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Chapter 1

Introduction

The plane turbulent mixing layer is one of the most important types of turbulent

flows in nature and engineering. For example, in combustion fuel and air are

often mixed using a mixing layer configuration. This configuration is also widely

used to perform chemical reactions. In nature, the Great Red Spot on Jupiter is

known to be such flow as well.

The study of the turbulent mixing layer has been a frequent subject of tur-

bulence research. As early as the 1970’s, the prominent feature of this flow – the

large-scale spanwise vortices, was discovered and described in several experimen-

tal studies [18],[19],[24],[79]. In the following decades, this flow has continued

to be investigated both experimentally and numerically. However, due to the

limitations of experimental techniques and computational power, much of this

research only focused on the velocity field of this flow.

In the 1990’s, with the availability of sufficiently resolved direct numerical

simulations (DNS) and large eddy simulations (LES) and with the development

of new experimental techniques, such as the technique that uses multi-sensor

hot-wire probes to make simultaneous measurement of the velocity and vorticity
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fields in turbulent flows, researchers began to obtain knowledge of the vorticity

field of the turbulent mixing layer.

Another important property of the turbulent mixing layer is its ability to

transport scalars. Although there have been many measurements and numerical

simulations of the scalar concentration field itself, knowledge of higher order

statistics, such as concentration fluxes, are very rare. The scalar fluxes are of

primary importance for predictive models of scalar transport in this flow.

Objective

The purpose of the research project presented herein is to obtain a thorough

knowledge of the velocity, vorticity and concentration fields of a turbulent mix-

ing layer in order to gain insight into the scalar transport processes and their

relationship to vortical structures of this flow. In particular, quantitative mea-

surements of the turbulent fluxes of a passive scalar have been made and analyzed

to determine how they are affected by these structures.

Both experimental and numerical approaches have been used. The experi-

ments focused on simultaneous measurement of velocity, vorticity, scalar concen-

tration and fluxes (using the multi-sensor hot-wire anemometry, flow visualization

and image processing), while the numerical simulations (using LES and particle

tracking) complemented the experimental studies by adding 3D pictures of those

fields and enabling clear determination of the turbulence structures.
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1.1 Literature Review

Experimental Studies

The large coherent mixing layer structures, which are spanwise vortices and are

also called rollers, were first observed by Brown and Roshko [18] in the early

1970’s in their experiment using the shadowgraph technique. They found that

the vortices grow linearly as they move downstream, and that some rollers pair

into larger vortices. The effect of density differences between the two streams on

the flow properties, such as the spreading angle, was also investigated.

Winant and Browand [79] studied the vortex pairing process. They found

that the vortices often rolled around each other and formed larger vortices. This

process controlled the growth of the mixing layer. Based on their observations,

a model for mixing-layer growth was also presented.

At fairly low Reynolds numbers, the coherent structures in the mixing layer

can be easily visualized with properly designed experimental methods, as shown

in Fig. 1.1 (from Loucks [45]). As the Reynolds number increases, the vortices

are not as spatially coherent, making their direct visualization of flow structures

more difficult. The question arises as to whether the large spanwise vortices exist

in a high Reynolds number mixing layers.

Dimotakis and Brown [24] gave a positive answer to this question by studying

the mixing layer flow at high Reynolds numbers1 up to 3 × 106. They once

again observed the existence of large coherent structures. This study proved that

1The authors used the high-speed free-stream velocity as the velocity scale and the distance

from the splitter plate as the length scale. So this Reynolds number is comparable to Reθ of

about 1000.
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Figure 1.1: Visualization of a mixing layer.

the mixing layer dynamics are always coupled to the large structures. They also

identified two distinct stages of the mixing: the entrainment across the boundaries

of the shear layer, and the fine-scale mixing within those boundaries.

Chandrsuda, Mehta, Weir and Bradshaw [19] found that the formation of the

coherent structures is highly influenced by the free-stream and inflow conditions,

if the external flow is highly turbulent. They argued that the two-dimensional

rollers were not a universal feature of the flow and three-dimensionality would be

introduced at an early stage of transition.

Browand and Troutt [17] carried out an experiment with multiple hot-wire

probes and confirmed that the rollers approached an asymptotic state by calcu-

lation of the spanwise correlations between different hot-wire signals. They also

studied the spanwise irregularities and argued that they were produced by the

pairing interactions between adjacent vortices.

Breidenthal [15] used a chemical reacting flow to study the mixing layer. By

measuring the concentration of reaction product, the regions with high reaction

production rates were identified and related to the large coherent structures and

small-scale 3D motions of the flow. The Reynolds number and Schmidt number
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effects on the flow were also studied. It was found that the mixing product was

independent of the Reynolds number downstream of the transition.

Hernan and Jimenez [28] used digitized flow images to study the mixing layer.

By analyzing a sequence of images, statistics of the life history of the eddies

captured in the images was obtained. They found that the entrainment mostly

occurs during the normal life of eddies, not during the pairing periods.

Ho and Huang [29] observed the evolution of the coherent structures under

forced conditions. They showed that forcing at inflow at nearly a subharmonic

frequency could change the growth rate of the rollers. Such forcing could make

several vortices merging simultaneously and therefore dramatically increase the

mixing.

Jimenez [31] found that the plane mixing layer develops a spanwise structure,

due to the secondary instability of the flow. This secondary instability deforms

the large spanwise rollers.

Using the LDV technique, Lang [38] measured the streamwise and cross-

stream components of the velocity, as well as the spanwise vorticity and the

Reynolds shear stress in a turbulent mixing layer.

The development of three-dimensional motions in a mixing layer was investi-

gated by Bernal and Roshko [14]. They observed the secondary structures, i.e.

streamwise vortices, by visualizing planes normal to the streamwise direction of

the flow, using the laser-induced fluorescence technique. A topological model was

proposed to illustrate the structures of the secondary vortices. The generation of

such structures was related to the spanwise vortex instability.

Lasheras, Cho and Maxworthy [39] further studied these streamwise vortices

and found that they were products of upstream perturbations. The vortices
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were always seen to form in the braid regions, and their sizes are comparable to

the prominent spanwise structures. Thus, they contribute substantially to the

entrainment process.

In the 1990’s, significantly improved experimental techniques made more ac-

curate measurements of turbulent flow fields possible. Vukoslavčević, Wallace

and Balint [75] developed a 9-sensor hot-wire probe with good spatial resolution

for turbulent flows at moderate Reynolds numbers. It is capable of simultaneous

measurement of both the velocity and the vorticity fields of turbulent flows. This

probe was successfully applied [9] in a turbulent boundary layer flow, and the

statistical properties obtained from the measurement compared very well with

other laboratory measurements and numerical simulations.

This technique later evolved into a more sophisticated 12-sensor probe [76],

which Loucks [45] used to perform measurement of the full velocity and vorticity

fields of a turbulent mixing layer. This was an extensive study at several stream-

wise locations and thus at different Reynolds numbers. Statistical analysis of

various physical variables such as velocity, Reynolds stress, turbulent kinetic en-

ergy, vorticity, enstrophy and dissipation rate was presented. Probability analysis

was performed on the velocity and vorticity fields. Also presented was the condi-

tional analysis of a set of physical variables to rebuild the spatial information of

the flow. The current study shares the same instrumentation as this experiment,

with the added ability to conduct scalar concentration measurements.

Bell and Mehta [11] studied the development of mixing layers with both

tripped and untripped initial conditions. The growth rate of the layer for the

untripped case was found to be higher than the tripped case. However, each

case still appeared to be self-similar after some development length. In a later
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study [12], they used the same experimental techniques to observe the stream-

wise vortices in the mixing layer. This was a comprehensive work that provided

a quantitative description of many aspects of the streamwise vortices, including

their origin, evolution and persistence. Bell, Plensniak and Mehta [13] further

studied the effect of streamwise vortices on global properties of the mixing layer,

such as momentum thickness and peak values of velocity variances.

Chemical reaction has been used to study the mixing layer, but experimental

studies of the scalar field itself are relatively rare. Based on their experimen-

tal observations, Broadwell and Breidenthal [16] proposed a model for treating

molecular mixing and chemical reaction in the mixing layer flow, as a replacement

of the gradient diffusion models. Koochesfahani and Dimotakis [36] described an

investigation of entrainment mixing in reacting and nonreacting (with passive

scalar) flows at large Schmidt numbers. The mixed fluid composition was stud-

ied. The Schmidt number was shown to play an important role in such flows.

In recent years, improved experimental techniques have made possible more

complex experiments. As an example, Koochesfahani, Cohn and MacKinnon [34]

developed a ”single-laser, two-tracer” approach for the simultaneous measure-

ment of velocity and concentration fields in fluid flows. This was successfully

applied to a turbulent mixing layer, and correlations between velocity and con-

centration fluctuations were obtained.

Pickett and Ghandhi [54] made quantitative passive scalar measurements in

an incompressible planar mixing layer using planar laser-induced fluorescence of

acetone seeded into one side of the layer. This experiment discovered a preferred

mixture composition favoring the high-speed fluid. They [55] also studied the

effect of inlet conditions on the mixing of a passive scalar.
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Numerical Simulations

Corcos and Sherman [22] attempted to use a hierarchy of motions to model the

evolution of rollers in a 2D plane to represent the fundamental stochastic proper-

ties of the mixing layer. Based on this model, a related work by Corcos and Lin

[23] provided a detailed description of the 3D motions and streamwise vorticity

and their effects on the 2D flows. They showed that the characteristics of the 3D

motions were dictated by the distribution of spanwise vorticity which resulted

from roll-up and pairing.

Ashurst and Meiburg [4] simulated a temporally developing shear layer using a

discrete vortex method with a specially designed method to match the inflow con-

dition of experimental studies. This achieved close agreement with experimental

results. Their simulation showed the formation of concentrated streamwise vor-

tices in the braid region of the mixing layer. They also found that the processes

dominating the early stage of the mixing-layer development can be understood

in terms of inviscid vortex dynamics.

Ghoniem and Heidarinejad [27] simulated a 2D spatially developing reacting

shear layer and investigated the effect of the flow field on the reaction rate. Re-

sults revealed a strong similarity between the distribution of product concentra-

tion and vorticity. It was found that the product formation is strongly governed

by the entrainment field.

In earlier decades, due to the limitation of computational power, numerical

studies of turbulent mixing layers were mostly performed using analytical meth-

ods on relatively simple models, most of them 2D. With the advent of more

powerful computers, direct numerical simulations with sufficient spacial resolu-
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tion and large eddy simulations became more popular tools for turbulence studies.

There have been several such simulations performed for mixing layers.

Moser and Rogers [48],[49] performed several Direct Numerical Simulations

(DNS) of temporally developing2 mixing layers. They used a variety of initial con-

ditions as well as different amplitude perturbations to the mean flow to study the

development of three-dimensionality and the transition to turbulence. Through

these studies, many phenomena observed by previous experimental studies were

confirmed. It was found that streamwise vortices were part of the initial cas-

cade to small-scale turbulence. The pairing process inhibited the growth of

three-dimensional disturbances. When the flow reached the self-similar stage,

the streamwise vortices were absent.

Again using DNS, Rogers and Moser [61],[62] studied the three-dimensional

evolution of temporal mixing layers in great detail. Using boundary layer DNS

data [68] as inflow, they performed three DNS of the mixing layer: one base

case with no disturbance, one with weak forcing and one with strong forcing.

Results indicated that the base case and the weak disturbance case both reached

self-similarity, which was characterized by a lack of large-scale pairing, a lack of

streamwise vortices in the braid region and ’marching’ PDFs of scalar mixing.

In contrast, the strong disturbance case exhibited sustained large-scale pairing,

well defined streamwise rib vortices and ’non-marching’ scalar PDFs. This set

of studies provided considerable information about the vortical structures of the

2Temporal simulations are widely used to study the mixing layer flow to avoid the difficulties

associated with the imposition of inflow conditions (periodic boundary condition can be applied

in the streamwise direction in the temporal simulations) and the computational cost due to the

significant length of computational domain required to develop self-similar states.
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flow, as well as the physical mechanism behind it.

Balaras, Piomelli and Wallace [7] performed large eddy simulations of tem-

porally evolving turbulent mixing layers. The effect of different initial conditions

(one case using turbulent boundary layer data and one case using mean flow plus

random perturbations with prescribed moments) and the size of the computa-

tional box on the turbulent statistics and structures was examined. In all cases,

self-similar states were reached. However, the growth rates and turbulence inten-

sities of the mixing layer, as well as the turbulent structures were affected by the

different initial conditions.

1.2 Thesis Synopsis

The introduction of turbulent mixing layer flow, the reviews and summaries of

relevant studies and the research objectives have been presented so far. The

outline of the rest of this dissertation is as follows:

• Chapter 2 is an overview of the experimental studies. The design idea,

the experimental facilities and procedures are first documented. Then the

calibration and data reduction methods for the hot-wire measurements are

covered in detail. In the end the mixing layer characteristics are briefly

described.

• In Chapter 3 the general idea, numerical method and procedure of large-

eddy simulation are first covered. Then two crucial topics of the current

study are discussed: the specification of realistic inflow boundary conditions

for the LES, and the particle tracking method to study the scalar transport.

10



The numerical implementation details are documented. Finally the mixing

layer integral properties are discussed.

• Chapter 4 presents all the experimental and LES results. The velocity, vor-

ticity, scalar concentration and concentration flux fields are first observed

from a statistical point of view. Then, in an effort to reconstruct the under-

lying flow structure from the experimental data, conditional analysis was

performed. Finally visualization and analysis of the instantaneous LES flow

structures were conducted. Discussions about the scalar transport mecha-

nism is scattered throughout this chapter and summarized at its end.

• The dissertation is concluded by chapter 5.
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Chapter 2

Experimental Design, Facility, Instrumentation

and Procedures

The goal of the experimental part of this research is to make high quality mea-

surements of the velocity and scalar concentration fields in a turbulent mixing

layer. The velocity field in the self-similar region of the mixing layer and the

concentration field of a smoke scalar were measured simultaneously at the same

spatial locations, so that the physics underlying turbulent scalar transport could

be explored.

This chapter introduces the design of the experiment, documents the exper-

imental facilities and procedures, and discusses the data acquisition and data

reduction methods. The experimental results will be shown and discussed in

Chapter 3.
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2.1 Experimental Configuration and Wind Tun-

nel Facility

The experiment was conducted in the low-speed wind tunnel of the Turbulence

Research Laboratory at University of Maryland, College Park. It is shown in Fig.

2.1. The open-return type of wind tunnel was built in two adjacent rooms with a

blower between the rooms driving the air flow. The tunnel has a test cross-section

of 1.26m×0.63m. The free-stream velocity can be selected and controlled within

the range of 0.5m/s − 5.5m/s. The three walls of the wind tunnel are smooth

wood surfaces, with one vertical side of the test section made of plexiglass for

visualization purposes. There is a rail system along the streamwise direction at

the top corners of the tunnel. It was designed so that the probe support and

traversing mechanism could travel along it conveniently. There are also stepper

motor systems that allow the hot-wire probe to be moved automatically in the

cross-stream vertical and spanwise directions. They are controlled by a computer

system so that very little human intervention is needed.

Figure 2.1: Low-speed wind tunnel.
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The configuration of the experiment in the test section is shown in Fig. 2.2.

Two major components of the experimental system are the devices for forming a

plane mixing layer and devices for generating smoke concentrations.

Figure 2.2: Mixing layer experiment configurations.

A curved splitter plate was built into the wind tunnel. This idea was developed

by Lang [38]. It was adopted and further developed in the Turbulence Research

Laboratory. The splitter plate divides the wind tunnel, accelerating the flow on

one side and decelerating the flow on the other side. The trailing edge of the

splitter plate provides a smooth meeting of two turbulent boundary layers and

creates a mixing layer with a velocity ratio of about 2:1. There is a screen on the

low-speed side to balance the pressure of the flow in the cross-stream direction,
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eliminating the possible vertical mean velocity and separation at the trailing edge

of the splitter plate.

The splitter plate was designed and constructed with a small slot on the upper

surface from which smoke could be released into the high-speed-side splitter plate

boundary layer. The smoke arrives at the gap through ports on the side wall of

the tunnel, where the splitter plate was fixed to the tunnel. With the smoke

illuminated by a laser beam, photos containing varying light intensity, and thus

varying concentration information could be taken.

2.2 Smoke Concentration Generation

The smoke was generated by burning Chinese incense. Such incense is widely used

in eastern countries for religious purposes and for refreshing air at indoor places

where ventilation is poor. It is non-toxic and safe to use in a lab environment.

Also, it was determined [20] that the sizes of the incense smoke particles are

suitable for this experiment, ranging from 0.12 to 2.87µm. On the one hand, these

particles are small enough so that they faithfully follow the turbulent motions1.

They can be considered as passive, or just markers in the fluid, without significant

influence on the fluid flow. On the other hand, they are still big enough to reflect

enough light for the visualization and photography.

The device for generating smoke is shown in Fig. 2.3. Smoke was generated

by burning coils of incense in a container. The smoke was driven by compressed

1According to [73], an estimate of the mean particle response time to a step change in

velocity is only about 5× 107sec. The inertial forces on the particles can be safely ignored.
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air2, filtered to remove tars (which otherwise could possibly stick to the hot-wire

sensors and affect their sensitivity) and cooled down to the ambient temperature

through a heat exchanger, before it entered the wind tunnel.

Figure 2.3: Smoke generation devices.

To minimize most of the recirculation of smoke through the laboratory room

and back into the tunnel, a suction system was mounted at the end of the tunnel

to draw in the smoke and pass it through a very fine filter to remove most of the

particles.

2This did not excessively perturb the high-speed side boundary layer as the velocity mea-

surement at the trailing edge of the splitter plate showed normal boundary layer behavior, as

can be seen in Fig. 2.15.
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2.3 Laser and Optical System

To illuminate the smoke, an Oxford Lasers CU15-A model Copper Vapor Laser

system was used. The laser light output is a mixture of green and yellow, with

wave lengths of 510nm and 578nm, respectively. The maximum power is 15W.

The system consists of a laser generation part and a power supply component.

Originally, the laser was place at a downstream location of the wind tunnel.

In this arrangement, the light had to travel through the smoke for a long distance

before it reached the testing area, greatly reducing the light intensity at the test

section. To reduce the loss of light intensity, the laser was moved to a position

on top of the wind tunnel just above the test section so that the laser beam only

entered the smoke at the test section, as illustrated in Fig 2.2.

The test section was located about 2 meters downstream of the splitter plate

trailing edge, where a hole was made in the ceiling of the wind tunnel and the

laser beam was directed into the tunnel by an optical system. This streamwise

location is well into the self-similar region of the mixing layer, as determined in an

earlier experiment [45]. To approximate a concentration plane, a two-dimensional

light sheet as thin as possible was needed in this experiment. The laser beam

originally had a round shape at the exit of the laser. The optical system consisted

of a set of lenses, mirrors and filters, which created the planar light. The light

sheet was just a few millimeters thick in the spanwise direction. It illuminated

a trapezoidal area covering the neighborhood of the locations for the velocity

measurements. Fig 2.4 shows a schematic of the optical system.
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(a) (b) (c)

(d)

(e)

Ceiling of the wind tunnel

Figure 2.4: Optical system to generate a 2D light sheet to illuminate the smoke.

(a) Filter to change the round beam into a light sheet. (b) and (c) Convex and

concave lenses to widen the light sheet. (d) Mirror to redirect the light into the

wind tunnel. (e) Concave lens to change the shape of the light sheet.
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2.4 Digital Camera and Image Acquisition Sys-

tem

With this configuration, photos containing concentration information were taken

by a KODAK megaplus ES 1.0 model digital camera. This CCD camera has an

effective pixel array of 1, 008 (horizontal) ×1, 018 (vertical) with a progressive

scan readout system. It is capable of taking pictures at a speed of up to 30

frames/second. The digital output is an eight bit gray scale with 256 levels. The

gray scale values acquired from the pictures, above a base threshold, have been

shown [73] to be a good representation of the light intensity scattered by the

smoke, which in turn is related to the smoke concentration. The camera can be

operated in a single frame, continuous, or double frame triggering mode. The

continuous mode was appropriate for our purpose of capturing real-time images

for a period of time. The double frame triggering mode, on the other hand, is

perfect for PIV experiments where two consecutive images need to be correlated

to determine particle movements.

With a ROAD RUNNER data acquisition card from BitFlow Inc., the digital

images could be captured and stored in the memory of a PC for later processing.

ROAD RUNNER is a reliable, high-performance digital camera interface card for

digital imaging applications. It has a standard 32− bit/33MHz PCI interface to

connect to a PC, and it has a 32−bit/RS422 interface to connect to various types

of digital cameras. It functions well with all versions of BitFlow SDK software

so many hardware level configurations are programmable and controllable. The

data storage PC for the present experiment was a Pentium II system with a

400MHz CPU, a 512M memory, and it runs Windows NT. It allowed us to store
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up to 400 images at a time in the system memory. With the help of the associated

image processing software (Video Savant), the digital images could be converted

into various image formats and saved on hard disks as image files. The Windows

Bitmap format was used for this experiment because it retains all the image

information while encoding the image data.

The camera has a nearly constant sampling frequency (about 30Hz). The

laser system has an adjustable pulse repetition frequency range from as low as

2KHz to as high as 20KHz. It was set to run at a frequency that is a multiple

of the camera frequency (3KHz). Thus, at each image acquisition, a laser pulse

was almost guaranteed to illuminate the smoke field. The short duration (1/3000

seconds) of the laser pulse minimized the blurring effect caused by the moving

smoke, and clear, crispy images were obtained. Occasionally, a dark image was

captured because the timing was not perfectly synchronized. However, this was

very rare, no more that 5 instances for every 1, 200 pictures in the experiment,

and could be easily handled with post-processing.

Another nice feature of this camera is that it can send a signal indicating its

operational status. This signal contains a pulse corresponding to each picture the

camera takes. The data acquisition system could record this signal along with

the hot-wire signals. (see Fig. 4.8 in Chapter 4). By reading this signal and

identifying the pulses, a computer program can easily synchronize the velocity,

vorticity and scalar concentration information obtained in the experiment, and

thus calculate the concentration fluxes, uc and vc, and other correlations.

One more feature that affected our post-processing is also worth mentioning

here. When operating at its highest speed, the camera transfers data out si-

multaneously via two data channels. One channel transfers the odd lines of the
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images and the other channel transfers the even lines, i.e. the image output is

interlaced. Normally, this would not be a problem because the associated image-

processing software (Video Savant V3.0) knows how to rearrange the pixels and

reassemble the image. However, in this experiment, the background gray levels

of the two channels were slightly different. If we were to take a picture of a piece

of white paper with the camera and export one column of pixels, we would have

seen a zigzag change of gray values instead of the expected constant value. This

problem was not discovered until the post-processing stage. It could be caused

by the different noise levels the two channels experienced or for other reasons.

Fortunately, this could be treated as a fixed system error and easily removed in

post-processing.

2.5 12-sensor Hot-wire Probe, Anemometer and

Data Acquisition Devices

A unique 12-sensor hot-wire probe developed earlier in the Turbulence Research

Laboratory of University of Maryland was used to measure the velocity and

vorticity fields [76]. The probe, shown in Fig. 2.5, consists of three 4-sensor

arrays. Each array consists of four individual sensors oriented at approximately

45 degrees to the mean flow.

This probe is capable of measuring all three velocity components as well as

six out of nine velocity gradients. The velocity measurement is possible from the

directional sensitivity of the sensors. Actually, each 4-sensor array individually

is enough to measure the velocity components. The redundancy provides extra

21



(a) (b)

mean flow
1.41mm

1.
16

m
m

z

y

0.36mm

Figure 2.5: Schematic of 12-sensor hot-wire probe. (a) Front view, (b) Perspective

view of one four-sensor array.
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information for optimizing the velocity measurements and improving their accu-

racy. The additional sensors also enable the determination of the six velocity

gradients in the cross-stream plane. The gradients are determined by expand-

ing velocity vectors sensed at each wire in a Taylor’s series about the geometric

center of the probe front plane and solving a set of over-determined non-linear

algebra equations. This technique is discussed in detail later in section 2.9. The

remaining three (streamwise) velocity gradients can be estimated using Taylor’s

hypothesis, which is considered to be a fairly good approximation in experiments

with enough temporal resolution and in which the turbulence intensity is not too

high. The validity of this hypothesis is briefly discussed in section 4.2, as well

as in [56] and [45]. Higher order velocity component statistics and important

turbulence properties that depend on velocity gradients, such as vorticity, strain

rate and dissipation rate, can be easily calculated from the information obtained

from this probe.

The hot-wire probe was operated by an A. A. Lab AN-1003 model anemom-

etry system. This is a constant temperature anemometer with 12 analog input

channels. Each channel incorporates a standard Wheatstone-bridge type circuit.

An overheat ratio of 1.2 was set for these measurements based on previous ex-

perience [45]. The raw voltage signals from the 12 channels were acquired using

an OPTIM Megadac 5017A data acquisition system. This system has a 250 kHz

16-bit A/D converter, 32 simultaneous input channels, 64 megabytes of mem-

ory and an external 1 gigabyte optical disk storage. A thermocouple was used

continuously to monitor the temperature changes in the wind tunnel. This infor-

mation is necessary because temperature variation during the experiment must

be taken into account calibrating of the hot-wire sensors and performing data
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reduction. As mentioned before, the digital camera’s operational status can be

also monitored by recording a signal coming from the camera’s back panel. These

additional channels of data were also recorded by the OPTIM data acquisition

system. The data sampling rate was set to 3KHz. The acquisition system was in-

terfaced with and controlled by an IBM PC, which also served as the data storage

device. This PC is separate from the PC for image capturing and processing.

A set of software came with the data acquisition system which helped us

control the system and process the data acquired. One significant issue raised

by this system is that it saves raw data in a very special binary format. This

format is not any of the standard binary formats on most PC/UNIX platforms. A

conversion program is provided by OPTIM to convert such binary data into SUN

binary. The storage logic (i.e. in which sequences multiple channels of data were

written) of binary data in SUN format is well documented, so post-processing

easily can be done based on it. The conversion program was compiled for a SUN

computer, and no source code is available, so it has to run on a SUN computer

(a SUN Sparc Station 10 system in the current research).

This sort of binary format incompatibility posed a great challenge through-

out the data processing stage. Post-processing programs were written in different

programming languages (such as FORTRAN, C, IDL and Java) on different com-

puter systems where appropriate. Even the same source code might compile to

different executables on different computers. For ultimate convenience, all the ex-

perimental data files were converted to human readable ASCII formats whenever

possible, so that no confusion remained.
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2.6 Calibration Devices

For the preliminary single-sensor hot-wire measurements, the calibration device is

relatively simple. The only device needed is a jet that generates uniform velocity

flows at the exit of its nozzle. The jet used has a motor driven by a power supply

to generate the flow. The jet speed as a function of power supply voltage was

calibrated first, using the system sketched in Fig. 2.6.

Figure 2.6: Jet calibration system.

A Pitot tube was used to calibrate the jet. An accurate Barocel pressure sensor

was used to measure the difference between total pressure and static pressure of

the Pitot tube. A digital multimeter was used to monitor the voltage. For

better accuracy during the actual experiment, both the pressure difference and

the voltage were sampled by the data acquisition system. A linear curve fit easily

described the relationship between the jet nozzle exit velocity and the power

supply voltage. After this step, the calibration jet was used to calibrate the
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single-sensor hot-wire.

The calibration of the 12-sensor hot-wire is much more complex and is de-

scribed in section 2.8.

2.7 Experimental Procedures

Several exploratory experiments with a single-sensor hot-wire probe were per-

formed first. Streamwise mean velocity profiles of the mixing layer were mea-

sured. This preliminary work was to ensure that the wind tunnel and smoke

generation devices were in good working condition, and the computer and data

acquisition system were functioning properly. The post-processing procedure was

established and tested with these relatively simpler data sets. The preliminary

experiments also provided basic understanding of the mixing layer. The growth

of the momentum thickness, the Reynolds number of the flow and other prop-

erties were estimated. These results were valuable in setting up the numerical

simulations, as discussed in later chapters.

The definitive experiment followed these steps:

• All devices were set up and tested. The laser system was turned on and

warmed up for about an hour.

• The 12-sensor hot-wire probe was exposed to multiple flow conditions gen-

erated by the specially designed calibration jet for calibration (see section

2.8 for more details).

• The wind tunnel was turned on and incense was ignited in the burner shown

in Fig. 2.3 to generate smoke.
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• The hot-wire probe was traversed through 15 cross-stream locations to per-

form velocity and velocity gradient measurements in the mixing layer flow.

At the same time, digital images were taken by the camera, with the nar-

row laser light sheet just adjacent to the probe tip (see Fig. 2.2), to record

concentration information.

• To accumulate long enough data records, the above measurements (three

minutes long each) were repeated three times at each position. The PC

only allowed 400 images to be stored in its memory. So a total number of

1200 images were accumulated for each cross-stream position.

• The wind tunnel was shut down. The 12-sensor hot-wire probe was re-

calibrated two more times, using the same set of calibration flow conditions.

The final run of the experiment took almost 15 hours and three people were

involved. One was in charge of operating the data acquisition system to record

hot-wire data on one PC. One was responsible for operating the digital camera

for concentration measurements on a second PC. The third person had to adjust

the hot-wire probe, monitor the data acquisition and coordinate the complete

procedure.

The calibration process is discussed in Section 2.8. The measurements at the

15 locations involved the following operations:

• The hot-wire probe was driven by a stepper motor to move to the predefined

cross-stream locations. Then the probe was moved manually and slightly

forward in the streamwise direction to the edge of the laser light sheet

(the probe support is on a rail attached to the wind tunnel to make this
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possible). This step was needed because the edge of the light sheet was

not perfectly vertical, due to the design of the optical system. Care was

taken so that the tip of the hot-wire probe was only one pixel away from

the light. This was monitored on a computer screen. If the probe was too

close to the laser, the heat generated by the laser could change the sensor’s

response to the fluid flow. On the other hand, if the probe was too far away

from the light, the velocity measurements and concentration measurements

would be spatially separated, which was undesirable because velocity and

concentration correlations were the main reason for these experiments.

• The hot-wire data was sampled at each location for a period of three min-

utes. The sampling frequency was 1000 Hz. The length of the sample

proved to be more than enough to accurately calculate statistics of the

velocity and vorticity fields.

• During the 3 minutes sampling period, 1200 digital images of the concen-

tration field were taken by the CCD camera. This operation lasted about

40 seconds. The number of images available is limited by the computer

hardware and image capturing hardware. So the synchronized velocity and

concentration data was only available over less than a quarter of the 3

minutes period.

In the following sections, the hot-wire calibration process and data reduction

process will be discussed in more detail.
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2.8 Hot-wire Calibration Techniques

The hot-wire is a tiny, electrically heated metal element that is immersed in

the fluid. It has been widely used to measure fluid properties for many years,

especially velocity components of turbulent air flows.

The most common mode of hot-wire operation is the constant temperature

mode. The sensor’s electrical resistance will change as a function of the wire’s

temperature. By making the sensor one leg of a Wheatstone electrical bridge,

and with a properly designed electrical circuit, the sensor can be maintained

at a constant temperature, even while the air flowing over it will try to cool it

at variable rates depending on the instantaneous velocity. The bridge voltage

is constantly adjusted by the feedback characteristics of the circuit to keep the

temperature constant. By recording the change of this bridge voltage, the change

of flow velocity can be determined.

2.8.1 Single-sensor hot-wire calibration

Generally, the hot-wire’s response to the velocity can be approximated by King’s

Law:

E2 = A + BUn, (2.1)

where E is the voltage across the wire, U is the instantaneous velocity component

normal to the sensor, and A, B and n are constants, which need to be determined

through a calibration process.

The calibration of a single-sensor hot-wire is very straight-forward. The sen-

sor is exposed to a variable predetermined steady, uniform and irrotational flow

normal to it, and the voltage across the sensor is recorded. In practice, the non-
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linear relationship between E and U is rather smooth, and a polynomial fit can

be a good alternative to equation 2.1. Fig. 2.7 is a typical hot-wire calibration

curve.
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Figure 2.7: A typical hot-wire calibration curve.

The calibration device used in this experiment is the air-flow jet previously

described, which responds linearly to the power supply voltage. It is able to

generate a uniform velocity profile at its nozzle outlet in the speed range of

0− 5m/s. By placing the hot-wire probe just at the exit of the jet and carefully

aligning its orientation (so that flow direction is normal to the sensor), calibration
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can be performed.

2.8.2 12-sensor hot-wire calibration

The calibration of the 12-sensor probe is much more complex because the sensors

have different orientations to the flow. Recalling that in (2.1) U is the velocity

component normal to the wire, for the 12-sensor probe configuration the wires

are not only oriented with angles not normal to the mean flow, but they also

are very small. It would be very difficult to measure those angles directly and

accurately in an experiment to determine those normal directions. Because of

these difficulties, a more complex, but quite effective calibration method was

used. Note that the procedure discussed below is applicable to any set of sensors

which are not normal to the direction of the flow, not just those of the 12-sensor

probe used in present experiment.

The starting point of our calibration procedure is Jorgenson’s cooling law [32],

which expresses what is known as the effective cooling velocity as a non-linear

function of three orthogonal velocity components, i.e.

U2
eff = U2

N + CT U2
T + CBU2

B, (2.2)

where UN , UT and UB denote the normal, tangential and bi-normal components of

the cooling velocity with respect to the sensor, and CT and CB are the tangential

and bi-normal cooling coefficients, respectively. These three directions are shown

in Fig. 2.8 (a).

A more convenient coordinate system to use is one aligned with the wind tun-

nel and the probe axes, as shown in Fig. 2.8 (b). The two coordinate systems can

be related through a geometric transformation, so that the velocity components
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Figure 2.8: Two coordinate systems: (a) with respect to the sensor. (b) with

respect to the wind tunnel and probe axes.
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UN , UT and UB can be rewritten as:

UN = n1U + n2V + n3W (2.3)

UT = t1U + t2V + t3W (2.4)

UB = b1U + b2V + b3W, (2.5)

where U , V and W are the three velocity components in the wind tunnel’s co-

ordinate system in the streamwise, cross-stream and spanwise directions, and ni,

ti and bi(i = 1, 2, 3) are the geometric transformation coefficients. Again, due to

the small size of the probe, it is very hard to measure the length and orientation

of each sensor precisely enough to determine the transformation coefficients di-

rectly. It is generally much easier to combine these coefficients with the cooling

velocity coefficients CT and CB in (2.2) and determine these combined coefficients

indirectly by calibration.

As mentioned above, the relationship between the effective cooling velocity

and the hot-wire voltage can be well approximated with a fourth order polyno-

mial.

U2
eff = A1 + A2E + A3E

2 + A4E
3 + A5E

4, (2.6)

where A1 through A5 are coefficients of each sensor to be determined from the

calibration. Substituting (2.3) - (2.5) into the Jorgensen’s cooling law (2.2) and

combining the constants yields:

U2
eff = U2 + A6V

2 + A7W
2 + A8UV + A9UW + A10V W, (2.7)

with A6 through A10 to be determined from the calibration process.

During a calibration, U, V and W in (2.7) are known from knowledge of the

calibration jet’s velocity and orientation (refer to equation (2.11) - (2.13)), and E
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in (2.6) is the measured anemometer circuit’s bridge output voltage. By applying

the least square method to minimize the difference between equation (2.7) and

(2.6), all ten coefficients A1...A10 can be determined. This is done by solving a 10

by 10 linear algebraic equation system in the form of A~x = ~b, where the matrix3

is:

A =




Nc E E2 E3 E4 −V 2 −W 2 −UV −UW −V W

E E2 E3 E4 E5 −EV 2 −EW 2 −EUV −EUW −EV W

E2 E3 E4 E5 E6 −E2V 2−E2W 2−E2UV−E2UW−E2V W

E3 E4 E5 E6 E7 −E3V 2−E3W 2−E3UV−E3UW−E3V W

E4 E5 E6 E7 E8 −E4V 2−E4W 2−E4UV−E4UW−E4V W

−V 2 −EV 2 −E2V 2 −E3V 2 −E4V 2 V 4 V 2W 2 UV 3 UV 2W V 3W

−W 2 −EW 2 −E2W 2 −E3W 2 −E4W 2 V 2W 2 W 4 UV W 2 UW 3 V W 3

−UV −EUV −E2UV −E3UV −E4UV UV 3 UV W 2 U2V 2 U2V W UV 2W

−UW−EUW−E2UW−E3UW−E4UW UV 2W UW 3 U2V W U2W 2 UV W 2

−V W−EV W−E2V W−E3V W−E4V W V 3W V W 3 UV 2W UV W 2 V 2W 2




.

(2.8)

~x is a vector containing the 10 unknown coefficients A1 through A10, and the

right-hand-side vector is:

~b =
[
U2 EU2 E2U2 E3U2 E4U2 −U2V 2 −U2W 2 −U3V −U3W −U2V W

]T

.

(2.9)

Nc in the above matrix refers to the number of calibration points, and the bars

over the other terms indicate summations over the whole calibration data set,

3The matrix and right-hand-side vector in reference [45] and [51] are not correct. They both

missed some minus signs.
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i.e.:

E =
Nc∑

i=1

Ei, E2 =
Nc∑

i=1

E2
i , etc. (2.10)

Mathematically, 10 calibration values are the minimum needed to determine

the system. To archive higher accuracy in practice, 65 different calibration ori-

entations of the calibration jet for each of three calibration jet speeds, Q, were

used. The locations are identified by their pitch and yaw angles, as illustrated in

Fig. 2.9. The calibration jet is sketched in Fig. 2.10.

The jet was fixed on a support that could be moved both in pitch (vertical) and

yaw (horizontal) motion, thus providing directional information to each sensor.

For a given jet velocity Q and pitch/yaw angle combination, we have

U = Qcos(γ)cos(φ) (2.11)

V = Qsin(γ)cos(φ) (2.12)

W = Qsin(φ), (2.13)

where γ is the pitch angle and φ is the yaw angle with respect to the tunnel’s

streamwise direction. These velocity components were supplied to equation (2.7)

for the calibration calculation. These predetermined pitch and yaw orientations

of the jet with respect to the probe were obtained with a computer controlled

motor driven positioning system. So the whole calibration process is automatic,

needing no human intervention. The path in Fig. 2.9 (dashed lines) was selected

to minimize the time needed to move the jet during the calibration.

Fig. 2.11 and 2.12 show a set of calibration curves for the 12-sensor probe de-

termined in our experiment. The circle symbols were calculated using (2.6), while

the star symbols were calculated from (2.7). The variable r refers to Pearson’s
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Figure 2.9: Pitch and yaw angles of calibration jet. The dashed lines show

the optimized path to minimize the time needed to move the jet during the

calibration.
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Figure 2.10: Calibration jet.

correlation coefficient, defined by

r =

∑
U2

effU
U2

effE√∑
(U2

effU
)2

∑
(U2

effE
)2

, (2.14)

where UeffU
is the effective cooling velocity defined by (2.7), and UeffE

is the

effective cooling velocity defined by (2.6). The very high correlation between the

cooling law and the polynomial fits to the voltage values provides good confidence

in the calibration.

2.8.3 Temperature correction of hot-wire calibration

The hot-wire sensor is a temperature sensitive device. During the experiment,

which generally lasts for many hours, changes in ambient temperature can affect

the heat transfer rate from the wires, which introduces changes in the hot-wire

voltages not related to the velocity variation that is the point of the measure-

ments. Even worse, the magnitudes of such errors can be amplified when applying

(2.6), because of the non-linear characteristics of polynomials.

37



−1 −0.5 0 0.5 1
e

0

2

4

6

8

10

U
ef

f2

−1 −0.5 0 0.5 1
0

2

4

6

8

10

U
ef

f2

−1 −0.5 0 0.5 1
e

0

2

4

6

8

10
−1 −0.5 0 0.5 1

0

2

4

6

8

10

−1 −0.5 0 0.5 1
e

0

2

4

6

8

10
−1 −0.5 0 0.5 1

0

2

4

6

8

10

sensor 2
r=0.9991

sensor 1
r=0.9979

sensor 3
r=0.9993

sensor 4
r=0.9990

sensor 5
r=0.9988

sensor 6
r=0.9987

Figure 2.11: Calibration curves of 12-sensor probe: sensors 1 through 6. Pearson’s

correlation coefficient r is given for each sensor.
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Figure 2.12: Calibration curves of 12-sensor probe: sensors 7 through 12.
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The variation in ambient temperature could not be easily avoided. All elec-

tronic devices in the lab, especially the laser, generated heat during the exper-

iment. However, it was possible to take the thermal effects into account by

recording the fluid temperature along with other signals and then performing

temperature corrections at the post-processing stage.

A type-K thermocouple was used to measure the temperature in the wind

tunnel during the whole duration of the experiment. The analog temperature

signal was digitized by the data acquisition system along with the hot-wire volt-

ages. A linear correction of the hot-wire voltages was performed, given by the

formula:

E ′ = E + (T − Tref )σT , (2.15)

where E is the measured voltage, E ′ is the corrected voltage, T is the measured

temperature, Tref is a constant reference temperature and σT is a correction

constant determined from the calibration data. This correction has to be done

for each individual hot-wire sensor, and the correction constants can be different.

This linear correction is quite accurate and effective for small temperature

changes of no more than a few degrees. This correction method was optimized

by iterating the correction constant σT to achieve a maximum value of Pearson’s

correlation, as defined in (2.14). These maximum values are higher than the

correlation values calculated from data without temperature correction, as shown

in table 2.1.

40



Table 2.1: Temperature correction to obtain better calibration results.

Sensor σT r before temperature correction r after correction

1 -6.0 0.9979 0.9984

2 -2.9 0.9991 0.9993

3 -2.5 0.9993 0.9994

4 -4.9 0.9990 0.9993

5 -5.5 0.9988 0.9992

6 -3.5 0.9987 0.9990

7 -2.6 0.9989 0.9990

8 -4.5 0.9989 0.9992

9 -5.1 0.9986 0.9990

10 -3.7 0.9989 0.9991

11 -1.9 0.9990 0.9992

12 -5.5 0.9987 0.9991

41



2.9 Hot-wire Data Reduction Techniques

The data reduction is the process by which the velocity and velocity gradient

components are obtained from the hot-wire voltage signals. Unlike the single-

sensor hot-wire case, where velocity can be directly related to the hot-wire voltage

using the calibration curve, the 12-sensor data reduction is much more complex.

A basic assumption for all data reduction methods for probes that are used

to obtain velocity gradients is that the instantaneous gradient is constant over

the probe sensing area. This assumption is reasonable as long as the size of the

probe is comparable to the minimum length scale of the turbulence. In [45],

it was shown that the spatial resolution of the 12-sensor probe is about 4 − 5

Kolmogorov scales, η, in the mixing layer flow at a similar Reynolds number to

that for the current experiment. This provides confidence to use the following

data reduction methods.

There are two data reduction methods that have been developed in parallel

for the 12-sensor hot-wire probes of the Turbulence Research Laboratory. Both

methods were performed on the current data set. They are briefly discussed here.

Interested readers are referred to [51] and [76] for detailed documentation of these

two methods.

2.9.1 Data reduction method I

The first method is a least-square type of method. The starting point is still

(2.6) and (2.7). After the calibration coefficients, Ai, have been determined

and the probe is exposed to a turbulent flow, the velocity components cooling

each sensor become the unknowns. These unknowns can be transformed into the
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velocity components at the centroid of the probe’s projected frontal plane passing

through the sensor centers and the velocity gradients in this plane by expanding

the velocity vector at this centroid location using a first order Taylor’s series,

giving

~Uj = ~U0 + ∆yj
∂~U

∂y
+ ∆zj

∂~U

∂z
. (2.16)

Here the subscript j indicates the jth sensor, ~U0 refers to the velocity vector at

the centroid of the probe frontal plane, and ∆yj and ∆zj are coordinates of the

midpoint of each sensor with respect to the centroid.

Substituting the Taylor’s series (2.16) into (2.7) and then subtracting it from

(2.6) yields:

εj = A1 + A2Ej + A3E
2
j + A4E

3
j + A5E

4
j

− (U2
0 + 2∆yU0

∂U

∂y
+ 2∆zU0

∂U

∂z
)

− A6(V
2
0 + 2∆yV0

∂V

∂y
+ 2∆zV0

∂V

∂z
)

− A7(W
2
0 + 2∆yW0

∂W

∂y
+ 2∆zW0

∂W

∂z
)

− A8[U0V0 + ∆y(U0
∂V

∂y
+ V0

∂U

∂y
) + ∆z(U0

∂V

∂z
+ V0

∂U

∂z
)]

− A9[U0W0 + ∆y(U0
∂W

∂y
+ W0

∂U

∂y
) + ∆z(U0

∂W

∂z
+ W0

∂U

∂z
)]

− A10[V0W0 + ∆y(V0
∂W

∂y
+ W0

∂V

∂y
) + ∆z(V0

∂W

∂z
+ W0

∂V

∂z
)]. (2.17)

In the above equation, U0, V0 and W0 are the three velocity components at the

centroid of the probe front plane, and εj is the error term of the jth sensor. The

subscript j on ∆y and ∆z identifying each sensor is omitted for simplicity. Small

magnitude second order terms have all been dropped in (2.17).
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The sum of the errors of all 12 sensors is:

E =
12∑

j=1

εj. (2.18)

By minimizing the total error E, the unknowns (U0, V0, W0, ∂U/∂y, ∂U/∂z,

∂V/∂y, ∂V/∂y, ∂W/∂y and ∂W/∂z) can be determined. Unlike the calibration

system that produces linear equations of the unknowns, the solution system here

is non-linear. An iterative method was developed to solve this least-square sys-

tem.

Occasionally this method does not work very well in the flow regions where

large turbulent fluctuations occur. This can be the near-wall region of a turbulent

boundary layer, where fluctuations sometimes have the same magnitude as the

mean velocities, or it can be near the center line of the mixing layer, where the

flow is highly turbulent. In such situations, it is possible that some instantaneous

velocity vectors are almost parallel to some of the sensors. As a result, the

mathematical properties of the solution system is poor, and the solution method

does not converge.

In a previous boundary layer experiment [53], it was reported that only 5%

of data points suffered from the above problems near the wall at y+ = 26. The

mixing layer experiments were affected much less by this because of the existence

of large mean streamwise velocities everywhere in the flow. In general, this data

reduction method is highly efficient and relatively easy to implement.

2.9.2 Data reduction method II

The second method was developed by Vukoslavc̆ević et al. [76] and uses a different

approach to determine the velocity and gradient field.
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The starting point is still Jorgensen’s cooling law with velocity components

U , V and W at each sensor expanded using a Taylor’s series. However, in this

method the Taylor’s expansion is with respect to the array centers, instead of the

geometric center of the probe frontal plane:

~Uj = ~U0,i + ∆yj
∂~U

∂y
+ ∆zj

∂~U

∂z
. (2.19)

Here ~U0,i refers to the velocity vector at the center of array i, to which sensor j

belongs. After substituting this expansion into the Jorgensen’s cooling law (2.2),

a set of non-linear equations very similar to (2.17) are obtained:

0 = A1 + A2ej + A3e
2
j + A4e

3
j + A5e

4
j

− (U2
0,i + 2∆yU0,i

∂Ui

∂y
+ 2∆zU0,i

∂Ui

∂z
)

− A6(V
2
0,i + 2∆yV0,i

∂Vi

∂y
+ 2∆zV0,i

∂Vi

∂z
)

− A7(W
2
0,i + 2∆yW0,i

∂Wi

∂y
+ 2∆zW0,i

∂Wi

∂z
)

− A8[U0,iVi + ∆y(U0,i
∂Vi

∂y
+ V0,i

∂Ui

∂y
) + ∆z(U0,i

∂Vi

∂z
+ V0,i

∂Ui

∂z
)]

− A9[U0,iW0,i + ∆y(U0,i
∂Wi

∂y
+ W0,i

∂Ui

∂y
) + ∆z(U0,i

∂Wi

∂z
+ W0,i

∂Ui

∂z
)]

− A10[V0,iW0,i + ∆y(V0,i
∂Wi

∂y
+ W0,i

∂Vi

∂y
) + ∆z(V0,i

∂Wi

∂z
+ W0,i

∂Vi

∂z
)].

(2.20)

However, here the velocity components U0,i, V0,i and W0,i are defined at the

ith array center. ∆yj and ∆zj refer to the distance from the sensor centers to

the array centers, which is considerably smaller than the distance from the sensor

centers to the probe centroid. Thus it is reasonable to assume that all the gradient

terms in above equation are much smaller than those gradient terms in equation

(2.17).
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Based on this assumption, the following iterative method can be used to solve

for the velocity and velocity gradient components.

• Equation (2.20) is first solved for each array with all gradient terms ne-

glected. This reduces the system to three 4-equation uncoupled systems.

Each of them has only U0,i, V0,i and W0,i as their three unknowns. They

are over-determined systems. The ’best’ three equations are chosen to solve

the system. The criteria for choosing the ’best’ will be discussed below.

• The previous step gives first estimates of the velocity components at the

three array centers. Then estimates of all the gradient terms at the probe

center can be found from the array center velocity components. For exam-

ple, if the arrays are arranged as in Fig. 2.13, then the gradient ∂U/∂y can

be estimated to first order as:

∂U

∂y
=

UI − 0.5(UII + UIII)

∆y
, (2.21)

where the subscripts I, II and III refer to the different arrays. Other

gradients in the plane can be evaluated similarly.

• The gradients estimated in the previous step then can serve as gradient

values at the array centers in (2.20). The ’best’ three equations then can

be solved again with those gradient terms known for improved velocity

component estimates.

• The previous two steps are repeated until both the velocity and the velocity

gradients converge to within some specified small value.

This method has been found to converge very quickly, requiring just a few
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Figure 2.13: Arrangement of three arrays in a 12-sensor hot-wire probe.

iterations. It also suffers less from the non-convergence problems4 described above

for method 1. The two data reduction approaches yielded almost same results

for this mixing layer experiment. The experimental results presented in Chapter

3 were obtained using method 2.

As mentioned above for method 2, the ’best’ three equations need to be chosen

from four equations to solve the velocity components at each array. In Fig. 2.13,

sensors 2 and 4 in each array are always selected. This is because the dominant

gradient terms in both the boundary layer flow and the mixing layer flow are in

the y direction. Only one from sensors 1 and 3 is chosen by a ’smart’ program

4In the present experiment, at the mixing layer centerline location, only 182 of 540,000

(0.034%) velocity values are not converged. The centerline location should be affected the most

by the non-convergence issue because flow there is most likely to experience large fluctuations

in spanwise and cross-stream directions.
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based on their orientations with respect to the instantaneous velocity vectors. The

one that ensures the uniqueness of physical solutions is always chosen. Detailed

discussion of this issue can be found in [76].

The redundant information provided by the 4th sensor in each array also

ensures the success of the measurement when unexpected events happen. At the

very end of the current experiment, one of the twelve sensors was broken. Thanks

to this redundancy, the data reduction method was still able to give reasonable

velocity field values so that the data at the last few locations was salvaged.

2.10 Mixing Layer Characteristics

In Fig. 2.14 the streamwise mean velocity profiles measured at several locations

downstream of the trailing edge of the splitter plate are shown. These profiles

were measured with a single-sensor hot-wire probe in a preliminary experiment.

This and other preliminary experiments were performed for the purpose of val-

idating the mixing layer facility and providing some basic understanding of the

flow.

As can be seen in the figure, right after the trailing edge of the splitter plate,

the two turbulent boundary layer profiles from either side of the splitter plate

merge together. In Fig. 2.15, both the low-speed-side and high-speed-side veloc-

ity profiles are plotted in semi-log coordinates where it is seen that they more

or less display log law characteristics. The low-speed-side boundary layer profile

deviates more from the log law because of the existence of a pressure gradient

caused by the arrangement of the splitter plate.

Further downstream, the mixing layer begins to grow and evolves into the
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Figure 2.14: Mean velocity profiles at different downstream locations from the

splitter plate trailing edge.
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self-similar shape at about 50 centimeters away from the splitter plate. From

these profiles, one can easily evaluate the growth of the momentum thickness of

the mixing layer,

θ =
∫ ∞

−∞


1

4
−

(
U1 − Uc

∆U

)2

 dy. (2.22)

Here Uc ≡ 0.5(Uh + Ul) is defined as splitter plate plane velocity, ∆U ≡ Uh − Ul

is the velocity difference between high-speed-side and low-speed-side free-stream

(Uh = 1.97m/s and Ul = 1.00m/s in the final experiment), and U1 is the local

mean velocity at location y in the mixing layer. As will be discussed, the momen-

tum thickness is of great importance to the mixing layer flow as a characteristic

length scale. From the experimental data, it can be evaluated using a discrete

form of (2.22):

θ =
∑

k


1

4
−

(
U1,k − Uc

∆U

)2

 ∆y, (2.23)

where ∆y is the step interval in the cross-stream direction that the hot-wire probe

is traversed in k steps. Fig. 2.16 shows the linear growth of momentum thickness

in the mixing layer flow. The growth rate dθ/dx = 0.013.

Based on the length scale θ and the velocity scale ∆U , the Reynolds number

can be defined as:

Reθ =
∆Uθ

ν
. (2.24)

In the present experimental studies, the detailed 12-sensor measurements were

performed at 2m downstream from the trailing edge of the splitter plate in the

self-similar region, where the momentum thickness is about 25.6mm and the

Reynolds number is about Reθ = 1590.
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Chapter 3

Large-Eddy Simulations

While experimental studies like the one outlined in the previous chapter can

provide reliable statistical information on several quantities of interest, numerical

simulations can generally provide a wealth of complementary information about

turbulent flows. In the current mixing layer study, for example, hot-wire time

series measurements of the velocity and vorticity fields were limited to a few

spatial locations, and conditional analysis of the data was performed to extend

the knowledge to a two-dimensional plane. On the other hand, highly accurate

numerical simulations can provide information on the local flow topology and

dynamics that is not directly measurable.

In the framework of the present work, to complement the experimental stud-

ies, large-eddy simulation of spatially developing turbulent mixing layers were

performed in parallel. The simulations were designed to match the experimental

conditions as closely as possible. The scalar transport in the flow was simulated

by tracking massless particles.

In section 3.1, an overview of the adopted LES methodology is presented.

Following this, two special topics are covered. First, the treatment of the inflow
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boundary conditions, which is critical for the accuracy of spatially developing

flows, will be covered in section 3.2. Then in section 3.3, the particle tracking

schemes used to study the scalar transport will be discussed in detail.

3.1 Overview of the Method

3.1.1 Mathematical formulation

The LES methodology is intermediate between the direct numerical simulation

(DNS) approach, where all scales of motion are resolved, and the Reynolds Aver-

aged Navier Stokes (RANS) approach, where all turbulent scales are modelled. In

particular, in LES a spatially filtered form of Navier-Stokes equations is solved

and all scales larger than the filter size – which is usually proportional to the

local grid spacing – are resolved directly as in a DNS. Only scales smaller than

the filter size are modelled. An inherent advantage of this modelling strategy is

its predictive capability: the large, energy carrying eddies that depend on the

specific geometry and boundary conditions are directly resolved; the small scales

that are approximately homogeneous and isotropic and therefore do not depend

on the specific flow problem are modelled using simple and inexpensive eddy

viscosity type models.

In the present finite-difference implementation a top-hat filter is implicitly

applied by the difference operator to separate the large resolved scales from the

ones to be modelled. The resulting equations of motion have the following form:

∂ui

∂xi

= 0 (3.1)
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∂ui

∂t
+

∂

∂xj

(uiuj) = − ∂p

∂xi

+
1

Re

∂2ui

∂xi∂xj

− ∂τij

∂xj

, (3.2)

where the overbar denotes a filtered variable and

τij = uiuj − uiuj, (3.3)

are the subgrid scale (SGS) stresses that need to be parameterized. ui(i = 1, 2, 3)

are the components of the velocity vector in the three coordinate directions, p is

the pressure and Re is the Reynolds number.

The purpose of SGS models is to account for the effects of small-scale eddies

in the flow, mostly by removing energy from the resolved scales to mimic the way

that energy is dissipated at the end of the energy cascade. In the present study

a preliminary set of computations was conducted using the Smagorinsky model

[65], which relates the subgrid-scale stress to the resolved strain rate:

τij − 1

3
δijτkk = −2νT Sij = −2C∆2|Sij|Sij. (3.4)

In (3.4) νT is the turbulent eddy viscosity and ∆ is the filter size, defined as

(∆x∆y∆z)1/3, where ∆x, ∆y, ∆z is the local grid spacing in the three coordinate

directions. Sij is the resolved strain rate, defined as:

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (3.5)

The value of the constant C needs to be chosen based on the type of problem. In

all computations where the Smagorinsky model is used, a value of C = 0.11 was

adopted.

One weakness of this model is that a single model constant used throughout

the flow is often unable to properly represent all the complex turbulent features.

A more important concern in the present study is the fact that the model does
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not vanish in areas of the flow field where the flow is laminar. This can introduce

complication near the edge of the mixing layer where irrotational fluctuations

are present. To alleviate this concern a dynamic eddy viscosity type model was

subsequently used [26].

Such models dynamically determine the model constant to reflect the local

conditions of the flow. The basic idea is to apply a coarser spatial filter (called the

test-filter, compared to the finer filter which is called the grid-filter) on the N-S

equations and assume that the resulting subtest-scale stresses associated with the

test filter Tij also can be modelled using an eddy viscosity type of model as in

equation (3.4):

Tij − 1

3
δijTkk = −2C∆̂2|Ŝij|Ŝij, (3.6)

where the hat indicates test filtering, ∆̂ is the coarser filter width and Ŝij is the

test-filtered strain rate. The stresses at the two different grid levels can be related

with the following identity: [26]

Lij = Tij − τ̂ij = ûiuj − ûiûj. (3.7)

Equation (3.4), (3.6) and (3.7) can be used to determine the model coefficient C

dynamically. Here the least-square method proposed by Lilly [44] is adopted:

C(xi, t) =
1

2

LijMij

MijMij

, (3.8)

where Mij is defined as:

Mij = ∆̂2|Ŝij|Ŝij −∆ ̂|Sij|Sij. (3.9)

The model coefficient given by (3.8) is a function of both space and time, and

it is known to cause numerical instabilities when it becomes negative. For this
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reason, an ensemble average is needed to remove the sharp fluctuations of the

coefficient. In the present work, the Lagrangian averaging procedure proposed

by Meneveau et al. [47] is adopted. It accumulates the required averages over

flow pathlines rather than over homogeneous directions. This is sensible because

the local flow condition at a given point ~x can be highly dependent on the history

of flow along the trajectory leading to ~x.

Using this idea, the ensemble averages of the numerator and denominator of

(3.8) can be written as:

< LijMij >=
∫ t

−∞
Lij(t

′)Mij(t
′)W (t− t′)dt′, (3.10)

< MijMij >=
∫ t

−∞
Mij(t

′)Mij(t
′)W (t− t′)dt′, (3.11)

where W (t) is a weighting function, normally giving more weight to recent times

in history. Details of the present implementation can be found in [63].

3.1.2 Numerical method

Equation (3.1) and (3.2) are solved using a standard finite-difference fractional

step method on a staggered grid. Details of the method can be found in [6]. In

the following the basic elements of the approach are given.

For the purpose of discussion, the momentum equation (3.2) is rewritten in

the form:

∂ui

∂t
= H(ui, uj)− ∂p

∂xi

, (3.12)

where H is just a spatial operator including all the convection and diffusion terms.

Time advancement of (3.12) is done using an explicit Adams-Bashforth scheme
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resulting in the following predicted velocity:

u∗i − un
i

∆t
=

3

2
H(ui, uj)

n − 1

2
H(ui, uj)

n−1 +
∂pn

∂xi

. (3.13)

The velocity u∗ obtained from the above equation is an estimation of the

velocity field and it does not satisfy the continuity equation. Projection in a

divergence-free space is done by solving the following Poisson equation:

∂2δp

∂x2
i

=
1

∆t

∂u∗i
∂xi

. (3.14)

The divergence-free velocity field is finally obtained from:

un+1
i − u∗i

∆t
= −∂δp

∂xi

. (3.15)

All spatial derivatives in H are obtained with second-order central difference on

a staggered grid.

3.1.3 Boundary conditions

The specification of boundary conditions is of great importance. Some types of

boundary conditions are easier to realize numerically than others. For example,

periodic conditions and non-slip boundary condition are quite straightforward to

implement. However, in a spatially developing flow, such as the turbulent mix-

ing layer configuration of this investigation, the specification of inflow boundary

conditions can be a great challenge. Section 3.2 will be dedicated to discuss the

inflow boundary conditions for the mixing layer simulation. In the following other

types of boundary conditions are briefly reviewed.

A schematic of the three-dimensional computational domain and the bound-

ary types is given in Fig. 3.1. In the homogeneous spanwise direction, periodic
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Figure 3.1: Schematic of the LES computational domain and the boundary types.

boundary conditions are used, where information from the other side of the box

can be taken to determine the boundary values of velocity components. At the

outflow boundary, one must specify boundary conditions that allow turbulent

structures to leave the domain without introducing disturbances to the calcula-

tion. For this reason a convective condition is used [52] .

Care also must be taken to specify the boundary conditions at the two free

stream boundaries of the mixing layer. The condition used in the current study

is based on the assumption that the free stream is irrotational. The w component

is determined from dw/dz = 0 while u and v are determined from solving:

ωx =
∂w

∂y
− ∂v

∂z
= 0, (3.16)

ωy =
∂u

∂z
− ∂w

∂x
= 0. (3.17)

This free stream boundary condition allows the fluid to enter or leave the
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boundaries, which may cause imbalance of mass. The convective outflow bound-

ary condition can also produce surplus or deficit of mass. Thus a global mass

balancing procedure is necessary to ensure the conservation of mass. Here the

mass imbalance is evaluated at the prediction step and a correction to the velocity

component normal to the outflow boundary is added to conserve the mass. Such

correction is applied on all outflow boundary cells and is usually very small.

3.2 Inflow Boundary Conditions

3.2.1 Introduction

Although most flows encountered in real applications develop in space, for many

years DNS and LES of turbulence have been mostly confined to fully developed

or time-developing flows, in which the specification of the boundary conditions

is significantly simplified: periodic conditions can be used, removing the need to

specify inflow and outflow conditions. For flows that develop spatially, such as

the mixing layer or the flat-plate boundary layer, however, the use of periodic

boundary conditions is not appropriate. To simulate such spatially developing

flows, several approaches have been used and are briefly discussed in the following

paragraphs.

For some flow problems one can still apply periodic boundary conditions, and

observe the flow development in time. If Taylor’s hypothesis holds, one can then

relate time to space through a Galilean transformation with an appropriate con-

vection velocity. Temporally developing mixing layers [62] and boundary layers

[70] have been simulated in this manner. A limitation of this approach lies in the

60



fact that entrainment from the free-stream is not allowed, and in some flows (the

boundary layer, for instance) the correct Reynolds shear stress profile cannot be

recovered.

For self-similar flows, one can solve the governing equations in the self-similar

coordinate frame. Spalart performed DNS of sink flow [67] and flat-plate bound-

ary layers [68] using this approach. Spalart also used periodic conditions to study

a boundary layer in the presence of favorable, then adverse pressure gradient

(which is not self-similar) by introducing the ’fringe method’ [69]. This technique

consists in adding forcing terms to the Navier Stokes equations in small regions

near the inflow and outflow of the domain to remove mass and decrease the

boundary layer thickness at the outflow, prior to re-introducing it at the inflow.

Although this method can be effective for the simulation of equilibrium boundary

layers, and in some non-equilibrium cases [43], its general applicability is limited,

since the streamwise extent of the computational box should be increased sub-

stantially to allow the flow to return to equilibrium as it approaches the outflow

boundary.

The method proposed by Lund et al. [46] also requires self-similarity. It

involves rescaling the velocity field at some downstream location, in a flat-plate

boundary layer, and re-introducing it at the inflow. An advantage of this method

is that it allows the calculation of nonequilibrium flows as long as a flat-plate

of sufficient length is appended before the region of interest. A large region of

the flow (and substantial computational resources) are, however, used only to

generate a realistic inflow condition.

To study transitional flows, perturbations can be superposed on a laminar

mean flow. This approach has been used successfully in boundary layers [57],
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[30] and mixing layers [21]. If, however, one is interested in turbulent flows,

the development of turbulence from perturbed boundary conditions may require

excessively long streamwise domains, since turbulence must be allowed to develop

from the imposed perturbation.

Alternatively, one may impose a mean velocity profile and superpose on it

random noise perturbations, adjusting their phases to yield the desired moments

up to some (typically second) order. This approach was adopted by Lee et al. [41]

in a DNS of isotropic compressible turbulence; they found that the flow recovers

fairly quickly (in about two integral length scales) from the random fluctuations.

The method, however, appears to be less well suited to wall-bounded flows. Le

et al. [40] and Akselvoll et al. [1] found that several boundary-layer thicknesses

(10δ and 25δ, respectively) were needed for reasonable statistics to be established

before the region of interest in backward facing step computations. In addition

to the waste of computational resources due to large recovery lengths, control of

the skin friction and integral thickness just upstream of the domain of interest is

difficult: the development section is un-physical and the upstream conditions do

not always lead to the desired statistics downstream.

The use of the results of auxiliary calculations may be the most realistic type

of inflow condition available, since the development section can be drastically re-

duced or in some cases eliminated altogether. The auxiliary calculation must be

run synchronously with or prior to the actual computation, and a time series of

data stored on disk are used as inflow. Using this approach, several computations

of spatially developing flows have been conducted successfully [2], [33], [46]. In

high-Reynolds number flows, however, the number of points in the inflow plane

increases dramatically and the cost of the auxiliary computation may become
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significant from the storage and the CPU time point of view. This is the case for

the two stream turbulent mixing layer, in which two separate auxiliary computa-

tions (low- and high-speed boundary layers) are needed. The proposed approach

in the present study is based on the ’auxiliary calculation’ approach.

3.2.2 Present approach and preliminary assessment

The inflow plane of a spatially developing mixing layer requires two boundary

layers, one for the high-speed side and one for the low-speed side. In this situation,

two auxiliary calculations are necessary. Also, the temporal resolution of the

auxiliary simulations has to be the same as the main simulation. Thus their

CPU and storage costs will be comparable to those of the main simulation. It

would be beneficial if one could perform the auxiliary boundary-layer simulations

for a shorter time period Ts, store two planes of data for each time step over the

period Ts, and recycle the stored data as many times as needed at the inflow

boundary of the main simulation.

It is obvious that such a procedure introduces a periodicity at the inflow

plane of the mixing layer that might influence flow statistics. However, it can

be argued that this periodicity may be eliminated by the non-linear interactions

in the turbulence not far away from the inflow plane and that the downstream

statistics will not be affected.

To test this idea a series of preliminary computations were conducted. All

the quantities in this section will be normalized by δ∗L, the displacement thickness

of the low-speed boundary layer, and U∞L, the low-speed free-stream velocity.

The configuration of the mixing-layer simulations is described in Fig. 3.2. The
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computational domain has a size of Lx = 1100 (streamwise) by Ly = 80 (span-

wise) by Lz = 190 (cross-stream). On the inflow plane, the high-speed side is a

boundary-layer velocity profile with free-stream velocity UH = 2, while the low-

speed side has an up-side-down boundary-layer profile with free-stream velocity

UL = 1. This configuration was designed to mimic the experiment by Loucks [45],

which measured a similar mixing layer with a multiple-sensor hot-wire probe.

Mixing layer calculation

z

Inflow plane

Boundary layer
calculations

Sampled planes

U =2t

U =1b

 Splitter plate 

L   = 340x

L   = 1100x

 x 

L
   

=
 9

5
z

L
   

=
 9

5
z

L
   

=
 1

90
z

Fringes are indicated by shaded regions

Figure 3.2: Computational domains for the mixing-layer simulation and two aux-

iliary boundary-layer simulations.

Two flat plate boundary-layer simulations were performed on domains of size

340(Lx) by 80(Ly) by 95(Lz). They were discretized with 80×32×40 grids. The

simulations were performed for a dimensionless time period of 776 units and one

plane of data from each simulation was stored at each time step to the hard disk

as the inflow conditions for the main simulation.

Three different mixing layer simulations were conducted: In the first case,

the whole sample was used; in the second case, one half of the sample was used,

repeated twice; in the third case, one quarter of the sample was used, repeated

64



four times. A windowing technique was used to modify the signals at their two

ends to make them periodic so that no abrupt changes were introduced when

recycling the inflow data. These time sequences are shown in Fig. 3.3.

0 194 388 582 776
t∆U/θo

0.0

0.5

1.0

1.5

2.0

2.5

3.0

w
/∆

U

Ts=776
Ts=388
Ts=194

Figure 3.3: Time sequence of a velocity component at an arbitrary location on

the inflow plane. Each signal is shifted one unit for clarity.

All three cases started from the same initial field and the simulations were

allowed to develop in time for one flow-through time (during which a fluid par-

ticle travelling at the low-speed-side velocity could move out of the downstream

boundary) before the statistics were accumulated for another flow-through time.

Then statistics from the three cases were compared.
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Shown in Fig. 3.4 (a) is the time-averaged momentum thickness of the mixing

layer. The three cases agree quite well and the length of the inflow has little effect

on this integral quantity. Fig. 3.4 (b) shows the averaged momentum thickness

over four different periods in case 3. If the periodicity at inflow were maintained,

the statistics by averaging over different periods would be identical and equal to

the long-term average. However, Fig. 3.4 (b) clearly shows that the periodicity at

the inflow was removed by the turbulence and all periods have different averages.
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Figure 3.4: Growth of momentum thickness in the mixing layer. Experimental

slope is from Loucks [45]. (a) Time average for different inflow condition cases.

(b) Averages over different periods of case 3.
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To quantify the loss of periodicity, auto-correlations of the streamwise velocity

fluctuations were calculated at several streamwise locations for each case. The

auto-correlation is defined as:

Ruu(x, z, t) =
< u′(x, t′)u′(x, t′ + t) >

< u′2 >1/2
, (3.18)

where u′ is the streamwise velocity fluctuation and the angle brackets represent

averages over time and homogeneous spanwise direction. The results are shown

in Fig. 3.5.

At the inflow plane (x = 0), when the data is reused, one can expect to see

the auto-correlation value going back to 1 as two identical signals are correlated.

This can be observed at time t/T = 0.25, 0.5 in case 3 and t/T = 0.5 in case

2. With distance downstream, the correlations also show secondary peaks at

those times. However, the secondary peak values decrease rapidly with increasing

downstream distance, which reflects the de-correlation. At x = 290, which is at

about a quarter of the useful domain from the inflow, the peak values drop to

below 0.2.

Finally in Fig. 3.6 some statistics for the mixing layer at two streamwise

locations are shown. The first location (x = 97) is very close to the inflow plane

and the second location (x = 484) is in the self-similar region. Both the first

order moment (mean velocity) and the second order moment (q2 =< u′iu
′
i >, the

trace of the Reynolds stress tensor) from the simulation agree very well with the

experiment [45], the initial conditions of which we attempted match.

To give a general idea of the efficiency of this method: in the current test case,

the time spent on the auxiliary simulations was about 64% of the main simulation.

However, if one is interested in higher order properties of the flow, the main
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Figure 3.5: Autocorrelations of streamwise velocity fluctuations at several stream-

wise locations. Top: case 3; Middle: case 2; Bottom: case 1.
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Figure 3.6: First- and second-order moments in the self-similar region of the

mixing layer. Experimental data from Loucks [45]. (a) Mean velocity. (b) Trace

of Reynolds stress tensor.
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simulation needs to run for a much longer time to achieve converged statistics.

In that situation, the saving by recycling the inflow data can be significant.

The above method was also tested by [37] in a spatially developing mixing

layer in the framework of a finite-difference method. The author suggested that

the mechanism to de-correlate the inflow periodicity might be partly from the

numerical error of the 2nd order spatial discretization of the code. When a 6-

order central difference scheme was used, this mechanism became much weaker.

3.3 Scalar Transport

3.3.1 Problem formulation

The dispersion of passive scalars in a flow field is normally the result of two

different physical processes: advection and molecular diffusion. This is clearly

described by the following scalar transport equation:

∂C

∂t
+ uj

∂C

∂xj

= kc
∂2C

∂xj∂xj

, (3.19)

where C is the scalar concentration, uj denotes the velocity and kc is the molecular

diffusivity of the scalar. In the framework of LES, (3.19) can be spatially filtered,

resulting in:

∂C

∂t
+ uj

∂C

∂xj

= kc
∂2C

∂xj∂xj

− ∂Qj

∂xj

, (3.20)

where the overbar denotes a filtered variable and

Qj = ujC − ujC (3.21)

is the sub-grid scalar flux that has to be modelled.
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However, in the present study, the LES approach based on solving (3.20) is

prohibitively expensive because of the high Schmidt number of the scalar field.

The Schmidt number, defined as

Sc =
ν

kc

, (3.22)

is a dimensionless measurement of the ratio between the momentum diffusivity

ν and the molecular diffusivity kc. It was estimated [73] that the smoke concen-

tration used in the present study has a Schmidt number of the order of 106.

According to the theoretical analysis of Batchelor [10], in an equilibrium state,

the smallest scale of the gradient variance of a scalar in a turbulent flow is char-

acterized by:

ηc =

(
νk2

c

ε

)1/4

=

(
ν3

ε

)1/4
1

Sc1/2
=

η

Sc1/2
, (3.23)

where ε denotes the dissipation rate and η is the Kolmogorov length scale. This

indicates that a substantially higher spatial resolution (∼ 104 times finer than

the grid resolution used in the present LES study) has to be used to resolve the

scalar concentration field.

An alternative approach to study the passive scalar concentration field is to

use a particle tracking method, in which massless particles are introduced into

the flow and their trajectories are followed. This approach assumes that the

scalar is only carried by the particles, and the concentration associated with each

particle is conserved along its trajectory. In this case, the scalar concentration at

an Eulerian point ~x is represented by the volume-averaged particle number over

the neighborhood of ~x. Of course, the resolution with which the concentration is

determined depends on the size of the volume over which the averaging is done.

Unlike the scalar transport equation (3.19), which has an Eulerian perspective,
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it is more convenient to describe the motions of tracer particles from a Lagrangian

point of view. The governing equation is:

d ~xp

dt
= ~up +~b(t), (3.24)

where ~xp is the position vector of the particle, ~up is the particle velocity and~b(t) is

a zero-mean random variable describing the brownian motions of the particles due

to the molecular diffusion. The magnitude of ~b(t) is known [3] to be proportional

to the molecular diffusivity kc of the scalar so it is not important in the present

study, where the molecular diffusion of the scalar is extremely weak. Thus only

the following equation needs to be integrated:

d ~xp

dt
= ~up. (3.25)

Although it is easy to understand that (3.19) and (3.24) describe the same

transport physics from different perspectives, the task to mathematically relate

them is non-trivial. Readers interested in this topic should consult [64] where

the Eulerian view and the Lagrangian view of passive scalar mixing are covered

analytically in great detail.

Since the particle locations almost never coincide with the underlying Eulerian

grid of the simulations, central to the problem of particle tracking is finding

interpolation schemes that are both numerically accurate and cost-effective. This

issue will be discussed in the following section. The temporal integration scheme

and the procedure adopted to introduce the particles at the inflow plane in a way

that closely approximated the experimental conditions will then be described.
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3.3.2 Interpolation procedure

In this section two different interpolation strategies to compute the velocity of

a particle at an arbitrary grid point are examined: a high order direction-by-

direction polynomial interpolation and multidimensional tri-linear and tri-cubic

schemes. In the first strategy, multiple-dimensional problems are broken up into a

succession of one-dimensional interpolations. To achieve high accuracy, high order

polynomials can be used. Polynomial interpolation is a fairly popular method,

and has been widely used in particle tracking algorithms (e.g., Wang et al [78]).

The second strategy is to achieve high level of smoothness over the multiple-

dimensional domain by using nodes from all dimensions together. One such

application in particle tracking can be found in [66].

Fifth order polynomial interpolation (direction by direction)

In general, through any N points, there is a unique polynomial of degree N − 1.

Given a set of N points (xi, yi) the values of the function P (x) is given by the

following Lagrange formula:

P (x) =
(x− x2)(x− x3)...(x− xN)

(x1 − x2)(x1 − x3)...(x1 − xN)
y1 +

(x− x1)(x− x3)...(x− xN)

(x2 − x1)(x2 − x3)...(x2 − xN)
y2

+... +
(x− x1)(x− x2)...(x− xN−1)

(xN − x1)(xN − x2)...(xN − xN−1)
yN (3.26)

Directly using the above formula, however, is computationally inefficient. A

better way to perform the same interpolation is to use a recursive algorithm

to gradually approach the final result. One such algorithm is called Neville’s

algorithm. Let us assume that there are four tabulated points x1 through x4, with
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their function values y1 through y4, as shown in Fig. 3.7. Neville’s algorithm

would first build first order approximations (P12, P23 and P34) through linear

interpolations (or extrapolations) based on tabulated function values. Then the

second order approximations (P123 and P234) are calculated based on the first

order values. The procedure is performed recursively using the following formula:

Pi(i+1)...(i+m) =
(x− xi+m)Pi(i+1)...(i+m−1) + (xi − x)P(i+1)(i+2)...(i+m)

xi − xi+m

, (3.27)

until the tip of the pyramid is reached. It can be proved that the recursive method

yields exactly the same interpolation result as using the Lagrange formula [71].

However, it is much more efficient. The only disadvantage of this method is that

Y

X

P1234

P123 P234

P12  P23  P31

P1   P2   P3   P4P1

P2

P3
P4

P12

Figure 3.7: Neville’s algorithm to perform polynomial interpolation.

the coefficients of the polynomial are not directly obtained and stored, which can

increase computational cost.

In the current project, fifth order polynomial interpolations, which involve

6 points in each direction, or 63 = 216 points in three-dimensional domain

were used. The interpolation was performed in a direction-by-direction man-
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ner, which breaks the three-dimensional interpolation procedure into a number

of one-dimensional interpolations. The details are given in Appendix A.

Since the above scheme involves 3 nodes from each side of the particle, special

treatment is required near the boundary of the computational box. In the present

study one-sided formulae at the same order of accuracy are used.

Tri-linear interpolation and tri-cubic interpolation

In this section a multiple-dimensional interpolation procedure that uses neigh-

boring points in all directions together is given. Two typical schemes are the

tri-linear and the tri-cubic scheme. Tri-linear interpolation uses 8 neighboring

points, while tri-cubic uses 64 neighboring points. As can be seen from the fol-

lowing discussion, while they are theoretically very similar and also very similar

to implement, the differences of the computational costs are substantial.

In the case of tri-linear interpolation, the function value at an arbitrary point

can be expressed as:

u(x, y, z) = (a + bx)(c + dy)(e + fz), (3.28)

ie. it changes linearly in each direction. By expanding the equation above, 8

separate terms are obtained with 8 coefficients to be determined. Note that a

grid cell surrounding a particle has exactly 8 corner points, where their function

values and coordinates are known. An 8 by 8 linear equation system can be

formed to solve for the unknown coefficients. Then, function values at arbitrary

locations within that grid cell can be evaluated explicitly.

The tri-cubic interpolation is based on the same idea, except that it use mul-

tiplication of cubic functions and involves 4 points on each grid line. It can be
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written as:

u(x, y, z) = (a1 +a2x+a3x
2 +a4x

3)(b1 + b2y + b3y
2 + b4y

3)(c1 + c2z + c3z
2 + c4z

3).

(3.29)

Expanding the above equation yields 64 unknown coefficients. To solve for the

unknowns, 27 grid cells with 64 nodes have to be involved in the interpolation.

As a result, a much larger linear system (64 by 64) has to be solved.

It is obvious that storing the interpolation coefficients in memory, rather than

computing them at each time step, would increase substantially the efficiency

of the algorithm. The trade-off, however, is that a large amount of storage is

required. In the following, the methodology for the specific application will be

discussed.

For simplicity let us consider a simplified two-dimensional bilinear interpola-

tion in the form of:

u(x, y) = (ax + b)(cx + d)

= acxy + adx + bcy + bd

= c1xy + c2x + c3y + c4. (3.30)

If a rectangular grid cell (which contains a particle) has four nodes at (x0, y0),

(x0, y1), (x1, y0), (x1, y1), then in the framework of a bilinear interpolation one

has to solve the following linear system:




x0y0 x0 y0 1

x1y0 x1 y0 1

x0y1 x0 y1 1

x1y1 x1 y1 1







c1

c2

c3

c4




=




u(x0, y0)

u(x1, y0)

u(x0, y1)

u(x1, y1)




. (3.31)
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By looking at the equations, it is obvious that the elements in the left-hand-side

matrix only contain geometric information about the grid, and the right-hand-

side vector only contains function values on grid nodes. This means that once

the grid system has been determined, the left-hand-side matrix for each grid

cell can be created and the expensive LU decompositions can be performed only

once. The right-hand-side vector, in contrast, has to be determined continuously,

because the flow field is changing with time. In this case, however, only a rather

fast back substitution step is needed to solve the linear systems.

With this procedure, all left-hand-side matrices can be formed, LU decom-

posed and stored in memory for future use to reduce the computational cost. The

storage cost, however, can become a major obstacle. For instance, in the mixing

layer, if all the matrices for a tri-cubic scheme were to be stored, the memory

usage for a moderate number of grid cells (approximately 600, 000) would be of

the order of 10 Gigabytes for a single precision calculation. This is far beyond

the ability of most modern workstations.

One possible solution to reduce the storage cost is to take advantage of the

grid uniformity in one or more directions. For example, in a simulation with

uniform meshes in all directions, all grid cells have exactly the same shape and

size. If a relative coordinate system is used (i.e. x, y, z are relative to a origin

local to each cell), then the matrices are the same for all grid cells and only one

matrix needs to be stored. If one dimension is non-uniform (i.e. y), then only

one matrix needs to be stored for each x− z plane.

In the present computations the grid is always uniform in the spanwise ho-

mogeneous direction. Referring to the previous example and taking advantage

of the grid uniformity in the span, the storage for the tri-cubic scheme can be
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reduced to approximately 310 Megabytes. This is a reasonable memory size for

many modern PC systems.

There is no special boundary treatment for tri-linear interpolation as it only

involves vertices from one grid cell for each particle. For the tri-cubic scheme,

similar to the 5th order polynomial, one-sided formula was used.

3.3.3 Time advancement

Time advancement of equation (3.24) is done with an explicit Adams-Bashforth

scheme as for the Navier-Stokes equation part. Generally, any explicit time

scheme could work well as long as the time steps are small enough. It can be ar-

gued that, in particle tracking, numerical errors usually come from interpolation,

rather than temporal integration [5].

The integration can be written in the following format:

~xn+1
p = ~xn

p + ∆t[(1 + α)~un
p − α~un−1

p ], (3.32)

where α equals 0.5 for a normal time step. Note that to calculate the particle

displacement at time n + 1, particle velocities at both time n and time n− 1 are

required. So at the time when a particle is just introduced into the computation

domain and no particle velocity history is available, the scheme must be degraded

to a first order Eulerian scheme. This is done by setting α = 0.

3.3.4 Preliminary assessment of the interpolation schemes

To test the accuracy and efficiency of the different methods, preliminary calcula-

tions were performed using a prescribed three-dimensional velocity field that sat-

isfies the Navier-Stokes equations. The domain was discretized using a 64×64×64
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grid. The test case was designed so that the domain size, grid size and time step

were comparable to those of the final simulation. Fig. 3.8 shows the computa-

tional domain and an example of a single particle trajectory.
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Figure 3.8: Computational domain to assess the interpolation schemes and one

particle trajectory.

In the first test case, one particle was allowed to travel the whole length of the

computational box and it was tracked by three different interpolation schemes

using the same conditions (identical starting point, time step and grid resolution).

79



The end positions of the particle (~xnum) after 3000 time steps were compared to

the analytical solution (~xana). The result is shown in the second column of table

3.1, and the numbers are reported as the ratio of the error |~xnum − ~xana| to the

uniform grid size ∆. All schemes produced satisfactory results and the maximum

error is only 6% of the grid size. The tri-cubic scheme appeared to be one order of

magnitude more accurate than the other two schemes. Although the polynomial

scheme uses more stencils (216 nodes) than the other two schemes, its direction-

by-direction nature appears to reduce its accuracy.

In the second test case, the times needed to perform 300, 000 interpolations

using the three schemes were recorded. They are normalized by the time used

by the tri-linear scheme tmin and reported in the third column of table 3.1. It

can be seen that the tri-cubic scheme is prohibitively expensive due to its need

to solve a huge linear system. The tri-linear scheme is by far the fastest.

The idea of speeding up the interpolation process by storing the interpolation

coefficients was also evaluated in a preliminary mixing layer simulation. The gain

of computational time is highly dependent on the number of particles in use – the

more particles sitting in the same grid cell, the more effective this idea is. With

Table 3.1: Accuracy and efficiency of the interpolation schemes.

Interpolation Scheme |~xnum − ~xana|/∆ t/tmin

5th order polynomial 6.17% 4.6

Tri-linear 4.47% 1.0

Tri-cubic 0.52% 96.4
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1 million particles and a moderate grid (500, 000 cells), 2/3 of the CPU time was

saved using the tri-linear scheme.

Based on the analysis above, the tri-linear scheme, which has the overall best

performance, was chosen in the final simulation.

3.4 Setup of the Computations

In this section details of the setup of the mixing layer computations are given.

A key point in simulating the experiment described in the previous chapter is

the boundary condition at the inflow plane in the simulations. The auxiliary

boundary layer LES, used to generate the inflow data are discussed in detail in

section 3.4.1. Other parameters that could affect the results, like the domain size

and numerical resolution are examined in section 3.4.2.

3.4.1 Auxiliary boundary layer simulations

As mentioned in the previous sections, measurements of the mean velocity profiles

exactly at the trailing edge of the splitter plate were conducted for the purpose

of providing the required information to construct accurate inflow conditions for

the LES. The presence of a zero pressure gradient boundary layer is clear on

the high-speed side, while on the low-speed side a relative weak adverse pressure

gradient is apparent. The ratio of the free-stream velocities of the two boundary

layers is u∞H/u∞L = 1.95 (henceforth the subscript H refers to quantities on

the high-speed side and the subscript L to quantities on the low-speed side),

and the ratio of the displacement thickness is δ∗H/δ∗L = 0.44. The corresponding

Reynolds numbers are ReH = u∞Hδ∗H/ν = 680 and ReL = u∞Lδ∗L/ν = 800. Also
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henceforth and unless otherwise stated the displacement thickness δ∗L and the

free-stream velocity u∞L will be used as the reference length and velocity scales.

To be able to construct inflow conditions using the method described in sec-

tion 3.2 two separate boundary layer computations were conducted mimicking

the conditions of the low-speed and high-speed side in the experiment. The sim-

ulations were performed on 200δ∗ × 40δ∗ × 35δ∗ computational domains, with

256× 96× 48 grid nodes in the streamwise, spanwise and wall-normal directions,

respectively. The streamwise and spanwise grids were uniform, while the wall-

normal grid was stretched using a hyperbolic tangent function. The size of the

computational box in the spanwise direction was the same as the planned mixing

layer simulation, while in the wall-normal direction the size was half of that in the

mixing layer simulation. The boundary layer simulations were conducted using

the rescaling method by Lund et. al. [46].

By adjusting the inflow flow parameters, the boundary layers were controlled

to have the desired thicknesses in the middle of the computational domain (x/δ∗ =

100), where the flow field is least affected by the boundary conditions. Instan-

taneous y − z planes of velocity data were taken from there and stored on the

disk. Based on the experience from the preliminary study in section 3.2, the time

period of the stored data was about 240tu∞/δ∗. Within this time period, a fluid

particle travelling at the mixing layer centerline velocity would move out of the

computational domain from the outflow boundary.

To evaluate the accuracy of the auxiliary boundary layer LES, comparisons

with the DNS result of Spalart [68] at a similar Reynolds number were made. Fig

3.9 shows the mean velocity profiles that match the DNS profile very well. In the

LES the first point from the wall was located at y+ = 0.9 for the low-speed side

82



and y+ = 1.6 for the high-speed side.
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Figure 3.9: Comparison of mean velocity profiles of the boundary layer simula-

tions.

Shown in Fig 3.10 are the root-mean-square profiles of the three velocity

components in inner coordinates. As expected for marginally resolved LES, the

urms values were slightly over-predicted in the near-wall region, while vrms and

wrms were slightly under-predicted. Nevertheless, for the purpose of constructing

inflow conditions for the mixing layer simulation, such accuracy is more than

adequate.

The slice data from both high-speed and low-speed sides were then interpo-
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Figure 3.10: Comparison of velocity rms profiles of the boundary layer simula-

tions.
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lated on the mixing layer grid to be used as inflow boundary conditions following

the procedure described in section 3.2. The resulting mean velocity profile at the

inflow is compared to the measured one in Fig. 3.11, where it is seen that the

agreement is excellent.

Figure 3.11: Inflow boundary condition for the mixing layer simulation.

The specification of inflow concentration conditions for the simulation is as

important as its velocity counterpart. In the present experimental study, the

smoke was injected from a slot into the high-speed side boundary layer. The

slot is about 200mm upstream of the splitter plate trailing edge. There was no
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direct measurements of the concentration profiles at the splitter plate trailing

edge plane.

To provide realistic inflow concentration conditions for the simulation, Chi-

ang’s [20] experimental results were used for guidance. Chiang performed an

experiment measuring the smoke concentration in a turbulent boundary layer

downstream of a line source. The way the scalar was generated and transported

in his experiment is quite similar to that of the current experiment. Fig 3.12

shows typical mean concentration and concentration variance profiles from his

measurements.
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Figure 3.12: Concentration measurement [20] in a turbulent boundary layer. (a)

Mean profile; (b) Variance profile.

To simulate the way that concentration changes with time at the mixing layer
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inflow, at each cross-stream location a random number generator was used to

generate time series that statistically gave the desired mean and variance values

that match the experimental profiles. These numbers were then translated into

number of particles needed for each cross-stream level. The desired number of

particles were seeded randomly into the first and second column of grid cells at

each time step of the simulation to provide the inflow concentration information.

This method gave reasonable downstream statistics in this simulation.

3.4.2 Computational domain, grid refinement, sample size

and particle number issues

A previous temporal LES by Balaras et. al. [7] has shown that the mixing layer

statistics are very sensitive to the size of the computational box, especially in

the spanwise direction. This simulation was used as a guide when choosing the

domain size and the grid resolution in the spanwise and cross-stream directions

for the current numerical simulation. The experimental results on the growth of

the mixing layer provided helpful information to determine the box size in the

streamwise direction.

The domain size of the final computation is 350δ∗×40δ∗×70δ∗ (the displace-

ment thickness δ∗ of the precursor low-speed boundary layer simulation is the

length scale for discussions in this section). The temporal LES indicated that a

grid resolution of 96 × 96 in y − z planes is sufficient for this box size. In the

streamwise direction, three different grids were tested to investigate the influence

of grid resolution.

Fig. 3.13 illustrates the different streamwise grids. In one case a uniform grid
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was used and in two other cases finer grids near the inflow plane were used. From

the same starting field and with the same boundary conditions, simulations were

performed on all three grids, and their statistics were compared.
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Figure 3.13: Three sets of grids used for the grid refinement test.

Fig. 3.14 shows the growth of the mixing layer. It is evident that the coarser

uniform grid case does not have enough grid resolution near the inflow plane,

thus leading to poor prediction of the growth of the mixing layer. The other two

grids, however, give about the same growth rate. The small difference between

them is due to sample size of the statistics.

88



0 100 200 300 400
x/δ*

−2

0

2

4

6

θ/
δ*

stretched x−grid with 256 cells
uniform x−grid with 256 cells
stretched x−grid with 360 cells

Figure 3.14: Grid refinement test: growth of momentum thickness.
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Velocity statistics at a cross-stream section of the mixing layer in the self-

similar region are shown in Fig. 3.15. While all three cases identically predicted

the mean velocity, the prediction of velocity fluctuation variances for the coarser

uniform grid case deviate from the other two, which are almost identical.
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Figure 3.15: Grid refinement test: mean velocity and velocity variances.

As a result of the above analysis, the coarse uniform grid was first excluded

from further calculations. Given the agreement between the results on the two

non-uniform grids, it was assumed that the intermediate grid (256 × 96 × 96)

provided adequate resolution and was used in the definitive simulation.

Initially a LES without particle tracking was performed to obtain a veloc-
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ity field, which was independent of the initial conditions. Then particles were

released from the inflow plane at each time step and allowed to disperse for

10, 000 time steps (about 3.7 flow-through times). Statistics were accumulated

over 15, 000 time steps. Sampling over 2, 000 - 15, 000 time steps indicates that

second-order concentration statistics, e.g. the rms of the concentration fluctu-

ations, become very well converged after about 10, 000 time steps, as shown in

Fig. 3.16.
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Figure 3.16: Sample size test: statistics over 10, 000 time steps (3.7 flow-through

time) is very well converged.
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It is also very important to evaluate the effect of the total number of particles

on the concentration statistics. Three test cases were conducted with the same

grid resolution for the velocity field but with different numbers of particles: 4

million, 8 million and 12 million. Fig. 3.17 shows that the rms of the concen-

tration fluctuations converges reasonably well using 8 million particles. With

4-million particles, however, the concentration fluctuation rms was significantly

over-predicted. In this case there were only, on average, about 10 particles per

grid cell.
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Figure 3.17: The dependence of the root-mean-square of the concentration fluc-

tuations on the number of particles tracked in the simulation.
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Finally, it should be mentioned here that the volume over which the particle

number density is determined (not necessarily the same as the LES grid) has a

very large impact on the concentration statistics. This issue will be addressed in

section 4.3, where the scalar concentration results are presented.

3.5 Mixing Layer Integral Properties

In Fig. 3.18 the streamwise evolution of the momentum thickness, θ, of the mixing

layer is shown. It is computed from the spanwise-average and time-average of 1000

instantaneous fields using (2.23). As a length scale, the momentum thickness
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Figure 3.18: Evolution of momentum thickness of the mixing layer. The solid

line is a linear fit based on data points beyond x = 100.
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should always have positive values. However, in the wake of the splitter plate,

because of the deficit of the streamwise velocity near the center line, (2.23) can

yield negative values. This is true in the present study when the low-speed

boundary layer is almost twice as thick as the high-speed boundary layer. The

definition of the momentum thickness in (2.23) is for a mixing layer and does not

have a clear physical meaning near the edge of the splitter plate where the two

boundary layers merge.

After an initial adjustment, the growth of the mixing layer becomes linear at

around x = 100, suggesting that a self-similar state is reached. The linear section

(showing as a fitted line) has a slope of dθ/dx = 0.013. This agrees very well with

the present experimental slope. The Reynolds number range of the linear growth

region is 1500 − 3900 (using the local momentum thickness as the length scale

and ∆U as velocity scale), with the experimental Reynolds number (1590) near

the lower end. In chapter 4, the experimental and LES results will be compared

with several references which are listed here in Table 3.2 1.

Another clear way to identify the self-similar state of the mixing layer is

to observe the rate of dissipation of turbulent kinetic energy. This quantity is

approximately constant in the streamwise direction in the self-similar region when

properly scaled [62]. It is defined as:

< ε(x) >=
1

TLz

∫ T

0

∫ Lz

0

∫ Ly

0
ε dy dz dt, (3.33)

which is a function of x, averaged in time and spanwise, and integrated in the

1Bell and Metha’s experiment used length scales other that the momentum thickness. So

the numbers shown here are approximations.
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Table 3.2: Mixing layer parameters comparison between the current study and

some references.

Reθ dθ/dx

Present Experimental Study 1,590 0.013

Present Numerical Study (LES) 1,500-3,900 0.013

Loucks [45] 2,483

1,792 0.016

432

Bell & Metha [12] 2,800

1,900 0.010

1,570

Rogers & Moser (DNS) [62] 1,500-2,000 0.014
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cross-stream direction. The integrand is defined as:

ε = 2νSijSij − τijSij, (3.34)

where Sij is the resolved strain rate and τij is the subgrid-scale stress from the

SGS model. The total dissipation rate consists of two parts – the resolved part

and the subgrid-scale part.
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Figure 3.19: Evolution of dissipation rate of the mixing layer.

This quantity can be normalized by the velocity scale ∆U3 and becomes nearly

constant in the self-similar region as shown in Fig. 3.19. It is clear that the flow

enters a self-similar state from around x = 100, which agrees with the value
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obtained from the momentum thickness plot but is much easier to identify. The

magnitudes of the resolved part and the subgrid-scale part are almost the same.

The total dissipation rate in the self-similar region is about 〈ε〉 /∆U3 = 0.004,

which matches the rate from the temporal simulation of [7] very well.
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Chapter 4

Results of Experiment and Large-Eddy

Simulations

In the previous two chapters, the design, facility, instrumentation, procedure and

data processing of the mixing layer experiment and large-eddy simulations were

covered. This chapter will present the results from both the experiments and the

simulations. Various mathematical and statistical tools were used to analyze the

data. When appropriate, they will be discussed along with the results.

4.1 Velocity Statistics

To describe the velocity field statistical characteristics of the mixing layer, a set

of standard statistical tools were used. They are:

a =
1

N

N∑

n=1

an, (4.1)

the mean value,

σ2 =
1

N − 1

N∑

n=1

(an − a)2, (4.2)
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the variance, which is a measure of how the variable fluctuates about the mean

value,

S =
1

N

N∑

n=1

(
an − a

σ
)3, (4.3)

the skewness factor, which characterizes the asymmetry of the variable’s distri-

bution about the mean value, and

K =
1

N

N∑

n=1

(
an − a

σ
)4, (4.4)

the flatness factor (or Kurtosis), which describes how extreme values affect the

shape of the probability distribution of the variable. In these definitions σ is the

standard deviation of the variable’s fluctuations about its mean.

Fig. 4.1 shows the mean streamwise velocity profile and the root-mean-square

(rms) values of the three velocity fluctuation components for locations ξ = y/θ

across the mixing layer. The experimental results of the present study (shown as

filled circles) and the LES results (shown as dotted, long-dashed and short-dashed

curves for three self-similar streamwise locations) are compared with published

results. The mean velocity profiles collapse extremely well for all cases. The

rms distributions also collapse reasonably well except that the peak of vrms is

somewhat higher for the present experiment and LES compared to the other

experiments and to the Rogers and Moser [62] DNS. The width of the vrms profile

for the experiment is greater than for the simulations but agrees well with the

previous experiment of Loucks [45] in the same flow facility. The generally good

data collapse indicates that all the data compared are from self-similar mixing

layer states.

Fig. 4.2 shows the skewness and flatness factors of the three velocity fluctua-

tions; The agreement with Loucks’ experiment [45] at a similar Reynolds number
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Figure 4.1: Velocity statistics: (a) mean streamwise velocity; (b) streamwise, (c)

cross-stream, and (d) spanwise velocity fluctuation root-mean-square values. All

data normalized with ∆U .
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is quite good.
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Figure 4.2: Skewness (left column) and flatness (right column) factors of the three

velocity fluctuations. Present data: •, Reθ = 1590; Loucks [45]: ×, Reθ = 1792.

4.2 Vorticity Statistics

The 12-sensor hot-wire measurements provided three velocity components and

six velocity gradients. The three streamwise gradients are not measured directly;
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they must be determined using Taylor’s hypothesis, i.e.

∂Ui

∂x
= − 1

U

∂Ui

∂t
. (4.5)

These gradients can be combined into vorticity components as well as other

variables such as strain rate, dissipation rate and enstrophy for further analysis.

In practice, the time derivative term in (4.5) is often approximated using a central

difference scheme:

∂Ui

∂t
=

U t+∆t
i − U t−∆t

i

2∆t
. (4.6)

Taylor’s hypothesis is based on the assumption that, over a sufficiently short

time, the flow is ’frozen’ and the turbulent diffusion is weak. Thus flow structures

are only convected by the mean flow. The validity of this assumption has been

probed by several studies [45],[56],[75],[51]. One simple approach to validate the

assumption from the 12-sensor probe data is to use the continuity equation to

evaluate the streamwise velocity gradient ∂U/∂x:

∂U

∂x
= −∂V

∂y
− ∂W

∂z
, (4.7)

where the two right-hand-side gradient terms are directly measured.

Fig. 4.3 shows a comparison of the streamwise velocity gradient at ξ = 0 from

both (4.5) and (4.7). The shapes of the curves, which carry phase information of

the signal, match reasonably well. The correlation coefficient between these two

signals is 0.68.

After obtaining the three streamwise velocity gradients. vorticity components

can be calculated using the following definitions:

ωx =
∂W

∂y
− ∂V

∂z
, ωy =

∂U

∂z
− ∂W

∂x
, ωz =

∂V

∂x
− ∂U

∂y
. (4.8)
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Figure 4.3: Time series of streamwise velocity gradient: ∂U/∂x(s−1) vs.

time(ms), from both Taylor’s hypothesis and the continuity equation.
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Then statistics of vorticity can be calculated.

The normalized root-mean-square values of the vorticity fluctuation compo-

nents are plotted in Fig. 4.4. The curves are normalized by (∆U3/νθ)1/2, which

has the unit of s−1.
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Figure 4.4: Normalized vorticity component root-mean-square values. (a)

Streamwise component; (b) Cross-stream component; (c) Spanwise component.

All the vorticity rms profile peaks of Rogers and Moser’s DNS temporally

developing mixing layer results [62] are greater than the present experimental and
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LES profiles. Three reasons why the temporally developing simulation vorticity

fluctuation rms do not match well the spatially developing experimental values

may be:

• The vorticity profiles at the trailing edge of the splitter plate are not the

same for the numerical simulation and the experiments.

• The use of Taylor’s hypothesis introduced uncertainties in determining the

ωy and ωz fluctuations.

• The vorticity gradients in the experiment were determined from a first order

finite difference approximation.

Although the present experimental and LES values agree with each other

quite well, it should be borne in mind that neither resolves all the small scales

and that the LES models them.

4.3 Scalar Concentration Field

Scalar concentration information was obtained experimentally by processing pho-

tographic images. Fifteen sets of images were acquired, corresponding to the 15

hot-wire measurement locations. For each set, 1200 photographs were taken.

This is a rather small sample size (compared to the measurements of the velocity

field, which sampled data for 3 minutes at each location at a frequency of 1K

Hz). However, post-processing proved that this sample size is enough to obtain

smooth concentration statistics as will be seen.

During the image processing stage, one vertical line of pixels was taken from

each image with their gray scale values representing relative smoke concentrations
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[73]. This line is in the cross-stream y-direction and just downstream of the tip of

the hot-wire probe so that velocity-concentration correlations could be evaluated

later. The square area in the illuminated plane corresponding to one pixel was

0.225mm on a side. Based on the dissipation rate at a similar Reynolds number

found in [45], this is a resolution of about 0.6 Kolmogorov lengths. A pixel is

also about 0.019 of the displacement thickness on the low-speed boundary layer

at the trailing edge of the splitter plate.

Fig. 4.5 shows the experimental mean concentration profiles and concentra-

tion rms profiles. The curves (a) and (b) at the top of the figure are the raw

data from 15 separate measurements. The curves share the same shape but have

different peak values. This is due to the following factors:

• Smoke accumulated in the room and recirculated through the wind tunnel

during the experiment, even with a filter in place at the end of the tunnel

that partially removed the smoke.

• The light intensity possibly changed somewhat during the experiment.

Because the full run of the experiment took up to 12 hours, these effects were

significant and could not be eliminated with the experimental facilities available.

They had to be accounted for in post-processing.

A simple way to deal with this problem is to normalize each curve by its local

maximum value. The results of this normalization are shown Fig. 4.5. Both the

mean and rms profiles collapse fairly well, as seen parts (c) and (d) of the figure.

Ideally the mean flux of scalar through a cross-stream plane should be constant.

In fact, during the many hours of the experiment smoke accumulated and was

recycled through the tunnel, so that the mean scalar flux was not constant. Thus,
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Figure 4.5: Mean and rms concentration profiles. (a) and (b) Measured raw mean

and rms profiles across the mixing layer; (c) and (d) Mean and rms normalized by

local maximum concentrations; (e) and (f) Averaged mean and rms concentration

experimental profiles from the 15 sets of measurements and from the LES.
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each profile should be rescaled by the mean scalar flux that occurred when it was

measured. Actually the use of the local maximum concentration is an equivalent

rescaling. To demonstrate this, the areas under the profiles shown in Fig. 4.5

(c) that have been rescaled by their local maxima, were determined. They are

indeed very close to the same constant value (approximately 4.87) with a standard

deviation of only 0.06, thus, verifying the equivalence of the normalization.

Shown in Fig. 4.5 (e) and (f) are the mean and rms profiles averaged over

the 15 sets of measurements. Also shown there are the mean and rms profiles

obtained from the LES. The experimental and LES mean profiles compare very

well. However, although the shapes of the experimental and LES rms profiles are

similar to each other and to those in [54], their magnitudes are quite different.

This is likely due to two factors:

• First, the fact that the experimental profiles does not go to zero at the

edges of the mixing layer reflects the low grey level noise of the camera (see

Appendix B).

• Second, the light intensity of the smoke in the experiment, and from it

the scalar concentration, is determined from a single pixel. This is a much

greater spatial resolution than could be achieved by counting particles in

an LES grid cell. In term of Kolmogorov length scale η, the experimental

resolution is about 0.6η while the LES resolution is more than 30η near the

mixing layer centerline where the grid is the finest. This lack of resolution

in the simulations results in an attenuation in rms levels.

It is worth mentioning that the concentration rms profile is not symmetric.

The peak intensity of the fluctuations occurs on the low-speed side of the mixing
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layer. Also, in some of the experimental cases, slight inflection points can be

observed in the middle of the curves, suggesting increased levels of concentration

fluctuations away from the center plane of the mixing layer. This trend is more

obvious in the LES results, where two peaks can be observed in some cases.

In order to support the conjecture that spatial resolution is responsible for

the difference between the experimental and numerical concentration rms levels,

the experimental data were spatially averaged over moving windows with widths

of several pixels before averaging over the 1200 images (in time). In this way

the spatial resolution was reduced by a factor of 8, in the cross-stream direction,

to approximately match the spatial resolution of the hot-wire probe, which is

about 5 Kolmogorov length. It was also reduced by a factor of 50 to match the

spatial resolution of the smallest LES grid cell. As can be seen from Fig. 4.6,

this spatial averaging dramatically reduces the Crms levels. When averaging over

50 pixels, the rms levels were reduced by 30% − 45%. It can also be seen that

this reduction is not linear across the mixing layer. Thus the shape of the rms

curves also changed, and became closer to the double-peak shape of the numerical

results.

The LES concentration statistics can also be computed by determining the

particle number density using a grid that is finer than the velocity mesh. Fig. 4.7

shows three cases where the particles at a given streamwise location (x = 150)

are counted using different grids: one with the LES velocity grid, one with 1/2

streamwise grid spacing and one with 1/4 streamwise grid spacing. As can be

seen, the concentration rms levels increase with the grid resolution. Furthermore

the concentration rms profile loses its asymmetric shape for the finest resolution,

probably due to the limited number of particles per cell. For the finest grid, on
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average only 10 particles were located in each grid cell near ξ = 0. To provide

spatial resolutions close to the experimental resolution, one must track much

larger number of particles, which is practically not feasible.
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Figure 4.7: The dependence of the concentration rms levels on the spatial reso-

lution in the simulations.

It is also worthwhile to point out that, as the numerical and experimental

resolution for the computation of the concentration statistics approach each other,

the shapes as well as the magnitudes of the rms profiles become similar.
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4.4 Concentration Fluxes

To determine concentration fluxes, the velocity and concentration fluctuation

information must be synchronized. As mentioned in chapter 2, the digital camera

used in the current study has an output signal reporting its functional status.

This signal was acquired simultaneously with the hot-wire anemometer output.

Fig. 4.8 is a time series of raw data recorded by the data acquisition system

28000 28500 29000 29500 30000
Time (ms)

−0.4

−0.2

0

0.2

0.4

camera signal
Hot−wire signal

Figure 4.8: Synchronization of velocity and concentration information.

showing this synchronization. The dashed line is just a segment of turbulent

hot-wire output voltage signal, while the solid line is the signal generated by the
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digital camera. The pulses associated with each image capture are almost periodic

and very easy to identify by a computer program. By extracting information

from the camera signal, velocity data and concentration data could be properly

aligned, and correlations between the velocity field and the concentration field,

i.e. concentration fluxes, could be calculated. The correlations were calculated

at times corresponding to the center points of the image pulses.

The sample size of the concentration measurements was considerably smaller

than the sample size of the velocity measurements – only 1, 200 pairs of data val-

ues were available for concentration flux calculations. As a result, these statistics

are not very smooth. The experimental concentration flux profiles of uc and vc,

along with the momentum flux (Reynolds shear stress) profile uv, are plotted in

Fig. 4.9.

Also plotted in Fig. 4.9 are the scalar and momentum flux values determined

from the LES. In spite of the different type of errors in the determination from

the experiment and from the LES of the C values used to obtain the scalar fluxes,

the uc profiles agree rather well. The vc profiles agree much less well because

of the small sample size of the C experimental measurements as explained in

Appendix B. The shapes of the experimental and LES vc profiles are similar on

the high-speed side of the layer, but their magnitudes are different. On the low-

speed side the experimental data does not exhibit the anti-symmetry of the LES

profile.

Though not very smooth, these curves do show some fundamental properties

of scalar transport in this flow. Most important, mean gradient type of transport

appears to be the major mechanism.

An illustration of the idea of mean gradient transport is shown in Fig. 4.10.
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reference.
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Figure 4.10: Combinations of ±u, ±v and ±c that represent mean gradient

transport.

Suppose that a fluid particle is moving in the cross-stream direction from the

high-speed side toward the mixing layer centerline. Because the mean cross-

stream velocity is nearly zero, the fluid particle must have a negative v velocity

fluctuation. By looking at the mean streamwise velocity U and mean concentra-

tion C profiles, one can easily conclude that if the fluid particle moving toward

the centerline carries its mean streamwise momentum and mean scalar concen-

tration from its point of origin, it must experience a surplus of U and deficit

of C when it arrives at a location with lower mean velocity and higher mean

concentration near the centerline. Likewise a fluid particle moving from near the

centerline toward the exterior of the high-speed side of the mixing layer will carry

a deficit of U and a surplus of C when it arrives, from a mean gradient point of

view. The combination of signs of these terms suggests that the uc flux is likely

to have negative values on the high-speed side of the mixing layer, if the scalar

transport is dominantly of the mean gradient type there. Similar analysis can be
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performed for the low-speed side and on the vc flux as illustrated in Fig. 4.10.

The average momentum transport in the turbulent mixing layer is consistent

with the mean gradient type, as is obvious from the Reynolds shear stress profiles

in Fig. 4.9, where the values are negative across the layer. For scalar transport,

Fig. 4.9 shows that the mean gradient transport is consistent with both the

measured and LES scalar flux profiles, where the signs of the fluxes correctly

follow Table 4.1 except for the vc flux experimental values on the low-speed side.

This is shown to be due to the small data sample size as discussed in the Appendix

B.

4.5 Octant Analysis

The basic idea of octant analysis is to sort the experimental data into categories

(octants) by the combinations of signs of the velocity fluctuation u, v and con-

centration fluctuation c. This idea is an extension of the ’quadrant analysis’

proposed by Wallace et al [77]. It has recently been successfully applied to a

boundary layer flow to identify the major scalar transport mechanism [73] for

that flow.

Table 4.1: Signs of flux terms based on mean gradient transport model for the

mixing layer.

uv uc vc

high-speed side - - +

low-speed side - + -
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Table 4.2: Definition of the eight octants based on the sign combinations of ±u,

±v and ±c.

I: +u, +v, +c V: +u, -v, +c

II: -u, +v, +c VI: -u, -v, +c

III: -u, +v, -c VII: -u, -v, -c

IV: +u, +v, -c VIII: +u, -v, -c

The octants are defined in Table 4.2. After the velocity and concentration

data are properly aligned, one can easily sort the data based on the octants and

calculate the following values for each octant:

• Frequency, which represents the fraction of the time the fluxes reside in

each octant. The sum of these frequency fractions over all octants is 1.

• Fractional contribution, which represents the fractional contribution from

each octant to the total fluxes. The sum of the fractional contributions over

all octants is 1.

• Intensity, which represents the magnitude of the fluxes divided by their

resident time in each octant.

Three positions were analyzed from the mixing layer data, one position on

the high-speed-side, one position on the low-speed-side and one position from the

center plane.

On the high-speed-side, octant II and octant VIII are of the mean gradient

transport type. In the octant analysis results shown in Fig. 4.11, for both
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scalar fluxes < uc > and < vc >, octant VIII transport occurs most frequently

(almost 30% of the time). However, the greatest contribution to the total flux is

from octant II, which occurs relatively rarely but with very high intensity. The

fractional contributions from the counter-gradient octants are all much smaller.

This indicates that gradient transport of scalars is the dominate type for the

high-speed side, although non-gradient transport can not be completely ignored.
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Figure 4.11: Octant analysis at ξ = 2.1 on the high-speed side of the mixing

layer. Octant II and octant VIII are of the mean gradient type.

It is worth mentioning that the results above show the same trends as the

octant analysis results [73] in the outer region of a turbulent boundary layer flow
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over an obstacle with scalar released at the wall one obstacle height downstream.

This is reasonable because the mean velocity and concentration profiles on the

high-speed-side of the mixing layer are very similar to the mean velocity and

concentration profiles in the outer flow zone in that flow.

On the low-speed-side, octant III and octant V are of the mean gradient trans-

port type. From Fig. 4.12, it can be seen that Octant III occurs most frequently

(25%), while octant V contributes the most to the total fluxes because of its

high intensity. More so than the high-speed side, however, the contribution from

other counter-gradient octants are very significant. For example, the fractional

contributions of octants II and VIII are comparable to that of octant III. The

flat shape of the vc flux curve on the low-speed side in Fig. 4.9 is a result of

this apparent balance of the gradient and counter-gradient transport, although,

as stated above, it is thought that this balance is a result of a too small sample

size as discussed in detail in Appendix B.

At the center of the mixing layer, because the mean concentration profile

reaches its maximum there, fluid particles from both sides are more likely to

carry deficits of scalar concentration. Thus both octant III and octant VIII are

sign combinations compatible with mean gradient transport. Fig. 4.13 shows

that these two octants do occur most frequently. Octants II and V, however,

also contribute a lot to the flux at this location. This may be because the peak

concentration locations near the center line of the mixing layer were shifting

somewhat with time (refer to Fig. 4.5 (a)).

In summary, the scalar transport octants that are compatible with mean gra-

dient transport are the dominant contributors to the concentration fluxes across

the mixing layer. Counter-gradient transport is also important throughout the
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Figure 4.12: Octant analysis at ξ = −2.2 on the low-speed side of the mixing

layer. Octant III and octant V are of the mean gradient type.
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Figure 4.13: Octant analysis at the centerline of the mixing layer.

121



mixing-layer, especially on the low-speed side.

The difference in how mixing of scalar occurs between the high-speed and

low-speed sides of the mixing layer has been referred as ’mixing imbalance’ [55]

and has other consequences, such as causing the asymmetric shape of the con-

centration rms profile.

4.6 Conditional Analysis

The purpose of the conditional analysis is to detect the coherent vortical struc-

tures in the mixing layer and to show how important transport properties are

distributed spatially with respect to them.

It is well-known that coherent roller vortices exist in the turbulent mixing

layer. During the present experiment, when the wind tunnel was running at

a low speed and the smoke was illuminated by a two-dimensional light sheet,

such coherent structures can be easily visualized. Fig. 1.1 on page 4 shows such

a visualization taken in Loucks’ experiment [45]. However, as the wind tunnel

speed is increased, the flow becomes more turbulent and the smoke mixes more

rapidly, making it more difficult to observe the coherent structures.

Furthermore, hot-wire experiments generally have the limitation that a lim-

ited amount of spatial information can be obtained. In the current experiment,

only 15 locations along a vertical line across the mixing layer were traversed by

the hot-wire probe. So to rebuild the spatial structure from the experimental

data, conditional analysis had to be performed.

The passage of the rollers in a turbulent mixing layer is a quasi-periodic event.

This fact can be used as a phase reference to perform the conditional analysis.
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As suggested by earlier research [45], such events can be detected by placing a

velocity measuring device (such as a single-sensor hot-wire probe) at the edge of

the mixing layer and measuring the streamwise velocity, which provides a nearly

periodic reference signal. This method is illustrated in Fig. 4.14, taken from

Loucks [45].

Figure 4.14: Passage of a roller with respect to a reference probe positioned at

the outer edge of the mixing layer [45].

Note that the reference signal is not strictly periodic. The rollers do not

just pass by the probe, one by one sequentially with a constant frequency. In

a turbulent mixing-layer flow, their positions when intersecting the probe can

vary because of their three-dimensional shapes. In addition, they undergo a

process called ’pairing’, which refers to the phenomenon that rollers upstream

sometimes catch up to the rollers in front of them and form larger vortical struc-

tures. These variations make the roller-passing event quasi-periodic. However,
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on average, rollers are convected downstream and the times between passages are

corresponding to a relatively small frequency range.

In the current experiment, because of the additional complexity involved in

measuring the concentration field, no effort was made to use an extra probe to

provide a phase reference signal. However, it was possible to obtain a phase

reference directly from the cross-stream velocity component of the mixing layer

at each probe location.

From the mathematical point of view, if there is an inherent periodic frequency

hidden in a signal, by performing an FFT and transforming the data into spectral

space, the frequency can be detected. In the current experiment, the spectrum

of the cross-stream velocity component displays such a small band of frequencies,

at about 210Hz, as seen in Fig. 4.15, indicating that a good phase reference can

be extracted to perform the conditional analysis. This is the FFT of the cross-

stream velocity signal at the high-speed free-stream. This frequency represents

the roller-passage frequency in the mixing layer.

The procedure of Loucks [45] was used to identify the beginning and end of

each event so that the data could be properly aligned to perform the conditional

analysis. First, a sine wave signal was generated with its cyclic frequency chosen

from the bump region of the v-component spectrum. The length of this test

signal is taken to be the length of time in which three or four rollers pass by the

measurement location. Then correlation coefficient between the test signal and

the cross-stream velocity signal was calculated. The correlation coefficient was

defined as:

R =
utesturef√
u2

test · u2
ref

, (4.9)
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Figure 4.15: FFT of cross-stream velocity signal at ξ = 4.2 showing a bump that

peaks at about 210Hz due to the roller passage event.
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in which uref is the reference signal and utest is the sine wave signal defined as:

utest = sin(2πωt), (4.10)

with ω the cyclic frequency. In Fig. 4.16 (a) is a sample of the raw cross-stream

velocity signal. Note that this segment of signal is taken from the upper edge

of the mixing layer at ξ = 4.1. Although the signal looks noisy and contains

some turbulence, it does show some evidence of periodicity. The sine wave signal

for event detection is also shown in Fig. 4.16(a). The correlation coefficient

is calculated over a moving window, i.e., the test signal was shifted along the

reference signal after each calculation, and is a function of time, as shown in Fig.

4.16(b).

The resulting correlation coefficient function is much smoother than the orig-

inal velocity signal. The higher the correlation coefficient value, the greater the

similarity between the segment of velocity signal and the test signal. It can be

argued that each peak in the correlation corresponds to the time when the center

of a roller core reaches the hot-wire probe. These peaks can be used as a phase

reference to align the data for conditional averaging.

Before the conditional averaging, two additional steps were performed to make

the procedure more effective. First, the frequency of the test sine wave signal

was adjusted in order to maximize the correlation coefficient peak values. This

allowed the value that best corresponds to the average roller-passing frequency to

be found. Second, a threshold was used to filter the data associated with smaller

peaks in the correlation coefficient function. This ensured that only those strong

events were included in the conditional averaging.

After these steps, physical variables of interest were calculated and then
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Figure 4.16: Detection of roller passage. (a) A sample of the cross-stream velocity

signal at ξ = 4.1 and the test sine wave signals. (b) The correlation coefficient

function between the velocity and test signals.
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aligned based on the peak positions in the correlation coefficient function. Con-

ditional averaging was then performed using the formula:

< a >=
1

N

N∑

n=1

a(tn + mdt),m = 1...M (4.11)

where many segments of variable a(t) of duration dt were collected and phase-

aligned about tn (where we have peak values in the correlation coefficient func-

tion), and averaged over N occurrences.

Note that mdt is chosen so that there were more than three rollers passing

the probe during that interval. Thus an average two-dimensional flow field with

several large structures in it was reassembled.

To provide a background field showing the existence of rollers, the streamwise

velocity (u) and cross-stream velocity (v) components were first conditionally av-

eraged in the manner described above and then assembled into a two-dimensional

vector plot. To make the rollers more distinct, a roller convection velocity, Uc,

defined in section 2.10 as the average of the high and low speed external stream

velocities, was subtracted from every streamwise velocity value. This provides a

viewpoint as if one were sitting on a fluid particle that travels at approximately

the centerline speed of the mixing layer. Thus the high-speed-side fluid appears

to be moving in the streamwise direction while the low-speed-side fluid appears

to be moving in the upstream direction. Fig. 4.17(a) shows the velocity vector

plot that is the outcome of this conditional analysis, where the large scale roller

vortices are clearly evident. Based on the conditional velocity field, streamlines

can be drawn, which illustrate the vortical structures even more clearly, as shown

in Fig. 4.17(b).

Superimposed on this streamline plot, conditional averages of other variables
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Figure 4.17: Large-scale roller vortex structures of the mixing layer flow (in an

x−y plane) revealed by the conditional analysis. (a) Vector map; (b) Streamline

pattern. Flow is from left to right. A convective velocity has been subtracted

from the streamwise velocity component to make the rollers distinct.
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calculated in the manner of (4.11) can be plotted as color contours. This makes

it easy to examine the spatial patterns of physical variables with respect to the

position of the rollers.

For example, shown in Fig. 4.18 is the conditionally averaged Reynolds shear

stress < uv >, which is an important part of turbulent kinetic energy production.

From this figure, it is very clear that the phase-averaged correlation between u

and v is always negative and the peak values occur in the regions where the braid1

and roller meet. This agrees well with Loucks’ experiment [45].

Figure 4.18: Conditional average of Reynolds shear stress (< uv > /∆U2) show-

ing its spatial distribution in relation to the positions of the roller vortices.

The same technique was applied to the concentration field, which yielded one

of the major discoveries in the present study and gave new understanding about

the scalar transport. Spatial patterns with respect to the positions of rollers were

1The braid refers to the region connecting the rollers. See Fig. 1.1 for a visualization.
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Figure 4.19: Conditional average of mean concentration, < C > /Cmax.

detected in the mean concentration and concentration flux fields.

Fig. 4.19 shows the conditionally averaged mean concentration field. The

scalar concentration is not uniformly distributed. The most concentrated regions

in this mixing layer flow are at the downstream edges of rollers. While in the

centers of rollers, the concentration is somewhat lower.

More interesting patterns appear in the concentration flux fields. Fig. 4.20

and Fig. 4.21 show the conditionally averaged concentration flux components, <

uc > and < vc >. It is evident that positive and negative values of concentration

flux dominate in different regions. For the < uc > distribution, the positive

regions are more or less aligned with the cores of the rollers, with the highly

positive regions (in red and yellow) below the rollers on the low-speed side. The

negative fluxes occur mostly between the rollers and the highly negative regions

are mainly on the high-speed-side. The < vc > distribution is roughly opposite

to < uc >. This is consistent with the negative correlation between the u and
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v fluctuations as seen in Fig. 4.9 where the Reynolds shear stress distribution

is shown. It is also consistent with the time averaged scalar flux peaks in that

figure except for the vc flux on the low-speed side. The reason for this anomaly

has already been discussed.

These conditional average results appear to be consistent with the time-

averaged results in Fig. 4.5 (f). The positive peak < uc > values and the

negative peak < vc > values all happen on the low-speed side, where the peak

rms value of the concentration appears.

What remains to be done is to attempt to understand these concentration

flux spatial distribution patterns. To do this the instantaneous LES flow fields

must be examined.

Although the LES did not lend itself to a conditional analysis of this type,

planes of data can be averaged across the span of an instantaneous three-dimensional

realization of the flow to obtain somewhat similar results. Fig. 4.22 shows the

spanwise averaged velocity vector field obtained in this manner. Superimposed

on it are streamlines of the spanwise averaged flow field, and they reveal the

presence of the roller vortices. The spatial distributions with respect to these

vortices of the spanwise averaged < uc > and < vc > fluxes are seen in Fig. 4.23

and 4.24. Although these figures are not exactly comparable to the conditional

averaged fluxes in Fig. 4.20 and Fig. 4.21, the spatial patterns are qualitatively

similar.
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Figure 4.20: Conditional average of concentration flux < uc > /∆UCmax.

Figure 4.21: Conditional average of concentration flux < vc > /∆UCmax.
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Figure 4.22: Spanwise-averaged instantaneous velocity vectors from the LES

showing a few rollers.
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Figure 4.23: Spanwise-averaged instantaneous concentration flux uc/∆UCmax

with respect to the rollers.

Figure 4.24: Spanwise-averaged instantaneous concentration flux vc/∆UCmax

with respect to the rollers.
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4.7 Scalar Transport Mechanisms

Today, it is established that mixing layers are dominated by large coherent struc-

tures. The LES conducted in the present study provide a good opportunity to

study the dynamics of these structures and their effect on the scalar transport

mechanisms. For this reason a series of instantaneous flow realization were ex-

amined. Initially the large spanwise rollers and the rib vortices in the braid

regions were identified. Then, using the conditional averages extracted in the

experiments as guidance, possible mechanisms describing how the dynamics of

the rollers and rib vortices affect the scalar transport could be proposed.

Several criteria can be used to identify the coherent structures in turbulent

flows. First, it was reported [60] that low pressure regions are often associated

with vortex cores. This is especially effective to identify the large-scale spanwise

rollers in the mixing layer flow, because these rollers are often spatially well

organized with clear and strong core regions.

Fig. 4.25 is a typical plot showing iso-surfaces of low pressure regions of

the mixing layer flow. It is a snapshot of flow field close to the splitter plate,

where a few distinct big spanwise rollers can be observed. Due to the realistic

inflow conditions and highly turbulent nature of the flow, the eddies are signifi-

cantly twisted and deformed, with a lot of three-dimensionality in addition to the

quasi-two-dimensional structure. The rollers downstream appear to experiencing

the pairing process as they seem to interact with each other and form a larger

structure.

Another useful identification criterion is the second invariant of the velocity
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Figure 4.25: Iso-surfaces of low pressure regions highlighting the large-scale rollers

in the mixing layer.
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gradient tensor, defined as:

Q = −1

2

∂ui

∂xj

∂uj

∂xi

. (4.12)

Using the notation of the strain rate tensor Sij and the rotation tensor Ωij, the

mathematically equivalent form of (4.12) is:

Q =
1

2
(ΩijΩij − SijSij), (4.13)

which has a more obvious physical meaning. It is clear that positive Q represents

regions where vorticity is due to rotation rather than to shear. It was reported

[7] that the Q > 0 criterion is very effective in highlighting the streamwise rib

vortices mainly occurring in the braid regions of the mixing layer.

Fig. 4.26 shows the iso-surfaces of Q = 0.05 on top of the roller structures

identified by low pressure and shown in Fig. 4.25. Again, due to the highly

turbulent and three-dimensional nature of the flow, these structures are complex

in shape. However, many of them do have streamwise orientations, lying between

the big rollers. They can be identified as rib vortices.

In this flow, one can also identify the rib vortices by looking at the distribution

of streamwise vorticity, as shown in Fig. 4.27. In this case, iso-surfaces of two

vorticity levels have to be plotted, one positive and one negative. These structures

are also mostly aligning in streamwise direction. Different signs of this variable

suggests that the rib vortices rotate in opposite directions, sometimes lying side

by side.

After the detection of the vortical structures of the flow, the scalar transport

mechanisms can be studied by observing planes in the instantaneous flow at

locations of interest.

Fig. 4.28 is an idealized model to describe how rib vortices transport the
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Figure 4.26: Iso-surfaces of positive Q highlighting the rib vortices in the mixing

layer. The underlying white shade is the same low pressure isosurfaces as in Fig.

4.25.
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Figure 4.27: Iso-surfaces of streamwise vorticity highlighting the rib vortices in

the mixing layer. Iso-surfaces of two vorticity levels are plotted, one positive

(light green) and one negative (dark green).
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Figure 4.28: A model illustrating the scalar transport mechanism by idealized rid

vortices. (1) through (4) are the possible mean gradient transport events, illus-

trating movement of particles away from or toward the center plane transporting

an excess or deficit of scalar, respectively, with respect to their arrival locations.
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scalar. In the braid region of the mixing layer, rib vortices are often found to

be oriented more or less side by side in counter-rotating pairs. Using the idea of

mean gradient transport, one can summarize all the possible events describing

transport by particles carrying an excess or deficit of scalar away from or toward

the mixing layer center in a y − z plane: On the high-speed side, events 1 (-

u,+v,+c) and 2 (+u,-v,-c) are of the mean gradient type, having −uc and +vc

combinations. On the low-speed side, events 3 (+u,-v,+c) and 4 (-u,+v,-c) are

of the mean gradient type, having +uc and −vc combinations. As will be seen

shortly, all these event types can be found from the instantaneous visualization

of the flow. Their effects on the spatial distribution of the uc and vc fluxes as well

as the uv momentum flux can also be seen in the patterns of Fig. 4.18 through

Fig. 4.21.

Fig. 4.29 shows an instantaneous y−z plane from the simulation in the braid

region at x = 255. The underlying vector plot clearly shows the existence of

many rib vortices. The color contour of the top figure shows the concentration

fluctuation c. The color contour of the bottom figure shows the vc flux2. A few

obvious patterns are seen in this visualization:

• Most of the scalar is found in the neighborhood of rib vortices. The blue

regions in the top figure, which are almost free of rib vortices, are mostly

associated with very low scalar concentrations.

• The concentration levels just in the cores of the rib vortices appear to be

2The y− z plane does not contain any information about the streamwise velocity U , so only

the vc flux can be directly observed here. However, because u and v are negatively correlated,

the trend of uc can also be inferred.
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Figure 4.29: Instantaneous visualization of concentration fluctuation c (top) and

vc flux (bottom) on a y − z plane at x = 255. This plane is in the braid region

where the streamwise rib vortices are strong.
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smaller than in the surrounding areas.

• Most of the regions of positive vc flux are on the high-speed side and of

negative vc flux on the low-speed side, consistent with the averaged results

seen previously in Fig. 4.9, 4.21 and 4.24.

• Whenever two rib vortices reside side by side at about the same cross-

stream level, the scalar flux vc between the vortices tends to be of one of

the event types in the model shown in Fig. 4.28. One clear example is at

the lower-left corner of the bottom plot at around z = 30. The rotation

direction of this pair of rib vortices matches event 3 in Fig. 4.28, and the

concentration flux between them indeed shows the expected sign given by

the model.

Similarly, an idealized model for the spanwise roller vortices in a convective

frame of reference is given in Fig. 4.30. Again 4 possible mean gradient scalar

transport events can be identified at the corners of the roller vortices. The combi-

nation of signs suggests that the vc flux are likely to be positive on the high-speed

side, and negative on the low-speed side and vice versa for the uc flux. This has

already been confirmed and shown in Figs. 4.23 and 4.24 based on spanwise-

average data.
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Figure 4.30: A model illustrating the scalar transport mechanism by idealized

roller vortices in a convective frame of reference. (1) through (4) are the possible

mean gradient transport events, illustrating movement of particles away from or

toward the center plane transporting an excess or deficit of scalar, respectively,

with respect to their arrival locations.
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Chapter 5

Conclusions

Experimental and numerical studies of plane turbulent mixing layers with passive

scalar were conducted. This chapter is a summary of the key aspects of these

studies and the conclusions made from them.

• The experimental was performed in the low-speed wind tunnel of the Tur-

bulent Research Laboratory at University of Maryland. A curved splitter

plate built in the tunnel created a mixing layer with an approximately 2:1

velocity ratio.

• Smoke generated by burning incense was used as a passive scalar and was

released into the high-speed side boundary layer of the splitter plate. Scalar

concentration measurements were made by taking digital photographs of

the smoke illuminated by a laser light sheet.

• Velocity and vorticity measurements of the flow field were performed using

a 12-sensor hot-wire probe. The probe traversed 15 cross-stream locations

during the experiment.
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• The synchronization of flow field and scalar field information was achieved

by sampling the hot-wire data and the digital images simultaneously. The

digital camera provided a reference signal, which was recorded to provide

phase information of the two data sets.

• The 12-sensor hot-wire was calibrated by exposing it to pre-determined flow

conditions and recording its response. The calibration coefficients were then

determined by solving a least-square system. The calibration was proved

to be highly accurate after proper temperature correction. This provided

good confidence in the measurements of the flow field.

• Two different data reduction methods were attempted to post-process the

hot-wire data. The one developed by Vukoslavc̆ević et al [76] performed

better and was chosen to process the hot-wire data.

• From preliminary single-sensor hot-wire measurements, velocity profiles at a

few streamwise locations (beginning at the splitter plate trailing edge) were

obtained. The growth of the mixing layer was evaluated and the location

of the beginnings of the self-similar state of the flow was identified.

• Large-eddy simulation of the mixing layer was performed. The concentra-

tion field was studied in the simulation by tracking massless fluid particles.

• The LES was performed by a finite difference code, based on the fractional

step method, using 2nd order time advancement and 2nd order spatial

discretization on a staggered grid. The Lagrangian-averaged dynamic eddy-

viscosity subgrid scale model proved to be very effective for this flow.
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• The boundary conditions for the LES were carefully implemented. Spe-

cially, the inflow condition was based on auxiliary simulations accelerated

by a recycling technique. This new approach proved to be highly efficient.

The introduced periodicity at the inflow plane was lost in a short stream-

wise distance after the inflow plane, and the downstream statistics were not

affected.

• Three interpolation schemes were implemented to perform the particle track-

ing. Care was taken to evaluated each scheme’s accuracy and efficiency.

The tri-linear scheme, which has the best overall performance, was chosen

to conduct the final simulation.

• The simulation appeared to be very sensitive to the inflow conditions. The

inflow based on auxiliary simulations was carefully adjusted to match the

experimental condition at the trailing edge of the splitter plate.

• The self-similar state of the flow was clearly identified from the integral

properties of the flow: the growth of momentum thickness and the dissipa-

tion rate.

• Experimental and LES velocity statistics are in good agreement with each

other and with other references. The vorticity statistics also agree reason-

ably well, despite the fact that Taylor’s hypothesis introduced uncertain-

ties in determining the experimental streamwise velocity gradients, and the

small-scale eddies in the LES are only modelled.

• The experimental and LES mean concentration profiles compare well. The

concentration rms curves have similar asymmetric shapes that peak on the
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low-speed side. However the magnitude of the experimental concentration

rms is higher than the LES rms because of the much greater spatial res-

olution of the experiment compared to the LES. The difference, however,

was greatly reduced by filtering the experimental data and using finer grid

to evaluate the particle concentration. The camera appeared to have a

background grey level that also affected the concentrations.

• The LES concentration fluxes are consistent with the mean gradient trans-

port model. The experimental fluxes also support this model, except that

the vc flux on the low-speed side shows anomalous behavior. This has been

determined to be likely due to the small sample size of the concentration

measurements in the experiment (details provided in Appendix B).

• Octant analysis of the experimental data shows that the scalar transport

octants that are compatible with mean gradient transport are the major

contributors to the total flux. However the counter-gradient transport is

also important, especially on the low-speed side.

• Conditional analysis of the experimental data was performed to reveal as-

pects of the flow structure. A phase reference for the roller vortex passings

was found from the spectrum of the cross-stream velocity. Two-dimensional

conditionally averaged pictures of the flow were reconstructed based on the

phase information. These pictures exhibited clear patterns of both the mo-

mentum Reynolds shear stress and the scalar concentration fluxes. Similar

patterns for the concentration fluxes were found from the spanwise averaged

LES instantaneous data.
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• The three-dimensional instantaneous flow fields from the LES were studied.

Large-scale spanwise rollers and rib vortices were visualized by using proper

criterion to filter the velocity field. Idealized mean gradient models of the

momentum and scalar transport mechanisms by the roller vortices and rib

vortices were proposed. Evidence supporting these models were found in

the instantaneous LES field.

150



Appendix A

Implementation Details of Polynomial

Interpolation

As mentioned in Chapter 3, the direction-by-direction 3D polynomial interpola-

tion can be broken into a series 1D interpolations. The 1D interpolation sub-

routine polint was taken from Numerical Recipes, which is considered to be one

of the fastest implementations of the Neville’s algorithm. The signature of this

subroutine is:

polint(xa, ya, n, x, y, dy), (A.1)

where xa and ya are arrays of size n containing coordinates and function values of

those tabulated points. Given an arbitrary x, this routine returns an interpolated

value y, with error estimate dy. Minor changes were made to make the code more

portable across different computer platforms.

Similarly, the 2D subroutine polin2 was also taken from the book, which

perform seven 1D interpolations in a plane, with six in one direction and one in

the other direction, as shown in Fig. A.1. The signature of this routine is:

polin2(x1a, x2a, ya, m, n, x1, x2, y, dy). (A.2)
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Figure A.1: Fifth order polynomial interpolation in a 2D plane.

The parameters have similar meanings as in the 1D case, except that two 1D

arrays (x1a and x2a) are used here to store coordinates and one 2D array (ya)

is used to store function values of the tabulated points, so that

ya(j, k) = y(x1a(j), x2a(k)). (A.3)

By emulating the way these routines are constructed, a 3D routine was devel-

oped, which contains 2D interpolations in six planes and one last 1D interpolation,

as shown in Fig. A.2. The signature of the routine is similar:

polin3(x1a, x2a, x3a, ya, m1,m2, m3, x1, x2, x3, y, dy), (A.4)

and the tabulated data points are stored to satisfy:

ya(i, j, k) = y(x1a(i), x2a(j), x3a(k)). (A.5)

Note that the above implementations are quite general, in that the number of

points involved does not have to be fixed. These numbers (n in the 1D case, m
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Figure A.2: Fifth order polynomial interpolation in a 3D domain.

and n in the 2D case, m1, m2 and m3 in the 3D case) can be chosen arbitrarily

as needed. In practice, however, these numbers should not be too high, because

higher order polynomials tend to have more oscillations between tabulated points

and are not always more accurate.
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Appendix B

Evaluation of the Experimental Errors

As mentioned in section 4.4 and seen in Fig. 4.9, the experimental concentration

vc flux has an unexpected distribution on the low-speed side. There the values

are almost zero in contrast to the LES result. Also, Fig. 4.5 shows that the

concentration rms values do not go to zero at the free-stream on either side of

the mixing layer. To investigate these anomalous behaviors, additional detailed

analysis (mostly probability analysis) was performed on the experimental data

sets. Two major problems were identified as the cause of the anomalies:

• The digital camera performing the concentration measurement has a limited

sensitivity so that low concentrations below a floor threshold were truncated

and assigned a small but non-zero grey level. Furthermore, this floor grey

level varies somewhat with time, i.e. it has a certain random noise.

• The sample size of the concentration measurement was not large enough to

give good converged values of the concentration fluxes. As a result, extreme

values had great impacts on the total flux average values.

These issues will be discussed in detail.
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Figure B.1: Time series of velocity fluctuations, concentration fluctuations and

concentration flux fluctuations at ξ = 2.1. v′ and vc are shifted by 0.5 and 10

units, respectively, for clarity.
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Figure B.2: A zoomed-in view of the concentration fluctuation time series clearly

showing the variation of the concentration background itself.

First shown in Fig. B.1 are the time series of the u and v velocity fluctuations,

the concentration fluctuations and the concentration flux fluctuations. They were

taken from a high-speed side location at ξ = 2.1 in the mixing layer. The velocity

signals appear to be normal turbulence. It is worth mentioning that the nega-

tively correlated nature of the u and v fluctuations is quite apparent. For the

concentration signal, one can clearly see a floor below which the lower concen-

trations, having negative fluctuations with respect to the mean, were truncated.

That is to say, the light intensity below a threshold was recorded as the back-

ground light intensity. This background itself, as can be seen in the zoomed-in

region shown in Fig. B.2, fluctuates somewhat with time. The non-zero con-

centration rms at the free-stream in Fig. 4.5, having a magnitude of about 0.2,
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is the rms of this varying background. From the concentration flux signals in

Fig. B.1, one can notice that some peaks of flux are very large, fluctuating about

the mean more than 10 standard deviations. Only a few such extreme events

were captured in each recording segment due to the limited sample size1. This

inevitably affected the accuracy of the total flux.

The expected behavior of the concentration distribution can be seen by sam-

pling the numerical simulation data. Fig. B.3 shows the scalar concentration

probability density function of both the LES (left column) and the experiment

(right column) at three comparable cross-stream locations. In (a) the solid line

shows the cumulative sum of the histogram, indicating that it is indeed probabil-

ity density. It can be seen that, at the centerline location of the mixing layer, the

numerical pdf is almost symmetric, while the lower concentration pdf values of

the experimental data are clustered in a few bins on the left side of the pdf where

the low concentration is truncated. The truncation becomes more and more se-

vere as one moves towards the edge of the mixing layer. At the edge of the mixing

layer, the numerical pdf also has a clustering on the left side. However, this is

due to the fact that the lowest concentration can only be zero while the highest

concentration has no upper limit.

The effect of extreme values on the total average flux is well illustrated in

Fig. B.4. The noisy red solid lines in this figure plot the values of uc ∗ p(uc)

and vc ∗ p(vc), including their signs. The cumulative sum (blue long dashed

line) of these quantities give information of how the total fluxes were contributed

1This was caused by limitation of the hardware – only up to 400 digital images could be

stored in the image acquisition system memory at a time and had to be downloaded before

another 400 images could be acquired.
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Figure B.3: Probability density function of the numerical (left column) and exper-

imental (right column) concentration at three cross-stream locations. The solid

line in (a) is the cumulative sum of the pdf. Center plane: (a) and (d); ξ = 2.1

(high-speed side): (b) and (e); ξ = 4.1 (high-speed side almost in free-stream):

(c) and (f).
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Figure B.4: Effect of extreme values on the total flux. Low-speed side position

at ξ = −2.2. The cumulative sum of the weighted probably density function

shows how the total flux converges. By further breaking down the data set into

quadrants, the contribution from each quadrant to the total flux is shown.
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by each individual element in the data set. The blue curves converge to the

total flux values at right side, and the total flux value is quite close to zero.

At the left side of the uc ∗ p(uc) curve, there is one extreme value captured by

the experiment. From the cumulative curve it can be seen that this single data

point itself brings down the total flux by a large amount. Because the sample

size was small and the effect of the extreme values is quite significant, the total

concentration flux results from present experimental study are subject to some

degree of uncertainty. This is the major reason contributing to the abnormal

distribution of the vc concentration flux profile in Fig. 4.9 on the low-speed side

and to the general lack of smoothness of the data.

As a byproduct of the analysis shown in Fig. B.4, by further breaking down

the data set into quadrants (according to the signs of the velocity and concen-

tration fluctuations) and evaluating the contribution from each quadrant to the

total flux, the octant analysis result in section 4.5 can be confirmed. For example,

by looking at the uc case, one can see most of the positive extreme values are

in quadrant I (+u,+c). This corresponds to the octant V event in the octant

analysis, shown in Fig. 4.12, which indeed shows that octant V events occur

rarely but have the highest intensity.

In summary, although part of the experimental scalar flux results suffer from

errors stemming from the limitation of the image acquisition camera and the sam-

ple size, all the results are rationally explainable. Even though the magnitudes

of the scalar fluxes are not completely reliable, they generally show the proper

trends except on the low-speed side for vc. Furthermore, the scalar transport

mechanisms discovered by the experimental conditional analysis were confirmed

by the LES.
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Recall that the non-zero concentration rms at the free-stream in Fig. 4.5 is

the rms of the varying camera background grey level. It should be mentioned

that this background affected the concentration statistics more in the free-stream

toward the edges of the mixing layer than near the center plane. This is because

the mean concentration is higher near the center of the mixing layer so that

the number of concentration values truncated by the camera floor is fewer. To

conclude this discussion, a more quantitative analysis of the camera resolution

issue is documented here.

Suppose the camera floor grey scale is at i and is varying as i ± ε. The

measured grey scale can then be written as:

Imeas1 = Itrue if Itrue > i± ε, (B.1)

Imeas2 = i± ε if Itrue ≤ i± ε. (B.2)

Suppose also that there are N values above the floor and M values at or below

the floor. Then the mean grey level can be written as:

Imeas =
1

N + M
(

N∑

1

Imeas1 +
M∑

1

Imeas2), (B.3)

and the variance can be written as2:

I ′2meas =
1

N + M
(

N∑

1

I
′2
meas1

+
M∑

1

I
′2
meas2

)

=
1

N + M
[

N∑

1

(Itrue − Imeas)
2 +

M∑

1

(i± ε− Imeas)
2]

=
1

N + M
[

N∑

1

(I2
true + 2ItrueImeas + I

2
meas)

+
M∑

1

(i2 − 2iImeas + ε2 + I
2
meas)]. (B.4)

2In this step of the derivation, two cross-product terms are dropped by assuming that the

variation of the camera background level follows a normal distribution.

161



If the camera has perfect resolution, i.e. i±ε = 0, then the grey scale variance

would be:

I ′2meas =
1

N + M
[I2

true − 2ItrueImeas + I
2
meas]. (B.5)

The difference between (B.4) and (B.5) is the error of the variance. It can be seen

that at the center plane of the mixing layer, where the mean concentration reaches

its maximum value and thus N À M , the error of the variance measurement is

minimum. In Fig. 4.5 (f), the difference of concentration rms between the LES

and the experiment is partly due to the camera background level discussed here

and partly due to the much greater spatial resolution of the concentration field

experimental measurements compared to the values obtained from the LES.
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