 

PA algorithm does not fit all models nor evaluate their loss functions. Instead, a 

subset of candidate models is generated using a one-variable-at-a-time stepwise 

forward variable selection based on the value of the AIC  or dAIC  depending on 

whether the model is fitted to the sample or frame. This method of variable selection 

is a greedy algorithm that adds the best variable and removes the worst one from the 

working model at each step measuring the goodness of fit on the AIC / dAIC  for each 
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variable addition and deletion. The algorithm attempts to find a global optimum 

through optimal local decisions in each step (Guyon & Elisseeff, 2003; Tang, 

Alelyani, & Liu, 2014). This approach reduces the algorithm computation time 

because not all models are fitted and evaluated. 

The appeal of the AIC is the simplicity of the expression that does not require 

multiple statistical tests of the coefficients of the linear estimators of the model 

parameters5. Since the AIC is a relative measure among working models, the selected 

model may have a poor fit if none of the models describes the observed data well. In 

the PA approach, the poor fit of the working models is not a major issue because the 

resulting algorithmic PA estimator, as any model-assisted estimator, is always design-

consistent even if the working model is misspecified. 

REMARK 1.9. The stepwise AIC variable is a commonly used method for 

model building (Rawlings, Pantula, & Dickey, 1998); however, there are criticisms 

since some of its assumptions are violated when used in this way. These criticisms are 

important for standard statistics but are not necessarily a weakness within the PA 

framework. These criticisms of the AIC are most relevant when the prediction of 

                                                 

5 When the observations are iid for linear regression, the one-variable-at-a-time AIC stepwise selection is 

asymptotically equivalent to the stepwise selection using a cut-off for p-values of about 15.7 percent. This is 

equivalent to comparing two models using the likelihood ratio test (Heinze, Wallisch, & Dunkler, 2018). This 

relationship has not been shown for the sample-based AIC. 
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future observations is the goal6. The models selected using the AIC may suffer from 

selection bias since the variables with a large explanatory power in the observed 

sample are more likely to be selected (Heinze, Wallisch, & Dunkler, 2018). The 

selected model may not be the best to predict future samples. In contrast, this property 

is desirable in the PA framework because the PA estimator is derived from the 

observed sample and used to adjust the same observed sample and not for 

adjustments of future samples. In other words, we are interested in the variables that 

have large explanatory power. 

REMARK 1.10. Although we have chosen the AIC as the loss function for the 

PA algorithm, any other sample-based metric for measuring the goodness of fit such 

as the adjusted 2R  and Schwarz or Bayesian information criterion (BIC) can be used 

provided that there is a theoretical justification for the sample design and the 

availability of software that computes these metrics (see Section A.2 in Appendix A 

on page 290 for the theoretical justification of the sample-based AIC, dAIC, used in 

the PA algorithm). Among the methods for variable selection, we do not recommend 

those that rely on hypothesis testing such as stepwise regression based on p-values, 

F-tests, t-tests of the regression coefficients or model fit statistics. The reliability of 

the modified tests that reflect the sample design requires relatively large samples 

                                                 

6  Prediction in this context is the process for determining the value of statistical variables at some future point in 

time. This type of prediction is not relevant within the survey-sampling context. This prediction is also not to be 

confused with the model-based estimation methodology from Valliant, Dorfman, & Royal (2000) where 

predictions refer to as the values of cases not selected in the sample. 
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(Mukhopadhyay, 2016). We also do not recommend variable selection methods that 

rely on regularization because their goal is to minimize MSE instead of the bias 

(Hastie, Tibshirani, & Friedman, 2009)7. Generally, these methods do not reflect the 

effect of the sample design in the variable selection. Although the LASSO can be 

used as a method for variable selection for complex designs (McConville, Breidt, 

Lee, & Moisen, 2017), our empirical results show that when the model is not sparse, 

LASSO tends to select fewer variables in the working model. Selecting fewer 

variables is the opposite of the goal of the PA algorithm; that is, identifying all 

relevant variables related to the outcome of the working model (see discussion in 

Section 4.6). 

1.6.4 Implementation of the PA Algorithm and 

Computation of PA Estimators 

The PA estimators, algorithm, and evaluation in this article are implemented in R (R 

Development Core Team, 2017) with modifications under the GNU General Public 

License (GPL-2, https://www.r-project.org/Licenses/GPL-2) to the R packages 

sampling (Tillé & Matei, 2016), survey (Lumley, 2012), GAMLSS (Rigby & 

Stasinopoulos, 2005), and the core statistics of R (R Development Core Team, 2017). 

                                                 

7  Although a large variance may be problem, the primary goal of the model selection is to reduce the bias. Once 

this has achieved, methods to reduce the variance can be used when the variance is large. 

https://www.r-project.org/Licenses/GPL-2
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1.7 Statistical Properties of the Algorithmic PA Estimator 

In this section, we present the generic expressions of the PA estimator, variance, and 

variance estimator. We also derive the large sample or asymptotic properties of the 

PA estimators using the approach from Fuller (2009) and Isaki & Fuller (1982), 

which is the standard for studying the large-sample properties of estimators in survey 

sampling theory. In this setting, we assume an indexed sequence of nested finite 

populations { } 1N N
∞

=F  of size NN  and the associated sequence of sample designs 

( )N Np A a=  that meet suitable regularity conditions listed in Section 5.7. We show 

that the sequence of PA estimators { }, 1P̂A N N
Y

∞

=
 is design consistent for the finite 

population total NY  in the N -th population with a limiting normal distribution that 

allows inferences about the finite population total through tests of hypothesis or 

confidence intervals. 

1.7.1 The Generic Form of the PA Estimator and its 

Design-Based Asymptotic Properties 

Although the specific form of the PA estimator is only known at the end of the 

algorithm, we can study the properties of a generic form of the algorithmic PA 

estimator. Assume a superpopulation model yM  for the outcome variable y , a finite 

population F  consisting of N  iid realizations from the superpopulation that is 

sampled according to sample design ( )p A a=  as described in Section 1.5.3. We are 
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interested in estimating the population total k
k U

Y y
∈

= ∑ , or the population mean 

YY
N

=  based on the realized sample A a= . The generic expression of the PA 

estimator of the population total Y , P̂AY , is  

 ( )T
,

ˆ ˆ ˆPA pa k pa k k
k U

Y w Sµ
∈

= = ∑w μ Se , (1.25) 

where [ ] 1N
kw ×= ∈w ¡  is the vector of the weights described in Section 1.7.4, and 

1
,ˆ ˆ N

pa k paµ × = ∈ μ ¡  is the vector of the PA adjusted fitted means ,ˆ pa kµ  of the 

working model computed as ( )( )1
,

ˆˆ pa k k paµ −= g x βE . 

The following results describe the asymptotic properties of the generic PA estimator. 

THEOREM 1.4. Assume a sequence of finite populations { } 1N N
∞

=F  of 

increasing size { } 11,...,N N NU N ∞
==  and samples { } 1N Nn ∞

=  drawn according to a 

sample design ( ){ } 1N N N Np A a ∞
=

=  satisfying the regularity conditions listed in 

Section 5.9. Let { }, 1P̂A N N
Y

∞

=
 be the sequence of PA estimators ,P̂A NY  of the total NY  

in the N -th population. Then { }, 1P̂A N N
Y

∞

=
 is design consistent of the population total 

NY  in the sense that  
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 ( ), 1/2
ˆpa N N

N p N
Y Y n

N N
−− =F O . (1.26) 

The immediate result of Theorem 1.4 is that the variance of the sequence of PA 

estimators { }, 1P̂A N N
Y

∞

=
 is stochastically bounded in the sense that  

 ( ), 1
ˆpa N N

N N
N N

Y Y n
N N

−
 
 − =
 
 

V F O . (1.27) 

The limiting distribution of the sequence of PA estimators { }, 1P̂A N N
Y

∞

=
 is 

 
( )

( ),

,

ˆ
0,1

ˆ |

DPA N N

PA N N

Y Y

Y

−
→N

FV
, (1.28) 

where ( )0,1N  is the standard normal distribution. Similarly, the limiting distribution 

of the sequence of PA estimators { }, 1P̂A N N
Y

∞

=
 when ( ),

ˆ |PA N NYV F  is estimated by 

( ),
ˆ ˆ |PA N NYV F  is 

 
( )

( ),

,

ˆ
0,1

ˆ ˆ |

DPA N N

PA N N

Y Y

Y

−
→N

FV
. (1.29) 

The proofs of these results are found in Section 5.9. 
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1.7.2 Specific Forms of the PA Estimator and their 

Expressions of Variance 

In general, the estimator P̂AY  is nonlinear, so we approximate ( )P̂AYV  using the 

linear terms of the Taylor's Series (TS) expansion of ( )P̂AY Z= S . Let : NZ →¡ ¡  

be a vector-to-scalar valued function of S  where ( ) ( )T
ˆ paZ =S w μ Se . The function 

( )Z S  is approximated by the linear terms of the multivariate TS expansion evaluated 

at point ( ) =S πE  (see Section 5.9 in Chapter 4). Then the approximate variance of 

P̂AY  is 

 ( ) ( ) ( )T2ˆA PAY N ′ ′= Z π Δ Z πV , (1.30) 

where ( ) ( ) ( ) ( )
=

∂ ∂
′ = =

∂ ∂ S π

Z S Z S
Z π Z π

S S
 (with some abuse of notation) is the vector 

of the directional partial derivatives of Z  with respect to S , evaluated at =S π , and 

Δ  is the variance-covariance matrix of S . The approximate variance of P̂AY , 

( )P̂AYAV , can be interpreted as the variance of the HT estimator of the linear 

substitutes ( )kz ′∈Z π  for k N∈  (Woodruff, 1971). 

The variance estimator of P̂AY  is 

 ( ) ( ) ( )2 Tˆ ˆˆ ˆ ˆ
PAY N ′ ′= Z π Δ Z πV , (1.31) 
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where ( )ˆ ′Z π  is the partial derivatives with respect to Z  after replacing the unknown 

quantities by their sample-based estimates, ( )T∆̂ = ∆ ∆ + ππ% , and %  is the 

Hadamard division operator. 

REMARK 1.11. The algebraic expression of the partial derivatives in the 

vector z  can be difficult to derive for some nonlinear PA estimators, specifically 

those PA estimators that use calibrated weights, because the weights are also 

functions of S . One approach is to numerically compute the partial derivatives 

( )kz ′∈Z π  for k A∈  and substitute the numeric vector in (1.31), following an 

approach similar to Woodruff & Causey (1976)8. Although the algebraic expressions 

of the partial derivatives are not needed since they are numerically computed; this 

approach still requires the functional form of ( )Z S . Another alternative is to use 

replication methods to estimate the variance ( )P̂AYV . See Section 5.9.4 for 

computing the variance and variance estimator for a nonlinear PA estimator with a 

Poisson distribution and the log link function. 

REMARK 1.12. Demnati & Rao (2004) and Shah (2004) comment on the 

issue with the TS linearization method for survey sampling estimates, which can 

produce different variance estimators that are all asymptotically design-unbiased. 

They argue that choice of the appropriate variance estimator requires considering an 

                                                 

8  Higher-order methods for numerical approximation of the partial derivative are available in some R packages. 
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assumed model and the validity of that model under repeated sampling. Demnati & 

Rao (2004) developed a TS linearization approach for deriving variance estimators 

that leads directly to a unique expression of the variance based on smooth functions 

of totals. In the PA approach, the expressions of the estimates of variance are also 

unique and match those expressions from Demnati & Rao (2004). The difference is 

that the variances in the PA approach are based on functions of the random vector S . 

Since the estimators are linear/nonlinear functions of random variables, the 

expressions of the variances are computed using the methods for computing the 

variances of functions of the random variable S . 

EXAMPLE 1.10. Table 1.8 shows the expressions of PA estimators for totals 

and variances estimator for some working models. The estimators of the means are 

obtained by dividing the estimators of the total by N  and the variance by 2N . 

Based on Definition 1.19, the sum of the residuals at the population level defined as 

ˆmle mle= −E y μ  is asymptotically zero, and the weighted sum of the residuals at the 

sample level defined as ( )ˆ ˆpmle pmle= −E y μ Se  is also asymptotically zero in valid 

PA working models. However, there is a second type of residuals defined as 

( )1 ˆgmle k k mle
−= −e y x β  for the population and ( )( )1 ˆgpmle k k pmle

−= −e y x β S( e  for 

the sample. The sum of the residuals mlee  in the population and the weighted sum of 

 



 

 

 Table 1.8 PA estimators of the total Y  and their variance estimators 
 
Estimator Point estimator Variance estimators 
Horvitz-Thompson (HT)  ( )T

ĤTY = d y se  ( ) ( ) ( )Tˆ ˆ
ĤTY = y d s Δ y d se e e eV   

where ˆ =Δ Δ Π%  
Hájek (HJ)  ( )T

TĤJY N=
d y s

d s
e

 ( ) ( ) ( )
2

T
2

ˆ ˆˆ
ˆHJ

HT

NY
N

= e d s Δ e d s( (e e e eV  

where ( )ˆ
HJY= −e y s( e , Tˆ HTN = d s  

Ratio (RA) ( )
( )

T

TR̂AY X=
d y s
d x s

e
e

 ( ) ( ) ( )
2

Tˆ ˆˆ
ˆRA

HT

XY
X

 
=   

 
e d s Δ e d s( (e e e eV   

where ( )ˆHTR= −e y x s( e , , 
ˆˆ
ˆ
HT

HT
HT

YR
X

= , 

( )Tˆ
HTX = d x se , ( )T

ĤTY = d y se  
Normal Distribution with identity 
link function (GREG)* 
 

ˆ
N̂ormal mleY = Xβ  where 

1ˆ ˆ ˆmle
−= xx xyβ T T  

( ) ( )Tˆ =xxT x s d x se e e , 

( ) ( )Tˆ =xyT x s d y se e e  

( ) ( ) ( )T1 1 T
,

ˆ ˆ ˆ ˆ ˆnormalY − −= ∆x x xxXT x d e s x d e s T X( (e e e e e eV  

where ( )ˆ
pmle= −e y xβ s( e  

 

Poisson distribution with log link 
function 

( )Tˆ ˆPoisson paY = d μ se  where 

( )( )ˆˆ exppa pa=μ s x βe  

See Section 5.9.4. 
 

*See derivation of the PA estimator in Section A.5 on Appendix A on page 304.  
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residuals pmlee(  in the sample are also asymptotically zero. The two types of 

residuals, mleE  and mlee  for the population and pmleE  and pmlee  are exactly zero 

when the link function is the identity function. The importance of the second type of 

residual is its use in computing the variance as illustrated in the following remark.  

REMARK 1.13 Another expression for the variance of model-assisted 

estimator is based on the HT variance of the variable for the residuals defined as 

( )m .k k ky yε = −  The variance is  

 ( ) ( )2ˆ k l
kl k l

k lk U l U
Y N ε ε

π π π
π π∈ ∈

= −∑ ∑V , (1.32) 

where ( )m ky  is a model-based estimator of ( )k kyµ = E . Similarly, the expression 

of the variance estimator is 

 ( ) 2ˆ ˆ kl k l k l

kl k lk A l A
Y N π π π ε ε

π π π∈ ∈

−
= ∑ ∑V . (1.33) 

The expressions (1.32) and (1.33) are derived in Wu & Sitter (2001), Breidt & 

Opsomer, (2017), and Breidt & Opsomer (2000). Särndal & Lundström (2005) 

recommend these expressions when computing the variance for the GREG estimators 

with residuals ˆ
k k k pmleyε = − x β . These expressions are different from the variance 

of the PA/GREG estimator in Table 1.8. The variance estimator of the PA estimator 

includes the factors ( )T1ˆ −
xxXT x d e s(e e e  and ( ) 1 Tˆ −

xxx d e s T X(e e e  where 
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( )ˆ
pmle= −e y xβ s( e . This factor represents the g-weights used in the alternative 

expressions of the variance and variance estimator of the GREG estimator: 

 ( ) ( )2ˆ k k l l
kl k l

k lk A l A

g gY N ε ε
π π π

π π∈ ∈
= −∑ ∑V  and (1.34) 

 ( ) 2ˆ ˆ kl k l k k l l

kl k lk A l A

g gY N π π π ε ε
π π π∈ ∈

−
= ∑ ∑V , (1.35) 

where ( ) 1ˆ1k HT kg −= + − xxX X T x  (see Särndal & Lundström, 2005). In other words, 

the expression of the variance estimator of the PA/GREG estimator in Table 1.8 is 

equal to the expression of the variance of the GREG estimator with the g-weights in 

(1.35). The PA approach naturally accounts for the g-weights that are more 

appropriate on theoretical grounds (see Särndal, Swensson, & Wretman 1989). 

Looking at the asymptotic properties, the g-weights converge in probability to 1 since 

( )11N pg n−− =O . Thus (1.35) approaches (1.34) as l l lg ε ε→  in large samples. In 

other words, the variance and variance estimators with the g-weights are more 

appropriate for smaller samples since they adjust for the discrepancies between the 

auxiliary variable population totals X  and the estimates of these population totals 

ˆ HTX  in the observed sample. 

A close examination of the variances of other PA estimators in Table 1.8 shows that 

they also have factors similar to the g-weights that converge in probability to 1 in 

large samples. Table 1.9 lists the “g-weights” factors for other estimators listed in 

Table 1.8. 
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Breidt & Opsomer (2017) and Särndal & Lundström (2005) suggest ignoring the 

g-weights in the variance estimator because they are asymptotically one. However, 

relying on asymptotic consistency may not be justified when the sample is small. 

Furthermore, standard practice for the other estimators such as the HJ and RA 

estimators does not ignore their g-weights in their estimated variances. Ignoring these 

g-weights in the variance estimator ignores the auxiliary variables, which is precisely 

the information we want to include to reduce the variance. 

Table 1.9 The g-weights like factors in some PA estimators 
 
Estimator g-weight factor 

Horvitz-Thompson (HT) 1 

Hájek (HJ) ˆ HT

N
N

 

Ratio (RA) ˆ HT

X
X

 

Normal distribution with 
identity link function (GREG) ( )T1ˆ −

xxXT x d e s(e e e , ( ) 1 Tˆ −
xxx d e s T X(e e e  

  

1.7.3 Linear and Nonlinear PA Estimators  

We refer to PA estimators as linear or nonlinear depending on how the auxiliary 

variables are related to the outcome variable. 
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DEFINITION 1.22. A PA estimator9 is linear if its working model is a fixed 

effect normal distribution ( )2,kµ σN  with an identity link function 

( )|k k k kyµ = =x x βE . The generic expression (1.25) for the linear PA estimator is 

 ( )T ˆ ˆ
P̂A k pa k k k pa

k U
Y d s

∈
= = ∑d x β s x βe , (1.36) 

where 1N×∈d ¡ , [ ]kd=d , and kd  is the sampling weight, 1ˆ P
pa

×∈β ¡  are the PA 

adjusted PMLE regression coefficients computed as ˆ ˆˆ
pa pmle= Xβ Γ β , where 

,
ˆ ˆ

pmle plme y∈β M  are the PMLEs of y∈β M , ˆ P P×∈XΓ ¡  is the PA adjustment (see 

Definitions 1.12 and 1.13), and [ ] { } 10,1 N
ks ×= ∈s , where ks  is the realized sample 

membership indicator for k U∈ .  

We implicitly refer to a linear PA estimator or linear working model when the 

working model meets Definition 1.22 unless stated otherwise. Cassel, Särndal, & 

Wretman’s (1977) definition for linear estimators in survey sampling theory is 

0
ˆ

s sk k
k A

yθ β β
∈

= + ∑  and focuses on the linear combinations of the outcome variable 

instead of the parameters and auxiliary variables of the model. 

THEOREM 1.5. The linear PA estimators can be written as the weighted sum 

of the population totals of the auxiliary variables of the PA working model ,
ˆ

PA yM  as 

                                                 

9  This classification is similar to the linear and nonlinear GREG estimators in Särndal (2007)). 
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 ˆ
P̂A pmleY = X β . (1.37) 

The proof follows after replacing ˆ
paβ  by ˆˆ

pmleXΓ β  in (1.25) using the sample design 

weights kd  for k U∈ . 

Theorem 1.5 shows that if the working model is linear, the estimate of the total Y  is a 

function of the PML estimates of regression coefficients β  of the working model. 

One immediate result of this theorem is the following corollary: 

COROLLARY 1.1.  The variance of the linear PA estimator is 

 ( ) ( )T ˆˆ | |PA pmleY = X β XV F FV , (1.38) 

which is a function of the variance of the parameters of the working model. Although 

this expression looks like a model-based estimator, it is a design-based estimator, and 

its variance depends on the sample design. 

REMARK 1.14 The expression (1.37) is the form of the linear generalized 

regression (GREG) estimator (Särndal, Swensson, & Wretman, 1992) with as 

assisting model with ( )k ky = x βE  and ( ) 2
ky σ=V . The P̂AY , computed as the 

sample weighted sum of the PA adjusted PMLE means of a normal model or as the 

sum of products of the PMLE of β  and their associated population totals, reproduces 

the GREG estimator ( ) ˆˆ ˆ ˆ
GREG HT HTY Y= + −X X β , where 1ˆ ˆ ˆ−= xx xyβ T T , 

( )Tˆ =xxT x d x Se e , and ( )Tˆ =xyT x d y Se e . However, the PA linear estimator 
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and the linear GREG estimator are not the same since the set of auxiliary variables in 

the working model of the PA estimator is random that depends on the sample, while 

the auxiliary variables in the linear GREG estimator are fixed. The linear GREG 

estimators are a subclass of the PA linear estimator. These results are not surprising 

since both are extremum estimators that optimize mathematically equivalent criterion 

functions when they have the same working model (Greene, 2008). Fitting a well-

defined working normal model and using the PMLEs of the regression coefficients of 

the working model produces the same model-assisted estimator when the assisting 

model is used to guide the form of the estimator. 

EXAMPLE 1.11. Some examples of PA linear estimators and their 

corresponding parameters of the normal working model are listed in Table 1.10. 

 



 

 

Table 1.10  Examples of linear PA estimators 
 

Estimator name Working model Estimator Notes 
Hájek ( )2,iid

ky β σ∼y N  
ˆˆ

pmleY Nβ=  
ˆ

k k
k A

pmle
k

k A

d y

d
β ∈

∈

=
∑

∑
 

Stratified  ( )2,iid
k h hy β σ∼ N , for { }1,...,h H∈  ,

1

ˆˆ
H

h pmle h
h

Y N β
=

= ∑  
,

ˆ h

h

k k
k A

pmle h
k

k A

d y

d
β ∈

∈

=

∑

∑
 

Ratio ( )2,iid
k k ky x xβ σ∼ N  

ˆˆ
pmleY Xβ=  

ˆ
k k

k A
pmle

k k
k A

d y

d x
β ∈

∈

=
∑

∑
 

Linear regression one 
variable kx   ( )2,iid

k ky xβ σ∼ N  
ˆˆ

pmleY Xβ=  
2

ˆ
k k k

k A
pmle

k k
k A

d x y

d x
β ∈

∈

=
∑

∑
 

Stratified separate ratio ( )2,iid
k h k h ky x xβ σ∼ N , for { }1,...,h H∈  ,

1

ˆˆ
H

h pmle h
h

Y X β
=

= ∑  
,

ˆ h

h

k k
k A

pmle h
k k

k A

d y

d x
β ∈

∈

=

∑

∑
 

Stratified combined 
ratio ( )2,iid

k k ky x xβ σ∼ N , for { }1,...,h H∈  
1

ˆˆ
H

h pmle
h

Y X β
=

= ∑  
1

1

ˆ h

h

H

k k
h k A

pmle H

k k
h k A

d y

d x
β = ∈

= ∈

=

∑ ∑

∑ ∑
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DEFINITION 1.23. All PA estimators that do not meet Definition 1.22 are 

called nonlinear estimators. The nonlinear PA estimators are new and differ from the 

nonlinear GREG estimators described in Särndal (2007) and Breidt & Opsomer 

(2017). Closed form expressions of nonlinear estimators often do not exist, and they 

must be computed numerically. The expression of the nonlinear estimator depends on 

the distribution of the working model. For example, if the working model is a non-

normal generalized linear model (GLM), the nonlinear PA estimator is  

 ( )1
,

ˆˆ gPA k k pa k
k A

Y w −

∈
= ∑ x β , (1.39) 

where 1ˆ P
pa

×∈β ¡  are the PA adjusted PML estimates of the PMLE of the regression 

coefficients ˆ
pmleβ  computed as ˆ ˆˆ

pa pmle= Xβ Γ β , and 1g−  is the inverse of the link 

function. The PMLEs of the coefficients of the linear predictor, ˆ
pmleβ , are computed 

maximizing the PL using iteratively reweighted least squares (IRLS) in combination 

with numerical algorithms such as Gauss-Newton and Levenberg–Marquardt. 

Nonlinear PA estimators can always be computed when the auxiliary variable 

population totals are available; in contrast, nonlinear GREG estimators require 

complete auxiliary information (i.e., all kx  are known). 

EXAMPLE 1.12. In Section 2.2 on page 130, we evaluate the performance of 

three nonlinear PA estimators with assumed working models based on Bernoulli, 

Poisson, and Gamma distributions. Table 1.11 lists the working models and 

functional forms of the nonlinear PA estimators from Section 2.2. The table also 
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includes other nonlinear PA estimators with different with other nonlinear working 

models. 

REMARK 1.15 Särndal (2007) defines nonlinear GREG estimators as those 

that are generated by working models other than linear fixed effects models. 

Although this definition almost matches Definition 1.23 for nonlinear PA estimators, 

there are important differences. The nonlinear GREG estimator is based on two 

working models: a nonlinear primary model used to derive an auxiliary variable and 

population total and a linear secondary working model that is to produce the 

functional form the estimator. To illustrate the role of the primary and secondary 

working models, assume we want to compute a nonlinear GREG estimator using a 

GLM model for the variable ky  with ( ) ( )1| gk k ky −=x x βE . Since y  is only 

observed in the sample, a primary PL nonlinear model ¶ ,pmle yM  with the auxiliary 

variables x  is fitted and used to compute the PMLEs of the regression coefficients 

ˆ
pmleβ . The same model ¶ ,pmle yM  is then used to predict the estimated means 

( )1
,

ˆˆ gpmle k k plmeµ −= x β  for all elements of the population. Note that this requires 

knowing all the values of kx  for k U∈ . The fitted PL mean ,ˆ pmle kµ  of the primary  



 

 

Table 1.11  Examples of nonlinear PA estimators 
 
Nonlinear PA 
Estimator 

Working model ky  Link function ( )g θ  Expression 

Bernoulli ( )ke θB  ( )logitk kθ=x β  ˆ

ˆ
ˆ

1

k pa

k pa
k

k A

eY d
e∈

=
+

∑
x β

x β
 

Poisson ( )ko θPi  ( )logk kθ=x β  ˆˆ k pa
k

k A
Y d e

∈
= ∑ x β  

Gamma ( )kθG  ( )logk kθ=x β  ˆˆ k pa
k

k A
Y d e

∈
= ∑ x β  

Lognormal ( )2
,Log ,k kβ σθ θN  k kβθ=x β , 

( ), ,logk kσ σθ=x σ  
( )2

, ,
ˆˆ exp exp / 2k k pa k

k A
Y d β σ

∈

 = + 
 ∑ x β x σ  

Inverse Gaussian ( ), ,k kβ σθ θIG  
2
1

k
kβθ

=x β , ˆ
ˆ
k

k pak A

dY
∈

= − ∑ x β
 

Exponential ( ),kxp βθE  1
k

kβθ
= −x β  ˆˆ

k k pa
k A

Y d
∈

= ∑ x β  

Zero-inflated 
Poisson  ( )( ) { }

( ) { }

,

,

0

, , 0

,
,

1 1

1 1
!

k
k

kk

k

k k y

y
k

k y
k

e

e

y

β

β

θ
α α

θ
β

α

θ θ

θ
θ

>

−
=

−

∈

+ −

 
 + −  
 

¥

 

( ), ,logk kα αθ=x α  

( ),logitk kβ βθ=x β  

 

,
,

,

ˆ
ˆ

ˆ
ˆ

1

k pa
k pa

k pa
k

k A

eY d e
e

β
α

β∈

 
 =
 + 

∑
x β

x α
x β
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 model and the estimated population total ±
,ˆ pmle k

k U
M µ

∈
= ∑  are estimates of the ML 

mean ,ˆmle kµ  of the working model fitted to the population and the sum of the means 

,ˆmle k
k U

M µ
∈

= ∑ , respectively. The tilde (~) indicates that the population total ±M  is 

not computed as the HT estimator of the fitted means as ,
ˆ ˆHT k pmle k

k A
M d µ

∈
= ∑ , but 

rather as the sum of the predictions ,ˆ pmle kµ  for each element in the population. Since 

the population total ±M  is an estimate of M , then the variance of the estimated total 

±M  is ±( )| 0M ≠V F  because the value of ±M  depends on the selected sample. At this 

step, the auxiliary variables x  from the primary model are discarded, and the derived 

auxiliary variable ˆ pmleµ  and population total ±M  are used in a secondary normal 

working model to form a linear GREG estimator. The secondary working model is 

( )2,k σm αN , with location parameters ( )T
0 1,α α=α . The auxiliary variables are 

( ),ˆ1,k pmle kµ=m , and population totals are ± ±( ), kN M=M . The general expression of 

the nonlinear GREG estimator of the total Y  is the linear estimator 

 ±( )ˆ ˆ ˆ ˆNLGREG HT HTY Y= + −M M α , (1.40) 

where ( )T 2 1
0 1ˆ ˆ ˆ,α α ×= ∈α ¡  are the linear regression estimators of α  computed as 

1ˆ ˆˆ −= mm myα T T , where Tˆ
k k k

k A
d

∈
= ∑mmT m m , Tˆ k k k

k A
d y

∈
= ∑myT m , 

( )ˆ ˆ ˆ,HT HT HTN M=M , and ˆ HT k
k A

N d
∈

= ∑ . 
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From the PA context, the nonlinear GREG estimators are incomplete PA estimators 

(see Definition 1.20) with a derived variable (See Section 1.8) and a normal model 

( )2,k σm αN . Note that if the model is correct, we expect that 0ˆ 0α =  and 1ˆ 1α = . 

One of the earliest nonlinear GREG estimators described in the literature is the 

logistic generalized regression estimator (LGRE) from Lehtonen & Veijanen (1998). 

In the simple case, the LGRE estimator assumes that the primary working model of 

the outcome ky  is ( )| iid
k k ky e θx ∼ B  with a link function ( )logit k kθ = x β , and the 

mean ( ) ( )
( )

exp
1 exp

k
k k

k
yµ = =

+
x β

x β
E  estimated using PML as .ˆ pmle kµ . The estimated 

population total ±
.ˆ pmle k

k U
M µ

∈
= ∑ , is the sum of the derived auxiliary variable 

, .ˆ pmle kµ  The secondary working model is ( )2
,ˆ ,iid

k mle ky µ α σ∼ N , which is linear on 

the fitted PMLE mean .ˆ pmle kµ  of the first model. The expression of the Lehtonen & 

Veijanen (1998) nonlinear GREG estimator for the total Y  is (1.40) after substituting 

α̂ , ±M , and ˆ HTM  by ,
1ˆ ˆˆ k pmle k
HT k A

d
N

α µ
∈

= ∑ , ±M , and ˆ HTM , respectively. 

Wu & Sitter (2001) propose a nonlinear GREG estimator called a model 

calibrated (MC) estimator. They follow the same approach described above and 

produce two versions of MC estimators based on two secondary working models. The 

primary model is the same as described above. The primary model is fitted to the 

population to derive the population total as ±
,ˆ pmle k

k U
M µ

∈
= ∑ . The secondary model 
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of the first MC estimator is ( )2,k σm αN  described above, and the expression of the 

first MC estimator is (1.40). For SRS, which is the sample design used in Wu & Sitter 

(2001), then ˆ HTN N=  and (1.40) reduces to  

 ±( ) 1
ˆ ˆ ˆ ˆMC HT HTY Y M M α= + − . (1.41) 

The secondary working model of the second version of the MC estimator is 

( )2
, 1ˆˆ ,iid

k pmle ky µ α σ∼y N , and the expression of the estimator of the total Y  is 

 ±( )
,

2
,

ˆ
ˆ ˆ ˆ

ˆ

k k mle k
k A

MC HT HT
k mle k

k A

d y
Y Y M M

d

µ

µ
∈

∈

= + −
∑

∑
, (1.42) 

which is the calibration estimator with one auxiliary variable ,ˆmle kµ  and the 

estimated population total ±M . 

All the nonlinear GREG estimators described above require the values of the 

auxiliary variables to be known (e.g., complete auxiliary information) for computing 

the estimated population total. 

The properties and performance of the linear and nonlinear PA estimators compared 

to the linear and nonlinear GREG estimators are studied through simulation in 

Section 2.2. The results indicate that linear and nonlinear PA estimators have 

approximately the same performance as the linear and nonlinear GREG estimators 

when the appropriate weight kw  is used in (1.25), and the use of complete auxiliary 
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information does not improve the efficiency of the nonlinear GREG estimators for the 

evaluated models. 

1.7.4 Alternative Weights for Nonlinear PA Estimators 

In SRS designs, the sampling weights kd  always meet the calibration equations 

k
k A

d N
∈

=∑  and k k
k A

d nπ
∈

=∑  (see Kott, 2006 for the definition of calibration 

equations). For designs other than SRS, the nonlinear PA estimators require very 

large samples to converge compared to the sample size needed with the linear 

estimators. One way to improve the rate of convergence in PA nonlinear estimators is 

to replace the weights kd  by calibrated weights kw  in the PA estimator in (1.25). We 

have studied three options for the weight kw . These are: 

1. The sample design weights 1
k

k
d

π
= ; 

2. The weights calibrated (e.g., poststratified) to the population size N , defined as 

( ),
k

k N
k

k A

d Nw
d

∈

=
∑

 (i.e., ( ),k Nk Aw N∈ =∑ ); and  

3. The weights calibrated using raking to both the population size N , and the 

sample size n  denoted as ( ), ,k N nw  such as the calibration equations 

( ), ,k N n
k A

w N
∈

=∑  and ( ), , kk N n
k A

w nπ
∈

=∑  are met where |k k
k A

n d π
∈

 
=   

 
∑E F . 
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All these sets of weights— kd , ( ),k Nw , and ( ), ,k N nw  for k A∈ ,—produce sequences 

of PA estimators that are asymptotically equivalent in the sense that 

 ( )( ) ( )1 1/2
, ,

ˆ ˆN pa N p Nw N NN Y Y n− −− = O , and  

 ( )( ) ( )1 1/2
, , ,

ˆ ˆN pa N p Nw N n NN Y Y n− −− = O .  

However, Le Cam (1986) notes that the asymptotic theory does not inform on the 

estimator properties for finite sample sizes found in practice. Since the estimators 

ˆ ,PAY  ( )ŵ NY , and ( ),ŵ N nY  are asymptotically equivalent, we may just as well use any 

of them in large samples. Le Cam’s point is demonstrated later in Section 2.2 when 

we find substantial differences in efficiency among nonlinear estimators for different 

weights and sample designs with small samples. The PA framework attempts to find 

consistent estimators that also have good finite sample size efficiency. 

In probability proportional to size (PPS) designs, the PA estimator using the weight 

( ), ,k N nw  tends to be more efficient, and the gain in efficiency is greater in nonlinear 

working models. In Poisson (PO) sample designs, where the sampling weights kd  do 

not meet either the calibration equation, the weights ( ), ,k N nw  can achieve large gains 

in efficiency for both linear and nonlinear models as shown in the examples in 

Section 2.2. This result justifies the practice of calibrating sampling weights as a 

preliminary step before additional adjustments as done in Brick, Flores Cervantes, 

Lee, & Norman (2011). 
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1.7.5 Bias-Corrected PA Estimators 

According to Definition 1.18, valid PA models are those where both the sum of the 

maximum likelihood (ML) residuals or the weighted sum of pseudo-maximum 

likelihood (PML) residuals are asymptotically zero. This restriction limits somewhat 

the models that can be used for the creation of PA estimators. However, the 

expression of the PML estimator with an invalid model can be modified to ensure that 

the sum of the residuals is zero, at least in expectation. The resulting bias corrected 

PA estimator is still asymptotically unbiased and design consistent. The modification 

of the expression of the bias adjusted PA estimator is illustrated in the following 

example. 

EXAMPLE 1.13. Define a collection of models yM  for the outcome variable 

,y  where ( )2| ,iid
k k k ky x x xγβ σ∼ N  with one auxiliary variable kx  and population 

total X . The collection of models yM  defines a family of normal ratio estimators 

with parameters θ  with a location prediction kxβη β= ; a scale predictor kxση σ= ; 

and shape predictor γη γ=  for different values of γ . We use identity link functions 

are used for the three parameters. Among the ratio estimators produced for 

{ }0,1,2γ =  shown in Table 1.12, only those with { }0,1γ =  are valid PA models. 

Examining the creation of the PMLE estimator for the shape parameter 2γ =  in the 

last row of the table, the value of ˆ
pmleβ  is obtained by solving the sample based 
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estimating equation (e.g., the estimating equation is the partial derivative of the PL 

function with respect to β  set to zero) 

 
( )

( ) ( )2, ; , |
| 0k k

k
kk A

x d y x
d

x

β σ β
β

β ∈

∂ −
= = =

∂ ∑
L F

=S F , (1.43) 

and the solution is ˆ ˆpmle HTrβ = , where 
ˆˆ
ˆ
HT

HT

rr
N

= , ˆ ˆHT k k
k A

r d r
∈

= ∑ , ˆ k
k

k

yr
x

=  and 

ˆ HT k
k A

N d
∈

= ∑ . We know that this is not a valid PA model because if the sum of the 

weighted residuals is zero, 0k k
k A

d e
∈

=∑  where ˆ
k k pmle ke y xβ= − , then 

ˆˆ ˆ
ˆ
HT

pmle HT
HT

Y Y
X

β = ≠ . Although we cannot remove the bias completely, we can 

remove it in expectation by creating a difference estimator using the estimators P̂AY  

and P̂MLEY  as 

 ( ),
ˆ ˆ ˆ ˆ
PA adj HT PA PMLEY Y Y Y= + − , (1.44) 

where P̂MLEY  is the estimator of the population total Y  from the PML model 

identified in Step 8 of Algorithm 1.1 computed as ,
ˆ ˆPA k pa k

k A
Y d µ

∈
= ∑ , and P̂AY  is the 

PA estimator created in Step 9 of Algorithm 1.1 as ,
ˆ ˆPMLE k pmle k

k A
Y d µ

∈
= ∑ . In this 

case, the estimator for the model for the ratio for 2γ =  is  

 ( ),
ˆ ˆ ˆˆ ˆPA adj HT HT HT HTY r X Y r X= + + . (1.45) 
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If the total population N  is known, then the PA bias adjusted estimator of the mean 

Ŷ  is  

 ,
ˆ ˆ

ˆ ˆHT HT
PA adj HT HT

Y XY r X r
N N

 
= + + 

 
, (1.46) 

which generalizes the Hartley-Ross ratio estimator for the mean for SRS to any 

sample design. The Hartley-Ross ratio estimator under SRS is 

( )1ˆ
1HR

N nY r X y r x
N n
−

= + −
−

, where 1
1

N
N

≈
−

 and 1
1

n
n

≈
−

 (Hartley & Ross 

1954). 

 



 

 

 
Table 1.12 Normal ratio models and their associated PMLE estimators for Example 1.1 
 

Shape 
parameter 

γ  
Model 

PMLE Estimator 
ˆˆ

pmleY X β=  Description Valid PA 
estimator? 

0 ( )2
0,kxβ σN  

2
ˆ

k k k
k A

pmle
k k

k A

d x y

d x
β ∈

∈

∑

∑
 

GREG with one auxiliary 
variable kx . 

Yes 

1 ( )2
0,k kx xβ σN  

ˆ
k k

k A
pmle

k k
k A

d y

d x
β ∈

∈

=
∑

∑
 

Classical ratio estimator Yes 

2  ( )2 2
0,k kx xβ σN  

ˆ
k

k
kk A

pmle
k

k A

yd
x

d
β ∈

∈

=
∑

∑
 

Design biased ratio No 
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The generic expression for the bias adjusted PA estimator for a total is 

 ( ), , ,
ˆ ˆ ˆPA adj k k pa k pmle k

k A
Y d y µ µ

∈
= + −∑ . (1.47) 

Note that if the weighted residuals add to zero, then the expression (1.47) becomes 

(1.25) with k kw d=  for k A∈ . The variance of the bias-corrected nonlinear 

estimators is more difficult to obtain since it requires the linearization of ,ˆ pa kµ  and 

,ˆ pmle kµ . Still, the general formula in Section 1.7.1 applies. 

Table 1.13 shows the general expression of the bias-corrected normal ratio models for 

any value of γ . The second row shows the special case for the collection of models 

for a Poisson design with units sampled with probabilities of inclusion kπ . 

Although the steps of Algorithm 1.1 (or Algorithm 3.1 for algebraic estimators) for 

creating bias-corrected PA estimators are straightforward, software to produce the 

estimators may not be available. For example, the value of the shape parameter γ  for 

linear regression models can be estimated using the package gamlss (Stasinopoulos 

et al., 2017); however, the function is unstable when the location and scale parameters 

of the model do not include intercept terms (e.g., 1 kxβη β= , and 1 ).kxση σ=  The 

package lmvar (Posthuma Partners, 2018) is more stable, but does not fit models 

using PMLE nor does it does produce the AIC for the evaluation of the model. Thus, 

solving for the estimates would require a large programming effort. 

 



 

 

Table 1.13 Bias-corrected PA estimators for normal ratio models 
 

Working model Estimator 
PMLE estimator of 

regression coefficient 
ˆ
mleβ  

Notes 

( )2,iid
k k ky x xγβ σ∼ N  ( )ˆˆ ˆ ˆ

pmle HTY X Y Xβ= + −  1

2
ˆ

k k k
k A

pmle
k k

k A

d y x

d x

γ

γβ

−

∈
−

∈

=
∑

∑
 

For kx c≠ ∈¡   

( )2 2,iid
k k ky βπ σ π∼ N  ( )ˆˆ ˆ

pmle HT sY n Y nβ= + −  2

ˆ
k k

k A
pmle

k
k A

d y

d
β ∈

∈

∑

∑
 

Poisson designs  

sn  is the observed sample size and  

n  is the expected sample size. 
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EXAMPLE 1.14. In this example, we show the flexibility of the PA approach 

for producing estimators from different types of models. We assume a 

superpopulation multivariate model to describe the joint distribution of the study 

variable y  and the auxiliary variables x  that are also assumed to be random. Unlike 

previous examples, we do not assume a model with a univariate distribution based on 

the linear regression model ( ) .y = βxE  

Let ( ) ( )1 1, P
k k ky × += ∈z x ¡  be one realization generated from the superpopulation 

model zM  with a multivariate normal defined by  

 1
2

T
~ ,

idd y y y
k

y

β σ      
         

x

x x xx

Σ
z

β Σ Σ
N ,

 
(1.48) 

with ky ∈¡  is the study variable, ( ) 1
1 ,..., P

k k Pkx x ×= ∈x ¡  is the vector of the 

auxiliary variables, where ( )TT 1 1, P
yβ + ×= ∈xβ β ¡  is the vector of the location 

parameters of zM , yβ ∈¡  is the location parameter of ky , ( )T
1,..., P

Pβ β= ∈xβ ¡  

are the location parameters of kx , 2
p q

P P
x xσ × = ∈

 xxΣ ¡  is the variance-covariance 

matrix of x  where 2
p qx xσ  is the covariance between px  and qx  for { }, 1,...,p q P∈ , 

2 1
p

P
y yxσ × = ∈

 xΣ ¡  where 2
pyxσ  is the variance-covariance vector between y  and 

x  for { }1,...,p P∈ , and T
y y=x xΣ Σ . Assume that the population totals ( ),N X  are 
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known. Let ( ),= y xF  be the generated finite population as N  iid realizations of 

zM . We assume that the population F  is sampled according to a sample design 

( )p =S s  where S  is the random vector for the sample membership indicator defined 

by ( ) =S πE  and ( ) =SV ∆ . We are interested in computing the population total of 

y , Y , using the auxiliary variables x  observed in the sample and the known 

population totals ( ),N X .  

We can take advantage of the relationship between ky  and kx  described in zM  by 

assuming a working model for ky  conditioned on the observed values kx , and 

|k ky x . Since zM  is a multivariate normal distribution, the conditional distribution 

of |k ky x  is a univariate normal distribution (Casella & Berger, 2002) with the 

parameters 

 ( )2| ,k ky β σθ θx ∼ N , (1.49) 

where ( )1
y yβθ β −= + −x xx xΣ Σ x β  and 

1
2 2 1

y y y yσθ σ −= −x x xx xΣ Σ Σ Σ . We proceed in the 

same way as before to derive the PA adjusted fitted means ,ˆ pa kµ  by solving the PL 

of the distribution of |k ky x  and the observed data to obtain the PMLE of the model 

mean , ,
ˆ ˆpmle pmle kβθ µ=  consisting of the PML estimators listed in Table 1.14. 
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Plugging the PML estimators and the PA adjustments 1ˆ
ˆ HT

N
N

Γ =  and 1
ˆˆ −=X XXΓ D D  

into the generic expression of the PA estimator in (1.25), and after algebraic 

simplification, the PA estimator for the total Y  is  

 ( ) 1ˆ ˆˆ ˆ ˆ
yPA HJ HJY NY N −= + −

xx xe eX X Σ Σ , (1.50) 

where ˆ
xxeΣ  is the design-based estimate of the variance-covariance matrix 

( ) P P×∈xe ¡C  of the auxiliary variable residuals ˆ
k k HJ= −xe x X  and ˆ

yxeΣ  is the 

design-based estimate of the covariance vector ( ) 1, P×∈x xye e ¡C  between the 

residuals kxe  and ˆ
HJY= −ye y . The PA estimator in 1.50) exists if ˆ xxΣ  is invertible 

(e.g., full rank, ˆrank P=
x xe eΣ ). The expression in (1.50) is new and has not been 

previously reported in the literature as far as we know. 

Suppose we use the central multivariate normal distribution to produce another 

estimator. The central multivariate normal distribution has the same expression as 

above but with zero vector means, ( ) ( )T, 0,y Pβ =xβ 0 . We proceed in the same way 

as before to derive the PA adjusted fitted means ,ˆ pa kµ  by solving the PL to obtain the 

PML estimator of the model mean , ,
ˆˆ pmle k pmle βµ θ=  consisting of the PML 

estimators listed in Table 1.15. 
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Table 1.14 PMLE of the components of ,ˆ pmle kµ  in Example 1.14 
 

PML 
Estimator Expression Notes 

,
ˆ

pmle yβ  ˆ
HJY  ( ) ( )T T/HJY = d y d 1 , 

[ ] 1A
kd ×= ∈d ¡  

,
ˆ

pmle xβ  ˆ
HJX  ( )T Tˆ /HJ =X d x d 1  

ˆ pmlex  ˆ
HTX  Tˆ

HJ =X d x  

,
ˆ

pmle xxΣ  ( ) ( )T 1ˆ ˆ
HTN −=

xxe x xΣ d e Δ d e
(( (e e
 

ˆ =Δ Δ Π% , ( )ˆ
HJ= −xe x X S( e  

and Tˆ
HTN = d 1  

,
ˆ

pmle yxΣ  ( ) ( )T 1ˆˆ ˆ
y HTN −=

xe x yΣ d e Δ d e( (e e
 

ˆ =Δ Δ Π% , ( )ˆ
HJY= −ye y S( e  and 

Tˆ
HTN = d 1  

   

Table 1.15 PMLE of the components of ,ˆ pmle kµ  of the noncentral working 
model in Example 1.14 

 
PML 

Estimator 
Expression Notes 

,
ˆ

pmle yβ  ĤTY  T
ĤTY = d y , [ ] 1A

kd ×= ∈d ¡  

,
ˆ

pmle xβ  ˆ HTX  Tˆ
HT =X d x  

ˆ pmlex  ˆ
HTX  Tˆ

HJ =X d x  

,
ˆ

pmle xxΣ  ( ) ( )T 1ˆˆ ˆ HTN −=xxΣ d x s Δ d x se e e e  ˆ =Δ Δ Π% , Tˆ
HTN = d 1  

,
ˆ

pmle yxΣ  ( ) ( )T 1ˆ ˆy HTN −=xΣ d x s Δ d y se e e e  ˆ =Δ Δ Π% , Tˆ
HTN = d 1  
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Plugging the PMLE estimators and PA adjustments 1
ˆˆ −=X XXΓ D D  into the generic 

expression of the PA estimator in (1.25), and after algebraic simplification, the PA 

estimator for the population total Y  based on the central multivariate normal 

distribution is  

 ( ) 1ˆ ˆ ˆ ˆ ˆ
PA HT HT yY Y −= + − xx xX X Σ Σ , (1.51) 

where ˆ P P×∈xxΣ ¡  is the design-based estimate of the variance-covariance matrix 

( )ˆ P P
HT

×∈X ¡C , and 1ˆ P
y

×∈xΣ ¡  is the design-based estimate of the variance-

covariance vector ( ) 1ˆ ˆ, P
HT HT

×∈X y ¡C . The estimator (1.51) exists if ˆ xxΣ  is 

invertible, e.g. ˆrank P=xxΣ . 

The estimator (1.51) is the Randomization Optimal Estimator proposed by Montanari 

(1987, 1998, and 2002) that has been extensively studied in the literature (Fuller & 

Isaki, 1981; Cassady & Valiant, 1993; Rao, 1994; Tillé, 1999; Chen & Sitter, 1999; 

and Montanari & Ranalli, 2002).  

We refer to the estimator in (1.51) as the central optimal estimator and (1.50) is the 

noncentral optimal estimator. For survey data where the outcome variable and the 

auxiliary variables are positive, the model for the noncentral optimal estimator is 

misspecified since the parameters means β  are not generally zero. However, as a 

model-assisted estimator, (1.51) is still design consistent. In contrast, the working 

model of noncentral optimal estimators is more plausible because the means do not 

have to be zero in the working model. The differences between the estimators are that 
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(1.50) uses the HJ estimators of Y
w

 and X  while in (1.51) the HT estimators of Y  and 

X  are used. The variance-covariance matrix in (1.50) is based on the estimated total 

residuals ( )ˆ
k k k k HJ

k A k A
d d

∈ ∈
= −∑ ∑e x X  while (1.51) is based on the estimated 

totals ˆ HTX . We hypothesize that gains in efficiency of the optimal estimator are due 

to the type of model because this model describes the correlation among all auxiliary 

variables and the outcome variable. 

We do not include an evaluation of the non-central optimal estimator, but it is 

expected to be more efficient than the central optimal estimator when the HJ 

estimators for the auxiliary variables have a better fit to the data. One difficulty in 

fitting the central and non-central optimal estimators under the PA approach is the 

selection of the auxiliary variables of the working model. These models are not fitted 

using standard functions for generalized linear regression models and require 

developing specialized routines for computing and maximizing the PL functions for 

this type of model. 

1.7.6 The Horvitz-Thompson Estimator 

The HT estimator is referred to as the only true model-free design-based estimator; it 

is a “no information” estimator in the sense that no population totals are used10. The 

                                                 

10  The HT model described in Chen, et al. (2017) is used to predict non-sampled cases and differs from the “no 

information” view of the HT estimator. 
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HT estimator results from any working model (linear or nonlinear) without any PA 

adjustment (equivalent to a PA adjustment 1
ˆˆ −= =XX XΓ D D I  where I  is the identity 

matrix). These results can be summarized in the following theorem: 

THEOREM 1.6. Let ,
ˆ ˆk PML k

k A
Y dµ µ

∈
= ∑  be an estimator consisting of the sum 

of the expanded values of fitted PMLE of the means of the assumed working 

model ,yM  then ˆ ˆ 0HTY Yµ− =  and ( ) ( )ˆ ˆV V 0HTY Yµ− = . 

In other words, the estimator based on fitted means of a working model without any 

auxiliary variable is the same as the HT estimator. There are no gains in efficiency by 

fitting a model without any population totals. 

1.8 Auxiliary Variables and Population Totals 

Within the PA framework, we define the auxiliary variables as 1 P
k

×∈x ¡  for k A∈  

where the population totals X  are known11. For the PA estimators in this paper, the 

additional information from the auxiliary variables consists only of the population 

totals X . If complete auxiliary information is available (i.e., the values of kx  are 

                                                 

11 Other classes of PA such as those that require complete auxiliary information or estimators that incorporate 

estimated population totals from the sample are not described in this dissertation. 



 

111 

known for every k U∈ ), it is summarized to produce population totals. The 

population totals are considered fixed. 

We consider two types of auxiliary variables. The first group includes the sample 

design variables, that is, those variables created at the design stage or used to select 

the sample. We list seven of these types of auxiliaries: 

1. Unit auxiliary variable. The simplest auxiliary variable is a vector with a value of 

one for all members of the population; the population total is N . The unit 

auxiliary variable allows an intercept term in the regression model of the 

parameters of the working model; this allows ML and PML models such that the 

sum of the residuals and weighted residuals are asymptotically zero for valid PA 

models. 

2. First order probabilities of inclusion kπ  for k A∈  with a population total 

k
k U

n π
∈

= ∑  that corresponds to the expected sample size. For sample designs 

where k kxπ ∝ , both variables are equivalent since one is the scaled version of 

the other. 

3. Sample design weights 1
k kd π −=  for k A∈  with a population total U k

k U
D d

∈
= ∑ . 

The sample design weights can be scaled for numerical stability when 

maximizing the PML function. Using the weight as an auxiliary variable requires 

complete information on the weights to compute the population total UD . 
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4. Certainty indicator. The indicator kc  that identifies if a sample unit is selected 

with certainty, 1kc = , or 0kc = , otherwise. The population total is the number of 

cases sampled with certainty. 

5. Stratum membership indicator defined as the vector 

( ) { }1
1,..., ,..., 0,1 H

k k kh kHh h h ×
′= ∈h  with { }1,...,h H′∈  for k A∈  where H  is the 

number of strata, and 1khh ′ =  if the element k  is in stratum h′ , and h 0kh′ =  

otherwise. The population total is ( ) 1
1,..., ,..., H

h HH H H ×= ∈H ¡  where 

k
k U∈

= ∑H h . 

6. Qualitative or categorical auxiliary variables are defined by a vector of group 

membership indicators ( ) { }1
1,..., ,..., 0,1 G

k k kg kGg g g ×
′= ∈g  with { }1,...,g G′∈  

for k A∈  where G  is the number of groups or categories, and 1kgg ′ =  if the 

element k  is in group g ′  and 0kgg ′ = , otherwise. The population total is 

( ) 1
1,..., ,..., G

g GG G G ×
′= ∈G ¡  where k

k U∈
= ∑G g . Examples of categorical 

variables are gender, age groups, or geographic areas that are very common in 

population surveys (Brick, 2013). 

7. Quantitative or continuous auxiliary variables. This type of auxiliary variable is 

commonly found in establishment surveys but is rare in population surveys. 

Some examples of quantitative auxiliary variables are the total number of 
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patients seen during a period, the number of doctor visits at the end of a period, 

taxable income, or total revenue. 

 

Additional auxiliary variables can be derived from the interaction of the quantitative, 

qualitative, and sampling variables. For example, the unit sample indicator and 

continuous variables can produce the regression or multiple regression estimators, or 

the interaction between sampling stratum indicators and a continuous variable yield to 

the separate ratio estimator. 

EXAMPLE 1.15. Assume two vectors of auxiliary variables kg  and k′g  with 

the membership indicator for the levels of two categorical variables 1G , 2G , and a 

PA fully saturated linear model for the outcome variable with a normal distribution 

( )2,iid
k g g g g g gy β β β σ′ ′ ′⋅ ⋅+ +∼ N  for { }1,...,g G∈  and { }1,...,g G′ ′∈ . This model 

corresponds to the cross-tabulation of g  and ′g  with , gβ  (rows) and gβ ′  (columns) 

as main effects, and the interaction term g g g gβ β β′ ′⋅ = ∗ . We assume that the 

population totals ( )11,..., GGN N ′′∗ =G G  are available. Table 1.16 lists four and PA 

estimators with different working models depending on the fit of the data. The first 

PA estimator is the canonical HJ estimator for the single mean model where there are 

no differences among the means of the cells ′⋅g g . The second and third estimators 

are for the main effect models (g or ′g ) where there are no differences in the means 

among columns (estimator 2) or rows (estimator 3) among columns. The last 



 

114 

estimator is for the fully saturated model where there are differences among the 

means of the cells ′⋅g g . 

 



 

 

Table 1.16 PA estimators of Example 1.15 
 
Model PA Estimator Notes 
1. Single mean ˆˆ

ˆ
HT

PA
HT

YY N
N

=  
ˆ

gg k
HT gg k gg k

g G g G k a
Y d y

′

′ ′
′ ′∈ ∈ ∈

= ∑ ∑ ∑ , ˆ

gg k
HT gg k

g G g G k a
N d

′

′
′ ′∈ ∈ ∈

= ∑ ∑ ∑ , 

gg
g G g G

N N ′
′ ′∈ ∈

= ∑ ∑  

 

2. Row main effects g  
,

,

ˆ
ˆ

ˆ
HT g

PA g
HT gg G

Y
Y N

N∈
= ∑  

 

,
ˆ

gg k
HT g gg k gg k

g G k a
Y d y

′

′ ′
′ ′∈ ∈

= ∑ ∑ , ,
ˆ

gg k
HT g gg k

g G k a
N d

′

′
′ ′∈ ∈

= ∑ ∑ , 

g gg
g G

N N ′
′ ′∈

= ∑  

 

3. Column main effects ′g  
,

,

ˆ
ˆ

ˆ
HT g

PA g
HT gg G

Y
Y N

N
′

′
′′ ′∈

= ∑  

 

,
ˆ

gg k
HT g gg k gg k

g G k a
Y d y

′

′ ′ ′
∈ ∈

= ∑ ∑ , ,
ˆ

gg k
HT g gg k

g G k a
N d

′

′ ′
∈ ∈

= ∑ ∑ , 

g gg
g G

N N′ ′
∈

= ∑  

4. Fully saturated ′gg  
,

,
,

ˆ
ˆ

ˆ
HT gg

PA HT gg
HT ggg G g G

Y
Y N

N
′

′
′′∈ ∈

= ∑ ∑
 

,
ˆ

gg k
HT gg gg k gg k

k a
Y d y

′

′ ′ ′
∈

= ∑ , ,
ˆ

gg k
HT gg gg k

k a
N d

′

′ ′
∈

= ∑  
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REMARK 1.16 Little (2008) discusses the model-based estimation for the 

setting where g  are the strata and ′g  are the poststrata, and the saturated model is 

replaced by an additive model with main effects for strata and poststrata when the 

stratum/poststratum cells have few observations. The PA estimator adopts a 

prediction perspective that corrects the usual poststratified estimator based only on ′g  

so it can produce estimators that match both stratum and post-stratum margins while 

allowing modifications of the fully saturated estimator in small samples by modifying 

the distribution of the cell means. The effect of replacing the saturated model by the 

simpler main effects model shrinks the estimates of the stratum/poststratum cell 

sample means of the saturated model towards the means of the additive model. The 

shrinkage of the sample means occurs during working model development in the PA 

where simpler working models with a lower loss function replace the complex model 

in the algorithm. Little (2008) describes this shrinkage of post-stratum means as a 

desirable property of an estimator from the modeling perspective. In the extreme case, 

when the optimal model has only one stratum, the initial model sample means shrink 

towards the overall mean, which corresponds to the canonical form of the HT 

estimator. 

REMARK 1.17  If there is one categorical auxiliary variable for the 

poststratification cells, the algorithmic PA estimator can be used for collapsing 

poststrata without modifications to the algorithm. 
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REMARK 1.18 Särndal & Lundström (2005) describe the unit auxiliary 

variable as the simplest auxiliary vector that does not recognize individual differences 

among the elements of the population. If we assume a normal linear model for y , 

( )2
0,iid

ky β σ∼ N  with the auxiliary variable 1 and a population total N , the PMLE of 

the regression coefficient is 
ˆˆ
ˆ
HT

pmle
HT

Y
N

β = , the PA adjusted regression coefficient is 

2

ˆˆ
ˆ
HT

pa
HT

YN
N

β = , and the PA estimator is 
ˆˆ
ˆ
HT

PA
HT

YY N
N

=  which matches the canonical 

form of the HJ estimator (see Definition 1.2). 

EXAMPLE 1.16. In this example, we examine the effect on the efficiency 

when the variances are modeled in the PA estimator. The documentation of the 

command svyglm in the package survey (Lumley, 2012) shows an example for 

computing three estimates and their variances for the total number of students tested 

(variable api.stu) using a continuous variable with the school's student enrollment 

(variable enroll) from the data file api for the Academic Performance Index 

(API) for all California schools. In this design, the frame consists of 6,157 California 

schools stratified by school type with 4,397 elementary schools, 1,009 middle 
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schools, and 751 high schools.12 A total sample of 200 schools is disproportionally 

allocated to the three strata and three independently simple random samples of 100 

elementary schools, 100 middle schools, and 50 high schools are drawn from each 

stratum.  

Lumley (2012) produces three estimators: the GREG estimates, and two ratio 

estimators with a variance as a function of the mean ( µ  and 3µ ) listed in Table 1.17. 

Since this ratio estimator with a variance as a function of 3µ  has a smaller standard 

error for the observed sample, Lumley states that a higher efficiency is achieved by 

better modeling the variance. The last row of the table shows the algorithmic PA 

estimator for the same sample, with an assumed working models 

( )2
0 1 0,iid

k ky xβ β σ+∼ N  where only the location parameter of the distribution is 

modeled.  

The relative efficiency of the estimators for repeated sampling is shown in Table 1.18 

for B =  100,000 draws (See Section A.4 in Appendix A for the definitions of the 

empirical measures of precision in Monte Carlo studies). The results show that 

although all estimators are more efficient than the HT estimator (12 times more 

efficient), the gains in efficiency are relatively small when the variance is explicitly 

                                                 

12 The data file apipop in Lumley (2012) contains 6,194 schools. There are 35 schools with missing values of 

the variable enroll. The variable enroll is used to compute the total X for the ratio estimators. Those 

schools with missing values were removed from the file before the simulation and when computing the 

estimates in Table 1.12. 
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modeled. In other words, the reduction in standard errors when modeling the variance 

as 3µ  in Table 1.17 is not typical under repeated sampling. Note that the algorithmic 

PA estimator does not achieve the largest RE, but the difference with respect to the 

largest value is less than one percentage point. 

Table 1.17 Population totals, estimates, and standard errors for the total number 
of students tested for three models from Lumley (2012) and two 
algorithmic PA estimators 

 
Population variable 
 

Description 
 Total 

Schools Number of California schools in frame 6,157 

Enrolled students Total enrolled students in CA schools in 
frame 

3,8114,72 

API Students 
 

API students tested in CA schools in frame 3,184,662 
 
 

   

Estimators of total API 
students Working Models Estimates Standard error 

1. GREG ( )2
0 1 0,kxβ β σ+N  3,186,758 31,341 

2. Ratio estimator - µ  ( )2
1 0,k kx xβ σN  3,190,038 29,566 

3. Ratio - 3µ  ( )3 2
1 0,k kx xβ σN  3,247,986 21,129 

4. Algorithmic PA ( )2
0 1 0,kxβ β σ+N  

 
3,196,977 28,636 
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Table 1.18 Empirical summary results for 100,000 draws for Example 1.11. 

 

Estimator 
Relative Bias 

(RB) 

(%) 

Relative Root 
Mean Squared 

Error (RRMSE) 

Relative 
efficiency (RE) 

1. HT  0.02 3.406 0.00 

2. GREG -0.01 0.939 12.15 

3. Ratio - 2σ µ∝  0.00 0.919 12.73 

4. Ratio - 2 3σ µ∝   0.00 0.914 12.87 

5. Algorithmic PA -0.04 0.918 12.77 

    

EXAMPLE 1.17. Lumley, Shaw, & Dai (2011) provide an example of a more 

complex auxiliary variable derived from the frame that can be used in the PA working 

models. Their variable is based on the empirical influence function of a multiple 

linear regression model. The influence function of a parameter describes the effect on 

the estimator when changing one point of the data. After identifying a variable with a 

strong linear relationship with the outcome z , a linear model is fit using P  

explanatory variables available in the frame as ˆˆk kz = βx , where 

( ) 1
1, , P

k k kPx x ×= ∈x … ¡  are the auxiliary variables and ( )T 1
1

ˆ ˆ ˆ, , P
Pβ β ×= ∈β … ¡  are 

the fitted regression coefficients. Let ( )1,...,k k kP=I I I  be the vector with the values 

of the empirical influence function of each regression coefficient of a fitted regression 

for k U∈ . The vector of the auxiliary variables is ( )k P k= +x j I  where P
P ∈j ¡  is 

the one vector ( )1,...,1P P=j , and the population total is P∈X ¡  where 
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( ),...,k
k U

N N
∈

= =∑X x . Since the population totals of the values of the empirical 

influence function are zeros, a value of one is added to each variable kI  to ensure 

that the PA adjustment 
,

ˆ
ˆˆ +p

HT HT p

N
N

Γ =I I
 is not undefined. Note that even if this 

auxiliary variable is derived from a model, the variance-covariance of the population 

totals is zero, e.g., ( ) =X 0C . 
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Chapter 2 The Applications of Algorithmic PA Estimators 

In this chapter we describe three applications of PA algorithmic estimators. In the 

first, we show how the PA framework is used to select the auxiliary variables for the 

working model of the estimator. In the second, we evaluate linear and nonlinear 

algorithmic estimators derived using the PA framework. In the last example, we 

derive and evaluate two algorithmic estimators in samples from Poisson sample 

designs. Both estimators share the same auxiliary variables, but one has a more 

complex working model with different regressions for location and scale parameters. 

2.1 Variable Selection for Calibration Estimators 

The most important application of the PA framework is the selection of variables for 

calibration estimators in the presence of full response. As noted by Kott (2016), Kott 

& Liao (2017), and Valliant, Dever, & Kreuter (2013), there is limited work on the 

methodology for developing working models for model-assisted estimators within the 

design-based context. Ruppert (2007) and Opsomer, Breidt, Moisen, & Kauermann 

(2007) share similar views and highlight the need for methods for variable selection 

in model-assisted estimators. For example, these methods are needed to identify 

situations where the model-assisted estimator is less efficient than simple estimators 

such as the Horvitz-Thompson (HT) estimator. 

Chambers & Skinner (1999) proposed the creation of weights calibrated to as many 

auxiliary variables as possible, but this approach is mainly intended for systems of 
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weights for the analysis of multipurpose surveys (Haziza & Beaumont, 2017). 

Including auxiliary variables that are not related to the outcome may increase the 

variability of the weights. 

Nascimiento Silva & Skinner (1997) proposed a stepwise method for variable 

selection based on the mean squared error (MSE) of the linear regression estimator 

for simple random sampling (SRS) designs. They empirically showed that calibrating 

to a reduced set of auxiliary variables correlated to the outcome achieves larger gains 

in efficiency compared to calibrating to a larger set including unrelated variables. 

However, their approach has severe limitations because their variable selection 

procedure and expression for the estimate of variance do not generalize beyond SRS 

designs. 

More recently, McConville, Breidt, Lee, & Moisen (2017), denoted as MBLM 

henceforth, proposed a model-assisted estimator for population totals based on the 

Least Absolute Shrinkage and Selection Operator (LASSO) developed by Tibshirani 

(1996). The LASSO is a regression analysis method that performs both variable 

selection and regularization that improves the prediction accuracy and interpretability 

of the model. In the LASSO variable selection process, the explanatory variables 

associated with regression coefficients with small or zero values are eliminated from 

the initial model. From the PA framework viewpoint, although the superpopulation 

model yM  for y  is ( )2
0,iid

k ky µ σ∼ N , the procedure fits 0, 0
ˆˆLASS k k LASSµ = x β , 

where ( ) 1
1, , P

k k kPx x ×= ∈x … ¡  for k U∈  is the vector of the auxiliary variables 
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associated with the LASSO regression coefficients ( )T 1
1

ˆ , , P
LASSO Pβ β ′×

′= ∈β … ¡  

computed as  

 ( )2ˆ arg minLASSO k k k
k A

d y
∈ ∈

  = − 
  
∑

β Β
β βx  subject to 1 t<β , (2.1) 

where t  is a prespecified parameter that determines the amount of regularization, kd  

are the sampling weights, and 1β  is the 1L −  norm of the parameter vector 

1P×∈β ¡  such as P P′ ⊆ . The population total for 0,ˆLASS kµ  is 

±
0, 0

ˆˆLASS k LASS
k U

M µ
∈

= =∑ Xβ . The expression of the MBLM estimator of the total Y  

computed using the auxiliary variables 0,ˆLASS kµ , and the population total ±M  is 

 

±

±( )
0,

0

ˆ ˆ

ˆˆ ˆ

LASSO k k k LASS k
k A k A

HT HT LASS

Y d y M d

Y M M

µ
∈ ∈

= + −

= + −

∑ ∑

β
. (2.2) 

Although the method for producing the LASSO estimator can be used to select 

variables of the working model, the method does not produce a calibration estimator 

in the sense that the calibrated weights meet the calibration equations (Deville & 

Särndal, 1992; Deville, Särndal, & Sautory 1993). MBLM derives a calibration 

estimator using a secondary working model ( )2
0, 0 0ˆ ,iid

k LASS k ky µ α σ+ xx α∼ N  with 

auxiliary variables ( )0,ˆ ,k LASS k kµ∗ =x x  and population totals ±( ),M∗ =X X . The 

calibration LASSO estimator is  

 ±( ) ( )_ 0
ˆ ˆ ˆ ˆˆ ˆcal LASSO HT HTY Y M M α= + − + − xX X α .  
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where ( )TT
0ˆ ˆ ˆ,α= xα α  computed as 1ˆ ˆˆ ∗ ∗ ∗

−=
x x x y

α T T , where ( )Tˆ k k k
k A

d∗ ∗
∗ ∗

∈
= ∑x x

T x x  and

( )Tˆ k k k
k A

d y∗
∗

∈
= ∑x y

T x . We propose a modification to the LASSO procedure that 

calibrates to the auxiliary variables of the model identified by the LASSO procedure 

instead of calibrating to the total ±
0,ˆLASS k

k U
M µ

∈
= ∑ . The modified LASSO estimator 

is a traditional calibration estimator with the relevant auxiliary variables that explain 

the outcome variable similar to the PA estimator. This modification is an alternative 

to the PA algorithm but using (2.2) as the loss function. The evaluation of the MBLM 

estimator and the modified LASSO estimator are not included here; but our initial 

evaluation pf this loss function suggests that there are potential issues such as the 

assumption that the model is known, sparse, and well specified. 

Chen, Valliant, & Elliott (2018), denoted as CVE henceforth, propose a method for 

calibrating nonprobability samples to estimated population totals similar to the 

MBLM estimator, but they use two separate samples and the adaptive LASSO (Zou, 

2006). The CVE method does not produce a traditional calibration estimator, but 

instead gives a GREG estimator with one derived auxiliary variable. The 

superpopulation model is the same as the MBLM model described above. The 

derived variable is 
1,ˆlasso kµ , the estimated mean of the LASSO model fitted to a 

probability sample 1A  called the analytical sample. The estimated population total of 

the derived variable 
1,ˆlasso kµ  is derived as the HT estimator of the predicted means 

2,ˆlasso kµ  of the LASSO model from the analytical sample but applied to the second 
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sample 2A  called the benchmark sample. The model identification and variable 

selection method of the CVE estimator do not apply to estimation from probability 

samples in the presence of full response that we are considering here. 

REMARK 2.1. Fabrizi & Lahiri (2013) proposed a design-based 

approximation to the Bayes Information Criterion (BIC) in finite population 

sampling. Although they mentioned the importance of variable selection, they 

evaluated their design-based BIC using hypothesis of one single parameter of a model 

because their focus was estimating the parameter of the model rather than the 

auxiliary variables for the calibration estimator as discussed here. They planned to 

extend their findings to a general variable selection method but did not give a method 

that evaluated models based on the design-based BIC. 

REMARK 2.2. Pfeffermann & Sverchkov (1999) proposed a likelihood-

based method for estimating parameters of models using survey data selected using 

an informative sampling method. This approach is called sample likelihood 

(Chambers, Steel, Wang, & Welsh, 2012), and estimates the sample likelihood of 

parameters of the conditional distribution of the observed data given the auxiliary 

variables. Their method shares some similarities with PA modelling methods for the 

sample membership indicators with some important differences: the use of the 

pseudo-maximum likelihood estimation (PMLE) instead of maximum likelihood 

estimation (MLE), and the implementation of separate steps for modeling the 

sampling membership as an outcome variable (Steps 1, 2, 5, and 6 of Algorithm 1.1). 
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Pfeffermann & Sverchkov (1999) mention that sample likelihood permits the use of 

standard inference procedures such as MLE or related residual analysis that are 

building blocks for variable selection methods. However, no method for variable 

selection or model building based on the sample likelihood has been proposed in the 

literature. 

Sverchkov (2010) extends the sample likelihood approach to estimation in the 

presence of nonresponse when the probability of responding is related to the outcome 

variable (e.g., missing data not missing at random or NMAR). As in previous 

methodology, Sverchkov (2010) notes that the parameters of the models can be 

estimated by MLE and evaluated using any classical information criteria such as the 

Akaike AIC or the Schwarz BIC; however, no procedure based on this approach has 

been reported in the literature. Furthermore, this approach does not address the 

situation examined in this dissertation, that is, estimation with full response. 

REMARK 2.3. It important to note that there a large number of methods for 

variables selection described in the standard statistical literature. Many new methods 

based on statistical learning approaches have been developed in recent years. An 

older review of the standard statistics methods from the frequentist point of view is 

found in Rao & Wu (2001). Bayesian selection methods are reviewed in Berger & 

Pericchi (2001); Efron & Gou (2001) attempt to reconcile the frequentist and 

Bayesian theories with limited success beyond the single parameter setting for the 

normal distribution. 



 

129 

More recent methods for variable selection, referred as to feature selection within the 

Machine Learning context, are reviewed by Hastie, Tibshirani, & Friedman (2009) 

and Somol, Novovicova, & Pudil (2010). One difference between the standard 

methods and the approach to model selection in Machine Learning is the complete 

characterization of the algorithms generally not discussed addressed in the standard 

methods. For example, variable selection methods are classified as wrapper methods 

(fit a model to a portion of the sample and evaluate using the remaining sample), filter 

methods (use a measure of error to score subsets of models), or embedded methods 

(perform feature selection as part of the model building process), They also have 

specific approaches to the identification and evaluation of models among the full set 

of possible number (in contrast with few hypothesis tests used in most classical 

methods). The reason is that this process is time consuming and costly if all models 

are fitted. The classical and modern methods have their merits, and some of these 

features are incorporated into the PA variable selection algorithm (e.g., greedy 

fromward selection with a loss function). However, they all assume that the observed 

data are independent and identically distributed random variables (iid). Furthermore, 

some methods attempt to minimize the mean squared error (MSE) instead of the bias 

that is the more common goal in survey estimation. Therefore, most of these methods 

cannot be imported to the survey sampling context without a theoretical justification 

or modifications to the procedure to reflect the sample design. As noted in Kott 

(2016), Kott & Liao (2017), and Valliant, Dever, & Kreuter (2013), there is limited 

work on the methodology for developing working models for model-assisted 
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estimators within the design-based context despite the large number of variable 

selection methods in standard statistics. 

REMARK 2.4. One important difference between the standard statistical 

methods and those based on Machine Learning is the reliance on statistical tests in the 

former versus the test-free optimality criteria of the latter methods. This difference is 

key to the role of the estimated parameters of the fitted working model within the PA 

framework and in survey sampling estimation in general. In the PA approach, the 

values of the estimated model parameters are not important since no inference is 

made. This is sensible because the population characteristic such as totals or means 

should be robust to the values of the parameters of assumed models that are unknown 

or inestimable. In the PA approach, there is no hypothesis testing or any other 

statistical measure for each estimated model parameter. Only the fit of the model 

drives the inclusion of the variables in the model. The model fit affects the residuals 

of the estimates, which in turn have an impact on the variance. Although the model is 

important, the goal is not identifying the true model. Instead, the model is just a tool 

for producing efficient estimators. 

2.2 Variable Selection in Algorithmic PA Estimators 

In the first part of this example, we evaluate the algorithm for variable selection for 

the working model of algorithmic PA estimators based on a single realization of the 

sample. Since the variables in the working model determine the functional form of the 
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estimator, this example also evaluates the functional form of the algorithmic PA 

estimator. 

The simulation is motivated by the example in Section 7.9.1 of Särndal, Swensson, & 

Wretman (1992), denoted as SSW henceforth, where the efficiency of multiple 

regression estimators is compared to simple estimators. The sampling frame is the 

MU281 population with 1985 administrative data for 281 Sweden municipalities 

(Tillé & Matei, 2016).13 The study variable y  is RMT85 410−× , where RMT85 is the 

municipal tax receipts received in 1985. Two auxiliary variables on the frame are 

1x =  CS82, the number of Conservative Party seats in the municipal council in 1982, 

and 2x =  SS82, the number of Social Democrat Party seats in the municipal council 

in 1982. SSW fit different regression models on y  from the frame and determine that 

the multiple regression estimator SSW, 1 2
ˆ x xY  with the model ( )1 21, ,x x  has the best fit 

for the population. Through repeated sampling, they verify that SSW, 1 2
ˆ x xY  is the most 

efficient among other alternative estimators such as the HT, two ratio estimators with 

auxiliary variables 1x  and 2x , respectively, and two regression estimators with 

models ( )1, 11,y x=M  and ( )2, 21,y x=M , respectively. This example has 

pedagogical value but requires knowing the outcome variable for every unit in the 

frame. 

                                                 

13 As in the Särndal, Swensson, & Wretman (1992) simulation, the three municipalities with the largest values of 

municipal tax receipts received in 1985 in the MU284 population are removed for the sampling frame. 
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In the first scenario, we recreate this study evaluating the same group of estimators in 

the SSW simulation in addition to the algorithmic PA estimator, PA, 1 2
ˆ x xY  with the 

collection of working models yM  with ( )2
0 1 1 2 2 ,iid

ky x xβ β β σ+ +∼ N  spanned by 

the auxiliary variables ( )1 21, ,x x=x , assuming that only the population totals 

( )1 2, ,N X X=X  are known. The collection of working models yM  of PA, 1 2
ˆ x xY  can 

reproduce the models of the other estimators evaluated in the original study. 

In each simulation run, a SRS sample of 100 municipalities is drawn, and estimates, 

their estimated variances, and confidence intervals are computed. These statistics are 

used to compute the empirical relative bias (RB, in percentage), relative root mean 

squared error (RRMSE), and relative efficiency (RE in percentage) of the estimator 

compared to the HT (see the definitions of these empirical summary measures in 

Section A.4 in Appendix A). 

The middle panel of Table 2.1 shows the RB, RMSE, RE, the empirical coverage rate 

for 95% nominal confidence interval coverage (ECR), and the empirical length of 

ECR (LECR) of the estimators for B = 100,000 runs for the first scenario. The table 

also includes Kish’s weighting design effect ( )21kishdeff cv w= +  where 

{ }k k Aw w ∈=  and kw  are the weights assuming that the sampling weights 1
k kd π −=  

are calibrated to the population totals of the model of the algorithmic PA estimator. 

Table 2.1 shows the results for the estimators SSW, 1 2
ˆ x xY , PA, 1 2

ˆ x xY  and HT; the HT 

estimator is used as a reference. The empirical bias of the estimators SSW, 1 2
ˆ x xY  and 
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PA, 1 2
ˆ x xY  are both very small, less than 0.3 percentage points as expected. Both 

estimators are 2.7 times more efficient than ĤTY . The table shows that the 

algorithmic PA estimator PA, 1 2
ˆ x xY  is as efficient as the estimator SSW, 1 2

ˆ x xY  

identified by SSW, even though PA, 1 2
ˆ x xY  is based on the observed sample in each 

simulation run. Both estimators SSW, 1 2
ˆ x xY  and PA, 1 2

ˆ x xY  have the same performance 

because, in each run, the PA algorithm chooses the same model of SSW, 1 2
ˆ x xY , so 

PA, 1 2 SSW, 1 2
ˆ ˆx x x xY Y= . In general, the PA algorithm does not necessarily select the 

same model in all samples, although it does so here. 

In the second scenario, we assume there is complete auxiliary information so we can 

compute a new auxiliary variable 3 1 2x x x= ⋅  and its population total 3 3k
k U

X x
∈

= ∑  

for the interaction between 1x  and 2x . We compare the algorithmic PA estimator 

PA, 1 2 3
ˆ x x xY  with the collection of working models yM  spanned by ( )1 2 31, , ,x x x=x  

to the multiple regression estimator SSW, 1 2 3
ˆ x x xY  with a fixed linear model with the 

same auxiliary variables x . Note that if the population total 3X  is known, the PA 

estimator does not require complete auxiliary information data. 

The lower pane of Table 2.1 shows the results of the simulation of the second 

scenario. As in the previous scenario, the estimators have small empirical biases and 

the estimators PA, 1 2 3
ˆ x x xY  and SSW, 1 2 3

ˆ x x xY  are 3.5 times more efficient than ĤTY . 

Using the derived variable 3x  increases the efficiency of the estimators by 20 
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percentage points over those estimators with a model with only ( )1 21, ,x x=x . A 

surprising result is that the PA algorithmic estimator PA, 1 2 3
ˆ x x xY  is slightly more 

efficient than SSW, 1 2 3
ˆ x x xY  which has no model uncertainty, and the empirical wdeff  

is smaller for PA, 1 2 3
ˆ x x xY  than for SSW, 1 2 3

ˆ x x xY . We expected the efficiency of the 

estimators with a fixed model to be the lower bound of the estimators with 

uncertainty in their working model. 

The ECRs of the estimates in both scenarios are somewhat less than the nominal 95% 

rate. The more complex estimators (those with four terms in the model) have lower 

ECRs than the ECR of those with three auxiliary variables). The HT estimator with 

no auxiliary variables is closer to the nominal coverage. The losses in coverage 

appear to be due to the complexity of the functional form of the working model, the 

number of auxiliary variables, and the sample size, and how well variance estimate 

approximates the variance of the estimate. This effect will be the topic of future 

research. 

While the PA algorithm in Scenario 1 selects only the model ( )1 21, ,x x  in all 100,000 

runs, in Scenario 2, the algorithm selects only four different models of the 16 possible 

working models spanned by ( )1 2 31, , ,x x x  for PA, 1 2 3
ˆ x x xY . Table 2.1 lists the 

distribution and details of the selected models for the PA estimator PA, 1 2 3
ˆ x x xY  in 

100,000 simulations runs. 
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Table 2.1 Results of a simulation for Scenarios 1 and 2 for the example in 
Section 2.1 

 

Scenario Estimator RB 
(%) 

RRMSE 
210×  

RE 
(%) ECR LECR  wdeff  

All ĤTY  0.036 8.508 0.0 0.938 1.758 1.000 

1 SSW, 1 2
ˆ x xY  -0.122 4.412 271.9 0.930 0.885 1.014 

1 PA, 1 2
ˆ x xY  -0.122 4.412 271.9 0.930 0.885 1.014 

2 SSW, 1 2 3
ˆ x x xY  -0.207 4.000 352.5 0.922 0.787 1.022 

2 PA, 1 2 3
ˆ x x xY  -0.169 3.993 354.0 0.922 0.783 1.014 

        

Table 2.2 shows the empirical distribution of the selected working models in 

PA, 1 2 3
ˆ x x xY . The probabilities of selecting the models ( )2 31, ,x x  and ( )1 31, ,x x  are 

0.43 and 0.32, respectively. One of these two models is selected about 75 % of the 

time in repeated sampling. All selected models include the variable 3x , suggesting 

that this derived variable is more important than 1x  or 2x . In this case, there is no 

single best model selected for most of the samples. 

This example shows that the algorithmic PA estimator is flexible and capable of 

producing an efficient estimator based on the observed sample. It also shows that the 

selected auxiliary variables of the final model may vary from sample to sample 

(Scenario 2) or may be the same for all samples (Scenario 1). The algorithmic PA 

estimator may be as or more efficient than the estimator with the best model 

identified when the model for y  can be obtained analyzing the full population. 
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Table 2.2 Empirical distribution of the working models selected by the 
algorithmic PA estimator PA, 1 2 3

ˆ x x xY  for 100,000 simulation runs 
 

Estimator 
Models ¶ yM  Percentage 

(%) 1 1x  2x  3x  

PA, 1 2 3
ˆ x x xY  

ü ü ü ü 6.26 

ü ü û ü 32.40 

ü û ü ü 42.74 

ü û û ü 18.60 

Total     100.00 
ü: Auxiliary variable selected in the model 
û: Auxiliary variable not selected in the model 
      

2.3 Performance of Linear and Nonlinear Algorithmic PA 

Estimators 

In this example, we use simulation to examine the statistical properties of the linear 

and nonlinear algorithmic PA estimators along with alternative estimators across 

different types of outcomes, sample designs, and levels of working model 

misspecification for a range of sample sizes and populations. We evaluate seven 

estimators for simulation scenarios created by combinations of the factors listed in 

Table 2.3 for a sequence of 10 populations { }10
1N N =F  with increasing sizes { }10

1N NN = ; 

each sampled at the same rate N
N

N

nf f
N

= = . Only a subset of these scenarios are 

presented here, and the full set is presented in Appendix A Section A.1 on page 279. 
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Table 2.3 Factors in the simulation study for linear and nonlinear PA estimators 
 

Factors Description 

Types of Outcome (3) 1. Bernoulli: Binary data 
2. Poisson: Count data 
3. Gamma: Continuous positive data with a constant 

coefficient of variation 
 

Sample designs (3) 1. SRS: Simple random sample without replacement 
2. PPS: Probability proportional to size without 

replacement 
3. PO: Poisson sampling 
 

Model strength (3) 1. High 
2. Medium 
3. Low 
 

Population size (10) The sequence of populations with increasing size 
where each population is sampled at the same sampling 
rate 
 

  

The available auxiliary variables are ( )1,k kx=x  with their respective population 

totals ( ),N X=X . These simulations do not evaluate the variable selection of the 

algorithmic PA because there are only two auxiliary variables. 

In this simulation, we examine the numerical performance of algorithmic 

PA estimators in a setting used to study the estimator’s asymptotic properties; that is, 

through a sequence of increasing population and samples (Isaki & Fuller, 1982; 

Fuller, 2009). Asymptotic theory does not describe an estimator’s performance in 

small samples, the minimum sample size needed for an estimator to approach its 

limit, or the performance relative to other estimators (Small, 2010). Since in practice, 
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the sample size is small in some situations, the numerical results obtained through 

simulation in this example supplement the asymptotic properties of the PA estimators. 

Table 2.4 shows the expressions of seven estimators of the total k
k U

Y y
∈

= ∑  evaluated 

in this simulation study. The first three are the commonly used estimators HT, HJ, 

and GREG. We include three algorithmic PA estimators: two nonlinear and one linear 

PA estimator (see Section 1.7.3 on page 85). The first nonlinear PA estimator 

(NLPA) does not use calibrated weights while in the second (NLCA), the sampling 

weights are calibrated to the sample size and total population (see Section 1.7.4). The 

last estimator is the model-calibrated estimator (MC) of Wu & Sitter (2001) described 

in Remark 1.15. The MC estimator requires auxiliary data for all the elements in the 

population to be computed. The MC estimator for the Bernoulli population is based 

on the generalized logistic regression method (GLRE) described in Lehtonen & 

Veijanen (1998). The new versions of the MC estimator for the Gamma and Poisson 

populations are derived following the approach in Wu & Sitter (2001), but we include 

the intercept term. 

We use the HT estimator as the reference in the evaluation because it is unbiased for 

any sample size. In some scenarios, estimators have the same functional form, for 

example, the HT and the HJ estimators in SRS. 
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Table 2.4 Seven estimators of the total population Y  for the example in 
Section 2.3 in matrix notation 

Estimator Expression Notes 

1. HT: Horvitz-
Thompson 

( )T
ĤTY = d y se   

2. HJ Hájek ( )Tˆ
ˆHJ

HT

NY
N

= d y se  
Tˆ HTN = d s  

3. GREG: 
Generalized 
Regression* 

( ) ˆˆ ˆ ˆ
GREG HT HT lsY Y= + −X X β  1

, ,
ˆ ˆ ˆls

−= x x x yβ T T  where ( )T
,

ˆ =x yT S d x ye e  

and ( )T
,

ˆ =x xT S d x xe e  

4. NLPA: 
Algorithmic 
Nonlinear 
Parametric 

( )Tˆ ˆNLPA NLPAY = d μ se  

 

( )1 ˆˆ gNLPA pa
−=μ xβ  where 

¶ ( ),ˆ 1,pa ypa y x∈ ⊂ =β M M  where 1g−  is 
logit-1 for the Binomial, exp for the Poisson 
and Gamma populations, and ˆ ˆˆpa pmle= xβ Γ β  

where ˆ
pmleβ  are the PMLE of a Bernoulli, 

Poisson, or Gamma distribution model yM  

5. NLCA: 
Algorithmic 
Non-linear 
calibrated PA 

( )Tˆ ˆ ˆNLCA NLCAY = w s μe  Same as NLPA but replacing d  by ŵ , the 
calibrated weights to population totals ( ),n N . 

6. LNPA: 
Algorithmic 
Linear 
Parametric 

( )Tˆ ˆLNPA LNPAY = d s μe  

 

ˆˆ LNPA pa=μ x β , ¶ ( ),ˆ 1,pa ypa y x∈ ⊂ =β M M , 
ˆ ˆˆpa pmle= xβ Γ β  where ˆ

pmleβ  are the PMLE 

of a Normal distribution model yM  

7. MC Model 
Calibrated 

±( )ˆ ˆ ˆ ˆMC HT HTY Y= + −M M α  With ( )ˆ1, mcµ=m , ± ±( ),N M=M , 

( )ˆ ˆ ˆ,HT HT HTN M=M , ± T ˆ mcM = 1 μ , 

( )Tˆ ˆ mcM = d μ se , ( )1 ˆˆ gmc pmle
−=μ xβ  with 

1g−  is 1logit−  for the Binomial, exp  for the 

Poisson and Gamma populations, ˆ
pmleβ  are 

the PMLE of a Bernoulli, Poisson, or Gamma 
distribution model yM , 

1
, ,

ˆ ˆˆ −= m m m yα T T  where ( )T
,

ˆ =m yT S d m ye e  

and ( )T
,

ˆ =m mT S d m me e  

* See Section A.5 in Appendix A on page 304 for the derivation of the linear PA estimator. 
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The population parameters for the scenarios are listed in Table 2.5. The populations 

are generated using the linear predictor 

 ( ) 0 1 kk k kg xβ β σ εη µ + += = , (2.3) 

where the parameters 0β , 1β , σ , and the link function ( )g kµ  depend on the 

scenarios in Table 2.5. The error term kε  is ( )0,1N , and the auxiliary variable kx  

has a distribution ( ),eta α βB  with shape parameters α =  3 and β =  6. For the PPS 

and PO sample designs, the auxiliary variable kx  is used as the measure of size 

(MOS) to compute the inclusion probabilities k
k

kk U

xn
x

π
∈

=
∑

, where n  is the 

sample size for the PPS design or the expected sample size for the PO design. 

The strength of the model or model misspecification is measured by xηρ , the 

correlation between kη  and kx , which is a function of σ  in the linear predictor kη . 

For a fixed value of xηρ , ( )( )2 2
1 var 1xx ησ β ρ −= − . A value of xηρ =  0.9 (high) 

describes a strong linear relationship between ( )kg µ  and kx . In this case, we have a 

well-specified model. The other scenarios are for xηρ =  0.2 (low) and xηρ =  0.6 

(medium). Where the relationship is weak or medium, the model is misspecified. 

Figure 2.1 shows the scatter plot of the populations of size 10,000 from scenarios in 

Table 2.5.  
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Table 2.5 Population parameters and empirical population statistics by 
simulation scenarios 

 

 

Population Scenarios/ 
Distribution of |k ky x  

Bernoulli Poisson Gamma 

Type of outcome Binary Count Positive 
continuous 

Model ( ) 0 1 kk kg xβ β σ εµ + +=     
Parameters of distribution k kp µ=  kλ µ=  10 , 10kα µ β= =

 
Link function ( )k kgη µ=  ( )( )log / 1k kµ µ−  ( )log kµ  ( )log kµ  

Mean ( )1
k kgµ η−=  ( )( )1/ 1 exp kη+ −  ( )exp kη  ( )exp kη  

    
Linear predictor coefficients kη     

0β  (intercept) -1.00 1.00 1.00 
1β  (slope) 10.00 1.00 1.00 

σ  (high) 7.30 0.73 0.73 
σ  (medium) 1.99 0.20 0.20 
σ  (low) 0.72 0.07 0.07 

    
Empirical population statistics*    

Mean Y  0.86 3.91 5.00 
Variance 2

YS   0.14 4.91 0.02 
Mean X  0.33 0.33 0.33 
Variance 2

XS  0.02 0.02 0.02 
Correlation Xηρ   (high) 0.90 (medium) 0.60 (low) 0.20  
Correlation YXρ   0.36 0.27 0.16 
    

* Population statistics are computed as the averages over the 100,000 simulated populations. 
 

In all scenarios, the MC estimators are oracle estimators in the sense that they have a 

correctly specified mean, although the variance might be misspecified because of the 

dispersion induced by σ . The linear working models for GREG and LNPA 

estimators have a misspecified functional form for the type of data. For the nonlinear 

PA estimators, the functional forms of the working models are correct, but we cannot 
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say that their working models are correctly specified or misspecified because the 

variables in the selected model are determined algorithmically. 

Figure 2.1 Scatter plots of the populations described in Table 2.5 
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In all scenarios, the MC estimators are oracle estimators in the sense that they have a 

correctly specified mean, although the variance might be misspecified because of the 

dispersion induced by σ . The linear working models for GREG and LNPA 

estimators have a misspecified functional form for the type of data. For the nonlinear 

PA estimators, the functional forms of the working models are correct, but we cannot 

say that their working models are correctly specified or misspecified because the 

variables in the selected model are determined algorithmically. 

In each simulation run, a new population from the sequence of 10 populations with 

indices { }10
11,...,2000N NU N ==  is generated using the model parameters listed in 

Table 2.5. Each finite population -thNN  of size NN ∈  {2000, 4000, …, 20000}is 

sampled with f =  0.05. For the SRS and PPS samples Nn  is fixed, 

Nn ∈ {100, 200, …, 1000}, while for PO design, these are the expected sample sizes. 

The simulation is run B =  100,000 times for each scenario, sample design, and 

population in the sequence. The performance of the seven estimators is evaluated 

using RB and RE defined in Section A.4 in Appendix A. 

The results of the simulations are summarized graphically for the Bernoulli 

population for the SRS and PO designs in Figures 2.2 and 2.3, respectively. 

Figure 2.2 shows six plots for the RB for six estimators for the Bernoulli population. 

In each plot, the vertical axis indicates the RB as a percentage while the horizontal 

axis is the sample size used to compute the estimator. The first row shows the RB of 

the estimators computed from samples from an SRS design while the second row is 
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the RB for samples using a PO design. The columns indicate the values of Xηρ  

which measure the model strength when the population is generated. Figure 2.3 

shows plots with the RE with the same layout for the SRS and PO sample designs for 

the Bernoulli population. The complete set of figures for all populations, sample 

designs, and models is found in Appendix A, Section A.1. 

The first row in Figure 2.2 shows that for the Bernoulli population, the RBs of all 

estimators are very small, even for samples of 100 cases when using an SRS design. 

For example, the largest RB is for the MC estimator 0.13% for a sample size of 100 

cases for Xηρ =  0.9. The same pattern holds for all examined populations and 

correlations for SRS designs. 

Although the empirical RBs of the estimators are small, they become noticeable in 

smaller samples drawn using a PO design as shown in the second row of Figure 2.2. 

Except for the NLPA estimator, the RBs can be greater than 0.5% for samples of 100 

cases for Xηρ =  0.6 and 0.9. The RBs do not become zero in samples as large as 

1,000 cases for the Bernoulli population for Xηρ =  0.9. The HJ estimator has the 

largest RB when the correlation is small or medium. In this population, the NLPA 

estimator has a smaller RB for Xηρ =  0.9 and approaches to zero for smaller sample 

sizes when Xηρ =  0.6 and 0.9. A similar pattern holds this population and the PPS 

design but with slightly smaller biases; see Figures A.1 through .9 in Section A.1 in 

Appendix A. 
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Although not as extreme as in the Bernoulli population, the RBs of the estimators 

have similar patterns in the Gamma and Poisson populations for the PO and PPS 

designs with one exception. The NLPA estimator has a considerably larger RB in 

most of the range of sample sizes examined (i.e., for a sample size of 100 cases, 

between 1.5 and 2.5 percentage points in the Gamma population and between two and 

four percentage points in the Poisson population). 

We discuss the bias of the HJ estimator, and this discussion applies to other 

estimators as well. The HJ estimator is a ratio estimator in the PPS and PO designs 

and its bias, ( )ĤJYB , is a function of the covariance between the estimates of ˆ
HJY  

and ˆ
HTN , ( ) ( )ˆˆ ˆ,HJ HJ HTY ov Y N= −B C , where ˆ

HT k
k A

N d
∈

= ∑ (see Cochran, 1977). 

The correlation between y  and π  in these populations is high by design since both 

quantities are functions of the auxiliary variable x . Although the bias vanishes in 

large samples because in the sequence of estimators ,
ˆ
HJ NY  and ,

ˆ HT NN  are 

consistent, e.g., ( )1/2
,

ˆ
HJ N N p NY Y n−− =O  and ( )1/2

,ˆ HT N N p NN N n−− =O , the bias is 

noticeable when n  is small in the PPS and PO designs. For example, 

( )ĤJY =B  0.43 %Y  for a sample size of 100 cases from the Bernoulli population. 

The source of the bias of the NLPA estimator is different since it is not a ratio. As 

described in Section 1.5.5, the PA adjustment ˆ XΓ  is applied to the linear predictor 

k kη = x β . The impact of this adjustment on the estimator depends on the inverse of 
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the link function, -1g , that maps the PA adjusted kη  to kµ  as ( )-1g .k kµ η=  In the 

Bernoulli population, the inverse of the link function ( )-1g kη  of the NLPA estimator 

is the logistic function that bounds ,ˆ pa kµ  to values between zero and one. As a result, 

the effect of any PA adjustments is controlled, since the PA adjusted mean ,ˆ pa kµ  

cannot be greater than one or less than zero. 

In contrast, in the Poisson and Gamma populations, the inverse of the link function of 

the NLPA estimator is the exponential function, 

( ) ( )-1
, ,

ˆˆˆˆ g exppa k pa pa k pmleµ η= = Xx Γ β , and its support has a lower bound but no 

finite upper bound (i.e., any positive number greater than zero for the Gamma 

distribution or greater than or equal to zero for the Poisson distribution). Although the 

values of the PA adjusted means ,ˆ pa kµ  are stochastic and depend on the ratio of the 

auxiliary variable population totals and their estimates, the PA estimated mean ,ˆ pa kµ  

may be very large after this ratio is exponentiated. As a result, the NLPA estimator is 

expected to require very large sample sizes to converge. These observations are 

illustrated in the figures that show small biases for the NLPA estimator at small 

sample sizes for the Bernoulli population and large biases even with sample sizes as 

large as 1,000 in the Poisson and Gamma populations. 

The RE of the estimators for the SRS design across the populations is almost constant 

for all the sample sizes in the simulations. In contrast, in the PPS and PO designs, the 

RE is not constant because the bias component of the MSE differs by sample size. For 
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this analysis, we use the averages of the RE of groups of estimators across the range 

of sample sizes to characterize their gains in efficiency in the PPS and PO designs, 

even though some estimators perform better for specific ranges of sample sizes and 

populations types. 

The first row of Figure 2.3 shows the RE of the estimators for the Bernoulli 

population for samples drawn using SRS. The RE of the estimators is correlated to 

the values of .Xηρ  The average RE of the GREG, MC, LNPA, and NLCA estimators 

are 1.0%, 5.5%, and 7.0% for Xηρ =  0.2, 0.6, and 0.9, respectively. 

The RE of the estimators of the Bernoulli population for the PO designs is higher than 

the RE for SRS as shown in the second row of Figure 2.3. If we combined the GREG, 

MC, LNPA, and NLCA estimators, their average REs are 64.0%, 79.0%, and 83.1% 

for Xηρ =  0.2, 0.6, and 0.9, respectively. When Xηρ =  0.6 or 0.9, the estimators 

with similar values REs form two groups. The first group consists of the GREG and 

LNPA estimators, and they have a higher RE average than the second group of 

estimators (the MC and NLCA estimators). The differences in the combined RE 

average between the first and second group are 4.8% and 7.5% for Xηρ =  0.6 and 

0.9, respectively. A similar pattern holds for the PPS designs for the Bernoulli 

population, but with smaller differences in RE. 

All estimators are more efficient than the HT estimator for all designs and 

correlations for the Bernoulli population. The average REs of the HJ and NLPA 
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estimators are much lower than the average of the other estimators. The MC estimator 

does not perform as well as the others in the Bernoulli population. 

Similar patterns in RE are observed for the Gamma and Poisson populations except 

for the clustering of estimators with similar RE for high values of Xηρ . The gains in 

efficiency from the estimators are generally small in SRS designs compared to the 

PPS and PO designs, and the gains in the PPS designs are smaller than the gains in 

the PO designs. In many cases, the linear estimators (GREG and LNPA) have a larger 

RE than the nonlinear estimators with the correct working model. None of the 

estimators that use auxiliary information do worse than the estimators that ignore the 

auxiliary information altogether even when the relationship between the outcome and 

auxiliary variable is weak. 

The estimator with the highest RE varies by scenario and the GREG, LNPA, MC, and 

NLCA estimators all perform very similarly. The GREG estimator has the largest 

gain in RE in one-third of the scenarios, followed closely by the LNPA estimator. The 

performance of the linear estimators is surprising because the linear functional form 

of the working models is always misspecified for all outcomes. From a practical point 

of view, none of the four estimators (GREG, LNPA, NLCA, and MC) has a 

significant advantage over the others across the simulated scenarios for these 

populations. 

The MC estimator, proposed as an estimator that makes more effective use of the 

auxiliary information from the frame, does no better than the linear estimators 

(GREG, LNPA) or the nonlinear (NLCA) estimator that only use the population totals 
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of the auxiliary variables. Furthermore, all the model-assisted estimators and the MC 

estimator do well even if ,xηρ  is very low. These results differ from those reported in 

Wu & Sitter (2001). The MC estimator uses the predicted PML means of the model 

applied to the whole population; however, it is not clear why this should be more 

efficient than just using the auxiliary variable population totals. We would not expect 

substantial gains from the MC estimators in most situations, as shown in these 

simulations. 

A second observation is that the GREG and LNPA estimators perform as well or 

better than the nonlinear estimators with correctly specified models. This observation 

questions the reasons for considering nonlinear estimates that are less efficient than 

their linear counterparts. One answer is that linear estimates, especially for domains, 

can be negative. Negative estimates are avoided in nonlinear models. This feature is 

important in nonresponse research, where we use nonlinear models for modeling 

response propensities. 
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Figure 2.2  Relative bias (RB) of seven estimators as a function of the sample size 
for a population with a Bernoulli distribution by sampling design (SRS 
and PO) by model strength (medium, low, and high). 
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Figure 2.3  Relative efficiency (RE) of seven estimators as a function of the sample 
size for a population with a Bernoulli distribution by sampling design 
(SRS and PO) by model strength (medium, low, and high). 
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2.4 Algorithmic PA Estimators in Poisson Sample Designs 

In this example, we derive algorithmic PA estimators for the total k
k U

Y y
∈

= ∑  from 

samples drawn using a Poisson sample design PO, compare these estimators to 

alternatives found in the literature, and evaluate their statistical properties using 

simulation. 

In a PO sample design, each element has a predetermined positive inclusion 

probability 0kπ >  for k U∈  (Särndal, Swensson, & Wretman, 1992). Let sn  be the 

observed sample size (e.g., realized sample), which is a random variable, and n  be 

the expected sample size under repeated sampling defined as ( )| .s k
k U

n n π
∈

= = ∑E F

14  

The PA algorithmic estimators in this example are derived from the working models 

spanned by the auxiliary variables ( )1, ,k k kdπ=x , the unit indicator, the probability 

of inclusion, and the sampling weight, and their corresponding population totals are

( ), ,N n d=X  where k
k U

d d
∈

= ∑ . The estimators considered differ in the complexity 

of the location and scale parameters of the models. The two algorithmic PA 

estimators are  

                                                 

14 The PO sample design can be seen as the realized sample of N  independent trials, where each element ky  

has a probability kπ  of appearing in the sample. 
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1. PA Estimator 1P̂AY  with the collection of working models 1,yM  with 

( )2,iidy β σθ θ∼ N  where 1
, 0 1 2| k k k kβ βθ η β β π β π −= = + +x  and 

, 0| k kσ σθ η σ= =x , The auxiliary variables for the location parameter are 

( )1, ,k kdπ  with the population totals ( ), ,N n d . For the scale parameter, the 

auxiliary variable is 1 with a control total N . 

2. PA Estimator 2P̂AY  with a collection of more complex working models 2,yM  

with ( )2,iidy β σθ θ∼ N  where  

 0 1 2k k kdβθ µ β β π β= = + + , and (2.4) 

 ( )( ) /2
0 1 2exp k k kd γθ

σθ σ σ π σ µ= + + ,  

where 0γθ γ= . The regression models model in  (2.5) is more appropriate when the 

variance is proportional to a power of the mean. The auxiliary variables for the 

location and scale parameters are ( )1, ,k kdπ  with the population totals ( ), ,N n d . For 

the shape parameter, the auxiliary variable is 1 with a control total N . In the PA 

estimator 2P̂AY , the observed sample determines the working models for the mean 

and variance. 

The simulations below explore the performance of the estimators when the working 

model is misspecified. The estimators are evaluated for the four scenarios described 

in Table 2.6 for a population size of N =  10,000 and the expected sample size is 

n =  500. The superpopulation generating model is 
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 0 1k kkky γαβ β σ επ π= + + ,  (2.5) 

where the values of the parameters 0β , 1β , α , σ , and γ  are listed in the table, and 

the error term kε  is ( )0,1N . In all scenarios, a latent or unobserved variable kz  with 

a distribution etaB (3,6) is used to compute the measure of size 10 10k kx z+= , and 

the first-order inclusion probabilities are k
k

kk U

x
n

x
π

∈

=
∑

.15 

In Scenarios 1 and 2, y  is positively correlated with π  while for Scenarios 3 and 4, 

this correlation is negative. Scenarios 1 and 3 do not include an intercept term (e.g., 

1β =  0), while the intercept is nonzero in Scenarios 2 and 4. Since the collection of 

working models 1,yM  assumes a constant variance, the models in 1P̂AY  are 

misspecified in Scenarios 1, 3 and 4. On the other hand, the working models in 

2,yM  for 2P̂AY  can reproduce the correct model for both mean and variance in 

Scenarios 1, 2 and 3. All working models in the collections 1,yM  and 2,yM  of the 

algorithmic PA estimators 1P̂AY  and 2P̂AY  are misspecified in Scenario 4. 

                                                 

15 The inclusion probabilities kπ  and the auxiliary variable kx  are collinear so either kπ  or kx  can be used in 

the models but not both. 
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Table 2.6 Parameters of simulations of four scenarios and empirical statistics 
 

 Model: 0 1k kkky γαβ β σ επ π= + +  

Parameters 
Scenarios 

1 2 3 4 
Population parameters     

0β  0 10 0 20 

1β  500 500 2 1/8 

α  1 1 1 -2 

σ  25 5/2 1 6 
γ  1/2 0 -1/2 -1/3 

Population characteristics     

Empirical population mean Y   50.00 39.00 40.49 51.86 

Empirical population variance 2
yS  62.49 62.49 62.49 62.49 

Empirical correlation yπρ   0.71 0.74 -0.70 -0.56 

Empirical Kish’s deff 1.01 1.01 1.01 1.01 
Empirical deff the HJ estimator 1.05 1.05 1.10 1.08 

     
     

In each scenario and simulation run, a new population is generated and sampled using 

a PO design with an expected sample size n =  500. The estimators of the total 

k
k U

Y y
∈

= ∑  are computed using the realized sample of size sn . The simulation is 

repeated B =  100,000 times for each scenario. 

The lower pane of Table 2.7 shows selected empirical statistics of the artificial 

populations such as the mean and variance, the correlation yπρ  between 

{ }k k Uy y ∈=  and { }k k Uπ π ∈= , the Kish’s weighting design effect, 
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( )21 cvkishdeff d= +  where { }k k Ad d ∈= , and the design effect of Ŷ  for the 

HJ estimator 
( )

( )
ˆ

ˆ
HT

y
SRS

Y
deff

Y
=

V
V

. All these population statistics are computed as the 

average of statistics of the simulated populations within each scenario. The 

performance of the estimators is evaluated using RB, RRMSE, and RE with respect to 

the HT estimator defined in Section A.4 in Appendix A. 

The upper pane of Table 2.7 shows the RB, RRMSE, and RE of the HT and HJ 

estimators used as a reference and the algorithmic PA estimators. The lower panel 

shows the same statistics for the oracle estimators for each scenario. The oracle 

estimators are derived as PA estimators assuming there is no model 

misspecification.(These estimates are algebraic PA estimators and are discussed in 

Section 1.7.3 on page 85). The results in the table confirm that the HT estimator is 

very inefficient when the sample is drawn using a PO design, and that the HJ 

estimator is a better alternative (Särndal, Swensson, & Wretman, 1992). The HJ 

estimator is on average 95 times more efficient in these scenarios. We are interested 

in the additional gains in efficiency of algorithmic PA estimators with respect to the 

HJ and oracle estimators. 

We begin the discussion with the empirical bias of the algorithmic PA estimators. As 

expected for any model-assisted estimators, the RBs are very small in most scenarios. 

Now we consider the efficiency of the algorithmic PA estimators 1P̂AY  and 2P̂AY . In 

this discussion, we compare the efficiency of 1P̂AY  and 2P̂AY  to the oracle estimators, 
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using the oracle for each scenario as a reference except for Scenario 4, where 2̂Y  is 

the reference because there is no oracle. The algorithmic PA estimators are derived 

using the fit of the model, and they achieve sizeable gains in efficiency over the HJ 

estimator despite the large initial gains of the HJ over the HT estimator. 

The results in Table 2.7 show that, in general, the algorithmic PA estimators track the 

oracle estimators well even though they do not use the population-generating model. 

In particular, 1P̂AY  with a misspecified and simple model performs as well as the 

oracle estimators with only a slightly lower RE in Scenarios 1 and 3. These 

differences are so small that these estimators are practically equivalent. 

In Scenario 2, both algorithmic PA estimators are much more efficient than the oracle 

estimators. They are also more efficient than the best estimator in Scenario 4. The 

estimator 1P̂AY  with a misspecified and simple working model is flexible enough to 

produce estimates that overcome the negative correlation yπρ  that has a large impact 

on the efficiency of the estimators with a misspecified model. In contrast, the 

algorithmic PA estimator 2P̂AY  with a more complex working model is slightly more 

efficient than the oracle estimators in Scenarios 1, 3, and 4. An exception is 

Scenario 2, where 2P̂AY  is slightly lower 1P̂AY . 

The results of the simulations are somewhat surprising. We might expect the 

algorithmic PA estimator to be much less efficient than the oracle estimators because 

the algorithmic estimators reflect the increased variance due to the uncertainty of the 
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model. One hypothesis is that since there are few variables to build the model, the 

model selection does not contribute significantly to the MSE of algorithmic 

estimators. 

Comparing the two algorithmic estimators, the estimator 2P̂AY  with the more 

complex working model has the largest RE in Scenarios 1, 3, and 4. In contrast 1P̂AY  

is the best estimator in Scenario 2. However, the differences are very small. These 

results suggest that using the more complex working model in 2P̂AY  gives only small 

gains in efficiency over 1P̂AY . In practice, any of these estimators is a good choice in 

these scenarios. 

These results highlight the importance of a flexible working model, and the exact 

functional form of the model for the mean and variance is not needed. The results also 

show that including the inclusion probabilities and the weights as auxiliary variables 

(if their control totals are available) may improve the efficiency of the estimators. The 

gains in efficiency and the effect of the model selection with a large number of 

variables are the topics of future research. 
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Table 2.7 Empirical relative bias (RB), empirical relative root mean squared error (RRMSE), and empirical relative efficiency 
(RE) estimator for eight estimators for n =  500 and N =  10,000 

Estimator 

Scenario* 
1 2 3 4 

RB RRMSE RE RB RRMSE RE RB RRMSE RE RB RRMSE RE 

(%) 510×    (%) 510×   (%) 510×   (%) 510×   

Reference             

HT  0.00 4,382 0 0.01 4,370 0 0.00 4,504 0 0.01 4,804 0 

HJ 0.00 687 39.70 0.00 467 86.62 -0.01 691 41.47 -0.01 1,695 7.03 

Algorithmic PA             

1P̂AY  0.00 489 79.41 0.00 313 193.81 0.00 496 81.59 -0.02 1,404 10.72 

2P̂AY  0.00 489 79.47 0.00 313 193.57 0.00 491 83.06 -0.01 1,393 10.90 
Oracle/ 
Algebraic PA             

1̂Y  (Scenario 1)  0.00 488 79.59 0.00 342 162.49 -0.01 1,087 16.18 -0.01 2,007 4.73 

2̂Y (Scenario 2)  0.00 488 79.55 0.00 341 163.14 -0.01 1,076 16.52 -0.01 1,994 4.80 

3̂Y (Scenario 3)  0.01 1,082 15.41 0.01 887 23.25 0.00 491 83.23 -0.01 1,474 9.63 

* Scenarios are defined in Table 2.5; RE is the empirical relative efficiency of the estimator with respect to the HT estimator. The empirical 
estimates are based on 100,000 simulation runs. 
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Chapter 3 The Algebraic PA Estimators 

In Section 1.7, we describe the PA estimators as weighted sums of PA adjusted PML 

solutions of the working models that relate the outcome y  to the auxiliary 

variables x . This result redefines the role of the working model. In the traditional 

model-assisted approach, the working model attempts to describe the finite 

population and leads to a way of estimating model parameters. With the PA, the 

working model not only guides the functional form of the estimator but is a collection 

of models that are used to choose the estimator itself and the estimated parameters. 

This view goes beyond the current understanding of the role of working models in the 

model-assisted theory. 

We can take advantage of this relationship to “engineer” or derive a new class of PA 

estimators we call algebraic PA estimators. To do this, we treat the working model 

without variable selection. This approach does not utilize a powerful aspect of the PA 

but does reveal how PA estimators are related to other traditional estimators. In this 

case, the PA estimator is based on the adjusted pseudo maximum likelihood estimator 

(PMLE) solution for ( )k kyµ = E ; if we plug these into the generic form of the PA 

estimator in Algorithm 3.1, we can produce algebraic PA estimators. 

Computing the algebraic PA estimators can be done numerically or algebraically. The 

latter is often feasible with a linear working model with a few auxiliary variables. In 

this case, the expression of the algebraic PA estimator may be tractable and can be 

written in a closed form.  
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Algorithm 3.1 Algorithm for the derivation of the algebraic PA estimators 
 

Algebraic PA estimators 

1: Propose a specific working model yM  for the outcome y . 
 
2: Compute ¶

yM  with the PMLE of the parameters of the model yM . 

3: Create the PA model ¶
,pa yM  by adjusting the PMLE of the regression 

coefficients ¶
,pmle yM  by the PA adjustment µ

xΓ . 

4: Compute the fitted adjusted PA mean ,ˆ pa kµ  for k A∈  using the PA model 
¶

,pa yM  and substitute ,ˆ pa kµ  in the generic form of the PA estimator 

,
ˆ ˆPA k pa k

k A
Y d µ

∈

= ∑  

5: Simplify the expression of ,
ˆ ˆpa k pa k

k A
Y d µ

∈

= ∑  if it is tractable. 

 

3.1 The Classical Design-Based Estimators as a Class of 

Algebraic PA Estimators 

Some algebraic estimators in the class of linear PA estimators and bias-corrected PA 

estimators for SRS designs match classical design-based estimators. For example, 

expansion, stratified, classical ratio, separate ratio, and combined ratio estimators, 

simple and multiple regression estimators, and poststratified estimator. When the 

sample design is other than SRS, the PA estimator reproduces generalized versions of 

these classical design-based estimators. In other words, some classical design-based 

survey-sampling estimators are a subclass of algebraic PA estimators created using 

the adjusted PMLE of their working models. 
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Our rationale for considering algebraic PA estimators is that it provides insights into 

the conditions when one estimator is more efficient than others. This understanding 

can inform guidelines for the use of these estimators when there is model uncertainty. 

Some prominent estimators are the Hansen, Hurwitz, & Madow (1953) regression 

estimator, the Hartley & Ross 1954 ratio estimator, the Montanari (1998) 

randomization optimal estimator, the Deville & Särndal (1992) calibration estimators 

with a Euclidian distance function, and the Särndal, Swensson, & Wretman (1992) 

GREG. The list of estimators in the table is by no means complete. For example, the 

table does not include the alternative design-based estimators for Poisson and 

Bernoulli sample designs (Särndal, Swensson, & Wretman 1992; Fuller 2009) 

discussed later. 

The view that the classical design-based survey estimators are PA estimators with 

working regression models with different auxiliary variables has pedagogical value. 

The PA framework provides a unifying approach to estimation rather than disjoint 

and seemly unrelated estimators as often presented in sampling textbooks (Cochran 

1977; Lohr 2010). However, the PA framework is not fully developed yet, and its 

current form does not handle complex designs such as multistage sampling. 
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3.2 Algebraic PA Estimators in Poisson Sample Designs 

In this example, we derive three algebraic PA estimators following the steps in 

Algorithm 3.1 for the total k
k U

Y y
∈

= ∑  for samples from a Poisson sample design 

(PO). The algebraic PA estimators 1̂Y , 2̂Y , and 3̂Y , are evaluated through simulation 

for four artificial populations generated by the model in (2.5) with population 

parameters described in Table 2.6 (see Section 2.4. for additional details of these 

scenarios). 

In each scenario, one PA algebraic estimator is an oracle because the estimator is 

created using the model that generated the population, while the others have a 

misspecified working model (see Definitions 1.17 and 1.18 in Section 1.5.6). The 

algebraic PA estimators are: 

1. Estimator 1̂Y  with a working model for the outcome ( )2
1| ,iid

k k k ky π β π σ π∼ N . 

Solving the pseudo-log-likelihood (PL) fitted to the data and simplifying the 

algebraic expression gives  

 1̂ ĤT
s

nY Y
n

= . (3.1) 

The expression (3.1) is a ratio estimator where the auxiliary variable is kπ , the 

estimated total is s k k
k A

n d π
∈

= ∑ , and the population total is k
k U

n π
∈

= ∑ . Another 

way to interpret this estimator is as the Horvitz-Thompson (HT) estimator ĤTY  
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with a PA adjustment ˆ
s

n
n

Γ =  (see Section 1.7). Särndal, Swensson, & 

Wretman (1992) propose the estimator in (3.1) as an alternative estimator for 

Bernoulli (BE) sample designs; however, as shown here, this estimator can also be 

used in PO sample designs. 

If the inclusion probabilities are constant as in BE sample designs, then the PA 

estimator 1̂Y  becomes ,1âlt sY N y=  as described in Fuller (1975) and Särndal, 

Swensson, & Wretman (1992)16, where sy  is the unweighted mean 
s

k
s

sk n

yy
n∈

= ∑ . 

The alternative estimator for a PO sample design described by Särndal, Swensson, 

& Wretman (1992) is 2
ˆˆ
ˆ
HT

alt
HT

YY N
N

= , which is the Hájek (HJ) ratio estimator of 

the total Y  (Hájek, 1971). The estimator 2âltY  is itself an algebraic PA estimator 

with a working model ( )2
0 0| ~ ,iid

k ky β σx N . This PA estimator is the ratio 

estimator when the auxiliary variable is one instead of kπ . The PA framework 

justifies the alternative estimators for PO and BE designs proposed in the 

literature. 

                                                 

16 Särndal, Swensson, & Wretman (1992) describe a BE as a PO design where the first order probabilities of 

inclusion are the same, i.e., kπ π=  for k U∈ . 
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The algebraic PA estimator 1̂Y  in (3.1) is easily generalized to fixed sample 

designs such as probability proportional to size (PPS) sampling for outcome 

variables with a working model ( )2
1 1| ~ ,iid

k k k ky x xβ σx N . The auxiliary variable 

kx  is used as the measure of size for calculating the inclusion probability 

k
k

kk U

xn
x

π
∈

=
∑

 where 0kx >  for all k U∈ . Since for this design, sn n= , then 

1̂Y  reduces to the HT estimator. When this model holds for ky  in PPS sampling, 

the HT estimator is more efficient than the HJ estimator. This observation 

identifies one condition where the HT estimator is the preferred estimator. Most 

discussions in the literature provide arguments in favor of the HJ estimator over 

the HT estimator, but they do not address the reverse case (Särndal, Swensson, & 

Wretman, 1992). 

2. Estimator 2̂Y  with a working model for the outcome ( )2
0 1 0| ~ ,iid

k k ky π β β π σ+N

. Solving the PL function and simplifying the algebraic expression gives 

 2
ˆ ˆ ˆˆ

ˆ ˆ
HT s s s s s HT

s s s s

Y n y N y n YY N n
N n N n

π
π π

− −
= +

− −
, (3.2) 

where s kk n
s

sn

π
π ∈=

∑
 is the unweighted sample mean of the inclusion 

probabilities of the observed sample sn . The estimator 2̂Y  is the GREG with 
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auxiliary variables ( )1, kπ , and population totals ( ),N n  (Särndal, Swensson, & 

Wretman, 1992). 

3. Estimator 3̂Y  with a working model ( )1 2 1
1 1| ~ ,iid

k k k ky π β π σ π− −N . In contrast to 

previous models, the correlation between the outcome variable and the probability 

of inclusion is negative. Solving the PL function for this model yields the 

algebraic PA estimator 

 
¶ ,

3̂ ˆHT
HT

THY Y
TH

π

π
= , (3.3) 

where THπ  is the harmonic total of the inclusion probabilities in the frame, 

( )HTH Nπ π= , where ( )H π  is the harmonic mean of { }k k Uπ π ∈=  so 

( ) 1H
kk U

N
π

π −
∈

=
∑

. ¶ ,HTTHπ  is the HT estimator of THπ , 

¶ ( ), ˆ Ĥ ,HT HTTH Nπ π=  where ( ) 1

ˆ
Ĥ HT

k kk A

N
d

π
π −

∈

=
∑

. The algebraic PA estimator 

in (3.3) is a generalization for complex designs of the estimator known as 

predictive product estimator for SRS proposed by Agarwal & Jain (1989). 

The estimator 3̂Y  is also a product estimator (Cochran, 1977), and the 

HT estimator ĤTY  after the PA adjustment ¶

1

,
ˆ TH

HT

TH
TH

π

π

−
 

Γ =   
 

. As a product 

estimator, 3̂Y  is expected to be more efficient than the ratio estimator (3.1) when 
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{ }k k Uy ∈  is negatively correlated with { }k k Uπ ∈ . The estimator 3̂Y  can also be 

written as the ratio estimator 3
ˆˆ
ˆ
HT

HT

YY D
d

= , where D  is the population total of the 

weights k
k U

D d
∈

= ∑  and 2ˆ

s
HT k

k n
d d

∈
= ∑ . 

The algebraic PA estimators 1̂Y , 2̂Y , and 3̂Y  are oracle estimators for Scenarios 1, 2, 

and 3, respectively because in these scenarios both the mean and variance of the 

working models are correctly specified. For Scenario 4 all working models are 

misspecified. Since the algebraic PA estimators were “engineered” for specific 

population models (e.g., they are oracle estimators), we focus the discussion on their 

properties when the models are misspecified. 

The lower pane of Table 2.7 shows the relative bias (RB), empirical relative root 

mean squared error (RRMSE), and relative efficiency (RE) with respect to the HT 

estimator defined in Section A.4 in Appendix A. The same statistics for the HT and 

HJ estimators are shown in the upper pane of the table for reference. The highest 

values of RE are indicated in boldface for each scenario. 

We begin by discussing the RB and RE of the algebraic PA estimators. As expected, 

for any model-assisted estimators, the RBs are very small even if the working models 

are misspecified (Särndal, 2007). When the model has a good fit, all algebraic PA 

estimators achieve sizeable gains in efficiency over the HJ, above the substantial 

gains the HJ has over the HT estimator. The respective oracle estimators have the 

largest RE in Scenarios 1, 2, and 3. 
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Estimators 1̂Y  and 2̂Y  achieve almost the same efficiency in all scenarios. In 

Scenario 1, the oracle 1̂Y  is slightly more efficient than 2̂Y . In Scenario 2, the 

difference between the oracle 2̂Y  and 1̂Y  is larger but less than a half percentage 

point. Practically, these differences are very small, and any of these estimators is a 

good choice in these scenarios. On the other hand, estimators 1̂Y  and 2̂Y  

underperform in Scenarios 3 and 4, where the HJ estimator is two times more 

efficient in Scenario 3 and five times more efficient in Scenario 4. 

The estimator 3̂Y  that assumes a negative correlation yπρ  is the least efficient 

estimator in Scenarios 1 and 2 where its working model is grossly misspecified. In 

these scenarios, the HJ estimator is between 2 and 3 times more efficient than 3̂Y . In 

contrast, 3̂Y  is the best estimator in Scenarios 3 and 4 where yπρ  is negative. The 

estimator 3̂Y  is between two and five times more efficient than 1̂Y  and 2̂Y  in Scenario 

3 and 4. In Scenario 4, where all working models of the estimator are misspecified, 

3̂Y  is the best estimator because its working model is closer to the correct model. 

These observations highlight the importance of an appropriate working model. We do 

not need to know the exact functional form of the model for the mean and variance, 

but the working model should have a reasonable fit. The simulations also show that 

there are situations when the model-assisted estimator with a grossly misspecified 

working model can be less efficient than simple estimators such as the HJ estimator. 

Using the algorithm to choose the models avoids these pitfalls. 
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Chapter 4 The Theory of the PA Estimators 

In this chapter, we describe the theory and motivation of the weighting adjustments of 

the PA estimator. The weighting procedure is called Orthogonal or Conditional 

weighting, a procedure initially developed for producing efficient estimators in the 

presence of nonresponse. Algorithm 1.1 is the result of the modification of the 

original procedure described in this chapter. The following sections describe the 

motivation of the PA framework using an analysis based on the statistical concept of 

propagation of uncertainty (or propagation of errors) in a system. In the last section, 

we describe extensions of the PA estimator such as estimators with different 

functional forms and more complex estimators that incorporate additional population 

characteristics such as the variance, median, and coefficient of variation. 

4.1 Orthogonal Weighting 

Orthogonal weighting is an analytical methodology for creating weighting 

adjustments to reduce bias and variance of estimates of survey data. Orthogonal 

weighting is also called projection weighting since it can be described geometrically 

as projections of hyperplanes on the vector spaces generated by the span of the 

auxiliary variables in the models.  

We refer to these methods as orthogonal weighting because the auxiliary variables are 

assumed to be mutually orthogonal or uncorrelated. We discuss departures from the 
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assumed orthogonality in practice in Section 4. See Chang (2018) for a discussion of 

orthogonal projection in a related context.  

We originally developed this methodology for adjusting for sampling weights for 

nonresponse; however, we adapted it for the creation of efficient estimators in the 

presence of full response. The procedure fits parametric models of the outcome 

variable y , and either the response propensities φ  when used to adjust for 

nonresponse, or the probabilities of inclusion π  when used for estimation with full 

response. Although the values of π  are known, they are still modeled to identify the 

auxiliary variables that explain the selection mechanism. To simplify our discussion, 

we refer to the probability of selection as φ  in this chapter due to the way the 

procedure was developed. 

The goal of the orthogonal weighting methodology is to identify the smallest set of 

variables to adjust for nonresponse. For reasons that become apparent later, adjusting 

using the smallest set of auxiliary variables is the best approach for reducing bias and 

variance. Orthogonal weighting only targets this group of auxiliary variables related 

to the probability of response and the survey outcome. 

We begin by describing the orthogonal weighting theory as we initially developed it 

for nonresponse adjustments, followed by the modifications we made so it is 

applicable for increasing the efficiency of estimates in the presence of full response. 

Algorithm 1.1 is the result of these modifications. 
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The principles of Orthogonal Weighting are 

1. We fit separate parametric models to the study or outcome variable y  and the 

selection indicator φ  (either from the selected sample or after nonresponse). 

When fitting the models, we identify the smallest set of variables for the 

adjustments. We show that efficient estimators of y  can be obtained by adjusting 

to a smaller set of variables even though there may be a large number of 

explanatory variables for the study variable y  or the probabilities of inclusion φ . 

2. We do not assume that the true model can be identified (See PA framework 

Principle 2 on page 29). Misspecified models with omitted variables are possible 

in the PA approach and are very common in practice (see Definition 1.17 on page 

57 for misspecified models). 

While models with extraneous or irrelevant variables do not affect the bias, they 

can increase the variance of the estimates. Including many extraneous variables in 

the model reduces the gains in the efficiency of the estimator. The algorithm gives 

more importance to identifying and excluding extraneous variables when it is 

used for estimation with full response. 

The views of model misspecification in the orthogonal weighting approach are in 

sharp contrast with other methodologies that fit complete models under the 

implicit assumption that more included variables are better than missing any 

important variables. We show that unbiased and efficient estimators are possible 
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with orthogonal weighting even if the working models for y  and φ  are both 

misspecified. This approach is not the current view in the literature especially for 

double robust estimators (Kim & Haziza, 2014). 

3. When adjusting for nonresponse, we require variables that are available for both 

respondents and nonrespondents. Additional gains are possible if population totals 

are available for calibration. For estimation in the presence of full response, we 

require all auxiliary variables to have population totals. 

4. We adopt Särndal & Lundström (2005) point of view of the relationship between 

bias and weighting adjustments. We do not expect the bias of the estimates to be 

entirely removed by the adjustments, but the bias is mitigated. To reduce bias and 

increase efficiency, we require powerful auxiliary variables that explain both only 

the outcome variable(s) and the probabilities of inclusion. 

4.2 Effect of Sample Selection in the Distribution of the 

Observed Data 

We examine the effect of the sample selection (either from an informative sample 

design or from the response mechanism) on the distribution of the outcome variable 

on the observed sample compared to its distribution in the population. We require an 

additional assumption; that the outcome variable(s) y  and the selection propensities, 

,φ  are random variables that can be decomposed as a sum of orthogonal (or 

uncorrelated) random components. The decomposition of any mechanism into 
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individual components is a common tool in fields such as engineering, signal 

processing, physics, mathematics, and measure-theoretic probability. The use of these 

elementary units does not imply that the data need to conform to this assumption. 

However, the concept of orthogonal random variables provides a better understanding 

of the process because we can examine the effect of the procedure on these individual 

components separately. 

We begin by defining the models in terms of orthogonal components. Let xV  be the 

P -dimensional space spanned by the vector of auxiliary variables 

( )1,..., P
Px x= ∈x ¡ , ( )span=x xV . Since the elements of x  are assumed to be 

orthogonal among themselves, then ( ), 0p qx x =C  for all { }1,...,p q P≠ ∈ . We also 

assume that the vector x  includes all the auxiliary variables of the superpopulation 

models yM  for y  and φM , for φ  defined by the linear predictors 

 1 1 ...y P Px x
β ββη β β= = + +x β , and (4.1) 

 1 1 ... P Px x
φ φφ φη φ φ= = + +x φ ,  

where ( )1,..., P
Px x β
ββ = ∈x ¡  is the vector of orthogonal auxiliary variables 

associated with the linear predictor yη , Pβ  is the dimension of βx  defined as the 

number of nonzero elements of βx , and ( )T 1
1,..., P

P
β

β
β β ×= ∈β ¡  is the vector of 
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the parameters in yη .17 Similarly, ( )1,..., P
Px x φ
φφ = ∈x ¡  is the vector of orthogonal 

auxiliary variables associated with the linear predictor φη , Pφ  is the number of 

nonzero elements of φx , and ( )T 1
1,..., P

P
φ

φ
φ φ φ ×= ∈¡  is the vector of the parameters 

in φη . Notice that the elements in βx  and φx  are not necessarily the same. 

Since the random vector xx contains all the auxiliary variables of the models yM  and 

φM , then  

 ( )1,..., P
Px xβ φ= = ∈x x x∪ ¡ .  

The vectors, βx  and φx  are subsets of x , e.g., β ⊆x x  and φ ⊆x x . 

Let the vector space xV  be a subspace of infinite-dimensional vector space ∞V , 

where ∞V  includes other variables that are not part of the models yM  and φM  but 

are observed in the sample. The vector subspaces ( )spanβ β= xV  and ( )spanφ φ= xV  

are both subspaces of xV  and since we assume that ∞V  is an orthogonal space, then 

this also holds true in βV , and φV . 

                                                 

17 Without loss of generality and for simplicity, we use only the location parameters. A more formal proof would 

include the scale and shape parameters of the models. 
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Since the random vector x  is orthogonal, then x  the basis of the spaces xV .  The 

subspaces βV  and φV  are generated by the projection of x  on βxx  and x on φxx , 

respectively. As a result, βxx  and φxx  are the basis of the reduced dimensions of βV , 

and φV . 

To clarify this setting, consider the superpopulation models yM  and φM  listed in 

Table 4.1. The table shows the parameters of the models for the outcome variable y  

and the sample selection φ . The first model, yM , has a linear predictor 

1 1 3 3 4 4 5 5k k k kx x x xβη β β β β= + + +  with the auxiliary variable vector 

( )1 3 4 5, , ,x x x xβ =x . The second model, φM , has a linear predictor 

1 1 2 2 3 3x x xφ φ φφη + +=  with the auxiliary variable vector ( )1 2 3, ,x x xφ =x . The vector 

space xV  that includes all parameters of the models yM  and φM  is spanned by 

( ) ( ) ( )1 3 4 5 1 2 3 1 2 3 4 5, , , , , , , , ,x x x x x x x x x x x x= =x ∪ . Note that the auxiliary variable 2x  

does not play any role in yM . Similarly, the variables 4x  and 5x  do not play any role 

in φM . Since x  is orthogonal, then ( ), 0p qx x =C  for { }1,..,5p q≠ ∈ . 

The assumption of the orthogonal decomposition of random variables with a common 

base is very strong and is partly justified by the Karhunen-Loève theorem for the 
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expansion of a stochastic process (Ghanem & Spanos, 2012)18. This assumption must 

be relaxed for orthogonal adjustments for estimation with full response because the 

auxiliary variables are not orthogonal in practice. 

To describe the effect of the sample selection on the distribution of y  in the sample, 

we expand the definitions presented above. 

Let ( ) ( )1N P× += ∈y,x ¡F  be a finite population generated by N  iid realizations of 

the superpopulation model for y , yM , where { }1,...,U N=  are the labels of F , and 

( )1,..., P N
k k kPx x ×= ∈x ¡  is a realization of the random vector x  described above for 

k U∈ . Let 1N
N

×∈y ¡  be the population vector of the outcome variable y  with a 

distribution function ( ) { }f 1kY k y Dy ∈  where D  is the support of y , and 

( ) ( )1 1g N
N β β

− ×= ∈y η ¡E , 1N
β β

×= ∈η x β ¡  is the linear estimator, and 1gβ
−  is the 

inverse of the link function for y . 

 

                                                 

18 A set of orthogonal random variables can be obtained from a set or correlated random variables by principal 

component decomposition or by Gram-Schmidt orthonormalization. 



 

 

Table 4.1 Example of models for y  and φ  with their associated linear predictors and auxiliary variables  

         

Dependent 
variable 
 

Model 
M  

Sub-
vector 
space 

Linear predictor 
η  

Auxiliary variable 
vector of the 

model  
M  

 

Dimension 
Auxiliary 
Vector* 

x  

 
Model parameters 

 

1x  2x  3x  4x  5x  

Outcome y   yM  βV  1 1 3 3 4 4 5 5k k k kk
x x x xβη β β β β+ + +=

 
( )1 3 4 5, , ,x x x xβ =x

 

4Pβ =  ( )1 3 4 5, 0, , ,x x x x

 
1β  0 3β

 
4β  5β  

Sample 
selection φ   
 

φM  φV  1 1 2 2 3 3, k k kx x xk φ φ φφη + +=   

 
( )1 2 3, ,x x xφ =x = 3Pφ =  ( )1 2 3, , , 0x x x  1φ  2φ  3φ  0 0 

* The dimension of x  is 5P = .  
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Let kR  be the random variable for the indicator for whether the element k U∈  is 

selected in the sample (or is a respondent) or not, defined as  

 
1 if unit  is selected in the sample (or responds)
0 otherwisek

k
R 

= 


, (4.2) 

with a probability mass function 

 ( )
1

f
1 0k

k k
R k k

k k

R
R r

R
φ

φ
=

= =  − =
. (4.3) 

The probability of 1kR =  or 1kR =  are functions of kφ . Let [ ] { } 10,1 N
kR ×= ∈R  be 

the random vector for the whole population where the population mean vector for R  

is ( ) ( ) ( ) [ ] ( ) 11 1g g 0,1 N
k kφ φ φ φη φ ×− − = = = = ∈ R ηE φ , the linear predictor is 

N Pφ
φ φ

×= ∈η x ¡φ , the inverse of the link function for φ  is 1gφ
− , and N Pφ

φ
×⊆ ∈x x ¡  

is the vector of auxiliary variables of φ . The discrete random vector 

[ ] { } 10,1 N
kR ×∈R =  classifies the elements of F  into those that appear in the sample 

or not depending on the probability of selection ( ) ( ) 11g 0,1 N
β β

×−= ∈ηφ . 

Since we are not interested in the distribution of R  but on the distribution of y  

conditioned on the cases in the sample, we define a new random variable for the 

product of these two random variables. 
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Let W  be the random vector result of the vector-to-vector valued function 

: N N→W ¡ ¡ , defined as ( ), =W y R y Re . The probability distribution of 

kw ∈ W , which is the joint distribution of kR  and ky , is 

 ( ) ( )
( ) { }

( ) ( ) { }

f 1 1
f ,

1 f 1 0
k

k k k
k

k Y k ky D
W k Y R k k

k Y k ky D

y R
w f y r

y R

φ

φ
∈

∈

 == = 
− =

. (4.4) 

The random vector [ ] 1N
kW ×= ∈W ¡  corresponds to the outcome cases y  selected in 

the sample and entries with zero values for those cases not selected in the sample, 

y re , where { } 10,1 N×∈r  is the vector with the realizations of =R r . The 

conditional distribution function of | 1kR =W , for only the cases observed in the 

sample, is derived using the definition of conditional distribution function as 

 ( )
( )
( ) ( ),

| 1 ,
f , 1

f f , 1
Pr 1

k k
k k k k

W R k k
W R k Y R k k

k

Y R
w Y R

R=
=

= = =
=

. (4.5) 

Let ( )11
,..,

k
k k k kPR

x x
φφ φ

∗ ∗ ∗
=

= =x x  be the values of kφx  when 1kR =  (e.g., 1kx∗ ,…, 

kPx
φ

∗  are not random anymore), then (4.5) becomes 

 ( ) ( )| 1 , 1f f ,
k k k kW R k Y R kw Y φ φ

∗
= == =x x . (4.6) 

The expression in (4.6) corresponds to the distribution f
kY  of the original model yM  

for y  with the linear predictor 0 0 ...y P Px x
ββη β β= = + +x β  transformed to the 

distribution f
kY  of a new model *

yM  with a linear predictor *
yη  containing only the 
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auxiliary variables in the vector βx  not found in the vector φx . Conditioning on 

1kR =  reduces the random space of y . 

To clarify this point, consider the models yM  and φM  listed in Table 4.1. The 

model yM  of the outcome y  in the population has the linear predictor 

1 1 3 3 4 4 5 5x x x xβη β β β β= + + +  while the model for the sample selection φM  has the 

linear predictor 1 1 2 2 3 3x x xφη φ φ φ= + + . The model of the observed sample *
yM  of 

the outcome y  has the linear predictor *
4 4 5 5x xβη β β= + , since 4x  and 5x  are the 

only auxiliary variables in βx  that that are not found in φx . The linear predictor of 

the observed cases, *
βη , is a reduced random space because the distribution of y  

does not depend on the auxiliary variables 1x  and 2x  anymore. 

These results have a geometric interpretation. Let yφV⊥  be the vector space of the new 

model *
yM  (e.g., when we condition yM  on the cases where 1kR =  for k U∈ ), then 

yφV⊥  is the orthogonal complement of projection of the vector βη
r

 on the vector βη
r

. 

Returning to the models in Table 4.1, the vector space yφV  is the plane spanned by 

proj
φη βηr r , the projection of vector 1 1 3 3 4 4 5 5x x x xβη β β β β= + + +

r r r r r  to 

1 1 2 2 3 3x x xφη φ φ φ= + +
r r r r , as  

 1 1 1 3 3 32
1

proj
P

p
p

p p

x x
φ

β φ
η β φ

φ

η η
η η β φ β φ

η=
= = +∑r

r rir r r r
r , (4.7) 
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where i  is the dot product and ( )T 10,..., ,...,0 P
p px x ×= ∈

r ¡  for { }1,...,p P∈  is the 

vector representation of the basis px ∈x . The orthogonal complement of the 

subspace yφV , yφV⊥ , represents the reduced random space of βη
r

 that corresponds to 

the plane 4 4 4 5 5 5x xβη β φ β φ= +
r r r  orthogonal to the plane yφV . The conditioned model 

*
yM  for the observed sample, represented by the subspace yφV⊥ , depends only on the 

auxiliary variables 4x  and 5x . 

The previous observations are key for designing the algorithm for the orthogonal 

weighting procedure. If we want to adjust for the effect of sample selection imposed 

by the model φM , we only need to adjust for the auxiliary variables 1x , and 3x  

because 4x  and 5x  are not affected by the selection (or response). Hence the name of 

orthogonal adjustment because we target only those components affected by the 

sample selection or response mechanism. If we are modeling φ  (e.g., φ  is unknown), 

we do not need to have the correct model ( )1 2 3, ,x x xφ =M , since a misspecified 

(e.g., reduced) model ( )*
1 3,x xφ =M  can restore the population distribution of y . 

The expression of the expected value of y  in the observed conditioned on the 

observed case for k U∈  is 

 ( ) ( ) ( )1 * 1| 1 g gkR β β β β φ
− −= = =W η x β∩E , (4.8) 
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where β φx ∩  indicates the auxiliary variables in the complement set of the 

intersection of the elements of the vectors φx  and βx . A more formal proof of (4.8) 

requires measure-theoretic probability and advanced linear algebra (Luenberger, 

1969; William, 2011). 

4.3 Modeling of the Outcome and Sample Selection 

The main element of orthogonal weighting is the development of the models for φ  

and y . Separate parametric models are fitted using initial or saturated models with 

the same set of auxiliary variables for φ  and y . In this section, we describe the 

orthogonal weighting adjustment as it was originally developed for estimation for 

nonresponse. 

4.3.1 Modeling the Parameter φ 

In the first step of an algorithm that adjusts for sample selection based on the 

orthogonal approach, we fit a parametric model ¶φM  to the sample membership 

indicator (or respondent) in the population or sample. Fitting the model ¶φM  is 

straightforward because we have the indicator k kR r=  for respondents and 

nonrespondents for k A∈  or cases in the sample or not for k U∈ . When fitting the 

model ¶φM , the initial model or saturated model should include all variables that 

explain the selection mechanism independently of the outcome. The goal of the first 
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step is to produce the best model for the sample selection for all outcome variables. 

We expect the model fitting procedure (for example, the modeling based on the AIC 

as the loss function in the PA framework) to identify and remove extraneous variables 

in the saturated model. 

Returning to the models in Table 4.1, the initial model or saturated model for φ , 

,φM  includes the auxiliary variables ( )1 2 3 4 5, , , ,x x x x x=x , and the selected model 

by the algorithm is ¶ ( )1 2 3, , ,0,0x x xφ =M . 

4.3.2 Modeling the Outcome Variable y 

In the second step, we fit a parametric model ¶ yM  to the outcome variable y . Fitting 

the model ¶ yM  is more difficult than fitting the model to k kR r=  because we only 

observe the selected sample (or respondents), and it may have a different distribution 

than the population as discussed in Section 4. Our solution is to use the estimate of φ , 

φ̂  from the model ¶φM  identified in Section 4.3.1. We use the model ¶φM  to produce 

a sample-selection adjusted set of weights 
( )
1 1ˆ

ˆ ˆk
k k

d
R φ

= =
E

 where ( )1
,

ˆ ˆgk kφφ η−= , 

, ,
ˆˆ k kφ φη = x φ  and use this new weight when fitting the model ¶ yM . The adjusted 

weight ˆ
kd  removes the sample-selection bias of y  in the sample and restores in 

expectation the population distribution when the model ¶φM  is correct. This result 

can be expressed as  
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 ( )( ) 1ˆ| 1 |kR
n

 = − =  
 

y R d ye e F OE y , (4.9) 

where 1ˆˆ N
kd × = ∈ d ¡  is the vector of the adjusted weights. As in any model fitting 

procedure, we may not identify the correct model yM  due to sample variation. For 

the models shown in Table 4.1, the initial model for y  is ( )1 2 3 4 5, , , ,y x x x x x=M  

and the final model identified at this step is ¶ ( )1 3 4 5,0, , ,y x x x x=M  using the weights 

derived from the model ¶ ( )1 2 3, , ,0,0x x xφ =M . 

4.4 Modeling y Conditioned on the Reduced Model for φ 

In the third step, we identify a new model for φ , ¶ yφM , with the variables that 

explain both y  and φ  using the models ¶φM  fitted in Section 4.3.1 and the model 

¶ yM , fitted in Section 4.3.2. The new model ¶ yφM  for φ  contains the auxiliary 

variables from the intersection of models ¶ ¶ ¶y yφ φ= ∩M M M . We refer to these 

variables as the common variables of the models for y  and φ . The reason for using 

only the common variables for the reduced model ¶ yφM  is justified in Section 4.2. 

Only the common variables are affected by the sample selection and this adjustment 

targets only these variables. 
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We then proceed in the same way as described in the previous section. We recompute 

selection-adjusted weights *ˆ
kd  using φ̂  from the reduced model ¶ yφM  as *ˆ

ˆ
k

k
k

dd
φ

= . At 

this point, we have several options to produce the estimate when there is sample 

selection bias. Since the focus of this dissertation is estimation in the presence of full 

response, these options are not discussed here. The extension of the PA framework to 

estimation with nonresponse will be the topic of a future paper (See Appendix A). 

4.5 Developing the PA Algorithm for Estimation with Full 

Response 

The goals of the orthogonal adjustment procedure for estimation with nonresponse 

described in Section 4.3 differ from when the method is used for estimation with full 

response. When there is nonresponse, the goal is to remove selection bias. In contrast, 

when there is full response, the goal is to improve the efficiency of the estimators 

because there is no selection bias. The modifications made to the procedure described 

in Section 4.3 change the focus of the orthogonal adjustments from removing bias to 

increasing efficiency by identifying as many variables related to the outcome as 

possible. As shown in the next section, the largest improvements in efficiency are 

achieved when the model includes the variables with the largest contributions to the 

variance of the model. The following modifications to the procedure described in 

Section 4.3 are consolidated in Algorithm 1.1. 
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1. The algorithm fits the model ¶ yM  for the outcome variable y  using the sampling 

weight kd  (Step 3 of Algorithm 1.1). When there is full response, there is no need 

to use the weight from ¶φM  because y  is observed for all sampled cases. 

2. The algorithm replaces the adjusted weight ˆ
ˆ
k

k
k

dd
φ

=  where k̂φ  is the fitted 

selection probability from ¶ yφM  by  

 1
ˆ

ˆ ˆ

k
k k A

k
k k k

k A

d
dd

dφ φ
∈

−

∈

=
∑

∑
, (4.10) 

when fitting y  the second time (Step 6 of Algorithm 1.1). Since we want to 

calibrate to as many variables of the model as possible, and the common variables 

may be the largest contributors to the variance, the adjusted weight in (4.10) 

increases the likelihood that the common variables will be selected in the final 

model. 

3.  The algorithm fits the model ¶*
yM  for y  using the saturated set of auxiliary 

variables x  (Step 7 of Algorithm 1.1). This is an extra step that refits the model 

for y  accounting for the effect of the common variables. 

Algorithm 1.1 is not unique, and several options can be implemented to target the 

important variables that contribute to the variance of the estimator. One option is to 

ignore the algorithm, fit a single model, and calibrate using the auxiliary variables in 
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the final model. This is the procedure used in Nascimiento Silva & Skinner (1997). 

This option works well for simple random sample designs, but the estimators are not 

as efficient in small samples and for informative designs when variables related to the 

outcome are used for sampling.19 

A second option is to calibrate only to the common variables that explain φ  and y . 

This option yields very efficient estimators (on some occasions, estimators that are 

more efficient than those produced by Algorithm 1.1) when the common variables are 

large contributors to the variance of the model for y . The concern with this option is 

that we do not know if the common variables are the largest contributors when fitting 

the model. When this is not the case, the efficiency is noticeably lower than the 

estimators from the algorithm. 

A third option is to force the common variables into the final model. We separate the 

common variables from the pool of variables for the model for y . The final estimate 

is computed by calibrating the common variables and the variables in the final model 

¶*
yM . The resulting estimator is generally efficient, but its efficiency is not as large in 

small samples. The issue is that this option tends to identify extraneous common 

variables when the correlation between the probability of selection and the outcome is 

low. 

                                                 

19 There are also differences in the method for variable selection between Nascimiento Silva & Skinner (1997) and 

the PA algorithm. They use p-value based stepwise procedures and the mean squared error as the loss function. 
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Estimators based on Algorithm 1.1 have the best empirical performance among all the 

options we evaluated. We were surprised that in cases where there is model selection 

uncertainty, the estimators were slightly better than those estimators with a fixed 

model based on a complete analysis of the population data (see Sections 1.3 and 2.1). 

4.6 The Variance of the Linear PA Estimator as a Function of 

the Number of Auxiliary Variables in the Model 

We explore the variance of PA linear estimators (calibration estimators) as a function 

of the number of auxiliary variables in their model to determine the strategy to follow 

when fitting models in the presence of full response. We analyze the variance of 

estimators using an artificial example under ideal conditions. 

EXAMPLE 4.1  Let y  be the outcome variable with a superpopulation model 

,10yM  with ( )2,iid
k k yy σx β∼ N , where ( )1 10,...,k x x=x  is the vector with 10 

auxiliary variables where ( )2,iid
p x xx µ σ∼ N , 1xµ =  and 2 3xσ = . for { }1,...,10p∈ , 

( )T
1 10,...,β β=β  is the vector of the parameters of the model with values 

( )T10,9,8,7,6,5,4,3,2,1=β , and 2 25yσ = . The auxiliary variables are orthogonal 

random variables, p qx x⊥ ; that is, ( )or , 0p qx x =C  for { }1,...,10p q≠ ∈  and 

( )or , 1p px x =C  for { }1,...,10p∈  (see Section 4.3). Note that a set of orthogonal 

random variables can be obtained from a set of correlated random variables by 
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principal component decomposition or by Gram-Schmidt orthonormalization (Arfken, 

Weber, & Harris, 2015). 

Let F  be the finite population consisting of N =  1,000 iid realizations from yM . 

The elements of F  are identified by the labels { }1,...,1000U = . A sample A  of 

expected sample size n =  100 is selected according to a Bernoulli sample design with 

k
n
N

π = =  0.01. The sample design is defined by the vector { }1,000 10,1 ×∈S  with the 

sample membership indicators with an expected value ( ) [ ]1,000 10.01 ×=SE , the 

variance-covariance matrix ( ) =SC ∆  where 1 0.09kk
n n
N N

 ∆ = − = 
 

 for k U∈  and 

0kl∆ =  for k l U≠ ∈ . We assume that the population totals ( )T
1 10,...,X X= =X 1 x  

are known. The parameter of interest is the population total TY = 1 y  where 1N×∈y ¡  

and [ ]ky=y  for k U∈ . 

In this example, the outcome y  is a linear function of 10 auxiliary variables x . We 

expect the linear PA estimators with working models with close to the complete set of 

auxiliary variables to have smaller variances than those estimators with smaller sets. 

We also expect the full PA estimator, the PA estimator with the complete set of 

auxiliary variables in its model, to have the smallest variance. On the other hand, if no 

auxiliary variables are used, then the variance of the PA estimator should be the same 

as the variance of the HT estimator. 
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To facilitate the notation, let ,P̂A cY  be the PA estimator of the total Y  where the 

subscript c  indicates the number of auxiliary variables and totals used in the assumed 

model as indicated in Table 4.2. 

Table 4.2 Variance of incomplete PA estimator as a function of the auxiliary 
variables 

 
PA 

estimator 

,P̂A cY  

# of 
auxiliary 
variables 

c 

Auxiliary 
variables 

x  

Population 
totals 

X  

Parameters 
β  Notes 

,0P̂AY  0 None None None 
No 

calibration, 

ĤTY  

,1P̂AY  1 ( )1x  ( )1X  ( )1β   

,2P̂AY  2 ( )1 2,x x  ( )1 2,X X  ( )1 2,β β   

… … … … …  

,P̂A pY  p ( )1,..., px x  ( )1,..., pX X  ( )1,..., pβ β   

… … … … …  

,9P̂AY  9 ( )1 9,...,x x  ( )1 9,...,X X  ( )1 9,...,β β   

,10P̂AY  10 ( )1 10,...,x x  ( )1 10,...,X X  ( )1 10,...,β β  

All 
auxiliary 

variables in 
model 

yM , 

      

For example, ,0P̂A k k
k A

Y d y
∈

= ∑  is the PA estimator with no information while 

,10
ˆ

P̂A pmleY = Xβ  is the full PA estimator with an assumed working model 10,yM  

with the vector of auxiliary variables ( )1 10,...,x x=x . 
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Using the result from (1.36) and the definition of an incomplete PA estimator 

(Definition 1.19), the expression of ,0P̂AY  is  

 ,0
ˆˆ ˆPA pmleY = Xβ . (4.11) 

To compute the variance of ,0P̂AY , we note that the assumed model is a valid PA 

model; therefore the sum of the weighted residuals, 0k k
k A

d e
∈

=∑ , where 

ˆ
k k k pmlee y= − x β . Since the HT estimator is ĤT k k

k A
Y d x

∈
= ∑ , then we can rewrite 

P̂AY  as 

 ,0
ˆˆ ˆ

PA k k pmle HT
k A

Y d Y
∈

= =∑ x β . (4.12) 

As a result, ( ) ( ),0
ˆ ˆ|PA HTY Y=V VF  (see Section 1.7.6). For the sample design in this 

example, the variance ( )ĤTYV  is 

 ( ) ( ) ( ) 2
,0

ˆ ˆ| | 1 3,741,156HT PA k
k U

Y Y d y
∈

= = − =∑V VF F , (4.13) 

where 1d
π

= =  1000 is the sampling weight. Fitting any model without using the 

population totals does not improve the variance of the PA estimator over the HT 

estimator. 

We now compute the variance of the PA estimator ,1P̂AY  with an assumed working 

model 1,yM  with ( )2
1 1,iid

k ky xβ σ∼y N ; that is, the model with the first auxiliary 
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variable 1x . The expression of ,1P̂AY , the partial PA estimator with one auxiliary 

variable 1x  and the population total 1X , is 

 ,1 1 1,
ˆ

P̂A pmleY X β= . (4.14) 

If we assume large samples in this example so the effect of the g-factors is not 

important (see Section 1.7.4), then the variance of ,1P̂AY  is 

 ( ) ( ) 2
,1 1,

ˆ | 1 2,843,377PA k
k U

Y d e
∈

≈ − =∑V F , (4.15) 

where 1 1 ,1
ˆ

k k k mlee y x β= −  is the residual of the model 1,yM  fitted to the population 

for k U∈ . The reduction of variance between ( )ˆ |HTYV F  in (4.13) and ( ),1
ˆ |PAYV F  

in (4.15) is 897,778 or 24 percent. 

If we assume that the working model is 2,yM  with ( )2
1 1 2 2,iid

k k ky x xβ β σ+∼y N ; 

that is, a working model with the auxiliary variables 1x  and 2x , then the variance of 

,2P̂AY  of the PA estimator ,2P̂AY  is 

 ( ) ( ) 2
,2 2, 2,110,065ˆ | 1PA k

k U
Y d e

∈
≈ − =∑V F , (4.16) 

where ( )2 1 ,1 2 ,2
ˆ ˆ

k k k mle k mlee y x xβ β= − +  for k U∈ . The reduction of variance 

between ( ),2
ˆ |PAYV F  and ( ),1

ˆ |PAYV F  is 733,313 (26 percent). The reduction of 

variance between ( ),2
ˆ |PAYV F  and ( )ˆ |HTYV F  is 1,631,091 (44 percent).  
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Table 4.3 shows the variances ( ),
ˆ |PA cYV F  for the estimator ,P̂A cY  for { }0,...,10c∈  

computed as described above. The table also shows the values of variance reduction 

and percentages with respect to ,0
ˆ ˆHT PAY Y=  and , 1P̂A cY − . 

Table 4.3 Variance of incomplete PA estimator as a function of the auxiliary 
variables 

 

PA 
estimator 

,P̂A cY  

# of 
auxiliary 
variables 

(c) 

Variance 

Variance reduction 
with respect to 

 , 1P̂A cY −  

Variance reduction with 
respect to  

,0P̂AY  

Value (%) Value (%) 

,0P̂AY  0 3,741,156 NA NA NA  

,1P̂AY  1 2,843,378 897,778 24 897,778 24 

,2P̂AY  2 2,110,065 733,313 26 1,631,091 44 

,3P̂AY  3 1,526,610 583,455 28 2,214,546 59 

,4P̂AY  4 1,089,527 437,084 29 2,651,630 71 

,5P̂AY  5 749,149 340,377 31 2,992,007 80 

,6P̂AY  6 527,259 221,890 30 3,213,897 86 

,7P̂AY  7 363,427 163,833 31 3,377,730 90 

,8P̂AY  8 279,133 84,294 23 3,462,024 93 

,9P̂AY  9 248,846 30,287 11 3,492,311 93 

,10P̂AY  10 238,349 10,496 4 3,502,807 94 

      

The last row of Table 4.3 shows that the PA estimator ,10P̂AY , which uses the correct 

working model ,10yM , achieves the lowest variance with a reduction of 94 percent 
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with respect to the variance of the PA estimator ,0P̂AY  with no auxiliary information. 

The table also shows that the reduction of variance for this example is not constant 

for each variable added to the working model. The largest and smallest reduction of 

variance are achieved when the auxiliary variables 1x  and 10x  with associated 

regression coefficients 1 10β =  and 10 1β =  are included in the working model, 

respectively. These results suggest that the strategy for the development of the 

working model in the presence of full response should target all variables of the true 

model and not a subset (for example, using only the common variables described in 

Section 4.4). Although the common variables may be the auxiliary variables with the 

largest reduction of variance, we do not know if this is the case when fitting the 

model. 

We can derive the algebraic expression for the empirical results presented in 

Table 4.3 by rewriting the variance ( ),
ˆ |PA cYV F  in terms of the variance of the 

( ),
ˆ |PA PYV F , the variance of the PA estimator ,P̂A PY  with the full model (e.g., P  

auxiliary variables). First, we generalize the expression (4.16) so the variance 

( ),
ˆ |PA cYV F  for the PA estimator ,P̂A cY  with c  auxiliary variables ( )1,...,c cx x=x  

is  

 ( ) ( ) T
,

ˆ | 1PA c c cY d≈ − e eV F , (4.17) 

where ,
ˆ

c c mle c= −e y x β  and ( )T
, ,1 ,

ˆ ˆ ˆ,...,mle c mle mle cβ β=β . The expression of the 

difference of the variance of the PA estimator ,P̂A cY  with a working model with 
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c  auxiliary variables and PA estimator ,P̂A PY  with the full model (or the P  auxiliary 

variables) after algebraic simplification is 

 
( ) ( ) ( ){ }

( )

T T
, ,

T T
, 1 1 1 , 1

ˆ ˆ| | 1

ˆ ˆ1

PA c PA P c c P P

mle c c c mle c

Y Y d

d + + + +

− ≈ − −

≈ −

e e e e

β x x β

V VF F
, (4.18) 

where ( )1 1,...,c c Px x+ +=x  and ( )T
, 1 , 1 ,

ˆ ˆ ˆ,...,mle c mle c mle Pβ β+ +=β  for { }0,..., 1c P∈ − .  

Notice that ( ),
ˆ

c mle cx βQ , the quadratic form of ,
ˆ

mle cβ  and the matrix T
c cx x , is 

T T
, ,

ˆ ˆ
mle c c c mle cβ x x β . Since the matrix T

c cx x  is positive semidefinite, then 

( ),
ˆ 0

c mle c ≥x βQ  for any { }1,...,c P∈ . This result shows that the variance of the full 

PA estimator ,P̂A PY  is always equal to or smaller than the variance of the partial PA 

estimators ,P̂A cY  (e.g., ( ),P̂A PYV  is a lower bound). We can rewrite (4.18) using the 

lower bound of ( ),
ˆ

c mle cx βQ  as 

 ( ) ( ) ( ) ( )1 1

2
, , , 1max 2

ˆˆ ˆ| | 1 T
c c

PA c PA P mle cY Y d λ
+ +

+≤ + −
x x

βV VF F , (4.19) 

where ( )1 1max T
c c

λ
+ +x x

 is the largest eigenvalue of the matrix T
1 1c c+ +x x  and 

2
, 1 2

ˆ
mle c+β  

is the squared 2L −  norm of the vector , 1
ˆ

mle c+β  computed as 

{ }

2 T 2
, 1 , 1 , 1 ,2 1,...,

ˆ ˆ ˆ ˆ
mle c mle c mle c mle k

k c P
β+ + +

∈ +
= = ∑β β β . Note that in Example 4.1, the 

eigenvalues of Tx x  have the same value; that is, 1,000pλ λ= =  for { }1,...,10p∈ . 
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Furthermore, any of the c  eigenvalues of the submatrix T
c cx x  formed by any 

subvector of auxiliary variables c ⊂x x  also have the same values 1,000λ = . This is 

due to the orthogonality of the vector x . Using these results, we rewrite (4.19) as 

 ( ) ( ) ( )
2

, , , 1 2
ˆˆ ˆ| | 1PA c PA P mle cY Y d λ += + − βV VF F , (4.20) 

Since the eigenvalues are the same for all models in this example, the reduction of 

variance when adding auxiliary variables to the working model is a function of 

2
, 2

ˆ
mle cβ .  

Table 4.4 shows the algebraic expression of the variances of the sequence of partial 

PA estimators ,P̂A cY  for { }0,...,c P∈  using (4.20). The table shows the variance of 

the incomplete PA estimator decreases as more auxiliary variables are used until the 

incomplete PA estimator becomes the complete estimator ,
ˆ ˆPA P PAY Y=  with the 

lowest variance. The second term ( ) ( )2 2 2 2
,1 ,2 , 1 ,

ˆ ˆ ˆ ˆ1 ...mle mle mle P mle Pd λ β β β β−− + + + +  

decreases as each auxiliary variable px  for { }1,...,p P∈  is added to the working 

model until it becomes zero. Since the differences of the variance between two 

consecutive partial PA estimators , 1P̂A cY −  and ,P̂A cY  are always positive (e.g., 

( ) ( ) 2
, , 1 ,

ˆ ˆ| |PA c PA c mle cY Y λβ−− =V -VF F ), the minimum variance is achieved when the 

estimator is the complete calibration estimator P̂AY .  

 



 

 

Table 4.4 Variance of partial PA estimators as a function of the number of auxiliary variables in their model 
 

Estimator Number of auxiliary variables 
c  

Variance 
( ),

ˆ |PA cYV F  

Pa
rti

al
 

,0P̂AY  or ĤTY  0 
(No calibration) ( ) ( ) ( )2 2 2 2

, ,1 ,2 , 1 ,
ˆ ˆ ˆ ˆˆ 1 ...PA P mle mle mle P mle PY d λ β β β β−+ − + + + +V  

,1P̂AY  1 ( ) ( ) ( )2 2 2
, ,2 , 1 ,

ˆ ˆ ˆˆ 1 ...PA P mle mle P mle PY d λ β β β−+ − + + +V  

,2P̂AY  2 ( ) ( ) ( )2 2 2
, ,3 , 1 ,

ˆ ˆ ˆˆ 1 ...PA P mle mle P mle PY d λ β β β−+ − + + +V  

… … … 

, 2P̂A PY −  P-2 ( ) ( ) ( )2 2
, , 1 ,

ˆ ˆˆ 1PA P mle P mle PY d λ β β−+ − +V  

, 1P̂A PY −  P-1 ( ) ( ) 2
, ,

ˆˆ 1PA P mle PY d λβ+ −V  

Fu
ll 

,P̂A PY  or P̂AY  P 
(calibrated to all variables) ( ),P̂A PYV  
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EXAMPLE 4.2  We now examine the effect of including extraneous variables 

in the working model using the population and sample design from Example 4.1. We 

assume that there are an additional 10 orthogonal extraneous variables 

( )11 20,...,x x=x  with ( )0,3iid
px ∼ N  for { }11,...,20p ∈ , where p qx x⊥  for 

{ }1,..., 20p q≠ ∈ .  

Table 4.5 shows the variance ( ),
ˆ |PA cYV F  of the sequence of the PA estimators 

,P̂A cY  for { }10,...,20c∈  beginning with the correct working model ¶ ,10yM  with the 

auxiliary variables ( )1 10,...,x x  after adding the extraneous variables ( )11 20,...,x x  one 

at the time to the model ¶ ,10yM . The table also shows the value of variance reduction 

and percentages with respect to ( ),10
ˆ |PAYV F , the variance of ,10P̂AY  with the 

correct model, and ( ),0
ˆ |PAYV F  to the variance of ,0

ˆ ˆPA HTY Y=  with no auxiliary 

variables. 
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Table 4.5 Variance of incomplete PA estimator as a function of the extraneous 
variables 

 

PA 
estimator 

,P̂A cY  

# of 
auxiliary 
variables 

(c) 

Variance 

Variance reduction 
with respect to 

 ,10P̂AY  

Variance reduction with 
respect to  

,0P̂AY  

Value (%) Value (%) 

,10P̂AY  10 238,349 NA NA 3,502,807 93.6 

,11P̂AY  11 238,342 897,778 24 3,502,815 93.6 

,12P̂AY  12 237,606 733,313 26 3,503,551 93.6 

,13P̂AY  13 237,581 583,455 28 3,503,576 93.6 

,14P̂AY  14 237,499 437,084 29 3,503,658 93.7 

,15P̂AY  15 237,366 340,377 31 3,503,791 93.7 

,16P̂AY  16 236,877 221,890 30 3,504,279 93.7 

,17P̂AY  17 236,868 163,833 31 3,504,289 93.7 

,18P̂AY  18 236,858 84,294 23 3,504,298 93.7 

,19P̂AY  19 236,752 30,287 11 3,504,404 93.7 

,20P̂AY  20 236,457 10,496 4 3,504,699 93.7 
 

     
 

When we fit a variable that is not part of the model, the fitted value of the associated 

regression coefficient of this variable is zero. As a result, the extraneous auxiliary 

variables do not contribute significantly to the sum of the squared residuals of the 

estimator. The expression of the variance of ,P̂A cY , as a function of the cumulative 

number of extraneous variables, is  

 ( ) ( ) ( ) T
,

ˆ ˆ| | 1PA c PA c cY Y d= + − e eV VF F , (4.21) 
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where ,
ˆ

c c mle c= −e y x β  for { }11,...,20c∈ . Note that under ideal conditions such as 

orthogonal variables and very large sample sizes, calibrating to the extraneous 

variables does not increase the variance of the PA estimator. Based on this analysis, 

an algorithm should calibrate to as many auxiliary variables as possible to achieve the 

lowest value of the variance even if it includes extraneous variables as these do not 

increase the variance of the estimators under these conditions. 

Figure 4.1 summarizes graphically the variance reduction from Examples 4.1 and 4.2 

for a sequence of PA estimator ,P̂A cY  for { }1,..., 20c∈ . The line in red show the 

variance of the PA estimator with a working model where one auxiliary variable is 

added the time until the complete model (correct) is fitted (e.g., ( )1 10,...,x x  with 

( )10,...,1=β ). The line in blue shows the variance of the PA estimators beginning 

with the correct working model when one extraneous variable is added at the time to 

the correct model for ( )11 20,...,x x . As shown above, the largest reduction in variance 

is when the auxiliary variable 1x  with 1 10β =  is fitted. Note that although the 

auxiliary variables 8x , 9x , and 10x  with associated regression coefficients 8 3β = , 

9 2β = , and 10 1β =  are part of the true model, they do not significantly reduce the 

variance of the PA estimator. 
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Figure 4.1 Variance reduction of the sequence of PA estimators from Examples 
4.1 and 4.2 

 
 

 
 

4.7 The Propagation of Error for Variance Reduction 

Propagation of uncertainty or error is a statistical method that examines how the 

errors of variables are transmitted through a function in a system (Clifford, 1973). 

Controlling the propagation of uncertainty is done through adjustments to the input of 

the functions, so the uncertainty of the function is reduced. We illustrate how the 

analysis of propagation of errors can provide a better understanding of estimators 

when they are analyzed as functions of random variables. 

Let [ ] { } 10,1 N
kS ×= ∈S  be the discrete random vector with the sample membership 

indicators for a fixed sample. The vector S  follows a discrete multinomial 



 

204 

distribution with ( ) ( ) 10,1 N×= ∈S πE  and ( ) N N×= ∈S ¡C ∆  (see Definition 1.5). 

The vector S  is a vector field with { }0,1 N  where each kS  is a vector. 

Define f  as the vector-to-scalar valued function f : N →¡ ¡  as 

 ( ) ( )Tf =S d y Se .  (4.22) 

The equation (4.22) is the Horvitz-Thompson (HT) for the total Y  where 

[ ] 1N
ky ×= ∈y ¡ . The HT estimator is a linear function of the random elements kS  of 

S  for k U∈  since it can be expressed as 

 1 1
ˆ ...HT N NY S Sλ λ= + + , (4.23) 

where k
k

k

y
λ

π
=  for { }1,...,k N∈ .20 The error of ( )f S  is the variance of ( )f S  defined 

as  

 ( )( ) ( ) ( )Tf =S d y Δ d ye eV ,  (4.24) 

which is the quadratic function : NQ →¡ ¡ , ( ) TQ =A z z Az  with =A Δ  and 

=z d ye . 

                                                 

20 Note the focus on linear functions of the random variables kS  for { }1,...,k N∈  instead of linear combination 

of the outcome ky  (Wolter, 2017). 
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Now, we add an adjustment through the scalar 1Γ̂ ∈¡  with the PA adjustment, 

1 T
ˆ N
Γ =

d S
. We define the scalar-to-scalar valued function f :∗ →¡ ¡  of S  as  

 ( ) ( ) ( ) ( )
1 TT T

1ˆf N
−∗ = Γ =S d y S d S d y Se e .  (4.25) 

Before proceeding, we verify that the sequence of estimators adjusted by a sequence 

of adjustment 1Γ̂ , ( )f N
∗ S , is consistent, or ( ) ( )( ) ( )1f fN N n∗ −− − =S SE O  as 

.N → ∞  

The new function ( )f ∗ S  is the Hájek estimator (HJ) of the total Y , and since ( )f ∗ S  

is nonlinear (of S ), the propagation error in ( )f ∗ S  is approximated using the first 

order approximation of the multivariate Taylor expansions of f ∗  evaluated at =S π  

by  

 ( )( ) ( ) ( )f f
f

∗ ∗
∗

==

∂ ∂
≈

∂ ∂

T

S πS π

S S
S Δ

S S
V , (4.26) 

where ( ) ( ) ( ) 1

1

f f f
,..., N

NS S

∗ ∗ ∗
× ∂ ∂ ∂

 = ∈
 ∂ ∂ ∂ 

S S S
S

¡  is the vector of the directional 

derivative21 taken with respect to a vector field S . Let ( )f ∗∂
=

∂
S

S
D= , then  

                                                 

21 Vector derivatives are important in theoretical and applied physics as they arise in fields such as electricity, 

magnetism, and fluid mechanics among other areas. These are tools to study random fields in matrix 

representation. 
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{ }1, ,

k k k
k N

Yd y d
N ∈

 = −   …
D . (4.27) 

As a vector of partial derivatives, each element of D=, kD= for { }1, ,k N∈ … , 

measures the change of ( )f ∗ S  with respect to kS  while lS  for { }1, ,l k N≠ ∈ …  

remain constant. Since the function ( )f ∗ S  is very simple, the change is the same for 

all kS . However, this observation establishes a link to replication methods for 

estimating variances such as the Jackknife, where each replicate measures the effect 

of the estimator when one element is removed. When considering the random 

variable S , the Taylor variance resembles the replication methods because the 

variance is computed as a function of the changes in ( )f ∗ S  for each kS , keeping the 

effect of the others constant. Each element in kD= can be viewed as a “replicate.” 

After algebraic simplification, the propagation error or variance of the function ( )f ∗ S  

is  

 ( )( ) ( ) ( ) ( )f T Q∗ ≈ = ΔS d e Δ d e d ee e eV , (4.28) 

where Y= −e y  is the vector of the residuals around the population mean Y . 

There is no easy way to compare the quadratic forms ( )QΔ d ee  and ( )QΔ d ye  for 

designs other than SRS to determine if the adjustment reduces the propagation of 

errors. However, we can determine an inequality that bounds the differences between 
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the two estimators. The upper bounds provide insights on the conditions when one 

estimator is more efficient than the other. 

Let TΛ =Q Q Δ  be the spectral decomposition of Δ , where ( )diagΛ = λ  is the 

diagonal matrix of the vector of eigenvalues N∈λ ¡ , and ( )1,..., k=Q q q  is the 

matrix of the eigenvectors 1N
k

×∈q ¡  for k U∈ . Since by definition Δ  is symmetric 

and positive semidefinite (e.g., it is a fixed size sample design, see Section 5.3), all 

eigenvalues except for one are real positive numbers, and the matrix Q  is orthogonal 

with rows and columns forming an orthonormal basis. Then the quadratic forms 

(4.22) and (4.28) can be written as 

 ( ) ( )
2T

k kk UQ λ∈= ∑Δ d y q d ye e  and  

 ( ) ( )
2T

k kk UQ λ∈= ∑Δ d e q d ee e , (4.29) 

which are weighted sums of the squared 2L −  norms (i.e., Euclidean norm) of the 

projections of d ye  or d ee  to the eigenvectors of the matrix Q  where the weights 

are the eigenvalues kλ  for k U∈ . Note that the only difference in the quadratic forms 

( )QΔ d ye  and ( )QΔ d ee  is the variables y  and e  since both have the same set of 

eigenvalues, orthonormal basis, and sampling weights (e.g., the matrix Δ  is the same 

in both). The expressions can easily be evaluated for simple random designs. The 

comparison is not as straightforward in informative designs where there is an 

interaction of y  or e  and the sample design represented by Q . 
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To have a general sense of the differences between the estimators, let maxλ  be the 

maximum eigenvalue of Δ  defined as { }max 1arg max ,..., N
λ

λ λ λ
∈Λ

= , then the following 

inequalities hold  

 ( ) 2 2
maxQ λ≤Δ d y d ye  and  

 ( ) 2 2
maxQ λ≤Δ d e d ee . (4.30) 

Since maxλ  and 2d are always positive, the ratio of the quadratic forms is 

 ( )
( )

2

2
Q
Q

≤Δ

Δ

ed e
d y y

e
e

. (4.31) 

The ratio in (4.31) shows that the propagation error in ( )f ∗ S  is smaller than ( )f S  if 

the sum of the squared residuals or Te e  is smaller than the sum of squared y  values 

or Ty y . This expression is similar to the ratio of partitioned sums of squares. If we let 

y  be related to π  as k ky βπ= , then the ratio of the variances is  

 ( )
( )

2

2

2kk U

kk U

N nQ
Q

π

π
∈

∈

+ −
≤

∑
∑

Δ

Δ

d e
d y

e
e

. (4.32) 

The ratio in (4.32) shows that the HT estimator is more efficient than the HJ estimator 

when y  is a linear function of π . The adjustment 1Γ̂  increases the propagation error 

in ( )f ∗ S  compared to ( )f S . This situation (a high linear correlation) is common in 

practice. In Example 1.1 on page 7, the hospitals are drawn using the number of beds 

as the hospital measure of size, and the number of beds is correlated to the outcome 

variable for hospital expenditures (e.g., larger hospitals measured in terms of the 
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number of beds have large expenditures). In this case, the HT estimator for total 

expenditures is more efficient than the HJ estimator as shown in Table 1.5. 

Using the same approach, we examine the propagation error for the ratio estimator 

(RA) compared to the HT estimator where 

 
( )
( )

T

TR̂AY X=
d y S

d x S

e
e

. (4.33) 

Now, we add the PA adjustment through the scalar 
( )T

ˆ
ˆX

HT

X X
X

Γ = = ∈
d x S

¡
e

 to 

the function in (4.22). We define the scalar-to-scalar valued function f :R →¡ ¡  of 

S  as  

 ( ) ( ) ( )
( )

T
T

T
ˆf R

X X= Γ =
d y S

S d y S
d x S

e
e

e
. (4.34) 

Equation (4.34) is a nonlinear function of S  so the variance is approximated 

by (4.26). After algebraic simplification, the propagation error of ( )f R S  is 

 ( )( ) ( ) ( ) ( )f TR Q≈ = ΔS d e Δ d e d ee e eV , (4.35) 

where Y
X

= −e y x  and ( )QΔ d ee  is the quadratic form of the vector d ee  and the 

matrix ∆ . 

The vector ( )f R∂
=

∂
S

S
D=  can be written as  
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{ }1, ,

k k k k
k N

Yd y d x
X ∈

 = −   …
D , (4.36) 

which shows the effect of changes if ( )f R S  for each kS . In this case, the change 

depends on the value of kx . The variance is the sum of the cross-product of all these 

“replicates” kD= for { }1, ,k N∈ … . The similarities between the Taylor series 

“replicates” and replication methods are also observed here. 

The ratio of the quadratic forms using the upper bounds of ∆  is 

 ( )
( )

2

2
Q
Q

≤Δ

Δ

ed e
d y y

e
e

. (4.37) 

Assume that the outcome is a constant, ky c=  for { }1,..,k N∈ . After simplifying 

(4.37), the ratio of the quadratic forms is 

 ( )
( ) ( )21

Q
N

Q
≤ −Δ

Δ

d e
d y

e
e

. (4.38) 

This ratio is always greater than one, and the value is very large due to the 

assumption of constant outcomes which does not occur in practice. Although this 

assumption does not hold in practice, this result shows that when y  is not correlated 

to x , the ratio estimator can be very inefficient compared to the HT estimator. 
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4.8 Incorporating Population Totals into the Pseudo-

Likelihood 

The second motivation for the PA estimators is to improve the precision of the PML 

estimates by incorporating the additional information represented by the control totals 

of the auxiliary variables directly in the PL function. Until now, the PML approach 

has been used mainly to estimate the model parameters instead of finite population 

characteristics, and the auxiliary variable population totals are not used in this 

approach (Binder, 1983; Binder & Roberts, 2009). 

Incorporating the auxiliary population information is based on the following 

observations. Assume a linear superpopulation model M , where ( )2,βη σN  with 

βη = xβ . When this model is fitted to the finite population, the MLE of the regression 

coefficients 1 P
mle

×∈β ¡  meet the following condition  

 1ˆmle
−= xx xyβ T T , (4.39) 

where T P P
ik jk

k U
x x ×

∈

 
= = ∈ 

  
∑xxT x x ¡  and T 1P

ik jk
k U

x y ×

∈

 
= = ∈ 

  
∑xyT x y ¡ . Let 

the first component in kx  be one for { }1,..,k N∈ . Let 1
1

P×∈r ¡  be the first 

partitioned row, and 1
1

P×∈c ¡  be the first partitioned column of the matrix ,x xT . The 

elements of 1r  and 1c  correspond to a vector of the auxiliary variable population 

totals. 
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 ( )T 1
1 1 1 1, ,..., P

PN X X ×
−= = = ∈r c X ¡ . (4.40) 

When the model is fitted to a sample drawn according to a sample design ( )p A a=  

(see Definition 1.5), the sample-based or PML estimator of ˆ
mleβ  is  

 ( )1 1ˆ ˆ ˆ |mle p n− −− =xx xyβ T T F O , (4.41) 

where ˆxxT  is the sample-based estimator of xxT  given by 

 ( )
{ }

T

, 1, ,

ˆ P P
k pk qk k

k U p q P

d x x S ×

∈ ∈

 
= = ∈ 

  
∑xxT S d x x

…

e e ¡ . (4.42) 

( )
{ }

T 1

1, ,

ˆ P
k pk k k

k U p P

d x y S ×

∈ ∈

 
= = ∈ 

  
∑xyT S d x y

…

e e ¡  is the sample-based 

estimator of xyT . The sample-based estimators of 1r  and 1c  of xxT  are the first row 

and column of ˆxxT  are given by 

 ( )T 1
,1 ,1 ,1 , 1

ˆ ˆ ˆ ˆˆ ˆ , ,..., P
HT HT HT HT HT HT PN X X ×

−= = = ∈r c X ¡ , (4.43) 

where ( )1
1 ,1ˆHT p n−− =r r O  and ( )1

1 1ˆ p n−− =c c O . However, the population totals 

X  are known, and there is no need to use estimates in 1r  and 1c  of ˆxxT . Excluding 

the population totals X  from ˆxxT  does not take advantage of all the information 

available. 
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There are different ways to incorporate the population totals X  in ˆxxT , which, at the 

same time, incorporates them into ˆ
pmleβ . One method is through the PA adjustment 

factor which is a diagonal matrix ˆ P P×∈XΓ ¡  defined as  

 1
ˆˆ −= XX XΓ D D . (4.44) 

Then the PA adjusted estimator of xxT , ,
ˆ P P

PA
×∈xxT ¡ , is  

 1 1ˆˆ,ˆ ˆ ˆ ˆ ˆPA
− −= = =xx xx xx xx XX XXXT T Γ T D D D T D . (4.45) 

The PA adjustment ˆ XΓ  removes the sampling variability from 1,ˆ PAr , and 1,ˆ PAc  (e.g. 

( ) ( )T T 1
1, 1,ˆ ˆE | E | P

PA PA
×− = − = ∈r r c c 0 ¡F F ). The propagation of the adjustment 

ˆ XΓ  also reduces the variability of other elements of ,
ˆ PAxxT . To examine the 

propagation errors, we rewrite ,
ˆ PAxxT  in terms of their elements as  

 
{ }

,
, 1, ,

ˆ ˆ
ˆ ˆp q

p q P P
PA x x

p p p q P

X X
T

X X
×

∈

 
= ∈ 

  
xxT

…

¡ .  (4.46) 

Although the effect of ˆ XΓ  is similar to calibrating to the population totals of the 

elements in 1,ˆ PAr , and 1,ˆ PAc , the remaining adjusted entries of , ,
ˆ PAx xT  do not meet 

the calibration restriction since the population total of ˆ
p qx xT  is not p qX X . 

This type of PA adjustment for these entries is justified as a special class of improved 

estimators proposed by Srivastava & Jhajj (1981). They define this class of estimators 

adjusted by the product of two estimators: 
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 ( )ˆ ˆ H ,Y Y u v= , (4.47) 

where 
ˆ

i

i
u =

X
X

, 
ˆ j

j
v =

X
X

 and k ki kjy x x= , ( )H ,u v  is a function of u  and v  such that 

1. The point ( ),u v  assumes the value in a closed convex subset in 2¡  containing 

the point ( )1,1 ; 

2. The function ( )H ,u v  is continuous and bounded in 2¡ ; 

3.  ( )H 1,1 1= ; and 

4.  The first and second order partial derivatives of ( )H ,u v  exist and are continuous. 

The properties of this class of estimators, such as asymptotic bias and MSE, are 

described in Srivastava & Jhajj (1981). 

The idea of adjusting for estimators using products of auxiliary variables is the 

motivation for creating alternative versions of PA estimators. 

4.9 Alternative Forms of PA Estimators 

Before describing the methods to incorporate population characteristics other than the 

population total of the PA estimator, we derive the PA estimator of the total of y  

with a superpopulation model yM  where 
2
0| ,iid

k k
k k

y x
x x

σβ 
  
 

∼ N . We assume that 



 

215 

only the auxiliary population totals ( ),N X  are available. After solving the PL for the 

model yM  fitted to the observed sample to obtain the PMLE of β , we obtain  

 ˆ
k k

k A
pmle

k

kk A

d y

d
x

β ∈

∈

=
∑

∑
. (4.48) 

The auxiliary variable is 1

kx
, so the population total is 1

kk U x∈
∑ . Since we assume that 

we do not have the entire population, the population total for this variable cannot be 

computed. As an alternative, we propose a PA adjustment for the total 1
X

 with the 

sample-based estimate defined as 1
ˆ HTX

. Then the PA adjustment for this estimator is 

 1/
ˆ1/

ˆ1/
HT

X
HT

X X
XX

Γ = = . (4.49) 

Note that 1 1 1
ˆ p

HTX nX
 − =  
 

O . 

The PA estimator is then obtained applying the adjustment to (4.49) and plugging into 

the generic PA estimator (1.25). The PA estimator for the total Y  for this model is 

 
ˆˆ ˆ HT

PA HT
XY Y

X
= . (4.50) 

The estimator in (4.50) is the generalization of the product ratio estimator proposed 

by Murthy (1964). Although the product ratio estimator is a PA estimator with 

population totals that do not quite match the auxiliary variables, the important point is 
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that estimators can be derived using any adjustments as long are they are correlated to 

the outcome. This observation provides some alternatives for PA estimators. 

The PA estimator described in the previous chapters has the form of a ratio estimator 

based on ratios to totals as 

 
,

ˆ
ˆp

p
X

HT p

X
X

Γ = , (4.51) 

for { }1, ,p P∈ … . This estimator is called the total ratio PA estimator. The alternative 

is based on the inverse of ˆ
pxΓ , and applies to product ratio estimators described 

above. 

An alternative is a PA adjustment based on the ratio of the population means to the 

sample-based estimate of the same mean; this is called the mean ratio PA estimator. 

The PA adjustment for the mean ratio is  

 
,

ˆ
p

p
X

HJ p

X
X

Γ = , (4.52) 

where p
p

X
X

N
=  and ,

,

ˆˆ
ˆ
HT p

HJ p
HT

X
X

N
=  for { }1, ,p P∈ … . 

For sample designs where ˆ
HTN N= , the total ratio PA estimator and mean ratio PA 

estimator produce the same estimator. Otherwise, there are differences in the 

estimators due to the different adjustments made to the regression coefficients. For 

example, if 1x  is the term for the intercept, the PA adjustment for this term is always 
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one for the mean ratio PA estimator, but the adjustment affects the slope regression 

coefficients. In contrast, using the total ratio estimator, the adjustment is ˆ HT

N
N

, and 

the variation ˆ
HTN  affects the coefficients of the slopes. 

The third group does not rely on the population totals represented as the sum of the 

elements in the frame. Instead, the estimators in this group use an function of the 

expected value as the factor. For example, the total ratio estimator is the exponential 

mean ratio PA estimator, with PA adjustment factor defined as 

 
,

ˆ exp
p

p
X

HJ p

X
X

 
Γ =   

 
, (4.53) 

for { }1, ,p P∈ … . An exponential total ratio could also be computed by replacing the 

means by totals. There are the corresponding alternatives for product estimators. 

If the population variance is available, a PA estimator can be computed as 

 2

2

2
,

ˆ
p p

p p
X S HJ p HJp

X S
X S

Γ = , (4.54) 

where 
( )

2
1

k

p

x X
S

N

−
=

−

∑
 is the population variance of PX  and 

( ),
2

,

ˆ

ˆ
ˆ 1

k k HJ p

HJ p
HT

d x X
S

N

−
=

−

∑
 is the sample-based estimate of the population variance 

2
pS  for { }1, ,p P∈ … . 
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Many other estimators can be constructed in this way based on the product of the 

population coefficient variation, population kurtosis, and population median. 

Estimators that are ratios to other population characteristics, such as  

 ˆ
ˆ ˆ

p
p xp

p

p x
X C

p x

X C

X C
+

+
Γ =

+
, (4.55) 

where p
p

x
x

p

S
C

X
=  is the population coefficient of variation of pX  for { }1, ,p P∈ …  

could also be constructed. The difficulty lies in the fact that it is unusual to know 

these population quantities. 

The PA adjustment using population characteristics described above is similar to a 

regression coefficient that is constant for all the cases in the sample. We consider the 

same population characteristics but use the information at the sample level. The 

population characteristics that can be incorporated at the sampled element level are 

listed in Table 4.6. The table shows the auxiliary variable and the population totals for 

these population characteristics. 

EXAMPLE 4.3. Let y  be the variable of interest with a superpopulation 

model yM  where ( )2
0 ,iid

k x k z ky N x zβ β β σ+ +∼ , 
( )2

k
k

x X
z

N
−

= , and the 

population totals ( ), ,N X Z  where 2
XZ S= . The linear PA estimator for the total Y  

for this model is 
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 2
,0 , ,

ˆ ˆ ˆ
P̂A pmle pmle X X pmle ZY N X Sβ β β= + + . (4.56) 

Note that the estimate of the total of the auxiliary variable kz  is 

¶ ( )2

2
ˆ

ˆ ˆ 1

k HJ
X k k

HTk A k A

x X
S d z

N∈ ∈

−
= =

−∑ ∑  and the population total is 
( )2

2
ˆ

1
k

X
k U

x X
S

N∈

−
=

−∑ . 

 



 

 

 
Table 4.6 Auxiliary variables and population totals for population characteristics at the sampled element level 
 

Population 
characteristic Working model Auxiliary variable 

kz  
Population total 

Z  
 

PA adjustment factor 
ˆ

ˆX
Z
Z

Γ =  

Variance ( )2,iid
k ky z β σ∼ N  ( )2ˆ

ˆ 1

k HJ

HT

x X

N

−

−
 

2
XS  

¶
2

2
X

X

S

S
 

Quantile* ( )2,iid
k ky z β σ∼ N  ( )( )0

ˆ ˆ/k x HTx Q P Nδ ≤  ( )0 0XQ P X=  ( )
( )·

0

0

X

X

Q P

Q P
 

Coefficient of 
variation ( )2,iid

k ky z β σ∼ N  ( )
( )

2

2

ˆ

ˆˆ 1

k HJ

HT HT

x X

N X

−

−
 

2
XCV  

·

2

2
X

X

CV

CV
 

Kurtosis ( )2,iid
k ky z β σ∼ N  ( )

( ) ·

4

2
2

ˆ

ˆ 1

k HJ

HT HT

x X

N S

−

 −  
 

 
XK  

·
X

X

K
K

 

Skewness ( )2,iid
k ky z β σ∼ N  ( )

( ) ·

3

3/2
2

ˆ

ˆ 1

k HJ

HT HT

x X

N S

−

 −  
 

 
XG  

·
X

X

G
G

 

*Note: ( )( )0
ˆ 1k xx Q Pδ ≤ =  if ( )0

ˆ
k xx Q P≤ , 0 otherwise, ( ) ( )1

0 0
ˆ ˆxQ P F P−=  where ( ) { }1

ˆ
ˆ

Po
o

k x x
k A

P
HT

d
F x

N

≤
∈=
∑

. 
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REMARK 4.1  As in the PA estimator with the PA adjustment factor 

 
,

ˆ
ˆp

p
X

HT p

X
X

Γ = ,  

the role of the adjustment factors for alternative PA estimators in (4.52) (4.53), (4.54) 

and those listed in the last column Table 4.6 is to incorporate the auxiliary variable 

population information (e.g., population mean, total, coefficient of variation, 

variance) into the PL. As in the PA estimator, these adjustments are expected to 

reduce the variance of the estimator if the auxiliary variables are related to the 

outcome variable. 
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Chapter 5 Deriving the Asymptotic Properties of Survey 

Sampling Estimators 

In this chapter, we derive the asymptotic properties of the parametric (PA) estimator. 

Most estimators proposed in the survey sampling literature derive their large sample 

properties by establishing an asymptotic equivalence to the Horvitz-Thompson (HT) 

estimator (see, for example, Wu & Sitter, 2001; Breidt & Opsomer, 2017). If the 

proposed estimator is asymptotically equivalent to the HT estimator, then it inherits 

the HT asymptotic properties. The HT estimator is design consistent, and the 

sequence of estimators 
( )
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−
==

V
 converges in distribution to ( )0,1N  in a 

sequence of increasing size finite populations ( N ) and samples sizes ( )n . Thus, the 

proposed estimator is also consistent with a limiting normal distribution. Using 

similar relationships, the asymptotic design variance of the proposed estimator is 

equivalent to the asymptotic design-based variance of the HT estimator of the 

residuals ˆk k ke y µ= −  where ˆkµ  is the fitted mean of the model. This approach is not 

generally used in the classical asymptotic statistical literature for studying estimators 

defined as functions of random variables (Lehmann, 1999). 

Although this approach is valid, it is not informative of the rate of convergence of the 

proposed estimator. For example, the proposed estimator might require large samples 

to approach its limit, and its performance may be very poor for small sample sizes. 

The current large sample approach used in survey sampling does not provide insights 
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into the proposed estimator’s efficiency. Consequently, most papers include 

simulation studies to examine their properties empirically. 

We take a different approach for the study of the estimator’s large sample properties 

in the PA framework. One significant difference is the notation and algebra. We rely 

heavily on discrete multivariate statistics matrix notation, matrix operations, and 

matrix calculus (e.g., quadratic forms of matrices, matrix inequalities, eigenvalues, or 

vector-induced matrix norms). The main advantage is the ease of deriving the 

estimator’s asymptotic properties. 

The second difference is the focus on the random variables kS , elements of the 

discrete random vector ( )1,..., ,...,k NS S S=S , with the sample membership indicators 

(see Definition 1.5 on page 44). This vector is the only stochastic component 

involved in the theory. This idea is an extension of the method proposed by Cornfield 

(1944) that enables the use of results from standard asymptotic theory to derive the 

statistical properties of finite population estimators. Further extending this idea to 

random vectors and matrices reduces the derivation of the formulas for expected 

values and variances, so it becomes a simple algebraic routine while providing new 

insights into the properties of the estimators. 

We begin with the idea discussed by Tillé (2006), where any sample design can be 

uniquely described by the vector of the expected values, ( ) =S πE  and the variance-

covariance matrix of S , ( ) =SC ∆ . We show that the variance-covariance matrix Δ  

has unique mathematical properties determined by sample design. Estimators such as 
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the Horvitz-Thompson (HT), Hájek (HJ), generalized regression (GREG), and 

parametric (PA) are defined as functions of the membership indicators of S . The 

estimators or functions can be linear or nonlinear, and their asymptotic properties are 

systematically derived applying theorems of linear and nonlinear functions of 

sequences of random variables. 

In the following sections, we discuss the foundations of different approaches to 

estimation from survey data with full response and show how any sample design is 

uniquely defined by a multivariate probability mass function of the discrete random 

vector S  that defines the type of sample design. The matrix approach to the large 

sample properties of the estimator is then illustrated. This approach allows us to 

derive the expression of the estimator, its variance, and variance estimator, and their 

asymptotic properties. 

5.1 Estimation Frameworks 

Different theories for survey estimation depend on two random processes used to 

model the sample selection: one process is unobservable and generates the finite 

population from a superpopulation model; and the other is observable that selects the 

sample from the finite population. This setting is similar to the Rubin-Bleuer & 

Schiopu Kratina's probability product-space for the framework for joint design based 

and model-based inference. (Rubin-Bleuer & Schiopu Kratina, 2005).  

The process that generates the finite population and draws the sample for the realized 

population is hierarchical. At the first stage, the finite population F  with an outcome 
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variable y  is generated as N  identically independent distributed realizations (iid), 

ky U∈ , from a superpopulation model yM  with a distribution f .Y  In the second 

stage, a sample of size n  is selected from the realized finite population, according to 

a sample design ( )p =S s  defined by a random vector S  with a multivariate 

probability mass function fS . Both variables are well defined with  

 ( )| ~ fiid
N N Yy x θ , and   

 ( )| ~ f ,N N SS y π Δ . (5.1) 

Different estimation frameworks are the result of assumptions of the sampling 

distributions of y  and S . The estimation frameworks based on the random vectors y  

and S  are listed in Table 5.1. 

Table 5.1 Estimation frameworks as a function of random vectors y  and S  

Estimation 
framework Distribution Source of 

variation 
Target of 

Estimation Comment 

Design-
based  

( )f | =S S Y y  S , observed Y  The variable y  is fixed 
and considered as 
constant  
 

Model-
based  { }( )1f |

kS ==Y y S 1

 

y , unobserved Y  Sampling distribution of 
S  is ignored 
 

Super-
population 

( )fY,S y,S  S , observed 
and y
unobserved 

θ  Both y  and S  are 
random variables 
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The differences among the estimation frameworks depend on how y  and S  are 

treated when producing estimates and inferences. Once this treatment is defined, it 

becomes straightforward to derive the statistical properties of the estimators in any of 

these frameworks. 

REMARK 5.1. In the design-based approach, the random vector S  is the 

only source of variability; all design-based estimators are functions of S . In contrast, 

in the superpopulation approach, both S  and y  are random and contribute to the 

variability of the estimators, and the target of the estimator is not a finite population 

characteristic but a parameter θ  of the superpopulation model. That is, there are two 

components of the variance, one from the finite population generation and the second 

from sample selection. For model-based estimation, the sample selection is ignored in 

estimation if the sample is balanced. Since in all frameworks the estimators are 

functions of these vectors of random variables, standard multivariate statistical tools 

can be used to derive their large sample properties. In the following sections, we 

focus only on the asymptotic properties of design-based estimators, that is, we 

condition on 0=y y  which becomes a vector of constants. 

5.2 The Probability Mass Function of the Random Vector S 

Sample designs ( )p A a=  where A  is some random subset of a population and a  is a 

particular sample that was selected, can be uniquely defined as follows: let 

{ }0,1 N∈S  a vector-valued random variable with a discrete multivariate distribution 
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consisting of N  random sample membership indicators ( )T
1,..., NS S=S , with an 

expected value ( )| =S πE F  where [ ] ( )0,1 N
kπ= ∈π  is the vector of the first-order 

inclusion probabilities 0kπ > 22 for k U∈ , ( ) ( )T T| |= − =S SS ππF FC E ∆  is the 

variance-covariance matrix of S , where [ ] [ ]kl kl k lπ π π= ∆ = −∆  for ,k l U∈ , and 

klπ  is the second order probability of inclusion of elements k  and l . The covariance 

matrix ∆  is a Hermitian matrix (Dol, Steerneman, & Wansbeek, 1996), which 

implies it has specific properties. ∆  is 

(a.) A real (square) symmetric matrix; 

(b.) A normal matrix such that T T=ΔΔ Δ Δ ; 

(c.) A matrix that can be diagonalized by a unitary matrix with real elements on 

the diagonal (finite-dimensional spectral theorem); and 

(d.) A matrix with real and linearly independent eigenvalues. 

Additional properties of ∆  depend on the type of sample design. 

5.3 Types of Sample Designs 

We are interested in discrete random vectors S  such that ( ) ( )| 0,1 N= ∈S πFE  and 

( )| =S ΔFC . We also require 0kπ >  for all kπ  in π , and 0klπ >  in 

                                                 

22 In order to be a Lebesgue measure, 0kπ > . 
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[ ] N N
klπ ×= ∈Π ¡ , where Π  is the matrix with the second order of probability of 

inclusion, klπ , for the elements k  and l  defined as the probability that the 2-tuple 

( ),k l  are both selected in the sample. These conditions define a measurable design 

within the survey sampling theory context (Särndal, Swensson, & Wretman, 1992). 

We use the variance of the sum of the elements of S  to classify the sample designs. 

Let : NZ ¡ a ¡  be the function ( ) TZ Z= =S 1 S , then Z  represents the sum of all 

elements of S . The variance of Z is ( ) T|Z = 1 Δ1V F , and it can be decomposed as 

the sum of the contribution of the variances and covariance of the terms in S  as 

 ( ) ( ) ( )T

, ,
| | , |k k l

k U k l U k l
Z S S S

∈ ∈ ≠
= = +∑ ∑1 Δ1V V CF F F .  (5.2) 

This expression has an intuitive meaning. Each element of S , kS , contributes to the 

total variance through the variance component, ( )|kSV F , and through the sum of 

the covariances with the other elements ( )
,

, |k l
l U k l

S S
∈ ≠
∑ C F . 

The value of ( )T |1 SV F  determines if it is a fixed sample size design or a random 

sample size design. This classification facilitates the derivation of the asymptotic 

properties of the estimators since these designs have very different properties of the 

variance-covariance matrix Δ . 
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5.3.1 Fixed Sample Size Designs  

The random vector S  represents a fixed sample size design if ( )T | 0=1 S FV . Some 

examples of fixed sample size designs are SRS, Sampford, Midzuno, and Tillé 

sampling (Tillé, 2006). These designs have the following properties: 

(a) Δ  is positive semidefinite. 

(b) If ( ) ( )min 1 2 max...Nλ λ λ λ−≤ ≤ ≤ ≤Δ Δ  are the ordered eigenvalues of Δ , then 

( )min 0λ =Δ ; that is, the eigenvalues ( )kλ Δ  for k U∈  are nonnegative. 

(c) row 0k =1 Δ  and T col 0k =1 Δ  for k U∈ , and ( )Tr 0=IΔ , that is the sums of 

rows, the sum of columns, and the total sum of the elements of Δ  is zero. 

(d) The sample size is computed as Tn = 1 π . 

5.3.2 Random Sample Size Designs  

The discrete random vector S  with parameters ( )| =S πFE  and ( )| =S ΔFC  is a 

random sample size design if ( )T | 0≠1 S FV . Some examples of random size 

designs are the Bernoulli, and PO (Tillé, 2006). Although this type of sampling is less 

frequently implemented in practice, random size designs are especially useful for 

modeling nonresponse. The additional properties of the random sample size designs 

are: 

(a) Δ  is positive definite with all eigenvalues ( ) 0kλ >Δ  for k U∈ . 
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(b) ( )diag=Δ π  because kl k lπ π π=  in Δ  for , :k l U k l∈ ≠ . 

(c)  The row and column sums are T rowk kπ=1 Δ , coll lπ=1 Δ  for ,k l U∈ , and 

( )Tr n=IΔ  where n  is the expected sample size, ( )T | .n = 1 SE F  

(d) ( ) ( )( )T T T| = 1= −1 S 1 Δ1 1 π πeV F . 

(e) Let { } 10,1 N×∈s  be the vector of the realization of S , =S s  then the observed 

sample size on  is T
on = 1 s . 

(f) If ( ) ( )min 1 2 max...Nλ λ λ λ−≤ ≤ ≤ ≤Δ Δ  are the ordered eigenvalues of the 

variance-covariance matrix Δ , then the eigenvalues are the first order 

probability of inclusion π . The largest eigenvalue of Δ , is 

( ) { }max arg max k
k U

λ π
∈

=Δ . 

REMARK 5.2  The properties and classification of sample designs based on 

the properties of variance-covariance matrix Δ  as a Hermitian matrix described 

above and in Sections 5.3, 5.3.1, and 5.3.2 have not been reported on the literature 

before. 
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5.4 Functions of the Random Vector S 

We explore two basic functions of the random vector S  using results from 

multivariate standard statistical limit theory to understand the statistical properties of 

design-based estimators. 

5.5 Function for the Mean Vector of the Random Vectors S 

Let : N N→Z ¡ ¡  be a vector-valued function defined as ( )
1

1 N

k
kN =

= ∑Z S S  where kS  

is the k -th realization of S  for { }1,...,k N∈ . The random vector Z  is the average of 

all vectors kS . This function is a typical example found in statistical limit theory 

textbooks (e.g., Polansky, 2011). Define { } 1N N

∞

=
Z  as the sequence of estimators Z . 

Then 

(a) ( )lim |NN →∞
=Z πE F . 

(b) ( )|NZV F  is bounded, ( ) 1|N N
 =  
 

ZV F O . 

(c) Following from (a) and (b) { } 1N N

∞

=
Z  is a consistent sequence of estimators of 

π  (weak convergence, Polansky, 2011). 
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5.6 Function for the Mean of the Elements of the Random 

Vector S 

Define the second function as follows: let Z : N →¡ ¡  be a vector-to-scalar valued 

function ( ) T1Z
N

=S 1 S . This function differs from the one in the previous section 

because Z  is now the average of the N  elements kS  of S . The function Z  is the 

overall sampling rate (or expected sampling rate in random sample size designs). To 

study the asymptotic properties of Z , let { } 1N NZ ∞
= be the sequence of estimators Z . 

The expected value and variance of this sequence are 

 ( ) T1|N N NZ
N

= 1 πE F , and (5.3) 

 ( ) T
2

1|N N N NZ
N

= 1 Δ 1V F . (5.4) 

This function is not as common because the elements kS ∈S  may not have the same 

expected value, ( ) ( )| |k lS S≠E EF F  for k l≠  and ,k l U∈ , and the 2-tuples ( ),k l  

may be correlated (they are not independent). 

Modified versions of asymptotic properties theorems for sequences of random 

variables that are neither identical nor independent are used to determine the 

asymptotic properties of this sequence. Furthermore, additional conditions on the 

behavior of the other parameters need to be imposed before deriving the asymptotic 

properties of the sequence of estimators { } 1N NZ ∞
= . We discuss these conditions in 

more detail in Section 5.10. 
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The expressions (5.3) and (5.4) can be further simplified depending on the type of 

sample design. If S  is a fixed sample size design, then ( )| nZ f
N

= =E F , where f  

is the overall sampling rate and ( )| 0Z =V F . In this case, there is no need to find an 

upper bound for the sequence of estimators { } 1N NZ ∞
=  because ( )|NZV F  is always 

zero. 

In contrast, if S  is a random sample size design, then the sequence { } 1N NZ ∞
=  

converges to the expected sampling rate 1
k

k NN
π

∈
∑ . An upper bound of the variance 

( )|NZV F  is found by applying regular rules for variances of random vectors, 

inequalities for quadratic forms of Hermitian matrices, and inequalities for 

eigenvalues in terms of matrix norms. So 

 ( ) ( ) ( ) ( )2 maxT
max 22 2 2

1 1 1|
N

N
N N N N N N N NZ Q

NN N N
λ

λ= = ≤ =Δ
Δ

1 Δ 1 1 Δ 1V F , (5.5) 

where ( ) T
N N N N NQ =Δ 1 1 Δ 1  is the quadratic form of the vector N1 , ( )max Nλ Δ  is 

the maximum eigenvalue of the matrix NΔ , and 2
2N1  is the squared 2L -norm of the 

vector N1 , where 2 2
2 1N

k N
N

∈
= =∑1 . The variance ( )|N NZV F  is bounded by a 

function that depends on the largest eigenvalue of NΔ , ( )max Nλ Δ . In sample designs 

where the sample draws are independent (e.g., for , ,k l k l U≠ ∈ ), then 
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( )( )diagN N N N= −Δ π 1 πe . Since for diagonal matrices, the eigenvalues are the 

elements of the diagonal, the largest eigenvalue is  

 ( ) { } ( ){ }max , , ,max arg maxarg 1
N N

N N kk N k N k
k U k U

λ π π
∈ ∈

= ∆ = −Δ . (5.6) 

The bound of ( )max Nλ Δ  depends on ,N kπ . It is desirable to have a bound that does 

not depend on the first order inclusion probabilities. This bound can be found by 

noticing that ( )max Nλ Δ  is the variance of a random variable with a Bernoulli 

distribution, which has a maximum value when 1
2

π = . Then, the variance of 

sequence { } 1N NZ ∞
=  for designs with random sample sizes is bounded by  

 ( ) 1| N
N N

KZ
N N

 ≤ =  
 

V F O , (5.7) 

where 0.5NK = . An implicit assumption in (5.7) is that ( )= 1NK =O  which is true if 

( )maxlim N
N

λ
→∞

< ∞Δ . 

5.7 Linear Functions of the Elements of the Random Vector S 

We now introduce a constant vector N∈a ¡  in the function Z . Let [ ] N
ka= ∈a ¡  be 

a vector of constants, and let : NZ →¡ ¡  be the function of S  defined as 

( ) T

1

1 1 N
k k

k
Z a S

N N =
= = ∑S a S . To study the asymptotic properties of this estimator, we 
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define the sequence of estimators { } 1N NZ ∞
=  and apply the same rules as in 

Section 1.5. The expected value and variance of { } 1N NZ ∞
=  are 

 ( ) T1|N N N NZ
N

= a πE F , and (5.8) 

 ( ) ( ) ( ) 2
maxT 2

2 2
1 1| Q

N
NN

N N N N N NZ
N NN N

λ ∆
= = ≤Δ

a
a Δ a aV F , (5.9) 

where 2
2Na  is the square of the 2L -norm of Na , 2 2

2N Nk
k N

a
∈

= ∑a . The upper bound 

of ( )|N NZV F  is a function of the largest eigenvalue of NΔ . Replacing ( )max Nλ ∆  

by ( )maxN NK λ≥ ∆  so 

 ( )
2

| NN
N N

KZ
N N

≤
aV F ,  

where NK  can be any of the following vector-induced matrix norms: 

 

( )

1
1 1

1 1
1/2T

max max 1- norm

max max -norm

tr Frobenius norm

N

N N

N N

N Nkl Nkl Nk Nl
l U l Uk k

N N
N N Nkl Nkl Nk Nl

k U k Ul l

N N NF

K

π π π

π π π

∈ ∈= =

∞ ∈ ∈= =


= = −



= = = − ∞



  =   

∑ ∑

∑ ∑

Δ Δ

Δ Δ

Δ Δ Δ

.  

This upper bound depends on the values of the elements of NΔ . As in the previous 

section, we can refine the upper bound for sample designs with random sample sizes 

since ( )( )diag 1N N N= −Δ π πe  then  
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 ( ) [ ]{ } ( ){ }max maxarg max arg 1
N N

N Nkk Nk Nk
k U k U

λ π π
∈ ∈

 ∆ = = − Δ . (5.10) 

Also, as in the previous section, the upper bound that does not depend on the 

eigenvalues or matrix norms is found by noting that ( )max Nλ ∆  is maximum when 

1
2kπ = , so  

 ( ) ( )
2 1 1| 1NN

N N
KZ
N N N N

   ≤ = =   
   

aV F O O O , (5.11) 

where 0.5NK =  after applying Slutsky's theorem and assuming that ( )
2
2 1

N

N
=

a
O . 

An implicit assumption in (5.11) is that ( ) ( )max 1Nλ ∆ =O  as N → ∞ . We explore 

situations where ( )
2
2 1

N

N
≠

a
O  in Section 5.10 by defining an explicit sequence 

{ } 1N N
∞

=a . 

5.8 The Horvitz-Thompson Estimator as a Linear Function of 

the Elements of the Random Vector S 

The HT estimator of the population mean T1Y
N

= 1 y  is the linear function ( )Z S  

defined in Section 5.6 where =a d ye , [ ] 1
k kd π − = = =  d 1 π%  for k U∈  and 

N∈y ¡ . The HT estimator of the mean Y  is  
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 ( ) ( )T1ˆ
HTY Z

N
= =S d y Se . (5.12) 

Let { },
1

ˆ
HT N

N
Y

∞

=
 be the sequence of HT estimators defined in (5.12), then the 

expected value and variance are 

 ( ) T
,

1ˆ |HT N N N NY
N

= 1 yE F , (5.13) 

 ( ) ( ) ( )T
, 2

1ˆ |
NHT N N N N N NY

N
= ∆d y d ye eV F . (5.14) 

The conditions for the sequence of the estimators { },
1

ˆ
HT N

N
Y

∞

=
 to be asymptotically 

unbiased and consistent depend on the sample design and the outcome (Särndal, 

Swensson, & Wretman, 1992). In other words, whether an estimator meets these 

conditions depend on the sequences { } 1N N
∞

=y , { }, 1N k N
∞

=
π , and { } 1N N

∞
=Δ . These 

cannot be set arbitrarily; for example, if the sequence of NS  is a valid sample design, 

then NΔ  has to be a Hermitian matrix with the properties described in Sections 5.3.1 

and 5.3.2. These additional conditions often are not fully explored in the current 

literature. 

5.8.1 The Variance of the Horvitz-Thompson Estimator 

To derive the variance of HT estimator, we reparametrize (5.12) using the variable S
(

 

defined as follows: 



 

239 

• Let : N N→S
(

¡ ¡  be a vector-to-vector valued function of S  where =S d S
(

e . 

The expected value of S
(

 is  

 ( ) ( )| |= = =S d S d π 1
(

e eF FE E . (5.15) 

The covariance matrix of S
(

, N N×∈SΔ( ¡ , is 

 
( ) ( )T

T 2

|

1 N Nk l

kl

d d
d

×

= =

 
= = = − ∈ 

 

SS Δ d S d

dΔd Δ d

(

e

(

¡%

FV V
. (5.16) 

The variance of the sequence of HT estimators, { },
1

ˆ
HT N

N
Y

∞

=
 is 

 ( ) ( )
( ) 2

maxT 2
, 2 2

1 1|
N

N N
HT N N N N NNY

N NN N

λ
= = ≤

S

S
ΔS

Δ y
y Δ y Q y(

(
(V F . (5.17) 

Its bound is a function of the largest eigenvalue, ( )max Nλ SΔ ( , of the reparametrized 

covariance matrix NSΔ ( . As in previous sections, we can refine the bound by 

replacing ( )max Nλ SΔ (  by ( )maxN NK λ≥ SΔ (  using any of the matrix norms induced 

by the vector 1-norm, ∞-norm, or Frobenius norm as 

 

( )

1
,1 1 1

1
,

1 1
1/2T

max max 1 1- norm

max max 1 -norm

tr Frobenius norm

N N

N N

N N

Nk Nl NklN N kll U l Uk k
N N

N Nk Nl NklN N klk U k Ul l

N N NF

d d d

K d d d

−

∈ ∈= =

−
∞ ∈ ∈= =


= ∆ = −



= = ∆ = − ∞



  =   

∑ ∑

∑ ∑

S S

S S

S S S

Δ

Δ

Δ Δ Δ

( (

( (

( ( (

.  
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For random sample size designs, we can refine the value of NK  since 

( )diag 1NN = −SΔ d( . The value of NK  is 

 { } max minarg max 1 1
N

N N NN
k U

K d π
∈

= ∆ = − = −S
( .  

Notice that effect of the weights Nd  on NΔ  reflected in NSΔ ( . The bound of 

{ },
1

ˆ
HT N

N
Y

∞

=
 is a function of the maximum sampling weight Nkd , not the maximum 

Nkπ  as in the estimator in Section 5.7. The bound of the variance of { },
1

ˆ
HT N

N
Y

∞

=
 is  

 ( ) ( )
2
2

,
1 1| 1NN

HT N N
KY
N N N N

   ≤ = =   
   

y
V F O O O =, (5.18) 

where 2
2Ny  is the square of the Euclidian norm of Ny , 2 T

2N N N=y y y . The order 

of the variance ( ), |HT N NYV F  is ( )1N −O  after using Slutsky's theorem. Two 

implicit assumptions in (5.18) are ( )1NK =O  and ( )
2
2 1N

N
=

y
O . 

Breidt & Opsomer (2017) lists two conditions for the consistency of the HT 

estimator: 

D1:  

D2:  

,limsup max
N

N kl
k l UN

n
≠ ∈→∞

 
 ∆ < ∞ 
 
 

2

limsup N
k

k U

N N

y

N
∈

→∞
< ∞

∑
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Note that ( )

2
2 2 2

112 ...
1

N

N

N

Nk
N NNN k

N N N

y
y y

N N N
= + +

= = =
∑y

O  in (5.18) means that for the 

finite population second moment for y , there is a non-zero constant c  such that 

 

2

1

NN

Nk
k

N

y
c

N
= → < ∞

∑
, (5.19) 

as the population size increases. This is condition D2. To understand condition D1, 

we use the bound proposed by Breidt & Opsomer (2017) for the variance of the HT 

estimator in (5.20): 

 ( )
2,2

2
1 1 11

max
1ˆ

N N
N

N NN kl
k l U kNk

HT
k k

yyY
N N Nλ λ

≠ ∈

= =

∆  
 ≤ +
 
 

∑ ∑V , (5.20) 

where { } 1min 0k
k U

π λ
∈

≥ > . Letting { } 1min k
k U

π λ
∈

=  and defining 
{ }

1
min arg k

k U

d
π

∈

=  then 

1max arg
k U k

d
π∈

 
=  

 
, that is, d  is the maximum weight. Replacing 1λ  by d  in (5.20) 

and after simplification using the fact that 
1

N
k

k
nπ

=
=∑  and nf

N
= , we obtain  

 ( ) 1
ĤTY

n
 =  
 

V O . (5.21) 

which converges to zero because ,
, ,
max 0

N
N kl

k l k l U≠ ∈
∆ →  as N → ∞ . This result is 

based on the fact that draws from the sample tend to become independent, (e.g., 

0kl k lπ π π− →  for k l U≠ ∈ ) as the population and sample sizes go to infinity. 
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Although both formulas give the same solution, (5.18) is easier to derive and 

interpret. 

5.8.2 The Variance Estimator of the Horvitz-Thompson 

Estimator 

The variance estimator of the HT estimator of the mean Y  is derived from (5.16) 

after replacing Δ  by =Δ Δ Π% %  as  

 ( ) ( ) ( )T
2

1ˆ |HTY
N

= y d S Δ y d S
(

e e e eV F . (5.22) 

Reparametrize ( )ˆ |HTYV F  as a sum of the new variable k l
kl kl

k l

y y
ψ

π π
= ∆  expanded 

by klπ , similar to an HT estimator as  

 ( ) 2
1ˆ | kl

HT
klk U l U

Y
N

ψ
π∈ ∈

= ∑ ∑V F . (5.23) 

Continue reparametrizing (5.23) using the following variables  

• N N×∈ψ ¡  where ( ) ( )T=ψ y π Δ y π% % . 

• 2
N N×∈S ¡ , a matrix with the sample membership indicators of the 2-tuples 

( ),k l  where ( )2 =S ΠE , the matrix with the second order probability of inclusion 

klπ . 
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• 
2 2

2
N N×∈SΔ ¡ , the covariance matrix of 2S  where [ ]2

= klmn kl mnπ π π−SΔ  and 

klmnπ  is the fourth order inclusion probability of the 4-tuples ( ), , ,k l m n . 

• To avoid tensor notation, we vectorize ψ  and Π  as ( )
2

vec N∈ψ ¡ , 

( ) 21vec N− ∈Πe ¡  (Magnus & Neudecker, 1999). The expression of ( )ˆ |HTYV F  

with the reparametrized variables is  

 ( ) ( ) ( )T 1
22

1ˆ | vec vecHTY
N

−= ψ Πe eV F S . (5.24) 

The expected value is 

 

( )( ) ( ) ( )( )
( ) ( )( )
( ) ( )
( ) ( )2

T 1
22

T 1
22

T 1
2

T
2

1ˆ | vec vec

1 vec vec

1 vec vec

1 vec

HT

HTN

Y
N

N

N

Y
N

−

−

−

=

=

=

= =

ψ Π S

ψ Π S

ψ Π Π

ψ 1

e

e

e

e

e

e

E V

V

F E

E
, (5.25) 

therefore, ( )ˆ |HTYV F  is an unbiased estimator of ( )|HTYV F . 

To study the limiting distribution and bounds of the estimator ( )ˆ |HTYV F  as 

, ,N n → ∞  we derive the expression of ( )( )ˆ |HTYV V F  following the same 

procedures from the previous sections. 
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( )( ) ( ) ( )( )
( ) ( )( ) ( )

( ) ( )

( )( )

( )

2

2

2

T
24

T
24

T
4

4

2
max 2

3

1ˆ | vec vec

1= vec vec vec

1= vec vec

1 vec

HTY
N

N

N

Q
N

NN

λ

= =

=

≤

S

S

S

ψ Π S

ψ Π S ψ Π

ψ Π Δ ψ Π

ψ Π

Σ y ye

V V V

=

=

%

% %

% %

%

F

V

Δ

,  

where ( )2maxλ SΣ  is the largest eigenvalue of the matrix  

 
2 2

2 2 2=S SΣ Δ Δ π Πe e ee % % ,  

with the element ( ) ( )
2

2

, 2 2 2
kl k l klmn kl mn

klmn
k l kl

π π π π π π

π π π

− −
=SΣ . 

An upper bound ( )2maxK λ≥ SΣ  is obtained using the vector induced matrix norms 

in 
2SΣ  as  

 

( )

2 2

2 2

2 2 2

,1
1

,
1

1/2T
, ,

max 1- norm

max -norm

tr Frobenius norm

N

kl
l U k

N
kl

k U l

kl klF

K

∈ =

∞ ∈ =


=



= = ∞



  =   

∑

∑

S S

S S

S S S

Σ Σ

Σ Σ

Σ Σ Σ

.  

The main difficulty of identifying an upper bound for K  is that it requires examining 

the elements of 
2SΣ  where the third and fourth order klmπ klmnπ  of inclusion 
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probabilities ( klmπ  and )klmnπ  are not available or difficult to compute for some 

complex designs. 

On the other hand, for random sample size designs, we can refine the value of K  

since 
2SΣ  is a diagonal matrix where ( ) ( )2

33 11 1k kd π −  = − = −     
SΣ . K  is the 

maximum sampling weight which is equivalent to the smallest kπ . Assuming that 

( )
2
2 1

N
=

y ye
O  then, after using Slutsky's theorem, 

 ( )( ) ( )
2
2

3 3 3
1 1ˆ | 1HT

KY
NN N N

   ≤ = =   
   

y ye
V V F O O O . (5.26) 

( )ˆ
HTYV  is bounded in probability and ( ) ( ), ,

ˆlim lim 0HT N HT N
N N

Y Y
→∞ →∞

= =V V . The 

expression in (5.26) implicitly assumes that 
2
2

N
y ye

 is ( )1O  which can be written 

as 

 
( )

( )

22 4222
1 12 2 1

N N

k k
k k

y y

N N N N
= == = = =

∑ ∑yy y
e

e
O , (5.27) 

which is the fourth population moment of y . Equation (5.26) is condition D4 in 

Breidt & Opsomer (2017). Condition D2 is { }
,
min 0

N
Nkl

k l U
π λ

∈
≥ >  which we have 

already covered since, in order to produce ( )ˆ |HTYV F , we divide by Δ  by Π  which 

is defined if { }
,

min arg 0kl
k l U

π
∈

> . The result in (5.26) is found in the literature. 
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We illustrate the speed of convergence varies and we can even find situations where 

( )ˆ |HTYV F  will not become zero as N → ∞ . Substitute 2
kx  by 4

ky  in 2
2y ye , then 

an upper bound of ( ),
ˆ

HT NYV , in terms of the population mean NY , is 

( ) 2 2 4
,

ˆ
HT N N N NY KX K N Y≤ =V . If we define { } 1N N

∞
=y  as a sequence of real 

constants, N
N ∈y ¡  where ( )P

NY N=O , then the value of p  such as ( ),
ˆ

HT NYV  

does not converge, e.g., ( ) ( ),
ˆ 1HT N pY ≥V >O , is 1

2
p ≥ − . If 3 1

4 2
p− < < −  then 

( ),HT NYV  converges at a slower rate than ( )1
p N −O ; if 3

4
p < − , ( ),HT NYV  

converges at a faster rate than ( )1
p N −O . 

5.8.3 The Central Limit Theorem and the Horvitz-

Thompson Estimator 

Deriving the asymptotic normality of a design-based estimator is a difficult topic. The 

Central Limit Theorem (CLT) for finite populations has only been rigorously justified 

for some designs (Cardot, Degras, & Josserand, 2013). Proof for equal probability 

sampling is found in Madow (1948), Erdös & Rényi (1959), and Hájek (1960) while 

Hájek (1964) proved the theorem for rejective Poisson sampling with varying 

probabilities and Scott & Wu (1981) for the ratio and regression estimators under 

simple random sampling. In general, the finite population CLT proofs are technically 

difficult and omitted in most textbooks. Using the multivariate approach for the 
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random vector S  and the fixed finite population y  provides an alternative approach 

for proving the theorem for some designs. 

Consider all designs where the sampling units are independently drawn without 

replacement, kl k lπ π π=  for k l U≠ ∈ . Examples of these designs are Bernoulli and 

Poisson. Using the re-parametrization described in Section 5.8.1, then ˆ
HTY S=

(
 with 

( )|k kS y=
(

E F , and ( ) ( )2| 1k k kS y d= −
(

V F . By the Lindenberg, Lévy, and Feller 

version of the CLT for independent random variables with different means and 

variances (see Theorem 6.1 and Corollary 6.3 in Polansky 2011), the sequence of 

estimators { } 1N NZ ∞
= , ( )1

,
ˆ

N N HT N NZ N Y Yτ −= −  and ( )|
N

N Nk
k U

Sτ
∈

= ∑
(

V F  has a 

limit distribution ( )0,1N  if ( ) ( )
N

k k N
k U

S y oη ητ
∈

− =∑ E  for some 2η > . 

For other designs, where kS
(

 and lS
(

 are correlated, the Lindenberg-Lévy-Feller CLT 

assumption of independence may be weakened. For example, if we redefine the 

sequence { } { }, 00
ˆ
HT N N NN

Y S
∞ ∞

==
=

(
 as a sequence of dependent and correlated random 

variables and we assume the following conditions hold: 

 ( ), ,|N k N N kS µ= < ∞
(

E F ,  

 ( ) ,|N N N kS τ= < ∞
(

V F , and (5.28) 

 ( ) ( )
0

lim | 0,N N N
N

N S τ
→

= ∈ ∞
(

V F ,  
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where ,
1

N k k
k UN

µ π
∈

= ∑ , and ( ) ( )| , |
N N

N Nk N Nk Nl N
k U k l U

S S Sτ
∈ ≠ ∈

= +∑ ∑ ∑
( ( (

V CF F  for 

N → ∞ . Several mild technical conditions but different from author to author need to 

be imposed beyond those for Lindeberg-Lévy-Feller to derive Central Limit 

Theorems for dependent correlated sequences. Most authors claim a limiting normal 

distribution by appealing to the specific version of the central limit theorem. For 

example, Breidt, Opsomer, & Sanchez-Borrego, (2016) claim normality after 

invoking Lyapunov’s version of the central limit theorem. 

5.8.4 The Design Consistency of the Horvitz-Thompson 

Estimator 

There are different ways to establish consistency of a sequence of estimators 

{ } 1
ˆ .N N

θ
∞

=
 For example, Lehmann (1999) gives a sufficient condition for an estimator 

to be consistent when the sequence of estimators converge to a constant in quadratic 

mean. This condition is demonstrated for the HT estimator using the same 

reparameterization of (5.12) with =S d y S
(

e e . The expected value and variance of 

the HT estimator, 1ˆ
HT i

k U
Y S

N ∈
= ∑

(
, is 

 ( )ˆ |HTY Y=E F , and  

 ( ) ( ) ( ),2 2
1 1ˆ | | , |HT k k lkl

k U l U k U k l U
Y S S S

N N∈ ∈ ∈ ≠ ∈

   
= ∆ = +      

   
∑ ∑ ∑ ∑∑S

(
( ( (

V V CF F F , (5.29) 
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where the terms ( ), |k l
k l U

S S
≠ ∈

∑∑
( (

C F  are not zero. Let { },
1

ˆ
HT N

N
Y

∞

=
 be the sequence of 

HT estimators, where , ,
1ˆ

N
HT N k N

N k U
Y S

N ∈
= ∑

(
, then  

 
( ) ( )2 ,2

, 2 2 2

2
2

2

ˆ | 1ˆ ˆPr N N
Nkl

HT N N k U k U
HT N N N

N N

NN

NN N

Y
Y Y

N

K
NN

ε
ε ε

ε

∈ ∈
∆

 
− ≥ ≤ = 

 

≤

∑ ∑

y

V F

. (5.30) 

Since (5.30) holds for any 0Nε >  then the sequence of HT estimators { },
1

ˆ
HT N

N
Y

∞

=
 is 

consistent for NY . Note that this condition holds for both random sample size and 

fixed sample size single stage designs. 

For our discussion, to prove that a sequence of estimators { } 1
ˆ
N N

θ
∞

=
 is design 

consistent of the population characteristic Nθ , we use two sufficient conditions to 

establish design consistency (Remark 5.3.1 and Exercise 5.18 in Särndal, Swensson, 

& Wretman 1992): 

(a.) The sequence of estimators { } 1
ˆ
N N

θ
∞

=
 from sequences of sample sizes 

{ } 1N Nn ∞
=  drawn using sample designs ( ){ } 1N N N N

p A a ∞
=

=  from the sequence 

of populations { } 1N N
∞

=F  of increasing sample sizes { } 1N NN ∞
= , is 

asymptotically unbiased for a population characteristic Nθ , that is 
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 ( )ˆlim 0N N
N

θ θ
→∞

 − = E . (5.31) 

(b.) The variance of the sequence of estimators { } 1
ˆ
N N

θ
∞

=
 goes to zero as the 

sample and population sizes go to infinity (e.g., ( )ˆ |Nθ < ∞V F  and 

( )ˆlim | 0N
N

θ
→∞

=V F ). 

The design consistency of the HT estimator of the mean is proven using the results 

(5.13) and (5.18), the sequence of HT estimators { },
1

ˆ
HT N

N
Y

∞

=
 is design consistent 

for NY . 

5.8.5 The Confidence Intervals and the Horvitz-Thompson 

Estimator 

In this section, we derive the asymptotic properties of the confidence intervals (CI) of 

the HT estimator of the mean. Confidence intervals are created by identifying a 

function of the observed sample data that produces an interval or region containing 

the true parameter value with a probability α  (e. g., 100α % or confidence 

coefficient) that is specified before selecting the sample (Polansky, 2011). CIs are 

created by inverting a statistical hypothesis test or a pivotal quantity defined as a 

function of the data and the unknown parameter θ , whose distribution does not 

depend on θ  or any other unknown parameter (Casella & Berger, 2002). 
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Since we use the results of the CLT, the confidence intervals also refer to a sequence 

of random variables. For example, for the sequence for the HT estimator { },
1

ˆ
HT N

N
Y

∞

=
 

of NY , the function 
( )
ˆ

ˆ |

HT

HT

Y YZ
Y

−
=

V F
, the sequence is { } 1N NZ ∞

= , where 

( )
,

,

ˆ

ˆ |

HT N N
N

HT N

Y Y
Z

Y

−
=

V F
. The limiting distribution of { } 1N NZ ∞

=  is ( )0,1N  as N → ∞ . 

For confidence intervals, we define the sequence ( ){ } 1
|N N N

C α ∞
=

F  in terms of the 

upper and lower limits as  

 
( )

( ) ( ) ( ) ( ), , , ,1 /2 1 /2

|

ˆ ˆ| , |

N N

HT N HT N N HT N HT N N

C

Y Y z Y Y zα α

α

− +

=

 + +  

F

F FV V
. (5.32) 

When ( ),
ˆ |HT N NYV F  is not known we replace it by ( ),

ˆˆ |HT N NYV F , and the revised 

sequence { } 1N N
Z

∞∗
=

 where 
( )

,

,

ˆ

ˆˆ |

HT N N
N

HT N N

Y Y
Z

Y

∗ −
=

V F
 converges to a normal 

distribution. This result follows because the sequence ( ){ },
1

ˆˆ |HT N N
N

Y
∞

=
V F  is a 

consistent estimator of ( ),
ˆ |HT N NYV F ; using the theorem for functions of consistent 

estimators, ( ) ( ), ,
ˆˆ ˆ| |

P
HT N N HT N NY Y→V VF F . Combining all these results, 
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( )[ ]

( ) ( ) ( ), 1 /2 , , (1 )/2

ˆlim Pr |

ˆ ˆlim Pr | |

N N N
N

HT N N N HT N HT N N
N

Y C

Y z Y Y Y zα α

α

α

→∞

− +
→∞

∈

= ≤ − ≤

=

 
  

F

F FV V . (5.33) 

In other words, the sequence of upper and lower limits of the confidence intervals 

( )ˆ |NC α F  are asymptotically accurate. 

5.9 Properties of Estimators as Nonlinear Functions of the 

Elements of S 

All PA estimators are functions of S , which is a consistent estimator of π . We can 

derive the asymptotic properties of new estimators under regularity conditions that 

depend on the type of function. In Section 5.8 we derive the large sample properties 

of the HT estimator which is a linear function of the kS ∈S . 

For estimators such as the HJ and ratio estimators, the function is nonlinear; that is, 

the estimator is a ratio of linear combinations of kS ∈S . For this type of estimators, 

the variance is derived using the linear approximation of the nonlinear function using 

the first two terms of the Taylor Series (TS) expansion. 

The PA estimator of the mean of the population characteristic θ  is defined as 

f : N¡ a ¡ , the vector-to-scalar valued function twice differentiable, where 

 ( ) ( )( )T1ˆ f
N

θ =S d S Se . (5.34) 
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The TS approximation of ( )θ̂ S  evaluated at the point =S π . is 

 
( ) ( )( ) ( )( ) ( )

T
T

2

2

f1 1ˆ f

1
p

N N

N

θ
=

=

∗

∂
= + −

∂

 + − 
 

S π
S π

d S S
S d S S S π

S

S π

e
e

O

,   (5.35) 

where * − ≤ −S π S π . Thus, the expected value ( )( )θ̂ SE  is  

 ( )( ) ( ) ( )T 11ˆ | f N
N

θ −= +S 1 πF OE , (5.36) 

because ( )|− =S π 0FE  and 
2

2
| C

N
π∗ − ≤ 

 
S π FE  for a constant C . 

The variance ( )( )ˆ |θ S FV  is  

 ( )( ) ( )( ) ( )( )
T

T T

2
f f1 1ˆ |

NN
θ

= =

    ∂ ∂      = +      ∂ ∂       S π S π

d S S d S S
S Δ

S S
e eV F O .  (5.37) 

The approximate variance of ( )θ̂ S  is 

 ( )( ) ( )( ) ( )( )
T

T T

2
f f1ˆ |

N
θ

= =

    ∂ ∂    =
    ∂ ∂     S π S π

d S S d S S
S Δ

S S
e eAV F .  (5.38) 

We now derive the regularity conditions that will permit us to establish the large-

sample properties of the PA estimator based on the function ( )f S  of the discrete 

random vector S . We do not include any regularity conditions for the existence and 
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uniqueness of maximum likelihood estimators and pseudo-maximum likelihood 

estimators which are part of the PA framework (see Definitions 1.7 and 1.10). 

Let ( )f S  be the PA estimator for population characteristic θ , define the following  

1. Let ( ){ } 1
f N N

∞
=

S  be a sequence of estimators defined by ( )f NS  for a sequence of 

nested finite populations { } 1N N
∞

=F  such as 1N N +⊂F F  for N ∈¥  with 

increasing population size where each element of the population is identified by 

their labels { }1,...,N NU N∈ . 

2.  Each population { } 1N N N
∞

′ =∈F F  in the sequence ( ) ( )1, N P
N N N

′× +
′ ′ ′= ∈y x ¡F  

consists of a vector with the population characteristic of interest 1N
Ny ′×

′ ∈¡  and 

a matrix N P
N

′×
′ ∈x ¡  with P-auxiliary variables. 

3.  Let { } 1N N
∞

=S  be a sequence or random vectors with the sample membership 

indicators associated with the sequence of populations { } 1N N
∞

=F . 

4. Each k  sample membership indicator ,k N NS ′ ′∈S  is associated with the k  

element of the finite population ( ),kN kN kNy′ ′ ′= xF  for Nk U ′∈  for each 

{ } 1N N N
∞

′ =∈S S  and { } 1N N N
∞

′ =∈F F . 
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5. For each { } 1N N N
∞

′ =∈S S , the expected value and variance-covariance of N ′S , 

( )N N′ ′=S πE  and ( )N N′ ′=SC ∆ , uniquely define sample design 

( )N N Np A a′ ′ ′=  for the population N′  in the sequence of sample designs 

( ){ } 1N N N N
p A a ∞

=
=  associated with { } 1N N

∞
=F . 

6. For each { } 1N N N
∞

′ =∈S S  in { } 1N N N
∞

′ =∈F F , the sample design is measurable, 

that is 0kNπ ′ >  for all Nk U ′∈ , and 0klNπ ′ >  for all Nk l U ′≠ ∈  ( )N N′ ′=S πE  

and ( )N N′ ′=SC ∆ . 

7.  For each { } 1N N N
∞

′ =∈S S  in { } 1N N N
∞

′ =∈F F , the sample size drawn from the 

population N ′F  is 1
N N N kN

k N
n π′ ′ ′ ′

′∈
= = ∑1 π  for fixed sample size designs, or the 

expected sample size is ( ) 1
N N Nn = 1 πE . We assume that ( )lim 0,1N

N N

n f
N

′
→∞

= ∈ , 

that is as the population size goes to infinity, the ratio converges to the overall 

sampling rate bounded and away from 0 or 1.23 

                                                 

23 Note that we do not assume that the sample size goes to infinity. The increasing population size affects the 

sample design S which affects ( )N N′ ′=S πE . In other words, the sample size n  cannot set separately from 

N →∞ . 
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8. For each { } 1N N N
∞

′ =∈y F  in the sequence of populations, { } 1N N N
∞

′ =∈F F , the 

Euclidian norm is bounded, ( )
2
2 1N

NN
=

y
O , as N → ∞  (for consistency of the PA 

estimator ( )f NS ). 

9. The function ( )f S  is smooth and twice differentiable. 

Let ( ){ } 1
f N N

∞
=

S  be the sequence of PA estimator ( )f NS  (or any other estimator 

defined as a function of kN NS ∈S ), where the regularly conditions 1 to 9 hold in 

addition to the following conditions: 

(a) The sequence of estimators ( ){ } 1
f N N

∞
=

S  is asymptotically unbiased for Nθ , that 

is  

 ( ) ( )( )lim f f 0N
N→∞

− =S πE . (5.39) 

This condition can be shown for any PA estimator ( )f NS  using the result (5.36). 

(b) The variance of the sequence of estimators ( ){ } 1
f N N

∞
=

S  goes to 0 as N → ∞ , that 

is  

 ( )( )lim f | 0N N
N→∞

=SV F . (5.40) 
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This condition is shown for any PA estimator ( )f NS  using the result (5.37), and 

it depends on the specific form of the PA estimator and sample design. See the 

following sections for specific forms of PA estimators. 

Let ( )( ){ } 1
ˆ f N N

∞

=
SV  be the sequence of variance estimators of a sequence of PA 

estimators ( ){ } 1
f N N

∞
=

S  that meet the regularity conditions 1 to 9 in addition to 

conditions (a) and (b) and the following conditions: 

(c) For each { } 1N N N
∞

′ =∈y F  in the sequence of populations, { } 1N N N
∞

′ =∈F F , the 

Euclidian norm of the Hadamard squared of N ′y  is bounded, ( )
22
2

1 1
N

=ye O , 

as N → ∞  where 2 =y y ye e  (for consistency the variance estimator 

( )( )ˆ f NSV ). 

(d) The sequence of estimators ( )( ){ } 1
ˆ f N N

∞

=
SV  is asymptotically unbiased for 

( )( ){ } 1
f N N

∞

=
SV , that is  

 ( )( ) ( )( )( )ˆlim f f 0N N
N→∞

− =S SE V V . (5.41) 

(e) The variance of the sequence of estimators ( )( ){ } 1
ˆ f N N

∞

=
SV  goes to 0 as N → ∞ , 

that is  

 ( )( )( )ˆlim f | 0N N
N→∞

=SV FV . (5.42) 
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Both conditions also depend on the specific form of the PA estimator and sample 

design. See the following sections for specific forms of PA estimators. 

Assuming these regularity conditions hold, let  be the sequence of estimators 

defined as ( ) ( )f fN N NZ = −S π  where the function f : N →¡ ¡  and  

 ( ) ( )f
=

∂
=

∂ S π
d π S

S
,  

is the vector of partial derivatives of ( )f S  evaluated at =S π . If ( )d π  is not equal to 

the zero vector and ( )d π  is continuous in the neighborhood of π , and 

( ) ( )1/2 0,
d

N N NN −− →S π N ∆  (see Polansky 2011) then ( )( ) ( )( )T0,
d

NZ → d π d πN ∆  

as N → ∞  (See Theorem 6.5 in Polansky 2011). As a result, the limiting distribution 

of the sequence of estimators 
( )( )

1
f
N

N

Z
∞

=

  
 
  SV

 where ( ) ( )f fN N NZ = −S π  and 

where ( )( ) ( )( ) ( )Tf N N N=S d π d πV ∆  is 

 
( ) ( )

( )( )
( )f f
0,1

f

dN N−
→

S π

S
N

V
,  

as N → ∞ . Using Slutsky’s theorem, when ( )( ) ( )( ) ( )Tf N N N=S d π d πV ∆  is 

estimated by ( )( ) ( )( ) ( )
Tˆ ˆ ˆf N N N=S d π d πV ∆  then  

 ( ) ( )
( )( )

( )f f
0,1

ˆ f

dN N−
→

S π

S
N

V
.  

{ } 1N N
Z ∞

=
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REMARK 5.3  The nonlinear PA estimators require solving more complex 

functions of S  such as the inverse of link functions for GAMLSS models (e.g., 

exponential, negative inverse, and the inverse of the root square). The most complex 

expression is for nonlinear estimators with weights calibrated to the population and 

sample size, kw  for k U∈  which are also a function of kS ∈S . Computing the TS 

approximations for these functions require derivatives of products of vectors/matrices 

using the matrix chain rule, the derivative of the inverse of matrices, and derivative of 

Hadamard products. 

REMARK 5.4  Unlike estimating the parameter of nonlinear models that are 

solved iteratively (McCullagh & Nelder, 1989), the form of the PA estimator defied 

as 

 ( )Tˆ ˆPA paY = w μ Se ,  

has always a closed form since ( )ˆˆ pa =μ yE = where ( )ˆ yE = depends on the density 

distribution of y . Once the model parameters are estimated (they may be computed 

iteratively), they are plugged into the expression of ( )=μ yE = of the working model 

(see Section 1.5.1). 

REMARK 5.5  The expressions (5.37) and (5.38) do not reflect the 

variability from the model selection. Modifications to these expressions to reflect the 

model selection variability will be the topic of future research. 
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REMARK 5.6  Some of the regularity conditions described above are 

identified based on the properties of the variance covariance matrix Δ  listed in 

Section 5.3, the redefinition of the sample design as a function of the discrete random 

variable for the sample membership indicator in Section 5.8 have not described 

before in the literature. 

5.9.1 The Hájek Estimator 

Let y  be the variable of interest with a superpopulation model yM  where 

( )2,ky β σ∼ N , 0β ≠∈¡  is the location parameter. Let F  be a finite population 

consisting of N  iid realizations of yM . Let S  be a random discrete vector that 

uniquely defines the sample design ( )p =S s  with ( ) =S πE  and ( ) =SC ∆  that 

meets the regularity conditions listed in Section 5.9 on page 252. 

The PA estimator with this working model, the auxiliary variable 1, the total 

population N  is the HJ estimator: 

 ( )T

T
ˆ ˆ
HJ pmleY β= =

d y S
d S

e   (5.43) 

The HJ estimator is a nonlinear function f : N →¡ ¡  where ( )f a
b

=S , the numerator 

and denominator are linear functions of kS  with ( ) ( )Ta =S d y Se  and ( ) Tb =S d S . 

Using the results from Section 5.9, we approximate ˆ
HJY  by the first two terms of the 

TS of the function ( )ˆf
HJY

S  at the point =S π  as  
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 ( ) ( ) ( )
T

2
ˆ 2

ˆˆf +
HJ

HJ
HJ pY

YY
=

=

 ∂ = − + −
 ∂ S π

S π

S S π S π
S

O . (5.44) 

We focus on the term 
ˆ
HJY

=

∂
∂

S π
S

 which is a scalar-by-vector, partial, directional 

derivative with respect to the random vector S . Using the chain rule for derivatives of 

matrices  

 

( )

( )
( )

( ) ( )

T

T 2T

2

ˆ

1

1

HJY

Y Y
N NN

N

=
=

∂
= −

∂

= − = −

=

S π
S π

d y Sd y 1 d 1
S d S d S

d y 1 d 1 d y 1

d e

ee e e

e e e e

e

, (5.45) 

where Y= −e y  is the vector of residuals of the model yM  fit to the entire 

population. The approximate variance of ˆ
HJY  is  

 
( ) ( ) ( )( )

( ) ( )

T
2

T
2

1ˆ

1

HJY
N

N

= −

=

d e S π

d e Δ d e

e

e e

AV V
  (5.46) 

The estimator of the variance ( )ˆˆ
HJYV , computed by replacing the unknown 

population quantities by their sample-based estimates, is 

 ( ) ( ) ( )T
2
1ˆˆ ˆ

ˆHJ
HT

Y
N

= ∆d e s d e s( (e e e eV , (5.47) 
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where ( )ˆ
HJY= −e y s( e  are the sample-based residuals of the PL model, Tˆ HTN = d s  

and ˆ =Δ Δ Π% . The expression (5.47) matches the variance estimator of the HJ 

estimator in sampling books (Cochran, 1977). 

Using the same arguments in Section 5.9, since the PA estimator ˆ
HJY  is a nonlinear 

function of S  then the sequence of PA estimator { },
1

ˆ
GREG N

N
Y

∞

=
 is design consistent 

of the population mean NY . The limiting distribution of the sequence of estimators 

( )
,

,
1

ˆ ˆ

ˆ
HJ N N

HJ N
N

Y Y

Y

∞

=

 
 − 
 
 
  

V
 and 

( )
,

,
1

ˆ ˆ

ˆˆ
HJ N N

HJ N
N

Y Y

Y

∞

=

 
 − 
 
 
  

V
 is ( )0,1N . 

5.9.2 The Classical Ratio Estimator 

Let y  be the variable of interest with a superpopulation model yM  with 

( )2,k k ky x xβ σ∼ N , where 0kx ≠∈¡  is the auxiliary variable, 0β ≠∈¡  is the 

location parameter, and TX x= ∈1 ¡  is the population totals. Let F  be a finite 

population consisting of N  iid realizations of yM . Let S  be a random discrete 

vector that uniquely defines the sample design ( )p =S s  with ( ) =S πE  and 

( ) =SC ∆  that meets the regularity conditions listed in Section 5.9 on page 252. 
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The PA estimator with the normal working model yM , the auxiliary variable kx , 

and the population total X  is the RA estimator: 

 ( )
( )

T

T
ˆ

R̂A pmleY X= =
d y S

β
d x S

e
e

. (5.48) 

The RA estimator is a nonlinear function f : N →¡ ¡  where ( )f a
b

=S , the 

numerator and denominator are linear functions of kS  with ( ) ( )Ta =S d y Se  and 

( ) ( )Tb =S d x Se . Using the results from Section in Section 5.9, we approximate ˆ
RAY  

by the first two terms of the TS of the function ( )ˆf
RAY

S  at the point =S π  as  

 ( ) ( ) ( )
T

2
ˆ 2

ˆˆf +
RA

RA
RA pY

YY
=

=

 ∂
= − + −  ∂ S π

S π

S S π S π
S

O . (5.49) 

We focus on the term R̂AY

=

∂
∂

S π
S

 which is a scalar-by-vector, partial, directional 

derivative with respect to the random vector S . Using the chain rule for derivatives of 

matrices  

 

( )
( )

( )( )

( )( )
( ) ( )

( )

T TT

T 2T

T T

2

ˆ

1 1

1

RAY

Y
X X

Y R
X X X

X

=
=

 
 ∂

= − ∂  
 

= −

 = − = − 
 

=

S π
S π

d y d y S d x
S d x S d x S

d y d x

d y x d y x

d e

e e e
e e

e e

e e

e

. (5.50) 
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where Y= −e y  is the vector of residuals of the model yM  fit to the complete 

population. The approximate variance of R̂AY  is  

 ( ) ( ) ( )T
2

1
R̂AY

X
= d e Δ d ee eAV   (5.51) 

The estimator of the variance ( )ˆ
R̂AYV , computed by replacing the unknown 

population quantities by their sample-based estimates, is 

 ( ) ( ) ( )T
2
1ˆˆ ˆ

ˆRA
HT

Y
X

= d e s Δ d e s( (e e e eV , (5.52) 

where ( )ˆHTR= −e y x s( e  are the sample-based residuals of the PL model, 

( )
( )

T

T
ˆHTR =

d y s
d x s

e
e

, ( )Tˆ HTX = d x se , and ˆ =Δ Δ Π% . The expression (5.52) 

matches the variance estimator of the RA estimator in sampling books (Cochran, 

1977). 

Using the same arguments in Section 5.9, since the PA estimator ˆ
RAY  is a nonlinear 

function of S  then the sequence of PA estimator { },
1

ˆ
RA N

N
Y

∞

=
 is design consistent of 

the population mean NY . The limiting distribution of the sequence of estimators 

( )
1

ˆ ˆ

ˆ
RA N

RA
N

Y Y

Y

∞

=

 
 − 
 
 
  

V
 and 

( )
1

ˆ ˆ

ˆˆ
RA N

RA
N

Y Y

Y

∞

=

 
 − 
 
 
  

V
 is ( )0,1N . 
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5.9.3 The Linear PA Estimator (GREG) 

Let y  be the variable of interest with a superpopulation model yM  where 

( )2,k ky σx β∼ N , ( ) 1
1, , P

k k kPx x ×= ∈x … ¡  is the vector of auxiliary variables, 

( )T 1
1, , P

Pβ β ×= ∈β … ¡  is the vector with the location parameters, and 

T 1 P×= ∈X 1 x ¡  is the vector of the population totals of the auxiliary variables x . Let 

F  be a finite population consisting of N  iid realizations of yM . Let S  be a random 

discrete vector that uniquely defines the sample design ( )p =S s  with ( ) =S πE  and 

( ) =SC ∆  that meets the regularity conditions listed in Section 5.9 on page 252. 

The PA estimator of the population mean Y  based on the model yM  is  

 11 1ˆ ˆ ˆ ˆGREG pmleY
N N

−= = xx xyXβ XT T , (5.53) 

where ( )Tˆ P P×= ∈xxT S d x xe e ¡ , ( )T 1ˆ P×= ∈xyT S d x ye e ¡ , and 

1 1ˆ ˆ ˆ P
pml

− ×= ∈xx xyβ T T ¡ . This expression 5.53) matches the GREG estimator in 

Särndal, Swensson, & Wretman (1992). 

The variance of ˆ
GREGY  is 

 ( ) ( )T
2

1ˆ ˆ
GREG pmleY

N
= X β XV C .  
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Using the results from Section A.3.2 for the variance-covariance ( )ˆ
pmleβC  in (A.22), 

the approximate variance of ˆ
GREGY  is  

 ( ) ( ) ( )TT 1 1
2

1ˆ
GREGY

N
− −= ∆xx xxX T x d e x d e T Xe e e eAV . (5.54) 

The expression of ( )ˆ
GREGYAV  matches those in Särndal, Swensson, & Wretman 

(1989), Binder (1996), and Demnati & Rao (2004) which includes the g-weights. This 

expression does not reflect the effect of the model selection on the variance estimator. 

The variance estimator ( )ˆˆ
GREGYV , computed by replacing the unknown population 

quantities by their sample-based estimates, is 

 ( ) ( ) ( )T1 1 T
2

1ˆˆ ˆ ˆ ˆGREGY
N

− −= ∆xx xxXT x d e s x d e s T X( (e e e e e eV , (5.55) 

where ( )ˆ
pmle= −e y xβ s( e  are the sample-based residuals of the PL model, ˆxxT  is 

the matrix of the HT estimates of the cross product Tx x , and ˆ =Δ Δ Π% . Using the 

same arguments in Section 5.9, since the PA estimator ˆ
GREGY  is a nonlinear function 

of S  then the sequence of PA estimator { },
1

ˆ
GREG N

N
Y

∞

=
 is design consistent of the 

population mean NY . The limiting distribution of the sequence of estimators 

( )
,

,
1

ˆ ˆ

ˆ
GREG N N

GREG N
N

Y Y

Y

∞

=

 
 − 
 
 
  

V
 and 

( )
,

,
1

ˆ ˆ

ˆˆ
GREG N N

GREG N
N

Y Y

Y

∞

=

 
 − 
 
 
  

V
 is ( )0,1N . 
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5.9.4 The Nonlinear PA Estimator for Poisson Model with 

the log Link Function 

Let y  the variable of interest with a superpopulation model yM  where 

( )ky Poisson λ∼ , ( )ky λ=E , ( )log kλ = x β , ( ) 1
1, , P

k k kPx x ×= ∈x … ¡  is the vector 

of auxiliary variables, ( )T 1
1, , P

Pβ β ×= ∈β … ¡  is the vector with the location 

parameters, and T 1 P×= ∈X 1 x ¡  is the vector of the population totals of the auxiliary 

variables x . Let F  be a finite population consisting of N  iid realizations of yM . 

Let S  be a random discrete vector that uniquely defines the sample design ( )p =S s  

with ( ) =S πE  and ( ) =SC ∆  that meets the regularity conditions listed in Section 

5.9 on page 252. 

The PA estimator of the total Y  based on yM  with Poisson model, the location 

parameter βθ = xβ , log link function, the auxiliary variables x , and population totals 

X , is 

 ( )Tˆ ˆPO paY = d μ Se , (5.56) 

where ˆ paμ  is the vector PA adjusted fitted mean of the model where 

( )ˆˆ exppa PAµ = xβ Se  and [ ] 1 11 N
k

k
d

π
− × 

= = = ∈ 
 

d πe ¡  are the sampling weights. 
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Using the results from Section 5.9, we approximate P̂OY  by the first two terms of the 

TS of the function ( )ˆf
POY S  at the point =S π  as  

 ( ) ( ) ( )
T

2
ˆ 2

ˆˆf +
PO

PO
PO pY

YY
=

=

 ∂
= − + −  ∂ S π

S π

S S π S π
S

O . (5.57) 

We focus on the term P̂OY

=

∂
∂

S π
S

 which is a scalar-by-vector, partial, directional 

derivative with respect to the random vector S . To compute the approximate 

variance, we use (5.38) as  

 

( ) ( ) ( )

( ) ( )

( ) ( )

T

T

T

ˆ ˆ ˆ

ˆ ˆ

ˆ
ˆ2

PO mle mle

pa pa

pa
mle

Y =

∂ ∂   
+      ∂ ∂   

∂ 
+   ∂ 

d μ d μ

μ π μ π
S S

μ π
d μ

S

e e

e

AV ∆

∆

∆

. (5.58) 

When computing the variance, we distinguish the following terms 

• 1V  is the component of the variance of the HT estimator with the variable ˆ paμ ,  

 ( ) ( )T
1 ˆ ˆmle mleV = d μ d μe e∆ . (5.59) 

• 2V  is the component of variance for the linearized part of ˆ paμ  represented by 

ˆ pa∂

∂

μ
S

 as  

 
T

2
ˆ ˆpa paV

∂ ∂ 
=  ∂ ∂ 

μ μ
S S

∆ . (5.60) 
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Since ,
,

ˆˆ
ˆpa k k pa

pa k
∂ ∂

=
∂ ∂

μ x β
μ

S S
 and using the results from Section A.3.3, this 

component can be decomposed in the following components. 

• 21V  is the component of variance from the model fit ( )1 ˆˆg mle mle
− =μ xβ  with the 

residuals ( )ˆˆ gmle mle= −e μ xβ  as 

 ( ) ( )T
21 ˆ ˆmle mleV = μ x e μ x ee e e e∆ . (5.61) 

• 22V  is the component of variance from PA adjustment ˆ XΓ  made to the regression 

coefficients ˆ
pmleβ  as  

 
T

, ,
22

ˆ ˆ
ˆ ˆmle p mle p

mle p mle p
p p

V
X X

β β   
   =
   
   
μ x d e μ x d ee e e e e e∆ , (5.62) 

or 22 0V =  if { }1,...,p q P≠ ∈ . 

• 23V  is the component of variance from the correlation between the PA adjustment 

and the model fit ( )1 ˆˆg mle mleµ− = xβ  as 

 
( )

( )

T
,

23

T ,

ˆ
ˆ ˆ

ˆ
ˆ ˆ

mle p
mle p mle p

p

mle p
mle p mle p

p

V
X

X

β

β

 
 =
 
 

 
 +
 
 

μ x d e μ x d e

μ x d e μ x d e

e e e e e e

e e e e e e

∆

∆

, (5.63) 

or 23 0V =  if { }1,...,p q P≠ ∈ . 
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• 3V  is the component of variance form variance-covariance between the HT 

estimator with the variable ˆ paμ , the PA adjustment, and the model fit 

( )1 ˆˆg mle mleµ− = xβ  as 

 

( )

( ) ( )

( )

T ,
3

T

T
,

ˆ
ˆ ˆ2

ˆ ˆ2

ˆ
ˆ ˆ2

mle p
mle mle p

p

mle mle p

mle p
mle p mle p

p

V
X

X

β

β

 
 =
 
 

+

 
 +
 
 

μ x e μ x d e

μ x e μ x d e

μ x d e μ x d e

e e e e e

e e e e e

e e e e e e

∆

∆

∆

, (5.64) 

or 3 0V =  if { }1,...,p q P≠ ∈ . 

The approximate variance is the sum of all these components as  

 ( ) 1 21 22 23 3P̂OY V V V V V= + + + +AV . (5.65) 

The variance estimator ( )ˆ
P̂OYV  is computed by replacing the unknown population 

quantities by their sample-based estimates, that is ( )ˆ
pmle= −e y xβ s( e , ˆ mleμ  by 

ˆ pmleμ , xxT  by ˆxxT , and ˆ =Δ Δ Π% . 

The variance estimator ( ), ,
ˆ ˆ ˆ,pa p pa qβ βC  is computed by replacing the unknown 

population quantities by their sample-based estimates, that is, ( )1 ˆˆ gmle mle
−= −e μ xβ  

by ( )( )1 ˆˆ gpmle pmle
−= −e μ xβ s( e , xxT , by ˆxxT , the matrix of the HT estimates of the 

population of the cross product totals of x , and Δ  by ˆ =Δ Δ Π% . 



 

271 

5.10 Defining a Sequence for the Population y in Survey 

Sampling Asymptotic Theory 

In this section, we elaborate on some conditions for design consistency that are not 

often discussed in the current literature. In standard statistical asymptotic theory, the 

large sample properties of estimators and statistical tests are assessed assuming that 

sample size n  goes to infinity (Polansky, 2011). The standard approach for the study 

of the asymptotic properties in surveys was established in Isaki & Fuller (1982), and 

numerous papers use this approach. Isaki & Fuller’s setup assumes an indexed 

sequence of nested finite populations { } 1N N
∞

=F  with labels { }{ } 1
1,...,N N N

U N ∞
=

==  and 

associated probability samples { } 1N NA ∞
==  drawn according to a sample design 

( ){ } 1N N N N
p A a ∞

=
=  from each finite population in the sequence. In this setting, both 

the finite population size NN  and sample size Nn  increase to infinity but the ratio is 

finite, since by definition, ( )lim 0,1N
N

N N
n

n f f
N→∞

→∞

= = ∈  with conditions such as 

21limsup
N

k
N N k U

y
N→∞ ∈

< ∞∑  and ,limsup max
N

N kl
k l UN

n
≠ ∈→∞

 
 ∆ < ∞ 
 
 

 (for the variance of the 

HT estimator to converge to 0), or { }
,
min 0

N
Nkl

k l U
π λ

∈
≥ >  and 

41limsup
N

k
N N k U

y
N→∞ ∈

< ∞∑  (for the variance estimate of the HT estimator). 
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Although this approach is sound, the consistency of the sequence of estimators 

depends on the sequence { } 1N N
∞

=y  and { } 1N N
∞

=π  which are not explicitly defined, 

except for Ny  which is assumed to have finite population moments. 

A complete study of the asymptotic properties of an estimator requires examining the 

limiting behavior of quantities that are used to compute the estimator. For example, 

consider the expected value of the estimator described in Section 5.7, 

 ( ) T T1 1Z
N N

 = = 
 

S a S a πE ,  

with the corresponding sequence of estimators { } 1N NZ ∞
= . In order to determine the 

large sample properties of Z , we need to define the limiting behavior of a , π , and 

Δ , as N → ∞ . When N  increases, the size of the vector NS  also increases. The 

increasing size of NS  affects Nπ , NΔ , and Na ; they also increase in size. For 

example, the condition that Nπ  is finite leads to T
N N Nn = < ∞1 π , where Nn . the 

sample size in the population NN , is not sufficient since it does not describe the 

relationship between Nn  and NN  as NN  increases. 

A way to solve this dependency is by linking the limiting behavior of Nn  and NN  as 

( )lim 0,1N
N N
n

n f
N→∞

→∞

= ∈ . This limiting sampling rate also implicitly links the behavior 

of Nπ  and NN . The sum of π  is the same order of N , that is, the term 
T
N N

NN
1 π  is 
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( )1O . This order means the sum of the elements of Nπ  can go to infinity, but it must 

be of the same order of N . This order also implies that the sample size n  cannot be 

set separately since it depends on the design. When we indicate that N → ∞  and 

n → ∞  such as /n N f→ , what we mean is that T
N N → ∞1 π , so the proprieties of S  

are being defined since by definition, { }min arg 0k
k U

π
∈

>  and ∆  must meet the 

properties of Hermitian matrices in addition to the properties of the type sample 

design (See Sections 5.2 and 5.3). Both properties also imply that 

( ) ( ),max max arg
N

N k N
k N

Nπ
∈

= =π O . However, the limiting behavior of NZ  also 

depends on Na , which may not be related to Nπ . In other to keep the order ( )1O  in 

T
N N

NN
y π , the sum T

N Ny π  needs to be ( )NO . This order is achieved when 

( )T 1N N =y 1 O , since Nπ  is ( )NO . 

Define { } 1N N
∞

=y  as a sequence of real constants where ( )P
NY N=O , that is that the 

mean of the population increases in { } 1N N
∞

=F  but it is bounded by ( )pNO . Let 

{ },
1

ˆ
HT N

N
Y

∞

=
 be a sequence of HT estimators of NY  from samples drawn according to 

the sample designs ( ){ } 1N N N N
p A a ∞

=
=p  from the populations { } 1N N

∞
=F . Let 
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( ){ },
1

ˆ |HT N N
N

Y
∞

=
V F  be the sequence of variances of ,

ˆ
HT NY . From Section 5.8.1, the 

upper bound of ( ), |N HT NYV F  is ( ) 2
, |N HT N N NY K Y≤V F , since 2 2

2
1

N NNY
N

≤y . 

The value of p  such as ( ), |N HT NYV F  does not converge, e.g., 

( ) ( ), | 1N HT NY ≥V F >O , is obtained by solving the expression ( )( ) ( )
2

1pN ≥O >O . If 

NY  grows at the same rate as the population size N , e.g., 0p = , then 

( ), |N HT NYV F  does not converge. If 1 1
2

p− < <  then ( ), |N HT NYV F  converges at 

a slower rate than ( )1N −O  and if 1
2

p < − , it converges at a faster rate than 

( )1 .p N −O  If the mean of the population stays constant as the population increases, 

then ( ) ( )1logNY N N −= ≤O O , then ( ),HT NYV  converges at a much faster rate to 

zero than ( )1N −O . One implicit assumption in this development is ( )1NK =O  as 

N → ∞ . 

These results provide guidelines for the study of the asymptotic properties of the 

estimators through simulations, since they describe how the different finite 

populations can be generated depending on the relationship between the N , π , and 

y  as the population size increases. Notice that we assume that the model does not 

change as N → ∞ . See McConville, Breidt, Lee, & Moisen (2017) for the case that 

the number of regression coefficients increases as N → ∞ . 
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Chapter 6 Final Comments 

In this paper, we introduce the PA framework for estimation with full response. 

The PA framework is a methodology for producing efficient estimators by 

targeting the auxiliary variables related to the outcome or outcomes. A key 

application is variable selection for efficient calibration estimators. 

Despite using models, the PA estimators are model-assisted (in contrast to model-

dependent), asymptotically consistent, and their properties do not depend on 

whether the model holds or not. Inferences depend on the sampling strategy or 

sample design used to draw the sample. 

All PA estimators are sums of expanded estimated adjusted means of models 

where the model parameters for location, scale, and shape are functions of linear 

regressions of the auxiliary variables. Different auxiliary variables and model 

parameters produce different PA estimators. The PA framework establishes a link 

between standard statistical theory and design-based estimation. The approach 

justifies the use of standard statistical modeling for building working models and 

estimators within the design-based paradigm. The modeling approaches provide a 

metric for identifying the functional form of the model and for selecting the 

relevant auxiliary variables of the model. Current model-assisted approaches do 

not provide such metrics. 
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The PA estimators are derived algorithmically from the observed sample. Since 

the PA algorithm evaluates a pool of models, it avoids reliance on specifying a 

single working model with a specific set of auxiliary variables without a clear 

rationale. Since the metric and model are well defined, the creation of algorithmic 

PA estimators can be fully automated. Current practice does not provide such 

tools. 

If the working model and set of auxiliary variables are specified, then the PA 

methodology reproduces most classical survey estimators using the algebraic PA 

approach. 

Even complex estimators such as the Deville’s Euclidian distance calibrated 

estimator and Särndal’s generalized regression estimator (GREG) are also special 

cases of PA estimators. Furthermore, as illustrated in examples, new design-based 

estimators can be derived or engineered when the working model and auxiliary 

variables are specified. 

The focus of the PA framework presented here is the estimation with full 

response, but the proposed methodology is a stepping-stone towards the 

development of estimation in the presence of nonresponse. 

The presented framework also can be extended to estimators for domains, 

estimators from a cluster and two-stage designs, and estimators for other 

population characteristics such as the population distribution function and order 

statistics (i.e., quantiles and median). 
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The loss function in the current implementation of the PA algorithm is based on a 

sample-based version of the AIC, although other metrics for goodness of fit could 

be used. 

A very important line of research is accounting for model selection. The challenge 

is to ensure statistical inference is valid following PA variable selection. 

Finally, the approach we have used treats the sample design as having a 

multinomial distribution, and design-based estimators are functions of the random 

vector of the membership indicators. This approach provides a different way to 

study the survey sampling estimation theory. By using matrix notation and matrix 

operations, the PA framework facilitates obtaining asymptotic properties by 

relying on results from standard statistical theory. 

We believe this approach is better suited for concepts such as the asymptotic 

relative efficiency of design-based estimators, providing insights on the efficiency 

of estimators when the sample sizes are small.  
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Appendix A Supplemental Plots and Proofs 

A.1 Figures for Simulation Study in Section 2.2 

This section contains the plots with relative bias (RB) and relative efficiency (RB) 

of the scenarios in the simulation study described in Section 2.3 on the evaluation 

of the performance of linear and nonlinear algorithmic PA estimators (see Section 

A.4 for the definitions of empirical measures). There are nine figures grouped by 

the distribution of the population:  

Population Figures 

Binomial (binary data) A.1 to A.3 

Poisson (count data) A.4 to A.6 

Gamma: Continuous positive data with a constant coefficient of 
variation 

A.7 to A.9 

  

Each figure shows the RB and RE of estimators of the total population under 

repeated sampling (100,000 draws) from sample sizes drawn with a constant 

sampling rate ranging from 100 to 1000 cases with a fixed sampling rate of 0.05. 

In each plot, the vertical axis corresponds to the sample size from 100 to 1,000. 

The vertical axis on the left plot is RB while on the right is the RE; both are 

shown in percentage points. In each figure, the rows show the estimates by model 

strength measured by Xηρ . The top plots correspond to low ( Xηρ = 0.3), the 

middle plots are medium ( Xηρ =  0.6), and the bottom plots are high ( Xηρ =  

0.9). Within each population, the first figure shows the results for samples drawn 
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using simple random sampling (SRS), the second for sampling with probability 

proportional to size (PPS) and the last for Poisson sampling (PO). 

Additional information on the factors and models for this study is found in 

Tables 2.3 and 2.5. The expressions of the estimators are listed in Table 2.4. The 

following symbols identify the estimators on plots A-1 to A-9: 

Estimator Symbol 

Hájek  HJ 

Model Calibrated MC 

Generalized Regression GREG 

Algorithmic Linear Parametric LNPA 

Algorithmic Nonlinear Parametric NLPA 

Algorithmic Non-linear calibrated PA NLCA 
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Figure A.1 Relative Bias (RB) and Relative efficiency (RE) of seven 
estimators as a function of the sample size for the population with 
a Bernoulli distribution with SRS designs. 
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Figure A.2 Relative Bias (RB) and Relative efficiency (RE) of seven 
estimators as a function of the sample size for the population with 
a Bernoulli distribution with PPS designs. 
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Figure A.3 Relative Bias (RB) and Relative efficiency (RE) of seven 
estimators as a function of the sample size for the population with 
a Bernoulli distribution with PO sampling designs. 
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Figure A.4 Relative Bias (RB) and Relative efficiency (RE) of seven 
estimators as a function of the sample size for the population with 
a Poisson distribution with SRS designs. 
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Figure A.5 Relative Bias (RB) and Relative efficiency (RE) of seven 
estimators as a function of the sample size for the population with 
a Poisson distribution with PPS designs. 
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Figure A.6  Relative Bias (RB) and Relative efficiency (RE) of seven 
estimators as a function of the sample size for the population with 
a Poisson distribution with PO sampling designs. 

 Relative Bias (RB) Relative Efficiency (RE) 
Lo

w
 

(� �
�

=
0.2

) 
M

ed
iu

m
 

(� �
�

=
0.6

) 
H

ig
h 

(� �
�

=
0.9

) 

 

  



 

287 

Figure A.7 Relative Bias (RB) and Relative efficiency (RE) of seven 
estimators as a function of the sample size for the population with 
a Gamma distribution with SRS designs. 
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Figure A.8 Relative Bias (RB) and Relative efficiency (RE) of seven 
estimators as a function of the sample size for the population with 
a Gamma distribution with PPS designs. 

 Relative Bias (RB) Relative Efficiency (RE) 
Lo

w
 

(� �
�

=
0.2

) 

 

M
ed

iu
m

 
(� �

�
=

0.6
) 

H
ig

h 
(� �

�
=

0.9
) 

 

  



 

289 

Figure A.9 Relative Bias (RB) and Relative efficiency (RE) of seven 
estimators as a function of the sample size for the population with 
a Gamma distribution with PO sampling designs. 
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A.2 Sample-Based AIC Estimator 

Akaike (1981) defined “an information criterion” (AIC) as the estimator of 

( )( )( )( )ˆlog |y x g x yθE E  as 

 · ( )( )ˆAIC 2log | 2mleAIC y Pθ= = − +L ,  (A.1)  

where ( )( )ˆlog | yθL  is the numerical value of the log-likelihood at its maximum 

point, which corresponds to the values of the maximum likelihood estimates of θ , 

and P  is the number of estimable parameters in the model. The latter term is a 

correction bias. The subscript mle  indicates that the AIC is based on the MLE 

estimators. 

We derive the sample-based AIC, dAIC as a plug-in estimator. Assume the 

function ·AIC  fitted to the population is sampled using a design defined by S  

such as ( ) =S πE  and ( ) =S ΔV , then the sample-based estimator of ·mleAIC  

used in the PA framework is dAIC  defined as 

 · ( )( )ˆ2 log | 2pmle k k k
k U

dAIC AIC d S y Pθ
∈

= = − +∑ L .   (A.2) 

Equation (A.2) is the sample-based version of the AIC used in the PA approach. 

Although ( )( ) ( )( )ˆ ˆlog | | log |k k k k
k U k U

d S y yθ θ
∈ ∈

 
  =
 
 

∑ ∑E L F L , there is no 

assurance that ·( ) ·|pmle mleAIC AIC=E F  since ( )|P P≠E F  or the number of 
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parameters of the PML fitted to the sample, is an unbiased estimate of the number 

of parameters of the ML fitted to the entire population. Other alternatives address 

this problem but at the population level. One approach is the Takeuchi’s 

Information Criterion (TIC, see Takeuchi 1976) which replaces P  by 

( ) ( ) 1ˆ ˆTr θ θ
− 

 
 

J I .  

The TIC is then an asymptotically unbiased estimate of the expected K-L 

information. However, Burnham & Anderson (2003) describe the problems with 

this approach since the estimation of the Jacobian ( )θ̂J  and Information matrix 

( )θ̂I  adjustment are computationally expensive and unstable in small samples. 

Lumley & Scott (2015) implements the AIC based on the TIC by replacing P  by 

the sample-based estimate ( ) ( ) 1ˆ ˆTr θ θ
− 

 
 

J I  in the instruction AIC from the R 

package survey (Lumley, 2012). Our experience confirmed the issues with this 

approach because this instruction computed imaginary values in the simulation 

runs. 

We decided to use the number of parameters P  in the PMLE because of the 

mathematical simplicity (i.e., count the number of parameters in the model). The 

reason being that it is unrealistic to assume that the PML model fitted to the 

sample can accommodate the same number of parameters as the ML model fitted 

to the population since the sample size is smaller, sometimes in several orders of 

magnitude than the population size. We do not expect to fit the same number of 
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parameters in the population model using a sample. The empirical results from the 

selection of variables based on the PA version of the AIC and the fact that the PA 

estimators perform slightly better than knowing the true model provide support 

for the use of this version of the AIC. 

A.3 Theorems 

A.3.1 Proof of Theorem 1.1 

THEOREM 1.1 Assume a sequence of finite populations { } 1N N
∞

=F  of 

increasing size { } 11,...,N N NU N ∞
==  and samples { } 1N Nn ∞

=  drawn according to a 

sample design ( ){ } 1N N N N
p A a ∞

=
=  satisfying the regularity conditions in Section 

5.9 on page 252. The sequence of PA adjustment factors { }, 1
ˆ N N

∞

=XΓ  converges to 

the identity matrix P P×∈I ¡  as 

 ( ),
ˆlim |N

N
n

→∞
→∞

− =XΓ I 0E F .  

We need to show that PA adjustment factor, 1
ˆˆ P P− ×= ∈X X XΓ D D ¡ , is a design 

consistent estimator of the identity matrix P P×∈I ¡  where 

( )( )T
ˆ diag=XD d x Se  is the diagonal matrix of the Horvitz-Thompson (HT) 

estimates of the auxiliary variables ( )1, ,k k kPx x=x …  for k U∈ , 
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( )Tdiag=XD 1 X  is the diagonal matrix of the auxiliary variable population totals 

( )T 1
1,..., P

PX X ×= = ∈X 1 x ¡ , and { }0,1∈S  is a discrete random variable for the 

design ( )p =S s  defined by ( ) ( ) 10,1 N×= ∈S πE  and ( ) N N×= ∈S ¡C ∆ , and 

[ ] [ ]1 1N
k kd π− ×= = = ∈d πe ¡  is the vector with the sampling weights defined as 

the inverse of the probabilities of inclusion. 

Using the first two terms of the Taylor’s Series expansion of the function ( )ˆ XΓ S  

evaluated at the point =S π , we can appropriate ˆ XΓ  as 

 ( ) ( ) ( )2
2

ˆˆ ˆ p=
=

∂
= + − + −

∂
X

X X S π
S π

ΓΓ S Γ S π S π
S

O . (A.3) 

To avoid tensor notation, we work on the elements of the diagonal ( )ˆ
pXΓ S  using 

the alternative definition of ˆ XΓ  as a diagonal matrix with the ratios of the 

population defined as 

 
If ˆˆ

0 If 
pq

pq

pqX

X
p q

X

p q


= Γ =    ≠

. (A.4) 

for { }1,...,p q P≠ ∈ .The first term is  

 
( ) ( )T T

ˆ 1
p

p p p
X

pp p

X X X
XX=

=

   
 Γ = = = = 
     

S π
S π

d S d x πe e
.  

Working on the second term with the partial evaluated at =S π : 
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( )
( )
( )( )

( )
( )( )

( )

( )

T

T 2T

T
T

2 2T

T
1

ˆ
pX p pp

p p

p p p
k

pp

p N

p

XX

X X

X

X

= = =

×

 ∂ ∂  = = −
 ∂ ∂
 

= − = −

= − ∈

S π S π S π

Γ d x

S S d x S d x S

d x
d x

d x π

d x

e

e e

e
e

e

e
¡

. (A.5) 

Condition (a): The estimator ˆ
pXΓ  is asymptotically unbiased for 1 as 

 
( ) ( ) ( ) 1ˆ 1

11

pX px O
N

O
N

  Γ = − − +     
 = +  
 

T
d S πeE E

, (A.6) 

where it is the same for all elements of the diagonal, so ( ) 1ˆ O
N

 = +  
 

XΓ IE . 

Condition (b): The variance of estimator 1 ˆ
N XΓ  goes to zero as N → ∞ . We 

begin by rewriting the variance of ˆ
pXΓ  as a function of the variance of ,

ˆ
HT pX  as 

 

( )
( )

( ),2

ˆ 1

1 1ˆ

pX p

p

HT p
p

x
O

N NX N

X O
NX

  Γ     = − +          
 = +  
 

T
d

S π
e

V V

V

. (A.7) 
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Since we already proved that ( ),
ˆ

HT pXV  goes to zero as N → ∞ , then the same 

applies to the totals in diagonals. Since conditions (a) and (b) are met, then the 

sequence of estimators { }, 1
ˆ N N

∞

=XΓ  is a design consistent estimator of NI . 

The approximate variance-covariance of ˆ XΓ , ( )ˆ XΓC , is 

  ( ) ( ) ( ),1 ,
2 2
1

ˆ ˆ
ˆ ,...,HT HT P

P

X X
diag

X X

 
 =
 
 

XΓAC
AV AV

, (A.8) 

where ( ),
ˆ HT pXAV  is the approximate variance of the HT total of the auxiliary 

variable px  computed as ( ) ( ) ( )T
,

ˆ
HT p p pX x x= d de eAV ∆  for { }1,...,p P∈ . 

The variance-covariance estimator of ˆ XΓ , ( )ˆ ˆ P P×∈XΓ ¡C , is 

 ( ) ( ) ( ),1 ,
2 2
1

ˆ ˆˆ ˆ
ˆ ˆ ,...,HT HT P

P

X X
diag

X X

 
 =
 
 

XΓC
V V

, (A.9) 

where ( ) ( ) ( )T
,

ˆ ˆ ˆ
HT p p pX x x= d de eV ∆  and ˆ =Δ Δ Π% . 

A.3.2 Variance-Covariance of ˆ
pmleβ  in a Normal Linear Model 

Let y  the variable of interest with a superpopulation model yM  where 

( )2,k ky σx β∼ N , ( ) 1
1, , P

k k kPx x ×= ∈x … ¡  is the vector of auxiliary variables 

and ( )T 1
1, , P

k kPβ β ×= ∈β … ¡  is the vector with the location parameters. Let F  
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be a finite population consisting of N  id realizations of yM . Let S  be a random 

discrete vector that defines the sample design ( )p =S s  with ( ) =S πE  and 

( ) =SC ∆  that meets the regularity conditions listed in Section 5.9. Assume that a 

normal PL model is fitted to the sample. The vector of the PMLE estimators 

1ˆ P
mle

×∈β ¡  is 

 1ˆ ˆ ˆpmle
−= xx xyβ T T , (A.10) 

where 

 ( )Tˆ P P
k k ik jk

k U
d S x x ×

∈

 
= = ∈ 

  
∑xxT S d x xe e ¡ , and (A.11) 

 ( )T 1ˆ P
ik jkk U x y ×

∈
 = = ∈ ∑xyT S d x ye e ¡ . (A.12) 

See Binder (1983) for the proof that ˆ
pmleβ  is a design consistent estimator of 

ˆ
mleβ , that is 

 ( ) 1ˆ ˆlim P
mle pmle

N
×

→∞
− = ∈β β 0 ¡E , and (A.13) 

 
( )ˆlim P P

pmle
N

×

→∞
= ∈β 0 ¡C

.  

The variance-covariance ( )ˆ
pmleβC  is computed using the first two terms of the 

TS approximation of the function ( )ˆ
pmleβ S  evaluated at the point =S π  as 

 ( ) ( ) ( ) ( )
T1

2
2

ˆ ˆ
ˆ ˆ

pmle pmle p

−

=

=

 ∂
 = + − + −
 ∂ 

xx xy
S π

S π

T T
β S β S S π S π

S
O . (A.14) 

Working on the first term, 
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 ( )( ) ( )

1

1T T

1

ˆ ˆ ˆ

ˆ

pmle

mle

−
= =

−

=
−

=

=

=

=

xx xyS π S π

S π

xx xy

β T T

S d x x S d x y

T T

β

e e e e
.  (A.15) 

Working on the second term of (A.2) and using the chain rule for derivatives of 

matrices 

 

1 1
1

1 2

ˆ ˆ ˆˆ ˆ ˆ
− −

−

=

∂ ∂∂
= +

∂ ∂ ∂

= = +

xx xy xyxx
xy xx

S π

T T TT T T
S S S

A A A

. (A.16) 

The partial derivative of a matrix with respect to the vector S  generates a 

3-dimensional matrix of size P P N× × . We will not introduce vector notation 

since the matrix becomes of size P P× . 

 
( )( )

[ ]

1 1
1

T
1 1

1
1
, 1

ˆˆ ˆ ˆ

ˆ ˆ ˆ

ˆ
P mle

P

− −

=

− −

=

−

 ∂
=  

∂ 

∂
= −

∂

 
 = −  
  

xx
xx xx xy

S π

xx xx xy

S π

x x

TA T T T
S

S d x x
T T T

S

x d
T x x β

x d

e e

e
… …
e

. (A.17) 

Computing the second term 1
2

ˆ
ˆ −

=

∂
=

∂
xy

xx
S π

T
A T

S
 from (A.17), 
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( )T
1

2

1
1

ˆ

P

−

=

−

∂
=

∂

 
 =  
  

xx
S π

xx

S d x y
A T

S

x d
T y

x d

e e

e
…
e

. (A.18) 

Putting terms 1A  and 2A  we obtain 

 

[ ]

( )

( )

1 1
1 1

1

1
1

ˆ

ˆ

ˆ

P mle

P P

mle

P mle

− −

−

   
   = − +   
      

 −
 
 =
 
 − 

xx xx

xx

x d x d
A T x x β T y

x d x d

x d y xβ

T

x d y xβ

e e
… … …
e e

e e

…

e e

, (A.19) 

where ˆ
mle= −e y xβ  is the vector with the residuals of the ML model fitted to the 

population. The approximate variance-covariance is obtained computing the 

variance of A  as 

 

( )
( )

( )

1
1 1

1
1 1

11 1
1 1

1 1

ˆ

ˆ

ˆ

mle

pmle

P mle

P

P

P P

V V

V V

− −

− −

− −

  −  
  =
  
  −  

  
  
  
    

 
 =  
 
 

xx xx

xx xx

xx xx

x d y xβ

β T T

x d y xβ

x d e
T T

x d e

T T

e e

…

e e

e e
…

e e

L
L L L

L

AC AC

AC . (A.20) 
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where ( ) ( )T
pq p qV = x d e x d ee e e e∆ . The approximate variance-covariance 

between ,
ˆ

pmle pβ  and ,
ˆ

pmle pβ  is 

 ( ) ( ) ( )T1 1
, ,

ˆ ˆ,
p q p qpmle p pmle q x x p q x xT x x Tβ β − −= d e d ee e e eAC ∆ . (A.21) 

The variance estimator ( ), ,
ˆ ˆ ˆ,pmle p pmle qβ βC , computed by replacing the unknown 

population quantities by their sample-based estimates, is 

 ( ) ( ) ( )T1 1
, ,

ˆ ˆ ˆ ˆ ˆ ˆ,
p q p qpmle p pmle q x x p q x xT x x Tβ β − −= d e d e( (e e e eC ∆ ,  (A.22) 

where ( )ˆ
pmle= −e y xβ s π( e %  is the vector with the sample-based residuals of 

the PL model, ˆ
p qx xT  is the element ( ),p q  of ˆxxT , the matrix of the HT estimates 

of the population of the cross product Tx x , and ˆ =Δ Δ Π% . The expression 

(A.22) matches those found in Binder (1983), Särndal, Swensson, & Wretman 

(1992), and Fuller (2009). 

A.3.3 Variance-Covariance of ˆ paβ  in a Normal Linear Model 

Let y  the variable of interest with a superpopulation model yM  where 

( )2,k ky σx β∼ N , ( ) 1
1, , P

k k kPx x ×= ∈x … ¡  is the vector of auxiliary variables 

and ( )T 1
1, , P

k kPβ β ×= ∈β … ¡  is the vector with the location parameters. Let F  

be a finite population consisting of N  iid realizations of yM . Let S  be a random 

discrete vector that uniquely defines the sample design ( )p =S s  with ( ) =S πE  
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and ( ) =SC ∆  that meets the regularity conditions listed in Section 5.9. Assume 

that a normal PL model is fitted to the sample. The PA estimator of 1ˆ P
mle

×∈β ¡  

is  

 ˆ ˆˆpa pmle= Xβ Γ β , (A.23) 

where ˆ
pmleβ  is the vector with the PML estimates of 1ˆ P

mle
×∈β ¡  described in 

Section A.3.2 and ˆ XΓ  is the PA adjustment matrix described in Section A.3.3. 

The sequence of PA estimators { }, 1
ˆ

pa N N

∞

=
β  is design consistent of ,

ˆ
mle Nβ  since 

it is the product of the sequence of estimates { }, 1
ˆ

pmle N N

∞

=
β , which is design 

consistent of ,
ˆ

mle Nβ  (see Binder, 1983), and the sequence of PA adjustments 

{ }, 1
ˆ N N

∞

=XΓ , which is design consistent of the identity matrix NI  after applying 

Slutsky's theorem. In other words, the following two conditions hold 

 ( ) 1ˆ ˆlim P
mle pa

N
×

→∞
− = ∈β β 0 ¡E  and (A.24) 

 ( )ˆlim P P
pa

N
×

→∞
= ∈β 0 ¡C .  

The approximate variance-covariance ( )ˆ
paβC  is computed using the first two 

terms of the TS approximation of the function ( )ˆ
paβ S  evaluated at the point 

=S π  as 
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 ( ) ( ) ( ) ( )
T

2
2

ˆ
ˆ ˆ pa

pa pa p=
=

 ∂
 = + − + −
 ∂ 

S π
S π

β
β S β S S π S π

S
O . (A.25) 

Working on the term 
Tˆ

pa

=

 ∂
 
 ∂ 

S π

β
S

 

 

ˆ ˆˆ

ˆˆ ˆ ˆ

pa pmle

pmle
pmle

= =

= =

∂ ∂
=

∂ ∂

∂∂
= +

∂ ∂

X

S π S π

X
X

S π S π

β Γ β
S S

βΓ β Γ
S S

. (A.26) 

The partial derivatives 
ˆ∂
∂

XΓ
S

 
ˆ

pmle∂

∂

β
S

 were derived in Sections A.3.1 and A.3.2. 

Combing these results, the approximate variance-covariance between ,
ˆ

pa pβ  and 

,
ˆ

pa qβ  is 

 
( ) 1 1

, ,

1 1

ˆ ˆ, +

2

p q p q

p q p q

pa p pa q pq pq

pq

V W

VW

β β − −

− −

   =    

 +  

x x x x

x x x x

T T

T T

AC
, (A.27) 

where  

• ( ) ( )T
pq p qV = x d e x d ee e e e∆  is the contribution to the variance form 

fitting the PL model ˆ
pmle=y β x  with residuals ˆ

pmle= −e y β x . 
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• 
T

, ,
ˆ ˆ
mle p mle p

pp p p
p p

W
X X

β β   
   =
   
   

x d e x d ee e e e∆  or 0pqW =  if 

{ }1,...,p q P≠ ∈  is the contribution to the variance form the PA adjustment 

ˆ XΓ . 

• ( )
T

,
ˆ

2 mle p
p p p

p
VW

X
β 

 =
 
 

x d e x d ee e e e∆  or 0pqVW =  if 

{ }1,...,p q P≠ ∈  is the contribution to the variance form the covariance 

between the PA adjustment and the PL model ˆ
pmle=y β x . 

The variance estimator ( ), ,
ˆ ˆ ˆ,pa p pa qβ βC , computed by replacing the unknown 

population quantities by their sample-based estimates, that is, ˆ
mle= −e y xβ  by 

( )ˆ
pmle= −e y xβ s( e , the elements ( ),p q  of xxT  by ˆxxT , the matrix of the HT 

estimates of the population of the cross product totals of x , and Δ  by ˆ =Δ Δ Π% . 

A.4 Empirical Summary Measures Used in Monte Carlo 

Simulations 

The summary measures for bias and accuracy for Monte Carlo Simulations for a 

fixed population F  are defined as 

 ( ) ,
1

ˆ1ˆ % 100 B E b
E b

Y Y
RB Y

B Y=
−

= × ∑ , (A.28) 
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 ( ) ( )2
,1

ˆ
ˆ

B
E bb

E
Y Y

MSE Y
B

= −
=

∑
, (A.29) 

 
( )
2

ÊMSE Y
RRMSE

Y
= , and (A.30) 

 ( ) ( )
( )
ˆ

ˆ % 100 1ˆ
HT

E
E

MSE Y
RE Y

MSE Y

 
 = × −
 
 

, (A.31) 

where ÊY  is the estimator being evaluated and ,Ê bY  is the estimate ÊY  of the 

population total Y  computed from the sample drawn in the simulation 

{ }1,..., ,b B∈  and B  is the number of runs. 

The same summary measures for Monte Carlo Simulations where the finite 

population F  is recreated from a subpopulation for each simulation run drawn is 

 ( ) ,
1

ˆ1ˆ % 100 B E b b
E b

b

Y Y
RB Y

B Y=
−

= × ∑ , (A.32) 

 ( ) ( )2
,1

ˆ
ˆ

B
E b bb

E
Y Y

MSE Y
B

= −
=

∑
, (A.33) 

 
( )
2

Ê

b

MSE Y
RRMSE

Y
= , and (A.34) 

 ( ) ( )
( )
ˆ

ˆ % 100 1ˆ
HT

E
E

MSE Y
RE Y

MSE Y

 
 = × −
 
 

, (A.35) 

where ÊY  is the estimator being evaluated and ,Ê bY  is the estimate ÊY  of the 

population total Y  computed from the sample drawn in the simulation 

{ }1,..., ,b B∈  and B  is the number of runs. 
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A.5 Derivation of the Linear PA Estimator 

In this section, we derive the linear PA estimator or the PA estimator with the 

linear working model using matrix algebra (see Section 1.7.3 and Definition 1.22 

for details of linear PA estimators). 

Let y  be the outcome variable with an assumed linear superpopulation model 

yM  with ( )2
0| ,iid

k k ky σx x β∼ N , where ( ) 1
1,..., P

k Px x ×= ∈x ¡  is the vector with 

P-auxiliary variables, and ( )T 1
1,..., P

Pβ β ×= ∈β ¡  is the vector of the regression 

coefficients of the linear predictor of the location parameter of the model yM . 

Let ( ),= y xF  be the generated finite population that is N  iid realizations of 

yM . The population F  is sampled according to a sample design ( )p =S s  that 

meets the suitable regularity conditions described in Section 5.9. Let { } 10,1 N×∈S  

be the discrete random vector for the sample membership indicator defined by 

( ) ( ) 1| 0,1 N×= ∈S πFE  and ( )| N N×= ∈S ¡FV ∆ .  

We are interested in estimating the population total of y  in F , defined as 

k
k U

Y y
∈

= ∑ , using the auxiliary variables x  observed in the sample and the 

known population totals X . To compute the PA estimator, we need to estimate 

,
ˆˆˆ pa k pmleµ = XΓ β , that is, we first need to compute the PMLs of regression 

coefficients β  of the model yM , fitted to the sample as 



 

305 

 ( )ˆ arg max l |g , ; ,o ,
y

pmle σ
∈

=
β

β S d xβ
M

L F =, (A.36) 

where the sample-based log-likelihood of this model yM  is (1.3). The pseudo-

log-likelihood in matrix notation is 

 
( ) ( )( ) ( )

( ) ( )
2

T

T

1log , ; , , |
2

log 2
log

2

σ
σ

π
σ

= − − −

 
−  

 

xSβ S d x y β y xβd

S d

e eL F

. (A.37) 

The score function, ( )|βS F , is the vector with the partial derivatives of the PLL 

with respect to β  given by 

 
( ) ( )

( )( ) ( ) ( ){ }T T
2

1
2

log |
|

σ

∂
=

∂

= − − + −

β
β

β

S d y xβ x y xβ S d xe e e e

FL
FS

.  

The PMLEs are the roots of the score function set to zero 

 ( ) ( )( ) ( ) ( )T T| 0= − + − =β S d y xβ x y xβ S d xe e e eFS .  

Solving forβ , we obtain the following 

( )( ) ( ) ( )
T Tˆ ˆ 0pmle pmle− + − =S d y xβ x y xβ S d xe e e e  
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( )( ) ( ) ( ) ( )

( )( ) ( )

( )( ) ( )

( ) ( )

T T T T

T T

T T

T T

ˆ ˆ

ˆ2 2

ˆ

ˆ

pmle pmle

pmle

pmle

pmle

+ = +

=

=

=

S d xβ x xβ S d x S d y x y S d x

S d xβ x S d y x

x S d xβ x S d y

S d x xβ S d x y

e e e e e e e e

e e e e

e e e e

e e e e

 

 ( )( ) ( )
1T T 1ˆ ˆ ˆpmle

− −⇒ = = xx xyβ S d x x S d x y T Te e e e . (A.38) 

where Tˆ k k k k
k U

S d
∈

= ∑xxT x x  and Tˆ k k k k
k U

S d
∈

= ∑xyT x y  are the HT estimators of 

the population matrix T=xxT x x  and population vector T=xyT x y  with the cross 

sums of x  and y . 

Replacing the PA adjusted fitted mean of the model, ( ) ˆˆˆ pa pmle= Xμ S x Γ βe  and 

using the sampling weight =w d  in the generic expression in (1.25), the PA 

estimator of the total Y  using the linear working model yM  is  

 

( )
( )( )

T

T

ˆ ˆ

ˆˆ

ˆ

PA pa

pmle

pmle

Y =

=

=

X

d μ S

d xΓ β S

Xβ

e

e .  

which matches the expression in (1.37). 
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REMARK A.1. The derivation of the expression for ˆ pmleβ  in (A.38) is 

based on direct operations of Hadamard products. The expression of ˆ pmleβ  can be 

alternatively derived using rewriting the operation as a product of diagonal matrix 

and using the commutative property of the symmetric matrices. 

The Hadamard product of the vector S and the matrix A  is defined as 

 

1 11 12 1 1 1

2 21 21 2 1 2

1 11 11 11 1

1 2 1

1 11 1 12 1 1 1 1 1

2 21 2 21 2 2 1 2 2

1 11

...

...
... ... ...

...

...

...

...
... ...

N N

N N

N N N N N N

N N N NN NN

N N

N N

N N N

S A A A A
S A A A A

S A A A A
S A A A A

S A S A S A S A
S A S A S A S A

S A S

−

−

− − − − −

−

−

−

− − −

  
  
  
  =
  
  
  
  

=

S A Oe

O

1 11 1 11 1 1

1 2 1

...

...
N N N N N N

N N N N N NN N NN

A S A S A
S A S A S A S A

− − − − −

−

 
 
 
  =
 
 
 
 

A Se

.  

We can rewrite the Hadamard product as  

 ( )diag= = SS A S A D Ae ,  

where ( )diag=SD S  is the diagonal matrix of S  defined as 

 ( )

1

2

1

0 ... 0 0
0 ... 0 0
... ... 0 0
0 0 ... 0
0 0 ... 0

N

N

S
S

diag
S

S
−




= = =



 
 

SD S S O .  

Since SD  is a symmetric matrix, then the following identities hold: 
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 ( )T   symmetric matrix=S SD D ,  
    commutative property=S SD A AD ,  
 ( )( ) ( ) ( )( )  diag diag diag= = = S dS d A S d A S d A D D Ae e e ,  
 ( )diag= =S d S dD D S d D ee , and   

 ( ) ( )TT  symmetric matrix= =S d S d S dD D D De e .  

Then  

 

  commutative properties= = =

= = =

= = =

= = =

= = =

= = =

S d S d

S d d S

S d S d

S d S d

S d S d

S d d S

S d A D D A AD D A S d
D D A AD D A d S
D D A D AD S A d
D D A D AD S A d
D D A D D A S d A
D D A D D A d S A

e e e e
e e
e e
e e
e e
e e

.  

 

Representing the Hadamard product as a matrix product of a diagonal matrix then 

we can solve for ˆ pmleβ  as the roots of score function as follows: 

 

( )( ) ( )
( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

T T

T TT

T TT T

T TT T

ˆ ˆ 0

ˆ ˆ 0

ˆ ˆ 0

ˆ ˆ 0

pmle pmle

pmle pmle

pmle pmle

pmle pmle

− + − =

− + − = 
 

 − + − = 
 

− + − =

S d S d

S d S d S d

S d S d S d S d

S d S d S d S d

D y xβ x y xβ D x

D y D xβ x y xβ D x

D y D xβ x y D x xβ D x

D y x D xβ x y D x xβ D x

e e

e e e

e e e e

e e e e

.  
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Then 

 

( )( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( )

( )

T T T T

T T T T

T T

T T

T T

ˆ ˆ

ˆ ˆ

ˆ2 2

ˆ

ˆ

pmle pmle

pmle pmle

pmle

pmle

pmle

+ = +

+ = +

=

=

=

S d S d S d S d

S d S d S d S d

S d S d

S d S d

S d S d

D xβ x xβ D x D y x y D x

D xβ x D xβ x y D x y D x

D xβ x y D x

x D xβ D x y

D x xβ D x y

e e e e

e e e e

e e

e e

e e

  

 ( ) ( ) ( )( ) ( )
11 T TT Tˆ pmle

−−
⇒ = =S d S dβ D x x D x y S d x x S d x ye e e e e e .  
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Appendix B Expanding the PA Approach 

The approach presented in this dissertation attempts to unify estimation I survey 

theory by using a systematic approach based on standard statistical tools. The goal 

is to provide tools for answering current problems in estimation, in particular, 

estimation with nonresponse. Figure B.1 shows the areas of expansion of the PA 

framework. We classify these areas by the type of estimators shown below: 

Estimator Description 

Y-estimators Estimators of the outcome variable produced by replacing y  

in the estimator. The estimators presented in this dissertation 

are Y-estimators since the estimator is formed by using the 

fitted adjusted PLME means ,ˆ pa kµ . 

 

W-estimators Future development. Estimators of the outcome variable 

produced by replacing the sampling weight d  by the fitted 

means of the distribution of an assumed model for the 

weights. The weights (or probabilities of inclusion) are 

assumed to be generated by a superpopulation model. These 

estimators establish a link from the PA approach to 

calibration and other methods for weighting adjustments. 
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Y-W-estimators Future development. Combination of Y and W 

estimators, where the outcome and weights are 

replaced. 

 

R-estimators Future development. Estimators of the outcome variable 

produced by replacing the sampling weight d  by fitted 

means of the distribution of an assumed model for the 

weights reflecting the effect nonresponse. The 

nonresponse adjusted weights are for the development 

of systems of weights for multipurpose surveys. 

 

Y-R-estimators Future development. Estimators of the outcome variable 

produced by replacing the sampling weight d  and 

outcome variable reflecting the effect nonresponse. 

 

 



 

313 

Figure B.1 Future development areas of the PA framework 
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