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As turbine and rocket engine technology matures, performance increases be-

tween successive generations of engine development are becoming smaller. One

means of accomplishing significant gains in thermodynamic performance and power

density is to use detonation-based heat release instead of deflagration. This work is

focused on developing and applying theoretical models to aid in the design and un-

derstanding of Rotating Detonation Engines (RDEs). In an RDE, a detonation wave

travels circumferentially along the bottom of an annular chamber where continuous

injection of fresh reactants sustains the detonation wave. RDEs are currently being

designed, tested, and studied as a viable option for developing a new generation of

turbine and rocket engines that make use of detonation heat release. One of the

main challenges in the development of RDEs is to understand the complex flowfield

inside the annular chamber. While simplified models are desirable for obtaining

timely performance estimates for design analysis, one-dimensional models may not

be adequate as they do not provide flow structure information. In this work, a



two-dimensional physics-based model is developed, which is capable of modeling

the curved oblique shock wave, exit swirl, counter-flow, detonation inclination, and

varying pressure along the inflow boundary. This is accomplished by using a combi-

nation of shock-expansion theory, Chapman-Jouguet detonation theory, the Method

of Characteristics (MOC), and other compressible flow equations to create a shock-

fitted numerical algorithm and generate an RDE flowfield. This novel approach

provides a numerically efficient model that can provide performance estimates as

well as details of the large-scale flow structures in seconds on a personal computer.

Results from this model are validated against high-fidelity numerical simulations

that may require a high-performance computing framework to provide similar per-

formance estimates. This work provides a designer a new tool to conduct large-scale

parametric studies to optimize a design space before conducting computationally-

intensive, high-fidelity simulations that may be used to examine additional effects.

The work presented in this thesis not only bridges the gap between simple one-

dimensional models and high-fidelity full numerical simulations, but it also provides

an effective tool for understanding and exploring RDE flow processes.
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6.3 ṁf vs. A1/A3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.4 h vs. A1/A3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.5 Temperature contours for A1/A3 = 0.1. . . . . . . . . . . . . . . . . . 63
6.6 Temperature contours for A1/A3 = 0.5. . . . . . . . . . . . . . . . . . 63
6.7 Effect of RDE annulus height on specific impulse. . . . . . . . . . . . 64
6.8 Vertical component of Mach number at the RDE exit. . . . . . . . . . 66
6.9 Exit pressure profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.10 Control volume for the inflow region. . . . . . . . . . . . . . . . . . . 67
6.11 Control volume for the post-detonation region. . . . . . . . . . . . . . 69
6.12 Control volume for the post-oblique shock region. . . . . . . . . . . . 70
6.13 Specific impulse vs. resolution. . . . . . . . . . . . . . . . . . . . . . . 72
6.14 Thrust vs. resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.1 Thrust vs. annulus height. . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Mass flow rate vs. annulus height. . . . . . . . . . . . . . . . . . . . . 75
7.3 Pre-detonation pressure vs. annulus height. . . . . . . . . . . . . . . . 75
7.4 Pre-detonation temperature vs annulus height. . . . . . . . . . . . . . 75
7.5 ρv2 exit profiles for various annulus heights. . . . . . . . . . . . . . . 76
7.6 (P − Pb) exit profiles for various annulus heights. . . . . . . . . . . . 76
7.7 Thrust vs. annulus diameter. . . . . . . . . . . . . . . . . . . . . . . 77
7.8 Mass flow rate vs. annulus diameter. . . . . . . . . . . . . . . . . . . 77
7.9 Pre-detonation pressure vs. annulus diameter. . . . . . . . . . . . . . 77
7.10 Pre-detonation temperature vs annulus diameter. . . . . . . . . . . . 77
7.11 Thrust vs. annulus width. . . . . . . . . . . . . . . . . . . . . . . . . 78
7.12 Mass flow rate vs. annulus width. . . . . . . . . . . . . . . . . . . . . 78

vii



7.13 Pre-detonation pressure vs. annulus width. . . . . . . . . . . . . . . . 78
7.14 Pre-detonation temperature vs annulus width. . . . . . . . . . . . . . 78
7.15 Thrust vs. channel area. . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.16 Mass flow rate vs. channel area. . . . . . . . . . . . . . . . . . . . . . 79
7.17 Axial detonation height vs. RDE diameter. . . . . . . . . . . . . . . . 79
7.18 Axial detonation height vs. channel width. . . . . . . . . . . . . . . . 79
7.19 Non-dimensional thrust vs. area ratio. . . . . . . . . . . . . . . . . . 81
7.20 Non-dimensional thrust vs. non-dimensional heat release. . . . . . . . 81
7.21 Non-dimensional thrust vs. area ratio with various values of γ. . . . . 82
7.22 Non-dimensional thrust vs. the ratio of specific heats. . . . . . . . . . 82
7.23 Non-dimensional thrust vs. the pressure ratio, Pb/P0. . . . . . . . . . 82
7.24 Non-dimensional pre-detonation pressure vs. area ratio with various

values of Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.25 Non-dimensional pre-detonation pressure vs. area ratio with various

values of γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.26 Non-dimensional pre-detonation temperature vs. area ratio with var-

ious values of Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.27 Non-dimensional pre-detonation temperature vs. area ratio with var-

ious values of γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.28 Non-dimensional mass flow rate vs. area ratio with various values of Q. 85
7.29 Non-dimensional mass flow rate vs. area ratio with various values of γ. 85
7.30 Blockage ratio vs. area ratio with various values of Q. . . . . . . . . . 86
7.31 Blockage ratio vs. area ratio with various values of γ. . . . . . . . . . 86

A.1 Illustration of an interior point unit process. . . . . . . . . . . . . . . 92
A.2 Illustration of a inflow point unit process. . . . . . . . . . . . . . . . . 97

viii



List of Symbols

A area
a speed of sound
D detonation wave velocity
F thrust
g0 gravitational acceleration at Earth’s surface
h height of RDE annulus
Isp specific impulse
l length of RDE domain (average diameter)
P pressure
M Mach number
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Chapter 1: Introduction

1.1 Motivation

After more than 60 years of turbine and rocket engine development, increases

in performance are becoming more and more difficult to come by. One idea to in-

crease performance is to change the thermodynamic cycle from a constant pressure

Brayton cycle to a detonation based cycle [1]. Rotating Detonation Engines (RDEs)

are currently being studied and appear to provide a practical and efficient implemen-

tation of detonative combustion [2]. These engines have emerged as an important

concept that, with further development, could provide major increases in jet and

rocket engine performance. An RDE is based on an annular chamber, as shown

schematically in Fig. 1.1. Reactants, such as hydrogen and air, are ignited to create

a detonation which travels around the bottom of the annulus. The detonation is

continuously sustained by the injection of fresh reactants ahead of the wave. Thrust

is generated by expanding the detonation products out the exhaust end of the RDE.

This concept is based on work first performed by Voitsekhovskii whose objective was

to maintain a detonation wave continuously in a circular viewing section for detailed

study [3].
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detonation 

wave
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inflow

Figure 1.1: Schematic of
an RDE showing a tem-
perature contour map.

In addition to increasing thermodynamic perfor-

mance, the relatively small size of the combustion zone in

a detonation, compared to traditional constant-pressure

combustors, has the potential of reducing the engine

length and weight [2]. Finally, the flow behind the deto-

nation wave in an RDE is supersonic; therefore, acceler-

ation of the flow only requires area divergence and elim-

inates the need for a geometric throat [2]. Before any of

these potential benefits can be realized in a practical system, there are many chal-

lenges to overcome, such as heat losses, injector dynamics, and understanding the

complex flow structure that occurs within the annulus [2, 4–6].

Current understanding of RDEs comes primarily from experimental and nu-

merical results. These can be costly and time-consuming when attempting to explore

the design space for a proposed engine. Ideally, a simple, fast model that accurately

captures the physics is required to generate a design space that can guide what

experiments and simulations are actually necessary when designing an engine. The

simple models that have been developed generally have to disregard some flow struc-

tures or make educated guesses about them. A simple model that can correctly and

accurately capture the relevant flow structures and physics would be of great value

to the research community and is the focus of this work.
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1.2 Objective

The primary objective of this work is develop a reduced order model of the

RDE flowfield. The goal is to accurately and correctly capture the relevant flow

physics using a computationally cheap model that is ideally suited to conducting

large parametric performance studies. Unlike previous reduced order models, this

model will accurately capture two-dimensional effects such as 1) the curved oblique

shock wave, 2) detonation inclination, 3) exit swirl, 4) counter-flow, and 5) the

varying pressure along the inflow boundary.

The reduced order model solves the RDE flowfield in the wave-fixed reference

frame using a shock-fitted numerical solution. Discontinuities such as the detona-

tion, oblique shock, slip lines, and inflow boundary are modeled analytically. This

significantly reduces the computational cost normally associated with resolving these

features. The Method of Characteristics (MOC) is chosen to numerically solve the

flowfield resulting in an extremely fast and accurate solution.

Once the model has been developed and validated, a large parametric study

is performed to examine an ideal RDE as a means of demonstrating the potential of

this method. The performance data is then analyzed to determine which parameters

are important in maximizing performance. Simplified relations are also developed

based on the parametric data to provide back-of-the-envelope performance estimates

for RDEs.

Specifically, this work will include the following:

• Development of a reduced order model of the RDE flowfield using a Method

3



of Characteristics approach.

• The development of new boundary conditions for MOC specifically created for

RDEs.

• Improved algorithms for rotational MOC in regions with large entropy gradi-

ents and non-constant flow ahead of an oblique shock wave.

• Validation of the reduced order model with comparisons to traditional numer-

ical simulations.

• A large parametric study of an ideal RDE using the developed model to deter-

mine which parameters have the largest impact in determining performance.

• Simplified design rules for an RDE based on data from the parametric study

to aid in the design process.

1.3 Scope

The scope of this work covers the important physical processes present in an

idealized RDE. This idealized RDE setup ignores the deflagration, viscous and heat

conduction losses, and three-dimension curvature effects. Instead, the focus is on

the large scale flow structures such as the detonation and oblique shock, as well

as the expansion of the detonation products to produce thrust and allow for the

injection of reactants ahead of the next wave.

Once a fundamental understanding of the important processes in an RDE is

achieved. A reduced order model based on a shock-fitted method of characteristics

4



solution is created. This will require the development of new boundary conditions,

new marching methods, and new algorithms to extend the method of characteristics

in order to handle RDE physics.

After the creation of a reduced order model, a large parametric study is con-

ducted along with a dimensional analysis. Results from the parametric study are

compared with the dimensional analysis to confirm the validity of the reduced order

model. Additionally, the dimensional analysis and parametric study are used to es-

timate functional relationships between the independent and dependent parameters

in an RDE.

5



Chapter 2: Background

This chapter provides an overview of the material required to put the sub-

sequent chapters in context. Summaries of detonation based propulsion, rotating

detonation engine research and models, and detonations with compressible bound-

aries are provided. This gives an overview of the basis for the reduced order model

as well as its place within RDE research.

2.1 Detonation Based Propulsion

The idea for using detonation based propulsion in aerospace applications has

been around since at least the 1940’s. For the most part, the idea was not seriously

pursued at the time due to the difficulty in minimizing the losses associated with

a detonation based cycle [7]. Improvements in other areas such as compressors,

turbines, and materials were easier to come by in the quest to increase performance.

Starting in the early 1990’s, detonation based propulsion received renewed

interest due to the increasing maturation of turbine engine technology. Detonation

combustion was seen as a potential avenue for significant performance increases

which were becoming harder to come by with each new generation of engines.
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Figure 2.1: First flight of a PDE
powered aircraft.

The research of the 1990’s was focused on

the development of the Pulse Detonation Engine

(PDE). A PDE is simply a tube that is filled

with a detonable mixture that is then ignited to

produce thrust. This results in a highly unsteady

process characterized by a cylce of 1) fill, 2) ignite, 3) detonation, 4) purge, and

5) repeat. It was found that the ignition and subsequent deflagration-to-detonation

transition (DTT) was a major source of losses. In 2008, work on PDEs culminated in

a flight test of a heavily modified Rutan Long-EZ [5,8] (see Fig. 2.1 [9]). Afterwards,

research shifted mainly to Rotating Detonation Engines (RDEs) as an alternative

to PDEs that did not suffer from low operating frequencies or the requirement to

initiate a detonation every cycle [4]. This work focuses exclusively on modeling

RDEs to provide a reduced order model for parametric performance studies.

For completeness, there are two other concepts in the literature for achieving

detonation based propulsion. The first is the Standing Detonation Wave Engine.

This is a ramjet-type engine where the flow velocity in the combustor is kept at

the detonation wave velocity so that a detonation sits in the combustor. A basic

analysis of this type of engines shows that it is less efficient than a traditional

constant-pressure ramjet and was never seriously pursued [7, 10].

The second concept is known as an Oblique Detonation Wave Engine. This

is similar to the Standing Detonation Wave Engine but an oblique detonation wave

is stabilized in the combustor instead of a normal detonation wave. This concept

would be used in a scramjet-type engine. It is less efficient than a constant-pressure

7



combustor but the losses are not as bad as what is seen in a Standing Detonation

Wave Engine. The concept has not been dismissed out of hand since there is evidence

that the short reaction zone could provide some benefit by reducing engine length

and weight in a scramjet [11].

2.1.1 Detonation Thermodynamics

A brief overview of detonation thermodynamics is important in understanding

the reason behind the interest in detonation based propulsion. It is also important

in understanding why certain ideas, such as Pulse Detonation Engines (PDEs) and

Rotating Detonation Engines (RDEs), are pursued over ideas such as the Standing

Detonation Wave Engine.

To start with, the simplest analysis of a detonation wave is accomplished us-

ing Chapman-Jouguet (CJ) theory. This theory models a one-dimensional, planar

detonation wave as an infinitely thin shock with heat release in the wave-fixed ref-

erence frame as shown in Fig. 2.2. Assuming a perfect gas with equal specific heat

capacities between the products and reactants, the conservation equations for an

adiabatic, inviscid fluid across an infintely thin wave are given by

ρ1u1 = ρ2u2 (2.1)

ρ1u
2
1 + P1 = ρ2u

2
2 + P2 (2.2)

cpT1 +
u21
2

= cpT2 +
u22
2

− q (2.3)

where q is the chemical heat release. Combining the mass and momentum equations
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Figure 2.2: Illustration of Chapman-Jouguet detonation wave in the wave-fixed
reference frame.

gives the equation for the Rayleigh line [12] given by

P2

P1

= (1 + γM2
1 )− (γM2

1 )
ν2
ν1
. (2.4)

Combining the mass, momentum, and energy equations gives the Rankine-Hugoniot

line [12] given by

P2

P1

=

γ+1
γ−1

− ν2
ν1

+ 2 q
P1ν1

γ+1
γ−1

ν2
ν1

− 1
. (2.5)

The points where the Rayleigh line is tangent to the Hugoniot are known as the

upper and lower Chapman-Jouguet points as shown in Fig. 2.3. The upper CJ point

corresponds to a detonation and the lower CJ point corresponds to a deflagration.

The entropy along the Hugoniot is given by

s2 − s1
R

=
1

γ − 1
ln
P2

P1

+
γ

γ − 1
ln
ν2
ν1
. (2.6)

This is plotted in Fig. 2.4. It can be readily seen that an entropy minimum occurs

at the upper CJ point that represents a detonation. It is this entropy minimum

that shows that a detonation is a thermodynamically more efficient burning process

than a deflagration wave.

When analyzing a propulsion system, it is important to look at the flow pro-

cesses through the entire engine. To accomplish this, stagnation Hugoniot analysis
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Figure 2.3: Rayleigh and Hugoniot
lines for a CJ detonation.

Figure 2.4: Entropy variation along
the Hugoniot.

was created by Wintenberger and Shepherd [10]. This analysis may be used to

analyze a Standing Detonation Wave Engine which uses a steady detonation wave

that is stabilized in a combustor where the flow velocity is equal to the detonation

velocity. The stagnation Hugoniot analysis takes into account the freestream stag-

nation pressure and the pressure ahead of the combustion wave. For a traditional

constant-pressure system such as a ramjet, the flow velocity in the combustor is very

low and nearly all of the freestream stagnation pressure is recovered. For a Standing

Detonation Wave Engine, the velocity in the combustor is very high and little to no

stagnation pressure is recovered. The analysis shows that recovering the stagnation

pressure is critical to having an efficiently operating engine and that the traditional

constant-pressure ramjet is vastly more efficient than the detonation based ramjet.

The equation for the stagnation Hugoniot [10] is given by

P2

P1

= 1 +
2γ

γ − 1

(
1− ν2

ν1

) 1 + q
cpTt

− ν2
ν1

γ+1
γ−1

(
1− ν2

ν1

)
ν2
ν1

+ ν2
ν1

−
(
1 + q

cpTt

)
 (2.7)

where Tt is the freestream stagnation temperature. The stagnation Hugoniot is
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Figure 2.5: Stagnation Hugoniot in
the P -ν plane.

Figure 2.6: Entropy variation along
the stagnation Hugoniot.

plotted in Fig. 2.5 and the entropy variation is plotted in Fig. 2.6. The upper CJ

point corresponds to the detonation solution that would be seen in an ideal Standing

Detonation Wave engine. The lower CJ point corresponds to a deflagration and is

similar to what would be seen in an ideal ramjet. By not recovering the stagnation

pressure before combustion, the Standing Detonation Wave Engine ends up being

less efficient.

It is important to note that the stagnation Hugoniot only applies to steady

combustion systems such as ramjets and Standing Detonation Wave Engines. An

unsteady combustion system, such as a PDE or RDE, should in theory be able to

recover the freestream stagnation pressure before combustion and realize the ther-

modynamic benefits of detonative over deflagrative combustion. An illustration of

the various cycles discussed is given in Fig. 2.7. It can be seen that a steady deto-

nation process (ZND cycle) is less efficient than the equivalent steady deflagration

process (Brayton cycle). However, the unsteady ZND cycle is more efficient than

either. The unsteady Humphrey cycle which represents a constant volume combus-
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Figure 2.7: T -s plots of various ther-
modynamic cycles.

Figure 2.8: Thermal efficiency of var-
ious cycles vs. the operating pressure
ratio.

tion process with constant pressure heat rejection is also shown due to its similarities

with the unsteady detonation cycle.

Figure 2.8 shows the thermal efficiency of the Brayton, Humphrey, and un-

steady detonation cycles versus the operating pressure ratio of an engine. For low

operating pressures, the Humphrey and ZND cycles offer far greater thermal effi-

ciency than the constant pressure Brayton cycle. At higher operating pressures, the

differences between the various cycles decreases. This implies that detonation based

propulsion could provide larger efficiency increases for engines with low operating

pressures. This could include augmentors or engines that spend large amounts of

time in low power or idle modes. High operating pressure engines, such as rockets

and modern jet engine combustors, would see less benefit. However, this does not

take into account potential weight savings due to having a much smaller flame brush

or vastly increased flame speeds.
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2.2 Rotating Detonation Engines

The focus of this work is on Rotating Detonation Engines (RDEs). The RDE

concept was first put forward by Voitsekhovskii in 1960 who was attempting to

maintain a detonation wave for study [3]. This device pushed a pre-mixed detonable

mixture through a radial slit into a viewing area where a detonation was initiated

and could be maintained for study. A schematic of the device is shown in Fig. 2.9.

The detonation products then exit the viewing section radially. This device was

designed to study detonations and was not designed with propulsion in mind. In

1966, Nicholls et. al. attempted to create a propulsion device based on this idea

that they called a Rotating Detonation Wave Rocket Motor [13]. Their device

was designed to examine the feasibility of this concept as an engine and to also

understand combustion instabilities in liquid rocket motor engines. Unfortunately,

they were unable to sustain continuous operation but did put forward analyses

and data that would be useful in designing future RDEs. After the work done

by Nicholls et. al., research in the U.S. on RDEs stopped for several decades.

However, in Russia, research into RDEs continued and is ongoing today. In the

1990’s through 2010, interest in Pulse Detonation Engines (PDEs) led to a greater

understanding of detonation phenomena. Starting in the mid-00’s, this increased

understanding led to the development of working RDEs for experimental study. Two

ways of incorporating RDEs into current propulsion concepts are shown in Figs. 2.10

and 2.11 [14]. Figure 2.10 shows how an RDE may be used in a ramjet-type system.

Figure 2.11 shows how an RDE may replace the combustor in a gas turbine engine.
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Figure 2.9: Schematic of Voitsekhovskii’s maintained detonation device. From [3].
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Figure 2.10: Schematic of an RDE
based ramjet. From [14].

Figure 2.11: Schematic of an RDE
based turbofan. From [14].

There are now many research programs on RDEs in the U.S., Russia, France,

China, South Korea, Japan, Poland, and others. Experimental, computational, and

analytical results from these groups will be explored in subsequent sections.

2.2.1 Overview of RDE Flowfield

Current understanding of the RDE flowfield comes primarily from experimen-

tal and numerical results. For example, Fig. 2.12, taken from a CFD simulation of

an RDE flowfield [15], shows a detonation propagating into premixed, fresh reac-

tants injected ahead of the detonation front. The products then expand and a slip

line is formed between the new products and the products of the previous detona-

tion that have gone through an oblique shock. A Kelvin-Helmholtz instability forms

along the slip line as well. A deflagration wave may or may not form between the

injected reactants and detonation products depending upon the local equivalence

ratio. The deflagration that occurs is sometimes known as contact surface burn-

ing [6]. A secondary shock may also form in the detonation products, depending on

the flow conditions. Note that in experimental studies, reactants are not premixed
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Figure 2.12: Numerical schlieren of an RDE simulation. From [15].

and mixing occurs in the inflow region ahead of the detonation.

2.2.2 Experimental Studies

After the initial experimental work by Voitsekhovskii in Russia and Nichols

in the U.S. during the 1960’s, research into rotating detonations continued in Rus-

sia and is still being studied today. Bykovskii and Mitrofanov looked at a annular

geometry similar to what is shown in Fig. 1.1 with acetylene-oxygen and propane-

oxygen mixtures to study the basic science behind rotating detonations [16]. Addi-

tional work by Bykovskii et. al. looked at radial annular chambers similar to Voit-

sekhovskii’s initial device shown in Fig. 2.9 [17]. There were different chamber types

studied where the inflow was injected radially outwards similar to Voitsekhovskii

and one that injected the reactants radially inwards. Bykovskii and Vedernikov also

studied a device where a detonation propagated around a cylinder with no outer

walls that was sustained by a radial outflow of reactants [18].

The previous studies conducted by Bykovskii and others used pure oxygen. In

1997, Bykovskii, Mitrofanov, and Vedernikov achieved a rotating detonation using

air as an oxidizer using a radial annular geometry where the reactants were injected
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Figure 2.13: Various geometries of Russian RDEs. From [2].

radially inwards [19]. After this, Bykovskii, Zhdan, and Vedernikov demonstrated

fuel-air RDEs using annular geometries that are similar to what would be seen in

an aerospace application [2, 20–22]. Figure 2.13 shows some geometries studied by

Bykovskii and others for their initial experiments into RDEs. Bykovskii et. al.

also conducted studies into rocket-type RDEs that examined annular geometries

and expanding annular geometries [23–27]. Additional experimental studies were

conducted into RDEs that injected fuel at high enough pressure to entrain outside air

for combustion [28–32] and the effect of using air to dilute the detonation products

[33]. Lastly, the effect of heat flux to the combustor walls [34,35], noise and vibration

[36], and detonation initiation [37] has also been studied by Bykovskii et. at.

Figure 2.14: Illustration of RDE flow-
field. From [2].

These extensive studies conducted by

Bykovskii have provided some key take-

aways for the research community. First and

foremost, the structure of the flowfield was

extensively described and documented and

an illustration of it may be seen in Fig. 2.14
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[2]. Note that their coordinate system has

the inflow coming from the top and the detonation is progressing from left to right.

They also examined how physical geometry, mixture properties, and mass flow af-

fected RDE operation. Operating regimes for both rocket-type and airbreathing

RDEs were defined in order to provide starting points for future designs [2]. Lastly,

an important stability criteria states that the detonation height must be approxi-

mately (12± 5)λ in order to successfully propagate a detonation around the annu-

lus [2]. Note that λ is the detonation cell width.

Figure 2.15: Chemiluminescense im-
age of RDE flowfield. From [38].

Since 2010, the U.S. has built and op-

erated many RDEs. The first set of RDEs

built and tested consisted of a 3 inch diam-

eter RDE [39], a 6 inch diameter RDE [40],

and a 22 inch diamter RDE [41]. Addi-

tionally, experiments looking at heat trans-

fer [42] and the performance of a converging-

diverging nozzle [43] have been looked at. Of

particular relevance to this work, a RDE was designed with a quartz outerbody so

that the RDE flowfield could be directly observed through chemiluminescence [38].

An image from the quartz outerbody is shown in Fig. 2.15 [38]. It clearly shows

the detonation wave which is inclined slightly forward and an oblique shock being

dragged around. It is also possible to see the slip line.

Lastly, there are robust experimental RDE programs in both Poland and

France that deserve mention. In Poland, Wolański et. al. have conducted many
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RDE experiments for both rocket-type RDEs [44] and airbreathing RDEs [44].

France also has an RDE program with working devices that has confirmed many of

the Russian results [45].

2.2.3 Computational Studies

Many computational studies have been conducted to understand the physics

that occur within an RDE and how they affect performance and operation. Due to

the difficulty of making measurements within the RDE environment, computational

fluid dynamics (CFD) has been an invaluable tool for filling in some of the gaps in

experimental knowledge.

The simplest RDE simulations are unsteady, two-dimensional Euler simula-

tions. If the RDE channel width is small compared to the radius of curvature, an

annular channel may be approximated as two-dimensional with periodic boundary

conditions. Most of these simulations assume the injected mixture is premixed to

reduce computational requirements [15, 46–55]. It should also be noted that the

CFD model used by Zhdan et al. is capable of performing quasi two-dimensional

simulations [52]. These simulations provided a detailed look at the RDE flowfield

seen in Fig. 2.12. The effects of various geometric parameters have also been exam-

ined [15] along with nozzling of the RDE channel [56]. Studies on different inflow

geometries and the effects of the detonation wave on an injector plenum have also

been examined [49–51]. The role of mixing has also been examined [57–59]. Re-

cently, increases in computer power have allowed for the inclusion of turbulence [60]
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and full three-dimensional simulations [56,61–63].

At a minimum, the computational cost of these models normally requires sev-

eral hours of run time on a supercomputer. Some of the larger three-dimensional

simulations can take weeks or even months. Due to the large computational cost of

CFD simulations, these models are best suited to examining the physics in detail

and not for large parametric studies to build out a design space for an engine. The

goal of this work is to build a model that can reproduce the results of the simple,

two-dimensional simulations with premixed reactants and ideal injection systems.

2.2.4 Analytical Studies

Simplified and reduced order models have been developed to determine RDE

performance and conduct parametric studies. Nordeen et. al. used a modified ZND

model to take into account the rotating reference frame of the detonation wave in

an RDE [64]. This model is a analytical one-dimensional model that takes into

account two-dimensional effects through a velocity transformation. Kaemming et.

al. developed a reduced order model of the multiple thermodynamic cycles that

occurs within an RDE to estimate performance [65]. Mizener and Lu also created

an analytical control-volume approach to estimating RDE performance [66]. Lastly,

Paxson developed a CFD simulation that solves the RDE flowfield in the wave-fixed

reference frame on a relatively coarse grid to generate solutions faster than more

refined codes [67]. With the exception of the Paxson CFD solver, these models

require empirical results or educated guesses from higher-fidelity simulations. The

20



goal of this work is to present a two-dimensional model that does not require any

previous knowledge except for a basic understanding of the shock structure in an

RDE that is suitable for parametric studies.

2.3 Detonations with Compressible Boundaries

Figure 2.16: Experimental image of a
detonation wave bounded by an inert
gas. From [68].

The basis of the current work can be

traced back to research performed in the

1960s. Several researchers investigated a

flow similar to that seen in RDEs [68–71].

They performed experiments in a thin rect-

angular channel with a detonable mixture

on the bottom and an inert mixture on top.

Early experiments allowed diffusion to oc-

cur between the two mixtures [69], while

later experiments used a thin film to sep-

arate the gases [68]. Figure 2.16, is a spark

photograph of an experiment to visualize a

detonation bounded by an inert gas. An-

alytical methods for calculating the oblique

shock and slip line angles were given by Som-

mers and Morrison [69]. Dabora extended

this analysis to include losses through the
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Figure 2.17: Diagram of detonation-inert interaction. From [70].

reaction zone to estimate the velocity deficit

and detonability limits [68]. A more rigorous

method for estimating the velocity deficit was then given by Fujiwara and Tsuge [71].

Sichel and Foster extended the analytical solution of Sommers and Morrison to cal-

culate the pressure distribution on the bottom surface behind the detonation wave

using the method of characteristics (MOC) [70]. A diagram of their system is given

in Fig 2.17.

The focus of this paper is to extend the ideas of Sichel and Foster to an RDE.

Examination of Fig. 2.17 and Fig. 2.12 show many similarities of the gross shock

structure. In this work, the major flow structures, i.e., the oblique shock, slip line,

and centered expansion fan, are calculated analytically using the methodology of

Sommers and Morrison by assuming that the inert gas bounding the detonation

consists of detonation products from the previous wave. The resulting flow struc-

tures are then used as the basis for a shock-fitted MOC solution. This leads to the

development of a simplified, steady-state 2D RDE model suitable for large paramet-

ric studies.
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Chapter 3: Analytical Modeling of RDE Flow Structures

This chapter discusses the analytical models that are used in the reduced

order model being developed. These analytical models describe discontinuities in

the flowfield. By modeling discontinuities analytically, a shock-fitted model may be

developed. This greatly decreases the computational cost when compared to a shock-

capturing model which requires high-resolution grids to resolve the discontinuities.

The discontinuities in the RDE flowfield that are modeled analytically are the planar

detonation wave, the oblique shock, the slip lines, and the injector.

3.1 Analytical Model of the Detonation-Oblique Shock Structure

Figure 3.1 is an idealized model of a propagating detonation bounded by an

inert gas in the wave-fixed reference frame. Sommers and Morrison noted that this

system resembles the interaction of a shock wave incident on a free boundary and

may be solved in a similar manner [69]. Figure 3.2 is an extension of Fig. 3.1 to an

RDE flowfield. The inclusion of reactants being injected in front of the detonation

adds a vertical component of velocity ahead of the wave. This inclines the detonation

and generates of a second expansion fan that emanates from the bottom of the

detonation and turns the flow parallel to the wall. This is caused by the high pressure
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Figure 3.2: Ideal RDE model.

detonation products blocking inflow from occurring until the pressure relaxes below

a certain point. Note that this model assumes that the high pressure does not cause

any detonation products to flow back into the injection system (i.e., no backflow).

Lastly, the ideal RDE flowfield model assumes there is no deflagration wave along

the contact surface between the reactants and products.

The simpler model of a detonation bounded by an inert gas in Fig. 3.1 is

analyzed first to provide insights into the RDE model in Fig. 3.2. Following Fig. 3.1,

if the CJ solution is provided, D and Pe2 are known. The subscript, i, stands for

the inert bounding gas and subscript, e, stands for the explosive mixture. Since

Pe3 = Pi2 , there are now only three unknowns: δ, ϵ, and Pe3 (or Pi2). In the

following analysis, Me3 is used in place of Pe3 , since they are related isentropically.

The relationship between δ and ϵ is given by the oblique shock relation:

tan δ = 2 cot ϵ

[
M2

i1
sin2 ϵ− 1

M2
i1
(γi + cos 2ϵ) + 2

]
. (3.1)

Since both temperature and composition can vary across the interface, Mi1 ̸= Me1 .

The relationship between δ and Me3 is given by

δ = ν(Me3)− ν(Me2) (3.2)
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where ν(M) is the Prandtl-Meyer function. The pressure across the oblique shock

is given by

Pi2

Pi1

= 1 +
2γi
γi + 1

(M2
i1
sin2 ϵ− 1). (3.3)

The pressure across the expansion wave is given by the isentropic relation

Pe2

Pe3

=

1 + γe2 − 1

2
M2

e3

1 +
γe2 − 1

2
M2

e2


γe2/(γe2−1)

. (3.4)

The pressures on either side of the interface are equal and may be related by the

expression:

Pi2

Pi1

=

(
Pe1

Pi1

)(
Pe2

Pe1

)(
Pe3

Pe2

)
, (3.5)

where Pe2/Pe1 is the pressure ratio across a detonation wave. In this work the deto-

nation solution may be provided by either 1-γ, 2-γ, or equilibrium Chapman-Jouguet

models that are described later in this chapter. There are now three unknowns: δ,

ϵ, and Me3 in three equations: (3.1), (3.2), and (3.5). These equations may then be

solved simultaneously using a nonlinear equation solver.

3.1.1 Applicability of Shock Structure Model

Examining Fig. 2.12 shows a secondary shock that is not present in the previous

analysis. This secondary shock occurs if the oblique shock becomes detached. The

subsonic region behind a detached shock would necessitate the use of a transonic

patch to make possible a method of characteristics solution. It would be simpler

to model the flow without this secondary shock; therefore, the system of equations

governing the detonation-oblique shock interaction is analyzed to determine when
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the oblique shock detaches to determine the scope of where this model is valid. The

system is also analyzed to determine when the flow behind the oblique shock becomes

sonic which would rule out the possibility of performing a method of characteristics

solution as well.

The parameters of the system defined by equations (3.1), (3.2), (3.5), and

Fig. 3.1 are a function of the ratio of acoustic impedances between the inert and

explosive layers [69], where the acoustic impedance is defined as

Z = ρa =
γP

a
. (3.6)

Figure 3.3 shows the relationship between the oblique shock angle and the ratio of

the acoustic impedances in an inert versus an explosive medium. A simple 1-γ model

for stoichiometric hydrogen-air [72] is used to perform the detonation calculation.

Across the detonation wave, the composition of the gas and the heat capacities

may change. Elsewhere, a frozen, calorically perfect gas is assumed. At a certain

point, the shock can become detached. This point may be found with the following

equation for the maximum oblique shock angle:

sin2 ϵmax =
1

γiM2
i1

[
γi + 1

4
M2

i1
− 1 +

√
(γi + 1)

(
1 +

γi − 1

2
M2

i1
+
γi + 1

16
M4

i1

)]
.

(3.7)

There is also the possibility that the flow becomes sonic or subsonic behind the

oblique shock. This oblique shock angle where this occurs is given by:

sin2 ϵ∗ =
1

γiM2
i1

[
γi + 1

4
M2

i1
− 3− γi

4
+

√
(γi + 1)

(
9 + γi
16

− 3− γi
8

M2
i1
+
γ + 1

16
M4

i1

)]
.

(3.8)
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Figure 3.3: ϵ vs. Zi1/Ze1 . Figure 3.4: ϵ vs. Ti1 .

To examine the behavior of an RDE, the inert gas bounding the detonation is

assumed to consist of detonation products that have been isentropically expanded

down to the initial pressure of the reactants in front of the detonation. Therefore,

the temperature of the inert gas is given by

Ti1 = Te2

(
Pi1

Pe2

)(γi−1)/γi

(3.9)

where γi = γe2 . According to Fig. 3.3, for a stoichiometric hydrogen-air detonation

at standard conditions, the oblique shock wave should remain attached and the

post-shock flow supersonic.

A closer examination of Fig. 2.12 shows that the point where the detonation

and oblique shock intersect resides in the deflagration wave formed between the

reactants and detonation products. If the temperature of the bounding detonation

products is varied as shown in Fig. 3.4, the oblique shock wave would detach at

temperatures less than the adiabatic flame temperature. Therefore, the deflagration

wave appears to be the most likely reason for the formation of the secondary shock.

The idealized model developed here disregards the deflagration wave that forms, so
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modeling the secondary shock is unnecessary and may be ignored.

3.2 Chapman-Jouguet Detonation Waves

The ideal RDE model being developed represents the detonation as an in-

finitely thin, planar wave. The detonation velocity and jump conditions across this

wave are required and are determined using Chapman-Jouguet theory. These jump

conditions are provided using either a 1-γ, 2-γ, or equilibrium CJ solution. This

section will detail the calculation of the detonation velocity and jump conditions

given the state of the reactants ahead of the wave.

3.2.1 Simple 1 and 2-γ Models

The CJ detonation solution for a 2-γ mixture is presented in this section. The

1-γ may be found by assuming that γ1 = γ2 in the following equations. Referenc-

ing Fig. 2.2, the conservation equations across the wave where the reactants and

products may have different molecular weights and specific heat capacities are given

by:

ρ1u1 = ρ2u2 (3.10)

ρ1u
2
1 + P1 = ρ2u

2
2 + P2 (3.11)

cp,1T1 +
u21
2

= cp,2T2 +
u22
2

− q. (3.12)

The equation for the Rayleigh line is given by:

P2

P1

= (1 + γ1M
2
1 )− (γ1M

2
1 )
ν2
ν1

(3.13)
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and the equation for the Hugoniot is given by:

P2

P1

=

γ1+1
γ1−1

− ν2
ν1

+ 2 q
P1ν1

γ2+1
γ2−1

ν2
ν1

− 1
. (3.14)

From Chapter 2, the CJ solutions correspond to the points when the Rayleigh line

is tangent to the Hugoniot. Since the detonation solution is desired, only the upper

CJ point is given here. The Mach number that corresponds to the CJ detonation

solution is given by

MCJ =

√
H +

(γ1 + γ2)(γ2 − 1)

2γ1(γ1 − 1)
+

√
H +

(γ2 − γ1)(γ2 + 1)

2γ1(γ1 − 1)
(3.15)

where the nondimensional energy release, H, is given by

H =
(γ2 − 1)(γ2 + 1)q

2γ1R1T1
. (3.16)

The jump conditions are then given by

PCJ

P1

=
γ1M

2
CJ + 1

γ2 + 1
(3.17)

ρCJ

ρ1
=
γ1(γ2 + 1)M2

CJ

γ2(1 + γ1M2
CJ)

(3.18)

TCJ

T1
=
PCJ

P1

R1ρ1
R2ρCJ

. (3.19)

3.2.2 Equilibrium Model

The equilibrium CJ model is similar to the 2-γ model that allows different

values of the molecular weights and specific heat capacities on either side of the

detonation wave. However, in the equilibrium model, the values of the molecular

weight and specific heat capacities is not set beforehand but is now a function of the

mixture properties. The following analysis may be found in greater detail in [73].
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For the equilibrium model, the energy equation give above, Eq. 3.12, must be

modified since the assumption of a thermally perfect is no longer valid. The energy

equation across the detonation wave now becomes

h1 +
u21
2

= h2 +
u22
2

(3.20)

where h is the enthalpy given by

h =
K∑
i=1

Yihi(T ). (3.21)

The enthalpy of a mixture consisting of K species is the sum of the mass fractions,

Yi, multiplied by their individual values of enthalphy, hi. Note that the equilibrium

model is assumed to be a thermally perfect gas where the enthalpy is only a function

of the temperature. The species enthalpies are given by

hi =

T∫
Tref

cPi
(T )dT +∆fhi,ref (3.22)

where ∆fhi,ref is the heat of formation for species, i, at a reference state of Tref =

298.15 K and Pref = 1 bar. The values of cPi
are generally given in a polynomial

form that has been fitted to tabular, experimental data. The specific gas constant

is a function of the average molar mass of the mixture given by

W =

(
K∑
i=1

Yi
Wi

)−1

. (3.23)

The composition of the reactants, Yi1 is known; however, the composition of

the products, Yi2 is unknown and must be determined. Since this is an equilibrium

model, the composition of the products is given by the equilibrium value:

Yi2 = Y eq
i2
(P2, T2). (3.24)
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Solving for the equilibrium value is found using an iterative technique that solves a

system of equations that define chemical equilibrium. In this work, the equilibrium

solution is provided by the Cantera package [74].

The Rayleigh line is still given by Eq. 3.13 since it is only a combination of the

mass and momentum equations which have not changed. Since the energy equation

for the equilibrium model is different, the equation for the Hugoniot is now given by

h2 − h1 = (P2 − P1)
(ν2 + ν1)

2
. (3.25)

At the tangency point, the flow velocity behind the wave is sonic and equal to

the equilibrium sound sound speed. Guessing the properties at state 2 as well as

requiring the velocity to be equal to the sound speed defines an iterative system

that may be solved to determine the detonation velocity and properties.

3.3 Injector Modeling

Currently, there is no mass flow injection boundary condition for 2D MOC

in the literature. Therefore, a new boundary condition suitable for MOC must be

developed. A set of jump equations based on a flow undergoing a sudden expansion

is developed here to provide an analytical set of equations to solve along with the

MOC compatibility relations in order to provide a mass flow injection boundary

condition. This section is concerned with the development of the jump relations

and a later section deals with solving these equations in conjunction with the MOC

compatibility relations.

Figure 3.5 shows a cross section of an idealized RDE annulus where a premixed
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inflow of reactants is being driven by a plenum through a slot nozzle that discharges

suddenly into an enlarged channel area. Station 1 is located at the throat of the

nozzle and station 2 is located in the channel immediately after the nozzle. Station

3 is located downstream of the throat at a point where the flow has become uniform.

The distance between stations 2 and 3 is the transition region where the flow goes

from highly nonuniform to uniform. The entire process is assumed adiabatic and

the flow is assumed to be isentropic between the plenum and station 1, since the

majority of the losses occur during the sudden expansion and transition. Given P0,

T0, A1, A3, and P3, all other parameters of the system may be determined. The

first step in solving this problem is to apply conservation of mass, momentum, and

energy for a steady, quasi one-dimensional, inviscid flow between stations 2 and 3.

The conservation equations are then given as

ρ1v1A1 = ρ3v3A3 (3.26)

−ρ1v21A1 + ρ3v
2
3A3 = P1A1 + P2A2 − P3A3 (3.27)

γ

γ − 1

P1

ρ1
+
v21
2

=
γ

γ − 1

P3

ρ3
+
v23
2

=
γ

γ − 1

P0

ρ0
. (3.28)

The mass flow rate into the control volume is given by

ṁ =
A1P0√
T0

√
γ

R
M1

(
1 +

γ − 1

2
M2

1

)−(γ+1)/(2(γ−1))

(3.29)

where 0 ≤ M1 ≤ 1. If ṁ is known, v3 may be calculated by rewriting the energy

equation as a quadratic equation in v3:

1

2
v23 +

γ

γ − 1

P3A3

ṁ
v3 −

γ

γ − 1

P0

ρ0
= 0. (3.30)
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Figure 3.5: Cross-sectional slice of an RDE annulus.

Once v3 is known, P2 may be solved for from the momentum equation as

P2 =
ṁ(v3 − v1)− P1A1 + P3A3

A3 − A1

. (3.31)

Note that Eq. 3.31 is derived by assuming that A2 = A3−A1. This implies the RDE

is being fed by a constant area slot injector along the bottom of the annulus. Also

note that since the flow in the nozzle before the sudden expansion is isentropic, P1

may be calculated using the isentropic flow relation.

The solution process for determining the correct ṁ and v3 is to first assume

that the flow is choked (M1=1). The next step is to use the isentropic relations to

calculate P1 and then use Eqs. 3.29, 3.30, and 3.31 to calculate ṁ, v3, and P2. If P2

is less than P1, the flow is choked and no further calculations are required. When

P2 > P1, the flow is unchoked and an iterative process is required to determine the

correct M1 to match P1 and P2. Assuming the transition occurs instantaneously

and that the distance between stations 2 and 3 is negligible, the previously derived

equations become a set of jump equations analytically describing the injection of

33



Figure 3.6: v3 vs. P3. Figure 3.7: (s3 − s1)/R vs. P3.

reactants into an RDE annulus.

The variation in the velocity at station 3 and the change in entropy is examined

for a test case in Figs. 3.6 and 3.7. The conditions for the test case are an unburnt

stoichiometric hydrogen-air mixture with P0=10 atm, T0=300 K, and A1/A3=0.2.

As the pressure at station 3 is lowered, the flow in the nozzle will eventually choke.

If it is lowered even further, the flow in station 3 becomes supersonic. It is important

to note that the entropy varies as P3 changes. This entropy gradient requires that

the rotational method of characteristics be used to model the inflow correctly.
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Chapter 4: Method of Characteristics Modeling

The steady, two-dimensional, isentropic method of characteristics is used to

numerically simulate the flowfield for a stably operating RDE. A predictor-corrector

method is used to evaluate the compatibility relations along the characteristics. The

algorithms used to perform the unit processes are based on those given in [75], but

due to large entropy gradients generated by the inflow unit process, a modification

in how the streamline properties are calculated is required.

4.1 Characteristic Equations and Compatibility Relations

The Euler equations for steady, two-dimensional, isentropic flow are given by:

ρ
∂u

∂x
+ ρ

∂v

∂y
+ u

∂ρ

∂x
+ v

∂ρ

∂y
= 0 (4.1)

ρu
∂u

∂x
+ ρv

∂u

∂y
+
∂P

∂x
= 0 (4.2)

ρu
∂v

∂x
+ ρv

∂v

∂y
+
∂P

∂y
= 0 (4.3)

u
∂P

∂x
+ v

∂P

∂y
− a2u

∂ρ

∂x
− a2v

∂ρ

∂y
= 0 (4.4)

There are four characteristics present in these equations. They are the left running

Mach line, the right running Mach line, and the streamline which is a repeated
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characteristic. The characteristic equations are given by:

λ± =tan(θ ± α) (eq. for the Mach lines) (4.5)

λo =
v

u
(eq. for the streamline) (4.6)

The compatibility equation that must be satisfied along the left and right Mach

lines is given by
√
M2 − 1

ρV 2
dP± ± dθ± = 0. (4.7)

The compatibility equations along a streamline are given by

dP − a2dρ = 0 (4.8)

ρV dV + dP = 0. (4.9)

Note that the last equation is the differential form of Bernoulli’s equation. For a

perfect gas, a closed form solution is available. Combining Eqs. 4.8 and 4.9 with the

differential form of the ideal gas law,

dP

P
=
dρ

ρ
+
dT

T
(4.10)

yields

dT = −γ − 1

2γR
V 2. (4.11)

Integrating this equation from T0 to T and from 0 to V and substituting in the

definition of the Mach number, M = V/a, gives

T0
T

= 1 +
γ − 1

2
M2, (4.12)

which is the definition of the stagnation temperature. Combining this with the

isentropic relations,

P0

P
=

(
ρ0
ρ

)γ

=

(
T0
T

)γ/(γ−1)

, (4.13)
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gives

P0

P
=

(
1 +

γ − 1

2
M2

)γ/(γ−1)

(4.14)

ρ0
ρ

=

(
1 +

γ − 1

2
M2

)1/(γ−1)

(4.15)

(4.16)

which are the definitions of the stagnation pressure and stagnation density. There-

fore, instead of numerically solving Eqs. 4.8 and 4.9, the values of the stagnation

pressure and density along a streamline are used.

4.2 Mass-Stagnation Method

The mass-stagnation method is an extension of the mass-entropy method cre-

ated by Powers and O’Neill [76] for the case when the freestream conditions ahead

of an oblique shock are not constant. The mass-entropy method was created to ad-

dress the large increase in errors associated with flows with strong entropy gradients.

Most MOC unit processes (for example, see [75]), assume a linear entropy gradient.

For very strong entropy gradients, this assumption may lead to large errors in the

conservation quantities. One way to address this problem is to track the value of the

mass integral along with the entropy (or stagnation values in the mass-stagnation

method). This approach is successful since the gradient of the mass integral is much

smaller than the gradient of the entropy or stagnation values.

The mass-stagnation method is based on tracking the mass integral defined by

a stream function for compressible, two-dimensional flow. The continuity equation
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for compressible, two-dimensional flow is

∂

∂x
ρu+

∂

∂y
ρv = 0. (4.17)

A stream function, ψ, that satisfies this equation has the properties

ρu =
∂ψ

∂y
(4.18)

ρv = −∂ψ
∂x

. (4.19)

It can be shown that lines of constant ψ occur along streamlines and that the

difference in the value of ψ between two streamlines represents the integral of the

mass flow through those streamlines. This integral may be computed as

ψ2 − ψ1 =

∫ (x2,y2)

(x1,y1)

(ρudy − ρvdx). (4.20)

This integral is solved for ψ2 using the trapezoidal rule:

ψ2 = ψ1 − (x2 − x1)

(
ρ1v1 + ρ2v2

2

)
+ (y2 − y1)

(
ρ1u1 + ρ2u2

2

)
. (4.21)

The mass-stagnation method requires that the value of the mass integral, the

stagnation pressure, and the stagnation temperature are stored in a look-up table

along either the inflow, detonation, or oblique shock boundary. Once the look-up

table is created, the stagnation values along a streamline are found by calculating

the value of ψ for that streamline and linearly interpolating for the correct value of

the stagnation pressure and density.

In practice, determining the streamline is only required for the interior point

unit processes shown in Fig. 4.1. Normally, the steamline is found by interpolating
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Figure 4.1: Illustration of interior-point unit process.

between points 1 and 2. Using the mass-stagnation method, the streamline proper-

ties are found by iteratively determining the the value of the mass integral at point

4, ψ4. Following Eq. 4.21, there are two choices for calculating ψ4. These are

ψ4 = ψ1 + (x1 − x4)

(
ρ1v1 + ρ4v4

2

)
− (y1 − y4)

(
ρ1u1 + ρ4u4

2

)
(4.22)

ψ4 = ψ2 + (x2 − x4)

(
ρ2v2 + ρ4v4

2

)
− (y2 − y4)

(
ρ2u2 + ρ4u4

2

)
(4.23)

depending on whether the integration occurs between points 1 and 4 and 2 and

4, respectively. The current implementation calculates the integral both ways and

takes the average. More detail on the implementation of the interior point unit

process may be found in Appendix A.

4.3 Mass Injection Boundary Condition

The jump equations for a flow undergoing a sudden expansion developed pre-

viously (see Eqs. 3.29, 3.30, and 3.31) are used in the creation of an inflow unit

process to create a new boundary condition to simulate mass injection. Figure 4.2

39



1

3

inflow

injector exit plane

inflow region

Figure 4.2: Illustration of a inflow point unit process.

illustrates the unit process along the injector boundary.

Solving for points along the inflow boundary is similar to solving for points

along an oblique shock. Instead of iterating for the correct pressure and shock

properties using the oblique shock relations, the pressure and inflow properties are

found iteratively using Eqs. 3.29, 3.30, and 3.31 for flow undergoing a sudden ex-

pansion. Note that if P3 is too high, the inflow is blocked and the boundary is

treated as a solid wall instead. If P3 < P0, the inflow calculation is performed and

the flow may be either unchoked or choked depending upon the value of P3 and

P0. It is important to note that the sudden expansion jump relations are derived in

the laboratory reference frame. For a given value of P3, v3 is calculated, and then

the velocity of the reference frame, u3 = ulab, is added, giving V3 =
√
v23 + u23 and

θ3 = tan (v3/u3). The goal is to then find P3 and θ3 that satisfies the sudden expan-

sion jump equations and MOC compatibility relations. It should also be noted that

this boundary condition is similar to the boundary condition developed by Paxson

and Wilson [77]. Their boundary condition was developed for a traditional CFD

solver and may be thought of as the finite volume equivalent of the inflow boundary

condition developed in this work.
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4.4 Slip Line Boundary Condition

In an RDE, slip lines form along the boundaries between the inflow, detonation

products, and the detonation products of the previous wave that have been processed

through an oblique shock. This unit process is not commonly given in the literature

or in textbooks, although there is an overview of a slip-line process for irrotational

flow in Thompson [78]. The unit process for rotational flow is given here due to its

importance for the RDE model being developed.

1a

3a

4aside A

side B

slip line
4b

3b

2b

Figure 4.3: Illustration of a slip point unit process.

Figure 4.3 illustrates the unit process for a new point along a slip line. The

goal is to determine the state at point 4 on side A. Along a slip line, the pressure

and flow angle must match. This leads to an iterative process to match the pressure

and flow angle. The system is set up by first solving for point 4a using a prescribed-

pressure unit process. This is similar to the free-pressure unit process outlined by

Zucrow and Hoffman, but now the pressure along the boundary does not have to

be constant (i.e., P4a does not have to be equal to P3a or P3b). Once this is done,

the location and flow angle of point 4a is known. Point 4b is now calculated using

the indirect wall point unit process given by Zucrow and Hoffman [75]. This gives a

value of the pressure at point 4b. A residual can now be defined as the difference in

41



the prescribed pressure given for point 4a and the calculated pressure at point 4b.

An iterative solver is then used to determine the correct pressure that matches the

pressure and flow angle.

4.5 Interpolating within the Characteristic Mesh

To initialize a new solution from a previous solution, an interpolation method

is required to find the flow properties at points within the characteristic mesh. The

interpolation process for a point inside a cell created by an interior point unit process

is shown in Fig. 4.4. A nonlinear solver iterates on the correct locations of points

1′ and 2′ that give the desired point, 4′. Point 1′ is found by interpolating between

points 1 and 3 and point 2′ is found by interpolating between points 2 and 3. The

interpolation process for cells along slip lines, the inflow boundary, and the shock

boundary are similar to the interior cell method.

1

3 4

2ʹ
2

4ʹ

1ʹ

Figure 4.4: Illustration of interpolating within an interior flow cell.

When performing a shock-point unit process that is using information from a

previous solution, the interpolation methods are called to determine the properties

just ahead of the shock. This shock-point unit process is similar to that outlined

in Zucrow and Hoffman but the properties just ahead of the shock must also be

iterated on.
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Lastly, the interpolation methods are also called to determine the properties

ahead of the detonation wave in the inflow region. Once the properties are found,

they are averaged to get pressure, temperature, and flow angle. The pressure and

temperature are used to determine the detonation velocity and jump conditions. The

flow angle determines the inclination of the detonation. The point at the top of the

detonation wave on the post-detonation side becomes point i1, and the detonation-

oblique shock interaction is performed and a new RDE solution is initialized.
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Chapter 5: Reduced Order Model of an RDE

5.1 Overview of Marching Algorithm

There are three distinct regions in the RDE model being developed, as shown

in Fig. 5.1. There is the post-oblique shock region, post-detonation region, and

inflow region. The MOC solutions in these regions are marched out concurrently.

Communication between the regions is handled by the slip line unit process. How

these regions are initialized and marched out is described in more detail in the

following sections.

post-det region

inflow region

post-obl

region

blocked unchoked choked flow

ch
a
n
n
el

 h
ei

g
h
t

start of inflow

region

starting expansion

fans

next detonation-

oblique shock 

structure

Figure 5.1: MOC solution (h = 17.7 cm, l = 43.98 cm, w = 1 cm, A1/A3 = 0.3, P0

= 10 atm, and T0 = 300 K).

The dashed lines in Fig. 5.1 represent the domain of the RDE. On the left

side, the domain starts along the detonation wave and oblique shock. The top line
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represents the RDE exit. For one wave operation, the distance between the left

detonation and oblique shock and the right (next) detonation and oblique shock

is equal to the average circumference of the RDE. Note that parts of the solution

have marched out past these dotted lines. Since MOC is a marching process, the

characteristics are marched out along points where the right and left characteristics

cross. These points are not defined beforehand so to ensure that the solution covers

the entire RDE domain, the solution is marched until the top and right lines are

completely covered by the characteristic mesh. The previously described interpola-

tion methodology is then used to calculate points along the top and right domain

boundaries.

Lastly, along the bottom boundary, the pressure from the detonation wave

is higher than the plenum pressure of the injection system. The model treats this

boundary as a solid wall implying that the flow from the injector is blocked. Once

the pressure decreases, reactants start to flow into the domain and the flow in the

injector is unchoked. As the pressure continues to decrease, the flow becomes choked

and remains that way until the next detonation wave. These blocked, unchoked, and

choked sections of the bottom boundary are marked on Fig. 5.1 to illustrate where

they occur.

5.1.1 Post-Detonation Region

The post-detonation region is initialized using the centered expansion fans

at the top and bottom of the detonation wave shown in Fig. 5.1. Resolution in
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Figure 5.2: Unresolved area in post-
detonation region.
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Figure 5.3: Fix to increase resolution
in the post-detonation region.

this region is set by choosing the number of characteristics in the top and bottom

expansion fans. Since the flow behind the detonation is sonic, the first characteristic

in the expansion fans is calculated for a Mach number slightly greater than one as

described in [79] when initializing a nozzle flow calculation.

If just the top and bottom expansion fans are used to generate the characteris-

tic mesh in the post-detonation region, a small region where the oblique shock, slip

line, and detonation intersect may suffer from a lack of resolution. This is shown in

Fig. 5.2. To increase the resolution in this area, additional points are interpolated

along the last characteristic of the top expansion fan. Left-running characteristics

from these points intersect the slip line and increase resolution in the area around

the detonation-oblique shock interaction point.

In the post-detonation region, the lookup tables for the mass-stagnation method

are generated along the detonation boundary. The lookup tables are initialized using

a point representing the bottom of the detonation and another point representing

the top so there are only two points in the lookup tables. Since the detonation is
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assumed planar, the flow state is constant just behind the detonation wave. There-

fore, the values of the stagnation pressure and density along the streamlines are the

same for every streamline. Any value of ψ in the post-detonation region should just

return the stagnation pressure and density calculated behind the CJ detonation. It

should be noted that this means the flow in the post-detonation region is irrotational

which is not an issue for the rotational method of characteristics.

The top boundary of the post-detonation region is defined by a slip line bor-

dering the post-oblique shock region. Along the bottom boundary, the boundary is

treated like a solid wall as shown in Fig. 5.1 until the pressure along the bottom

has decreased below the plenum pressure. Once this occurs, the inflow region is

initialized and the boundary becomes a slip line bordering the inflow region. The

details of initializing the inflow region are given in the next section.

5.1.2 Inflow Region

The inflow region is initialized when the pressure along the bottom boundary

decreases below the plenum pressure in the injection system as shown in Fig. 5.4.

This occurs when the wall point calculations from reflected right-running character-

istics in the post-detonation region show that the pressure is less than the plenum

pressure. Once the pressure calculated from a wall point unit process shows a

pressure less than the plenum pressure, an inflow point calculation is performed to

determine the start of the inflow region and the initial angle of the slip line separat-

ing the post-detonation and inflow regions. This point is labeled point 1 in Fig. 5.4.

47



bottom boundary (injection plane)

characteristics from
post-detonation
region

P <P


start of inflow
region

initial value line for
inflow region

1

2

3

Figure 5.4: Initialization of the inflow region.

Once the inflow region has been initialized, the first right-running characteris-

tic in the post-detonation region that reflects off the slip line is used to generate the

initial value line in the inflow region. The reflection point along the slip line where

this occurs is labeled point 2 in Fig. 5.4. The initial value line is the right-running

characteristic from the slip line in the inflow region that hits the injector boundary

at point 3.

Recalling the slip line unit process depicted in Fig. 4.3, a left running charac-

teristic is required from the inflow region to perform the slip point unit process at

point 2. This left running characteristic is generated at a point that is interpolated

between points 1 and 3 along the inflow boundary. Since point 3 is not known when

point 2 needs to be calculated, a guess is made that the state at point 3 is equal

to the state at point 1. Once point 2 is calculated, point 3 is calculated using the

inflow point unit process described in Chapter 4. Point 2 is then recalculated using

the updated value at point 3 to interpolate for the left running characteristic to

perform the slip line unit process. This iterative process is repeated until the values

at point 2 and 3 no longer change within a specified tolerance. A similar process
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occurs when initializing external hypersonic flows with curved leading edges [75].

Once the right running characteristic between points 2 and 3 is created, the

characteristic is used as an initial value line to start marching out the inflow region.

Resolution in the inflow region is controlled by specifying the number of points along

the 2-3 line to start left running characteristics off of. Note that the flow properties

at these points are interpolated between points 2 and 3.

The lookup tables for the mass-stagnation method are generated along the

inflow boundary. At each point, ψ, P0, and ρ0 are calculated and stored so that

streamline information may be determined in the interior of the region.

5.1.3 Post-Oblique Shock Region

The post-oblique shock region is initialized using the calculated oblique shock

and slip line angles from solving the analytical system described in Chapter 3 and

the first left running characteristic from the post-detonation region to reflect off the

slip line. An illustration of the initialization procedure is shown in Fig. 5.5. The

procedure for calculating points 2 and 3 is similar to the procedure for initializing the

inflow region. To calculate point 2 on the slip line, a point is interpolated between

points 1 and 3. The properties at point 3 is initially assumed to be equal to the

properties at point 1. After point 2 is calculated, the left running characteristic

intersects the shock and a shock point unit process is performed. Point 2 is then

calculated again with the new values at point 3. This process is repeated until the

properties at points 2 and 3 change less than some prescribed error tolerance.
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Figure 5.5: Initialization of the post-oblique shock region.

Similar to the inflow region, resolution is controlled by specifying the number

of points along the initial value line created between points 2 and 3. It is also

important to note that the marching algorithm for the post-oblique shock region is

different than the one used in the post-detonation and inflow regions. In Fig. 5.5, an

additional point is created along the left running characteristics that intersect the

shock. This is done to increase resolution and this marching method is commonly

seen in solving external hypersonic flowfields [75].

Lastly, the lookup tables for the post-oblique shock region are generated along

the oblique shock. Once a point on the oblique shock is created, the lookup tables

are updated with the values of ψ, P0, and ρ0 at the point.

5.2 Averaging Ahead of the Detonation

Performing the CJ detonation calculation requires that the pressure and tem-

perature ahead of the wave are known. The flow angle is also required to determine

the inclination of the detonation wave. Lastly, the flow velocity is required so a
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reference frame velocity may be chosen that ensures the flowfield is steady. Since

the current model shown in Fig. 3.2 assumes a planar wave, averaged values are

used to represent the varying conditions ahead of the detonation wave.

θ

detonation 

wave

inflow region

injection plane

P, T

D

slip line

Figure 5.6: Illustration of the inflow region.

The method of averaging chosen in this work is an extension of a type of

averaging known as flux averaging or mixed out averaging [80]. This is done to

ensure that mass, momentum, and energy are conserved across the detonation wave.

In front of the detonation wave shown in Fig. 5.6, there exist gradients of velocity,

flow angle, pressure, and temperature. The planar detonation assumption along

with determining the detonation inclination and reference frame velocity require

averaged values of u, v, P , and ρ. Across the wave, there are five fluxes going into

the wave that should be conserved. These are the mass, x-momentum, y-momentum,

energy, and entropy fluxes. Since there are only four averaged variables to represent

the state, only four of the fluxes can be satisfied exactly. In flux averaging, the

mass, momentum, and energy fluxes are satisfied and the entropy of the averaged

flow is increased over its actual value. Physically, flux averaging is the equivalent of

sending a nonuniform flow down a long friction-less tube until the flow has become

uniform. The increase in entropy associated with this process may be thought of as
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the entropy of mixing.

To calculate the flux averaged values, points along the detonation wave are

interpolated to provide profiles of u, v, P , and ρ that can be integrated. The four

fluxes are then defined as

M = ρ(unx + vny) (5.1)

Px = ρ(u2nx + uvny) + pnx (5.2)

Py = ρ(uvnx + v2ny) + pny (5.3)

H =

[
ρ

(
e+

V 2

2

)
+ p

]
(unx + vny) (5.4)

which represent the mass, x-momentum, y-momentum, and energy fluxes, respec-

tively. The averages of these fluxes are given by integrating along the detonation

and dividing by the area ahead of the detonation wave. These averages are defined

as

M =
1

A

∫
MdA (5.5)

Px =
1

A

∫
PxdA (5.6)

Py =
1

A

∫
PydA (5.7)

H =
1

A

∫
HdA. (5.8)

There are now four unknowns, u, v, P , and ρ in four equations, Eqs. 5.1, 5.2, 5.3,

and 5.4. A nonlinear equation solver may now be used to determine the averages

of the primitive variables that will exactly recover the mass, momentum and energy

fluxes. Unfortunately, there is an entropy increase associated with this type of aver-

aging but any averaging method loses some information in the process. An analysis
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of the entropy increase due to the flux averaging shows that it is approximately

0.5% of the entropy increase due to the detonation wave and approximately 7.5% of

the entropy increase due to the injection process. Therefore, the increase in entropy

due to flux averaging does not significantly effect the overall entropy generation in

an RDE.

With P and ρ known, a CJ detonation calculation is performed. The detona-

tion inclination is given by θ = tan−1(v/u). Note that the detonation inclination

determines the line along which points are interpolated, therefore, an iterative pro-

cess is required to find the detonation inclination that matches the angle of the

line points are interpolated on. Lastly, the average velocity ahead of the wave,

V =
√
u2 + v2, should be equal to the detonation velocity, D, if the steady-state

approximation is to hold. This process is explained in the next section.

5.3 Counter-flow and Reference Frame Velocity

In the laboratory frame of reference, the reactants ahead of the detonation

wave have a non-zero component of velocity in the azimuthal direction due to ex-

pansion waves generated by the previous detonation. This velocity component is

defined as the counter-flow since it works to decrease the observed detonation speed

in the laboratory frame. Note that this is not to be confused with the backflow

which is defined as the flow of detonation products into the injection system caused

by the high pressures generated by the passing detonation wave. The MOC model

developed here is able to handle counter-flow encountered by the detonation with
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respect to the average properties ahead of the detonation.
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Figure 5.7: A zoomed in view of the flow ahead of a detonation in an RDE in the
wave-fixed reference frame.

Figure 5.7 gives a zoomed in view of the flow ahead of the detonation in

the wave-fixed reference frame. A streamline is shown that starts at the injection

plane and ends at a point just before the detonation wave. At the injection plane,

there is a vertical component of the velocity, vinj, determined by the inflow boundary

condition previously described. The horizontal component of the velocity, ulab, is the

velocity of the injection plane with respect to an observer situated on the detonation

wave. As a particle travels along this streamline, expansion waves from the previous

detonation accelerate the particle in the both the axial and azimuthal directions.

By the time the particle reaches the detonation wave, it must have a total velocity

equal to the detonation velocity, D, to satisfy the steady-state requirement of the

model being developed. The value of the counter-flow is equal to udet − ulab and

is the horizontal component of the velocity ahead of the detonation wave in the

laboratory frame that effectively decreases the observed detonation velocity.

It is important to note that since this model assumes a planar detonation wave,

the streamlines ahead of the detonation wave are mass averaged to get the flow
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Figure 5.8: Convergence of the thrust
as the MOC solution is iterated on (h
= 17.7 cm, l = 43.98 cm, w = 1 cm,
A1/A3 = 0.3, P0 = 10 atm, and T0 =
300 K).

Figure 5.9: Convergence of the deto-
nation height as the MOC solution is
iterated on (h = 17.7 cm, l = 43.98
cm, w = 1 cm, A1/A3 = 0.3, P0 = 10
atm, and T0 = 300 K).

velocity, flow angle, pressure, and temperature ahead of the wave. This information

is used to perform a CJ detonation calculation to determine the detonation velocity,

D. The value of ulab is adjusted so that u2det + v2det = D2. The process of adjusting

ulab to get the correct steady-state solution is given in the next section.

5.4 Solution Procedure

The following procedure uses the previously developed tools to generate the

MOC solution shown in Fig. 5.1:

1. The first step is to provide initial guesses for the pressure and temperature

ahead of the detonation wave, the detonation inclination angle, and the deto-

nation height. A first guess for the laboratory reference frame is to assume no

counter-flow (i.e., ulab = D cos(θ)). The conditions ahead of the oblique shock

wave are assumed constant and equal to the conditions at i1 in Fig. 3.2. The
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properties at this state are found by assuming an isentropic expansion of the

detonation products.

2. Calculate the detonation-oblique shock interaction and begin marching out

the post-oblique shock, post-detonation, and inflow regions until the stopping

condition is met.

3. Interpolate for the pressure, temperature, and flow angle ahead of the detona-

tion wave. Where the detonation intersects the slip line is the new detonation

height. This may be seen in Fig. 5.1 where the dashed line in the inflow region

intersects the boundary between the inflow and post-detonation regions. The

intersection point on the post-detonation side is used for the condition at i1

to perform the detonation-oblique shock calculation. Note that future shock

point unit processes will interpolate for conditions ahead of the oblique shock

using data from the previous solution. The reference frame velocity, ulab, is

also adjusted so the averaged velocity ahead of the detonation is equal to the

detonation velocity given by a CJ solver. Note this also affects the flow angle

in front of the detonation.

4. Repeat steps 2 and 3 until the solution converges. This occurs when changes

in the pressure, temperature, flow angle, detonation height, and laboratory

frame velocity do not change between solutions.

Figures 5.8 and 5.9 show the convergence history of the thrust and detonation

height as steps 2 and 3 are repeated. After approximately 5 to 6 iterations, the

solution has converged. This was found to be the case for most cases tested.
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Figure 5.10: Temperature contours of an MOC solution (h = 17.7 cm, l = 43.98
cm, w = 1 cm, A1/A3 = 0.3, P0 = 10 atm, and T0 = 300 K).

Putting everything together, a contour plot of a MOC solution for the case

where h = 17.7 cm, l = 43.98 cm, w = 1 cm, A1/A3 = 0.3, P0 = 10 atm, and T0 = 300

K for stoichiometric hydrogen-air is given in Fig. 5.10. Qualitatively, this compares

very well with the CFD solution in Chapter 2 (Fig. 2.12). The advantage of the

MOC method is that the MOC solution took less than 30 seconds on a desktop

computer whereas the CFD solution took several hours on a supercomputer. A

quantitative comparison of the MOC solution to the CFD solution is given in the

next chapter.

Another advantage of the MOC solution over other reduced order models are

computed two-dimensional profiles. For example, the MOC solution is capable of

calculating inflow and outflow profiles to determine the variation in flow variables

such as velocity or pressure. Figure 5.11 shows the axial velocity profile on the
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Figure 5.11: Inflow velocity profile (h
= 17.7 cm, l = 43.98 cm, w = 1 cm,
A1/A3 = 0.3, P0 = 10 atm, and T0 =
300 K).

Figure 5.12: Outflow pressure profile
(h = 17.7 cm, l = 43.98 cm, w = 1
cm, A1/A3 = 0.3, P0 = 10 atm, and
T0 = 300 K).

inflow plane and Fig. 5.12 shows the pressure profile at the exit of the RDE. Unlike

one-dimensional models, the MOC model is able to calculate these profiles.

5.5 Multi-Wave Solutions

Lastly, the MOC model is able to handle multiple waves. This is accomplished

by dividing the horizontal length of the domain by the number of waves. The MOC

solution is marched out on this smaller domain until a converged solution is found.

This solution is then repeated for the number of specified waves to give the final

solution. An example of a two wave solution with the characteristic mesh shown

behind one of the detonations is shown in Fig. 5.13. Figure 5.14 shows a three wave

solution.
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Figure 5.13: Temperature contours for a two wave solution (h = 17.7 cm, l = 43.98
cm, w = 1 cm, A1/A3 = 0.3, P0 = 10 atm, and T0 = 300 K).

Figure 5.14: Temperature contours for a three wave solution (h = 17.7 cm, l = 43.98
cm, w = 1 cm, A1/A3 = 0.3, P0 = 10 atm, and T0 = 300 K).
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Chapter 6: Analysis of the Reduced Order Model

6.1 Comparison to CFD Simulations

The steady state, MOC model developed here is compared to conventional,

unsteady CFD simulations that have reached a quasi-steady state solution. Results

from Schwer and Kailasanath [15] are reproduced here for comparison. The CFD

model of Schwer and Kailasanath solves the unsteady, two-dimensional Euler equa-

tions. Chemical reactions are modeled using a single step reaction mechanism along

with an induction time parameter model. The solver uses a flux corrected transport

algorithm that is commonly used for high-speed reacting flows. It is important to

note that since this simulation uses an Euler solver, the deflagration wave is a re-

sult of numerical viscosity. Schwer and Kailasanath found that in their simulations,

the amount of reactants consumed in the deflagration was approximately 10% [15].

Some experiments have found that up to 20% of reactants may be burned in the

deflagration wave [2]. The CFD model is considered to provide a reasonable esti-

mate of the amount of reactants that go through the deflagration instead of the

detonation in a premixed RDE.

The MOC solutions presented here use the 2-γ model in [15]. The parameters

for this model are γ1 = 1.40275, M̄1 = 20.9114 gm/mol, γ2 = 1.24259, M̄2 = 23.9079
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gm/mol, and q = 3.48 MJ/kg. The pre-detonation properties, γ1 and M̄1, are used

in the inflow region. The post-detonation properties, γ2 and M̄2, are used in the

post-detonation and post-oblique shock regions.

Temperature contours in an RDE flowfield are shown in Figs. 5.10, 5.13,

and 5.14. The characteristic mesh behind the detonation and oblique shock is also

shown. The right boundary is periodic with the rest of the solution continuing on

the left side. Qualitatively, this solution looks similar to CFD simulations with

the exception of the deflagration wave and Kelvin-Helmholtz instability. Quanti-

tative results comparing various properties for different area ratios are shown in

Figs. 6.1, 6.2, 6.3, and 6.4. The specific impulse is calculated as

Isp =
F

g0ṁf

(6.1)

where the thrust is given by

F =

∫
exit

[
ρv2 + (P − Pexit)

]
dA. (6.2)

Integration occurs along the top of the RDE exit and the back pressure, Pexit, is

assumed to be at 1 atmosphere. The fuel flow rate is given by integrating

ṁf =

∫
in

ρfvdA (6.3)

along the bottom wall where inflow is occurring. These definitions are used in order

to match the numerical simulations given in [15].

The model predictions closely match the CFD solution, but it predicts slightly

higher performance and fuel flow rates. The model does not match the height of

the detonation wave in the axial direction. The higher performance predictions and
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Figure 6.1: Isp vs. A1/A3. Figure 6.2: F vs. A1/A3.

Figure 6.3: ṁf vs. A1/A3. Figure 6.4: h vs. A1/A3.

higher detonation heights are most likely due to the absence of a deflagration wave in

the model. Instead of reactants being consumed in a low pressure burning process, all

of the reactants in the MOC model are burned through a more thermodynamically

efficient detonative process.

Solutions for A1/A3 = 0.1 and 0.5 are shown in Figs. 6.5 and 6.6. The solutions

appear qualitatively similar to those of Schwer and Kailasanath [15]. The 0.5 area

ratio case starts the inflow process further behind the detonation than the 0.1 case

for both the MOC model and the CFD simulations.

Results examining the effect of the height of the RDE annulus on specific
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Figure 6.5: Temperature contours for A1/A3 = 0.1.

Figure 6.6: Temperature contours for A1/A3 = 0.5.

63



Figure 6.7: Effect of RDE annulus height on specific impulse for l = 43.98 cm, w =
1 cm, A1/A3 = 0.2, and T0 = 300 K.

impulse [15] are shown in Fig. 6.7 for two values of the plenum stagnation pressure.

The MOC model predicts that the RDE height has very little effect on performance,

regardless of feed pressure. For the 10 atm case, the CFD and MOC model match

fairly well. For the 4 atm case, however, the RDE height has an effect on performance

that the MOC model does not predict. This difference is due to the boundary

conditions at the exit of the RDE as well as limitations of the MOC model.

6.2 Limitations of MOC Modeling

The results from CFD simulations presented here use a mixed supersonic,

subsonic boundary condition [46]. The MOC model does not have a boundary

condition at the exit. Instead, the solution is marched out until it goes past the

exit as shown in Fig. 5.1. Interpolation is then used to get the values at the exit

boundary. For cases where the flow is supersonic in the vertical direction, there is

generally no difference between the MOC and CFD solutions since no information
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is required from beyond the exit to find the exit properties.

If all or part of the flow is subsonic in the vertical direction, information from

beyond the RDE exit is required. In the CFD simulation, this is provided by the

boundary condition in the form of a specified back pressure. The MOC model

provides this information by using a portion of the solution that has been marched

out past the exit. In effect, the MOC model is assuming that the RDE is larger than

it actually is and ignoring any sort of geometry change that may occur at the exit.

Figure 6.8 compares the vertical component of the exit Mach number for different

RDE annulus heights.

Only the P0 = 4 atm cases are shown, since the P0 = 10 atm cases were nearly

identical when comparing exit Mach number. For the 8.85 cm annulus height case,

a portion of the exit flow is subsonic in the vertical direction. In the 26.55 cm case,

all of the exit flow is supersonic in the vertical direction. The increase in annulus

height gives the flow sufficient space to accelerate and turn, so that the vertical

component of the exit Mach number is supersonic everywhere. This still does not

fully describe why the P0 = 4 atm case is more sensitive to annulus height than the

P0 = 10 atm case, since both cases have nearly identical exit Mach number profiles

that depend almost entirely on annulus height. This leads to another issue with the

boundary conditions, the specified back pressure.

The MOC solution ignores any imposed back pressure due to the hyperbolic

nature of the method. The CFD exit boundary condition can and does impose a

back pressure [46]. If the exit flow is supersonic in the vertical direction, but the

pressure is less than the specified back pressure, the flow is overexpanded and has to
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Figure 6.8: Vertical component of
Mach number at the RDE exit for l
= 43.98 cm, w = 1 cm, A1/A3 = 0.2,
P0 = 4 atm, and T0 = 300 K.

Figure 6.9: Exit pressure profiles for l
= 43.98 cm, w = 1 cm, h = 8.85 cm,
A1/A3 = 0.2, and T0 = 300 K.

adjust so the pressures are matched. This adjustment may occur outside of the RDE

annulus in the form of oblique shock waves for flows that are slightly overexpanded,

or the shock waves may occur inside the annulus for highly overexpanded flows. If

the adjustment occurs outside the annulus, the MOC and CFD solutions are the

same. If the adjustment has to occur within the annulus, the MOC model is unable

to adjust the flow and is effectively assuming a back pressure of zero so that the

flow is always underexpanded.

The exit pressure profiles for the P0 = 4 atm and P0 = 10 atm cases are exam-

ined in Fig. 6.9. For P0 = 4 atm, a majority of the flow is overexpanded, whereas

for P0 = 10 atm, nearly all of the flow is underexpanded. The fact that the flow is

highly overexpanded for P0 = 4 atm, in addition to there being a subsonic vertical

component of the exit Mach number, is the most likely reason for the differences

between the CFD and MOC solutions for low plenum feed pressures with short

annulus heights.
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6.3 Error Analysis
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Figure 6.10: Control volume for the inflow region.

Errors are analyzed in two different ways. First, a control volume analysis of

the inflow, post-detonation, and post-oblique shock regions is performed. Conser-

vation of mass, momentum, and energy within these control volumes are examined

on the basis of the number of starting characteristics along the initial value line in

these regions. Second, the value of performance parameters such as specific impulse

and thrust, are examined based on the resolution in all three regions. All of the

following values are for the geometry and conditions used to generate Fig. 5.10.

The integral form of the Euler equations for steady flow are

∫∫
S

ρV · dS = 0 (6.4)

∫∫
S

(ρV · dS)V +

∫∫
S

pdS = 0 (6.5)

∫∫
S

ρ

(
e+

V 2

2

)
V · dS+

∫∫
S

pV · dS = 0. (6.6)
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For the inflow region shown in Fig. 6.10, these equations become

−
∫
inj

ρvdx+

∫
det

ρ(unx + vny)ds = 0 (6.7)

−
∫
inj

ρuvdx+

∫
det

[ρ(u2nx + uvny) + pnx]ds−
∫
slip

pdy = 0 (6.8)

−
∫
inj

(ρv2 + p)dx+

∫
det

[ρ(uvnx + v2ny) + pny]ds+

∫
slip

pdx = 0 (6.9)

−
∫
inj

[
ρv

(
e+

V 2

2

)
+ pv

]
dx+

∫
det

[
ρ

(
e+

V 2

2

)
+ p

]
(unx + vny)ds = 0. (6.10)

Similar equations can be generated for the post-detonation and post-oblique shock

regions as well. Table 6.1 shows the % error in the mass, momentum, and energy

fluxes into and out of the control volume. Note that as the resolution increases, the

% error for the mass, momentum, and energy into and out of the control volume

decreases. The inflow resolution was varied as the resolution in the post-detonation

region was held constant with 20 starting characteristics from the top expansion fan

and 10 starting characteristics from the bottom expansion fan. The post-oblique

shock region was held with a constant resolution of 2 starting characteristics on the

initial value line.

Table 6.1: Inflow region resolution study.

IVL resolution Mass error x-mom. error y-mom. error Energy error

5 points 0.835% 0.843% 0.259% 0.835%

10 points 0.377% 0.380% 0.300% 0.377%

20 points 0.128% 0.130% 0.0274% 0.128%

40 points 0.0110% 0.00549% 0.00808% 0.0110%
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Figure 6.11: Control volume for the post-detonation region.

Figure 6.11 shows the control volume for the post-detonation region. Table 6.2

shows how the resolution in the post-detonation region affects conservation errors

in that region. Note that the initial value line resolutions are set to 5 points in the

inflow region and 2 points in the post-oblique shock region.

Table 6.2: Post-detonation region resolution study.

IVL res. mass err. x-mom. err. y-mom. err. energy err. inflow region
y-mom. err.

top: 20 0.0932% 0.0939% 0.0991% 0.0935% 0.259%
bottom: 10

top: 40 0.0817% 0.0668% 0.0136% 0.0819% 0.0954%
bottom: 20

top: 80 0.00185% 0.00702% 0.0119% 0.00336% 0.0467%
bottom: 40

top: 160 0.0539% 0.0443% 0.00344% 0.04988% 0.000368%
bottom: 80

Examining Table 6.2, as the resolution in increased, conservation errors de-

crease as expected until the last case. For the last case, the resolution in the post-
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detonation region in very high while the resolution in the inflow and post-oblique

shock regions is very low. For very high resolution cases, the resolution in the other

regions must not be too low or errors along borders of the regions will dominate.

Also shown in Table 6.2 is the error in the y-momentum in the inflow region as

resolution is increased in the post-detonation region but held constant in the in-

flow region. Note that the errors in the inflow region decrease due to the increased

resolution along the slip line between the inflow and post-detonation regions.

The odd behavior for the last case in Table 6.2 is examined by redoing the

resolution study but increasing the resolution in the post-oblique shock region to 4

starting characteristics and increasing the resolution in the inflow region to 10 start-

ing characteristics. The results of this study are shown in Table 6.3 and show that

as the resolution is increased, errors generally decrease except for the y-momentum

for the last case which is approximately the same as the previous case. Table 6.2

and 6.3 show that the errors present in each region can influence each other and

that the resolution in each region should not vary greatly between different regions.
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Figure 6.12: Control volume for the post-oblique shock region.

Lastly, Fig. 6.12 shows the control volume for the post-oblique shock region.

Table 6.4 shows the change in conservation errors as the resolution is increased. The
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Table 6.3: Post-detonation region resolution study for increased resolution in the
inflow and post-oblique shock regions.

IVL res. mass err. x-mom. err. y-mom. err. energy err.

top: 20 0.130% 0.0655% 0.156% 0.167%
bottom: 10

top: 40 0.0433% 0.0417% 0.0272% 0.0433%
bottom: 20

top: 80 0.0330% 0.0304% 0.00547% 0.0344%
bottom: 40

top: 160 0.00176% 0.000691% 0.00586% 0.00192%
bottom: 80

resolution in both the inflow region and post-detonation region are held constant at

the lowest resolutions in Tables 6.1 and 6.2. The errors decrease as the resolution

is increased until the last case is reached which shows that the errors have stayed

approximately constant between 8 and 16 starting characteristics. At this point,

increased accuracy requires increasing the resolution in the post-detonation and

inflow regions as well.

Table 6.4: Post-oblique region resolution study.

IVL resolution Mass error x-mom. error y-mom. error Energy error

2 points 0.277% 0.308% 0.177% 0.277%

4 points 0.0434% 0.0194% 0.0630% 0.0434%

8 points 0.0537% 0.0378% 0.0627% 0.0537%

16 points 0.0546% 0.0384% 0.0633% 0.0546%

In addition to examining conservation errors, a global resolution study is con-

ducted to determine the dependence of calculated performance parameters on reso-
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Figure 6.13: Specific impulse vs. res-
olution.

Figure 6.14: Thrust vs. resolution

lution. Four cases are studied where each case uses the resolutions in Tables 6.1, 6.2,

and 6.4. For example, case 3 has a resolution of 20 points in the inflow region, 80

and 40 points in the post-detonation region for the top and bottom expansion fans,

and 8 points in the post-oblique shock region. The results of this study are shown in

Figs. 6.13 and 6.14. As the resolution is increased, the values of the specific impulse

and thrust converge to an answer that changes little as the resolution is increased.
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Chapter 7: Parametric Analysis of RDE Performance

The previously developed model is used to generate operation and performance

data for a large parametric study. The goal of this study is identify and examine

relationships found using dimensional analysis. This analysis is used to generate

scaling laws for RDEs.

The ideal RDE model developed previously has many parameters that may

be adjusted and examined. For a constant γ, constant molecular weight detonation

model, these parameters are:

• w, width

• c, circumference

• Ainj, injector area

• h, height

• P0, plenum pressure

• ρ0, plenum density

• q, heat release

• cp, specific heat capacity at constant pressure
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• cv, specific heat capacity at constant volume

• Pb, back pressure

The following sections will examine these parameters to find which are impor-

tant depending on the metric of interest and which can be ignored. A dimensional

analysis is also performed to reduce the number of cases and help shed light on the

important relationships when determining RDE performance. Simplified relation-

ships based on the dimensional analysis and parametric study are created to aid in

future RDE design efforts.

7.1 Analysis of RDE Height

This section deals with the height of the RDE annulus. As seen previously in

Fig. 6.7, the annulus height was shown to have no effect on specific impulse. The

effect of height is examined in greater detail in Figs. 7.1, 7.2, 7.3, and 7.4 (diameter:

15 cm, width: 1 cm, At/Ac: 0.3, γ: 1.3, MW : 22.0 g/mol, q: 3.5 MJ/kg, Pb: 1 atm,

T0: 300 K). All of the figures show that the annulus height has little to no effect on

the thrust, mass flow rate, pre-detonation pressure, or pre-detonation temperature.

This is shown at plenum pressures of 10, 15, and 20 atm. Figure 7.4 also shows

that neither annulus height or plenum pressure has an effect on pre-detonation

temperature.

The equation to calculate the exit thrust is given by

F =

∫
exit

[ρv2 + (P − Pb)]dA. (7.1)
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Figure 7.1: Thrust vs. annulus
height.

Figure 7.2: Mass flow rate vs. annulus
height.

Figure 7.3: Pre-detonation pressure
vs. annulus height.

Figure 7.4: Pre-detonation tempera-
ture vs annulus height.

Figures 7.5 and 7.6 shows the exit profiles for the ρv2 and (P −Pb) terms at annulus

heights of 10, 15, and 20 cm for a plenum pressure of 10 atm. As the height of

the annulus increases, the profiles for both ρv2 and (P − Pb) see a decrease in the

maximum amplitude and a broadening of the profiles. Additionally, the integrated

value of ρv2 is increasing as the height increases and the integrated value of (P −Pb)

decreases so that the sum is constant and equal to the thrust.
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Figure 7.5: ρv2 exit profiles for vari-
ous annulus heights.

Figure 7.6: (P − Pb) exit profiles for
various annulus heights.

7.2 Analysis of RDE Diameter and Channel Width

The effect of the RDE diameter on thrust, mass flow rate, pre-detonation

pressure, and pre-detonation temperature is shown in Figs. 7.7, 7.8, 7.9, and 7.10,

respectively, for an RDE with a 1 cm wide annular channel. It can be seen that the

thrust and mass flow rate scale linearly with diameter. The pre-detonation pressure

and temperature are not affected by the RDE diameter.

The effects of channel width are similar to that of the RDE diameter. This

may be seen in Figs. 7.11, 7.12, 7.13, and 7.14 for an RDE with a constant diameter

of 15 cm. Note that as either the diameter or channel width is increased, the channel

area is also increasing. By scaling the thrust and mass flow rate with channel area

instead of diameter or width, the results from the diameter and width studies lie on

the same line. The cases where the plenum pressure is held at 10 atm are shown

in Figs. 7.15 and 7.16. These figures show that the thrust and mass flow rate scale

linearly with the channel area. The dimensional analysis given later may now only
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Figure 7.7: Thrust vs. annulus diam-
eter.

Figure 7.8: Mass flow rate vs. annulus
diameter.

Figure 7.9: Pre-detonation pressure
vs. annulus diameter.

Figure 7.10: Pre-detonation tempera-
ture vs annulus diameter.

take into account the channel area and not the diameter and width allowing the

analysis to be simplified.

Use of the channel area instead of the diameter or width is only valid when

examining the thrust, mass flow rate, pre-detonation pressure, and pre-detonation

temperature. The thrust and mass flow rate scale linearly with channel area and the

pre-detonation pressure and pre-detonation temperature are affected by the channel

area through the injector to channel area ratio which is shown in a later section.

However; when examining the axial detonation height, the diameter becomes an

important parameter. Figures 7.17 and 7.18 show the effect of RDE diameter and
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Figure 7.11: Thrust vs. annulus
width.

Figure 7.12: Mass flow rate vs. annu-
lus width.

Figure 7.13: Pre-detonation pressure
vs. annulus width.

Figure 7.14: Pre-detonation tempera-
ture vs annulus width.

width on the axial detonation height. The detonation height scales linearly with

the diameter but the channel width has no effect. It is interesting to note that even

though the detonation height may be changing, the pre-detonation pressure and

pre-detonation temperature (which are averaged quantities) remain constant.

7.3 Dimensional Analysis

Using the channel area instead of the width and diameter as well as ignoring

the annulus height, reduces the number of parameters from 10 to 8. Since there
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Figure 7.15: Thrust vs. channel area.
Figure 7.16: Mass flow rate vs. chan-
nel area.

Figure 7.17: Axial detonation height
vs. RDE diameter.

Figure 7.18: Axial detonation height
vs. channel width.

are four fundamental dimensions (mass, length, time, and temperature), dimen-

sional analysis may further reduce this number by 4. This leaves 4 non-dimensional

parameters to explore instead of 8. The non-dimensional groupings are:

Π1 = AR =
Ainj

Achannel

(7.2)

Π2 = Q =
q

P0ν0
(7.3)

Π3 =
Pb

P0

(7.4)

Π3 = γ. (7.5)
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They represent the injector-to-channel area ratio, the non-dimensional heat release,

the pressure ratio across the RDE, and the ratio of specific heats. Note that the

pressure ratio across the RDE, Π3 = Pb/P0, only affects the thrust calculation. This

is due to the inability of exit conditions to affect the flow within the RDE. This

limitation is discussed in a previous chapter.

7.4 Analysis of Thrust

The thrust is non-dimensionalized by dividing by the plenum pressure multi-

plied by the channel area:

Π0 =
F

P0Ac

. (7.6)

The functional relationship for the non-dimensional thrust may now be written as

F

P0Ac

= f

(
At

Ac

,
q

P0ν0
,
Pb

P0

, γ

)
. (7.7)

The variation of the non-dimensional thrust with the area ratio while holding the

non-dimensional heat release constant is shown in Fig. 7.19. In Fig. 7.19, Pb/P0 =

0.1 and γ = 1.3. The RDE diameter and height are both 15 cm. There is an ap-

proximately linear relationship between the area ratio and non-dimensional thrust.

As the non-dimensional heat release is increased, the non-dimensional thrust also

increases. This may also be seen in Fig. 7.20 which shows the relationship between

the non-dimensional thrust and non-dimensional heat release. The non-dimensional

heat release is varied by changing the plenum temperature, heat release, and molec-

ular weight. The cases are shown in Table 7.1.

80



Figure 7.19: Non-dimensional thrust
vs. area ratio.

Figure 7.20: Non-dimensional thrust
vs. non-dimensional heat release.

Table 7.1: Cases for non-dimensional heat release study.

Case T0, K q, MJ/kg MW g/mol q/(P0ν0)

1 300.0 3.0 20.0 24.1

2 300.0 3.0 30.0 36.1

3 300.0 4.0 20.0 32.1

4 300.0 4.0 30.0 48.1

5 600.0 3.0 20.0 12.0

6 600.0 3.0 30.0 18.1

7 600.0 4.0 20.0 16.0

8 600.0 4.0 30.0 24.1

The effect of the ratio of specific heats on non-dimensional thrust is shown in

Figs. 7.21 and 7.22. For these figures, Pb/P0=0.1 and Q = 25. As the ratio of specific

heats in increased, the non-dimensional thrust increases. Lastly, the effect of the

pressure ratio, Pb/P0, across the RDE is examined in Fig. 7.23. As the pressure ratio

decreases, the non-dimensional thrust increases due to the decreased back pressure.
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Figure 7.21: Non-dimensional thrust
vs. area ratio with various values of
γ.

Figure 7.22: Non-dimensional thrust
vs. the ratio of specific heats.

Figure 7.23: Non-dimensional thrust vs. the pressure ratio, Pb/P0.

7.5 Analysis of Pre-Detonation Conditions

The averaged pressure and temperature in front of the detonation wave are

required to estimate detonation wave speeds and detonability. The pre-detonation

conditions are non-dimensionalized by dividing by the plenum conditions. This leads

82



to the following relationships for the non-dimensional pressure and temperature:

Pdet

P0

= f

(
At

Ac

,
q

P0ν0
, γ

)
(7.8)

Tdet
T0

= f

(
At

Ac

,
q

P0ν0
, γ

)
. (7.9)

Starting with the pre-detonation pressure, Figs. 7.24 and 7.25 show the in-

fluence of the area ratio, non-dimensional heat release, and specific heat capacity

ratio on the pre-detonation pressure. The area ratio has the largest influence on the

pre-detonation pressure. The non-dimensional heat release parameter has very little

effect and may be ignored when developing a relationship to estimate the pressure.

The ratio of specific heats has a noticeable effect but it is not as important as the

area ratio effect.

Figure 7.24: Non-dimensional pre-
detonation pressure vs. area ratio
with various values of Q.

Figure 7.25: Non-dimensional pre-
detonation pressure vs. area ratio
with various values of γ.

The pre-detonation temperature behaves similarly to the pre-detonation pres-

sure. Figure 7.26 shows how the pre-detonation temperature changes with the area

ratio and the non-dimensional heat release. The main effect is with the area ratio.

The non-dimensional heat release has very little effect. Figure 7.27 examines the ef-
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fect of area ratio and the ratio of specific heats. The ratio of specific heats has a very

noticeable effect that cannot be ignored when determining the pre-detonation tem-

perature. Lastly, it is important to note that the non-dimensional pre-detonation

temperature does not vary that much due to the area ratio. The largest changes are

due to the ratio of specific heats.

Figure 7.26: Non-dimensional pre-
detonation temperature vs. area ratio
with various values of Q.

Figure 7.27: Non-dimensional pre-
detonation temperature vs. area ratio
with various values of γ.

7.6 Analysis of Mass Flow Rate

The mass flow rate is non-dimensionalized as

Π0 =
ṁ√
P0ρ0At

. (7.10)

The functional relationship for the non-dimensional mass flow may now be written

as

ṁ√
P0ρ0At

= f

(
At

Ac

,
q

P0ν0
, γ

)
. (7.11)

The effect of the area ratio, non-dimensional heat release, and the ratio of specific

heats is shown in Figs. 7.28 and 7.29. The area ratio has the largest impact on the
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non-dimensional mass flow rate. The non-dimensional heat release also has a small

effect. The ratio of specific heats appears to have an effect that is more pronounced

at larger area ratios and decreases as the area ratio decreases.

Figure 7.28: Non-dimensional mass
flow rate vs. area ratio with various
values of Q.

Figure 7.29: Non-dimensional mass
flow rate vs. area ratio with various
values of γ.

It is sometimes useful to calculate the mass flow rate using the one-dimensional

mass flow equation

ṁ =
AtP0√
T0

√
γ

R
M1

(
1 +

γ − 1

2
M2

1

)−(γ+1)/(2(γ−1))

. (7.12)

If the flow is choked, this reduces to

ṁ =
AtP0√
T0

√
γ

R

(
γ + 1

2

)−(γ+1)/(2(γ−1))

. (7.13)

This is an easy way to calculate the mass flow rate. Unfortunately, the flow across

the injectors in an RDE may be blocked, unchoked, or choked. To simplify the mass

flow calculation, it is useful to define an effective injector area, A∗
t , which is the are

that would recover the correct mass flow rate in an RDE. It is now possible to define

a blockage ratio,

B = 1− A∗
t

At

, (7.14)
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which defines the fractional amount of the injector area that is blocked by the high

pressure of the detonation. This does not represent the actual area blocked. The

blockage ratio represents the fraction of the injector area to subtract in order for

a choked flow calculation to recover the correct mass flow through an RDE. The

blockage ratio is a simple to use and easy to understand concept that may be used

when estimating the mass flow rate through an RDE.

The functional relationship for the blockage ratio is

B = f

(
At

Ac

,
q

P0ν0
, γ

)
. (7.15)

The effect of the area ratio, non-dimensional heat release, and ratio of specific heats

is shown in Figs. 7.30 and 7.31. The blockage ratio follows similar trends that are

flipped from the non-dimensional mass flow rate.

Figure 7.30: Blockage ratio vs. area
ratio with various values of Q.

Figure 7.31: Blockage ratio vs. area
ratio with various values of γ.
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Chapter 8: Conclusions

8.1 Concluding Remarks

Current analyses of the RDE flowfield are done using unsteady numerical sim-

ulations in the laboratory frame. After several cycles, the solutions generally reach

a quasi-steady state. This is computationally expensive since the solution must be

run until an averaged solution is found. An additional drawback to traditional CFD

is the requirement to model the detonation wave. Generally, this requires the use

of a chemically reacting flow model with enough resolution to resolve the reaction

zone behind the detonation.

The method of characteristics allows for a quick, steady-state analysis of sta-

ble RDE operation. Additionally, a planar CJ approximation of the detonation

wave may be employed to remove the difficulty of modeling a detonation in two-

dimensions. Another simplification comes in the form of assuming the composition

is frozen on either side of the detonation wave. There are also drawbacks to this ap-

proach. First, implementation of the method of characteristics is complex and great

care must be taken to implement the boundary conditions and treat discontinuities

in the flowfield correctly. Another drawback is assuming a steady-state solution

even though detonation waves are an inherently unsteady phenomena. Regardless
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of these drawbacks, it has been shown that the MOC model is capable of providing

useful performance predictions on par with conventional Euler simulations and at

significantly less computational cost.

This approach to generating RDE flowfields was developed so that an engi-

neer may perform large-scale parametric studies without having to rely entirely on

simplified one-dimensional models or computationally expensive CFD simulations.

Unlike one-dimensional models, the MOC model is capable of modeling the curved

oblique shock wave, exit swirl, counter-flow, detonation inclination, and varying

pressure along the inflow boundary. While not as fast as a one-dimensional model,

the MOC model is still fast enough for large-scale parametric studies. Once a design

space has been found, high-fidelity numerical simulations may then be used to ex-

amine additional effects on the flowfield. There is also work being done to determine

if the MOC solution may be used to initialize a CFD simulation, which would de-

crease the amount of time spent in the starting transient phase. The work presented

here bridges the gap between very simple one-dimensional models and high-fidelity

CFD simulations and gives the researcher another tool for understanding RDE flow

processes.

8.2 Summary of Contributions

• Developed a novel method for modeling RDE flowfields that uses the method

of characteristics to calculate performance information at significantly reduced

computational costs compared to traditional numerical simulations.
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• Developed an analytical description of the detonation-oblique shock interac-

tion. This work was based on previously developed models for detonation-inert

gas interactions.

• Developed a new, first-of-its-kind boundary condition for the method of char-

acteristics to simulate mass injection.

• Extended the mass-entropy method to handle flows with large entropy gradi-

ents. This new method, called the mass-stagnation method, is also capable of

handling non-constant freestream conditions ahead of an oblique shock wave.

• Developed a new interpolation methodology based on the method of charac-

teristics to provide enhanced accuracy in low resolution regions of the charac-

teristic mesh.

• Showed that the new MOC method predicts performance to within several

percent of far more expensive CFD simulations.

• Explored the limitations of the MOC method as well as the effect of charac-

teristic mesh resolution.

• Conducted a large parametric study to determine which parameters play im-

portant roles in determining the thrust, mass flow rate, and averaged pre-

detonation conditions. The most important parameters were the injector-to-

channel area ratio and non-dimensional heat release parameter.

• Showed that the key dimensionless parameters governing an RDE’s perfor-

mance are the injector-to-channel area ratio, the non-dimensional heat release,
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the ratio of specific heats, and the pressure ratio between the plenum and back

pressures.

8.3 Future Work

Future work should focus on improving the reduced order model to handle

additional physics missing in the current model. These may be grouped into three

categories dealing with the boundary conditions, MOC formulations, and detonation

modeling. A list of future improvements with the reduced order model follows:

• Inflow boundary condition - 1) ability to handle backflow in to the injection

system and 2) ability to handle different injector geometries.

• Outflow boundary conditions - 1) ability to impose a specified back pressure

and 2) ability to handle a sudden contraction or throat.

• Nozzled RDEs - use the quasi-2D Euler equations with area change in the axial

direction to estimate the effect of area change through the annular combustor.

• Equilibrium and finite rate chemistry - use equilibrium MOC or finite rate

MOC to model the effects of equilibrium or finite rate chemistry on RDE

performance.

• Detonation modeling - ability to model the detonation to get the correct shape

and global velocity based on the gradients ahead of the detonation. This model

should also be able to correctly determine the post-detonation flow properties

and gradients as well so that averaging is no longer required.
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Appendix A: Unit Processes

The unit processes listed here are based on the predictor-corrector algorithms

given in [75]. The main difference is the use of the mass-stagnation method to

perform the streamline calculations in order to increase accuracy. Additionally,

in [75], the compatibility equations along a streamline are solved numerically. Since

the model developed here assumes a calorically perfect gas, these equations have a

closed form solution that is used in place of the numerical approximation. As shown

in section 4.1, Eqs. 4.8 and 4.9 may be replaced with the definition of the stagnation

pressure and stagnation density along a streamline.

Finite difference equations are only needed for the characteristic and compati-

bility equations along the Mach lines. The characteristic and compatibility equations

along the streamline are handled by the mass-stagnation method. For the predictor-

corrector algorithm described in [75], the finite difference form of the characteristic

and compatibility equations along the Mach lines are

∆y± = λ±∆x± (A.1)

Q±∆P± ±∆θ± = 0, (A.2)

respectively, where λ± is defined as

λ± = tan(θ ± µ) (A.3)
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and where Q± is defined as

Q± =

√
M2 − 1

ρV 2
. (A.4)

Equation A.1 is used to solve for the location of a point where the characteristics

intersect and Eq. A.2 is used to solve for the pressure and flow angle at that point.

Next, the mass integral is calculated through an iterative process using the trape-

zoidal rule described in section 4.2. With the value of the mass integral known,

the value of the stagnation pressure and stagnation density along the streamline

is known. This allows for the calculation of the density and velocity. More detail

about the actual implementation is given in the following sections.

A.1 Interior Point Unit Process

1

2

4

right-running 

characteristic 

left-running 

characteristic

streamline

Figure A.1: Illustration
of an interior point unit
process.

The interior point unit process is the most often

called unit process and provides the most basic illustra-

tion of the MOC algorithm used to simulate RDE flow-

fields. A detailed overview given here will apply to most

other unit processes required to generate a full RDE so-

lution. An illustration is shown in Fig. A.1. In Fig A.1,

a right-running characteristic emanating from point 1 is

intersecting a left-running characteristic emanating from

point 2 to create point 4. In order to solve for the state

and location of point 4, information from the streamline going through point 4 is

also required in addition to information from points 1 and 2.

92



Equation A.2 is the finite difference equation for the compatibility relation

along the characteristics. For the interior point unit process, it may be written as

Q+P4 + θ4 = T+ (A.5)

Q−P4 − θ4 = T− (A.6)

where

T+ = Q+P2 + θ2 (A.7)

T− = Q−P1 − θ1. (A.8)

For the predictor step, only information from points 1 and 2 are used to calculate

Q+ and Q−:

Q+ =

√
M2

2 − 1

ρ2V 2
2

(A.9)

Q− =

√
M2

1 − 1

ρ1V 2
1

. (A.10)

Solving this finite difference equation gives an estimate of the pressure and flow

angle at point 4. To estimate the location of point 4 for the predictor step, Eq. A.1

is written as

y4 − λ+x4 = y2 − λ+x2 (A.11)

y4 − λ−x4 = y1 − λ−x1 (A.12)

where λ+ and λ− are estimated only using information at points 2 and 1, respectively.

They are given by:

λ+ = tan (θ2 + µ2) (A.13)

λ− = tan (θ1 − µ1). (A.14)
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Once P4, θ4, x4, and y4 have been estimated, the mass-stagnation method is used

to get ρ4 and V4 through an iterative process. To start the iterative process, P04

and ρ04 are guessed to be the average values between points 1 and 2. Once the

stagnation values are known, the definitions given in Eqs. 4.14 and 4.15 are used to

calculate ρ4 and V4. Using θ4 and V4, u4 and v4 are calculated as

u4 = V4 cos(θ4) (A.15)

v4 = V4 sin(θ4). (A.16)

The next step is to calculate the value of the mass integral using the trapezoidal

rule (Eq. 4.21). It is possible to calculate ψ4 going from either point 1 or point 2

using

ψ4+ = ψ1 + (x1 − x4)

(
ρ1v1 + ρ4v4

2

)
− (y1 − y4)

(
ρ1u1 + ρ4u4

2

)
(A.17)

ψ4− = ψ2 + (x2 − x4)

(
ρ2v2 + ρ4v4

2

)
− (y2 − y4)

(
ρ2u2 + ρ4u4

2

)
. (A.18)

The current implementation calculates the mass integral both ways and takes the

average. Once ψ4 is known, it is used to linearly interpolate for P04 and ρ04 using

look-up tables defined at a boundary that relates the mass integral to the stagnation

pressure and stagnation density. The new values for the stagnation pressure and

stagnation density are used to calculate ρ4 and V4 and the process is repeated until

a convergence criteria is met. In this algorithm, the criteria is that the change in

stagnation pressure between iterations falls below a defined error tolerance.

After completion of the predictor step, the corrector step begins for either a

specified number of iterations or until a convergence criteria is met. The algorithm
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presented here performs the corrector step until an error tolerance is met. Since

there are now estimates as to the state and location of point 4; Q+, Q−, λ+, and

λ− are all calculated using the average property method described in [75]. The

average property method averages P , θ, V , and ρ along the characteristics. The

finite difference coefficients then become

Q+ =

√
M2

+ − 1

ρ+V 2
+

(A.19)

Q− =

√
M2

− − 1

ρ−V 2
−

(A.20)

λ+ = tan(θ+ + µ+) (A.21)

λ− = tan(θ− − µ−) (A.22)

where V+, θ+, V−, and θ− are averages between points 2 and 4 and 1 and 4, re-

spectively. The values for M+, µ+, M− and µ− are computed using the average

properties as well. New values of P4, θ4, x4, and y4 are now calculated using Q+,

Q−, λ+, and λ−. After this, the iterative mass-stagnation process is started using

the previously calculated values of P04 and ρ04 and proceeds as described above to

calculate new values of ρ4 and V4. With updated values at point 4, the corrector

step is repeated until the difference in P4 between iterations is below a specified

tolerance.

The pseudocode for the interior point unit process is given in A.1. It has

been broken up among several algorithms to illustrate the main steps used. The

algorithm gives an organized view of the method described above.
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Algorithm A.1 Interior point unit process

Require: ratio of specific heats, γ
Require: x, y, V , θ, ρ, P , and ψ for points 1 and 2
Require: look-up tables: ψ, P0, ρ0

Comment: perform predictor step
1: calculate a, M , µ, u, v, P0, and ρ0 for points 1 and 2
2: calculate finite difference coefficients ◃ algorithm A.2
3: calculate P4, θ4, x4, and y4 ◃ algorithm A.4
4: P04 = average(P01 , P02)
5: ρ04 = average(ρ01 , ρ02)
6: calculate ρ4, V4 using mass-stagnation method ◃ algorithm A.6

Comment: perform corrector step
7: while |error| > tolerance do
8: calculate averaged properties along Mach lines ◃ algorithm A.5
9: calculate finite difference coefficients ◃ algorithm A.3
10: calculate P4, θ4, x4, and y4 ◃ algorithm A.4
11: calculate ρ4, V4 using mass-stagnation method ◃ algorithm A.6
12: error = P4,old − P4

13: end while
14: return x4, y4, V4, θ4, ρ4, P4, and ψ4

Algorithm A.2 Calculate finite difference coefficients for predictor step

1: λ+ = tan (θ2 + µ2)

2: Q+ =

√
M2

2−1

ρ2V 2
2

3: T+ = Q+P2 + θ2
4: λ− = tan (θ1 − µ1)

5: Q− =

√
M2

1−1

ρ1V 2
1

6: T− = Q−P1 − θ1

Algorithm A.3 Calculate finite difference coefficients for corrector step

1: λ+ = tan(θ+ + µ+)

2: Q+ =

√
M2

+−1

ρ+V 2
+

3: T+ = Q+P2 + θ2
4: λ− = tan(θ− − µ−)

5: Q− =

√
M2

−−1

ρ−V 2
−

6: T− = Q−P1 − θ1

Algorithm A.4 Calculate P4, θ4, x4, and y4

1: P4 =
T++T−
Q++Q−

2: θ4 = P4Q− − T−
3: x4 =

y2−λ+x2−y1+λ−x1

λ−−λ+

4: y4 = y1 − λ−x1 + λ+x4
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Algorithm A.5 Average property method

1: P+ = average(P2, P4)
2: θ+ = average(θ2, θ4)
3: V+ = average(V2, V4)
4: ρ+ = average(ρ2, ρ4)
5: calculate a+, M+, µ+ using + values
6: P− = average(P1, P4)
7: θ− = average(θ1, θ4)
8: V− = average(V1, V4)
9: ρ− = average(ρ1, ρ4)
10: calculate a−, M−, µ− using − values

Algorithm A.6 Mass-stagnation method

1: while |error| > tolerance do
2: calculate M4 ◃ from Eq. 4.14
3: calculate ρ4 ◃ from Eq. 4.15
4: calculate V4, u4, v4
5: ψ4− = ψ1 + (x1 − x4)

(
ρ1v1+ρ4v4

2

)
− (y1 − y4)

(
ρ1u1+ρ4u4

2

)
6: ψ4+ = ψ2 + (x2 − x4)

(
ρ2v2+ρ4v4

2

)
− (y2 − y4)

(
ρ2u2+ρ4u4

2

)
7: ψ4 = average(ψ4+ , ψ4−)
8: P04 = interpolate(P0, ψ, ψ4)
9: ρ04 = interpolate(ρ0, ψ, ψ4)
10: error = P04,old − P04

11: end while
12: calculate ρ4 and V4 with new values of P04 and ρ04

A.2 Inflow Point Unit Process

1

3

inflow

injector exit plane

inflow region

Figure A.2: Illustration
of a inflow point unit pro-
cess.

The inflow point unit process does not exist in the

literature and had to be developed in order to model

mass injection into the RDE annulus. The analytical

equations that form the basis of this model are given in

section 3.3. The MOC boundary condition using these

equations is described in section 4.3. A more in depth description of how the inflow

unit process works is presented here.
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The inflow point unit process is similar to the oblique shock unit process de-

scribed in [75]. Instead of solving the oblique shock relations, the relations describing

a flow undergoing a sudden expansion are used. An illustration of the inflow unit

process is shown in Fig. ??. In this illustration, a right-running characteristic from

point 1 is hitting the mass injection boundary at point 3. The compatibility relation

along the characteristic is

√
M2 − 1

ρV 2
dp− − dθ− = 0. (A.23)

The equations describing the inflow process at point 3 are

ṁ =
AiP0√
T0

√
γ

R

(
1 +

γ − 1

2
M2

1

)−(γ+1)/(2(γ−1))

(A.24)

1

2
v23 +

γ

γ − 1

P3Ac

ṁ
v3 −

γ

γ − 1

P0

ρ0
= 0 (A.25)

P2 =
ṁ(v3 − v1)− P1Ai + P3Ac

Ac − Ai

(A.26)

u3 = uref (A.27)

θ = tan−1

(
v3
u3

)
. (A.28)

The solution procedure is to find the correct P3 and θ3 to satisfy both the compati-

bility relation and inflow equations simultaneously. The easiest way to accomplish

this is through the use of a nonlinear equation solver. Algorithm A.7 shows the

system to plug into a nonlinear equation solver that will then satisfy both the inflow

and compatibility relations for the inflow point unit process.
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Algorithm A.7 System for inflow point unit process

Require: guess for the pressure at point 3, P3

Require: fluid parameters, γ and R
Require: plenum properties, P0, T0, and ρ0
Require: reference frame velocity, uref
Require: x, y, V , θ, ρ, and P at point 1
Require: injector and channel areas, Ai and Ac

Comment: perform injector calculation
1: calculate v3, T3, and ṁ using Eqs. A.24, A.25, and A.26
2: ρ3 = P3/(RT3

3: V3 =
√
u2ref + v23

4: θ3 = tan−1(v3/uref )
Comment: compatibility relation using average property method

5: P− = average(P1, P3)
6: V− = average(V1, V3)
7: ρ− = average(ρ1, ρ3)
8: calculate a− and M− using averaged values

9: Q− =

√
M2

−−1

ρ−V 2
−

10: T− = Q−P1 − θ1
11: P4,new = T−+θ3

Q−
12: residual = P4 − P4,new

13: return residual
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[14] Piotr Wolański. Detonation engines. Journal of KONES, 18:515–521, 2011.

[15] Douglas A Schwer and Kailas Kailasanath. Numerical study of the effects of
engine size on rotating detonation engines. In 49th AIAA Aerospace Sciences
Meeting, AIAA Paper 2011-581, Jan. 2011.

[16] FA Bykovskii and VV Mitrofanov. Detonation combustion of a gas mixture in a
cylindrical chamber. Combustion, Explosion, and Shock Waves, 16(5):570–578,
1980.

[17] FA Bykovskii, AA Vasil’ev, EF Vedernikov, and VV Mitrofanov. Explosive
combustion of a gas mixture in radial annular chambers. Combustion, Explosion
and Shock Waves, 30(4):510–516, 1994.

[18] FA Bykovskii and EF Vedernikov. Continuous detonation combustion of an
annular gas-mixture layer. Combustion, explosion, and shock waves, 32(5):489–
491, 1996.

[19] FA Bykovskii, VV Mitrofanov, and EF Vedernikov. Continuous detonation
combustion of fuel-air mixtures. Combustion, Explosion and Shock Waves,
33(3):344–353, 1997.

[20] FA Bykovskii, SA Zhdan, and EF Vedernikov. Spin detonation of fuel-air mix-
tures in a cylindrical combustor. In Doklady Physics, volume 50, pages 56–58.
Springer, 2005.

[21] FA Bykovskii, SA Zhdan, and EF Vedernikov. Continuous spin detonation in
annular combustors. Combustion, Explosion and Shock Waves, 41(4):449–459,
2005.

[22] FA Bykovskii, SA Zhdan, and EF Vedernikov. Continuous spin detonation
of fuel-air mixtures. Combustion, Explosion and Shock Waves, 42(4):463–471,
2006.

[23] FA Bykovskii, SA Zhdan, and EF Vedernikov. Continuous spin detonation
of hydrogen-oxygen mixtures. 1. annular cylindrical combustors. Combustion,
Explosion, and Shock Waves, 44(2):150–162, 2008.

101



[24] FA Bykovskii, SA Zhdan, and EF Vedernikov. Continuous spin detonation of
hydrogen-oxygen mixtures. 2. combustor with an expanding annular channel.
Combustion, Explosion, and Shock Waves, 44(3):330–342, 2008.

[25] FA Bykovskii and EF Vedernikov. Continuous spin detonation of hydrogen-
oxygen mixtures. 3. methods of measuring flow parameters and flow structure in
combustors of different geometries. Combustion, Explosion, and Shock Waves,
44(4):451–460, 2008.

[26] FA Bykovskii, SA Zhdan, and EF Vedernikov. Realization and modeling of
continuous spin detonation of a hydrogen-oxygen mixture in flow-type combus-
tors. 1. combustors of cylindrical annular geometry. Combustion, Explosion,
and Shock Waves, 45(5):606–617, 2009.

[27] FA Bykovskii, SA Zhdan, and EF Vedernikov. Realization and modeling of con-
tinuous spin detonation of a hydrogen-oxygen mixture in flow-type combustors.
2. combustors with expansion of the annular channel. Combustion, Explosion,
and Shock Waves, 45(6):716–728, 2009.

[28] FA Bykovskii, SA Zhdan, and EF Vedernikov. Continuous detonation in the
regime of nonstationary ejection of the oxidizer. In Doklady Physics, volume 54,
pages 29–31. Springer, 2009.

[29] FA Bykovskii, SA Zhdan, and EF Vedernikov. Continuous detonation in the air
ejection mode. domain of existence. Combustion, Explosion, and Shock Waves,
47(3):330–334, 2011.

[30] FA Bykovskii, SA Zhdan, and EF Vedernikov. Continuous detonation in the
regime of self-oscillatory ejection of the oxidizer. 1. oxygen as a oxidizer. Com-
bustion, Explosion, and Shock Waves, 46(3):344–351, 2010.

[31] FA Bykovskii, SA Zhdan, and EF Vedernikov. Continuous detonation in the
regime of self-oscillatory ejection of the oxidizer. 2. air as an oxidizer. Combus-
tion, Explosion, and Shock Waves, 47(2):217–225, 2011.

[32] FA Bykovskii, SA Zhdan, and EF Vedernikov. Reactive thrust generated by
continuous detonation in the air ejection mode. Combustion, Explosion, and
Shock Waves, 49(2):188–195, 2013.

[33] FA Bykovskii, SA Zhdan, and EF Vedernikov. Continuous spin detonation of
a hydrogen-air mixture with addition of air into the products and the mixing
region. Combustion, Explosion, and Shock Waves, 46(1):52–59, 2010.

[34] FA Bykovskii. Thermal fluxes in combustion chamber walls in the detonation
and turbulent combustion modes. Combustion, Explosion, and Shock Waves,
27(1):66–71, 1991.

102



[35] FA Bykovskii and EF Vedernikov. Heat fluxes to combustor walls during con-
tinuous spin detonation of fuel-air mixtures. Combustion, Explosion, and Shock
Waves, 45(1):70–77, 2009.

[36] FA Bykovskii, EF Vedernikov, and SV Polozov. Noise and vibrations in a
combustor with continuous spin detonation combustion of the fuel. Combustion,
Explosion and Shock Waves, 42(5):582–593, 2006.

[37] FA Bykovskii, EF Vedernikov, SV Polozov, and Yu V Golubev. Initiation of
detonation in flows of fuel-air mixtures. Combustion, Explosion, and Shock
Waves, 43(3):345–354, 2007.

[38] Andrew Naples, John Hoke, James Karnesky, and Fred Schauer. Flowfield char-
acterization of a rotating detonation engine. In 51st AIAA Aerospace Sciences
Meeting including the New Horizons Forum and Aerospace Exposition, AIAA
Paper, number 2013-0278, 2013.

[39] Rachel M Russo, Paul I King, Fred Schauer, and Levi M Thomas. Characteriza-
tion of pressure rise across a continuous detonation engine. In Joint Propulsion
Conference, 2011.

[40] Levi M Thomas, Frederick R Schauer, John L Hoke, and Andrew Naples.
Buildup and operation of a rotating detonation engine. In 49th AIAA Aerospace
Sciences Meeting including the New Horizons Forum and Aerospace Exposition,
volume 4, 2011.

[41] Richard Dyer, Andrew Naples, Thomas Kaemming, John Hoke, and Fred
Schauer. Parametric testing of a unique rotating detonation engine design.
In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum
and Aerospace Exposition, pages 9–12, 2012.

[42] S Theuerkauf, Fred Schauer, Richard Anthony, and John Hoke. Average and
instantaneous heat release to the walls of an rde. In 52nd AIAA Aerospace
Sciences Meeting, AIAA, volume 1503, page 2014, 2014.

[43] B Rankin, John Hoke, and Fred Schauer. Periodic exhaust flow through a
converging-diverging nozzle downstream of a rotating detonation engine. In
52nd AIAA Aerospace Sciences Meeting, AIAA Paper, number 2014-1015, 2014.
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