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In the United States (U.S.), on average three people die every day awaiting a liver transplant

for a total of 1,133 lives lost in 2021. While 13,439 patients were added to the waiting list in 2021,

only 9,236 patients received liver transplantation. To make matters worse, there is significant

geographic disparity across the U.S. in transplant candidate access to deceased donor organs.

The U.S. Department of Health and Human Services (HHS) is keen to improve transplant policy

to mitigate these disparities. The deceased donor liver allocation policy has been through three

major implementations in the last nine years, but yet the issue persists. This dissertation seeks

to apply operations management models to (i) understand transplant candidate behavior, and

(ii) suggest improvements to transplant policy that mitigate geographic disparity.

In the first essay, we focus on reducing disparities in the organ supply to candidate demand

(s/d) ratios across transplant centers. We develop a nonlinear integer programming model that

allocates organ supply to maximize the minimum s/d ratios across all transplant centers. We



focus on circular donation regions that address legal issues raised with earlier organ distribution

frameworks. This enables reformulating our model as a set-partitioning problem and our proposal

can be viewed as a heterogeneous donor circle policy. Compared to the current Acuity Circles

policy that has fixed radius circles around donation locations, the heterogeneous donor circle

policy greatly improves both the worst s/d ratio, and the range of s/d ratios. With the fixed radius

policy of 500 nautical miles (NM) the s/d ratio ranges from 0.37 to 0.84 at transplant centers,

while with the heterogeneous circle policy capped at a maximum radius of 500NM the s/d ratio

ranges from 0.55 to 0.60, closely matching the national s/d ratio of 0.5983.

Broader sharing of organs is believed to mitigate geographic disparity. Recent policies

are moving towards broader sharing in principle. In the second essay, we develop a patient’s

dynamic choice model to analyze her strategic response to a policy change. First, we study

the impact of the Share 35 policy, a variant of broader sharing introduced in 2013, on the

behavioral change of patients at the transplant centers (i.e., change in their organ acceptance

probability), geographic equity, and efficiency (transplant quality, offer refusals, survival benefit

from a transplant, and organ travel distance). We find that sicker patients became more selective

in accepting organs (acceptance probability decreased) under the Share 35 policy. Second, we

study the current Acuity Circles policy and conclude that it would result in lower efficiency (more

offer refusals and a lower transplant benefit) than the previous Share 35 policy. Finally, we show

that broader sharing in its current form may not be the best strategy to balance geographic equity

and efficiency. The intuition is that by indiscriminately enlarging the pool of supply locations

from where patients can receive offers, they tend to become more selective, resulting in more

offer rejections and less efficiency. We illustrate that the heterogeneous donor circles policy that

equalizes the s/d ratios across geographies is better than Acuity Circles in achieving geographic



equity at the lowest trade-off on efficiency metrics.

The previous two essays demonstrate the benefit of equalizing the s/d ratios across geogra-

phies. In December 2018 the Organ Procurement and Transplantation Network (OPTN) Board

of Directors approved the continuous distribution framework as the desired policy goal for all

the organ allocation systems. In this framework, the waiting list candidates will be prioritized

based on several factors, each contributing some points towards the total score of a candidate.

The factors in consideration are medical severity, expected post-transplant outcome, the efficient

management of organ placement, and equity. However, the respective weights for each of these

potential factors are not yet decided. In the third essay, we consider two factors, medical severity

and the efficient management of organ placement (captured using the distance between the donor

hospital and transplant center), and we design an allocation policy that maximizes the geographic

equity. We develop a mathematical model to calculate the s/d ratio of deceased-donor organs

at a transplant center in a continuous scoring framework of organ allocation policy. We then

formulate a set-partitioning optimization problem and test our proposals using simulation. Our

experiments suggest that reducing inherent differences in s/d ratios at the transplant centers result

in saving lives and reduced geographic disparity.
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Chapter 1: Introduction

1.1 Motivation

In the United States (U.S.), an average of three people die every day waiting for a liver

transplant, resulting in 1,133 lives lost in 2021. While 13,439 patients were added to the waiting

list in 2021, only 9,236 patients received liver transplants. Liver transplantation is the only

treatment option for patients with end-stage liver disease when other medical therapies have

failed. Deceased donations have contributed to greater than 95% of liver donations in the last 15

years in the U.S. Unlike living donations, which can be arranged privately by a patient-donor pair,

deceased-donor organs are considered national resources by law (whose allocation is determined

by government policy). The U.S. is divided into 11 geographic regions (Figure 1.1), consisting of

58 Donation Service Areas (DSAs). A DSA-based allocation policy had been in place for thirty

years (from 1989 to Feb. 4, 2020) but was recently replaced by the Acuity Circles policy (Section

1.2.2). Medical urgency, used to rank patients for an organ offer, is quantitatively measured by

the Model for End-Stage Liver Disease (MELD) score. The Pediatric End-Stage Liver Disease

(PELD) severity score, a measure calculated slightly differently, is used for patients ≤ 12 years

old. The MELD score reflects the probability of death within three months and ranges from 6 to

40, with a higher score indicating a greater mortality risk [20]. More serious patients are assigned

Status 1A (for adults) and 1B (for non-adults); their number is fewer than 50 nationwide at any
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Figure 1.1: The U.S. divided into 11 regions (left) comprising 58 DSAs (right).

time.

The U.S. government created the Organ Procurement and Transplantation Network (OPTN)

in 1984 to coordinate a nationwide transplant system and optimize the use of limited donor organs

for transplants. Since 1986, the United Network for Organ Sharing (UNOS), a nonprofit private

organization, has overseen the operations of OPTN. A key regulatory framework guiding organ

transplantation is the ‘Final Rule’, which was adopted in 1998 by the Department of Health and

Human Services (HHS) to establish a more detailed framework for the structure and operations

of OPTN [33]. The Final Rule states that policies shall not be based on the candidate’s place of

residence or place of listing (a patient lists herself at the transplant center and joins the waiting

list), except to the extent mandated by the other requirements of the Rule.

However, disparities in organ access have been a serious issue for more than two decades.

Geographic inequity in accessing liver transplantation across DSAs is well documented in the

literature [56]. In 2012, the OPTN board adopted a strategic plan that included reducing geographic

disparities in accessing transplantation. Hughes [34] provides an excellent summary of the laws

enacted to improve liver allocation policies in the U.S.
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In November 2017, New York City resident Miriam Holman (a patient with a rare form of

pulmonary hypertension for which there is no medical therapy, and which is rapidly fatal without

lung transplantation) filed a lawsuit (hereafter, ‘lung lawsuit’) against HHS.1 Due to the particular

lung allocation policy in place at that time, a donor lung could become available across the river

in New Jersey (less than four miles away). However, because the location of the donor lung was

in a different geographical DSA, it had to be offered to every candidate waiting for lungs in that

New Jersey DSA (even to candidates who were much farther away and far less medically critical)

before it could be offered to Holman [25]. In July 2018, six liver transplant waiting list patients in

New York, California, and Massachusetts filed a lawsuit (hereafter, ‘liver lawsuit’) against HHS.2

The liver lawsuit pointed out the wide geographical variability in the median MELD scores in

recipients for deceased donor transplants, arguing that the place of residence largely determines

the chances of one’s survival in the existing policy.

1.2 Liver Allocation Policy

UNOS supervises the transplantation network in the U.S. Its primary responsibilities include

managing the national transplant waiting list, matching organs from deceased donors to candidates,

establishing the medical criteria for allocating organs, facilitating organ distribution, framing

equitable policies, and so forth. Some of the main UNOS members are the 142 liver transplant

centers (TCs) and Organ Procurement Organizations (OPOs) in the 58 DSAs. The OPO coordinates

the local procurement of deceased-donor organs and allocation within a DSA.

Figure 1.2 shows the flowchart of deceased-donor liver allocation for transplantation. A TC

1Miriam Holman v. HHS, (S.D.N.Y 17-CV-09041).
2Cruz et al. v. HHS, (S.D.N.Y 18-CV-06371).
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Figure 1.2: Flowchart of deceased-donor organ allocation process in the U.S.

evaluates a candidate and decides whether or not to add her to the waiting list. The medical data

of the candidates are shared with UNOS. These pooled data of candidates across all transplant

hospitals are constantly updated when new candidates are added, and existing candidates are

either removed or their medical conditions (e.g., MELD scores) are updated. When a deceased-

donor organ becomes available, the OPO sends the organ donor’s medical data to UNOS. Subseq-

uently, the UNOS matching system compares the donor information with the candidate pool to

rank candidates for organ offers according to the allocation policy. Upon receiving an offer, the

transplant surgeon or physician, in consultation with the candidate, decides whether to accept

the offer. The only clinically approved preservation method in the case of a liver is simple cold

storage [39]. Because organs lose viability due to a lack of oxygen, a liver often gets discarded

after around 10-12 hours after its recovery.

1.2.1 Previous Policies

The first objective scoring system adopted by OPTN/UNOS was the Child-Turcotte-Pugh

(CTP) score in 1998. However, this score was not effective in discriminating the illness severity

[47]. Since February 2002, MELD has been used in allocation policies to quantify the urgency
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Sequence # Pre-Share 35 Share 35

1 Status 1 (local) Status 1 (local)
2 Status 1 (regional) Status 1 (regional)
3 MELD ≥15 (local) MELD ≥35 (local and regional, with

preference to local candidates at each MELD)
4 MELD ≥15 (regional) MELD ≥15 (local)
5 MELD <15 (local) MELD ≥15 (regional)
6 MELD <15 (regional) Status 1 (national)
7 Status 1 (national) MELD ≥ 15 (national)
8 MELD ≤40 (national) MELD <15 (local)
9 - MELD <15 (regional)
10 - MELD <15 (national)

Table 1.1: Comparison of deceased-adult donor allocation policies. Local (regional) refers to the
donor and candidate belonging to the same DSA (region), and national in the case of different
regions.

level. Table 1.1 compares the policy in place before and after June 2013 (until February 4, 2020)

for adult donors. We refer to the policy before June 2013 as the Pre-Share 35 policy. The Share 35

policy brought about the following two changes: it increased the priority of regional patients with

a MELD≥35 and prioritized high-MELD national patients over low-MELD (<15) local/regional

patients. Because the Share 35 policy led to prioritizing sick patients registered outside the DSA

and region, it can be seen as a broader sharing policy. In the above policies, the offer-priority

hierarchy is based on the MELD and sharing type (local/regional/national).

1.2.2 Current Policy: Acuity Circles

This policy progressively shares organs in circle radii of 150 NM, 250 NM, and 500 NM

around the donor hospital, with the following hierarchy: (1) Status 1 candidates at TCs within

500 NM; (2) candidates with a MELD ≥37 within 150 NM, then 250 NM, and then 500 NM;

(3) candidates with a MELD≥33 within 150 NM, then 250 NM, and then 500 NM; (4) candidates

with a MELD ≥29 within 150 NM, then 250 NM, and then 500 NM; (5) candidates with a
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MELD ≥15 within 150 NM, then 250 NM, and then 500 NM, then nationally; (6) candidates

with a MELD <15 within 150 NM, then 250 NM, then 500 NM, and then nationally. This is a

‘one-size-fits-all’ policy, as it does not account for the organ arrival rate, candidate waiting list,

or distances of the TCs from a donor hospital.

1.3 Contributions of this Thesis

In Chapter 2, we focus on equalizing supply (deceased donors)-to-demand (waiting list

patients) ratios across transplant centers (and DSAs). We develop a novel metric to calculate the

supply-to-demand (s/d) at a geographical unit when a supply location can share its organ with

multiple demand locations. We provide a general nonlinear integer programming formulation

to the problem. We focus on circular donation regions that address legal issues raised with

earlier organ distribution frameworks. This enables reformulating our model as a set-partitioning

problem and our proposal can be viewed as a heterogeneous donor circle policy. Compared

to the current Acuity Circles policy that has fixed radius circles around donation locations, the

heterogeneous donor circle policy greatly improves both the worst s/d ratio, and the range of s/d

ratios. With the fixed radius policy of 500 nautical miles (NM) the s/d ratio ranges from 0.37

to 0.84 at transplant centers, while with the heterogeneous circle policy capped at a maximum

radius of 500NM the s/d ratio ranges from 0.55 to 0.60, closely matching the national s/d ratio of

0.5983.

In Chapter 3, we develop a patient’s dynamic choice model to analyze her strategic response

to a policy change. We use nine-year liver transplant dataset to estimate the behavioral primitives

of the model. We compare the Pre-Share 35 and Share 35 policies to accurately capture the
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change in a patient’s behavior. We study counterfactual policies, including the current Acuity

Circles and heterogeneous donor circles policy (that we develop in Chapter 2) on geographic

equity (inter-regional variation in the transplant rates, patient survival rates, waiting time, and

organ offers), and efficiency (transplant quality, offer refusals, survival benefit from a transplant,

and organ travel distance) metrics. We find that the Acuity Circles policy is worse than the

previous Share 35 policy, especially in efficiency metrics. We show that equalizing s/d ratios

across geographies (as done by the heterogeneous donor circles policy) has the highest efficiency

among the policies studied while improving upon geographic equity measures.

Eventually, the transplant community is moving towards a continuous distribution framework

as the desired policy goal for all the organ allocation systems. However, there is still a debate

over how to decide the policy parameters in the new framework. In Chapter 4, we contribute to

the literature by developing a novel expression to calculate the s/d ratio at a transplant center in

the continuous distribution framework. We then develop a set-partitioning optimization model to

design an equitable allocation policy with an objective to equalize the s/d ratios across transplant

centers.
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Chapter 2: Heterogeneous Donor Circles for Fair Liver Transplant Allocation

2.1 Introduction

Geographic inequity in access to liver transplantation across DSAs is well documented in

the literature [56]. Indeed, as early as 2008, an HHS Advisory Committee on Transplantation

recommended that organ allocation be evidence-based and not on the arbitrary boundaries of the

DSAs. In 2012, the OPTN board adopted a strategic plan that included reducing geographic

disparities in access to transplantation. Despite implementation in 2013 of broader organ sharing

in a region for candidates with MELD scores≥ 35, geographic inequities remained in the system.

The U.S. Scientific Registry of Transplant Recipients’ (SRTR’s) Liver Transplant Waiting List

Outcomes Tool1 (built on historical data from 2017 to 2019) shows that for waitlisted candidates

in Los Angeles with MELD scores in the range of 25-29, only 15% received a transplant within

90 days, while for candidates in Indianapolis (with MELD scores in the range of 25-29), 72%

received a transplant within 90 days. The DSA/Region allocation policy resulted in significant

disparities even for candidates on transplant lists in close proximity. For example, SRTR’s Liver

Transplant Waiting List Outcomes Tool shows that for waitlisted candidates in New York City

with MELD scores in the range of 25-29, only 15% received a transplant within 90 days, while for

1https://www.srtr.org/reports-tools/waiting-list-calculator/, accessed June 26,
2020.
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similar candidates in Newark, New Jersey, just 15 miles away, 41% received a transplant within

90 days. Because MELD scores directly correlate with the probability of death in the absence

of an organ transplant in the next 90 days, different transplant wait times for candidates with the

same MELD score across DSAs imply (i) significantly different mortality rates for candidates

with the same MELD score in different DSAs, and (ii) significant variation in the median MELD

score at transplant (MMaT).2 Indeed, MMaT variance has typically been used by UNOS as a key

metric in evaluating a proposal’s effectiveness in mitigating geographic disparity (i.e., a lower

value of MMaT variance indicates less disparity).

The accumulating dissent against the organ allocation policy in place prompted urgent

actions in the U.S. The UNOS board (based on the recommendations of a Geography Committee

formed in December 2017) adopted the following set of principles in June 2018 to guide future

organ transplant policy relating to geographic aspects of organ distribution (that were also identified

to be consistent with the Final Rule).

1. Reduce inherent differences in the ratio of the donor supply and demand across the country.

2. Reduce travel time expected to have a clinically significant effect on ischemic time and

organ quality.

3. Increase organ utilization and prevent organ wastage.

4. Increase efficiencies of donation and transplant system resources.

The Geography Committee identified three potential distribution frameworks that fit with these

four principles: (1) fixed distance from the donor hospital, (2) mathematically optimized boundaries,

2This is seen for example in 2016 data [37] where the highest MMaT is 39 and the lowest MMaT is 20.
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and (3) continuous scoring (candidates to be ranked on the offer list on a combination of their

clinical characteristics and proximity to a donor).3

Following public comment, on December 3, 2018, the UNOS board adopted an Acuity

Circle policy (an implementation of the fixed distance from the donor hospital framework).

Although there were legal challenges and political pressures from several quarters to maintain

the existing system, the new Acuity Circle policy was implemented on May 14, 2019. However,

within a day, on May 15, 2019, a federal court issued an injunction, and UNOS was required

to revert to the prior system while legal challenges to the policy were pending. On January 16,

2020, the federal court reversed itself and decided not to keep the injunction in place while the

case was pending. Subsequently, the Acuity Circle policy was once again implemented again on

February 4, 2020.

Due to differences in demographics, disease incidence, and mortality leading to organ

donations among the DSAs, there was a huge disparity in the s/d ratios across the DSAs. Figure 2.1

shows the wide variability in the s/d ratio (left) and an inverse relationship of this variability with

observed MMaT scores (right). The s/d ratios (at DSAs) varied from 0.31 in NYRT (a DSA in

New York) to 1.98 in FLWC (a DSA in Florida). This disparity primarily drove the differences

in MMaT among the DSAs. In a study by Wey et al. [55], the s/d ratios in a DSA were found to

be associated with MMaT in DSAs (r = −0.56; P < 0.001).

In this chapter, we use UNOS’s stated principle of reducing inherent differences in the

ratio of the supply to demand (s/d) as our objective explicitly within a mathematical optimization

framework to design heterogeneous sized areas around the donation locations. One approach to

3https://optn.transplant.hrsa.gov/media/2506/geography_recommendations_
report_201806.pdf, accessed April 30, 2022.
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Figure 2.1: Lower supply to demand (s/d) ratios at a DSA (left) correspond to a higher MMaT at
the DSA (right). The time period of analysis is from July, 2013 to June, 2017.

reduce inequity is through the central distributive principle, proposed by Rawls [42]: the least

well-off group in the society should be made as well off as possible. We use this maximin

principle to design heterogeneous sized areas that maximize the minimum value of the s/d ratio

across all transplant centers (or DSAs). We then apply a secondary optimization to minimize the

disparity between the transplant centers (or DSAs) with the highest and lowest s/d ratios.

Our mathematical optimization model can be applied using zip codes or DSAs as the

geographical units. When using zip codes as the geographical units, the model may be viewed

as a heterogeneous radii circle policy (as compared to a fixed radius circle policy4). When using

DSAs as the geographical units, the model may be viewed as a type of neighborhood model [35],

where the neighborhood around a DSA is somewhat circular in shape.

Without organ sharing among DSAs, we found that the s/d ratio ranges from 0.31 to 1.98.

4In a fixed radius circle policy, the radii of the circles around the donor hospitals are identical, whereas in a
heterogeneous radii circle policy, the radii of circles around the donor hospital can take different values. We drop
radius/radii and refer to them as a fixed circle and a heterogeneous circle policy.
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With 500 nautical-mile (NM) fixed circles, the s/d ratio improves and ranges from 0.37 to 0.84.

We show that when heterogeneous circles are used around the donation zip codes, the s/d ratio

ranges from 0.55 to 0.60, meaning that there is a much lower disparity in organ access among the

transplant centers. Further, when we examine the s/d ratio disparity for transplant centers that are

close to one another (specifically, within 150 NM of each other) the heterogeneous circle policy

reduces the s/d ratio disparity to one-fourth compared to the fixed 500 NM circle policy.

We ran simulations with SRTR’s Liver Simulated Allocation Model (LSAM, version 2014)

using historical patient and organ donor data. The version of the tool available to us was based on

DSAs. Hence, we compared our optimized geographical neighborhoods using DSAs. The results

show that in comparison to the prior OPTN 11 region policy (in place until February 4, 2020), an

allocation policy based on our optimized heterogeneous circular neighborhoods (around DSAs),

with a maximum radius of 500 NM and full regional sharing of all organs with MELD scores

≥ 15, drastically reduces the variance of MMaT across DSAs (from 13.66 to 2.00) and average

annual deaths (from 3,745 to 3,568), for a modest increase in average travel distance (from 199

NM to 258 NM).

A key policy insight is that the one-size-fits-all framework (i.e., the currently proposed

Acuity Circle policy) approach taken by UNOS does not adequately address the problem of

reducing differences in the ratio of the donor supply to demand across the country. Rather, a

customized approach that accounts for where the organ supply and demand occur and adjusts

radii of the circles more effectively addresses UNOS’ stated goal of equalizing s/d ratios. The

remainder of the chapter is organized as follows. In the next section, we give a brief overview

of the liver allocation system in the U.S., and review proposals and related research. Section 2.3

presents our optimization methodology. Section 2.4 describes our findings and projected outcomes.
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Section 2.5 summarizes and provides concluding remarks.

2.2 Related Research

Redistricting is a problem that occurs frequently in multiple domains (e.g., political redist-

ricting, school redistricting, and sales territory assignments) where a finite, denumerable set of

non-overlapping geographical units are aggregated into regions/districts subject to some criteria.

Hess et al. [32] and [21] introduced the use of optimization techniques for political redistricting.

Zoltners and Sinha [59] discuss an application of redistricting in sales territory assignments, and

Caro et al. [15] discuss school redistricting using integer programming. Much of the redistricting

literature focuses on political redistricting [28, 36, 43, 53]. Two important considerations in

redistricting problems are the contiguity and compactness of the districts. In this regard, Shirabe

[46] proposed a flow-based model for contiguity constraints, which has been typically used in

subsequent integer programming approaches. However, contiguity constraints make redistricting

problems notoriously hard to solve exactly [36, 43].

Focusing on transplants, and disregarding geographical equity for the moment, Kong et al.

[38] studied the problem of maximizing efficiency by maximizing total intraregional transplants

by redesigning of the liver allocation regions. They formulate the problem as a set-partitioning

problem and use a branch-and-price algorithm to approximate solutions. Stahl et al. [49] consider

geographic equity (measured by minimum OPO intraregional transplant rate), along with efficiency

(measured by total intraregional transplants), but they restrict their regions to contain up to eight

DSAs due to computational challenges.. Extending their work, Demirci et al. [17] developed

a branch-and-price algorithm to incorporate a larger set of potential regions and explored the
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efficient frontier in a trade-off between efficiency and geographical equity. Their metric of

geographical equity maximizes the minimum in-district viability-adjusted transplant rates per

waiting list candidate, which is sensitive to the number of waiting list patients added by the

transplant centers. This is problematic because for low-MELD patients, the survival benefit of

transplantation is minimal [40], and the chances of receiving an organ vary across geographies.

Consequently, the transplant centers differ in their practices of adding low-MELD patients to the

waiting list.

Gentry et al. [23] used optimization to reorganize DSAs into regions/districts to reduce

geographical disparity. Their objective was to minimize the sum of the absolute differences

between the number of deceased-donor livers recovered in each district and the ideal number of

livers that would be offered in each district if each liver was given to the medically most urgent

candidate in the country. Working closely with the liver committee of UNOS, they proposed

eight-district and four-district (reorganized DSA) maps. The proposed maps were under active

consideration by UNOS from 2015 to 2017. However, ultimately after significant debate and

public comment, they were not adopted.

Kilambi and Mehrotra [35] introduced the neighborhood framework in organ allocation

as a way to provide for broader sharing and improve geographic equity. Each DSA has its

own neighborhood, which consists of a unique set of other DSAs (or neighbors) with which

it shares its organs. A DSA can be part of multiple neighborhoods; therefore, the neighborhoods

can be overlapping, which makes it difficult to represent all neighborhoods on a single map.

Interconnectivity and overlap among neighborhoods provide resilience to supply and demand

uncertainty. The neighborhood framework reduces to redistricting when all the DSAs in a neigh-

borhood have the identical neighborhood. Thus, the redistricting framework can be viewed
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Figure 2.2: Illustration of the difference between Regions/Districts and neighborhoods. (a) Let
DSAs A, B, C and D form a region or district. They all share with each other. (b) With the
neighborhood displayed, the neighborhood of A consists of DSAs A, B and C. Therefore, A
shares only with A, B, and C. Similarly, B shares with B and D; C shares with C and D; and D
shares with A, B, C, and D.

as a special case of a neighborhood framework. Figure 2.2 illustrates the difference between

regions/districts and the neighborhood framework. Using the neighborhood framework, Kilambi

and Mehrotra [35] developed an optimization model to design DSA neighborhoods to minimize

the absolute deviation of the s/d ratios across neighborhoods from the national average.

Ata et al. [10] used fluid approximation and game theory to show that multiple listings

(a patient is listed at more than one transplant center, potentially in another DSA or region

so that he/she can get organ offers from multiple places) can reduce geographical disparity in

kidney allocation. However, fewer than 2% of patients waiting for a liver transplant multiple

list (on April 14, 2021, the OPTN website shows that only 181 out of 11868 candidates are

multiple listed). Bertsimas et al. [14] suggest the use of tradeoff curves to assess the three organ

distribution frameworks identified by the Geography Committee. Running a large number of

simulations for the three distribution frameworks, they plot tradeoff curves of efficiency (measured

as average travel distance) versus fairness (measured as deaths or variance of MMaT). For a

given value of the efficiency metric, the tradeoff curve then identifies the policy with the greatest
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fairness. However, they did not consider the neighborhood or heterogeneous circle distribution

frameworks in their study. In a recent study, Ata et al. [8] analyze a broad class of ranking policies

in kidney allocation using an analytical framework. They find that allowing different patients’

ranking rules, depending on the quality of the kidney, can reduce organ wastage.

There are two methods of organ donation: (1) living donation and (2) deceased donation.

Alagoz et al. [3] study the optimal timing of living-donor liver transplantation when the patient is

either ineligible or has decided not to receive organs from deceased donors. They ignore the risk

to living donors in their model. Ergin et al. [18] model liver exchange as a market-design problem,

where they account for risk to donors and compatibility issues. Using data from South Korea,

they show that their proposed mechanism can increase the number of living-donor transplants by

30%. However, deceased donation has been contributing to greater than 95% of liver donations

in the last 15 years in the U.S. Unlike living donation, which can be arranged privately between a

patient-donor pair, deceased donor organs are considered national resources (whose allocation is

determined by government policy). We focus on deceased donation in this study; the parameters

used in our model and their policy implications are likely to remain unaffected with recent

promising developments in living donation.

2.3 Model Formulation

Consistent with UNOS’ stated principles, our approach is to design an organ distribution

policy that equalizes s/d ratios across transplant centers, and thus, mitigates geographical disparities.

We start by aggregating the historical supply and demand of organs by geographical location for

the period of study. We assume that the distribution of organ quality (Appendix A.1 compares
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Figure 2.3: Comparing our s/d ratio measure with that of Kilambi and Mehrotra [35]. Their
measure artificially inflates the s/d ratio.

transplant organ quality on a four-year dataset used in our study; we find that there are no

significant differences in the distribution of organ quality at recovery across the different regions)

and the patient’s health characteristics are similar across donor hospitals and transplant centers.

While there are certainly differences currently in the patient health characteristics from state

to state (e.g., at present, California has a higher proportion of high-MELD candidates than

Tennessee), this is largely a function of accumulated disparity over the years; in steady state

with no disparity in the s/d ratios, the distribution of MELD scores should be similar.

We formulate an Integer Programming model (IP) that uses a neighborhood framework.

Each supply location (e.g., a DSA, zip code, or donor hospital, depending on the context) is

assigned a unique set of demand locations (a DSA or transplant center), which is referred to as

its neighborhood. In a setting where the geographical units of supply and demand are DSAs, a

neighborhood of a DSA consists of other DSAs (including itself) with which it shares its organs.

Kilambi and Mehrotra [35] pioneered the idea of defining neighborhoods for DSAs. However,

their definition of a supply-to-demand ratio at a DSA is somewhat problematic. They model the
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s/d ratio of a DSA as the ratio of the total supply to the total demand in the DSA’s neighborhood.

In other words, they treat all DSAs in that neighborhood as a single unit. However, a DSA can

also be part of another neighborhood, which results in the artificial inflation of the s/d ratio. To

illustrate, consider three DSAs A (Supply: 1, Demand: 5), B (Supply: 10, Demand: 6), and C

(Supply: 4, Demand: 15), as shown in Figure 2.3. A shares with B and receives from B; B shares

with and receives from both A and C; and C shares with B and receives from B. The neighborhood

of A consists of A and B; the neighborhood of B consists of A, B, and C; and the neighborhood

of C consists of B and C. Kilambi and Mehrotra [35] compute the s/d ratios of A, B, and C as

1.00 (11/11), 0.58 (15/26), and 0.67 (14/21), respectively. However, in aggregate, the s/d ratio

for this three-region system is only 0.58! Further, their objective function is to minimize the

absolute deviation of the s/d ratios from a target value (the national average), which effectively

treats deviations below the average identically to deviations above the average. Unfortunately,

locations with deviations below the average (i.e., lower s/d ratios and higher MMaT scores) have

poorer outcomes (greater chances of dying while waiting for a transplant) than locations with

deviations above the average. Thus, in a setting where the desire is to minimize disparities, it

does not seem appropriate to treat these two deviations identically. By maximizing the worst s/d

ratio, our primary focus is on minimizing the deviation below the national average. Finally, we

note that our model does not require symmetric organ sharing (which they enforce), giving more

flexibility in optimization.
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Notation Description

i ∈ I = {1, ..., Nsup} Supply location (e.g., a DSA, zip code, or donor hospital)
j ∈ J = {1, ..., Ndem} Demand location (e.g., a DSA or transplant center)

Parameters:
si Number of livers from deceased donors recovered (or supply) at i
dj Number of incident waiting list additions (or demand) at j
τij Distance between locations i and j
τmax Maximum permissible distance from a supply location to a demand

location
cj Number of transplant centers in demand location j

c
(r)
i Number of transplant centers that are ≤ r distance units away from supply

location i
cmin Minimum number of transplant centers with which a supply location must

share its organs
λ∗
[S−1] Minimum s/d ratio value to be used in Stage 2 optimization

s
(r)
ij Apportioned share of organs from i to j when the farthest demand location

in i′s neighborhood is r units away
Decision variables:
xij (General model) 1 if i shares its organs with j, and 0 otherwise

xir (Set-partitioning model) 1 if the farthest member in the neighborhood of i is r units away from i,
and 0 otherwise

λ Minimum s/d ratio for an allocation
β Maximum s/d ratio for an allocation

Table 2.1: Model Notation

2.3.1 Supply-Demand Ratio Calculation

First, we define our s/d ratio measure. Recall that we assumed the MELD scores of

candidates across geographies are independent and identically distributed (i.i.d.); and when an

organ is recovered, all locations in the neighborhood are treated alike. For a given demand

location j in the neighborhood of supply location i, we model the expected supply received (by

j) from i to be proportional to j′s demand over the total demand competing for i′s supply. Using

this expected allocation of the supply in the example in Figure 2.3, we find that 5/11 units of the

supply from A are allotted to A, and 6/11 units of the supply from A are allotted to B. Similarly,
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(5/26)×10, (6/26)×10, and (15/26)×10 units of the supply from B are allotted to A, B, and C,

respectively. Finally, (6/21)×4 units of the supply from C are allotted to B, and (15/21)×4 units

of the supply from C are allotted to C. Dividing the expected supply provided to each location by

its demand, we find the s/d ratios of 0.47, 0.67, and 0.58 for A, B, and C, respectively, with our

measure. Using the notation described in Table 2.1, we formally calculate,

Expected supply from i to j =
dj∑Ndem

k=1 dk xik

si xij

To determine the overall supply-to-demand ratio, we first sum the expected supply over all supply

locations and then divide by j′s demand, dj giving:

s/d ratio at j =
Nsup∑
i=1

1∑Ndem

k=1 dk xik

si xij

We note that the way we calculate the expected s/d ratio does not account for organs that

a DSA may receive only due to national sharing. However, these organs are generally a very

small fraction (less than 4% in a four-year dataset used in our study) and should not significantly

impact the s/d ratios realized in practice.

2.3.2 General Model

We now describe our model, which solves the problem in two stages. In Stage 1, we apply

the maximin equity principle to maximize the performance of the worst demand location (i.e.,

we maximize the value of the lowest s/d ratio across all demand locations). In Stage 2, we

reduce the disparity among the different demand locations. To do this, we minimize the disparity
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Figure 2.4: Illustration of sharing and receiving contiguity. If x14 = 1, with sharing contiguity,
x12 = x13 = 1; and with receiving contiguity x24 = x34 = 1.

between the best and worst demand locations, while ensuring the s/d ratio of the worst demand

location remains at the optimum value obtained from the Stage 1 optimization. We now present

the Mixed-Integer Linear Programs (MIPs) for the different stages.

2.3.2.1 Stage 1 Formulation

In Stage 1, we seek to maximize the s/d ratio of the worst demand location.

[S-1] Maximize λ (2.1)

subject to: λ ≤
Nsup∑
i=1

1∑Ndem

k=1 dk xik

si xij ∀j ∈ J (2.2)

xij τij ≤ τmax ∀i ∈ I, j ∈ J (2.3)

xij = 1 ∀i = j, i ∈ I, j ∈ J (2.4)
Ndem∑
j=1

cjxij ≥ cmin ∀i ∈ I (2.5)

Contiguity constraints (2.6)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J (2.7)
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Constraint (2.2) models λ as the lower bound of the s/d ratios across all the demand

locations, and the objective is to maximize this lower bound. Constraint (2.3) limits the size of

the neighborhood (by limiting how far an organ can be transported for transplantation); constraint

(2.4) implies that if a supply-and-demand location coincide (e.g., a DSA or zip code that has both

a donor hospital and a transplant center), it must share with itself; and constraint (2.5) ensures

that there are at least cmin transplant centers in a neighborhood.5 We also include contiguity

constraints to ensure that the designed neighborhoods are contiguous and somewhat compact in

shape. This is enforced by an adjacency matrix, which describes locations that are geographically

adjacent to each other, and two types of contiguity constraints. Sharing contiguity ensures that

if location r supplies organs to location t (which is not adjacent to it), then all locations between

r and t also receive organs from location r. Receiving contiguity ensures that if location r

supplies organs to location t (which is not adjacent to it), then all locations between r and t

also supply organs to location t. Figure 2.4 illustrates receiving and sharing contiguity, ensuring

that if location 1 shares its organs with location 4, locations 2 and 3 also share their organs with

location 4, and locations 2 and 3 also receive organs from location 1. Appendix A.2 describes

flow-based mathematical constraints, applying Shirabe’s [46] approach, which can be used to

enforce sharing and receiving contiguity with any geographical shapes, as well as a linearization

of constraint (2.2) in the nonlinear integer programming model [S-1].

5Deceased-donor livers vary in quality, and marginal livers are more likely to be used and less likely to be
discarded when more competition exists among transplant centers [22, 30]. Thus UNOS requires that a minimum
number of transplant centers be in contention for organs from a supply location.
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2.3.2.2 Stage 2 Formulation

In Stage 2, we minimize the maximum absolute difference of the s/d ratios among demand

locations. This is achieved by constraining the lowest s/d ratio value to be greater than or equal to

the Stage 1 objective λ∗
[S−1], and by minimizing the maximum s/d ratio value across all demand

locations.

[S-2] Minimize β

subject to: β ≥
Nsup∑
i=1

1∑Ndem

k=1 dk xik

si xij ∀j ∈ J (2.8)

λ ≥ λ∗
[S−1] (2.9)

All constraints from [S-1] (2.10)

The optimal values of xij obtained by optimizing [S-1], followed by [S-2], are used to construct

the new optimized geographical scheme.

2.3.3 Circular Contiguity and a Set-Partitioning Model

One of the chief complaints in the liver and lung lawsuits was that a candidate receiving

the transplant organ may be geographically farther away from the donated organ than another

sicker candidate. In other words, neighborhood boundaries that allow an organ to be transported

farther away to a less sick candidate than a closer sicker candidate (because the sicker candidate

is outside the neighborhood) goes against generally accepted perceptions of fairness. This notion

suggests that we consider (roughly) circular contiguity for neighborhoods. If the radius of a
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Figure 2.5: Illustration of circular contiguity: If a neighborhood is r units in radius around the
supply location, then all demand locations within r units must be in the neighborhood.

neighborhood is r units around the supply location, then all demand locations within r units

away are in the neighborhood (Figure 2.5).

Circular contiguity allows for a more computationally tractable reformulation of the previous

model. For a neighborhood of a given radius r, one can easily calculate (a priori) the amount of

supply allocated to each demand location in the neighborhood. This enables us to reformulate

[S-1] and [S-2] linearly as Set-Partitioning Problems, which also makes them scalable. In the set-

partitioning formulation, xir is a binary decision variable that takes a value 1 if the radius of the

neighborhood of i is r units (all demand locations≤ r units from i are part of the neighborhood),

and 0 otherwise.
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2.3.3.1 Stage 1 Formulation

[SP-1] Maximize λ (2.11)

subject to: λ ≤
Nsup∑
i=1

∑
r∈Ri

xir s
(r)
ij

dj
∀j ∈ J (2.12)∑

r∈Ri

xir = 1 ∀i ∈ I (2.13)∑
r∈Ri

c
(r)
i xir ≥ cmin ∀i ∈ I (2.14)

xir ∈ {0, 1} ∀i ∈ I, ∀r ∈ Ri (2.15)

For a given radius r, s(r)ij denotes the apportioned share of i′s organs that are expected to be

offered to location j. In other words, s(r)ij =
dj∑

k:τik≤r dk
si, which can be precomputed for a given

radius r. Note that for a given supply location i, we do not need to consider a continuum of

possible neighborhood radii. Rather (because this apportionment of organs will only change

when a new demand location is added to the neighborhood), we only need to consider a finite

set of values of r that correspond to the distance from i to each of the other demand locations

that are within τmax. In [SP-1], the set Ri contains the possible values of r created accordingly

for supply location i. Constraint (2.12) models λ as the lower bound of the s/d ratios across all

demand locations; and the objective is to maximize this lower bound. Constraint (2.13) allows

one assignment of r to each supply location; and constraint (2.14) ensures a minimum number of

transplant centers in the neighborhood.
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2.3.3.2 Stage 2 Formulation

Once the optimal solution λ∗
[SP−1] to [SP-1] is obtained, we can solve [SP-2] to minimize

the maximum s/d ratio while ensuring that the minimum s/d ratio remains at least λ∗
[SP−1].

[SP-2] Minimize β

subject to: β ≥
Nsup∑
i=1

∑
r∈Ri

xir s
(r)
ij

dj
∀j ∈ J (2.16)

λ ≥ λ∗
[SP−1] (2.17)

All constraints from [SP-1] (2.18)

2.4 Data and Results

This study used data from SRTR. The SRTR data system includes data on all donors,

waitlisted candidates, and transplant recipients in the U.S., submitted by members of the OPTN.

The Health Resources and Services Administration (HRSA), U.S. Department of Health and

Human Services, provides oversight to the activities of OPTN and SRTR contractors.

In the data, encompassing the four years starting from July 2013 and ending in June 2017,

the supply or the total number of livers (from deceased donors) donated from all donor hospitals

in the U.S. is 26,899. The patient pool is dynamic: new patients enlist, waiting candidates die or

become too sick for transplant and are removed, and the MELD scores get updated periodically.

We measure demand (44,959) as the total incident6 adult patients whose MELD scores became at

least 15 during the four years, which gives a national s/d ratio of 0.5983. There are two reasons

6We consider incident patients so that the model parameters are not biased due to accumulated disparity, and thus
are exogenous to the geographical scheme.
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for excluding low-MELD patients from the demand: (1) patients with MELD scores <15 have

no survival benefit from transplantation [40]; therefore, our demand measure is less sensitive to

the number of low-MELD patients added to the waiting list and (2) transplant centers differ in

their practices of listing low-MELD patients, across the country (which would create an artificial

increase in demand for a transplant center listing low-MELD patients compared to a transplant

center that does not). In practice, the fraction of transplants to low-MELD patients is relatively

very low—about 1.08% (in the four years encompassing our study), supporting the decision to

exclude them.

We apply the set-partitioning optimization model to two versions of the data: a zip-code

cluster version where the supply locations are zip-code clusters (clustered by the first three

digits and first four digits) and the demand locations are the 142 transplant centers, and a DSA

version where the supply and demand locations are the DSAs. We restrict r (radius around the

supply locations) within the range 150 NM to τmax for every Ri, constraining the minimum and

maximum size of the neighborhoods. We set cmin = 3, ensuring that at least three transplant

centers are present in a neighborhood.7 We used R 3.5.1 and the commercial solver Gurobi 8.1.1

to solve the set-partitioning optimization models on a 3.2 GHz 6-Core Intel Core i7 iMac with 32

GB RAM.

2.4.1 Zip-code Cluster Version

The locations of the zip codes and transplant centers are indicated by their latitude and

longitude values. To calculate the distance between a three-digit (four-digit) zip-code cluster

and a transplant center, we first find the centroid of the zip-codes in the cluster having the same

7For every DSA with demand, there are close to three (142/52=2.73) transplant centers.
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first three digits (four digits) and then use the “geosphere” package in R to calculate the shortest

distance between two points (centroid of the zip cluster and transplant center) according to the

“Vincenty (ellipsoid)” method.

There are a total of 641 three-digit and 1,380 four-digit zip-code clusters with the supply

in our data.8 We vary τmax from 350 NM to 700 NM in steps of 50 NM. We do not include

the zip codes in Hawaii and Puerto Rico in our analysis, given that they are more than 1,000

miles from the transplant centers in the mainland U.S. Consistent with the current policy zip

codes in Alaska are considered to be situated at the Seattle Tacoma Airport in Washington State.

We require that the minimum radius of a neighborhood be 150 NM (to try and keep parity with

the radius of the innermost concentric circle in the Acuity Circle policy). Because a transplant

hospital may not necessarily be exactly 150 NM from a zip-code cluster, this is enforced by

ensuring that the closest transplant center greater than or equal to 150 NM away is included in the

neighborhood, unless it is greater than τmax miles away. Appendix A.3 provides computational

details—the problem size, running times, cutting planes, simplex iterations, etc.—for the set-

partitioning model on the four-digit zip-clusters.

Table 2.2 provides a comparison of the s/d ratios. To compare against the fixed radius type

of policy currently in place (i.e., Acuity Circle), we also computed the s/d ratio for homogeneous

radii circles by fixing the radius of each zip-code cluster to τmax. Compared to the heterogeneous

radius circle policy, the ‘one-size-fits-all’ fixed radius policy does a poor job at equalizing the s/d

ratios across transplant centers. The heterogeneous circle policy at τmax = 500 NM is able to

keep the ratio at transplant centers between 0.55 and 0.60 (compared to the national s/d ratio of

8Recall that the optimization variable is xir. In the zip-code cluster version, i is the three-digit (four-digit)
zip-code cluster, and r is the radius selected (from the discrete set of possible radii choices).
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Allocation Policy s/d ratio Maximum (Median) s/d ratio

Range Std. deviation difference within 150 NM from TC

τmax = 350 NM
Fixed radius circles (Three-digit zip) 0.39-1.09 0.123 0.59920 (0.04611)
Fixed radius circles (Four-digit zip) 0.38-1.09 0.123 0.60235 (0.04559)
Three-digit zip-code cluster model 0.51-0.88 0.098 0.33043 (0.05047)
Four-digit zip-code cluster model 0.51-0.88 0.103 0.33813 (0.07085)

τmax = 400 NM
Fixed radius circles (Three-digit zip) 0.37-0.85 0.112 0.23255 (0.03690)
Fixed radius circles (Four-digit zip) 0.37-0.84 0.112 0.22818 (0.03633)
Three-digit zip-code cluster model 0.53-0.62 0.033 0.08571 (0.00042)
Four-digit zip-code cluster model 0.53-0.61 0.030 0.07763 (0.00028)

τmax = 450 NM
Fixed radius circles (Three-digit zip) 0.38-0.88 0.124 0.20629 (0.02900)
Fixed radius circles (Four-digit zip) 0.38-0.87 0.124 0.19770 (0.02048)
Three-digit zip-code cluster model 0.54-0.61 0.023 0.05277 (0.00108)
Four-digit zip-code cluster model 0.54-0.61 0.024 0.06125 (0.00043)

τmax = 500 NM
Fixed radius circles (Three-digit zip) 0.37-0.84 0.137 0.20941 (0.03632)
Fixed radius circles (Four-digit zip) 0.37-0.84 0.137 0.20851 (0.04489)
Three-digit zip-code cluster model 0.55-0.60 0.022 0.04621 (0.00009)
Four-digit zip-code cluster model 0.55-0.60 0.021 0.04922 (0.00025)

τmax = 550 NM
Fixed radius circles (Three-digit zip) 0.37-0.91 0.145 0.17331 (0.03808)
Fixed radius circles (Four-digit zip) 0.36-0.91 0.146 0.17213 (0.03882)
Three-digit zip-code cluster model 0.55-0.60 0.020 0.05070 (0.00029)
Four-digit zip-code cluster model 0.55-0.60 0.019 0.04387 (0.00025)

τmax = 600 NM
Fixed radius circles (Three-digit zip) 0.34-0.97 0.152 0.17767 (0.04866)
Fixed radius circles (Four-digit zip) 0.34-0.96 0.152 0.17819 (0.04473)
Three-digit zip-code cluster model 0.55-0.60 0.018 0.05407 (0.00113)
Four-digit zip-code cluster model 0.55-0.60 0.018 0.03613 (0.00015)

τmax = 650 NM
Fixed radius circles (Three-digit zip) 0.33-0.94 0.152 0.16743 (0.02449)
Fixed radius circles (Four-digit zip) 0.33-0.93 0.152 0.17091 (0.02457)
Three-digit zip-code cluster model 0.55-0.60 0.017 0.05049 (0.00016)
Four-digit zip-code cluster model 0.55-0.60 0.018 0.03336 (0.00012)

τmax = 700 NM
Fixed radius circles (Three-digit zip) 0.32-0.94 0.145 0.17881 (0.04773)
Fixed radius circles (Four-digit zip) 0.32-0.94 0.145 0.18275 (0.04654)
Three-digit zip-code cluster model 0.55-0.60 0.016 0.05100 (0.00010)
Four-digit zip-code cluster model 0.55-0.60 0.017 0.03402 (0.00007)

Table 2.2: Comparison of the s/d ratios between fixed and heterogeneous circles (supply and
demand locations are zip-code clusters and transplant centers (TCs), respectively).

0.5983), while the fixed 500 NM radius circle policy has an s/d ratio variation between 0.37 and

0.84.

We also examine the difference in the s/d ratio of nearby transplant centers (defined as being

within 150 NM). Table 2.2 provides both the maximum and median values of this difference. As

is evident, in the heterogeneous circles policy, the value of the s/d ratio at nearby transplant

centers is very similar—which can hopefully lead to more equitable transplant outcomes in

nearby transplant centers. For most of the transplant centers, the difference in the s/d ratio is
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at the scale of 10−4, as indicated by the median values.

As we increase τmax from 350 NM to 700 NM, the minimum s/d ratio increases, and the

range of the s/d ratio decreases. When τmax = 400 NM, the s/d ratio range is already quite

narrow at 0.53-0.61, and once τmax = 500 NM, the s/d ratio range stays steady at 0.55-0.60.

Figure 2.6 shows the quartiles of the radii when using four-digit zip-code clusters. When τmax is

500 NM, the first, second, and third quartiles of the radii are 211, 305, and 415 NM, respectively.

Compared to the fixed radius circle policy, the heterogeneous radii circle policy achieves an

equalization in the s/d ratio (near the national average) while keeping transport distances lower.

This has an added benefit. Because the radii of the circles are smaller, each donor zip-code cluster

on average has 24 (median of 20) transplant centers, as compared to the fixed radii circles that

have on average 39 transplant centers (median of 43). The logistics of a donor hospital (zip-

code cluster) coordinating with a smaller number of transplant centers can be much simpler. One

may wonder whether fixed population circles (i.e., the radius of the circle around each transplant

center is set so that they all cover the same number of people) would reduce disparity. Using the

s/d metric defined and introduced in this chapter, Haugen et al. [31] analyze the disparity in the

s/d ratios across transplant centers with fixed population circles. They find that circles covering

a population of 12 million individuals provides s/d values ranging from 0.27 to 2.14. Increasing

the size of the circles to cover 50 million individuals decreases the s/d variation to 0.43–1.01.

To check whether our solution is robust to variations in the supply and demand across

time, using the optimal radii obtained with the four years of data, we recalculate the s/d ratio

range, skipping one year of (supply and demand) data at a time. We find that, on average, the

minimum (absolute) s/d ratio changes by 0.016 points, and the maximum (absolute) changes by

0.018 points (based on τmax = 500, 550, 600, 650, and 700 NM), which indicates that the results
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Figure 2.6: Quartiles of radii in the four-digit zip-code cluster models.

are fairly robust to variations in the data.

Given that the current implementation of LSAM does not support schemes based on zip-

code clusters, we could not evaluate our zip-code based allocation policy via the LSAM simulation

model. Instead, we use the results of the DSA version described in the next section and run the

LSAM simulation on the neighborhoods it generates to evaluate the effectiveness of our allocation

policy in reducing geographical disparity.

2.4.2 DSA Version

Using DSAs as the geographical unit preserves the existing important relationships between

donor hospitals and the OPO in each DSA. If indeed, the court rules in a manner that reinstates

DSAs as a geographical unit, then our method shows how they could share organs to achieve

equitable outcomes with regard to the s/d ratio.

The distance between any two DSAs i and j, τij , is calculated as the mean of the transplant-

volume-weighted distance between donor hospitals in DSA i and the transplant centers in DSA j,

and the reverse. Because six DSAs do not have a transplant hospital, there are 58 DSAs with

supply and 52 DSAs with demand. Consistent with Gentry et al. [23] and Kilambi and Mehrotra
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Allocation Policy s/d ratio τmax, τ̄ Max. (Median) s/d ratio

Range Std. deviation (in NM) difference among adjacent DSAs

OPTN 11 regions 0.42-0.76 0.109 843, 401 0.228 (0.117)
Gentry et al. [23] 0.52-0.69 0.054 975, 569 0.120 (0.036)

Kilambi and Mehrotra [35] 0.35-0.99 0.157 1380, 666 0.615 (0.246)
[SP-2], τmax = 500 NM 0.50-0.65 0.054 500, 349 0.151 (0.086)
[SP-2], τmax = 600 NM 0.52-0.65 0.051 600, 409 0.132 (0.077)
[SP-2], τmax = 700 NM 0.53-0.63 0.033 700, 422 0.096 (0.036)

Table 2.3: Comparison of the s/d ratios among different allocation policies in the DSA
version (supply and demand locations are 58 DSAs and 52 DSAs, respectively). τmax

and τ̄ represent the maximum and average distance, respectively, of the farthest DSA in a
neighborhood/region/district in each allocation policy.

[35], we allow (as exceptions to τmax) the DSAs located in Hawaii and Puerto Rico to share and

receive organs from other DSAs located in California and Oregon, and Florida, respectively.

Table 2.3 summarizes the results for τmax set to 500 NM, 600 NM, and 700 NM, and

compares it with the prior 11-region system and other proposed geographical allocation policies.

As is evident, our model produces a neighborhood that results in the narrowest range of s/d

ratios across DSAs: 0.15 when τmax = 500 NM, 0.13 when τmax = 600 NM, and 0.10 when

τmax = 700 NM, as compared to 0.34 (OPTN 11 regions), 0.17 [23, 8 districts], and 0.64 [35].

Our model also produces relatively more uniform and smaller-sized neighborhoods. It does not

contain any unusually large neighborhoods (as evidenced by the value of τmax). Our solutions

have a fair degree of reciprocity (that is, if DSA i shares its organs with DSA j, then DSA j shares

its organs with DSA i). About 56.0% of DSA pairs had reciprocity when τmax = 500 NM, 62.1%

when τmax = 600 NM, and 52.7% when τmax = 700 NM. Further, the average distance of the

farthest DSAs in the neighborhoods (τ̄ ) is much smaller than that of Gentry et al. [23] and Kilambi

and Mehrotra [35], and is comparable with OPTN 11 regions. The maximum s/d ratio difference

among adjacent DSAs is also reduced significantly. For example, with τmax = 700 NM, the
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maximum difference of the s/d ratio among adjacent DSAs is 0.096, much smaller compared to

OPTN 11 regions (0.228).

Table 2.4 presents the s/d ratios for each DSA in the different proposals. This allows a

deeper examination of how each DSA is affected by the proposed reallocations. The maximum

and minimum s/d ratio values in every proposal are highlighted in bold. Appendix A.4 describes

the DSA neighborhoods obtained by our models for τmax = 500, 600, and 700 NM, respectively.

Figure 2.7(a) depicts the neighborhoods (when τmax = 500) using a directed graph.9 An arc from

a node (i.e., DSA) i to a node j means that DSA i is sharing its organs with DSA j. In the event of

reciprocity between DSA’s i and j, the link between the two nodes is bidirectional. It is interesting

to observe that in the mainland U.S., the DSA CORS (which comprises Colorado and Wyoming)

forms a cut node (i.e., its removal separates the graph representing the neighborhood into two

components). Although there are additional arcs (and sharing between DSAs) with τmax = 600

and 700 NM, CORS remains a cut node separating the DSAs to the east and west. This suggests

that sharing between DSAs largely occurs exclusively between DSAs to the east of CORS, and

exclusively between DSAs to the west of CORS (i.e., DSAs to the east of CORS do not share

with DSAs to the west of CORS and vice versa). Given that there is a lot of information packed

into Figure 2.7(a), Figure 2.7(b) focuses on the neighborhood of DSA ALOB. It shows the DSAs

with which ALOB shares its organs and also shows which DSAs share their organs with ALOB.

Figure 2.7(c) provides a few additional details and adds in sharing and receiving between the

DSAs identified in Figure 2.7(b) (it excludes information about sharing and receiving between

the 14 DSAs in the figure and the remaining DSAs).

9To represent a DSA on the map, we averaged the latitude and longitude values of the transplant centers in that
DSA.
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Figure 2.7: (a) Illustration of optimized neighborhoods when τmax = 500. (b) DSAs to which
ALOB shares and receives. (c) Sharing and receiving between DSAs identified in (b).

The computational benefit of [SP-1] over [S-1] is easily seen in the DSA version. For

example, when τmax = 500 NM, the size of [S-1] using only sharing contiguity was 16,286 rows

and 18,883 columns, and the MIP gap (MIP gap = |Objective bound−Objective value|
|Objective value| ) was 1.19% after

two hours of running time. Meanwhile, the size of [SP-1] was 110 rows and 742 columns, and

took only 0.66 seconds to reach optimality.
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DSA
s/d ratio

Local, or OPTN 11 regions Gentry et al. [23] Kilambi and Mehrotra [35] [SP-2]

no sharing τmax = 843 NM τmax = 975 NM τmax = 1380 NM τmax : 500 NM 600 NM 700 NM

ALOB 0.72 0.76 0.61 0.56 0.62 0.65 0.63
AROR 0.97 0.76 0.61 0.96 0.65 0.52 0.58
AZOB 0.55 0.52 0.54 0.88 0.53 0.53 0.59
CADN 0.38 0.52 0.52 0.45 0.51 0.52 0.53
CAOP 0.39 0.52 0.52 0.5 0.54 0.53 0.53
CASD 0.55 0.52 0.52 0.35 0.5 0.53 0.59
CORS 0.37 0.64 0.54 0.77 0.51 0.54 0.53
CTOP 0.95 0.42 0.57 0.4 0.56 0.62 0.59
DCTC 0.58 0.57 0.57 0.46 0.64 0.64 0.63
FLFH 1.3 0.76 0.61 0.65 0.54 0.52 0.62
FLMP 0.5 0.76 0.61 0.65 0.61 0.65 0.61
FLUF 0.47 0.76 0.61 0.81 0.65 0.58 0.61
FLWC 1.98 0.76 0.61 0.65 0.64 0.52 0.62
GALL 0.72 0.76 0.57 0.99 0.65 0.65 0.62
HIOP 0.97 0.66 0.52 0.37 0.63 0.64 0.54
IAOP 1.23 0.64 0.64 0.58 0.62 0.64 0.61
ILIP 0.69 0.55 0.69 0.62 0.65 0.62 0.62
INOP 0.78 0.66 0.69 0.67 0.62 0.63 0.59

KYDA 0.66 0.76 0.69 0.69 0.65 0.64 0.6
LAOP 0.55 0.76 0.61 0.64 0.63 0.65 0.63
MAOB 0.39 0.42 0.57 0.4 0.54 0.61 0.56
MDPC 0.34 0.57 0.57 0.67 0.64 0.65 0.63
MIOP 0.68 0.66 0.69 0.49 0.54 0.64 0.63
MNOP 0.4 0.55 0.64 0.53 0.51 0.56 0.56
MOMA 0.71 0.64 0.61 0.73 0.65 0.63 0.63
MSOP 1.49 0.76 0.61 0.56 0.58 0.55 0.63
MWOB 1.04 0.64 0.64 0.7 0.5 0.52 0.56
NCCM 0.73 0.76 0.57 0.44 0.65 0.64 0.62
NCNC 0.77 0.76 0.57 0.63 0.65 0.6 0.62
NEOR 0.41 0.64 0.64 0.44 0.51 0.54 0.63
NJTO 1.19 0.57 0.57 0.47 0.65 0.65 0.63
NYFL 0.56 0.42 0.69 0.59 0.53 0.53 0.62
NYRT 0.31 0.42 0.57 0.47 0.65 0.65 0.63
OHLB 0.47 0.66 0.69 0.67 0.65 0.65 0.62
OHLP 0.9 0.66 0.69 0.83 0.65 0.61 0.62
OHOV 0.33 0.66 0.69 0.51 0.65 0.65 0.61
OKOP 0.91 0.53 0.64 0.81 0.58 0.52 0.63
ORUO 0.71 0.66 0.52 0.62 0.62 0.65 0.58
PADV 0.62 0.57 0.57 0.6 0.62 0.65 0.63
PATF 0.58 0.57 0.69 0.83 0.64 0.59 0.63
PRLL 1.69 0.76 0.57 0.56 0.54 0.6 0.53
SCOP 1.02 0.76 0.57 0.38 0.65 0.62 0.62
TNDS 1.17 0.76 0.69 0.77 0.65 0.64 0.63
TNMS 0.36 0.76 0.61 0.85 0.65 0.64 0.62
TXGC 0.36 0.53 0.61 0.52 0.64 0.58 0.63
TXSA 0.5 0.53 0.61 0.44 0.53 0.52 0.53
TXSB 0.77 0.53 0.61 0.5 0.64 0.55 0.62
UTOP 0.53 0.52 0.54 0.47 0.54 0.55 0.56
VATB 0.6 0.76 0.57 0.85 0.63 0.65 0.62
WALC 0.6 0.66 0.52 0.6 0.62 0.62 0.55
WIDN 0.4 0.55 0.69 0.5 0.5 0.54 0.62
WIUW 0.61 0.55 0.69 0.72 0.62 0.63 0.63

Table 2.4: Comparison of the s/d ratios among different DSA-based allocation policies (supply
and demand locations are 58 DSAs and 52 DSAs, respectively).
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2.4.2.1 Liver Simulated Allocation Model (LSAM) Results

Next, we wanted to see how the proposed (DSA-based) allocation policies perform on

metrics that policymakers have traditionally examined to evaluate policies, such as the variance

of MMaT across geographies, distance traveled, and number of deaths. To this end, we use

LSAM to simulate our neighborhoods [SP-2], OPTN 11 regions, Gentry et al. [23, 8 districts],

and Kilambi and Mehrotra’s [35] neighborhoods. There are two main inputs to LSAM: (1) patient

and organ arrival processes, and (2) the allocation policy that includes geographical schemes and

offer prioritization rules.

LSAM uses the historical data of donors and patients to simulate the waitlisted patient’s

health state transitions, organ acceptance behavior, and post-transplant survival outcomes. When

an organ becomes available, candidates on the waiting list are prioritized for the organ offer as

per the allocation policy. When a candidate receives a transplant, the simulation determines the

survival time of the transplanted organ and uses this information to determine when in the future

the candidate may die or relist. Using LSAM in its current form does have some limitations.

It uses a probability acceptance function built on past data, where distance is more strongly

correlated with acceptance of an organ due to the lack of broader sharing. It also does not account

for organ availability in determining organ acceptance. These limitations may underestimate the

effects of broader sharing and the equalization of the s/d ratios. Despite these limitations, it is

instructive to use LSAM as a first step in evaluating the potential benefit of the heterogeneous

radii circle policy.

In the simulation study (to model broader sharing within a circle), we allow for full sharing

of organs to Status 1A/1B and MELD ≥ 15 candidates in the neighborhood or region/district in
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Allocation Policy
Avg. (Quartiles) Waitlist Total Across DSAs

travel distance deaths deaths Var/Avg Std. deviation of avg
(in NM) (annual) (annual) of MMaT travel distance (NM)

OPTN 11 regions 258 (75, 194, 347) 1411.6 3658.8 7.26/30.0 109
Gentry et al. [23] 309 (101, 226, 429) 1376.1 3600.0 5.22/31.1 124

Kilambi and Mehrotra [35] 305 (124, 240, 395) 1348.2 3555.4 2.68/31.6 142
[SP-2], τmax = 500 NM 258 (112, 220, 341) 1356.4 3567.7 2.00/31.3 56
[SP-2], τmax = 600 NM 283 (125, 251, 384) 1343.6 3551.4 1.98/31.7 55
[SP-2], τmax = 700 NM 293 (125, 250, 399) 1343.4 3544.6 1.61/31.7 64

Table 2.5: Comparison of LSAM simulation results for DSA-based allocation policies under
Enhanced Share 15.

which the organ is recovered in the first level of allocation. In the next allocation level, the organ

is offered nationally to Status 1A/1B, then nationally to candidates with MELD ≥ 15. Next, it

is offered to candidates with MELD < 15 locally (the DSA in which the organ is recovered),

then in the neighborhood or region/district, and then nationally before being discarded after 100

offers. The above policy (which we refer to as ‘Enhanced Share 15’) skips sequences # 3 and 4 of

the Share 35 policy described in Table 1.1. For benchmarking, we also compared using the prior

Share 35 policy. We simulated the different DSA-based geographical allocation policies using

the organ and patient arrival data, consisting of three years (July 2013 to June 2016). We ran the

simulation 10 times (the maximum allowed by LSAM) by resampling the input files.

Table 2.5 compares the simulation results under Enhanced Share 15. The average number

of annual waitlist deaths and total deaths is smallest for [SP-2], τmax = 700 NM, with a projected

savings of 114 lives annually, compared to OPTN 11 regions. The average travel distance,

although slightly higher in our allocation policy compared to OPTN 11 regions, is smaller than

that of the other policies. To measure the differences between DSAs, we consider the variance

of MMaT and the standard deviation of the average organ travel distance across DSAs. The
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variance of MMaT across the DSAs is smallest in our allocation policies (2.00 when τmax = 500

NM, 1.98 when τmax = 600 NM, and 1.61 when τmax = 700 NM), compared to 7.26, 5.22,

and 2.68 in OPTN 11 regions, Gentry et al. [23], and Kilambi and Mehrotra [35], respectively.

Because the different proposals vary in their efficiency (travel distance) and fairness (MMaT)

metrics, it is instructive to compare the fairness of the proposals with similar efficiency levels.

To this end, comparing [SP-2], τmax = 500 NM against OPTN 11 regions shows a significant

reduction in both total deaths and variance of MMaT. Similarly, comparing [SP-2], τmax =

700 NM against Gentry et al. [23] and Kilambi and Mehrotra [35] shows a significant reduction

in the variance of MMaT. Overall, we see that greater fairness can be achieved by DSA-based

geographical allocation policies that equalize s/d ratios. The standard deviation of the average

travel distance across the DSAs (Hawaii and Puerto Rico are excluded from our distance analysis)

in our allocation policies is less than half that of the others. This finding indicates that there is less

disparity in the travel distance between DSAs because our neighborhoods have relatively similar

sizes.

Table 2.6 compares the LSAM simulation results under Share 35. We note that our neighb-

orhoods are optimized under the assumption of full sharing, which is closer to Enhanced Share 15

than Share 35; and thus, the full benefits of the improved MMaT are less likely to be seen.

Given that there is less sharing under Share 35 (organ offers are restricted to within-DSA patients

(15≤MELD<35) before being offered broadly (neighborhood or region/district and nationally)),

the average travel distance significantly decreased, and the number of waitlist and total deaths

increased for all policies. Even so, comparing [SP-2], τmax = 500 NM against OPTN 11 regions

shows a significant reduction in both total deaths and variance of MMaT. Similarly, comparing

[SP-2], τmax = 600 NM against Gentry et al. [23] and Kilambi and Mehrotra [35] shows a
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Allocation Policy
Avg. (Quartiles) Waitlist Total Across DSAs

travel distance deaths deaths Var/Avg Std. deviation of avg.
(in NM) (annual) (annual) of MMaT travel distance (NM)

OPTN 11 regions 199 (20, 105, 258) 1455.5 3744.9 13.66/28.5 88
Gentry et al. [23] 231 (25, 130, 314) 1419.5 3696.4 10.49/29.5 102

Kilambi and Mehrotra [35] 230 (32, 150, 309) 1389.0 3656.3 11.87/30.2 104
[SP-2], τmax = 500 NM 203 (29, 142, 291) 1399.9 3664.8 10.30/29.7 57
[SP-2], τmax = 600 NM 221 (32, 157, 326) 1384.8 3645.2 8.80/30.3 57
[SP-2], τmax = 700 NM 233 (36, 162, 344) 1397.3 3636.4 10.04/30.3 64

Table 2.6: Comparison of LSAM simulation results for DSA-based allocation policies under
Share 35.

significant reduction in the variance of MMaT. Similar to Enhanced Share 15, we observe again

that the standard deviation of the average travel distance (across DSAs) is much lower for our

allocation policies.

Ultimately, comparing our allocation policy τmax = 500 NM under Enhanced Share 15

against the OPTN 11 regions under Share 35 shows that a drastic reduction in the variance of

MMaT across DSAs (from 13.66 to 2.00) and deaths (from 3,745 to 3,568) can be achieved with

a modest increase in the average travel distance (from 199 NM to 258 NM).

2.5 Conclusions

We use the Rawlsian maximin principle to minimize the variability in deceased donor liver

access across geographies. In contrast to the current fixed radius policy, we propose heterogeneous

radii circles. The benefit of heterogeneous radii circles is that they account for where the organ

supply and demand occur, and adjust the radii of the circles so that each transplant center’s s/d

ratio can be close to the national average. Moreover, equalizing the s/d ratios at the transplant

centers is achieved without a significant increase in anticipated travel distance. In fact, the median
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radius is approximately 305 NM. In other words, the optimization model only increases the radii

of donor circles when necessary.

By using a DSA as the geographical unit, we demonstrate that low geographical variation

in the s/d ratio can be achieved while maintaining DSA boundaries by judiciously creating

neighborhoods for each DSA. An LSAM evaluation of our DSA neighborhoods predicts a signifi-

cant reduction in the number of deaths, overall variation in MMaT, and average travel distance

across DSAs.

As noted earlier, there are limitations of our analysis, as LSAM’s organ acceptance function

may not accurately reflect the change in the candidate/transplant center behaviors when organ

accessibility and availability changes. For instance, candidates at organ-rich locations might

behave more selectively in accepting organs than at locations with low s/d ratios. In the next

chapter, we develop a patient’s dynamic choice model to analyze his/her strategic response to

a policy change. We show that the policy framework developed in this chapter (i.e., equalizing

s/d ratios across the geography) indeed promotes the greatest geographic equity and transplant

efficiency in comparison to the current Acuity Circle policy and the prior Share 35 policy.

In terms of logistical implementation of the heterogeneous circle policy, we have a few

suggestions. First, we believe the circles should be defined around the donor location rather

than the transplant location (note that in a fixed radius policy, there is no difference between the

circles defined around donor and transplant locations, but with heterogeneous circles, there is

a difference), or else the issues raised in the lawsuits (i.e., organs being offered to a less sicker

candidate who is farther away) would not be addressed. Second, we expect small variations in the

supply and demand over time. Hence, we suggest that the optimization model be run occasionally

to account for demographic changes.
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Our approach can be viewed as a combination of the fixed distance from a donor hospital

and a mathematical optimized boundaries framework identified by the Geography Committee.

There is considerable debate in the transplant community about using continuous scoring (the

third distribution framework identified by the Geography Committee). The following two papers

[41, 48] provide an overview of the continuous scoring concept. Rather than a one-size-fits-all

framework for continuous scoring, which we do not believe will adequately address geographical

inequities, we would recommend a mathematically optimized continuous scoring function that

accounts for regional differences in the supply and demand. In Chapter 4, we develop an optimiz-

ation model (to equalize supply-to-demand ratios across transplant centers) that uses a continuous

function to assign points to patients based on their distance to the donor hospital.

Clearly, the optimization concepts applied to mitigate geographical disparities in the liver

transplantation setting could also be applied to other organs. We hope this research will spur

similar work in other organ transplantation settings, and thus reduce/mitigate the geographical

disparities that are inherent to all of these systems!
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Chapter 3: Improving Broader Sharing to Address Geographic Inequity in Liver

Transplantation

3.1 Introduction

This chapter develops an endogenous patient choice model to study the change in allocation

policy. The goal is to understand how a patient’s behavior would change with policy and to

develop a framework to conduct counterfactual analyses of various policies. This address the

shortcomings of the prior studies that assumed no change in a patient’s behavior in response to a

policy change.

In June 2013, the Share 35 policy was introduced, with the intent of reducing waiting

list mortality and addressing geographic disparities across DSAs. It allowed broader organ

sharing for high-MELD patients beyond the local DSA (where the organ was recovered). The

Candidate UNOS status Number functioning Survival rate
at transplant (Alive)

MELD/PELD 6-14 760 89.8
MELD/PELD 15-29 12549 90.2
MELD/PELD 30-34 3495 89.3
MELD/PELD ≥35 5286 87.0
Status 1A 934 83.8
Status 1B 377 89.0

Table 3.1: One year Kaplan-Meier graft survival rate based on 2012-2015 transplants. Follow-up
done till December 18, 2020.
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summary statistics show that while the waiting list mortality rate (number of patients who died

on the waiting list divided by the number of new patients joining the waiting list) decreased

from 12.0% in the Pre-Share 35 era to 9.4% in the Share 35 era, the median waiting time for a

transplant increased by 5% (and its standard deviation across regions increased by 28%), and a

greater fraction of transplants were offered to higher-MELD (transplants for MELD≥29 patients

increased from 44% to 52%) patients. However, the survival rates of patients with transplants

in Table 3.1 from 2012 to 2015 indicate that higher MELD candidates have poorer survival

outcomes. To sum up, determining the impact of the Share 35 policy is not straightforward. Our

first research objective is to study the impact of the Share 35 policy on patient organ acceptance

behavior (which is in response to the expected future value in the new policy). No previous work

(to the best of our knowledge) has used an endogenous patient choice model to study this policy

change. Moreover, building an endogenous patient choice model is useful in its own right in

evaluating other (counterfactual) allocation policies, which is a key objective of this chapter.

Despite implementing broader organ sharing in a region for candidates with MELD scores

≥ 35 in 2013, geographic inequities have remained in the system. The highest reported median

MELD score was 39 in Los Angeles, California (DSA: CAOP), and the lowest was 20 in Indiana-

polis, Indiana (DSA: INOP) [37]. In July 2018, six waiting list patients in New York, California,

and Massachusetts filed a lawsuit (Cruz et al. v. U.S. Dept. of Health and Human Services,

S.D.N.Y 18-CV-06371) against the Health Resources and Services Administration (HRSA), an

agency of the HHS. The lawsuit pointed out two main issues: 1. Significant geographic variability

existed in the median MELD scores of candidates for deceased-donor transplants such that one’s

place of residence largely determined her chances of survival in the Share 35 policy; and 2. In

the previous DSA-based Share 35 allocation policy (due to rigid boundaries), it was possible for
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an organ to be offered to a less sick candidate in a more distant transplant center over a sicker

candidate in a closer transplant center. HRSA has already been under pressure over the last two

decades to address geographic disparities [34]. The lawsuit precipitated a change from the Share

35 allocation policy to the Acuity Circles policy in February 2020. The new policy addressed the

second issue of the lawsuit. Nevertheless, it is unclear whether the first issue (i.e., geographic

inequity) will be addressed by the new policy.1 Our second research objective is to study whether

the current Acuity Circles policy is better than the Share 35 policy in terms of geographic equity

and efficiency metrics.

Managing the trade-off between equity and efficiency has been a very active area for

researchers (see Section 3.3) and policymakers. Recent policies are moving toward broader

sharing in principle. To provide some perspective, the Pre-Share 35 policy historically allowed

organ sharing mainly within the DSA (the average distance between the donor hospital and the

transplant center (TC) pairs within the same DSA is 66 nautical miles (NM)). After that, the Share

35 policy allowed organ sharing at the regional level for sicker patients (the average distance

between the donor hospital and the TC pairs within the same region is 262 NM). The current

Acuity Circles policy allows organ sharing up to 500 NM for sicker patients. The future policy

framework aims to further increase this distance. Our third and final research objective is to

investigate whether there is a better alternative (in making an equity-efficiency trade-off) than

broader organ sharing as currently implemented. Overall, our unique study fills a knowledge gap

by evaluating an earlier policy’s impact and using the insights gleaned to propose a new policy.

To assess a new proposal and predict its impact, the transplant community uses the Liver

1Due to the pandemic, data on the current Acuity Circles policy would not be useful because hospital resources
were shifted to COVID treatment. Moreover, the priorities of the waiting list transplant patients also changed in light
of the new situation.
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Simulated Allocation Model (LSAM).2 One of its main shortcomings is that it cannot model

forward-looking behavior in a patient due to a new policy (more in Section 3.6.5). This model

assumes the same organ acceptance probability function, irrespective of policy, geography, or

organ access. Goel et al. [26] compared the LSAM predictions due to the Share 35 policy with the

actual results observed. They found that LSAM overestimated the increase in the transplant rates

for MELD/PELD ≥ 35 candidates (46% predicted versus 36% observed), and underestimated

the decrease in the transplant rates for MELD/PELD 30-34 candidates (1% predicted versus

33% observed). Prior research [50] has also shown that ignoring a patient’s choice leads to

overestimating the efficiencies.

3.1.1 Contributions

This chapter makes the following key contributions to the literature. First, we build a

structural model and provide a framework to analyze a patient’s strategic response to a policy

change in the context of liver transplantation. Our model is based on approximately 40 medical

characteristics of patients and donors. We use the logit inclusive value technique to make the

analysis computationally tractable (see Section 3.5.3). Our model’s predictions are much better

than the existing model (LSAM) and other reduced-form models (see Section 3.6.5). Secondly,

we use our model to give accurate policy evaluations to inform decision makers.

The findings are as follows: 1. We perform a comparative study of the Pre-Share 35 and

Share 35 policies and demonstrate the heterogeneity in the behavioral (i.e., organ acceptance

probability) change of patients as a function of their region and MELD scores. We find that

2https://www.srtr.org/requesting-srtr-data/simulated-allocation-models/
accessed on July 12, 2020.

45

https://www.srtr.org/requesting-srtr-data/simulated-allocation-models/ 


sicker patients benefited and became more selective in their behavior (i.e., their organ acceptance

probability decreased for the same organ in consideration). However, there was heterogeneity

in the behavioral change across geographies in less sick patients. Overall, the Share 35 policy

reduced geographic disparity compared to its predecessor policy; 2. The Acuity Circles policy

was implemented in February 2020 to ‘improve’ upon the ‘Share 35’ policy. We observe that,

compared to the Share 35 policy, the Acuity Circles policy performs very similarly in geographic

equity metrics but results in more offer refusals and a lower transplant benefit; and 3. We illustrate

that broader sharing in its current form may not be the best strategy for balancing geographic

equity and efficiency. The intuition is that by indiscriminately enlarging the pool of supply

locations from where patients can receive offers, these patients tend to become more selective,

resulting in more offer rejections and less efficiency. We suggest an alternative approach, one that

equalizes the supply (deceased donors)-to-demand (waiting list patients) ratios across geographies

by selectively increasing the sharing radius around donor hospitals. We show that this approach

has the highest efficiency among the policies studied while improving upon geographic equity

measures.

The structure of the rest of this chapter is as follows. In the next section, we provide a

brief overview of the new liver allocation policies that we study in this chapter. Section 3.3

reviews the relevant literature. Section 3.4 describes the data and a few model-free pieces of

evidence regarding behavioral change. Section 3.5 presents our optimization model. Section 3.6

describes our estimation procedure and results. Section 3.7 performs a counterfactual study

comparing various allocation policies, including our proposed alternative ‘s/d Match’. Finally,

we summarize and conclude in Section 3.8.
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3.2 New Liver Allocation Policies

In addition to the Pre-Share 35, Share 35 and Acuity Circles policies, we study the following

(hypothetical) policies in this study.

3.2.1 Supply-to-demand (s/d) Match Policy

We use the optimization framework proposed in Chapter 2 and apply the maximin principle

to design heterogeneous radii circles that maximize the minimum value of the supply-to-demand

(s/d) ratio across all TCs. The s/d Match policy adheres to the Final Rule and the principles

adopted by the UNOS board in 2018 for all future organ policies.3 We set the minimum and

maximum circle radii around the donor hospitals to be 150 NM and 500 NM (in line with the

innermost and outermost radii used in the Acuity Circles policy) as an illustration. Based on the

setup considered in Section 3.7, the optimized set of circles results in a minimum (maximum) s/d

ratio (at the TC level) of 0.58 (0.83). In contrast, if we consider 500 NM circles around every

donor hospital, the s/d ratio range is 0.45-1.14. (We note that a tighter s/d range can be obtained

by changing the maximum radius value. See Appendix B.13 for details on the s/d range and

performance measures when we allow the maximum radius around the donor hospital to be 600

NM.)
3https://optn.transplant.hrsa.gov/media/2506/geography_recommendations_

report_201806.pdf, accessed April 30, 2022.
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3.2.2 National Sharing Policy

As the name suggests, candidates are first ranked based on their MELD scores, irrespective

of their location in the U.S. In the case of a tie (i.e., conditional on the MELD), local candidates

are preferred over regional candidates, and regional candidates are preferred over candidates

outside the region (we set this preference order because Feng et al. [19] document the increased

risk of graft failure from local to regional, and from regional to national sharing). Therefore, we

try to mitigate (although not eliminate entirely) the role of one’s location through this policy. We

note that this policy might involve long-distance travel and may not be an appealing or practical

idea, given that it may increase the chance of the organ being discarded.4

3.3 Related Research

There are three main streams of literature relevant to our study: 1. Proposals to address

geographic disparities, 2. Efficiency-equity trade-offs, and 3. Dynamic optimization modeling in

organ transplantation.

Redistricting has been proposed by many researchers in the operations community to address

the issue of geographic inequity. Redistricting is a problem that occurs frequently in multiple

domains (e.g., political redistricting, school redistricting, and sales territory assignment) where a

finite, denumerable set of non-overlapping geographic units are aggregated into regions/districts

subject to some criteria. Hess et al. [32] and Garfinkel and Nemhauser [21] introduced the use of

optimization techniques for political redistricting. Stahl et al. [49] considered geographic equity

4Implementing a National Sharing policy is likely to increase CIT substantially. Although Gentry et al. [24]
concluded that the estimated transport time for livers comprised only 21% of the CIT, we note that their model was
based on historical data.
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(measured by minimum OPO intraregional transplant rate), along with efficiency (measured by

total intraregional transplants), but they restrict their regions to contain up to eight DSAs due

to computational challenges. Extending their work, Demirci et al. [17] developed a branch-and-

price algorithm to incorporate a larger set of potential regions and explored the efficient frontier

in a trade-off between efficiency and geographic equity. Gentry et al. [23] used optimization to

reorganize DSAs into regions/districts to reduce geographic disparities. Working closely with

the liver committee of UNOS, they proposed eight-district and four-district (reorganized DSA)

maps. The proposed maps were under active consideration by UNOS from 2015 to 2017, but

ultimately after significant debate and public comment, they were not adopted. Kilambi and

Mehrotra [35] introduced the neighborhood framework in organ allocation as a way to provide for

broader sharing and improve geographic equity. Each DSA has its own neighborhood consisting

of a unique set of other DSAs (or neighbors) with which it shares its organs. Rectifying the

shortcomings in the supply-to-demand ratio measure used by Kilambi and Mehrotra [35], Akshat

et al. [2] proposed heterogeneous circles around donor hospitals to create an equitable geographic

distribution by developing a scalable set-partitioning optimization model. Ata et al. [10] used

fluid approximation and game theory to show that multi-listing (a patient is listed at more than

one TC, potentially in other DSAs or regions, so that she can get organ offers from multiple

places) can reduce geographic disparity in kidney allocation. However, fewer than 2% of patients

(on April 14, 2021, the OPTN website showed that fewer than 181 out of 11,868 candidates

were multiple listed) waiting for a liver transplant were multi-listed. Moreover, multi-listing

would not make the system fair; indeed, it would instead create disparity based on a candidate’s

economic means. Bertsimas et al. [14] suggest using trade-off curves to assess three organ

distribution frameworks identified by UNOS. Running a massive number of simulations for
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the three distribution frameworks,5 they plotted trade-off curves of efficiency (measured as the

average travel distance) versus fairness (measured as deaths or variance in the median MELD

at the time of the transplant). For a given value of the efficiency metric, the trade-off curve

then identifies the policy with the greatest fairness. Most of the above studies rely on LSAM

to assess the performance of their proposals, owing to policymakers’ reliance on it. LSAM

is a sophisticated patient-level simulation that handles MELD scores and models whether a

candidate accepts or declines an offer [52]. However, it ignores the heterogeneity in patients’

organ acceptance behavior and its dependence on the policy.

Zenios et al. [57] study the trade-off between clinical efficiency (measured as Quality

Adjusted Life Years (QALY)) and equity (types of patients defined based on their demographics)

in the kidney allocation problem using a fluid model and ignoring patients’ choices. They

propose a heuristic dynamic index policy to maximize the multi-criteria objective function. Su

and Zenios [50] use a sequential assignment model (of n transplant patients and n kidneys) to

investigate the impact of a patient’s choice in the kidney allocation system. They focus on a

social planner’s objective of maximizing the overall social welfare and conclude that ignoring the

patient’s choice leads to overestimating the efficiencies in the policies they studied. Bertsimas et

al. [12] study the α-fairness scheme (see [11]) to trade off efficiency and fairness. Their measure

of efficiency is the sum total of utilities, and they do not focus on geographic disparity. Su

and Zenios [51] find that introducing information asymmetry (the transplantation system does

not know the post-transplant outcome, which is known to the patient) in the allocation policy

achieves an overall outcome in the middle of the efficiency-equity spectrum. Bertsimas et al. [13]

5https://optn.transplant.hrsa.gov/media/2565/geography_publiccomment_
201808.pdf accessed on July 1, 2022.
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proposed a method to design a point-based kidney allocation system, where policymakers can

select the fairness constraints. This method maximizes the medical efficiency (captured using

life-years gained from the transplant); however, Bertsimas et al. [13] test policies assuming an

exogenous organ acceptance model for patients. Arikan et al. [7] use a probit model to elicit

differences in the intent for organ (kidney) procurement at the level of DSAs between marginal-

quality organs and the rest. They conclude that geographically broader sharing of the bottom

15% quality kidneys can help enhance the kidney supply.

Other papers [27,54] have studied the effect of the Share 35 policy using logistic regression

model, which is not appropriate for studying the dynamic optimization problem setting. Zhang

[58] is the closest paper to ours in terms of the methodology. Their focus is on studying the

presence of observational learning in patient behavior regarding the deceased-donor kidney alloc-

ation process. Agarwal et al. [1] and Ata et al. [9] study deceased-donor kidney allocation

policies using structural models. Besides the difference in the context (liver versus kidney),

there are three key differences between these two papers and our study. First, in addition to

transplantation, dialysis is also a treatment option for kidney failure. Second, these two papers

assume patient health transitions to be deterministic, whereas we model the stochastic transition

of MELD scores. Third, the liver allocation policy evolution presents a unique opportunity to

study the impact of broader sharing on patient outcomes. Furthermore, Agarwal et al. [1] do

not study geographic disparity. Alagoz et al. [6] use a discrete-time, infinite-horizon discounted

Markov decision process model to study the patient’s decision to accept an offer or wait. They

find that the optimal policy is typically of the control-limit type. However, they also assume a

fixed cost of waiting, whereas our model uses a richer set of variables to model the utility and

waiting cost. In addition, their model assumes the same reward (or utility) from local, regional
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or national offers whereas our model allows for different utilities from these offers.

3.4 Data and Evidence

3.4.1 Data

This study used data from the Scientific Registry of Transplant Recipients (SRTR). The

SRTR data system includes data on all donors, wait-listed candidates, and transplant recipients

in the U.S., submitted by the members of the Organ Procurement and Transplantation Network

(OPTN). The Health Resources and Services Administration (HRSA), U.S. Department of Health

and Human Services provides oversight to the activities of the OPTN and SRTR contractors.

The dataset used in the study contains candidates’ information at the time of registration,

the transition of their MELD scores while waiting, donor information, and the candidates’ decisions

regarding organ offers. We use nine years (2010 to 2018) of candidate and donor information

in our structural model analysis. This covers both the Pre-Share 35 and Share 35 policy eras.

We restrict our analysis to deceased-donor organs from adult donors and to adult candidates

(allocation policies are different for donors <18 years). Because we are interested in analyzing

geographic disparity across policies, we use data from all 11 regions. For the purpose of estimating

MELD transitions, we use a larger dataset of 16 years (January 2003 to February 2019). Appendix

B.1 provides the summary statistics of a few key variables in the data.

3.4.2 Model-Free Evidence of Behavioral Change

Figure 3.1 compares the MELD at the time of an offer and at the time of a transplant

(of candidates who accepted the offer) between the Pre-Share 35 and Share 35 policies using
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box plots. Consistent with the Share 35 policy that prioritizes sicker patients, the MELD at

the time of an offer increased. The MELD at the time of a transplant also increased slightly,

suggesting that a greater number of sicker patients received transplants, and therefore, avoided

death. However, the relative increase in the MELD at the time of a transplant is smaller than the

MELD at the time of an offer, suggesting more offer refusals. One may wonder whether these

refusals are due to lower-quality organs being offered, or whether the candidates became more

selective in their behavior. We find no significant differences in the organ quality of the declined

offers between the two policy eras (see Appendix B.2). Thus, it is likely that the refusals are due

to behavioral change. Offer refusals tend to increase the waiting time for an organ transplant,

thereby deteriorating the organ quality (and its utility from transplantation). On the one hand, the

Share 35 policy seems to save more lives, while it may lead to a decrease in transplant quality (in

terms of the graft survival probability) due to more offer rejections on the other hand. Further,

we also see interaction effects. Conditional on offers to candidates with a MELD <35 (MELD

≥35), the average MELD at an offer acceptance increased (decreased) by 0.68 (0.43). Next,

we use a straightforward metric to calculate the acceptance probability (ratio of the number of

offers accepted and the number of offers received). Table B.2 reports the change in acceptance

probabilities as a function of MELD in different regions. We see cases of both an increase and

decrease in acceptance probabilities.
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Notation Description

i Patient
t = 1, ...,∞ Organ arrival time (in days)

δ Daily discount factor
Payoff-relevant variables

Candidate specific variables:
MELDit MELD score of patient i at time t

Rec ageit Candidate i’s age group at time t
Rec life supportit Candidate i’s life support status (‘Yes’ or ‘No’) at time t
Rec med condit Candidate i’s medical condition (‘ICU’: Intensive Care Unit,

‘H’: Hospitalized, or ‘NH’: Not Hospitalized) at time t
Organ specific variables:

Don ageit Age of the donor whose organ is offered to candidate i at time t
Don raceit Race of the donor whose organ is offered to candidate i at time t
Don codit Cause of death of the donor whose organ is offered to candidate i

at time t
Don dcdit Indicates donation after circulatory death (‘Yes’ or ‘No’) of the donor

whose organ is offered to candidate i at time t
Joint candidate-donor variables:

Zit Candidate’s and donor’s medical attributes used in the SRTR Risk
Adjustment Model (uses 41 attributes)

GSit One-year graft survival probability modeled as a function of (MELDit,
Rec ageit,Rec life supportit,Rec med condit, Qit)

Sharing typeit Denotes whether the organ offer (with respect to patient i’s DSA) at
time t is classified as local, regional, or national sharing

Qit (Don ageit,Don raceit,Don codit,Don dcdit)
Sit (MELDit,Rec ageit,Rec life supportit,Rec med condit, Qit,

Zit, Sharing typeit)
P(Si,t+1|Sit) Transition probability of candidate i’s state from t to t+ 1

Payoff functions
Uit(Sit) Utility to candidate i upon accepting an offer at time t
Wit(Sit) One period of candidate i’s waiting cost at time t
V (Sit) Patient’s maximum expected present discounted value associated with

state Sit

Decision variable
dit 1 if candidate i accepts the offer at time t, and 0 otherwise

Table 3.2: Model Notation
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3.5 Patient’s Dynamic Choice Model

We now describe the choice model of a patient. When the patient is offered an organ, she

evaluates the utility (in terms of her survival chances) derived from that organ and decides to

either accept it and undergo transplantation or decline it and wait for the next offer (anticipating a

better one). A patient, in consultation with a transplant surgeon, evaluates an offer (for confidenti-

ality reasons, the SRTR data does not contain surgeon-level information). While waiting, her

health state will evolve stochastically, affecting her priority for future offers. In accordance with

the allocation policy in the U.S., there is no implication of a patient’s offer refusal on her future

offers. Now, we formally introduce our model. Table 3.2 describes the notation used in the

formulation.

We model the patient’s problem as a discrete-time infinite-horizon dynamic optimization

problem, where she faces the trade-off between accepting the current offer and waiting for future

offers. We consider the Markov perfect equilibrium, and patients account for only payoff-relevant

variables, compositely represented by Sit, in their decision-making.

Figure 3.1: Comparison of MELD at the time of an offer and a transplant between policies using
box plots (Status 1A is assigned a MELD score of 41).
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Upon accepting an offer, a patient receives an expected utility of EU(Sit) and is removed

from the waiting list (and we assume that she never joins again). EU(Sit) captures the expected

present discounted payoff from accepting an offer (in state Sit). If a patient declines the offer,

then she incurs an immediate waiting cost (as modeled in Section 3.5.2) and expects to receive

some utility in the future (as modeled in Section 3.6.1.1). Formally, the Bellman equation for

patient i’s dynamic optimization problem at time t is

V (Sit) = max

EU(Sit),−EW (Sit) + δ
∑
Si,t+1

P(Si,t+1|Sit, dit = 0)× V (Si,t+1)

 (3.1)

3.5.1 Utility Function

We consider a linear functional form for modeling the utility associated with a candidate-

donor pair. For a pair, we estimate the graft survival probability using the SRTR Risk Adjustment

Model,6 which is based on a total of 41 predictors (Zit) that include the candidate’s and donor’s

medical attributes, and CIT. Using the post-transplant outcome in the utility is in line with the

extant literature [51]. Moreover, we believe that a patient would be interested in maximizing

her eventual survival outcome (post-transplantation) without incorporating her survival chance

without a transplant. The CIT is realized and observed only for transplants that took place.

Predicting CIT for an offer is very difficult primarily due to the nonavailability of data on the

mode of organ transport (driving, helicopter, or fixed-wing), and non-transport factors (such as

back-table preparation) at the SRTR [24]. We set CIT equal to its median value (=6.9 hours) both

in Zit and the graft survival probability function (SRTR Risk Adjustment Model), and include

the Sharing type variable to capture the effect of the elapsed time between organ recovery and
6https://www.srtr.org/reports-tools/posttransplant-outcomes/ accessed on July 12,

2020.
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transplantation on the (prospective) transplant quality. We model the utility of the transplantation

to be derived from the one-year graft survival probability (GSit to be precise; see Section 3.5.3

for details) and the Sharing typeit, which captures the effect of CIT. The utility to patient i at

time t is given by:

Uit(Sit) =


β0 + βGS GSit + βSharing Sharing typeit + ϵit, if candidate i accepts organ at time t,

ϵit. otherwise.

(3.2)

GSit and Sharing typeit are observable to both patient i. βGS and βSharing are the associated

utility parameters; β0 is the intercept. ϵit denotes the idiosyncratic utility shock experienced by

patient i while evaluating the offer at time t. It represents the random factors (playing a role

in the decision-making) that are unobserved to the econometrician such as weather conditions,

momentary inconvenience to the patient, surgery-related factors, randomness involved in the

survival probability assessment, etc. ϵit is assumed to follow an independent and identically

distributed (i.i.d.) Gumbel distribution across patients and offers. We subtract E(ϵit), a constant,

from the utility so that the expected utility upon accepting an offer is given by:

EU(Sit) = β0 + βGS GSit + βSharing Sharing typeit (3.3)

3.5.2 Waiting Cost Function

A candidate incurs a waiting cost if she declines the offer or does not receive one at time

t. To model her waiting cost, we use variables such as age, life support status, and medical

condition. ωAge, ωLS, and ωMC are the associated waiting cost parameters. Given that Death is an
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undesirable and terminal state, we add the term 1{MELDit=Death} to the waiting cost function such

that a patient incurs a one-time expected cost of 1
1−δ
× ωd upon Death. Formally,

Wit(Sit) =


ωd + ϵi0t, if candidate dies at time t,

ωAge Rec ageit + ωLS Rec life supportit + ωMC Rec med condit + ϵi0t. otherwise.

(3.4)

where ϵi0t is an independent and identically distributed (i.i.d.) Gumbel distribution across patients

and times. We subtract E(ϵi0t), a constant, from the function so that the expected waiting cost is

given by:

EW (Sit) = 1{MELDit=Death}ωd + 1{MELDit ̸=Death}[ωAge Rec ageit+

ωLS Rec life supportit + ωMC Rec med condit] (3.5)

3.5.3 (Simplifying) State Transition Probability

In our dynamic model, patients have perceptions over future states. They need to know

the evolution of every element in the state space, including Zit. Following the extant literature

on the logit inclusive value [29], we make a simplifying assumption: the evolution of Zit is

approximated using a one-dimensional GSit. In doing so, we consider a patient to be boundedly

rational, and they use fewer elements to form predictions about the future.

We model GSit as a function of (MELDit,Rec ageit,Rec life supportit,Rec med condit, Qit).

We group the offers by (MELDit,Rec ageit,Rec life supportit,Rec med condit, Qit), and GSit

is the average of the graft survival probabilities (calculated using the respective Zit’s) for these

offers. Thus, we only need the evolution of GSit, which is relatively easier to estimate than the
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evolution of Zit. Appendix B.3 provides details.

If a patient declines an offer or does not receive one, she transitions to a new state on the

next day. Appendix B.4 gives the detailed expression for P(Si,t+1|Sit, dit = 0).

3.5.4 Offer Acceptance Probability

It follows from the i.i.d. Gumbel assumption of the idiosyncratic shocks in the payoff

functions, and the fact that the difference of two Gumbel-distributed random variables follows a

logistic distribution, that the logit choice probability of accepting an offer is:

P (accepting an offer|Sit) =
eEU(Sit)

eEU(Sit) + e
−EW (Sit)+δ

∑
Si,t+1

P(Si,t+1|Sit,dit=0)×V (Si,t+1)
, (3.6)

where EU(.) and EW (.) represent the expected utility and waiting cost, respectively.

3.6 Model Estimation

In this section, we describe the estimation procedure, parameter identification, and results.

Our estimation framework closely follows Zhang [58], in combination with the logit inclusive

value technique of Gowrisankaran and Rysman [29] to make our model tractable.

3.6.1 Estimation Procedure

We estimate the model using the nested fixed point algorithm [44]. First, given a set of

parameter values, an ‘inner’ algorithm computes the value function, EV (Sit). Then, the log-

likelihood function is calculated using the parameter values and the value function vector. An

‘outer’ algorithm chooses the next set of parameters to maximize the log-likelihood function.

59



3.6.1.1 Value Function.

The value function, denoted by EV (Sit), is defined as the total future value that candidate

i expects to receive when she waits (declines or does not receive an offer) at time t. The future

value depends on her state transition, and the expected payoff in the new state.

EV (Sit) =
∑
Si,t+1

P(Si,t+1|Sit, dit = 0)× V (Si,t+1) (3.7)

Substituting equation (3.7) into equation (3.1), we get:

V (Sit) = max {EU(Sit),−EW (Sit) + δEV (Sit)} (3.8)

Using the aggregation properties of the Gumbel distribution,

V (Sit) = ln
[
eEU(Sit) + e−EW (Sit)+δEV (Sit)

]
(3.9)

We can rewrite the value function as follows:

EV (Sit) =
∑
Si,t+1

P(Si,t+1|Sit, dit = 0)× ln
[
eEU(Si,t+1) + e−EW (Si,t+1)+δEV (Si,t+1)

]
, (3.10)

where the second term under summation corresponds to the expected payoff when in state Si,t+1.

The state space (described in Section 3.6.2) in our setting is discrete. Let K be the dimension

of the state space, and let Π be a K×K Markov transition matrix of the state elements (calculated

using equation B.5). The value function can be concisely represented as:

EV (.) = Π× ln
[
eEU(.) + e−EW (.)+δEV (.)

]
, (3.11)
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where EV (.), EU(.), and EW (.) are all K × 1 vectors. This nonlinear system of equations can

be solved iteratively using a fixed-point algorithm.

3.6.1.2 Log-Likelihood Function.

We use the maximum likelihood estimation approach to estimate the structural model

parameters. Appendix B.5 describes the derivation and final expression of the log-likelihood

function. We maximize the overall log-likelihood function, equation B.11, to estimate the param-

eters (β0, βGS, βSharing, ωd, ωAge, ωLS, and ωMC).

3.6.2 Parameter Identification

Before we present the parameter estimates, we expand on some of the state variables. We

discretize Rec age into three groups: R1: < 45 years, R2: (45 − 65) years, and R3: ≥ 65

years; Don age into four groups: (18 − 39) years, (40 − 49) years, (50 − 59) years, and ≥ 60

years; Don race into ‘White’ and ‘Others’ categories; Don cod into ‘Anoxia’, ‘Cerebrovascular

accident (CVA)’, and ‘Others’ categories; Rec life support into ‘Yes’ and ‘No’; Rec med cond

into ‘ICU’ (Intensive Care Unit), ‘H’ (Hospitalized), and ‘NH’ (Not Hospitalized) categories;

and Don dcd into ‘Yes’ and ‘No’.

The variable selection and discretization are primarily motivated by the medical literature

[19,45]. We categorize the MELD scores into six classes: MELD 6-14, MELD 15-28, MELD 29-

32, MELD 33-34, MELD 35-36, and MELD >36, and add the terminal Death state. This creates a

7×7 MELD transition matrix (see Table B.3). The above classification of MELD scores provides

sufficient granularity to evaluate the Pre-Share 35, Share 35, and Acuity Circles policies. Overall,
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Sharing Candidate Candidate Candidate
type P (%) age group P (%) life support P (%) medical condition P (%)

Local 9.0 R1 6.7 No 5.8 NH 5.5
Regional 4.4 R2 6.1 Yes 20.9 H 13.3
National 1.2 R3 5.2 ICU 24.5

Table 3.3: Summary statistics of probability of acceptance (P := # of offers accepted/# of offers
received) for some of the variables in the state space. The variation in P enables the identification
of the parameters associated with these variables in the structural model.

there are 18 patient types, 49 organ types, and 15,678 elements in the state space; consequently,

every geographic unit (DSA or TC, depending on the allocation policy) has its own K × K

Markov transition matrix, where K = 15,678.

Now we discuss the identification of the structural model parameters. GSit is a function

of the MELD category, age group, life support status, medical condition, and organ type (see

Appendix B.3 for details). A variation in the accept/decline decisions of patients with their

MELD score, and organ type is sufficient to identify βGS. For example, patients might have a

different probability of offer acceptance at a lower MELD score, keeping everything else (age

group, life support status, medical condition, sharing type, and organ type) the same. This

difference in the probability of offer acceptance can be attributed to the difference in GSit.

Appendix B.6 provides more details on the identification of the parameter associated with GSit.

We summarize the probability of acceptance (calculated as the ratio of the number of

offers accepted and the number of offers received) for some of the variables that are part of the

state space in Table 3.3. The variation in the acceptance probability enables the identification

of the parameters associated with these variables in the structural model. After controlling

for the candidate and donor-specific state variables, there exists variation in the sharing type

(local/regional/national) of the offers. The differences in the candidates’ acceptance behavior
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Variable Parameter Estimate Standard Error

Utility Function:
Intercept β0 -21.7803 0.3145
Sharing type: Regional

βSharing
-1.0348 0.0113

Sharing type: National -2.3328 0.0243
Graft survival probability (GS) βGS 19.5200 0.3353

Waiting Cost Function:
Death ωd 0.1160 0.0007
Candidate age group: R2 (45-65 years)

ωAge
0.0057 0.0002

Candidate age group: R3 (≥65 years) 0.0061 0.0003
Candidate life support: Yes ωLS 0.0134 0.0008
Candidate medical condition: H

ωMC
0.0114 0.0004

Candidate medical condition: ICU 0.0229 0.0008

No. of observations = 890,402
Log-likelihood = -173,630.9

Table 3.4: Estimation results of the structural model.

help identify βSharing. A candidate might die if she keeps declining offers and continues to wait.

The MELD transition matrix, P(MELDi,t+1|MELDit, dit = 0), enables us to identify ωd. In the

data, we have candidates of various age groups, life support statuses, and medical conditions.

The variations in their offer acceptance behaviors facilitate the identification of the parameters

(ωAge, ωLS, and ωMC). We assume the daily discount factor, δ = 0.99, in our estimation. Our

value of δ is in line with that of Zhang [58], who uses a discount factor of 0.99 for every six days

(equivalent to a daily discount factor of 0.991).

3.6.3 Estimates

Table 3.4 reports the estimates of the structural model.7 The estimates of the parameters

associated with Sharing type: Regional and Sharing type: National (with respect to Sharing type:

7We used Julia 1.5.3 and the KNITRO solver to estimate our model on a 3.2 GHz 6-Core Intel Core i7 MAC with
32 GB RAM. Due to the size of the problem, it took approximately two weeks to solve the model.
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Local) are negative, and national sharing is associated with the least utility. This is reasonable,

given that local organs are generally associated with fewer prior refusals, and the organs outside

the region are associated with a higher number of prior refusals; thus, are usually of lower quality

and less desirable. In fact, Feng et al. [19] found similar estimates (0.105 for regional sharing and

0.244 for national sharing, with respect to local sharing) in their estimation of the donor risk index

(DRI), a measure of the riskiness of graft failure associated with a donor organ. The estimate of

βGS is positive, which is consistent with the fact that organs that provide better survival are more

desirable. Death is associated with a positive estimate and translates to a candidate incurring a

one-time expected cost of 1
1−δ
×ωd (=11.6) upon death. We observe that the waiting cost increases

with age (most likely due to a decrease in well-being and the chances of comorbidities). Thus,

older patients are more likely to accept an offer. Patients on life support incur a higher waiting

cost than their counterparts. Compared to patients who are not hospitalized, hospitalized patients

incur more costs, and ICU patients incur double the cost, compared to hospitalized patients. A

higher waiting cost indicates greater urgency in accepting an offer. As a test for robustness, we

relax the assumption of a fixed value of CIT in the utility function, and report the parameter

estimates in Appendix B.7.

3.6.4 Insights from the Structural Model

Now we study how patients would react to the possibility of a transplant, both based on

their health status and future prospects of being offered an organ. We use a stylized setup of

two regions and three DSAs (Region A: DSA 1 and DSA 2; Region B: DSA 3), each with a

single TC, in our numerical study to draw key insights. We compare five settings of demand and
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supply across the DSAs (Set 1,..., Set 5; see Table 3.5). Note that the future prospect (captured

by EV (Sit)) depends on the organ offer probability, which depends on the supply and demand in

various geographies (e.g., DSAs) and on the allocation policy in place (we consider both Share

35 and Acuity Circles). For this reason, we study the effect of a change in supply and demand on

a patient’s organ acceptance behavior (the steady state equilibrium organ acceptance probabilities

are estimated using Algorithm 1 in Appendix B.8). By comparing the patient’s organ acceptance

behavior between these sets, we draw inferences of the effect of the supply and demand volume,

and the s/d ratio.

We consider a single patient type (Rec age: (45− 65) years, Rec life support=‘No’,

Rec med cond=‘NH’), and a single organ type (Don age: (18− 39) years, Don race = ‘White’,

Don cod = ‘Others’, Don dcd = ‘No’). They represent the most frequent patient and organ types.

We simulate the organ and candidate arrivals for a two-year time period (t = 1, ..., 730).

The main insights are as follows: (1) When the s/d ratio differs between two DSAs, the

difference (in terms of probability of offer acceptance) is greater for lower-MELD patients. The

difference is attenuated at higher MELD scores due to the prioritization of higher-MELD patients

through broader sharing (Share 35 and the Acuity Circles policy). If the s/d ratio decreases at

a DSA, a patient reacts by becoming aggressive in organ acceptance behavior (i.e., the organ

acceptance probability increases for the same organ). (2) Increasing the supply and demand

volume (keeping the s/d ratio the same) in a DSA leads to an enlarged supply from where patients

can receive an offer, which induces more selective behavior. This behavioral change is not merely

limited to the DSA at which a change is made; indeed, it also has a spillover effect on other DSAs.

Appendix B.9 provides a detailed comparison.
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Set 1* Set 2 Set 3 Set 4 Set 5
d s/d d s/d d s/d d s/d d s/d

Region A:
DSA 1 250 0.7 250 0.7 250 0.7 250 0.7 250 0.7
DSA 2 250 0.7 250 0.5 250 0.7 350 0.7 250 0.7

Region B:
DSA 3 500 0.7 500 0.7 500 0.5 500 0.7 700 0.7

Share 35:

MELD 6-14
DSA 1 [0.073, 0.073] [0.074, 0.074] [0.074, 0.074] [0.073, 0.073] [0.073, 0.073]
DSA 2 [0.073, 0.073] [0.076, 0.076] [0.074, 0.074] [0.073, 0.073] [0.073, 0.073]
DSA 3 [0.072, 0.073] [0.073, 0.073] [0.077, 0.077] [0.072, 0.073] [0.072, 0.073]

MELD 15-28
DSA 1 [0.076, 0.077] [0.079, 0.079] [0.077, 0.078] [0.076, 0.077] [0.077, 0.077]
DSA 2 [0.076, 0.077] [0.084, 0.085] [0.078, 0.078] [0.074, 0.075] [0.076, 0.077]
DSA 3 [0.074, 0.075] [0.074, 0.075] [0.086, 0.087] [0.074, 0.074] [0.072, 0.073]

MELD 29-32
DSA 1 [0.141, 0.144] [0.143, 0.146] [0.143, 0.147] [0.136, 0.141] [0.137, 0.141]
DSA 2 [0.139, 0.143] [0.149, 0.153] [0.145, 0.149] [0.129, 0.134] [0.135, 0.139]
DSA 3 [0.124, 0.128] [0.126, 0.13] [0.137, 0.14] [0.12, 0.124] [0.112, 0.117]

MELD 33-34
DSA 1 [0.271, 0.28] [0.273, 0.282] [0.275, 0.289] [0.256, 0.27] [0.254, 0.266]
DSA 2 [0.266, 0.277] [0.276, 0.287] [0.278, 0.291] [0.246, 0.263] [0.252, 0.264]
DSA 3 [0.241, 0.256] [0.247, 0.261] [0.258, 0.269] [0.231, 0.24] [0.222, 0.234]

MELD 35-36
DSA 1 [0.467, 0.486] [0.469, 0.486] [0.473, 0.492] [0.441, 0.467] [0.438, 0.46]
DSA 2 [0.464, 0.48] [0.471, 0.487] [0.483, 0.501] [0.432, 0.462] [0.431, 0.459]
DSA 3 [0.437, 0.46] [0.447, 0.467] [0.456, 0.472] [0.426, 0.444] [0.416, 0.435]

MELD >36
DSA 1 [0.694, 0.718] [0.697, 0.717] [0.702, 0.724] [0.667, 0.697] [0.663, 0.686]
DSA 2 [0.687, 0.704] [0.694, 0.71] [0.705, 0.724] [0.661, 0.691] [0.657, 0.688]
DSA 3 [0.666, 0.687] [0.681, 0.697] [0.682, 0.701] [0.661, 0.679] [0.648, 0.669]

Acuity Circles#:

MELD 6-14
DSA 1 [0.073, 0.073] [0.074, 0.074] [0.074, 0.074] [0.073, 0.073] [0.073, 0.073]
DSA 2 [0.072, 0.073] [0.076, 0.076] [0.074, 0.074] [0.072, 0.073] [0.073, 0.073]
DSA 3 [0.073, 0.073] [0.073, 0.074] [0.077, 0.077] [0.073, 0.073] [0.073, 0.073]

MELD 15-28
DSA 1 [0.076, 0.077] [0.079, 0.079] [0.078, 0.079] [0.076, 0.077] [0.076, 0.077]
DSA 2 [0.076, 0.077] [0.083, 0.084] [0.079, 0.079] [0.074, 0.075] [0.076, 0.077]
DSA 3 [0.074, 0.075] [0.075, 0.076] [0.085, 0.086] [0.074, 0.074] [0.072, 0.073]

MELD 29-32
DSA 1 [0.133, 0.136] [0.135, 0.138] [0.137, 0.141] [0.126, 0.131] [0.126, 0.132]
DSA 2 [0.131, 0.136] [0.137, 0.141] [0.138, 0.143] [0.123, 0.128] [0.125, 0.129]
DSA 3 [0.122, 0.127] [0.125, 0.129] [0.134, 0.137] [0.118, 0.122] [0.111, 0.115]

MELD 33-34
DSA 1 [0.26, 0.27] [0.261, 0.271] [0.266, 0.281] [0.24, 0.256] [0.237, 0.252]
DSA 2 [0.253, 0.266] [0.259, 0.272] [0.268, 0.282] [0.237, 0.255] [0.236, 0.249]
DSA 3 [0.239, 0.255] [0.245, 0.259] [0.254, 0.266] [0.229, 0.238] [0.22, 0.233]

MELD 35-36
DSA 1 [0.468, 0.488] [0.466, 0.485] [0.473, 0.493] [0.441, 0.468] [0.433, 0.457]
DSA 2 [0.462, 0.48] [0.471, 0.487] [0.484, 0.502] [0.43, 0.461] [0.424, 0.455]
DSA 3 [0.436, 0.46] [0.446, 0.466] [0.453, 0.471] [0.423, 0.443] [0.414, 0.434]

MELD >36
DSA 1 [0.696, 0.721] [0.697, 0.72] [0.702, 0.726] [0.667, 0.698] [0.66, 0.685]
DSA 2 [0.687, 0.706] [0.696, 0.713] [0.706, 0.727] [0.66, 0.692] [0.652, 0.688]
DSA 3 [0.667, 0.689] [0.682, 0.698] [0.684, 0.704] [0.661, 0.681] [0.649, 0.67]

Table 3.5: Demand and Supply settings used in a numerical study to analyze their effect on a
patient’s behavior.
*: Set 1 is the baseline setting. 95% confidence intervals of the average probability of organ
acceptance are shown in square brackets. #: To model the Acuity Circles policy in this
geographic setup of two regions and three DSAs, we assume local → Regional → National
sharing (instead of different circular bands of radii 150, 250, and 500 NM) within each MELD
category.
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3.6.5 Benchmarking

Our data cover two policy regimes (Pre-Share and Share 35). The observations (accept/dec-

line decisions) provide ground truth, which provides an opportunity to conduct an out-of-sample

comparison, i.e., training a model using the Pre-Share 35 policy era observations, and testing it

on the Share 35 policy era. This lays the foundations of a strongly validated structural model,

which we use to study counterfactual policies in the next section.

We compare various models (different versions of the dynamic and reduced-form models)

on several important goodness-of-fit metrics in Table 3.6. In the category of dynamic models,

we consider three structural models: our model (referred to as the Full Model), one without

Sharing type (DM1; as done in [5,6]),8 and one without the richness in the waiting cost function

(DM2; [4–6] assume a fixed reward upon waiting, and not as a function of the patient’s characteri-

stics). In the category of reduced-form models, we consider three logistic regression models

(RM1, RM2, and RM3), with the accept/decline decision as the dependent variable. To make it

comparable with the dynamic models, we consider the following independent variables (Appendix

B.10 describes the regression estimates). We find that the structural model (Full Model) outperfo-

rms all other models in every metric (except MAE, where RM1 and RM2 are better).

8Although the studies [5, 6] consider regional and national offers (in terms of their arrival rate), they assume that
the rewards (or utilities) from these offers are the same.
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Measure Dynamic Models Reduced-form Models

Full Model DM1 DM2 RM1 RM2 RM3

AUC (ROC) 0.772 0.694 0.772 0.756 0.728 0.762
AUC (PRC) 0.202 0.166 0.197 0.194 0.141 0.182

Log-likelihood -118,076.2 -125,045.4 -118,792.5 -119,525.8 -124,941.3 -121,758
RMSE 0.224 0.227 0.225 0.225 0.229 0.227
MAE 0.103 0.110 0.106 0.101 0.102 0.116

Table 3.6: Comparing the goodness-of-fit (out-of-sample) of various models on threshold-
independent measures. AUC (ROC) and AUC (PRC) are the area under the receiver operating
characteristic and precision-recall curves, respectively. RMSE and MAE stand for the root-mean-
square error and mean absolute error, respectively.

Figure 3.2: Out-of-sample comparison of LSAM with dynamic model prediction.

RM1: dit = a+ bGSit + cP (death|MELDit) + dSharing typeit + eRec ageit+

fRec life supportit + gRec med condit

RM2: dit = a+ bGSit + cWait time (in years) + dSharing typeit + eRec ageit+

fRec life supportit + gRec med condit

RM3: dit = a+ bMELDit + dSharing typeit + eRec ageit + fRec life supportit+

gRec med condit

Next, we compare our structural model (Full Model) with LSAM (which is based on

68



59 parameters). Many studies [26, 27] have already pointed out the limitations of LSAM in

predicting a patient’s offer acceptance behavior in a counterfactual policy. Nevertheless, to

illustrate, we consider the Pre-Share 35 and Share 35 policies. The LSAM’s probability of

acceptance model uses the SRTR’s parameter estimates. Our structural model uses the Pre-

Share 35 policy era observations to estimate the parameters; and we then use them to predict the

probability of offer acceptance in the Share 35 policy era. In Figure 3.2(a), we plot the average

probability of offer acceptance (calculated as a fraction of the offers that were accepted) by the

MELD category and use this as a reference. In Figures 3.2(b) and (c), we plot our structural

model’s and the LSAM’s predicted probabilities of offer acceptance, respectively. Our structural

model (in comparison to LSAM) more accurately captures: (i) the trend of offer acceptance

probability (with the MELD category), and (ii) the regime shift (from the Pre-Share 35 to Share

35 policy). Appendix B.10 provides a few more out-of-sample comparisons.

3.6.6 Comparison of the Pre-Share 35 and Share 35 Policy Eras using the

Structural Model

We compare the candidates as a function of their MELD class, region-wise. Given that

the probability of an offer acceptance depends on the candidate’s state (Sit), we weigh the states

to come up with a single number for each MELD class and region. For each MELD class (in

a region), the weights assigned to the corresponding states (associated with that MELD class)

reflect the empirical probabilities (estimated using the data) of being in those states. In Table 3.7,

we report the candidate’s offer acceptance probabilities in the Share 35 policy era. Parentheses

report the change compared to the Pre-Share 35 policy era.
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MELD 6-14 MELD 15-28 MELD 29-32 MELD 33-34 MELD 35-36 MELD >36

Region 1 4% (0%) 4.4% (-0.2%) 7.5% (-0.3%) 13.6% (-0.3%) 22.1% (-1.1%) 33.7% (-1.5%)

Region 2 3.8% (0.1%) 4.1% (-0.1%) 7% (-0.5%) 11% (-1.3%) 14.9% (-4.9%) 23.5% (-7.7%)

Region 3 3.1% (0.2%) 4.5% (0.1%) 6.6% (0.3%) 10.2% (-0.2%) 12.7% (-4.3%) 21.5% (-6.4%)

Region 4 4.6% (-0.2%) 4.7% (-0.6%) 7.7% (-1.3%) 12.9% (-2.6%) 16.9% (-7.1%) 27.2% (-10.2%)

Region 5 3.9% (-0.1%) 4.1% (-0.4%) 6.3% (-0.9%) 10.2% (-1.3%) 15.7% (-3.4%) 25.7% (-7%)

Region 6 4.2% (0.1%) 4.8% (-0.1%) 7.7% (-0.5%) 13.6% (-2.1%) 19.8% (-4.8%) 31.8% (-7.5%)

Region 7 3.6% (-0.1%) 4.1% (-0.5%) 6.8% (-1.1%) 11.9% (-2.3%) 16.5% (-6%) 27.1% (-8.8%)

Region 8 3.7% (0.1%) 4.5% (0%) 7.3% (0.4%) 11.4% (0.5%) 16.7% (-1.4%) 27.1% (-3%)

Region 9 4.6% (0.2%) 4% (0.1%) 6.3% (0.3%) 11% (0.3%) 19.9% (0.8%) 31.5% (1.7%)

Region 10 3.6% (0%) 4.5% (-0.2%) 6.8% (-1%) 9.3% (-2%) 14.5% (-5.7%) 24% (-9.3%)

Region 11 2.9% (0.1%) 4.2% (0%) 6.6% (-0.2%) 10.5% (-0.9%) 14.4% (-5.5%) 23.5% (-8.6%)

Table 3.7: Offer acceptance probabilities (in the Share 35 policy era) as a function of the MELD
category. Parentheses report the change compared to the Pre-Share 35 policy era. Values are
calculated using the structural model (whose parameters are estimated using data from 2010 to
2018).

We see that high-MELD candidates (MELD ≥35) in all regions (except region 9) became

more selective in the Share 35 policy era, as their acceptance probabilities decreased.9 Given

that the Share 35 policy prioritized sicker candidates in a geographically broader sense, allowing

access outside their DSAs, they can afford to be more selective. For lower-MELD classes, we

observe heterogeneity (across regions) in their behavioral change. For example, MELD 6-14

candidates experienced a negative effect and became aggressive in more than half of the regions

(Regions: 2, 3, 6, 8, 9, 11). It turns out that these regions were associated with a relatively

higher organ supply. The average supply (number of deceased donors)-to-demand (number of

new patients joining the waiting list) ratio (based on the 2010 to 2018 time period) in these regions

was 0.82, compared to 0.67 in the rest of the regions. Because the Share 35 policy increased

9Region 9 had the lowest ratio (0.51) of the number of deceased donors to the number of new patients joining the
waiting list among all regions (2010 to 2018). It is likely that the Share 35 policy increased competition among the
already organ-deficient DSAs (in Region 9), which led to an increase in aggressive behavior in even higher-MELD
categories in Region 9 in the Share 35 policy era.
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the priority of national patients over low-MELD (<15) local/regional patients, the low-MELD

patients in the regions with a higher organ supply became aggressive in response to potentially

losing access to organs that were now offered to candidates outside their respective regions.

3.7 Counterfactual Study

We now discuss the various performance metrics to measure geographic equity and efficiency,

as emphasized by HHS [33], and compare the following policies of interest: (1) Pre-Share 35,

(2) Share 35, (3) Acuity Circles, (4) s/d Match, and (5) National Sharing. To delineate the effect of

the allocation policy from other factors such as changes in the patient and organ arrival processes,

we simulate various policies using common data on patient and organ arrivals. In our simulation

setup, we have 5,000 patients and 3,600 donors arriving at different points in time.

Recent studies [1, 9] have widely used the iterative simulation approach to estimate the

new equilibrium organ offer probabilities in a counterfactual study. Instead of a simulation-

based iterative approach, we derive analytical expressions to calculate quantities such as the

number of offers, transplants, deaths, and so forth. We use these in an iterative framework (see

Appendix B.8 for details, including the simulation setup) to compute the equilibrium organ offer

probabilities in an allocation policy. The benefit of using analytical expressions is that it avoids

randomness due to the candidates’ accept/decline decisions and their MELD transitions, which

helps achieve faster convergence with tighter tolerance limits. For performance metrics whose

analytical computations are cumbersome, we simulate the organ allocation policy 50 times (using

its equilibrium organ offer probabilities) and report the average. Performance metrics based on

analytical computations are reported as an expected quantity.
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Figure 3.3: Comparison of different geographic equity measures between policies.

3.7.1 Geographic Equity

Figure 3.3 compares the expected number of deaths, expected number of transplants, average

waiting time in months (that a patient spends on the waiting list until transplantation, death or the

end of a simulation), and expected number of offers across regions and between various allocation

policies. We report the values after normalizing them with the waiting list volumes in their

respective regions. Comparing the Pre-Share 35 and Share 35 policies, we find that the benefit due

to the Share 35 policy is higher for regions with lower supply-to-demand ratios in the simulation

setup (see Appendix B.11 for details). In Table 3.8, we report the standard deviations, calculated

across regions, for different geographic equity metrics and allocation policies. Compared to the

Pre-Share 35 policy, other policies (Share 35, Acuity Circles, National Sharing, and s/d Match)
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Geographic equity Standard deviation across regions

metrics (normalized) Pre-Share 35 Share 35 Acuity Circles National Sharing s/d Match

Deaths 0.031 0.015 0.013 0.014 0.013
Transplants 0.109 0.043 0.038 0.037 0.028

Waiting (in months) 2.164 1.024 0.964 0.878 0.801
Offers 4.350 2.626 3.413 3.364 1.553

Table 3.8: Comparison of the standard deviation of various geographic equity measures between
policies. The s/d Match policy has the lowest values for each of the geographic equity metrics.

increase geographic equity (as indicated by the decrease in the variability of the performance

metrics across regions). The s/d Match (Pre-Share 35) policy has the lowest (highest) variability

across all performance measures. Even if we exclude the Pre-Share 35 policy from the comparison,

the s/d Match policy has a (0-13)% lower standard deviation (compared to the rest) in the expected

number of deaths, (24-35)% less variability in the expected number of transplants, (9-22)% less

variability in the average waiting time, and (41-54)% less variability in the expected number of

offers.

On an aggregate basis, we find that, out of a total of 5,000 patients in our study, the Pre-

Share 35 policy resulted in 499.0 expected deaths; the Share 35 policy resulted in 463.2 deaths;

the Acuity Circles policy resulted in 462.2 deaths; the s/d Match policy resulted in 459.9 deaths;

and the National Sharing policy resulted in the least number of deaths, 454.1. Out of a total

of 3,600 organs, the Pre-Share 35 policy resulted in 3,575.4 expected transplants; the Share

35 policy resulted in 3,570.4 transplants; the Acuity Circles policy resulted in 3,564.3 (lowest)

transplants; the s/d Match policy resulted in 3,570.8 transplants; and the National Sharing policy

resulted in 3,564.6 transplants.
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Figure 3.4: Comparison of the position at offer acceptance between policies.

3.7.2 Efficiency

We capture efficiency using four performance metrics: position in the queue at offer accept-

ance, utility derived from transplantation, increase in the patient’s survival probability (calculated

at the end of one year) due to the transplant, and distance traveled by the organ.

In Figure 3.4, we compare the average position at which a candidate accepts an offer across

regions and between various allocation policies. The three policies (Pre-Share 35, Share 35, and

National Sharing) are in increasing order of broader sharing. The Pre-Share 35 policy prioritizes

local patients; the Share 35 policy allows more regional and national sharing than its predecessor

policy, while the National Sharing policy does not consider geography conditional on the patient’s

MELD. The Acuity Circles policy can be seen as a broader sharing analogue of the s/d Match

policy (given that the latter allows the radius around a donor hospital to be less than 500 NM). We

observe that as sharing becomes broader, the position at acceptance and offer refusals increase

as a consequence. This is consistent with the takeaway we had drawn (i.e., the Share 35 policy

resulted in higher offer refusals) while discussing Figure 3.1.
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Figure 3.5: Comparison of the fractional change in the utility from the transplant (with respect to
the Pre-Share 35 policy) between policies.

Given that utility on its own has no physical interpretation, we report the fractional change

in the average utility from transplantation with respect to the Pre-Share 35 policy in Figure

3.5. We see that all policies are associated with lower transplant utility (as compared to the

Pre-Share 35 policy). We also observe that, as the position at the offer acceptance increases,

the transplant utility decreases. This is reasonable because offer refusals tend to deteriorate the

quality of the organ, and thus, the transplant utility.

Further, we simulate a new policy, Outcome based, where the candidates are sequenced (for

organ offers) in decreasing order of the prospective expected utility derived from transplantation.

It sets a benchmark for the best outcomes that can be expected for an allocation policy (we note

that the Outcome-based policy does not follow the federal guidelines because it does not offer

the organ to the sickest patient first). We then estimate the cost of fairness (fractional decrease

in the transplant utility with respect to the Outcome-based policy) in Figure 3.6. The Share 35

and s/d Match policies have the least cost (a 13% decrease in the transplant utility with respect to

the Outcome-based policy), while the Acuity Circles and National Sharing policies result in 17%

75



Figure 3.6: Cost of fairness for various policies. It is defined as the fractional decrease in the
transplant utility with respect to the Outcome-based policy.

and 19% decrements, respectively.

Next, we calculate the increase in a patient’s survival probability due to a transplant as

the difference between the probability of graft survival and the probability of a patient’s survival

without a transplant, both measured at the end of one year. Appendix B.12 provides methodological

details. We simulate a new policy, Survival Benefit, where the candidates are sequenced (for

organ offers) in decreasing order of the increment in the patient’s survival probability due to the

transplant. It sets a benchmark for the greatest benefits (in terms of survival probability) that can

be expected for an allocation policy (again this policy does not follow the federal guidelines).

In Figure 3.7, we report the average increase in the survival probability due to a transplant in

different policy scenarios. We see that the Survival Benefit and National Sharing policies result

in the highest benefits (survival probability increases by 0.186 on average), followed by the s/d

Match (0.183), Acuity Circles (0.181), Share 35 (0.180), and Pre-Share 35 (0.169) policies. The

s/d Match policy is comparable with the benchmark, if not the best.

In Table 3.9, we compare the travel distance between the policies (we exclude the observations

associated with the donor hospitals and transplant centers situated at HIOP (DSA in Hawaii) and
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Figure 3.7: Comparison of the average increase in the survival probability due to transplantation
between policies.

Pre-Share 35 Share 35 Acuity Circles National Sharing s/d Match

Mean 240 390 357 503 360
1st quartile 46 59 56 71 52

Median 114 176 197 279 180
3rd quartile 282 528 435 760 417

Table 3.9: Comparison of the travel distance (in NM) between policies.

PRLL (DSA in Puerto Rico) from the analysis). The distance between any two DSAs’ i and j is

calculated as the mean of the transplant-volume-weighted distance between the donor hospitals

in DSA i and the transplant centers in DSA j, and the reverse. We see that the National Sharing

policy results in the largest travel distance, while the Pre-Share 35 policy results in the smallest

travel distance. This is reasonable, given that they are at the two extremes of the broader sharing

level. The s/d Match policy is marginally better than the Acuity Circles policy and outperforms

the Share 35 policy (in all but the median travel distance).

Overall, the s/d Match policy, which is based on equalizing the s/d ratios by selectively

increasing the sharing of donor organs, has the lowest trade-off on the efficiency metrics (compared

to the Pre-Share 35 policy) in addressing the issue of geographic inequity. In fact, when a larger
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radius is allowed around a donor hospital, the s/d ratios are much closer at the transplant centers

(i.e., equalized better), and the efficiency metrics are further improved. See Appendix B.13 for

details. Thus, the s/d Match policy offers a significantly better alternative to the Acuity Circles

policy while following the guiding allocation principles laid out by UNOS.

3.8 Conclusions

We develop a structural model that endogenizes the forward-looking behavior of patients

with the allocation policy. We formulate the problem as a discrete-time infinite-horizon dynamic

optimization model and use a rich set of patient and donor medical attributes without losing the

model’s tractability. We compare our dynamic model with LSAM and other reduced-form models

to establish the credibility of our structural model, which we use to study counterfactual policies.

First, we study the impact of the Share 35 liver allocation policy (introduced in June 2013)

on patients’ organ acceptance behavior. We find that the Share 35 policy induced more selective

behavior and benefited high-MELD (sicker) patients, with mixed results in low-MELD patients

across regions. We also find that the Share 35 policy reduced geographic disparity in metrics such

as the number of deaths, access to transplants, waiting time, and organ offers. We observe that

the regions with lower supply (deceased donors)-to-demand (new patients) ratios reaped greater

benefits. However, the Share 35 policy resulted in more offer refusals and lower average utility

from the transplantations.

Recent policies are moving toward broader sharing in principle. The current ‘one-size-

fits-all’ Acuity Circles policy performs very similarly to the Share 35 policy under geographic

equity metrics. However, it leads to even lower efficiency (more offer refusals and less utility
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from transplantation). We illustrate that broader sharing in its current form is not the best

strategy to balance geographic equity and efficiency. The intuition is that by indiscriminately

enlarging the pool of supply locations from where patients can receive offers, the patients tend

to become more selective, resulting in more offer rejections and less efficiency. Instead, a

customized approach (equalizing the supply-to-demand ratios across geographies) through the

s/d Match policy performs best in addressing the issue of geographic inequity while sacrificing

the least efficiency (compared to the Pre-Share 35 policy). This policy selectively enhances

the radii around donor hospitals, increasing broader sharing as necessary to equalize the supply

and demand. We strongly recommend that policymakers move away from a ‘one-size-fits-all’

approach to broader sharing and instead develop broader sharing in a framework that matches

the supply and demand. Such a policy has the greatest potential to score well both in terms of

efficiency and geographic equity.

Previous policy proposals have been assessed using LSAM, which uses the same probability

acceptance function for candidates and does not consider whether a candidate is residing in an

organ-rich/-deficient location. Our study provides a framework for researchers and policymakers

to incorporate patients’ potential behavioral change into assessing a new policy proposal, which

influences their acceptance probability. There is a considerable push in the transplant community

to eventually move to a continuous scoring framework. (This framework conceptually gets rid

of boundaries. For each organ offer it computes a composite score (used to determine offer

sequence) for candidates on the waitlist, which is a combination of factors related to medical

priority, the efficiency of organ placement, expected post-transplant outcome, and equity.10 At

10https://optn.transplant.hrsa.gov/governance/public-comment/
continuous-distribution-of-lungs-concept-paper/
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this point, the policy parameters (i.e., weights on the different components of the score) are yet to

be determined.) An interesting and potentially impactful future study would be to determine the

policy parameters in this continuous scoring framework to equalize the s/d ratios across transplant

centers.

We limit our study to focus only on geographic inequity (as motivated by prior lawsuits)

and do not consider other kinds of disparities such as race, gender, socio-economic factors, organ

size, and blood type. Developing a model to incorporate and mitigate these additional disparities

is an interesting direction for future research.

Disclaimer: The data reported here have been supplied by the Hennepin Healthcare Research

Institute (HHRI) as the contractor for the Scientific Registry of Transplant Recipients (SRTR).

The interpretation and reporting of these data are the responsibility of the author(s) and in no way

should be seen as an official policy of or interpretation by the SRTR or the U.S. government.
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Chapter 4: A Continuous Scoring Model for Fair Liver Transplant Allocation

4.1 Introduction

The Health Resources and Services Administration (an agency of the HHS) has been under

pressure over the last two decades to address geographic disparities [34]. The liver lawsuit

precipitated a change to the Acuity Circles policy, as an interim policy in February 2020. Going

forward, it is a goal that all the organ allocation systems (including liver) will be based on the

Continuous Distribution Framework.1 In this framework, the waiting list candidates will be

prioritized based on a composite score, which will depend on several factors, each contributing

towards the total score of a candidate. The factors in consideration are medical severity, expected

post-transplant outcome, the efficient management of organ placement, equity, and so on. However,

the respective weights for each of these potential factors are not yet decided.

In this chapter, we consider two factors, medical severity and the efficient management

of organ placement (captured using the proximity score, which is a function of the distance

between donor hospital and transplant center) to design an allocation policy in a continuous

scoring framework. We use UNOS’s stated principle of reducing inherent differences in the

ratio of the supply to demand (s/d) across transplant centers as our objective explicitly within a

1https://optn.transplant.hrsa.gov/governance/public-comment/
continuous-distribution-of-lungs-concept-paper/
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mathematical optimization framework. One approach to reduce inequity is through the central

distributive principle, proposed by Rawls [42]: the least well-off group in the society should be

made as well off as possible. We use this maximin principle to maximize the minimum value of

the s/d ratio across all transplant centers. We then apply a secondary optimization to minimize

the disparity between the transplant centers with the highest and lowest s/d ratios.

4.1.1 Contributions and Findings

We make the following contributions to the literature: (1) We develop a novel analytical

method to model s/d ratio (at a transplant center) in the contribution distribution framework;

and (2) Our optimization framework can be applied to other organ settings to design policy

parameters. With 500 nautical-mile (NM) fixed circles (representative of the current Acuity

Circles), the s/d ratio ranges from 0.36 to 0.87. We show that when heterogeneous slopes (for

proximity score functions) are used at the donor hospitals, the s/d ratio ranges from 0.56 to 0.61,

meaning that there is a much lower disparity in organ access among the transplant centers. Note

that the radii around the donor hospitals are the same (unlike Chapter 2), but instead we use the

proximity score function to achieve parity in the s/d ratio.

We use a simulation model that replicates the SRTR’s Liver Simulated Allocation Model

(LSAM, version 2014) to evaluate our proposed policy with the current Acuity Circles policy.

The simulation uses historical patient and organ donor data. The results show that in comparison

to the current Acuity Circles policy, an allocation policy based on our optimized heterogeneous

slopes, with organ sharing up to a radius of 500 NM and full regional sharing of all organs with

MELD scores≥ 15, reduces the variance of MMaT across DSAs (from 6.66 to 5.00) and average
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Figure 4.1: Example of continuous scoring framework. Candidate 2 has higher composite score
than candidate 1, and thus gets priority.

annual deaths (from 2,513 to 2,443).

A key policy insight is that the one-size-fits-all framework (i.e., using the same slopes for

the proximity score functions) approach will not adequately address the problem of reducing

differences in the ratio of the donor supply to demand across the country. Rather, a customized

approach that accounts for where the organ supply and demand occur and adjusts slopes of the

proximity score functions more effectively addresses UNOS’ stated goal of equalizing s/d ratios.

4.2 Model Formulation

Consistent with UNOS’s stated principles, our approach is to design an organ distribution

policy that equalizes s/d ratios across transplant centers, and thus mitigates geographical disparities.

We assume that the MELD scores of candidates across geographies are independent and identically

83



Notation Description

s ∈ S = {1, ..., Nsup} Supply location or donor hospital
t ∈ T = {1, ..., Ndem} Transplant center

yst Proximity score assigned to the candidates at t for organs from s
ys y-intercept of the proximity score function at s

Parameters:
dt Number of incident waiting list additions (or demand) at t
ss Number of organs recovered for transplantation (or supply) at s
τst Distance between s and t
τ Maximum distance from a donor hospital to a transplant center for

organ sharing
λ∗
[S−1] Minimum s/d ratio value to be used in Stage 2 optimization

s
(y)
st Apportioned share of organs from s to t when the y-intercept

of the proximity score function at s is y
n Maximum number of offers before the organ is discarded

Decision variables:
xsy 1 if the y-intercept at s is y, and 0 otherwise
λ Minimum s/d ratio for an allocation
β Maximum s/d ratio for an allocation

Table 4.1: Model Notation

distributed (i.i.d); and the distribution of organ quality are similar across donor hospitals. The

proximity score is assumed to be a step function of the distance between donor hospital and

transplant center, and is a decreasing one. The offers are made to the candidates whose respective

transplant centers lie within a distance of τ units from the donor hospital. Each candidate accepts

an offer with a probability that depends on her position in the offer queue.

4.2.1 (Expected) Supply-Demand Ratio Calculation at a Transplant Center

First, we define our s/d ratio measure. The notation is described in Table 4.1. We start by

aggregating the historical supply and demand of organs by geographical location for the period

of study. We allow for uncertainty in the organ acceptance behavior of a candidate, and we
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model expected supply to a transplant center. In a continuous scoring policy, composite score

(calculated for every candidate in consideration) plays the key role in determining the offer

sequence. Therefore, it is central to s/d ratio calculation. We model the composite score of a

candidate as the sum of their MELD score and proximity score. When an organ is recovered, the

offer sequence is assumed to depend on the medical urgency of the candidates, and their distances

to the donor hospital (Figure 4.1). The proximity score function is modeled as:

yst = ⌈max{ys(1−
τst
τ
), 0}⌉ (4.1)

where yst is the proximity score assigned to the candidates at transplant center t for organs from

supply location s, ys is the y-intercept at s, and τst is the distance between s and t. We assume ys

to be a positive integer, and using a step function (through the ceiling operator) for the proximity

score ensures that the resultant distribution of composite score of candidates of any two transplant

center is discrete. This simplifies the calculation.

We first estimate the expected share of organs from a donor hospital, s to a transplant center,

t. The share will depend on the proximity score function associated with the donor location,

demands at various transplant centers (that are within the specified catchment area), and offer

acceptance probabilities. Now we go through the intermediate steps to calculate the probability

that an organ offer will be accepted by a candidate listed at transplant center, t.

4.2.1.1 Mixture Distribution

When an organ is recovered at a supply location s, we assume that candidates at all the

transplant centers that are within a distance of τ units are potential recipients. The distributions of
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composite scores at the transplant centers might be different due to differences in their proximity

to s (see Equation 4.1). Let Xt,s be a discrete random variable denoting the distribution of

composite score at transplant center, t w.r.t. s. Let Xs be a discrete random variable denoting the

distribution of composite score at donor location s. Xs, which is a mixture of composite scores

from of all the transplant centers within τ units of distance, can be modeled in two steps: (1) A

transplant center is randomly selected; and (2) A composite score is drawn from the population

of the selected transplant center. Formally,

P (Xs = x) =
∑

t′:τst′≤τ

dt∑
t′:τst′≤τ dt′

× P (Xt,s = x)

4.2.1.2 Order Statistic of the Mixture Distribution

Let ns (≤ n) be the total number of candidates (from all the transplant centers) competing

for an organ recovered at s. The offer sequence will follow a decreasing order of their composite

scores, therefore, we calculate the order statistic of the mixture distribution (Xs). Let,

p1 = P (Xs < x) = Fs(x)− P (Xs = x), p2 = P (Xs = x), and p3 = P (Xs > x) = 1− Fs(x)

The cumulative distribution function of the kth order statistic (denoted by, Xs,(k)) is given by:
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P (Xs,(k) ≤ x) = P (there are at least k observations less than or equal to x)

= P (there are at most ns − k observations greater than x)

=
ns−k∑
j=0

(
ns

j

)
pj3(p1 + p2)

ns−j (4.2)

P (Xs,(k) < x) = P (there are at least k observations less than x)

= P (there are at most ns − k observations greater than or equal to x)

=
ns−k∑
j=0

(
ns

j

)
(p2 + p3)

jpns−j
1 (4.3)

P (Xs,(k) = x) = P (Xs,(k) ≤ x)− P (Xs,(k) < x)

=
ns−k∑
j=0

(
ns

j

)(
pj3
(
p1 + p2

)ns−j −
(
p2 + p3

)j
pns−j
1

)
(4.4)

For the ith candidate on the offer sequence, the corresponding value of k will be (ns − i + 1).

The above equation captures the distribution of composite score associated with a supply location

s. When a candidate from transplant center t accepts an offer, there must be a sequence number

associated with that offer. Next, we calculate the probability that a candidate at the ith sequence

belongs to transplant center t.

4.2.1.3 Probability that the ith Candidate at s is From Transplant Center t and

Accepts the Offer

Let the ith candidate have composite score, x. The probability that the candidate is from

transplant center t is:
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P (ithcandidate is from t|ith composite score = x) =
dtP (Xt,s = x)∑

t′:τst′≤τ dt′P (Xst′ = x)
(4.5)

P (ithcandidate is from t) =
∑
x

P (ithcandidate is from t ∩ ith composite score = x)

=
∑
x

P (ith composite score = x)× P (ithcandidate is from t|ith composite score = x)

=
∑
x

P (Xs,(ns−i+1) = x)× dtP (Xt,s = x)∑
t′:τst′≤τ dt′P (Xst′ = x)

(4.6)

For the ith candidate to accept an offer, the previous (i − 1) candidates should have declined it.

Let pi be the probability of accepting an offer made at the ith position.

P (ithcandidate is from t ∩ accepts the offer) =
[
Πi−1

j=2(1− pj)
]
pi × P (ithcandidate is from t)

=
[
Πi−1

j=2(1− pj)
]
pi ×

∑
x

P (Xs,(ns−i+1) = x)× dtP (Xst = x)∑
t′:τst′≤τ dt′P (Xst′ = x)

4.2.1.4 Probability that an Organ from s is Accepted by a Candidate at Transplant

Center t

P (an organ from s goes to t) =
ns∑
i=1

P (ithcandidate is from t ∩ accepts the offer)

=
ns∑
i=1

[
Πi−1

j=2(1− pj)
]
pi ×

∑
x

P (Xs,(ns−i+1) = x)× dtP (Xst = x)∑
t′:τst′≤τ dt′P (Xst′ = x)

(4.7)
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Finally, the s/d ratio at a transplant center t =
1

dt

∑
s:τst≤τ

ss × P (an organ from s is accepted at t)

=
1

dt

∑
s:τst≤τ

ss ×
( ns∑

i=1

[
Πi−1

j=2(1− pj)
]
pi ×

∑
x

P (Xs,(ns−i+1) = x)× dtP (Xst = x)∑
t′∈T (s) dt′P (Xst′ = x)

)
(4.8)

=
1

dt

∑
s:τst≤τ

s
(ys)
st (4.9)

Equation 4.8 models the expected supply-to-demand ratio at a transplant center, t. It depends on

the following factors: (1) The y-intercepts at the various supply locations, (2) Supply and demand

volumes at s, and t, respectively, (3) Distances between the pairs of supply and demand locations

(τst)’s, (4) Maximum allowable sharing distance (τ ), (5) The probabilities of accepting an offer

as a function of position in the queue, and (6) Maximum number of offers before discarding

the organ. s
(ys)
st in equation 4.9 denotes the apportioned share of organs from s to t when the

y-intercept of the proximity score function at s is ys. Note that only ys is a variable.2 This implies

that, for a given set of ys’s, we can calculate s(ys)st offline and store in a look-up table. Let ys ∈ Y ,

where Y contains positive integers. Recall that we model the composite score of a candidate as

the sum of their MELD score and proximity score. Given this functional form, it is a reasonable to

postulate that the proximity score should have the same order of magnitude as the MELD score.

The proximity score has the upper bound as ys (when τst = 0). We assume Y = {1, ..., 20} in our

study. A higher value of ys places greater emphasis on distance (τst). Thus, it acts as a lever to

differentiate two transplant centers in terms of their respective priorities for an organ at s.

2We assume the maximum number of offers to be a constant.
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4.2.2 Heterogeneous Slopes Model

We now describe our optimization model. To design a fair allocation policy, we apply the

maximin equity principle to maximize the performance of the worst transplant center (i.e., we

maximize the value of the lowest s/d ratio across all transplant centers) in Stage 1. In Stage 2, we

reduce the disparity among the different transplant centers. To do this, we minimize the disparity

between the best and worst transplant centers, while ensuring the s/d ratio of the worst transplant

center remains at the optimum value obtained from the Stage 1 optimization. We now present the

Set-Partitioning formulations for the two stages.

4.2.2.1 Stage 1 Formulation

In Stage 1, we seek to maximize the s/d ratio of the worst transplant center.

[SP-1] Maximize λ (4.10)

subject to: λ ≤
∑

s:τst≤τ

∑
y∈Y

xsy s
(y)
st

dt
∀t ∈ T (4.11)∑

y∈Y

xsy = 1 ∀s ∈ S (4.12)

xsy ∈ {0, 1} ∀s ∈ S, ∀y ∈ Y (4.13)

Constraint (4.11) models λ as the lower bound of the s/d ratios across all transplant centers;

and the objective is to maximize this lower bound. Constraint (4.12) allows one assignment of y

to each donor hospital. xsy is a binary variable that takes value 1 if the y-intercept at s is y, and 0

otherwise. The set Y contains the possible values of y values.
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4.2.2.2 Stage 2 Formulation:

Once the optimal solution λ∗
[SP−1] to [SP-1] is obtained, we can solve [SP-2] to minimize

the maximum s/d ratio while ensuring that the minimum s/d ratio remains at least λ∗
[SP−1].

[SP-2] Minimize β

subject to: β ≥
∑

s:τst≤τ

∑
y∈Y

xsy s
(y)
st

dt
∀t ∈ T (4.14)

λ ≥ λ∗
[SP−1] (4.15)

All constraints from [SP-1] (4.16)

The optimal values of xsy obtained by optimizing [SP-1], followed by [SP-2], are used to

construct the new optimized geographical scheme. The optimization variable is the y-intercept at

a donor hospital. Varying the y-intercept directly affects the slope of the proximity score function.

Therefore, we refer our model to as Heterogeneous Slopes Model. The donor hospitals can have

different slopes of their proximity score functions.

4.3 Data and Results

4.3.1 Data

This study used data from the Scientific Registry of Transplant Recipients (SRTR). The

SRTR data system includes data on all donors, wait-listed candidates, and transplant recipients

in the U.S., submitted by the members of the Organ Procurement and Transplantation Network

(OPTN). The Health Resources and Services Administration (HRSA), U.S. Department of Health
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and Human Services provides oversight to the activities of the OPTN and SRTR contractors.

In the data encompassing four years (January 2015 to December 2018), the supply or the

total number of deceased-donors livers donated (and transplanted) from all donor hospitals (with

at least 5 organs) in the U.S. is 26,726. The patient pool is dynamic: new patients enlist, waiting

candidates die or become too sick for transplant and are removed, and the MELD scores get

updated periodically. We measure demand (44,295) as the total incident adult patients whose

MELD scores became at least 15 during the four years, which gives a national s/d ratio of 0.6034.3

There are two reasons for excluding low-MELD patients from the demand: (1) Patients with

MELD scores <15 have no survival benefit from transplantation [40]; therefore, our demand

measure is less sensitive to the number of low-MELD patients added to the waiting list, and

(2) Transplant centers differ in their practices of listing low-MELD patients, across the country

(which would create an artificial increase in demand for a transplant center listing low-MELD

patients compared to a transplant center that does not). In practice, the fraction of transplants

to low-MELD patients is relatively very low—about 1.40% (in the four years encompassing our

study), supporting the decision to exclude them. We consider Y set as {1,...,20}, and let τ equal

to 500 NM, 600 NM or 700 NM.

4.3.2 Results

We apply the set-partitioning optimization model to a setting where the supply locations are

1,193 donor hospitals and demand locations are 145 transplant centers.4 The distance between

a donor hospital and transplant center pair is taken from the SRTR’s LSAM. Consistent with
3We consider incident patients so that the model parameters are not biased due to accumulated disparity, and thus

are exogenous to the geographical scheme. We exclude Hawaii and Puerto Rico from the analysis.
4We used R 3.5.1 and the commercial solver Gurobi 8.1.1 to solve the set-partitioning optimization models on a

3.2 GHz 6-Core Intel Core i7 iMac with 32 GB RAM.
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the current policy donor hospitals in Alaska are considered to be situated at the Seattle Tacoma

Airport in Washington State.

Table 4.2 compares the s/d ratios across transplant centers. The ‘No Proximity Score’

model (τ = 500 NM) is the best representation of the current Acuity Circles policy (that draws a

circle of 500 NM around the donor hospital for sharing organs with the transplant centers within

that radius). Compared to the heterogeneous slopes policy, the current policy does a poor job in

equalizing s/d ratios across transplant centers. The heterogeneous slopes policy at τ = 500 NM

is able to keep the ratio at transplant centers between 0.56 and 0.61 (compared to the national s/d

ratio of 0.6034), while the current Acuity Circles policy has an s/d ratio variation between 0.36

and 0.87. The fixed slope policies (where all the donor hospitals have the same intercept values

in their proximity score functions, and thus slopes) do not help in equalizing the s/d ratios. In

other words, the ‘one-size-fits-all’ approach will not address the issue of geographic equity. As

we increase τ from 500 NM to 700 NM, the range of s/d ratios decreases in most cases.

We also conducted a numerical study using a LSAM simulation model [52], replicated in

Python (it is not possible to simulate the Heterogeneous Slopes model directly in LSAM, but by

using a recoded version in Python there is greater flexibility to do so). We simulated our proposals

and the Acuity Circles policy using the organ and patient arrival data, consisting of three years

(July 2013 to June 2016). We ran the simulation 10 times (the maximum allowed by LSAM) by

resampling the input files. We assume p1 = ... = pn = 0.89 (based on the data). We allowed

the maximum number of offers (for each organ), n to be 100. For optimizing the intercepts in

our integer program, we used the LSAM data on supply and demand. In Table 4.3, we report

a few important performance metrics. We see that as we increase τ , the benefit (compared to

the Acuity Circles policy) increases in terms of the life savings and reduction in the variance of
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Allocation Policy s/d ratios (across TCs)

τ : 500 NM 600 NM 700 NM

No Proximity Score 0.36-0.87 0.34-0.99 0.32-0.95
Heterogeneous Slopes Model [SP-2] 0.56-0.61 0.57-0.61 0.57-0.61
Fixed Slope (Intercept = 1) 0.36-0.87 0.34-0.99 0.32-0.95
Fixed Slope (Intercept = 2) 0.36-0.85 0.37-0.92 0.38-0.92
Fixed Slope (Intercept = 3) 0.25-0.97 0.3-0.88 0.34-0.89
Fixed Slope (Intercept = 4) 0.33-0.93 0.32-0.89 0.25-0.94
Fixed Slope (Intercept = 5) 0.34-0.98 0.32-0.93 0.32-0.92
Fixed Slope (Intercept = 6) 0.33-1 0.33-0.98 0.32-0.95
Fixed Slope (Intercept = 7) 0.34-0.99 0.32-0.97 0.33-0.98
Fixed Slope (Intercept = 8) 0.34-1 0.33-0.97 0.34-0.99
Fixed Slope (Intercept = 9) 0.33-1.03 0.33-0.98 0.33-0.97
Fixed Slope (Intercept = 10) 0.35-1.03 0.33-1 0.34-0.98
Fixed Slope (Intercept = 11) 0.35-1.06 0.33-1.04 0.34-1
Fixed Slope (Intercept = 12) 0.35-1.1 0.35-1.03 0.33-1
Fixed Slope (Intercept = 13) 0.26-1.1 0.35-1.05 0.33-1.04
Fixed Slope (Intercept = 14) 0.29-1.1 0.34-1.07 0.35-1.03
Fixed Slope (Intercept = 15) 0.29-1.1 0.33-1.09 0.34-1.04
Fixed Slope (Intercept = 16) 0.28-1.13 0.27-1.1 0.35-1.07
Fixed Slope (Intercept = 17) 0.29-1.15 0.29-1.1 0.34-1.07
Fixed Slope (Intercept = 18) 0.25-1.16 0.29-1.1 0.33-1.11
Fixed Slope (Intercept = 19) 0.25-1.14 0.28-1.13 0.27-1.11
Fixed Slope (Intercept = 20) 0.25-1.17 0.28-1.15 0.3-1.1

Table 4.2: Comparison of the s/d ratios (across transplant centers) between no proximity score
model, heterogeneous slopes model and fixed slopes models.

median MELD at transplant (vMMaT) across transplant centers.

Allocation Policy Avg. Deaths Avg. Travel distance (in NM) vMMaT

Acuity Circles 7,540.8 266.3 6.66
[SP-2], τ = 500 NM 7,511.9 283.6 6.54
[SP-2], τ = 600 NM 7,387.5 373 6.15
[SP-2], τ = 700 NM 7,329.4 472.4 5.02

Table 4.3: Comparison of various allocation policies using simulation.
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4.4 Conclusions

We use the Rawlsian maximin principle to minimize the variability in deceased donor liver

access across geographies. We develop an analytical model to calculate the s/d ratio at a transplant

center in the continuous distribution framework.

We propose a heterogeneous slopes policy, where every donor hospital has a unique slope

for its proximity score function. The benefit of the slopes policy is that they account for where

the organ supply and demand occur, and adjust the slopes to calibrate the extent of preference

to a nearby transplant center. A greater magnitude of the slope results in a greater degree of

differentiation (in their proximity scores, and thus composite scores) between any two transplant

centers. We find that reducing inherent differences in the s/d ratios at the transplant centers results

in saving lives and reduced geographic disparity. Our study can guide future policy discussions

in operationalizing the continuous scoring concept.
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Chapter 5: Conclusions and Future Research

5.1 Conclusions

Geographic inequity in organ access is the biggest issue that transplant stakeholders (the

U.S. Department of Health and Human Services, medical community, transplant hospitals, donor

hospitals, waiting list patients (including their families) and general public) have been facing for

more than two decades. The problem is nontrivial because of the efficiency considerations: the

quality of liver deteriorates with time, and it should be transplanted within 10-12 hours of its

recovery from the deceased-donor.

There are two key contributions of this thesis: (1) Developing an optimization framework to

equalize the supply (deceased donors)-to-demand (waiting list patients) ratios across the geogra-

phies, and (2) Developing a framework to accurately capture the strategic response of a patient

(i.e., change in their organ acceptance probability) due to a change in allocation policy. These

two critical elements in the past had been missing in the literature. The three essays in this

thesis illustrate that the current approach of broader sharing of organs does not solve the issue of

geographic disparity. Inherent disparity in supply-to-demand ratios across the geographies is at

the crux of the problem, and therefore, a policy that equalizes the supply-to-demand ratios across

the geographies achieves an equitable outcome at the lowest trade-off on efficiency metrics.

The modeling and solution frameworks we propose in this thesis is general enough to be
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applied to other organ settings as well. The transplantation system in the U.S. is going through

a major overhaul. A new distribution framework, Continuous Scoring, will be the future for all

the organ allocation policies (including liver). It is still in conceptual phase, and the exact policy

parameters have not been decided yet. This study can play a vital role in reshaping the future of

organ allocation policies in the U.S.

5.2 Future Research

This thesis focuses only on geographic inequity and do not consider other kinds of disparities

such as race, gender, socio-economic factors, organ size, and blood type. While the latter is an

extremely important concern, addressing it would necessitate developing a model to address the

former (i.e., geographic inequity). In other words, a model to address other spatial inequities will

be built on top of what we develop in this work. Developing a model to incorporate and mitigate

these additional disparities is an interesting direction for future research.
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Appendix A: Appendix to Chapter 2

A.1 Comparing Organ Quality

We use the metric, donor risk index (DRI), proposed by Feng et al. [19] to evaluate the

quality of the organs in our dataset. This index measures the quality of an organ using demographic

factors (age, race, height), cause and type of donor death, sharing type (local/regional/national),

and cold ischemia time. A higher DRI is associated with a greater risk of graft failure. Given that

we want to assess the quality of the organs at the time of recovery, we exclude cold ischemia time,

which depends on the transplant locations and assumes local sharing for an adequate comparison.

In Figure A.1, we compare the box plots of DRI across the regions. We see that there are no

significant differences in the distributions of organ quality across the regions.

Figure A.1: Comparison of organ quality across the regions using the donor risk index (DRI).
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A.2 Linearization of the s/d Ratio and Contiguity Constraints

To linearize the right-hand side of constraint (2.2) in [S-1], i.e.,
∑Nsup

i=1
1∑Ndem

k=1 dk xik

si xij ,

we introduce auxiliary variables: yij ≥ 0 and ti ≥ 0, which are defined as follows.

ti =
1∑Ndem

k=1 dk xik

∀i ∈ I (A.1)

yij = ti xij ∀i ∈ I, j ∈ J (A.2)

Together, they imply:

λ ≤
Nsup∑
i=1

si yij ∀j ∈ J (A.3)

Ndem∑
k=1

dk yik = 1 ∀i ∈ I (A.4)

A set of linear constraints (A.4) model equation (A.1). We note that ti ≤ 1 and,

yij =


0 if xij = 0

ti if xij = 1

. Because yij is a product of two variables and therefore non-linear, the

following linear constraints model yij = ti xij:

yij ≤ ti ∀i ∈ I, j ∈ J (A.5)

yij ≤ xij ∀i ∈ I, j ∈ J (A.6)

(1− xij) + yij ≥ ti ∀i ∈ I, j ∈ J (A.7)

yij, ti ≥ 0 ∀i ∈ I, j ∈ J (A.8)

99



Therefore, constraint (2.2) in [S-1] can be replaced by constraints (A.3)-(A.8). Constraint

(2.8) in [S-2] can be linearized identically.

Shirabe [46] describes flow-based contiguity constraints for districting problems. We adapt

these constraints to model receiving contiguity and sharing contiguity in our neighborhood frame-

work through equations (A.9)-(A.11) and (A.12)-(A.14), respectively. With receiving (sharing)

contiguity, the suppliers (recipients) assigned to a recipient (supplier) form a continuous geography

on the map. Let m1 (m2) be the maximum number of supply (demand) locations that can be

assigned to a demand (supply) location. Parameter aik = 1, if supply locations i and k are

geographically adjacent, and 0 otherwise. We use flow variables f j
ik to model receiving contiguity

and flow variables gijk to model sharing contiguity. Flow variable f j
ik denotes the flow from i to

k (only defined when aik = 1) destined for demand location j, while flow variable gijk denotes

the flow from j to k (only defined when ajk = 1) destined for supply location i. The first three

constraints involving the flow variables f j
ik ensure that if xij = 1 for a supply location i and a

demand location j that are non-adjacent, then every supply location on the path from i to j also

supplies demand location j. The next set of three constraints involving the flow variables gijk

ensure that if xij = 1 for a supply location i and a demand location j that are non-adjacent, then

every demand location on the path from i to j is also supplied by i.
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Nsup∑
k=1

f j
ik aik −

Nsup∑
k=1

f j
ki aki = xij ∀i ̸= j, i ∈ I, j ∈ J (A.9)

Nsup∑
k=1

f j
ki aki ≤ (m1 − 1)xij ∀i ∈ I, j ∈ J (A.10)

Nsup∑
k=1

f j
jk ajk = 0 ∀j ∈ J (A.11)

Ndem∑
k=1

gijk ajk −
Ndem∑
k=1

gikj akj = xij ∀i ̸= j, i ∈ I, j ∈ J (A.12)

Ndem∑
k=1

gikj akj ≤ (m2 − 1)xij ∀i ∈ I, j ∈ J (A.13)

Ndem∑
k=1

giik aik = 0 ∀i ∈ I (A.14)

f j
ik ≥ 0 ∀i, k ∈ I, j ∈ J (A.15)

gijk ≥ 0 ∀i ∈ I, k, j ∈ J (A.16)

Together constraints (A.9)-(A.16) refer to constraint (2.6) in [S-1].

A.3 Set Partitioning Model Computational Details

Table A.1 contains the computational details of the set-partitioning model run on four-digit

zip-clusters. We report the problem size, total number of cutting planes used by the solver, run

time until termination, nodes explored, simplex iterations, best objective, best bound, and MIP

gap. We observe that by two hours of running time, the MIP gap of [SP-1] and [SP-2] typically

reaches below 0.02% and 0.12%, respectively, which corresponds to the difference in the s/d ratio

at the fourth or higher decimal places between the best objective and best bound.
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τmax Size Cutting Run time Nodes Simplex Best Best MIP

(in NM) Rows Columns Planes (in secs) explored iterations obj. bound gap

350 [SP-1] 1525 19061 2 7200 3444938 7290609 0.519 0.519 0.01%
[SP-2] 1668 19062 22 6 1 2047 0.884 0.884 0.00%

400 [SP-1] 1527 24776 0 7200 2785686 9013065 0.537 0.537 0.01%
[SP-2] 1670 24777 0 7200 262484 20797966 0.611 0.610 0.12%

450 [SP-1] 1528 30362 6 45 1 10922 0.543 0.543 0.01%
[SP-2] 1671 30363 16 7200 72601 18971000 0.606 0.606 0.10%

500 [SP-1] 1528 35990 2420 7200 499437 6067640 0.551 0.551 0.02%
[SP-2] 1671 35991 0 7200 85424 30217420 0.605 0.604 0.03%

550 [SP-1] 1528 42175 3005 7200 220154 6747918 0.554 0.554 0.01%
[SP-2] 1671 42176 495 7200 44898 11247871 0.604 0.604 0.03%

600 [SP-1] 1528 48381 1936 7200 201431 1759417 0.555 0.555 0.01%
[SP-2] 1671 48382 93 7200 26765 10007894 0.602 0.602 0.08%

650 [SP-1] 1528 54323 1908 7200 209106 2543837 0.554 0.554 0.01%
[SP-2] 1671 54324 39 7200 28708 6409075 0.602 0.602 0.06%

700 [SP-1] 1528 59952 15 7200 837756 4521290 0.556 0.556 0.01%
[SP-2] 1671 59953 20 7200 22964 5031591 0.602 0.601 0.05%

Table A.1: Computational details of the set-partitioning model run on four-digit zip-clusters.

A.4 DSA Neighborhoods

Tables A.2, A.3, and A.4, present the neighborhoods obtained by our model based on the

DSA version when the maximum distance to any DSA in the neighborhood is constrained to 500

NM, 600 NM, and 700 NM, respectively. The column ‘Radius’ provides the radius (in terms of

the transplant volume-weighted distance, as discussed in Section 2.4.2) of each neighborhood.

The column ‘Neighbors’ contains the DSAs with which the DSA in the first column will share

its organs.
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DSA Radius Neighbors
(in NM)

ALOB 336 KYDA, ALOB, NCCM, TNDS, MSOP, AROR, SCOP, TNMS, FLUF, GALL, LAOP
AROR 305 MSOP, AROR, TXSB, TNMS, MOMA, MWOB, TXGC, LAOP, OKOP
AZOB 499 AZOB, CORS, UTOP, CASD, CAOP
CADN 366 HIOP, CADN, CASD, CAOP
CAGS 318 HIOP, CADN, CAOP
CAOP 499 HIOP, AZOB, UTOP, CADN, CASD, CAOP
CASD 366 HIOP, AZOB, CADN, CASD, CAOP
CORS 316 CORS, UTOP
CTOP 203 MAOB, NYFL, CTOP, PADV, NJTO, NYRT
DCTC 339 OHOV, NCNC, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, PADV, VATB, MDPC, OHLP, NJTO, OHLB, NYRT
FLFH 492 NCNC, ALOB, PRLL, NCCM, TNDS, FLMP, MSOP, SCOP, FLFH, FLUF, FLWC, GALL
FLMP 472 PRLL, FLMP, SCOP, FLFH, FLUF, FLWC, GALL
FLUF 422 NCNC, ALOB, PRLL, NCCM, TNDS, FLMP, MSOP, SCOP, FLFH, FLUF, FLWC, GALL, LAOP
FLWC 488 NCNC, ALOB, PRLL, NCCM, FLMP, MSOP, SCOP, FLFH, FLUF, FLWC, GALL
GALL 484 OHOV, NCNC, KYDA, ALOB, PATF, NCCM, DCTC, TNDS, FLMP, MSOP, AROR, SCOP, TNMS, VATB, MOMA, OHLP, FLFH, OHLB, FLUF, INOP, FLWC,

GALL, LAOP
HIOP NA HIOP, CADN, CASD, CAOP
IAOP 210 MNOP, WIUW, IAOP, NEOR
ILIP 447 OHOV, MNOP, KYDA, PATF, TNDS, WIUW, ILIP, AROR, IAOP, TNMS, MOMA, MWOB, OHLP, WIDN, NEOR, OHLB, INOP, MIOP
INOP 224 OHOV, KYDA, ILIP, OHLP, WIDN, OHLB, INOP, MIOP
KYDA 497 OHOV, NCNC, KYDA, ALOB, NYFL, PATF, NCCM, DCTC, TNDS, PADV, WIUW, ILIP, MSOP, AROR, IAOP, SCOP, TNMS, VATB, MDPC, MOMA, MWOB,

OHLP, WIDN, OHLB, FLUF, INOP, GALL, MIOP
LAOP 396 TXSA, ALOB, MSOP, AROR, TXSB, TNMS, TXGC, LAOP, OKOP
MAOB 170 MAOB, CTOP, NJTO, NYRT
MDPC 308 NCNC, MAOB, NYFL, PATF, CTOP, DCTC, PADV, VATB, MDPC, OHLP, NJTO, OHLB, NYRT
MIOP 482 OHOV, MNOP, KYDA, NYFL, PATF, NCCM, DCTC, TNDS, PADV, WIUW, ILIP, IAOP, VATB, MDPC, MOMA, OHLP, NJTO, WIDN, OHLB, INOP, NYRT,

MIOP
MNOP 270 MNOP, WIUW, IAOP, NEOR
MOMA 233 ILIP, AROR, TNMS, MOMA, MWOB
MSOP 406 ALOB, TNDS, MSOP, AROR, TXSB, TNMS, MOMA, TXGC, FLUF, GALL, LAOP
MWOB 477 MNOP, KYDA, WIUW, ILIP, AROR, IAOP, TXSB, TNMS, MOMA, MWOB, WIDN, CORS, NEOR, TXGC, INOP, OKOP
NCCM 403 OHOV, NCNC, KYDA, ALOB, PATF, NCCM, DCTC, TNDS, PADV, SCOP, VATB, MDPC, OHLP, FLFH, OHLB, FLUF, INOP, GALL
NCNC 489 OHOV, NCNC, KYDA, ALOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, SCOP, VATB, MDPC, OHLP, NJTO, FLFH, OHLB, FLUF, INOP, FLWC,

NYRT, GALL, MIOP
NEOR 390 MNOP, WIUW, IAOP, MOMA, MWOB, CORS, NEOR, OKOP
NJTO 188 MAOB, NYFL, CTOP, DCTC, PADV, MDPC, NJTO, NYRT
NMOP 282 AZOB
NVLV 308 AZOB, CADN, CASD, CAOP
NYAP 182 MAOB, NYFL, CTOP, PADV, NJTO, NYRT
NYFL 458 OHOV, MAOB, NYFL, PATF, CTOP, DCTC, PADV, VATB, MDPC, OHLP, NJTO, OHLB, INOP, NYRT, MIOP
NYRT 193 MAOB, NYFL, CTOP, PADV, MDPC, NJTO, NYRT
NYWN 234 NYFL, PATF, PADV, OHLB, MIOP
OHLB 459 OHOV, NCNC, KYDA, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, ILIP, SCOP, VATB, MDPC, MOMA, OHLP, NJTO, WIDN, OHLB,

INOP, NYRT, MIOP
OHLC 329 OHOV, KYDA, PATF, DCTC, TNDS, WIUW, ILIP, OHLP, WIDN, OHLB, INOP, MIOP
OHLP 307 OHOV, KYDA, PATF, NCCM, DCTC, TNDS, ILIP, VATB, MDPC, OHLP, WIDN, OHLB, INOP, MIOP
OHOV 284 OHOV, KYDA, PATF, NCCM, TNDS, ILIP, OHLP, WIDN, OHLB, INOP, MIOP
OKOP 475 TXSA, MSOP, AROR, IAOP, TXSB, TNMS, MOMA, MWOB, CORS, NEOR, TXGC, LAOP, OKOP
ORUO 234 WALC, HIOP, ORUO
PADV 235 MAOB, NYFL, PATF, CTOP, DCTC, PADV, VATB, MDPC, NJTO, NYRT
PATF 278 OHOV, NCNC, NYFL, PATF, DCTC, PADV, VATB, MDPC, OHLP, NJTO, OHLB, NYRT, MIOP
PRLL NA PRLL, FLMP, FLWC
SCOP 326 NCNC, KYDA, ALOB, NCCM, TNDS, SCOP, VATB, FLFH, FLUF, GALL
TNDS 493 OHOV, NCNC, KYDA, ALOB, PATF, NCCM, DCTC, TNDS, ILIP, MSOP, AROR, SCOP, TNMS, VATB, MDPC, MOMA, MWOB, OHLP, WIDN, FLFH,

OHLB, FLUF, INOP, GALL, MIOP, LAOP
TNMS 492 OHOV, KYDA, ALOB, NCCM, TNDS, ILIP, MSOP, AROR, IAOP, SCOP, TXSB, TNMS, MOMA, MWOB, OHLP, WIDN, TXGC, FLUF, INOP, GALL, LAOP,

OKOP
TXGC 276 TXSA, TXSB, TXGC, LAOP, OKOP
TXSA 363 TXSA, TXSB, TXGC, LAOP
TXSB 218 TXSA, TXSB, TXGC, OKOP
UTOP 480 AZOB, CORS, UTOP, CADN
VATB 196 NCNC, DCTC, PADV, VATB, MDPC
WALC 234 WALC, ORUO
WIDN 284 OHOV, WIUW, ILIP, IAOP, WIDN, INOP, MIOP
WIUW 426 OHOV, MNOP, WIUW, ILIP, IAOP, MOMA, MWOB, OHLP, WIDN, NEOR, OHLB, INOP, MIOP

Table A.2: Geographical allocation policy for DSAs when the maximum permitted distance to a
neighboring DSA is 500 NM

103



DSA Radius Neighbors
(in NM)

ALOB 517 OHOV, NCNC, KYDA, ALOB, NCCM, TNDS, MSOP, AROR, SCOP, TNMS, VATB, MOMA, OHLP, FLFH, TXGC, FLUF, INOP, FLWC, GALL, LAOP
AROR 569 OHOV, TXSA, KYDA, ALOB, TNDS, ILIP, MSOP, AROR, IAOP, TXSB, TNMS, MOMA, MWOB, WIDN, NEOR, TXGC, FLUF, INOP, GALL, LAOP, OKOP
AZOB 546 AZOB, CORS, UTOP, CADN, CASD, CAOP
CADN 366 HIOP, CADN, CASD, CAOP
CAGS 446 HIOP, ORUO, UTOP, CADN, CASD, CAOP
CAOP 499 HIOP, AZOB, UTOP, CADN, CASD, CAOP
CASD 265 HIOP, AZOB, CASD, CAOP
CORS 316 CORS, UTOP
CTOP 244 MAOB, NYFL, CTOP, PADV, MDPC, NJTO, NYRT
DCTC 346 OHOV, NCNC, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, PADV, SCOP, VATB, MDPC, OHLP, NJTO, OHLB, NYRT
FLFH 578 NCNC, ALOB, PRLL, NCCM, TNDS, FLMP, MSOP, SCOP, TNMS, VATB, FLFH, FLUF, FLWC, GALL, LAOP
FLMP 573 NCNC, ALOB, PRLL, NCCM, FLMP, SCOP, FLFH, FLUF, FLWC, GALL
FLUF 592 OHOV, NCNC, KYDA, ALOB, PRLL, NCCM, TNDS, FLMP, MSOP, AROR, SCOP, TNMS, VATB, OHLP, FLFH, FLUF, FLWC, GALL, LAOP
FLWC 330 PRLL, FLMP, FLFH, FLUF, FLWC, GALL
GALL 565 OHOV, NCNC, KYDA, ALOB, PATF, NCCM, DCTC, TNDS, PADV, FLMP, ILIP, MSOP, AROR, SCOP, TNMS, VATB, MDPC, MOMA, OHLP, FLFH, OHLB,

FLUF, INOP, FLWC, GALL, MIOP, LAOP
HIOP NA HIOP, CADN, CASD, CAOP
IAOP 335 MNOP, WIUW, ILIP, IAOP, MOMA, MWOB, WIDN, NEOR, INOP
ILIP 365 OHOV, MNOP, KYDA, TNDS, WIUW, ILIP, IAOP, MOMA, MWOB, OHLP, WIDN, OHLB, INOP, MIOP
INOP 571 OHOV, MNOP, NCNC, KYDA, ALOB, NYFL, PATF, NCCM, DCTC, TNDS, PADV, WIUW, ILIP, MSOP, AROR, IAOP, SCOP, TNMS, VATB, MDPC, MOMA,

MWOB, OHLP, NJTO, WIDN, NEOR, OHLB, INOP, NYRT, GALL, MIOP, OKOP
KYDA 497 OHOV, NCNC, KYDA, ALOB, NYFL, PATF, NCCM, DCTC, TNDS, PADV, WIUW, ILIP, MSOP, AROR, IAOP, SCOP, TNMS, VATB, MDPC, MOMA, MWOB,

OHLP, WIDN, OHLB, FLUF, INOP, GALL, MIOP
LAOP 396 TXSA, ALOB, MSOP, AROR, TXSB, TNMS, TXGC, LAOP, OKOP
MAOB 170 MAOB, CTOP, NJTO, NYRT
MDPC 407 OHOV, NCNC, KYDA, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, PADV, SCOP, VATB, MDPC, OHLP, NJTO, OHLB, NYRT, MIOP
MIOP 594 OHOV, MNOP, NCNC, KYDA, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, ILIP, IAOP, SCOP, TNMS, VATB, MDPC, MOMA, MWOB,

OHLP, NJTO, WIDN, NEOR, OHLB, INOP, NYRT, GALL, MIOP
MNOP 270 MNOP, WIUW, IAOP, NEOR
MOMA 600 OHOV, MNOP, NCNC, KYDA, ALOB, PATF, NCCM, TNDS, WIUW, ILIP, MSOP, AROR, IAOP, SCOP, TXSB, TNMS, MOMA, MWOB, OHLP, WIDN,

NEOR, OHLB, TXGC, FLUF, INOP, GALL, MIOP, LAOP, OKOP
MSOP 482 TXSA, KYDA, ALOB, NCCM, TNDS, MSOP, AROR, SCOP, TXSB, TNMS, MOMA, MWOB, FLFH, TXGC, FLUF, FLWC, GALL, LAOP, OKOP
MWOB 590 OHOV, TXSA, MNOP, KYDA, ALOB, TNDS, WIUW, ILIP, MSOP, AROR, IAOP, TXSB, TNMS, MOMA, MWOB, WIDN, CORS, NEOR, TXGC, INOP, MIOP,

LAOP, OKOP
NCCM 498 OHOV, NCNC, KYDA, ALOB, PATF, NCCM, DCTC, TNDS, PADV, ILIP, MSOP, SCOP, TNMS, VATB, MDPC, MOMA, OHLP, NJTO, FLFH, OHLB, FLUF,

INOP, FLWC, NYRT, GALL, MIOP
NCNC 570 OHOV, NCNC, KYDA, ALOB, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, ILIP, MSOP, SCOP, TNMS, VATB, MDPC, OHLP, NJTO, FLFH,

OHLB, FLUF, INOP, FLWC, NYRT, GALL, MIOP
NEOR 377 MNOP, IAOP, MOMA, MWOB, CORS, NEOR, OKOP
NJTO 254 MAOB, NYFL, PATF, CTOP, DCTC, PADV, VATB, MDPC, NJTO, NYRT
NMOP 282 AZOB
NVLV 308 AZOB, CADN, CASD, CAOP
NYAP 182 MAOB, NYFL, CTOP, PADV, NJTO, NYRT
NYFL 582 OHOV, NCNC, KYDA, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, PADV, WIUW, ILIP, SCOP, VATB, MDPC, OHLP, NJTO, WIDN, OHLB, INOP, NYRT,

MIOP
NYRT 195 MAOB, NYFL, CTOP, DCTC, PADV, MDPC, NJTO, NYRT
NYWN 326 MAOB, NYFL, PATF, CTOP, DCTC, PADV, MDPC, OHLP, NJTO, OHLB, NYRT, MIOP
OHLB 457 OHOV, NCNC, KYDA, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, ILIP, SCOP, VATB, MDPC, OHLP, NJTO, WIDN, OHLB, INOP,

NYRT, MIOP
OHLC 346 OHOV, KYDA, PATF, NCCM, DCTC, TNDS, WIUW, ILIP, MDPC, MOMA, OHLP, WIDN, OHLB, INOP, MIOP
OHLP 366 OHOV, NCNC, KYDA, NYFL, PATF, NCCM, DCTC, TNDS, PADV, ILIP, SCOP, VATB, MDPC, OHLP, WIDN, OHLB, INOP, MIOP
OHOV 599 OHOV, MNOP, NCNC, KYDA, ALOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, ILIP, MSOP, AROR, IAOP, SCOP, TNMS, VATB, MDPC,

MOMA, MWOB, OHLP, NJTO, WIDN, NEOR, OHLB, FLUF, INOP, NYRT, GALL, MIOP
OKOP 397 TXSA, AROR, TXSB, TNMS, MOMA, MWOB, NEOR, TXGC, LAOP, OKOP
ORUO 234 WALC, HIOP, ORUO
PADV 275 MAOB, NYFL, PATF, CTOP, DCTC, PADV, VATB, MDPC, NJTO, OHLB, NYRT
PATF 406 OHOV, NCNC, KYDA, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, ILIP, SCOP, VATB, MDPC, OHLP, NJTO, WIDN, OHLB, INOP, NYRT,

MIOP
PRLL NA PRLL, FLMP
SCOP 450 OHOV, NCNC, KYDA, ALOB, PATF, NCCM, DCTC, TNDS, PADV, SCOP, TNMS, VATB, MDPC, OHLP, FLFH, OHLB, FLUF, INOP, FLWC, GALL
TNDS 525 OHOV, NCNC, KYDA, ALOB, PATF, NCCM, DCTC, TNDS, PADV, ILIP, MSOP, AROR, IAOP, SCOP, TNMS, VATB, MDPC, MOMA, MWOB, OHLP, WIDN,

FLFH, OHLB, FLUF, INOP, FLWC, GALL, MIOP, LAOP
TNMS 594 OHOV, TXSA, NCNC, KYDA, ALOB, PATF, NCCM, TNDS, WIUW, ILIP, MSOP, AROR, IAOP, SCOP, TXSB, TNMS, VATB, MOMA, MWOB, OHLP, WIDN,

NEOR, FLFH, OHLB, TXGC, FLUF, INOP, FLWC, GALL, MIOP, LAOP, OKOP
TXGC 276 TXSA, TXSB, TXGC, LAOP, OKOP
TXSA 179 TXSA, TXSB, TXGC
TXSB 598 TXSA, ALOB, MSOP, AROR, TXSB, TNMS, MOMA, MWOB, CORS, NEOR, TXGC, LAOP, OKOP
UTOP 480 AZOB, CORS, UTOP, CADN
VATB 437 OHOV, NCNC, KYDA, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, SCOP, VATB, MDPC, OHLP, NJTO, OHLB, INOP, NYRT, GALL, MIOP
WALC 234 WALC, ORUO
WIDN 200 WIUW, ILIP, WIDN, INOP, MIOP
WIUW 248 MNOP, WIUW, ILIP, IAOP, WIDN, MIOP

Table A.3: Geographical allocation policy for DSAs when the maximum permitted distance to a
neighboring DSA is 600 NM.
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DSA Radius Neighbors
(in NM)

ALOB 684 OHOV, TXSA, NCNC, KYDA, ALOB, PATF, NCCM, DCTC, TNDS, PADV, FLMP, ILIP, MSOP, AROR, IAOP, SCOP, TXSB, TNMS, VATB, MDPC, MOMA,
MWOB, OHLP, WIDN, FLFH, OHLB, TXGC, FLUF, INOP, FLWC, GALL, MIOP, LAOP, OKOP

AROR 297 MSOP, AROR, TXSB, TNMS, MOMA, MWOB, LAOP, OKOP
AZOB 546 AZOB, CORS, UTOP, CADN, CASD, CAOP
CADN 655 WALC, HIOP, AZOB, ORUO, UTOP, CADN, CASD, CAOP
CAGS 318 HIOP, CADN, CAOP
CAOP 316 HIOP, AZOB, CADN, CASD, CAOP
CASD 537 HIOP, AZOB, UTOP, CADN, CASD, CAOP
CORS 316 CORS, UTOP
CTOP 343 MAOB, NYFL, PATF, CTOP, DCTC, PADV, MDPC, NJTO, NYRT
DCTC 421 OHOV, NCNC, KYDA, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, PADV, SCOP, VATB, MDPC, OHLP, NJTO, OHLB, INOP, NYRT, MIOP
FLFH 687 OHOV, NCNC, KYDA, ALOB, PRLL, NCCM, DCTC, TNDS, FLMP, MSOP, SCOP, TNMS, VATB, MDPC, OHLP, FLFH, FLUF, FLWC, GALL, LAOP
FLMP 287 PRLL, FLMP, FLFH, FLUF, FLWC
FLUF 674 OHOV, NCNC, KYDA, ALOB, PATF, PRLL, NCCM, DCTC, TNDS, FLMP, MSOP, AROR, SCOP, TNMS, VATB, MDPC, MOMA, OHLP, FLFH, OHLB, FLUF,

INOP, FLWC, GALL, LAOP
FLWC 488 NCNC, ALOB, PRLL, NCCM, FLMP, MSOP, SCOP, FLFH, FLUF, FLWC, GALL
GALL 671 OHOV, NCNC, KYDA, ALOB, NYFL, PATF, NCCM, DCTC, TNDS, PADV, FLMP, ILIP, MSOP, AROR, SCOP, TNMS, VATB, MDPC, MOMA, MWOB, OHLP,

NJTO, WIDN, FLFH, OHLB, TXGC, FLUF, INOP, FLWC, NYRT, GALL, MIOP, LAOP, OKOP
HIOP NA HIOP, CASD
IAOP 235 MNOP, WIUW, ILIP, IAOP, MWOB, WIDN, NEOR
ILIP 447 OHOV, MNOP, KYDA, PATF, TNDS, WIUW, ILIP, AROR, IAOP, TNMS, MOMA, MWOB, OHLP, WIDN, NEOR, OHLB, INOP, MIOP
INOP 510 OHOV, MNOP, NCNC, KYDA, ALOB, NYFL, PATF, NCCM, DCTC, TNDS, PADV, WIUW, ILIP, MSOP, AROR, IAOP, SCOP, TNMS, VATB, MDPC, MOMA,

MWOB, OHLP, WIDN, NEOR, OHLB, INOP, GALL, MIOP
KYDA 696 OHOV, MNOP, NCNC, KYDA, ALOB, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, ILIP, MSOP, AROR, IAOP, SCOP, TNMS, VATB,

MDPC, MOMA, MWOB, OHLP, NJTO, WIDN, NEOR, FLFH, OHLB, TXGC, FLUF, INOP, FLWC, NYRT, GALL, MIOP, LAOP, OKOP
LAOP 396 TXSA, ALOB, MSOP, AROR, TXSB, TNMS, TXGC, LAOP, OKOP
MAOB 170 MAOB, CTOP, NJTO, NYRT
MDPC 645 OHOV, NCNC, KYDA, ALOB, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, ILIP, SCOP, VATB, MDPC, OHLP, NJTO, WIDN, OHLB,

FLUF, INOP, NYRT, GALL, MIOP
MIOP 216 OHOV, ILIP, OHLP, WIDN, OHLB, INOP, MIOP
MNOP 270 MNOP, WIUW, IAOP, NEOR
MOMA 694 OHOV, TXSA, MNOP, NCNC, KYDA, ALOB, PATF, NCCM, DCTC, TNDS, WIUW, ILIP, MSOP, AROR, IAOP, SCOP, TXSB, TNMS, VATB, MDPC, MOMA,

MWOB, OHLP, WIDN, CORS, NEOR, OHLB, TXGC, FLUF, INOP, GALL, MIOP, LAOP, OKOP
MSOP 418 KYDA, ALOB, TNDS, MSOP, AROR, TXSB, TNMS, MOMA, TXGC, FLUF, GALL, LAOP, OKOP
MWOB 590 OHOV, TXSA, MNOP, KYDA, ALOB, TNDS, WIUW, ILIP, MSOP, AROR, IAOP, TXSB, TNMS, MOMA, MWOB, WIDN, CORS, NEOR, TXGC, INOP, MIOP,

LAOP, OKOP
NCCM 238 NCNC, KYDA, NCCM, TNDS, SCOP, VATB, GALL
NCNC 320 NCNC, KYDA, PATF, NCCM, DCTC, TNDS, PADV, SCOP, VATB, MDPC, OHLP, GALL
NEOR 377 MNOP, IAOP, MOMA, MWOB, CORS, NEOR, OKOP
NJTO 254 MAOB, NYFL, PATF, CTOP, DCTC, PADV, MDPC, NJTO, NYRT
NMOP 282 AZOB
NVLV 311 AZOB, UTOP, CADN, CASD, CAOP
NYAP 182 MAOB, NYFL, CTOP, PADV, NJTO, NYRT
NYFL 186 NYFL, PADV
NYRT 195 MAOB, NYFL, CTOP, DCTC, PADV, MDPC, NJTO, NYRT
NYWN 153 NYFL, OHLB
OHLB 484 OHOV, NCNC, KYDA, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, ILIP, SCOP, VATB, MDPC, MOMA, OHLP, NJTO, WIDN, OHLB,

INOP, NYRT, GALL, MIOP
OHLC 678 OHOV, MNOP, NCNC, KYDA, ALOB, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, ILIP, MSOP, AROR, IAOP, SCOP, TNMS, VATB,

MDPC, MOMA, MWOB, OHLP, NJTO, WIDN, NEOR, OHLB, FLUF, INOP, NYRT, GALL, MIOP, OKOP
OHLP 624 OHOV, MNOP, NCNC, KYDA, ALOB, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, ILIP, MSOP, AROR, IAOP, SCOP, TNMS, VATB,

MDPC, MOMA, MWOB, OHLP, NJTO, WIDN, OHLB, FLUF, INOP, NYRT, GALL, MIOP
OHOV 410 OHOV, NCNC, KYDA, ALOB, PATF, NCCM, DCTC, TNDS, PADV, WIUW, ILIP, SCOP, TNMS, VATB, MDPC, MOMA, OHLP, WIDN, OHLB, INOP, GALL,

MIOP
OKOP 418 TXSA, MSOP, AROR, TXSB, TNMS, MOMA, MWOB, NEOR, TXGC, LAOP, OKOP
ORUO 662 WALC, HIOP, ORUO, UTOP, CADN, CAOP
PADV 235 MAOB, NYFL, PATF, CTOP, DCTC, PADV, VATB, MDPC, NJTO, NYRT
PATF 544 OHOV, NCNC, KYDA, ALOB, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, ILIP, SCOP, VATB, MDPC, MOMA, OHLP, NJTO, WIDN,

OHLB, INOP, NYRT, GALL, MIOP
PRLL NA PRLL, FLMP, FLFH, FLWC
SCOP 263 NCNC, NCCM, TNDS, SCOP, VATB, FLUF, GALL
TNDS 694 OHOV, NCNC, KYDA, ALOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, WIUW, FLMP, ILIP, MSOP, AROR, IAOP, SCOP, TXSB, TNMS, VATB,

MDPC, MOMA, MWOB, OHLP, NJTO, WIDN, NEOR, FLFH, OHLB, TXGC, FLUF, INOP, FLWC, NYRT, GALL, MIOP, LAOP, OKOP
TNMS 561 OHOV, TXSA, NCNC, KYDA, ALOB, NCCM, TNDS, WIUW, ILIP, MSOP, AROR, IAOP, SCOP, TXSB, TNMS, MOMA, MWOB, OHLP, WIDN, NEOR,

OHLB, TXGC, FLUF, INOP, GALL, MIOP, LAOP, OKOP
TXGC 276 TXSA, TXSB, TXGC, LAOP, OKOP
TXSA 179 TXSA, TXSB, TXGC
TXSB 598 TXSA, ALOB, MSOP, AROR, TXSB, TNMS, MOMA, MWOB, CORS, NEOR, TXGC, LAOP, OKOP
UTOP 537 AZOB, ORUO, CORS, UTOP, CADN, CASD, CAOP
VATB 517 OHOV, NCNC, KYDA, ALOB, MAOB, NYFL, PATF, NCCM, CTOP, DCTC, TNDS, PADV, SCOP, VATB, MDPC, OHLP, NJTO, OHLB, FLUF, INOP, NYRT,

GALL, MIOP
WALC 234 WALC, ORUO
WIDN 423 OHOV, MNOP, KYDA, PATF, WIUW, ILIP, IAOP, MOMA, MWOB, OHLP, WIDN, OHLB, INOP, MIOP
WIUW 248 MNOP, WIUW, ILIP, IAOP, WIDN, MIOP

Table A.4: Geographical allocation policy for DSAs when the maximum permitted distance to a
neighboring DSA is 700 NM.
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Appendix B: Appendix to Chapter 3

B.1 Summary Statistics

Table B.1 reports the summary statistics of various patients, donors, and transplant attributes

used in the model. We see that the new patients’ age, MELD at listing, and life support status

remain almost the same in the Pre-Share 35 and Share 35 policy eras. There is a slight difference

in the distribution of the medical condition between the two periods. The donors’ age, race

distribution, and donation after circulatory death (DCD) status do not change much. However,

there is a difference in the cause of death distribution between the two periods. Thus, it is

important to control for the donor characteristics in the model. After the Share 35 implementation,

on average, offers were accepted later in the queue. Comparing the transplant sharing types, the

Share 35 policy resulted in a greater (lower) proportion of regional (local) sharing. Interestingly,

the cold ischemia time (CIT), time between organ recovery and transplantation decreased on

average (although the coefficient of variation is more than 40%). One might expect the CIT to

increase with broader sharing. However, CIT does not follow a linear relationship with distance

(due to switching the mode of transport, e.g., from driving to flying for a longer distance). In

addition, non-transport factors play a significant role in determining CIT. See Gentry et al. [24]

for a detailed discussion on modeling CIT.

In Figure B.1, for every MELD class, we plot the mean position at which the candidates
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in that MELD class received offers. We see a clear dip in offer positions under Share 35 to

MELD ≥35 candidates, suggesting that patients with a higher MELD were at the top of the offer

list. This observation is consistent with what one would expect with the Share 35 policy; organ

access increased (decreased) for candidates with a MELD ≥35 (MELD <35) in general.

We plot the year-wise trend of new patients joining the waiting list (demand) and deceased

donors (supply) in Figure B.2. The gap between supply and demand has been persisting. The

supply has been increasing; for example, it increased 30% from 2010 to 2018, while the demand

does not show a clear trend. To study the impact of the Share 35 policy, it is important to delineate

the effect of increased supply and demand changes from the Pre-Share 35 to Share 35 policy eras.

Of all the offers, 93.3% were made to the patient-donor pairs of identical blood types, and

only 2.4% and 4.3% were made to compatible and incompatible pairs, respectively. Therefore,

to keep our model simple and tractable, we do not consider blood type compatibility. Since 94%

of offers were made to patient-donor pairs of identical blood types and only 3% each were made

to compatible and incompatible pairs, therefore, to keep our model simpler, we ignore blood type

compatibility.

In Table B.2, we report the candidate’s offer acceptance probabilities in the Share 35 policy

era, and compare them with the Pre-Share 35 policy era in parantheses. We used a straightforward

metric to calculate the acceptance probability (ratio of the number of offers accepted and the

number of offers received). We see cases of both an increase and decrease in their acceptance

probabilities (e.g., MELD 6-14 in Region 10 saw a 6% increase, whereas MELD 33-34 in Region

6 saw a 26% decrease).

107



Characteristic Pre-Share 35 Share 35
(January 2010-June 2013) (July 2013-December 2018)

Patients
Age (in years): Mean/SD 54.9/10.3 55.8/11.0
MELD (at listing): Mean/SD 19.3/9.2 19.7/9.8
Life support status:

Yes 4% 5%
No 96% 95%

Medical condition:
Intensive care unit (ICU) 8% 3%
Hospitalized 12% 4%
Not hospitalized 80% 93%

Donors
Age (in years): Mean/SD 44.3/15.2 43.6/14.9
Race:

White 80% 80%
Black 17% 16%
Others 3% 4%

Cause of death:
Anoxia 26% 38%
Cerebrovascular accident (CVA) 40% 31%
Others 34% 30%

Donation after circulatory death:
Yes 13% 17%
No 87% 83%

Fraction of discards 0.252 0.250
Match
Position at acceptance: Mean/SD 10.6/38.0 15.2/42.5
Cold Ischemia Time (of accepted offers): Mean/SD 6.3/3.0 6.0/2.5
Sharing type (of accepted offers):

Local 78% 65%
Regional 20% 31%
National 3% 4%

Table B.1: Summary statistics of patient, donor, and transplant characteristics.
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Figure B.1: Comparison of positions at which offers were made to patients at different MELD
scores between policies (Status 1A is assigned a MELD score of 41).

Figure B.2: Supply and demand trends over time.
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B.2 Comparing the Organ Quality of Declined Offers

We use the metric, the donor risk index (DRI), proposed by Feng et al. [19] to evaluate

the quality of declined offers. This index measures the quality of an organ using demographic

factors (age, race, height), cause and type of donor death, sharing type (local/regional/national),

and CIT. A higher DRI is associated with a greater risk of graft failure. Because CIT is observed

only for accepted offers, we use the median value (=6.9 hours) in our calculation. In Figure B.3,

we compare the box plots of the DRI between the Pre-Share 35 and Share 35 policy eras. We see

that there are no significant differences in the distributions of organ quality.

B.3 Details on Logit Inclusive Value

In a dynamic model, agents (patients, in our case) have perceptions over future states. They

need to know the evolution of every element in the state space. If the number of elements is large,

it can make the model very complex. To make the problem tractable, a simplifying assumption

is often made: the evolution of the space space is approximated using a lower dimensional

Figure B.3: Comparison of the organ quality of declined offers between the Pre-Share 35 and
Share 35 policy eras using the donor risk index (DRI).
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MELD 6-14 MELD 15-28 MELD 29-32 MELD 33-34 MELD 35-36 MELD >36

Region 1 4.8% (1.5%) 4.5% (-2.8%) 6.1% (-7.6%) 13.9% (-10.4%) 26% (1.5%) 29.5% (-2.3%)

Region 2 1% (0.9%) 2.8% (-1.5%) 8% (-6.1%) 9.1% (-7.8%) 17% (-3%) 22.3% (-3.6%)

Region 3 3.4% (1%) 12.1% (-0.1%) 23.6% (-11.1%) 26.4% (-15%) 37.6% (1.9%) 36.9% (-8.6%)

Region 4 0.7% (0.4%) 2.5% (-4.3%) 9.2% (-18%) 16.8% (-21.3%) 25% (-11.7%) 32% (-4.9%)

Region 5 1.2% (0.9%) 2.1% (-0.8%) 3.4% (-7.3%) 5.1% (-10.9%) 10.9% (-13.4%) 23.7% (-9%)

Region 6 0% (0%) 6.1% (-6.3%) 14.9% (-17.7%) 20.4% (-25.9%) 27.2% (-24.8%) 28.6% (-17.1%)

Region 7 1% (-0.3%) 3.4% (-6.4%) 9.7% (-9.9%) 14.5% (-14%) 22.4% (-10.5%) 27.8% (-8.9%)

Region 8 0.5% (0.2%) 7.5% (-2.1%) 16.8% (-19.6%) 20.8% (-19.3%) 34.5% (4.2%) 38.3% (-3.4%)

Region 9 0.9% (0.8%) 1.4% (-0.3%) 2.6% (-5.1%) 6.4% (-9.6%) 14.1% (-6.9%) 25.6% (-11%)

Region 10 8.3% (6.2%) 10.7% (-5.2%) 20.6% (-12.9%) 20.3% (-10.6%) 34.6% (-8.5%) 40.3% (0.6%)

Region 11 1.5% (1.3%) 8.7% (-5.2%) 21.4% (-18%) 24.6% (-15.9%) 42.4% (-6.2%) 45% (0.8%)

Table B.2: Offer acceptance probabilities (in the Share 35 policy era) as a function of the MELD
category. Parentheses report the change, compared to the Pre-Share 35 policy era. Values are
calculated using summary statistics.

Markov process [29]. In other words, agents are considered boundedly rational, and they use

fewer elements to form predictions about the future.

In our context, the graft survival probability is calculated using the SRTR Risk Adjustment

Model,1 which is based on a total of 41 predictors (Zit) that include the candidate’s and donor’s

medical attributes, and CIT. Including all the 41 predictors in the state space will result in a curse

of dimensionality. Following the extant literature [29] on the logit inclusive value, we simplify

the evolution of those 41 medical attributes using the evolution of one-dimensional GSit.

We model GSit as a function of the MELD category (MELDit), age group (Rec ageit), life

support status (Rec life supportit), medical condition (Rec med condit), and organ type (Qit).

For every combination of the (values taken by the) above variables, we first filter the offers.

For this subset of offers, we observe the values of all the 41 predictors,2 and we calculate the

1https://www.srtr.org/reports-tools/posttransplant-outcomes/ accessed on July 12,
2020.

2We use a constant value of CIT (=6.9 hours) in our model. We do not consider GSit to depend on Sharing typeit.
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graft survival probability (using the SRTR Risk Adjustment Model) for each offer. The average

of the graft survival probabilities is the value of GSit. In other words, we group the offers by

(MELDit,Rec ageit,Rec life supportit,Rec med condit, Qit), and GSit is the average of the graft

survival probabilities for these offers. Thus, GSit is always ≤1. In this way, we approximate the

evolution of 41-dimensional Zit with the evolution of GSit, which is one-dimensional. As a

sanity check, we regress GSit with the MELD category, age group, life support status, medical

condition, and organ type in Table B.4. We find that the signs and the relative ordering of the

regression estimates are reasonable.

B.4 State Transition Probability

A patient’s health condition evolves stochastically and is a major determinant of her priority

in a queue in the organ allocation policies studied. The state transition probability is written as:

P(Si,t+1|Sit, dit = 0) = P(MELDi,t+1,Rec agei,t+1,Rec life supporti,t+1,Rec med condi,t+1,

Qi,t+1, Zi,t+1, Sharing typei,t+1|MELDit,Rec ageit,Rec life supportit,

Rec med condit, Qit, Zit, Sharing typeit, dit = 0) (B.1)

Because the priority of a candidate on the offer list does not depend on past offers, by dropping

the history of the previous period’s offer, the transition probability can be rewritten as:

P(Si,t+1|Sit, dit = 0) = P(MELDi,t+1,Rec agei,t+1,Rec life supporti,t+1,Rec med condi,t+1,

Qi,t+1, Zi,t+1, Sharing typei,t+1|MELDit,Rec ageit,Rec life supportit,

Rec med condit, Zit, dit = 0) (B.2)
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We assume that the MELD state transition is the same for all age groups, life support

statuses, and medical conditions (the pooling of various patient types enables the estimation of

the MELD state transition matrix with greater confidence than estimating multiple (18 in our case,

see Section 3.6.2) matrices for different patient types). Death is an absorbing state. Next, when

an organ arrives, the allocation policy does not depend on the candidate’s age, life support status,

or medical condition. Thus, only MELD plays a role in determining the organ offer probabilities,

P(Q), in a policy. These allow us to simplify the transition probability as:

P(Si,t+1|Sit, dit = 0) = P(MELDi,t+1|MELDit, dit = 0)× P(Qi,t+1|MELDi,t+1, dit = 0)×

P(Rec agei,t+1,Rec life supporti,t+1,Rec med condi,t+1, Zi,t+1, Sharing typei,t+1|

MELDi,t+1, Qi,t+1,MELDit,Rec ageit,Rec life supportit,Rec med condit, Zit, dit = 0) (B.3)

We estimate P(MELDi,t+1|MELDit, dit = 0) from the data (January 2003 to February

2019) on MELD transitions (Table B.3). To estimate P(Qi,t+1|MELDi,t+1, dit = 0), we adopt an

approach identical to [6]:

P(Qi,t+1|MELDi,t+1, dit = 0) =

∑
i # of offers of type Qi,t+1 candidate i received at MELDi,t+1∑

i # of days candidate i waited at MELDi,t+1

(B.4)

It is possible that a candidate does not receive an offer on a given day. We add no offer to

Qit (calculated as per equation B.4) and Sharing typeit (if Qit = no offer, Sharing typeit=no offer,

and vice versa).

Now, we are left with modeling the evolution of Sharing typeit, Zit, Rec ageit,

Rec life supportit, and Rec med condit. The Sharing type depends on the candidate’s MELD

and organ characteristics. Low-quality organs are usually declined more often and are likely
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MELD class

MELD 6-14 MELD 15-28 MELD 29-32 MELD 33-34 MELD 35-36 MELD >36 Death

MELD 6-14 0.9958 0.0036 0.0002 0.0001 0.0000 0.0000 0.0003
MELD 15-28 0.0049 0.9922 0.0016 0.0002 0.0001 0.0002 0.0008
MELD 29-32 0.0041 0.0120 0.9693 0.0082 0.0022 0.0020 0.0021
MELD 33-34 0.0042 0.0070 0.0092 0.9508 0.0166 0.0086 0.0036
MELD 35-36 0.0062 0.0112 0.0114 0.0114 0.8809 0.0688 0.0102
MELD >36 0.0098 0.0123 0.0051 0.0036 0.0059 0.9335 0.0299

Death 0 0 0 0 0 0 1

Table B.3: MELD transition matrix.

to be shared nationally. Sicker patients get higher priority; therefore, they are likely to receive

local/regional offers more often. Thus, we model the transition of Sharing typeit as in equation B.6.

Next, Zit consists of 41 predictors, each of which takes a set of values. Including them in the

structural model will cause a state space explosion and impede the transition probability matrix

estimation. We use the logit inclusive value technique to simplify the evolution of 41 predictors

using the transition of one-dimensional GSit (see Section B.3). We replace Zit with GSit in

the state transtion probability expression (equation B.5). A patient predicts the value of GSi,t+1

using (MELDi,t+1,Rec agei,t+1,Rec life supporti,t+1,Rec med condi,t+1, Qi,t+1). Next, the data

do not include the patient’s transition of life support or medical condition. Only the MELD of

the patient evolves over time. Patients differing in age group, life support status, and medical

condition can be thought of as different patient types. These assumptions allow us to simplify the

transition probability to:

114



P(Si,t+1|Sit, dit = 0) = P(MELDi,t+1|MELDit, dit = 0)× P(Qi,t+1|MELDi,t+1, dit = 0)×

P(GSi,t+1|MELDi,t+1,Rec agei,t+1,Rec life supporti,t+1,Rec med condi,t+1, Qi,t+1, dit = 0)×

P(Sharing typei,t+1|MELDi,t+1, Qi,t+1, dit = 0)×

1{Rec agei,t+1=Rec ageit,Rec life supporti,t+1=Rec life supportit,Rec med condi,t+1=Rec med condit}, (B.5)

where P(Sharing typei,t+1|MELDi,t+1, Qi,t+1, dit = 0) is estimated as:

∑
i # of offers of type Qi,t+1 received at MELDi,t+1 that have Sharing typei,t+1∑

i # of offers of type Qi,t+1 received at MELDi,t+1

(B.6)

The MELD transition matrix and GSit are estimated based on the data of the entire U.S.

However, the estimation of P(Qi,t+1|MELDi,t+1, dit = 0) and P(Sharing typei,t+1|MELDi,t+1,

Qi,t+1, dit = 0) are done for every DSA-policy era pair separately (while evaluating a policy

that uses TC instead of DSA, we estimate the quantities for every TC). This is because the organ

offer and sharing-type probabilities might differ across the DSAs and, in the Pre-Share 35 and

Share 35 policy eras.

B.5 Log-Likelihood Function

When an offer is made, the probability of accepting an offer, equation (3.6), can be rewritten

as:

P (dit = 1|Sit) =
eEU(Sit)

eEU(Sit) + e−EW (Sit)+δEV (Sit)
, (B.7)

Taking the log of both sides,
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ln (P (dit = 1|Sit)) = ln
[
eEU(Sit)

]
− ln

[
eEU(Sit) + e−EW (Sit)+δEV (Sit)

]
(B.8)

Also, ln (P (dit = 0|Sit)) = ln
[
e−EW (Sit)+δEV (Sit)

]
− ln

[
eEU(Sit) + e−EW (Sit)+δEV (Sit)

]
(B.9)

The log-likelihood of a candidate’s observed decision is:

{ln (P (dit = 1|Sit))}dit × {ln (P (dit = 0|Sit))}(1−dit) (B.10)

Grouping over all patients’ decisions, the log-likelihood function is:

∑
i,t

(
1{dit=1} ln (P (dit = 1|Sit)) + 1{dit=0} ln (P (dit = 0|Sit))

)
=

∑
Sit

(
nSit
accept ln (P (dit = 1|Sit)) + nSit

decline ln (P (dit = 0|Sit))
)

=
∑
Sit

nSit
accept

(
EU(Sit)− ln[eEU(Sit) + e−EW (Sit)+δEV (Sit)]

)
+

nSit
decline

(
−EW (Sit) + δEV (Sit)− ln[eEU(Sit) + e−EW (Sit)+δEV (Sit)]

)
=

∑
Sit

nSit
acceptEU(Sit) + nSit

decline(−EW (Sit) + δEV (Sit))−

(nSit
accept + nSit

decline)× (ln[eEU(Sit) + e−EW (Sit)+δEV (Sit)]) (B.11)

Every candidate i has an associated state Sit at time t; therefore, we can sum over the

elements in the state space, accounting for the number of candidates in those states (instead of

summing over the candidates and time periods when they made the decisions). The first equality

follows from this fact, where nSit
accept and nSit

decline denote the number of candidates who accepted
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Independent variable Estimate

Intercept 0.9582∗∗∗

MELD 15-28 0.0028
MELD 29-32 -0.0058∗

MELD 33-34 -0.008∗∗

MELD 35-36 -0.0127∗∗∗

MELD >36 -0.0203∗∗∗

Candidate age group: R2 (45-65 years) -0.0211∗∗∗

Candidate age group: R3 (≥65 years) -0.0268∗∗∗

Candidate life support: Yes -0.0492∗∗∗

Candidate medical condition: H -0.0182∗∗∗

Candidate medical condition: ICU -0.0649∗∗∗

Donor controls: Yes
No. of parameters: 58

(Adjusted) R-squared = (0.5438) 0.5518
No. of observations = 3,264

***p < 0.001; **p < 0.01; *p < 0.05

Table B.4: Estimation results of regressing GS.

and declined the offers in state Sit, respectively.

B.6 Details on Identification of βGS

We want to check whether the variables (on which we rely to identify GSit, and whose

variation we observe in the data) are correlated with GSit or not. In Table B.4, we regress GSit

with the MELD category, age group, life support status, medical condition, and organ type. We

find that most of the regression estimates are statistically significant, and 55% of the variability

in GSit is explained by the independent variables used in the regression. Thus, we can identify

GSit in the structural model through the variation of these independent variables in the observed

data.
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B.7 Relaxing the Assumption of a Fixed Value of CIT

In our main model, we assumed a fixed value of CIT and endogenized sharing type (which

captured the effect of CIT) with the allocation policy. As a robustness check, we relax the

assumption and build a CIT prediction model (a linear regression model). We need a prediction

model because CIT is only observed for accepted offers, and not for declined offers. We then

used the predicted CIT values (instead of a fixed value of 6.9 hours) in calculating the one-year

graft survival probability. In Table B.5, we compare the structural model estimates (when we use

fixed CIT versus the predicted CIT). We find that there’s only a slight change in the estimates

of the utility and waiting cost functions parameters. The estimates of the parameters associated

with regional and national sharing are closer to zero in the predicted CIT model than the fixed

CIT model. This is because some of the disutilities (associated with regional/national sharing)

are captured by the higher CIT in the predicted CIT model. Although the log-likelihood value

is slightly better in the latter case, we prefer to use the fixed CIT model in our main analysis

due to the following reasons: (1) Nonavailability of the key variables (mode of organ transport)

for predicting CIT; (2) In counterfactual studies, we would need to predict CIT. Because we

are less confident in the CIT prediction model, the prediction inaccuracies will make the policy

evaluation less reliable; and (3) The measurement error in CIT (due to using a predicted value)

will be passed over to the structural model.
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Variable Parameter Fixed CIT Predicted CIT

Estimate (SE) Estimate (SE)

Utility Function:
Intercept β0 -21.7803 (0.3145) -22.5536 (0.3257)
Sharing type: Regional

βSharing
-1.0348 (0.0113) -0.9655 (0.0114)

Sharing type: National -2.3328 (0.0243) -2.0680 (0.0247)
Graft survival probability (GS) βGS 19.5200 (0.3353) 20.3111 (0.3468)

Waiting Cost Function:
Death ωd 0.1160 (0.0007) 0.1153 (0.0007)
Candidate age group: R2 (45-65 years)

ωAge
0.0057 (0.0002) 0.0058 (0.0002)

Candidate age group: R3 (≥65 years) 0.0061 (0.0003) 0.0063 (0.0003)
Candidate life support: Yes ωLS 0.0134 (0.0008) 0.0130 (0.0008)
Candidate medical condition: H

ωMC
0.0114 (0.0004) 0.0115 (0.0004)

Candidate medical condition: ICU 0.0229 (0.0008) 0.0232 (0.0008)

No. of observations 890,402 890,402
Log-likelihood -173,630.9 -173,579.2

Table B.5: Comparison of the estimation results of the structural models (when CIT is fixed
versus predicted).

B.8 Iterative Method for Estimating the Equilibrium

We simulate different organ allocation policies. The common inputs across the policies are

the sampled organ and candidate arrivals, the MELD transition matrix, and the estimates from

the structural model. We randomly sample 5,000 patients and 3,600 donors from the 11 regions,

which arrive at different points in time (t = 1, ..., 730). Every organ is offered to a maximum of

500 candidates (which is close to the 99th percentile in the actual dataset) before being discarded.

We let 34% of the patients be on the waiting list at t = 1, and the initial MELD distribution

of the patients is chosen so that they represent the actual data. We consider two patient groups

({(Rec age:<45 years, Rec life support=‘No’, Rec med cond=‘NH’) and (Rec age: (45 − 65)

years, Rec life support=‘No’, Rec med cond=‘NH’)}, which constitutes 83% of the patient pop-
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ulation in the UNOS data) and 48 organ types in the simulation study. Various patient groups may

have different probabilities of acceptance for the same organ due to differences in the expected

utilities (derived from the transplant) and waiting costs. The equilibrium behavior of each group

will depend on the presence of the others; further, by considering two groups in our study, we

capture their interactions in the equilibrium offer acceptance probabilities. The steps (followed

by the pseudo algorithm) to estimate the steady-state equilibrium (for each allocation policy)

using the iterative method are given below:

1. Start with the organ offer and sharing-type probabilities: P(k)(Qit|MELDit) and

P(k)(Sharing typeit|MELDit, Qit). This enables us to calculate the state transition matrix,

Π(k). Using the ‘inner’ algorithm of the nested fixed point algorithm, estimate EV (k)(.).

When k = 0, we start with arbitrary values of the above quantities. Skip the next step if

k = 0.

2. If ||EV (k)(.)− EV (k−1)(.)||∞ < ε1, stop, or else go to the next step. We use ε1 = 10−5.

3. Calculate the probability of acceptance: P (k)(dit = 1|Sit) =
eEU(Sit)

eEU(Sit)+e−EW (Sit)+δEV (k)(Sit)
.

4. Policy simulation: For an allocation policy, we analytically calculate the expected number

of offers, expected number of transplants, and expected waiting period by any time t. Using

analytical expressions avoids the randomness introduced due to candidates’ accept/decline

decisions and their MELD transitions, which helps achieve faster convergence with tighter

tolerance limits. First, we create a table of states for every geography (DSA or TC) and

tabulate the patient counts in those states. Each state has its own probability of acceptance.

A patient’s state might transition to other states (the patient’s geography does not change).
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At different points in time, new patients join the waiting list, and donors arrive; some

patients receive offers, get a transplant, and leave the system. To analytically calculate the

expected number of offers received and transplants (to patients in various MELD classes

and geographies) due to an organ arriving at time t, we sum the finite geometric series

sequentially in the order (determined by the allocation policy) in which the offers are made

to the various patient groups. The patients who received transplants are removed from

the waiting list. Using the MELD transition matrix, we calculate the expected number of

patients transitioning to different MELD categories at time t+1 and update the waiting list.

New patients who join the waiting list at time t + 1 are added. If no donor arrives at time

t + 1, only the MELD transitions occur. We can track the expected number of patients on

the waiting list, number of offers received, and number of transplants at different instances

of t. This enables us to calculate the quantities of interest to us, which are the organ offer

and sharing-type probabilities: P(k)(Qit|MELDit) and P(k)(Sharing typeit|MELDit, Qit)

in the kth step of the iterative method.

5. Update k to k + 1. Go to Step 1.

Each iteration took approximately 25 hours for policies using the TC as the geographic unit

(and approximately nine hours for DSA-based policies), and we were able to achieve convergence

within 10 iterations for every policy. For the Acuity Circles policy, we define ‘local’ sharing if the

distance between the donor hospital and the TC is <66 NM (average of the distance between the

donor hospital and TC pairs in the same DSA), ‘regional’ sharing if the distance is ≥66 NM and

<262 NM (average of the distance between the donor hospital and TC pairs in the same region),

and ‘national’ otherwise.
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Algorithm 1 Steady State Equilibrium
Input: Candidate and organ characteristics, allocation policy, structural parameters (β0, βGS,

βSharing, ωd, ωAge, ωLS, ωMC), MELD transition matrix. Let t be the arrival time of an
organ.

Output: EV ∗(Sit),P∗(Qit|MELDit),P∗(Sharing typeit|MELDit, Qit).
1 Initialize k=0 and beliefs EV k(Sit),Pk(Qit|MELDit), and Pk(Sharing typeit|MELDit, Qit) for

all possible values of Sit, Qit,MELDit and Sharing typeit.
repeat

2 Πk ← Compute state transition matrix (see equation B.5)
Initialize m = 0 and EV m(.)
repeat

3 EV m(.)← Πk × ln
[
eEU(.) + e−EW (.)+δEV m(.)

]
m← m+ 1

4 until m ≥ 1,
∥∥EV m(.)− Π× ln

[
eEU(.) + e−EW (.)+δEV m(.)

]∥∥
∞ < 10−9;

5 EV k(.)← EV m(.)
pkacpt(Sit) := P k(dit = 1|Sit) ← Compute offer acceptance probabilities ∀Sit (see
equation B.7)
Pk(Qit|MELDit),Pk(Sharing typeit|MELDit, Qit)← Policy Simulation (pkacpt(.))
k ← k + 1

6 until k > 1,
∥∥EV k(.)− EV k−1(.)

∥∥
∞ < 10−5;

7 EV ∗(Sit)← EV k(Sit),P∗(Qit|MELDit)← Pk(Qit|MELDit),
P∗(Sharing typeit|MELDit, Qit)← Pk(Sharing typeit|MELDit, Qit)

B.9 Numerical Study to Derive Insights from the Structural Model

The allocation policies essentially differ in the utility of waiting or the future prospects

of being offered an organ (through the expected future value, EV (Sit)). The objective of this

exercise is to generate insights about how a patient would react to the possibility of a transplant

based on her health status and her future prospect of being offered an organ. This, in turn, depends

on the organ offer probability, which depends on the supply and demand at the various DSAs and

the allocation policy in place. For this reason, we study the effect of a change in supply and

demand on a patient’s organ acceptance behavior.

Setup

We simulate the organ and candidate arrivals for a two-year time period (t = 1, ..., 730). We use a
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stylized setup of two regions and three DSAs (Region A: DSA 1 and DSA 2; Region B: DSA 3),

each with a single TC, in our numerical study. We let 34% of the patients be on the waiting list at

t = 1, and the initial MELD distribution of the patients is chosen so that they represent the actual

data. We only consider a single patient type (Rec age: (45 − 65) years, Rec life support=‘No’,

Rec med cond=‘NH’), and a single organ type (Don age: (18− 39) years, Don race = ‘White’,

Don cod = ‘Others’, Don dcd = ‘No’). They represent the most frequent patient and organ types.

We study a total of five settings of demand and supply across the DSAs (Set 1,..., Set 5;

see Table 3.5). The organ and the candidate’s arrival times are random; we run 20 iterations

for each setting. The steady state equilibrium organ acceptance probabilities are estimated using

Algorithm 1 in Section B.8. We consider two organ allocation policies: Share 35 and the Acuity

Circles. The insights, as we will see, remain the same.

Discussion of Insights

In Table 3.5, we report the probability of offer acceptance (95% confidence interval) as a function

of a patient’s MELD category and DSA. We select Set 1 as the baseline scenario: a similar

supply and demand volume (in aggregate) is there at Region A and Region B, and at DSA 1 and

DSA 2. We then change either the demand or s/d ratio, one at a time. We conduct an intra-

set analysis (discuss the results of each set on its own), and an inter-set analysis (compare a set

with the baseline setting, Set 1). Before we proceed, it is useful to do a quick sanity check.

The two DSAs in Region A have similar characteristics in Set 1, Set 3 and Set 5. Therefore,

the probability of offer acceptance should also be the same for a patient in DSA 1 and DSA 2

(for a given MELD category and a given set). Our results are consistent with our expectation,

i.e., the confidence intervals overlap. We note that there are more observations for lower-MELD

categories; therefore, the confidence interval is smaller for lower-MELD categories.
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Set 1 (baseline setting): The aggregate s/d ratio is the same for Regions A and B. One may

expect that the probability of offer acceptance should also be the same. However, sharing within

Region B is all local, whereas sharing within Region A will be a mix of local and regional.

Therefore, the behavior of Region B patients might be different from their counterparts in Region

A.

We find that DSA 3 patients are more selective than DSA 1 and 2 patients. This selective

nature is more prominent in middle-MELD categories (such as MELD 29-34). For a lower-

MELD patient to receive an organ offer, it has to be declined by the higher-MELD patients of

both the regions. Thus, we do not see a significant difference between the organ acceptance

probabilities between the two regions in lower-MELD patients. Higher-MELD (MELD ≥ 35)

patients do not have significant difference in organ access, in this stylized model, due to broader

sharing under both the Share 35 and Acuity Circles policies.

Set 2 (and its comparison with Set 1): In Set 2, we decrease the supply at DSA 2 such that

the new s/d ratio in DSA 2 becomes 0.5 (from 0.7). The DSA 2 patients have a higher probability

of offer acceptance than DSA 1 patients due to lesser organ access. This aggressive behavior is

especially at lower MELD scores (the impact of difference in the s/d ratio is attenuated at higher

MELD scores due to the prioritization of higher-MELD patients through broader sharing).

Upon comparing with Set 1, we see that DSA 2 patients react by increasing their probability

of offer acceptance (especially at MELD 6-32). We also observe that a decrease in supply at

DSA 2 affects other DSAs as well. DSA 1 patients became aggressive (than Set 1), especially

at MELD 6-28. DSA 3 patients were less impacted than DSA 1 patients, and we did not see a

significant change in their probability of offer acceptance (compared to Set 1).

Set 3 (and its comparison with Set 1): In Set 3, we decrease the supply at DSA 3 such that
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the new s/d ratio in DSA 3 becomes 0.5 (from 0.7). The DSA 3 patients have a higher probability

of offer acceptance than DSA 1 and 2 patients in lower-MELD categories (MELD 6-28).

Upon comparing with Set 1, we see that DSA 3 patients react by increasing their probability

of offer acceptance (especially at MELD 6-32). DSA 1 and 2 patients also felt the effect, and they

became more aggressive (than Set 1), especially at MELD 6-32.

Set 4 (and its comparison with Set 1): In Set 4, we increase the supply and demand volume

at DSA 2 by 40%. The DSA 2 patients became more selective than DSA 1 patients at MELD 15-

28 (and MELD 29-32 in the Share 35 policy but not in the Acuity Circles policy) due to an

enlarged supply from where the patients could receive an offer.

Upon comparing with Set 1, we see that DSA 2 patients react by becoming more selective,

especially at MELD 15-36 (except that MELD 33-34 did not see a significant effect in the Acuity

Circles policy). DSA 1 and DSA 3 patients also became more selective (than Set 1), especially

at MELD 29-36 and MELD 29-34, respectively. The selectiveness in the patient’s behavior

(compared to Set 1) is driven by the enlarged supply (even though demand also proportionally

increased) from where the patients could receive an offer.

Set 5 (and its comparison with Set 1): In Set 5, we increase the supply and demand volume

at DSA 3 by 40%. The DSA 3 patients are more selective than DSA 1 and 2 patients at MELD 15-

34.

Upon comparing with Set 1, we see that DSA 3 patients react by becoming more selective,

especially at MELD 15-36. DSA 1 and 2 patients also became more selective (than Set 1),

especially at MELD 29-36. Again, the selectiveness in the patient’s behavior (compared to Set 1)

is driven by the enlarged supply (even though demand also proportionally increased) from where

the patients could receive an offer.
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To summarise, the main insights are: (1) When the s/d ratio differs between two DSAs, its

impact (in terms of the probability of offer acceptance) is felt more in lower-MELD patients. The

impact becomes attenuated at higher MELD scores due to the prioritization of higher-MELD

patients through broader sharing (Share 35 and the Acuity Circles policy). If the s/d ratio

decreases at a DSA, their patients react by becoming aggressive in organ acceptance behavior. (2)

Increasing the supply and demand volume (keeping the s/d ratio the same) in a DSA leads to an

enlarged supply from where the patients can receive an offer, which induces selective behavior.

This behavioral change is not just limited to the DSA at which a change is made; it also has a

spillover effect on other DSAs.

B.10 Models for Benchmarking

In Table B.6, we report the coefficients corresponding to various logistic regression models

(RM1, RM2, and RM3) that we used for benchmarking. The dependent variable in all the models

is the accept/decline decision.

In Figure B.4(a), we plot the average probability of offer acceptance (calculated as a

fraction of offers that were accepted) by MELD category, which we use as a reference. In

Figure B.4(b), (c), and (d), we plot the reduced-form models’ predicted probabilities of offer

acceptance. RM1 and RM2 do not capture the trend of the offer acceptance probability (with the

MELD category), and the regime shift (from the Pre-Share 35 to Share 35 policy). RM3, which

has more variables, is relatively better.
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Independent variable Reduced-form Models

RM1 RM2 RM3

Intercept -20.659∗∗∗ -16∗∗∗ -5.714∗∗∗

Graft survival probability (GS) 19.322∗∗∗ 15.136∗∗∗ -
MELD 15-28 - - 3.287∗∗∗

MELD 29-32 - - 3.987∗∗∗

MELD 33-34 - - 4.419∗∗∗

MELD 35-36 - - 4.899∗∗∗

MELD >36 - - 5.2∗∗∗

P(death|MELD) 80.745∗∗∗ - -
Wait time (in years) - -0.423∗∗∗ -

Sharing type: Regional -1.228∗∗∗ -1.224∗∗∗ -1.089∗∗∗

Sharing type: National -2.105∗∗∗ -1.969∗∗∗ -2.38∗∗∗

Candidate age group: R2 (45-65 years) 0.433∗∗∗ 0.278∗∗∗ 0.182∗∗∗

Candidate age group: R3 (≥65 years) 0.546∗∗∗ 0.356∗∗∗ 0.085∗∗

Candidate life support: Yes 0.962∗∗∗ 1.165∗∗∗ -0.058
Candidate medical condition: H 1.079∗∗∗ 1.278∗∗∗ 0.549∗∗∗

Candidate medical condition: ICU 1.735∗∗∗ 2.398∗∗∗ 0.625∗∗∗

Log-likelihood -57,861.72 -58,629.47 -53,815.62
No. of observations = 277,367

***p < 0.001; **p < 0.01; *p < 0.05

Table B.6: Regression estimates of the reduced-form models used for benchmarking.

Figure B.4: Out-of-sample comparison of reduced-form models.
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B.11 Comparison of the Pre-Share 35 and Share 35 Policies on Geographic

Equity Using Simulation

We use the simulation setup described in Section B.8 to compare the Pre-Share 35 and

Share 35 policies on a few geographic equity metrics. Referring to Figure 3.3, we see that

not all regions benefit from introducing the Share 35 policy (compared to the Pre-Share 35

policy). For example, Region 11 becomes adversely impacted: the number of deaths and the

amount of waiting time increased, and the number of transplants decreased. To gain more

insights, we performed a simple correlation study (at the regional level) between the reduction

in the number of deaths (normalized by the waiting-list volume) and the s/d ratios (deceased

donors in a region constitute the supply, and the total number of patients joining the waiting

list in that region constitute the demand). We observed a strong negative correlation coefficient

(r = −0.91; P < 0.001), suggesting that the benefit in terms of life savings due to the Share

35 policy is higher for regions with lower s/d ratios. This is reflective of the change brought due

to the Share 35 policy that prioritized MELD ≥15 national patients before MELD <15 local or

regional patients (see Table 1.1). A similar correlation study between the increase in the number

of transplants (from the Pre-Share 35 to Share 35 policy) and the s/d ratios revealed a strong

negative correlation coefficient (r = −0.89; P < 0.001). The reduction in the expected waiting

period was also negatively correlated (r = −0.93; P < 0.001) with the s/d ratios. Along these

same lines, the increase in the expected offers was negatively correlated (r = −0.68; P = 0.021)

with the s/d ratios.
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Covariate Graft survival Patient survival without transplant

Hazard ratio Hazard ratio

MELD 6-14 1.13∗ 0.45∗∗∗

MELD 29-32 0.91∗ 3.63∗∗∗

MELD 33-34 0.75∗∗∗ 4.49∗∗∗

MELD 35-36 0.92 5.97∗∗∗

MELD >36 1.04 11.24∗∗∗

Candidate age group: R1 (<45 years) 1.51∗∗∗ 0.63∗∗∗

Candidate age group: R3 (≥65 years) 0.65∗∗∗ 1.28∗∗∗

Candidate life support: Yes 1.09 2.67∗∗∗

Candidate medical condition: H 1.18∗∗∗ 1.65∗∗∗

Candidate medical condition: ICU 1.09 2.07∗∗∗

Donor age group: (40 to 49 years) 1.35∗∗∗ -
Donor age group: (50 to 59 years) 1.58∗∗∗ -

Donor age group: (≥60 years) 1.78∗∗∗ -
Donor race: Other 1.08∗∗ -

Donor cause of death: Anoxia 0.84∗∗∗ -
Donor cause of death: CVA 1.10∗∗ -

Donor DCD: Yes 1.56∗∗∗ -
Sharing type: Regional 1.00 -
Sharing type: National 1.34∗∗∗ -

***p < 0.001; **p < 0.01; *p < 0.05

Table B.7: Survival model estimates.

B.12 Survival Benefit due to a Transplant

We estimate the survival benefit due to a transplant as the difference between the probability

of graft survival and the probability of a patient’s survival without a transplant, both calculated

at the end of one year. The baseline survival functions are estimated using the Kaplan-Meier

curves. The estimated graft survival probability (at t=1 year) of the baseline is 0.98 (standard

error = 0.05), and the patient’s survival probability without a transplant of the baseline is 0.875

(standard error = 0.04). We use the Cox-proportional hazards model [16] to estimate the hazard

ratios (HR) associated with the organ and patient characteristics used in our simulation study.

The estimates of the HRs are reported in Table B.7.
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B.13 s/d Match Policy (Maximum Radius = 600 NM)

When we allow the maximum radius around the donor hospital to be 600 NM, the s/d ratio

(at the TC level) ranges from 0.62 to 0.73. In Table B.8, we compare the geographic equity

metrics between the two s/d Match policies (maximum radius equals 500 NM versus 600 NM)

using the simulation setup described in Section B.8. Although we do not observe improvement

in all the metrics, the expected number of deaths decreases from 459.9 (maximum radius = 500

NM) to 455.4 (maximum radius = 600 NM), and the expected number of transplants increases

from 3,570.8 to 3,578.5.

In Figure B.5, we compare the efficiency metrics such as the position at offer acceptance,

fractional change in the utility from the transplant (with respect to the Pre-Share 35 policy), and

cost of fairness (with respect to the Outcome-based policy) between the two s/d Match policies.

We see that the bigger radius policy results in greater efficiency. The average increase in a

patient’s survival probability due to a transplant is also slightly higher (0.185 versus 0.183) in the

bigger radius s/d Match policy. Table B.9 compares the distance traveled by the organ between

the two s/d Match policies. While the mean distance is lower in the bigger radius policy, the

other measures are marginally higher. In conclusion, if broader sharing is done right by matching

supply and demand, it results in greater equity with minimal impact on the efficiency metrics!
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Geographic equity Standard deviation across the regions

metrics (normalized) s/d Match (500 NM) s/d Match (600 NM)

Deaths 0.013 0.013
Transplants 0.028 0.034

Waiting (in months) 0.801 0.793
Offers 1.553 1.994

Table B.8: Comparison of the standard deviation of various geographic equity measures between
s/d Match policies.

Figure B.5: Comparison of the position at offer acceptance, fractional change in utility from the
transplant (with respect to Pre-Share 35), and cost of fairness (with respect to Outcome-based)
between the two s/d Match policies.

s/d Match (500 NM) s/d Match (600 NM)

Mean 360 337
1st quartile 52 60

Median 180 206
3rd quartile 417 427

Table B.9: Comparison of travel distance (in NM) between the two s/d Match policies.
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