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Amir Christopher Najmi, Doctor of Philosophy, 2016

Dissertation directed by: Professor Dennis Papadopoulos
Department of Physics

The thesis presents experimental results, simulations, and theory on turbulence

excited in magnetized plasmas near the ionosphere’s upper hybrid layer. The results

include:

• The first experimental observations of super small striations (SSS) excited by

the High-Frequency Auroral Research Project (HAARP)

• The first detection of high-frequency (HF) waves from the HAARP transmitter

over a distance of 16× 103 km

• The first simulations indicating that upper hybrid (UH) turbulence excites

electron Bernstein waves associated with all nearby gyroharmonics

• Simulation results that indicate that the resulting bulk electron heating near

the upper hybrid (UH) resonance is caused primarily by electron Bernstein

waves parametrically excited near the first gyroharmonic.



On the experimental side we present two sets of experiments performed at the

(HAARP) heating facility in Alaska. In the first set of experiments, we present the

first detection of super-small (cm scale) striations (SSS) at the HAARP facility. We

detected density structures smaller than 30 cm for the first time through a combina-

tion of satellite and ground based measurements. In the second set of experiments,

we present the results of a novel diagnostic implemented by the Ukrainian Antarctic

Station (UAS) in Verdansky. The technique allowed the detection of the HAARP

signal at a distance of nearly 16 Mm, and establish that the HAARP signal was

injected into the ionospheric waveguide by direct scattering off of dekameter-scale

density structures induced by the heater.

On the theoretical side, we present results of Vlasov simulations near the upper

hybrid layer. These results are consistent with the bulk heating required by previ-

ous work on the theory of the formation of descending artificial ionospheric layers

(DAILs), and with the new observations of DAILs at HAARP’s upgraded effective

radiated power (ERP). The simulations that frequency sweeps, and demonstrate

that the heating changes from a bulk heating between gyroharmonics, to a tail ac-

celeration as the pump frequency is swept through the fourth gyroharmonic. These

simulations are in good agreement with experiments. We also incorporate test par-

ticle simulations that isolate the effects of specific wave modes on heating, and we

find important contributions from both electron Bernstein waves and upper hybrid

waves, the former of which have not yet been detected by experiments, and have

not been previously explored as a driver of heating.

In presenting these results, we analyzed data from HAARP diagnostics and



assisted in planning the second round of experiements. We integrated the data into

a picture of experiments that demonstrated the detection of SSS, hysteresis effects in

stimulated electromagnetic emission (SEE) features, and the direct scattering of the

HF pump into the ionospheric waveguide. We performed simulations and analyzed

simulation data to build the understanding of collisionless heating near the upper

hybrid layer, and we used these simulations to show that bulk electron heating at

the upper hybrid layer is possible, which is required by current theories of DAIL

formation. We wrote a test particle simulation to isolate the effects of electron

Bernstein waves and upper hybrid waves on collisionless heating, and integrated

this code to work with both the output of Vlasov simulations and the input for

simulations of DAIL formation.
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Chapter 1: Introduction

This dissertation explores ionospheric plasmas with focus on the physics of

phenomena near the upper hybrid layer. The present chapter provides background

on plasma physics, the ionosphere, ionospheric dynamics, and ionospheric modifi-

cation. It gives an overview of the plasma parameters in the Earth’s ionosphere,

discusses the composition and location of the many ionospheric layers, and addresses

the propagation of high-frequency (HF) waves.

Chapter 2 presents the results of heating experiments at the High-frequency

Active Auroral Research Project (HAARP) that resulted in the first detection of

super-small striations (SSS). The chapter begins with an overview of previous HF

heating experiments relating to the detection and production of field aligned stria-

tions (FAS). It provides a description of the experimental procedures and planned

diagnostics, which include ground based stimulated electromagnetic emission (SEE)

detectors, and measurements of signals transmitted by the PRN 07 GPS satellite.

It concludes with an analysis and correlation of several diagnostics consistent with

the detection of SSS, and hysteresis effects of SEE features during heating.

Chapter 3 extends the work from chapter 2 by adding modified experiments,

and a new set of diagnostics at the Ukrainian Antarctic Station (UAS) in Verdan-
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sky and the Kodiak radar system. These experiments were the first to detect the

HAARP signal at UAS, nearly 16 Mm away from the HAARP facility. The chapter

begins with an overview of experiments relating to artificial ionospheric turbulence

(AIT), presents the new experiments and diagnostics, and finally, uses the correla-

tions between these new diagnostics to draw conclusions about the mechanism by

which the HAARP signal was injected into the ionospheric wave guide.

In chapter 4 we apply Vlasov simulations to the upper hybrid layer in an

effort to establish parameters for the theory of descending artificial ionized layers

(DAILs). First, we outline both the experimental observations of DAILs at the

HAARP facility, and the theory that requires hot electrons near the critical layer

to form them. Next, we present results of these simulations in parameter ranges

accessible by HAARP, sweeping the pump field through a range of values consistent

with the HAARP power upgrade, and we find collisionless, bulk heating of elec-

trons near the upper hybrid layer for higher powers. We found that not only is the

electron heating consistent with requirements of the DAIL formation theory, elec-

tron Bernstein waves play an important role in the heating. We then extend these

simulations to mirror the parameters of our HF heating experiments described in

chapters 2 and 3. We swept the frequency of the pump wave and found that the

collisionless heating shifts from a bulk heating to a tail acceleration as the pump

wave is swept through the fourth gyroharmonic. We also incorporated test particle

simulations that allowed us to isolate wave modes, and correlate the bulk heating

with electron Bernstein waves near the first gyroharmonic, and the tail heating with

upper hybrid waves. This has given us specific predictions for ground-based obser-
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vations in future heating experiments. The chapter concludes with using the output

of our Vlasov simulations to feed the inputs to DAIL formation codes which may

have applications for DAIL formation experiments at different frequencies.

Finally, chapter 5 presents the summary and overall conclusions of the disser-

tation.

1.1 Plasma Physics

We define a plasma as a quasineutral gas of charged and neutral particles

which exhibits collective behavior [1].

Quasineutral means that particles in a plasma have to interact electromagnet-

ically, but at the same time, the overall dynamics cannot be dominated by a long

distance Coulomb interaction. There must be local charge separation, but this sep-

aration must be screened out over long distances into an overall charge neutrality.

The Debye length

λD =
√
ε0kBTe/neq2

e (1.1)

where ε0 is the permitivity constant, kB is Boltzmann’s constant, Te is the temper-

ature of electrons, ne is the density of electrons, and qe is the electron charge (there

is an additional ion term in the denominator which is typically dropped) measures

the distance a charge’s electrostatic effects can be experienced and gives the 1/e

distance to screen the potential of a charge carrier. To be guaranteed that there are

sufficient charge carriers to do the screening, we can count the number of charge

carriers in a sphere of radius one Debye length, ND = ne(4/3)πλ3
D, and require that

3



there be many. For a gas of charged particles to be quasineutral, it must have both

a large scale size compared to its Debye length

L >> λD (1.2)

and it must have many charge carriers within each Debye sphere

ND >> 1. (1.3)

Collective behavior is to be contrasted with an ordinary gas, where all interac-

tions are mediated by local collisions. For a quasineutral gas to be a plasma, particles

need to interact electromagnetically with their neighbors, not just with a hard sphere

collision partner. The plasma frequency of electrons is ωpe =
√
neq2

e/meε0 (in SI

units) and is the response of electrons to a displacement with a Coulomb restoring

force. For example, the electric field of a relatively high frequency electromagnetic

passing through a gas might displace electrons, but not ions on the time scale that

it passes and set up oscillations at ωpe for electrons being pulled back to their ion

counter parts. Gas kinetics for electrons would be dominated by electron-neutral

collisions, the collision frequency is νen. If

ωpe > νen (1.4)

then electromagnetic interactions with neighbors will dominate the dynamics, and

the quasineutral gas will exhibit collective behavior. If a gas of charged and neutral

particles satisfies Eqs. 1.2, 1.3, and 1.4, it is a plasma.

The dynamics of the charged particles in a plasma are straightforward to write,

but difficult to solve exactly. For a species α, the jth particle’s equation of motion

4



is given by the Lorentz force

mα
d ~vα

j

dt
= qα

(
~E(~x, t) + ~vα

j × ~B(~x, t)
)

(1.5)

and the electric and magnetic fields ~E and ~B are derived from Maxwell’s equations

~∇ · ~E =
ρ

ε0
(1.6)

~∇ · ~B = 0 (1.7)

~∇× ~E = −∂
~B

∂t
(1.8)

~∇× ~B = µ0
~J +

1

c2

∂ ~E

∂t
(1.9)

with ε0 and µ0 are the permitivty and permeability constants, c is the speed of light,

ρ is the charge density, and ~J is the current density. ρ and ~J are related back to

the original particle equations of motion from Eq.1.5 by summing over species and

particle number

ρ(~x, t) =
∑
α

∑
j

qαδ
3(~x− ~xα

j) (1.10)

~J(~x, t) =
∑
α

∑
j

qαδ
3(~x− ~xα

j) ~vα
j (1.11)

which is accurate, if not directly usable without further integration over ρ and ~J .

Typical plasmas have j → ∞ or at least j >> 1 and the collection of equations

above represent a huge number of calculations. By replacing individual particles

with macro-particles, and enforcing a grid for the fields and charge densities, these

can be made tractable and this is the basis for the particle-in-cell (PIC) approaches

to plasma modeling. Another approach is to ignore the computation of particle

trajectories, and instead represent the collected particles by a distribution function
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in space, velocity phase space, and time. If a species is described by the distribution

function fα = fα(~x,~v, t), the total phase space density of the particles should be

conserved up to factors of collisions

dfα
dt

=

(
∂f

∂t

)
C

(1.12)

where (∂f/∂t)C is the collision operator which describes the non-conservative ef-

fects on phase space density due to collisions. In general, this term can be quite

complicated. In Cartesian coordinates, the total derivative of fα is

df

dt
=
∂f

∂t
+
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
+
∂f

∂vx

dvx
dt

+
∂f

∂vy

dvy
dt

+
∂f

∂vz

dvz
dt

(1.13)

which can be further simplified by collecting terms 2-4, and 5-7. Terms 2-4 are the

dot product of the velocity with the gradient operator

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
= ~v · ~∇f (1.14)

while terms 5-7 are the dot product of Newton’s law ~F/m = d~v/dt with the ∂/∂~v

operator

∂f

∂vx

dvx
dt

+
∂f

∂vy

dvy
dt

+
∂f

∂vz

dvz
dt

=
~F

m
· ∂f
∂~v

(1.15)

collecting Eqs. 1.13, 1.14, 1.15 and substituting into 1.12 we obtain the Boltzmann

equation

∂fα
∂t

+ ~v · ~∇fα +
qα
mα

(
~F
)
· ∂fα
∂~v

=

(
∂f

∂t

)
C

(1.16)

For plasmas with low collision frequency and dominated by electromagnetic forces,

Eq.1.16 can be reduced to the considerably simpler Vlasov equation.

∂fα
∂t

+ ~v · ~∇fα +
qα
mα

(
~E + ~v × ~B

)
· ∂fα
∂~v

= 0 (1.17)
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by dropping the collision operator and replacing ~F with the Lorentz force. As

with the particle description, the Vlasov equation can be combined with Maxwell’s

equations and the particle densities

ρ(~x, t) =
∑
α

qαnα(~x, t)α (1.18)

~J(~x, t) =
∑
α

qαnα(~x, t) ~vα (1.19)

where the number density and velocity density come from moments of the distribu-

tion function fα

nα(~x, t) =

∫ +∞

−∞
fα(~x,~v, t) d3v (1.20)

~vα(~x, t) =
1

nα(~x, t)

∫ +∞

−∞
~vfα(~x,~v, t) d3v (1.21)

this combined Vlasov-Maxwell system is an important part of numerical simulations

described in chapters 4.

1.2 The Ionosphere

The ionosphere is a partially ionized gas surrounding the Earth from an alti-

tude of about 50-500 km. It co-exists with the many layers of the neutral atmosphere

which are in order of ascending altitude, the troposphere, stratosphere, mesosphere,

and thermosphere. The neutral atmosphere’s mass is concentrated in the tropo-

sphere with sharply decreasing neutral density with increasing altitude. There is a

nearly uniform mix of neutral species below 100 km, but above 100 km, neutrals are

separated by mass. The temperature decreases with altitude in the troposphere up

to an altitude of about 10 km, where the absorption of ultraviolet radiation by ozone
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[2] marks the transition to the stratosphere. Absorption causes increasing temper-

ature with altitude up to about 50 km, where the temperature becomes dominated

by radiative cooling and decreases sharply to about 150 K at 90 km, transitioning to

the mesosphere, where absorption of high energy solar photons increases the neutral

temperature from 150 K to 1500 K from 100-200 km. This high temperature region

above 200 km is the thermosphere.

A large fraction of solar photons have sufficient energy to dissociate neutral

atoms. The resulting combination of ions, electrons, and neutrals make up the

ionospheric plasma. As solar radiation is absorbed during photoionization, the flux

of ionoizing radiation decreases with decreasing altitude, while at the same time,

the neutral density increases, providing both additional targets to be ionized and

an increased recombination rate of ions with free electrons. These factors lead to a

series of ionospheric layers analogous to the atmospheric layers. In ascending order,

they are the D, E, and F regions. A typical profile of the neutral atmospheric

temperature and the ionospheric plasma density is shown in figure 1.1 with the

various layers labeled [2].

The D region lies between 70-90 km and the primary source of plasma is

the photoionization of NO molecules by the Lyman α photons with wavelength 120

nm, and secondary contribution from ionization of N2 and O2 by 1 nm x-rays during

very high solar activity. The neutral density is high, recombination rates are high,

and as a result the D region effectively vanishes at night, and during the day, the

high neutral density makes the D region plasma highly collisional. The E region

covers the altitude from 90-120 km, where the ionoization is dominated by extreme
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ultraviolet (EUV) ionoization of O2 and NO.

The F region, spanning 120-1000 km is created primarily by the ionization

of atomic oxygen by ultraviolet (UV) and EUV radiation. In the F region, the

plasma density is high, and the neutral density is considerably lower, so the plasma

is weakly collisional, and on short time scales nearly collisionless. During the day,

there is a division of the F region into an F1 and F2 region. The F1 region occupies

120-200 km, and there are ions of atomic oxygen (O+), molecular oxygen (O+
2 ) and

nitric oxide (NO+). The F2 region covers 200-300 km and is dominated by O+. The

source of the F region’s atomic oxygen is the photodissociation of molecular oxygen

at lower altitudes,

The peak ionospheric plasma density occurs at the F2 peak, and can reach

densities of 1012 m−3 (106 cm−3). At night, the F region contracts by approximately

a factor of 10, and the F1 and F2 regions merge, while the D and E regions nearly

vanish. In the D and E regions, recombination is driven by chemical reactions with

the abundant neutrals such as

NO+ + e− → N +O (1.22)

O+
2 + e− → O +O (1.23)

both of which are fast and energetically favored reactions. By contrast, the naive

recombination reaction for atomic oxygen might look like

O+ + e− → O + γ (1.24)

but this reaction is very slow, and so the actual ionospheric process becomes two-
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Figure 1.1: Typical altitude profiles the neutral atmosphere temperature and the

ionospheric plasma density. Reproduced from Kelley [2]

steps which begins with a charge exchange of O+ with a neutral

O+ +O2 → O +O+
2 (1.25)

O+ +NO → NO+ +O (1.26)

followed by a recombination reaction from Eq.1.23 to eliminate the free electron and

ion. This first charge exchange step is slower than the straightforward recombina-

tion, and additionally, the F region has a lower neutral density of the reactants,

which results in a much slower overall recombination rate that persists the F region

into the night.
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1.3 Ionospheric Dynamics and Conductivity

The presence of the Earth’s geomagnetic field makes the ionosphere a magne-

tized plasma. Since the ionosphere is only partially ionozied, and the ionization, ion

species, and neutral density all vary with altitude, there can be distinct responses

to applied electric fields at each of the regions discussed above. Ohm’s law gives the

current density

~J = ¯̄σ · ~E (1.27)

in terms of the electric field and the conductivity tensor ¯̄σ, which is

¯̄σ =


σP −σH 0

σH σP 0

0 0 σ‖

 (1.28)

in terms of the Pedersen (σP ), Hall (σH) and parallel (σ‖) conductivities. The Ped-

ersen conductivity gives the plasma response in the direction of an applied electric

field, the parallel conductivity gives the response parallel to the magnetic field, while

the Hall conductivity gives the response in the direction perpendicular to both the

magnetic field and the electric field.

The parallel conductivity is [3]

σ‖ =
∑
α

qαnα
B0

ωcα
ναn

(1.29)

where α represents the species, B0 is the local geomagnetic field, ωcα is the cyclotron

frequency qαB0/mα, and ναn is the α-neutral collision frequency. The ratio ωcα/ναn

is often expressed as 1/Γαn which defines the magnetization for a species, with
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Γ < 1 indicating that the species is magnetized, and Γ > 1 indicating that they

are unmagnetized. At an altitude of about 65-70 km, the bottom of the D region,

the electrons become magnetized and for all altitudes in the F region they have

Γen � 1. At the bottom of the F region, at an altitude of about 120 km, Γin ≈ 1

and the ions are only fully magnetized (Γin ≈ 0.1) from 150 km and higher. In the

F region, the parallel conductivity is large, indicating that a magnetic field line is

an equipotential and particles may travel almost freely along it.

The Hall conductivity is [3]

σH =
∑
α

qαnα
B0

ω2
cα

ω2
cα + ν2

αn

=
∑
α

qαnα
B0

1

1 + Γ2
αn

(1.30)

In the E region (90-120 km), the Hall conductivity can be significant since the

electrons are magnetized, but the ions are not. At these altitudes, the ionosphere

supports only electron waves such as whistlers, while in the F region, with both elec-

trons and ions magnetized the Hall conductivity is small. The Pedersen conductivity

is [4, 3]

σP =
∑
α

qαnα
B0

ναnωcα
ω2
cα + ν2

αn

=
∑
α

qαnα
B0

Γαn
1 + Γ2

αn

(1.31)

in the F region, the Pedersen conductivity is the dominant conductivity due to

the magnetization of both the ions and electrons, and the greatly increased plasma

density. The primary response to electric fields will be perpendicular to the magnetic

field, and parallel to the electric field, with both ion and electron waves supported.
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1.4 Ionospheric Modification

The High-frequency Active Auroral Research Project (HAARP) is a leading

ionospheric research facility near Gakona, Alaska and the location of all experiments

described in this thesis in chapters 2 and 3. Using a 12x15 array of crossed dipole

antennas, its transmitter is capable of up to 3.6 MW of power, which is amplified up

to 5 GW Effective Radiated Power (ERP). Maximum ERP is frequency dependent,

but HAARP can produce nearly its maximum ERP at any frequency from 2-10

MHz. Antennas can be independently phased allowing for simple ”pencil” beams,

or more exotic beams that have angular momentum, holes, etc. [5]. Propagation

of HF waves from HAARP below the ionosphere is effectively propagation in free

space, but as the waves approach the ionosphere, their propagation becomes more

complicated as the ionospheric plasma is both nonuniform and anisotropic. The

plasma density, composition, and as a result the index of refraction, are all altitude

dependent and the index of refraction depends on the relative orientation of the

wavevector, the wave electric field, and the geomagnetic field.

The Appleton-Hartree-Lassen equation [6] gives the index of refraction η =

ck0/ω0 for an electromagnetic wave propagating through a cold, magnetized plasma

η2 = 1− X

U − 1
2
Y 2(1−k̂·b̂)2

U−X ±
√(

1
2
Y 2(1−k̂·b̂)2

U−X

)2

+ Y 2(k̂ · b̂)2

(1.32)

where k̂ and b̂ are unit vectors along the wavevector and magnetic field, k̂ · b̂ = cos θ,

X = ω2
pe/ω

2
0, ωpe = neq

2
e/meε0, Y = ωce/ω0, ωce = qeB0/me U = 1 − iZ, and

Z = ν/ω0. The positive root corresponds to the ordinary (O) mode, waves that
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are left-hand circularly polarized relative to B0 (LHCP), while the negative root

corresponds to the extraordinary (X) mode, right-hand circularly polarized (RHCP)

with respect to B0. The simplest case of the Appleton-Hartree equation is if both

magnetization (Y = 0) and collisions (Z = 0) are ignored. In this case, Eq.1.32

becomes

η2 = 1−X (1.33)

= 1− ω2
pe/ω

2
0

→ ω2
0 = ω2

pe + c2k2
0

showing identical behavior for the O- and X-modes under these assumptions. The

reflection point for a wave, called a cutoff, is where η = 0. The cutoff for both the

O- and X-modes are at the altitude zR (reflection height) that satisfies ω0 = ωpe(zR).

While the F region is nearly collisionless, it is strongly magnetized. If we

approach Eq.1.32 this time leaving the magnetization (Y > 0), ignoring collisions

(Z = 0) while further assuming that a wave is injected at small angle relative to the

magnetic field, so sin θ ≈ θ and cos θ ≈ 1, then Eq.1.32 reduces to

η2 = 1− X

1− 1
2
Y 2θ2

1−X ± Y
(1.34)

and the cutoff can again be found by setting η = 0

0 = 1− 1

2

Y 2θ2

1−X
± Y −X (1.35)

0 = X2 +X(∓Y − 2) + (1− 1

2
Y 2θ2 ± Y )

which is quadratic in X and can be solved by

X = −1

2
(∓Y − 2)± 1

2

√
(∓Y − 2)2 − (4)(1)(1− 1

2
Y 2θ2 ± Y ) (1.36)
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simplifying and carefully separating the± arising from the two roots of the quadratic

as a (−1)n from the ± relating to the O/X mode wave

X =
1

2

[
2± Y + (−1)nY

√
1+
]

(1.37)

finally letting θ → 0 and choosing the n = 0 mode (n = 1 has other physical

significance that is discussed in [7])

X = 1± Y
(

1∓ 1

2

)
(1.38)

for the O-mode, X = 1 and the cutoff is at the O-mode reflection altitude given by

ω0 = ωpe(zO,R). For the X-mode, X = 1− Y and for the F region, Y < 1,

ωpe
ω0

=

√
1− ωce

ω0

≈ 1− ωce
2ω0

(1.39)

→ ω0 = ωpe(zX,R) +
1

2
ωce

with zO,R > zX,R. As the O-mode wave approaches the reflection altitude, it trans-

forms from an electromagnetic to an electrostatic wave, and the perpendicular elec-

tric fields decay while the parallel electric fields are enhanced in an Airy pattern [8]

of large enough amplitude to drive Langmuir waves. These waves and the resulting

turbulence are relevant to the results of chapter 4.

As waves pass through the ionospheric plasma to their reflection point, their

electric field induces oscillations in the electrons and ions as they pass. The oscillat-

ing particles can collide with neutrals, extracting energy from the wave to thermal

energy of the particles. This process is called collisional absorption, and this type

of absorption is dominant in the D and E regions where the neutral density and

collision frequencies are high.
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Under typical ionospheric conditions an HF wave transmitted into the F-region

of the ionosphere will undergo collisional absorption, transferring about 5% of its

total energy into heating of the plasma. Experiments performed by Cohen and

Whitehead [9], Stubbe et al. [10], Jones et al. [11] demonstrated that under certain

conditions, the HF wave can be anomalously absorbed, converting between 95-99%

of its energy into the plasma. This effect occurs only for O-mode waves between the

upper hybrid resonance and the O-mode reflection point, and is caused by the mode

conversion of the O-mode wave to upper hybrid waves trapped in density striations

near the upper hybrid layer.

The upper hybrid layer is a part of the F region where the local plasma density

causes the pump wave frequency to match the upper hybrid frequency, ω0 = ωUH =√
ωpe(zUH)2 + ω2

ce. As above, in the F region, ωce/ωpe < 1 so this can be estimated

by ω0 ≈ ωpe(zUH)+ 1
2
ωce(ωce/ωpe) which gives a comparison with the reflection height

of O/X mode waves

z0,R > zUH > zX,R. (1.40)

This upper hybrid layer lies between the reflection point of the O/X mode waves,

which explains why the anomalous absorption effect is only reported for O-mode

waves. In experiments, it is typically found between 3-10 km below the O-mode

reflection height. At the upper hybrid layer, the large Pedersen conductivity, as well

as the fact that k̂ · b̂ is typically small at HAARP, gives a displacement of electrons

nearly perpendicularly to the magnetic field. The displaced electrons experience not

only a restoring force from the Coulomb force (ωpe) but from the Lorentz force as well

16



(ωce) and so they oscillate at the upper hybrid frequency ωUH =
√
ωpe(zUH)2 + ω2

ce.

Since the collision frequency is low in this region, upper hybrid oscillations can

continue without collisional absorption and damping. The plasma density is not

uniform, and experiments by Kelley et al. [12] with in situ rocket measurements

over the Arecibo heating facility indicated that there are magnetic field-aligned

striations (FAS) of 5-10 m width, and 15 m separation across the field line. In

the presence of these background density striations, the upper hybrid oscillations

induced by the pump wave can be trapped [13, 14] if the pump wave matches the

upper hybrid frequency inside the striation but not immediately outside. Continued

pumping can amplify the field of the trapped waves, to allow parametric instabilities,

and create a broad wavenumber spectrum of upper hybrid turbulence inside the

density striations, heating the electrons, increasing pressure along the field line,

and reinforcing the striation by transporting plasma along the field line (large σ‖).

Additional experiments performed by Rietveld et al. [15], Honary et al. [16] showed

that the temperature of the electrons is increased when the heater beam is moved

from the vertical to the magnetic zenith (MZ). In this situation, the O-mode wave

propagates nearly parallel to the magnetic field lines near the upper hybrid layer, and

the electric field of the wave is oriented perpendicularly to the field lines. Anomalous

absorption, the formation of striations, and the excitation of waves at the upper

hybrid layer will be key points of all subsequent chapters.
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Chapter 2: Generation of Super Small Striations at HAARP

2.1 Overview

Generation of artificial Field-Aligned Striations (FAS) of the ionospheric plasma

due to F region O-mode HF heating was first discovered in experiments conducted

by the Platteville HF heater [17, 18] and subsequently confirmed in numerous ex-

periments [19, 12, 20, 21]. These studies demonstrated that FAS could be used as

a scattering cloud for ground-to-ground VHF communications. A key parameter

required to design such communications systems is the total radar scattering cross

section (SCS) per unit volume [22]. One of the factors that determines the SCS is the

wave number spectrum of artificial fluctuations of the electron density. According to

Rao and Thome [23], at Platteville, the value of SCS was measured to decrease by 5

orders of magnitude when the radar frequency is swept from 20 MHz to 1 GHz. This

implies that the scattering of a probe signal in the GHz frequency range is expected

to be negligible, which further indicates that the spectrum of density fluctuations

quickly decays for wavelengths smaller than 30 cm. However, following a suggestion

of Gurevich and Zybin [24], Milikh et al. [25] recently observed strong perturbations

of GPS signals by FAS generated by the High Frequency Active Auroral Research

Program (HAARP) heater operating at 92 dBW Effective Radiated Power. These
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perturbations are indicative of excitation of super small striations (SSS) on the order

of 10 cm. The observations of Milikh et al. [25] were performed using O-mode HF

F region heating with a frequency ω that satisfied the so-called double resonance

condition, namely ω resonated at the upper hybrid height with a multiple of the

electron cyclotron frequency (ωUH ≈ nΩe). Ground measurements of the differential

phase of GPS signals traversing the heated region indicated high level of SSS. How-

ever, the nonlinear physics that allows generation of such SSS and its relationship to

Artificial Ionospheric Turbulence (AIT) was unclear. The present set of experiments

coordinate GPS and Stimulated Electromagnetic Emission (SEE) observations, and

include complementary diagnostics by HAARPs Digisonde and Modular UHF Iono-

spheric Radar (MUIR), in an effort to study the properties of SSS generated by the

HAARP heater.

2.2 Description of Experiment

We report below observations from six daytime experiments, conducted during

the March 2013 HAARP campaign. In the experiments, the HAARP heater oper-

ated at its maximum 3.6 MW power, O mode, and the HF beam was directed toward

the PRN 07 satellite at 15◦ off zenith and 180◦ azimuth. PRN 07 is a GPS satellite

on a geocentric orbit with inclination 55.1◦ to the equator, having perigee 20 143 km

and apogee 20 222 km. During the experiments, PRN 07 overflew the HAARP site

daily and the signals at both the L1 (f1 = 1.575 GHz) and L2 (f2 = 1.227 GHz)

were measured on the ground after traversing the HF heated region (see figure 2.1)
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2) with one Hz sampling rate. The measured differential carrier phase was used to

estimate the relative Slant Total Electron Content (STEC) and the value of δn/n

at 20− 30 cm scale length that corresponds to the Bragg condition at the GPS fre-

quency range. Stimulated Electromagnetic Emission (SEE) signals were measured

simultaneously using an HF detector operated by the Naval Research Laboratory 15

km away from the HAARP site. Data acquisition techniques have been described

previously by Bernhardt et al. [26, 27]. The SEE signals are driven by the nonlin-

ear interaction of the injected HF wave with the ionospheric plasma that results in

broadband emissions at frequencies different from the injected HF frequencies [28].

They are usually upshifted or downshifted from the heater frequency within a range

of 100 kHz. All the experiments were also diagnosed by the HAARP ionosonde

and when the geometry permitted by the on-site Modular UHF Ionospheric Radar

(MUIR).

The experiments were conducted using square pulse HF heating with 10 s pulse

width and 10 s interpulse period. To determine the turn-on and decay times of the

excited striations, a train of short, square, 20 ms pulses, at the heating frequency of

the preceding 10 s pulse, and with an interpulse time 1 s was applied between the

long, 10 s pulses as shown schematically in figure 2.2.

The HF frequency selection was constrained by two requirements: First, to

maintain the HF frequency f0 below the F2 layer critical frequency (f0 < fOF2), and

second, to operate in the vicinity of the double resonance condition (fUH ≈ nfce).

During the experiments, the fOF2 was approximately 6 − 7 MHz. As a result, the

double resonance could be satisfied in the vicinity of the fourth electron gyrohar-
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Figure 2.1: Heater contours and satellite tracking on 13-Mar-2013. HAARP HF

heating contours of 3 and 6 dB at altitudes of 180 and 240 km are shown in red and

blue ovals. Crossing position of a microwave beam from PRN 07 directed toward

the HAARP receiver, at altitudes of 180 and 240 km, are indicated on the red and

blue lines.
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Figure 2.2: Illustration of frequency sweep. Heater alternates 10 s, square pulses

with a train of 20 ms, square pulses with interarrival time of 1 s. After a cycle, the

heating frequency is stepped up or down by 30 kHz.
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monic close to 5.8 MHz. The heater operation was as follows: Starting at 300− 500

kHz below the fourth gyroharmonic, the heating frequency was stepped up by 30

kHz every 20 s until it reached 5.9 − 6.0 MHz. On 11 March 2013, the heating

was terminated after reaching ≈ 6.0 MHz. On subsequent days, the frequency was

cycled back after reaching 6 MHz in 30 kHz steps every 20 s, thereby crossing the

expected gyroharmonic from above and below.

The critical diagnostic instrument is a GPS receiver located at HAARP that

detects the changes in the phase of the GPS signals sent from the PRN 07 satel-

lite crossing the heated region and received at HAARP. Other important diagnostic

instruments were a broadband HF receiver operated by the Naval Research Labo-

ratory that measured SEE signals, the ionosonde that measured the plasma density

profile above the site and the MUIR radar that measured plasma waves excited by

the heater.

Table 2.1 lists the key parameters of the experiments, including experiment

times and ionospheric conditions. During all the experiments, the on-site diagnostics

indicated a smooth F region layer, weak to moderate D and E region absorption,

and the absence of electrojet current. Moreover, the HAARP magnetometer showed

small variations of the geomagnetic fields (δB < 20 nT) , indicating a quiet iono-

sphere.
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Table 2.1: Key experimental information, incluing the experiment times, heating

regime, HF frequency (f0), and the critical frequency (fOF2). These experiments

were performed during the March 2013 HAARP Campaign, and used 30 kHz steps

between heating frequencies.

Expt. UTC Pattern Freq.

(MHz)

fOF2 (MHz) notes

11-Mar 01:05:00-

01:14:30

10s/10s 5.3-5.9 5.7-6.8 N/A

12-Mar 01:00:00-

01:09:30

10s/10s 5.5-5.9,

6.8-7.0

6.7-7.8 N/A

13-Mar 00:55:00-

01:04:10

10s/10s 5.3-5.9,

5.9-5.3

6.1-7.7 Overshoot

in STEC

14-Mar 00:50:00-

00:59:40

10s/10s 5.5-6.0,

6.0-5.5

7.3-7.6 Overshoot

in STEC

15-Mar 00:50:00-

00:59:10

10s/10s 5.5-6.0,

6.0-5.5

6.3-7.4 Overshoot

in STEC

16-Mar 00:45:00-

00:54:00

10s/10s 5.5-6.0,

6.0-5.5

6.4-6.6 N/A
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2.3 Experimental Observations

As mentioned above, figure 2.1 presents an overview of the GPS experiment

and the HAARP heated regions. The figure shows the tracking of PRN 07 relative

to the HAARP heated region, with the red and blue ovals outlining the 3 and 6 dB

contours of the heated region at altitudes of 180 and 240 km on 13 March 2013 with

HAARP indicated by a star. The colored lines are the projection of points where

a microwave beam from the satellite directed toward the HAARP receiver, crosses

a surface at the given altitude. PRN 07 was chosen for this experiment because it

crosses almost directly over the center of the heated region. It takes 10 min for the

GPS satellite to fully cross the heated region, and this sets the time scale of our

GPS diagnostics.

The processing of the received GPS signals was described in detail in Milikh

et al. [25]. It uses the observed phase φ1 and φ2 of both the L1 (f1 = 1.575 GHz)

and L2 (f2 = 1.227 GHz) GPS frequencies and estimates the differential carrier

phase ∆φ1,2. The latter then was converted to relative Slant Total Electron Content

(STEC) using

∆(STEC) =
0.75f1∆φ1,2

f 2
1 /f

2
2 − 1

. (2.1)

The STEC is measured in TEC units with 1 TEC unit equivalent to 1016 electrons

per square meter, the frequencies are in GHz, and the differential carrier phase is

in radians. Further analysis and description of GPS phase differences caused by

ionospheric scintillation is described by Pelgrum et al. [29].

Figures 2.3(a) and 2.3(b) show the absolute STEC versus the observational
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(a) (b)

Figure 2.3: STEC observations made on (a) 13 March 2013 and (b) 14 March

2013. Unpertrubed STEC from 11 March 2013 is included for reference in (a).

The beginning and end of HF heating is indicated with solid and dashed lines,

respectively.

time measured during experiments 3 and 4, with the beginning and end of the HF

heating shown by the two vertical lines. The STEC of the probe GPS signals changes

abruptly in about 35 s following turn-on of the HF heating, and then oscillates with

the 20 s heating period. As mentioned above, within minutes, PRN 07 moves from

the center of the heated region, where the HF heating effect is strongest, to its

periphery, producing an approximately linear decay of STEC. For comparison, the

STEC obtained in the absence of HF heating was inserted in figure 2.3(a).

Figure 2.4 shows dynamic SEE spectra observed during experiment 4. The

x-axis shows the varying frequency in a bandwidth of 200 kHz centered about 5.82

MHz, while the y-axis shows the elapsed time from 00:52:03 UT. The intensity
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of the observed signal is color coded. The 10 s long pulses are characterized by

the pump wave: a bright, narrow line of constant frequency. The 10 s and +30

kHz separate successive long pulses. Between these long pulses, the short 20 ms

pulses mentioned above (2.2) are also shown. During the first long pulse (lower

left), the SEE shows two spectral lines downshifted from the pump, known as the

first and second downshifted maximum (DM). The next long pulse is dominated by

the pump wave with faint evidence of a transient DM, indicative of the well-known

DM suppression near the gyrofrequency [30]. The third long pulse shows a broad

region of lower amplitude, but higher frequency than the pump. This is the Broad

Upshifted Maximum (BUM), indicating that we have exceeded a multiple of the

gyroresonance. The relative amplitude and frequency shift of the BUM relative to

the pump wave vary with the pump frequency.

Figure 2.5 reveals one of the most important results of the experiment, the

correlation between STEC amplitude fluctuations and the power spectral density

(PSD) of the SEE spectra for experiment 4. During the first 3 min of the HF

heating, the peaks of the STEC are associated with the presence of DM on the SEE

spectrum. The BUM first appears at 00:53:16 UT, approximately 3 min from the

beginning of heating and remains for ≈2 min which corresponds to a shift in the

heating frequency of ≈150 kHz. During that time, the STEC shows large-amplitude

oscillations, by up to 4 dB larger than during the first 3 min. The BUM is associated

with a rising amplitude of the STEC and is coincident with the first of two overshoots

(or humps). The first hump lasts for ≈1.5 min and the second starts at ≈00:55:06

UT and lasts for ≈1 min. In these humps, the value of the STEC changes by up to
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Figure 2.4: SEE Spectrogram from 14 March 2013. Frequency axis is centered on

5.82 MHz, and indicated pump waves are from bottom to top: 5.73, 5.76 and 5.79

MHz. For the pump at 5.73 MHz (lower left), the first and second DM are present

and shifted by ≈ -10 kHz and ≈ -20 kHz, respectively, from the pump frequency.

For the pump at 5.79 MHz (upper right), BUM is evident in the range of +10 to

+50 kHz from pump frequency. The pump at 5.76 MHz (center) appears to be very

close to a gyroresonance as DM is suppressed and BUM is not yet visible.
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Figure 2.5: STEC observations near the first hump or overshoot made on 14 March

2013 with selected PSDs. First BUM indicated. PSDs progress in time clockwise

starting from the lower left, and UT are indicated. STEC hump covers an HF

heating frequency range of 150 kHz.

0.3 TECU and the SEE spectrum shows that a BUM is being excited.

Figures 2.6(a) and 2.6(b) show ionograms made at 2 and 4 min during the HF

heating on 14 March 2013, along with the PSD of the nearest long pulse heating

cycle. We found that in the first case, the SEE spectrum shows a DM, while in the

latter case, the BUM has developed. At the same time, the latter ionogram indicates

a spread F layer. In addition, during these times, the STEC transitions from small

(≈ 0.05 − 0.07 TECU) near 00:52:00 UT to larger (≈ 0.15 − 0.20 TECU) near

00:54:00 UT. Due to angular limitations of HAARPs MUIR instrument, it is difficult

to detect this turbulence directly. In spite of this difficulty, a single successful MUIR

measurement was made on 14 March 2013 during the period 00 : 52 : 10−−52 : 20
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during which time f0 < 4fce. It shows strong reflection in 200 − 203 km range

(illustrated in figure 2.7) that lasted for over 2 s followed by a faint signal that

lasted for 8 s. During that time, the SEE spectrum reveals the DM, 2DM, 3DM,

and upshifted maximum features although the BUM was absent. GPS measurements

indicated small STEC (0.05 −−0.07 TECU) oscillations during this time. We will

discuss these findings further in subsequent sections.

2.3.1 Hysteresis Effect

In four of the experiments (3-6), the heating frequency was swept from f0 = 5.5

MHz corresponding to 4fcein increments of 30 kHz up to f0 = 6 MHz, which is

100150 kHz above the BUM pumping frequency, and then cycled down to 5.5 MHz.

Detailed comparison revealed a difference between the PSDs recorded during up

and down frequency sweeps. This is shown in figure 2.8 for experiments 3 and 4.

Figure 2.8(a) shows the amplitude of the peak of the BUM taken from PSDs at

different pumping frequencies. During the upward sweep, the BUM peak has higher

amplitude than the downward sweep. By contrast, the peak of the first DM (figure

2.8(b)) shows hysteresis behavior but with the up sweep having lower amplitude

than the down sweep. Hysteresis of the BUM is consistent with the observations of

Carozzi et al. [31]. Hysteresis of the DM is consistent in magnitude, but we observe

a switch in the relative amplitude of the up and down sweeps.
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(a)

(b)

Figure 2.6: Ionograms taken at HAARP 14 March 2013 at (a) 00:52:00 and (b)

00:54:00 UT by the Digisonde, with associated SEE PSD. Note the broadening of

ionogram in the presence of BUM. First ionogram indicates a compact F layer and

is correlated with a DM in the SEE spectrum, while the second ionogram indicates

a spread F layer and is correlated with a BUM in the SEE spectrum.
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Figure 2.7: MUIR measurements taken at HAARP 14 March 2013 at 00:52:00-

00:52:45 with selected SEE PSDs. Width of heated region is 34 km. SEE spectrum

indicates the presence of only DM during this measurement.
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(a)

(b)

Figure 2.8: Hysteresis of (a) BUM, (b) DM, measured on 13 March and 14 March.

In all plots, forward or up sweep is indicated in blue, backward or down sweep is

indicated in red.
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2.3.2 Excitation and Relaxation Times

During various experiments, we operated with the heater off during selected

periods. This gave us an opportunity to investigate the excitation and relaxation

times of both the BUM and the DM. Our results are summarized in Table 2.2. For

the DM excitation, we sliced the spectrograms of the SEE data along constant time

and inspected the resulting frequency spectrum for DM features. We found that the

DM took ≈7 ms to excite with error bars from analyzing statistics of the experiment.

We employed the identical procedure for the BUM, restricting our inspection to long

pulse heating cycles when it became evident that the BUM was not excited by the

short pulses. We found that the BUM took ≈200 ms to excite. To measure the

relaxation times, we examined the transition between long and short pulse heating.

Again, slicing the spectrograms along constant time, we examined the frequency

spectrum during a short pulse heating for persistent features of the DM and BUM

that were previously excited during long pulsed heating. We found no evidence of

persistent features, indicating that the DM and BUM both relax in under 1 s. Our

excitation and relaxation times are consistent with the results presented by Sergeev

et al. [32] who found that the excitation time for the DM is under 20 ms, while

that for the BUM is much longer. After noting the hysteresis effect discussed above,

we also sought to observe the characteristic hysteresis time scale. To compute this,

for the DM and the BUM separately, we tracked the time taken to return to the

frequency corresponding to the maximum SEE amplitude on the forward sweep to

the maximum amplitude of the backward sweep. We found the BUM hysteresis
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Table 2.2: Summary of time scales for the excitation, relaxation, and hysteresis-

return for the BUM and DM features.

Time Scale BUM DM

Excitation 200± 80 ms 6.5± 1.3 ms

Relaxation < 1 s < 1 s

Hysteresis ≈ 200 s ≈ 300 s

return time was ≈200 s, while the DM return time was ≈300 s.

2.4 Discussion

The phase change of a GPS signal of frequency ω passing through the per-

turbed region of the ionosphere is given by Milikh et al. [25]

∆φ =
ω

c

∫
εdz ≈ ω

c

ω2
e

ω2

δne
ne

l (2.2)

where ε is the refractive index, ωe =
√

4πe2ne/me is the electron plasma frequency,

δn is the electron density perturbations due to HF heating, and l is the length of the

ray in the perturbed region. The differential carrier phase ∆φ1,2 of two rays with

frequencies f1 and f2 crossing the perturbed region is given by

∆φ1,2 =
2πf2

c

f 2
ep

f 2
2

(
1− f2

f1

)
δne
ne

l (2.3)

Applying this to the L1 and L2 frequencies for the experiment 4 on 14 March 2013

with fep close to 5.8 MHz, we obtain

∆φ1,2 ' 0.13
δne
ne

l (2.4)
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with ∆φ1,2 given in radians and l in km. Combining Eq. 2.2 with Eq. 2.4, we estimate

the relative perturbations of the electron density leading to GPS scattering to be

δne
ne
' 4.37

∆(STEC)

l(km)
(2.5)

We find that our ionograms from experiment 4 (Figure 2.6) combined with the

known GPS frequencies indicate the width of the heated region to be ≈ 3 − 4

km, and this is consistent with MUIRs measurements (Figure 2.7). Combining the

size of the turbulent region with STEC fluctuations mentioned above, we found

that during the HF heating that excited a DM in the SEE, δn/n = 5 − 7%, while

during heating which excited a BUM, δn/n = 20 − 30%. The strong scattering of

the GPS in the presence of the BUM in the SEE spectrum indicates that SSS are

connected to electron Bernstein modes, as predicted by Gurevich and Zybin [24].

Note that in this experiment, δn/n was measured indirectly through differential

phase measurements of the GPS signal from PRN 07. It may be useful in the future

to confirm these results, such as through direct measurements of the amplitude of

the scattered signal.

A likely mechanism for the relaxation of striations is ambipolar diffusion. For

a long cylindrical plasma column, the coefficient of ambipolar diffusion can be ap-

proximated by the electron diffusion across the geomagnetic field [1].

Da =
Teνei
mω2

ce

=
v2
th

2

νei
ω2
ce

(2.6)

where vth is the electron thermal velocity and νei is the electron-ion collision fre-

quency given by

νei = 2.9× 10−6ne log Λ/T 3/2
e (2.7)
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with the coulomb logarithm log Λ = 23 − log
(
n

1/2
e T

3/2
e

)
, the electron temperature

is in eV, and the electron density is in cm−3. For the ambient Te = 0.15 eV, and

ne = 4.5× 105 cm−3, which corresponds to the plasma density that reflects 6 MHz

heating radio waves, we obtain νei = 300 s−1 and Da = 0.1 m2/s, respectively.

Furthermore, the characteristic time scale of the SSS relaxation τ 1 = (asss⊥ )2 /Da '

0.4 s since the typical spatial scale of Bernstein waves is asss⊥ = 0.2 m. The value τ (1)

is consistent with the relaxation time of BUM that is less than 1 s detected from

our experiments (see Table 2.2).

The experimental observations verify that striations of various length scales

are being excited; there remains a question as to why their features, either from

the SEE or STEC observations, exhibit hysteresis under a frequency sweep. The

persistence of striations through cycles of HF heating could provide a mechanism

for hysteresis.

We consider next the hysteresis related to the DM. According to Figure 2.8(b),

the up sweep frequency has lower amplitude than that of down sweep frequency,

obtained at later times. A possible explanation can be that the system memory is

long enough; thus, when revisiting the same heating frequency, some striations still

exist and combined with the newly born striations magnify the SEE. Norin et al.

[33] estimated the transverse length of the striations involved in generation of the

DM, as 730 m. Their relaxation time is τ (2) =
(
aDM⊥

)2
/Da > 500 s. Thus, the

ambipolar diffusion in our experiment cannot wash out the striations in 300 s (see

Table 2.2), which could cause the DM-related hysteresis.
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We consider next the hysteresis related to the BUM. According to Figure

2.8(a), the up sweep frequency has higher amplitude than that of down sweep fre-

quency, obtained at later times. This requires different mechanism than above for

the DM hysteresis. We suggest that the BUM-related hysteresis is due to the large

scale striations that are scattering the pumping HF waves. The system memory is

long enough; thus, those striations will survive during the time between two consec-

utive frequency sweeps.

We can estimate these effects following a similar process to Gurevich et al.

[34] starting from the scattering off a rough surface. The power scattered in a solid

angle is given by

P/P0 =

∫
fdifdΩ ' 16π2a2

⊥
λ2

(
∆ne
ne

)2

(2.8)

Figure 2.8(a) shows that the BUM hysteresis produces 2-3 dB of the amplitude

reduction on the difference between the up and down frequency sweeps. Assuming

linear dependence of the SEE amplitude from the amplitude of the pumping wave,

we find that

a⊥
λ

∆ne
ne
' 0.5− 0.6 (2.9)

Consider that an average density perturbation due to HF heating is about a few

percent and that the wavelength of the pump wave is 50 m, we find that the most

scattering effect is due to the long-scale striations having λ of the order of 1 km.

Moreover, the ambipolar diffusion time for these kilometer-scale striations is ≈ 1500

s, which is much longer than our hysteresis time scale for the BUM.
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2.5 Conclusion

The key correlation that we noted in these experiments relates these various

features

1. DM correlates with a weak to moderate STEC fluctuations (Figure 2.5) and

with compact F layer (Figure 2.6(a)).

2. BUM correlates with a strong STEC fluctuations (Figure 2.5) and with spread

F layer (Figure 2.6(b)).

In the first case, the DM indicates that no SSS are formed, while in the second

case, the BUM indicates the formation of SSS through the four wave process followed

by generation of strong turbulence. It is expected that the strong turbulence leads

to the electron acceleration that ionizes the neutral atmosphere and thus forms the

spread F.

This is similar to the phenomenon known as descending artificial ionized layer

(DAIL) [35] that begins with the strong Langmuir turbulence; pumped by HF heat-

ing, the turbulence accelerates electrons that in turn form new ionized layers below

the original [36]. In this multi-step process, the DAIL starting from 200 to 210

km descends to 150 to 130 km height. In fact, ionograms made during the DAIL

appearance show spread F gradually descending to the low altitudes [35]. However,

DAIL is formed only when the HF beam is directed along the magnetic zenith and

the beam intersects the newly ionized layer, perturbing it, and producing additional

hot electrons. In our observations, the beam was 20 off magnetic zenith (MZ); thus,
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we see the initial ionization, or starter of the DAIL, but the ionized region cannot

propagate downward as it is not intersected by the HF beam.

In conclusion, two different diagnostic techniques, one measuring the differ-

ential phase of GPS signals, while another measuring the SEE response, were used

simultaneously to study small-scale striations generated by the HAARP heater.

These diagnostics were complemented by ionograms and UHF radar data.

We found that:

1. In all cases that were examined, STEC begins fluctuating at the period of

heating cycles ( 20 s) within ≈ 30− 35 s after heating commences.

2. STEC measurements indicate that density perturbations vary from 5% below

gyroresonance, to 20−30% above, when BUM appears. Such striations can also

affect UHF signals including GPS communications, and thus can be important

in other applications.

3. Ionograms indicate that the presence of a BUM in the SEE spectrum is asso-

ciated with strong ionospheric turbulence.

4. Of the six experiments performed, three have been examined in close detail,

and all three indicated the presence of strong turbulence, similar to that ob-

served in DAIL experiments [35] This turbulence is capable of accelerating bulk

electrons, and in one of the experiments, the presence of these fast electrons

was confirmed by MUIR.

5. We detected hysteresis and found that it is different for the BUM and the DM
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frequency ranges, indicating that the hysteresis may have two distinct mech-

anisms. We propose that the DM hysteresis is caused by persistent medium-

scale striations (730 m) which combine with the newly excited striations to

amplify the SEE. By contrast, the BUM hysteresis is due to persistent larger

scale (km) striations which scatter the pump wave, reducing the efficiency of

further heating.
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Chapter 3: Studies of Ionospheric Turbulence Excited by the Fourth

Gyroharmonic

3.1 Introduction

The study of Artificial Ionospheric Turbulence (AIT) generated by high-frequency

(HF) heating facilities such as EISCAT and the High-frequency Active Auroral Re-

search Program (HAARP) has a 40-year history. Diagnostic tools to study AIT

included: coherent and incoherent scattering radars to detect the formation and

propagation of artificial striations, ground based electromagnetic receivers to de-

tect Stimulated Electromagnetic Emission (SEE), scintillations of GPS signal, and

detection of narrow band electromagnetic emissions via radio telescopes. At the

Sura facility, Ponomarenko et al. [37], utilized a distant broadcast station as radar

while the scattered signal was received and analyzed by the UTR-2 HF Kharkov

Telescope. They found that when the heating frequency exceeded a multiple of the

electron gyro resonance the scattered signal underwent strong broadening (5-10 Hz),

and connected it to the excitation of Super Small Striations (SSS). The experiment

stimulated theoretical studies which led to the development of the SSS model [24].
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Bernhardt et al. [26, 27], Carozzi et al. [31], Thidé et al. [38] and Norin et al.

[33, 39], used SEE to probe the AIT. The broadband SEE spectra include features

such as the downshifted maximum (DM) and broad upshifted maximum (BUM),

both of which are indicators of the processes which occur in the ionopsheric plasma

during HF heating [40, 41, 42, 43]. The DM is thought to be a signature of the

parametric decay of a mode converted upper hybrid wave into another upper hybrid

wave and a lower hybrid wave, while the BUM is thought to be produced by a four-

wave interaction that includes upper and lower hybrid, as well as electron Bernstein

modes. Recently, Bernhardt et al. [26] and Mahmoudian et al. [44] have used the

narrow band SEE to estimate the bulk electron temperature while Najmi et al.

[45] correlated SEE measurements with analysis of GPS signals and found that

the excitation of SSS coincided with the highest amplitude BUM. Additionally,

Zalizovski et al. [46] performed O-mode heating at the EISCAT heater and were

able to detect HF signals at the Ukrainian Antarctic Station (UAS) located 16.3

Mm away.

We report the results of experiments conducted during the HAARP June 2014

campaign, whose objective was to study the development of artificial ionospheric tur-

bulence. Data collected from different diagnostic tools were analyzed, and the main

features detected in the experiments are discussed and explained. In section 3.2, we

give an overview of the experiments including the location, timing, and heating pat-

terns. In section 3.3, we present experimental observations and diagnostics including

measurements of phase-derived Slant Total Electron Content (STEC) using the L1

and L2 GPS signals received at HAARP; measurements of SEE conducted 15 km
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away from the HAARP site; ionograms from the HAARP digisonde, reflectance data

from the Kodiak radar and detection of the HAARP HF radiation scattered into

the ionospheric channel and propagated to the receiver at the UAS in the Antarctic

Peninsula. In section 3.4, we present a discussion of the integrated experimental

results relating to the nonlinear mechanisms of pumping AIT. Finally, in section 3.5

we give our concluding remarks.

3.2 Description of Experiments

We report below observations from two daytime experiments conducted in

June 6 and 7 2014, during the HAARP BRIOCHE campaign. The HAARP heater

operated in the 0.9-3.6 MW, power range and used O-mode polarization. The HF

frequency selected near the 4th gyroharmonic, was stepped up from 5.67 to 5.94

MHz, subject to constraints of the authorized bands during the experiment, in 30

kHz increments. The HAARP antenna array consisting of 360 crossed dipoles each

fed by a 10 kW transmitter produced a total effective radiated power (ERP) of

approximately 2.5 GW. Figure 3.1 is a schematic of the experiment, with two of

ten heating cycles shown. The heating at each frequency lasted 100 s, with 20 s

interpulse period, during which time an ionogram was made. Heating consisted of

10 power steps of 10 s each. The power per transmitter at each of the steps was:

2.50, 3.33, 4.17, 5.0, 5.83, 6.67, 7.5, 8.33, 9.17 and 10.0 kW, with 20 s off. In addition

after the 2nd, 5th, and 7th heating cycle the heating beam direction was adjusted

to track the path of the moving PRN25 GPS satellite.
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The HF beam was directed toward the USA-213 GPS satellite broadcasting

the PRN 25 signal, which is in a nearly circular geocentric orbit with inclination

55.0◦ to the equator, and radius 20.46 Mm. During the experiment, PRN 25 flew

over the HAARP site daily, and the signals at both the L1 (f1 = 1.575 GHz) and

L2 (f2 = 1.227 GHz) were measured on the ground at HAARP after traversing the

HF heated region at 1 Hz sampling rate. As discussed in detail in Najmi et al. [45],

the measured differential carrier phase was used to estimate the relative STEC. To

increase the observational time from 10 min per flyover as in our 2013 experiments

to 20 minutes, we adjusted the heating beam direction toward the moving PRN 25

every 5 minutes, illustrated in figure 3.2. The corresponding zenith and azimuth

angles are listed in Table 3.1. SEE signals were measured simultaneously using

an HF detector operated by the Naval Research Laboratory 15 km away from the

HAARP site. The data acquisition techniques have been previously described by

Bernhardt et al. [26, 27].

We implemented a new diagnostic technique during this campaign. The HF

signals radiated by HAARP were scattered into the ionospheric waveguide by the

excited artificial irregularities. This waveguide is formed between the electron den-

sity peaks of the E-region and F-region, and since the channel is above the E-region,

it is nearly collisionless, and waves in the channel are subjected to low attenuation,

allowing them to be channeled to very long distances. The signal trapping and chan-

neling is described by Erukhimov et al. [47] and is believed to be the mechanism of

very long distance propagation of EISCAT heater signals previously observed by Za-

lizovski et al. [46]. At the time of the experiment, the waveguide was oriented along
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the Earths terminator and simultaneously passing over both the transmitting and

receiving sites. These signals were detected on the ground at the UAS (coordinates

65.25◦ S, 64.25◦ W) 15.6 Mm away from HAARP. The HF signals were recorded

within a 500 Hz frequency band centered at the carrier frequency of the HAARP sig-

nal. The data acquisition system collected records of the intensity and the Doppler

spectra of the signal with time resolution 1 s and 5 s. This chapter introduces a

method to use the effect of long distance HF propagation for diagnostic of the AIT

spectra. All the experiments were diagnosed by the HAARP iononosonde, and by

the Kodiak coherent radar located 670 km SW of HAARP.

Table 3.1: Summary of Experiment beam angles. The listed initial zenith and

azimuth angles are updated every five minutes to track the path of PRN 25.

Date Start End Init. +5 min +10 min +15 min

06/06/14 02:55 03:15 15.8◦, 220.9◦ 16.1◦, 212.2◦ 16.8◦, 204.1◦ 17.4◦, 199.6◦

06/07/14 02:50 03:10 15.8◦, 222.4◦ 16.0◦, 213.6◦ 16.7◦, 205.4◦ 17.2◦, 200.8◦

3.3 Experimental Observations

Each of the two experiments discussed here lasted 20 minutes, starting at

about 03:00 UT, i.e 7 p.m. local time. During the first day (06/06/14) the iono-

sphere was slightly disturbed (δB ≈ 50 nT); a noticeable sporadic E-layer existed

(f0Es ≈ 4.5 MHz); fOF2 was in the frequency range 5.6-5.7 MHz while the F2
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Figure 3.1: Schematic of HF heating. The HAARP heater operated in the 0.9-

3.6 MW, power range, used O-mode heating. The HF frequency was near the 4th

gyroharmonic, and was stepped up from 5.67 to 5.94 MHz in 30 kHz increments.

Here two of ten heating cycles are shown. The heating at each frequency lasted 100

s, with 20 s interpulse period, during which time an ionogram was made. Heating

consisted of 10 power steps of 10 s each. The power per transmitter up from 2.5 kW

to 10 kW with 0.83 kW incremental.
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Figure 3.2: The HF beam was directed toward the PRN GPS 25 satellite on a

geocentric orbit. To increase the observational time we adjusted the heating beam

direction toward the moving PRN 25 every 5 minutes. The corresponding zenith

and azimuthal angles are listed in Table 1
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peak was located at hmF2 = 270 km. Considering the oblique propagation of the

heating wave, its frequency was reflected from the F2 peak, thus, for the majority

of the experiment, the heating wave was strongly absorbed in the ionosphere due

to anomalous absorption. An exception was the time around 3:04 UT when the

ionogram revealed that fOF2 dropped below 5.4 MHz, so that the heating frequency

exceeded the critical frequency, and the ionosphere became transparent to the HF

wave. During the second day (06/07/14) the ionosphere was also quiet (δB ≈ 30

nT) with Es layer present. However, the ionosphere was unstable. Fully half of the

ionograms show that the fOF2 fell to 4.05-4.5 MHz, resulting in low absorption and

absence of any heater generated AIT. The remaining ionograms show fOF2 > 5.7

MHz and hmF2 = 270 km, and resulted in some AIT excitation.

Due to federal regulatory frequency constraints, the minimum heating fre-

quency was 5.67 MHz which was above the 4th gyro resonance. In our March 2013

experiment [45] we obtained the resonance frequency 5.76 MHz from the SEE spec-

trum, at which frequency the DM disappeared. Concurrent ionograms show that

5.76 MHz waves are reflected at an altitude of 190 km. An estimate based on the

dipole model of the geomagnetic field shows that in the June 2014 experiments the

4th gyro resonance occurs at 5.6 MHz, with 5.6 ≈ 4fce = fpump

(
Re+190
Re+250

)3

, where

fpump = 5.76 MHz, and Re = 6371 is the Earth radius in km. 190 km represents

the reflection altitude at fpump during our previous experiments, and 250 km is the

reflection altitude of 5.6 MHz waves shown in ionograms taken from the June 2014

campaign. Thus the lowest heating frequency of 5.76 MHz is close to, but above the

BUM cutoff of 5.68 MHz estimated by Leyser et al. [42].
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3.3.1 GPS Observations

Data collected by the HAARP GPS detector during HF heating experiments

on June 6th and 7th are presented in figures 3.3 and 3.4. Figures 3.3(a) and 3.3(b)

show STEC data in Total Electron Content Units (TECU) during heating exper-

iments with heater on-off times indicated by solid vertical lines, as a function of

the elapsed time and heating frequency on June 6th (figure 3.3(a)) and June 7th

(figure 3.3(b)). The heating at each frequency lasted 100 s while each 10 s the

power was stepped up. As a result, figure 3.3 shows STEC amplitude as a function

of heating power for each of the heating frequencies.The STEC amplitude immedi-

ately increases after the heater is turned on, but after several seconds, the amplitude

decays. There is additional snap-back after the heater is turned off. The mechanism

for this behavior is discussed in detail in section 3.4.

Figure 3.4 shows the scintillation index (S4) of the L1 and L2 Carrier-Noise-

Ratio (CNR) on June 6th (figure 3.4(a)) and June 7th (figure 3.4(b)). Heater on-off

times are indicated by solid vertical lines. Although we collect CNR, we assume that

in our frequency range noise does not change greatly over our S4 intervals, and thus

the CNR is proportional to the signal intensity. In figure 3.4 the highest values of

the S4 index were detected between 900 and 1100 s into the heating for both L1 and

L2 corresponding to frequencies near 5.88-5.91 MHz. The extrema of the S4 index

are known to correspond to changes in the length scale of the underlying physical

processes [48]. The mechanism of the change in length scales is discussed in section

3.4.
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3.3.2 SEE Observations

Stimulated Electromagnetic Emission (SEE) signals were measured simulta-

neously with the STEC using an HF detector operated by the Naval Research Lab-

oratory 15 km away from the HAARP site and shown in Figures 3.5, 3.6, and 3.7.

Figure 3.5 shows the power spectral density (PSD) of the SEE emission at the se-

lected frequency 5.76 MHz. The traces are averaged over a 10 s portion of the

heating period with constant ERP. The heating frequency is shown by the highest

peak in the center at ∆f = 0, the down-shifted maximum (DM) is on the left side

of the heating frequency at ∆f = −10 kHz, while the broad up-shifted maximum

(BUM) is on the right side of the plots in the range ∆f = 50− 150 kHz. Each are

indicated by arrows. The blue trace corresponds to the per transmitter power of 2.5

kW, green to 5.0 kW, and red to 10 kW (25, 50, and 100% respectively). We see

that the peak amplitude of the SEE signal is saturated at 50% power.

In figures 3.6 and 3.7, the traces are independently normalized, but typically

the intensity of the DM is comparable to the BUM at frequencies close to the gyro-

resonance and up to 25 dB stronger than the BUM at higher frequencies. Figure

3.6 shows the amplitude of the DM and BUM as a function of the pump frequency.

The red and blue traces in figure 3.6 show the amplitude of the BUM and DM

respectively, both normalized by their peak values. The BUM reaches its peak at

fh = 5.67 MHz which is close to the BUM cutoff, and reduces with fh. The DM

reaches its peak at fh = 5.79 MHz, stays at nearly its maximum amplitude up to

5.85 MHz, and then rolls off for fh > 5.85 MHz. The amplitude of the BUM is
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observed to decay by ≈ 10 dB / 100 kHz while the DM both initially increases

by ≈ 12 dB / 100 kHz, saturates, then decays at 12 dB / 100 kHz. Figure 3.7

shows the amplitude of the PSDs normalized by their peak value as a function of

the heating power for frequencies 5.67 (figure 3.7(a)) and 5.79 (figure 3.7(b)) MHz.

These frequencies were chosen to demonstrate the strongest values of the BUM and

DM amplitude. For both the DM and the BUM, we see 90% saturation occurs by

50% of full power.

3.3.3 Kodiak Radar Observations

Figure 3.8 shows data measured by the Kodiak radar during the experiments

on June 6th. Top trace shows the SNR time series of the Kodiak radar backscattered

signals. Beam 9 of the radar was directed towards the heated region at frequency of

about 12 MHz. The signal reflected by the AIT is centered at 700 km slant range.

During the 10th cycle at 03:12:00-03:14:30, the SNR was strongly reduced because

the Kodiak beam 09 was almost outside of the HF heating spot. This was a geometric

effect of the angular adjustments of the beam to track PRN 25 and this final heating

cycle was picked up by beam 10. The HF heating was switched on at 02:55 followed

by the buildup of the reflected radar signal over 25 s. Then a strong SNR of more

than 50 dB was detected.The reflection increased by ≈ 10 dB around 02:57 then

reduced around 03:00 and 03:04 due to decrease in the ionospheric plasma density.

The second dip was discussed above in section 3.3, while the first dip occurred at

a time not covered by the ionograms at HAARP. Between 03:11:30 and 03:13:30
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the SNR decreased, and at 03:14:30 the heater was switched off and the reflection

gradually disappeared. The lower plot shows time series of the velocity of the

ionospheric irregularities. Starting at 02:55:00, the irregularities quickly accelerate

to 35-40 m/s, peak at ≈60 m/s near 02:57:00-02:59:00, when the heating frequency

fh = 5.70 MHz was close to the value of fOF2 obtained from ionograms and the

double resonance, where the pump frequency matches both the local upper hybrid

frequency and an integer multiple of the electron cyclotron frequency, condition was

fulfilled, then gradually reduces to ≈ 30 m/s at later times. During June 7th, radar

reflection was weak and is not shown.

3.3.4 UAS Signal Observations

Monitoring of the HAARP HF signals was carried out at the UAS Academician

Vernadsky. Figure 3.9(a) and 3.9(b) show the spectrogram of the received signal

for June 6th and June 7th, while figure 3.10 shows the signal-to-noise-ratio of the

signal as a function of time detected on June 6th. The 8th (fh = 5850 kHz) and

9th (fh = 5910 kHz) heating cycles, indicated by black arrows at the spectrograms,

were contaminated by interference signals and therefore were not processed in figure

3.10.The blue trace shows the measured data while the red trace is the 10s moving

average. The intensity of detected signal strongly depends on the heating frequency

fh. For fh slightly above the 4th gyro-frequency the intensity of the detected signal

was very low, barely above the noise level. The intensity of the detected signal in-

creased with fh and peaks at 5.79 MHz. We were unable to detect scattered HAARP
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HF signals from similar detectors in Ukraine and Scandinavia, thus verifying the role

played by Earths terminator in the formation of the waveguide. Figure 3.11 shows

that for frequencies 5.67-5.73 MHz, the signal intensity is approximately linear in

HAARPs ERP, where for frequencies 5.76-5.88 MHz the signal intensity is nonlinear.

The blue trace in figure 3.11 shows the time dependent received signal intensity, the

red trace shows the linear fit, and the green trace shows a reference linear fit with

a four times increase in the received signal. Similar results were obtained on June

7 except that the signal-to-noise ratio was by 5-10 dB less than that on June 6 (see

figures 3.9(a) and 3.9(b)). In figure 3.12, we show a close-up of the received signal

at two different frequencies, in blue, 5.70 MHz where the received signal is linear in

HAARPs ERP, and in red, 5.79 MHz, where the received signal is non-linear. The

error bars are the standard deviation of the mean of the SNR detected at UAS.

The spectral width as a function of the heating frequency is shown in figure

3.13 for each of 100 s time interval which correspond to the heating by a chosen

frequency on June 6th. The spectral width at half power was obtained by using

smoothed spectral curves, and the average spectral width is 1.1 Hz, and in all

cases is below 1.5 Hz. O. Finally, figure 3.14 presents the S4 scintillation index as

a function of the heating frequency over each 100 s time interval. The extrema of

the S4 index are known to indicate changes in the scales of the underlying causes

of turbulence, and the first peak at fh = 5.73 MHz corresponds to when the SSS,

indicated by the BUM (see figure 3.6), begin to be suppressed by the longer scale

striations indicated by the presence of the DM which can scatter the HF waves.

The second peak at 5.82 MHz is isolated due to signal interference, and it is not
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clear if it is a local extrema, but we speculate that it is both a local extrema and

that it corresponds to the pump frequency at which dekameter scale striations are

no longer efficiently excited.

3.4 Discussion

The main features detected in the experiments including theoretical consider-

ations are discussed below. In figure 3.3, we showed the dependence of the STEC

amplitude in TECU with radiated HF power for the June 6th and June 7th exper-

iments. We expected that the STEC amplitude would increase with ERP because

larger ERP can lead to production of additional SSS which modulate the GPS sig-

nal. Instead, we found that the STEC amplitude initially increased with HF power,

but then at each frequency it decayed with power for power levels above ≈ 40-

50%. A possible explanation for the nonlinear effect in the STEC amplitude is a

competition between processes that form SSS, which modulate the GPS signal, and

those that form dekameter scale striations which control the anomalous absorption

and are detected by Kodiak. A competition between process that form different

scale striations was observed by Frolov et al. [49] when probing the region of the

ionosphere heated by the Sura facility with two radars of different frequencies. The

radars detected the temporal evolution of striations of size 3 and 13 m perpendicular

to the geomagnetic field. The 3 m scale striations experienced fast rise, reaching a

peak in 3 s, and then become suppressed by the rising 13 m scale striations, which

gradually saturate over about 10 s.
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(a)

(b)

Figure 3.3: STEC data (in TECU) during heating experiments on June 6th (a) and

June 7th (b) with heated on-off times indicated by solid vertical lines. The heater

is first turned on around 20s (a) and 50 s (b) elapsed. Since the heating at each

frequency lasted 100 s and each 10s the power was stepped up, the figure reveals

STEC amplitude vs. power for each of the heating frequencies.
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(a)

(b)

Figure 3.4: Scintillation index S4 of the L1 and L2 Carrier-Noise-Ratio (CNR) vs.

time elapsed and heating frequency on (a) June 6th and (b) June 7th. Heater on-off

times indicated by solid vertical lines.
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Figure 3.5: Power spectral densities (PSD) of broadband SEE from 06-Jun-2014

computed for the selected frequency 5.76 MHz. The traces are averaged over a 10s

portion of the heating period with constant effective radiated power (ERP). The

heating frequency is shown by the highest peak in the center at ∆F = 0, the down

shifted maximum (DM) is on the left side of the heating frequency while the broad

up shifted maximum (BUM) is on the right side of the plots, both are indicated by

arrows. The blue trace corresponds to the power 2.5 kW, green to 5.0 kW and red

to 10 kW per transmitter (the power level 25, 50, and 100% respectively).

58



Figure 3.6: The red and blue traces show the amplitude of the BUM and DM

respectively, both normalized by their peak values, as a function of the pump fre-

quency.
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(a)

(b)

Figure 3.7: BUM (a) and DM (b) amplitude dependence on power. We chose the

strongest values of the BUM and DM amplitude which are reached at 5.67 and 5.79

MHz respectively.
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Figure 3.8: Diagnostics from Kodiak Radar Beam 09. Top plot is SNR, lower

plot is velocity of plasma irregularities, all detected on June 6th. Slant range is

approximate distance from Kodiak to an ionospheric reflector.

61



(a)

(b)

Figure 3.9: Spectrogram of received HF signal at UAS (a) June 6th, (b) June 7th.

The 8th (fh = 5850 kHz) and 9th fh = 5910 kHz heating cycles, indicated by black

arrows at the spectrograms, were contaminated by interference signals and therefore

not processed.
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Figure 3.10: Time series of Received Power at UAS on June 6th with HF heating

frequencies indicated. The intensity of the HAARP signals at the different heating

frequencies is shown by the blue lines with the linear interpolation shown by the red

lines.
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Figure 3.11: Scaling of Received Power at UAS with ERP. The intensity of the

received signals at the different heating frequencies is shown by the blue lines. The

green lines correspond to 4 times increase of the heating power, with the linear

interpolation shown by the red lines.
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Figure 3.12: Scaling of the Signal-to-noise-ratio at UAS with ERP for two different

pump frequencies. In blue, 5.70 MHz which is linear in HAARPs ERP, and in

red, 5.79 MHz, which is non-linear in HAARPs ERP. Error bars are the standard

deviation of the mean of SNR measured at UAS during heating at the given ERP

and frequency.
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Figure 3.13: Spectral width of received signal at half-max power at UAS vs. heating

frequency measured on June 6th.

Figure 3.14: Scintillation Index (S4) of Received Power at UAS as a function of

heating frequency measured on June 6th.
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Consider the following physical argument as given by Najmi et al. [45]. The

STEC value is proportional to the amplitude of super small striations (δne/ne)SSS

which in turn is proportional to the pumping power P of the heating wave [24].

STEC ∝
(
δne
ne

)
SSS

∝ P (3.1)

In the presence of dekameter scale striations produced by anomalous absorption of

the heating wave, the pump power is reduced by

P = P0 exp−β(δne/ne)2DM (3.2)

where β is a coefficient and (δne/ne)DM indicated the magnitude of the dekameter

scale striations. Frolov et al. [49] obtained that (δne/ne)
2
DM ∝ P for striations with

scale size close to 10 m, and in our experiments, the pumping power was varied

in the range Pmin < P < Pmax where Pmax is the maximum ERP of HAARP. We

transitively obtain the following STEC dependence upon the varying power:

STEC ∝ P

Pmax
exp−αP/Pmax (3.3)

We found our STEC data fit this product of a linear and exponential function, with

the STEC data from June 6th and least-squares fit shown in figure 3.15, and the

parameter α is determined from the power that corresponds to the STEC peak

value. At the STEC peak, we have d
dP

(STEC) = 0, thus α = (Ppeak/Pmax)
−1 =

(34/100)−1 = 2.94.

A separate effect of interest comes from the SEE observations. In figure 3.16,

we show the peak amplitudes of PSDs as a function of the heating frequency fh.
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The BUM amplitude, indicated in red, decays rapidly as fh increases, while the DM

amplitude, shown in blue, rises, saturates, then decays for much larger fh.

Since the work by Huang and Kuo [43], it is known that the growth rate of the

BUM induced instability is γ = 1/
√
f 2
UH − f 2

EB. Where fUH is the upper hybrid

frequency and fEB is the electron Bernstein frequency which for larger wave numbers

is a multiple of the electron gyro frequency. We estimate that γ ∝ 1/
√
fh − 4fce

where fh > 4fce , and since the ionospheric conditions indicate 4fce = 5.6 MHz,

as the heating frequency increases past the resonance, the growth rate of the BUM

related instability is squelched. By contrast, it is known that the DM disappears

at a multiple of the electron gyro resonance. The DM amplitude increases when

fh rises above 4fce and eventually saturates [50]. However, at higher frequencies

the value fh could exceed foF2, thus the ionosphere becomes transparent. Since the

HF beam is directed at about 16◦ to MZ, and the beam has a conical shape some

fraction of the beam could be still absorbed while the other become transparent

which reduces the overall heating effect, which can explain why we see a decay of

the DM amplitude with fh rather than a sharp cutoff.

Previous work by Carozzi et al. [31], Wagner et al. [51], Frolov et al. [49]

have also made SEE observations of heating with varying ERP near the fourth

gyroharmonic. Our experiments operated at 10 dBW higher ERP than that available

at Sura, and probed a frequency range of 270 kHz, as opposed to 60 kHz at Sura.

At Sura, the SEE showed linear dependence of the amplitude of the BUM peak

with varying ERP [51] while our experiments showed a nonlinear saturation of both

the BUM and DM peaks with varying ERP, this can be seen in figure 3.7. We
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estimated ≈90% saturation of the DM and BUM amplitudes occurs at ≈ 50% of

HAARPs maximum ERP. We also detected the shift of the BUM peak towards lower

frequencies at higher ERP. In figure 3.7, the peak of the BUM is seen to shift-down

by ≈25 kHz as the ERP increases from 25% to 50%, and does not appear to shift

further as the ERP is increased to 100%. Neither the saturation of the BUM and

DM amplitudes, nor the frequency shift of the BUM peak, are well understood, and

are subjects of future studies.

Finally, we discuss and analyze the physical processes underlying the scatter-

ing of the HAARP HF waves by the AIT into the ionospheric waveguide. These

waves were detected and processed at at the UAS located 16.3 Mm from the heater.

Previously, Zalizovski et al. [46] detected HF signals from the EISCAT facility at the

UAS. The received HF signal had two different components, one was a narrowband

mirror-reflected signal, while the other was a scattered signal with a much wider

spectrum. Zalizovski et al. [46] found that although both components propagate

along the ionospheric channel, the mirror-reflected signal is associated with the side

lobe radiation of the transmitting HF antenna, which bypasses the modified volume,

while the scattered signal was radiated through the main antenna beam and then

scattered by pump-induced plasma striations. In order to establish which of the two

mechanisms is dominant one needs to sweep the heating frequency around a mul-

tiple of the electron gyro resonance. While the side lobe radiation is not sensitive

to small frequency variations, the spectrum of the pumped striations, and thus the

scattered signal, strongly depends on fh.

Figure 3.16 shows amplitudes of PSDs obtained from the SEE spectrum com-
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bined with the intensity of the HAARP signal measured at UAS taken from the

Doppler spectrum on June 6th (figure 3.11) as a function of the heating frequency.

As we discussed above, the red and blue traces in figure 3.16 show the amplitude of

the BUM and DM respectively at maximum heater power, both normalized by their

peak values. The black trace shows the intensity of the detected HAARP signal at

UAS first smoothed by moving average (red trace in figure 3.11) and then normal-

ized by its peak value. All data points are time averages over measurements taken

at maximum ERP at the listed frequency, and are normalized independently such

that the maximum of each trace maps to 0 dB. The error bars of the black trace are

the standard deviation of the mean of the SNR at UAS at maximum heater power.

We found that the intensity of the signal detected at UAS during the experiments

on June 6th strongly depends on the heating frequency fh. Figure 3.16 reveals that

when the BUM is dominant in the SEE spectrum, it suppresses the HF signal. The

stronger the BUM is, the weaker the HF signal. By contrast, when the DM dom-

inates in the SEE spectrum, the intensity of the detected signal increases with fh

and peaks at 5.79 MHz. Thus the DM and HF peaks occur at the same frequency.

Furthermore, it is known that the BUM is associated with the pumping of

10 cm SSS while the DM is associated with the 7-30 m scale striations [33]. Since

SSS inefficiently scatter the HF waves compared to the dekameter striations related

to the DM, this implies that the HAARP signal detected at UAS could be due to

the scattering of HF radiation with half wavelength of 25 m by the dekameter size

artificial striations into the ionospheric channel. The Kodiak radar is sensitive to

striations in this range, since its half wavelength is ≈10 m, and it detected strong
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scattering in slant ranges corresponding to the HAARP facility, and simultaneously

detected striation velocity of ≈30 m/s (shown in in figure 3.8. This is consistent with

the striation velocity calculated by the Doppler broadening at UAS, that can be seen

in figure 3.13, ∆fD = 1.15 − 1.40 Hz, with corresponding velocity of irregularities

v = c∆fD
2fh

= 30− 35 m/s.

The analysis shows that the origin of the signal detected at UAS is scattering of

HAARPs HF radiation off of artificially pumped striations and into the ionospheric

waveguide. In this process, mirror reflection does not appear to play an important

role, as indicated by the low amplitude of received signal at 5.67 and 5.70 MHz.

Since the amplitude of the signal varied nonlinearly with the HF power at 5.76, 5.79

and 5.82 MHz, the signal cannot be induced by sidelobe radiation which is known

to be linear in the radiated power.

3.5 Conclusions

We have presented a study of the AIT induced at HAARP by sweeping fre-

quencies near the fourth gyro harmonic. Our study included a number of diagnostics,

such as: SEE, STEC and Kodiak radar, to both verify the presence of AIT and con-

firm nonlinear effects related to the variation of the pump intensity and frequency.

Moreover, we added the novel diagnostic of received signal at the UAS 15.6Mm

away.

The AIT has a broad wavelength spectrum, and within it, we studied stria-

tions of the 10 cm (SSS) and dekameter scale. These striations are indicated by the
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Figure 3.15: STEC fluctuations as a function of ERP with least-squares fit to

x exp−αx , where x is the ratio of the HAARP ERP to its maximum ERP.
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Figure 3.16: Amplitudes of DM (blue trace), BUM (red trace), and received power

at UAS (black,with bars) relative to maximum values, as a function of the pump

frequency. All data points are time averages over measurements taken at maximum

ERP at the listed frequency are are normalized independently so that the maximum

of each trace maps to 0 dB. All measurements taken on June 6th. Error bars of the

black trace are the standard deviation of the mean of SNR measured at UAS during

maximum ERP.
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BUM and DM features respectively in the SEE spectrum. The SSS were also di-

rectly studied with GPS signals. We observed a nonlinear dependence of the STEC

amplitude on the power of the HF heater. At any heating frequency the STEC am-

plitude first increases with ERP until it reaches a peak and then decays. This effect

is due to competition between anomalous absorption, which controls the formation

of dekameter striations, and instabilities which form SSS.

The SEE measurements show 90% saturation of the DM and BUM amplitude

at ≈50% of HAARPs maximum ERP. This is the first time this saturation has been

observered, since similar previous experiments at the Sura facility were limited by

a maximum ERP of 25% of HAARPs. We also observed the nonlinear dependence

of the BUM and DM amplitude on the heating frequency and found that the BUM

amplitude decayed by ≈10 dB / 100 kHz, while the DM amplitude first increased

by 12 dB / 100 kHz, saturated, then decayed at 12 dB / 100 kHz.

We found that HF waves from HAARP were scattered by the AIT into the

ionospheric waveguide oriented along Earths terminator, analogous to a whispering

gallery mode that allows the long distance propagation of waves around concave

surfaces, guided in this case by the curvature of the channel between the E- and

F-region electron density peaks [52, 53], and were subsequently detected at UAS.

Simultaneous attempts to measure the scattered HF signal in Ukraine and Scandi-

navia were unsuccessful, demonstrating the critical role played by the terminator.

The intensity of the received signal at UAS also has a frequency dependence, with

the maximum occurring at the same frequency as the DM peak in the SEE and

the minimum correlating with the BUM peak in the SEE. We also found that the

74



signal at UAS was Doppler broadened by ∆fD = 1.15− 1.40 Hz, which corresponds

to a velocity of ionospheric irregularities of 30-35 m/s, which is consistent with our

direct measurements from the Kodiak radar.

The combination of the strong frequency dependence of the received signal

at UAS, the presence of ionospheric dekameter scale striations shown indirectly

by SEE and directly by Kodiak, all of which are consistent with scattering off of

striations, leads us to conclude that the signal detected at UAS was generated by

direct scattering of the HF signal into the ionospheric waveguide by the dekameter

scale artificial striations pumped by AIT, and not by mirror reflection of the sidelobe

radiation.
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Chapter 4: Vlasov Simulations Near the Upper Hybrid Layer

4.1 Introduction

Magnetic field-aligned striations (FAS) are plasma density depletions which are

frequently produced by electrostatic processes during high-frequency (HF) ordinary

(O) mode heating of the ionosphere. Small-scale FAS have transverse sizes of a

few meters [54, 55], while their sizes along the magnetic field are several tens of

kilometers [13, 14]. Striations typically form on time-scales of the order of seconds

after the heating beam is switched on, and similarly, they dissipate on the order of

seconds after the heating is switched off. Once formed, an incident electromagnetic

wave is mode-converted to upper hybrid waves trapped in the striation, heating the

electrons, and further increasing the density depletion. The mode conversion leads

to anomalous absorption of the O-mode wave near the altitude of the ionospheric

upper hybrid resonance [30].

Following the upgrade of the High Frequency Active Auroral Research Pro-

gram (HAARP) heater to Effective Radiated Powers (ERPs) up to 5 GW, Pedersen

et al. [56] observed descending artificial ionospheric layers (DAILs). The DAILs are

believed to be formed due to the ionization of the neutral gas by suprathermal elec-

trons accelerated by the induced ionospheric turbulence [57]. Once the layer reaches
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sufficient density to reflect the pump wave, the interaction region shifts downwards,

creating the DAILs. Eliasson et al. [36] employed a multi-scale numerical model

of the generation and descent of DAILs and found that the bulk electron tempera-

ture needs to exceed 4000K for a significant fraction of the electrons in the tail of

the distribution function to be efficiently accelerated by the turbulence. A possible

scenario is that the bulk electrons are first heated at the upper hybrid layer, and

as the hot electrons reach the critical layer, they are further accelerated by strong

Langmuir turbulence to form high energy tails.

The commonly discussed mechanism of electron heating near the upper hybrid

layer involves collisional Ohmic heating by mode converted upper hybrid waves

trapped in FAS [13, 14]. In the weakly collisional plasma of the F-region ionosphere,

the Ohmic heating of electrons takes place on time-scales of the order of seconds.

However, a potentially faster and more efficient mechanism is stochastic heating,

which takes place in the presence of large amplitude electric field gradients [58, 59,

60, 61, 62]. As the amplitude exceeds a threshold for stochasticity, the particle orbits

become unstable and diverge in time, leading to a very rapid heating of the plasma.

Stochastic heating is favored by small-scale turbulence involving large amplitude,

short wavelength electrostatic waves.

The aim of this chapter is to investigate stochastic electron heating near the

upper hybrid layer, by means of Vlasov simulations relevant to ionospheric heating

experiments. The chapter is organized as follows: In section 4.2, we describe the

simulation model and numerical parameters. We present simulation results between

the second and third gyroharmonic, including analysis of ion density fluctuations,
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electron heating, and analysis of wave modes, parametric decay processes, and po-

tential heating mechanism in section 4.4. In section 4.5 we present simulation results

directly applicable to ionospheric heating experiments, and employ our test particle

simulations to isolate effects of specific wave modes on electron heating. Finally, we

present summary and conclusions of this work in section 4.6.

4.2 Simulation Set-up

To study the collisionless heating of electrons in small-scale FAS, we have

carried out electrostatic Vlasov simulations in one spatial and two velocity dimen-

sions. To eliminate the effects of numerical noise in the simulations, we solve the

Vlasov equation in position and velocity space using a Fourier method in veloc-

ity space [63]. The simulation domain is along the x-axis while the velocity is in

the (vx, vy) space. The Vlasov equation describes the evolution of the distribution

function fα of charged particles of species α (where α equals i and e for ions and

electrons, respectively) in position and velocity space,

∂fα
∂t

+ vx
∂fα
∂x

+
~Fα
mα

· ∇vfα = 0, (4.1)

where

~Fα = qα

(
~E + ~Eext + ~v × ~B0

)
(4.2)

is the Lorentz force, qα and mα are the particle’s charge and mass, qe = −e and

qi = e, and e is the magnitude of the electron charge. The constant magnetic field

~B0 = ẑB0 is directed along the z-axis. The O-mode pump wave is represented by an

external oscillating dipole electric field ~Eext = x̂E0 sin(ω0t) directed along the x-axis
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at frequency ω0 and with amplitude E0. The most common ion species at the F2

layer is atomic oxygen, but for numerical efficiency, we use the proton-to-electron

mass ratio mi/me = 1836, which gives a sufficient separation between high-frequency

and low-frequency wave dynamics.

We use the electrostatic approximation ~E = −x̂∂φ/∂x for the electric field,

where the electrostatic potential is obtained from the Poisson equation

− ∂2φ

∂x2
=

ρ

ε0
. (4.3)

Here, the electron charge density is

ρ =
∑
α=i,e

qαnα, (4.4)

and the particle number density

nα(~x, t) =

∫ ∫
fα(~x,~v, t)dvxdvy. (4.5)

The size of the one-dimensional spatial simulation domain is 9 m resolved by 600

points, giving a grid spacing of 1.5 cm, and the simulation time is about 300 µs

over a total of 84000 time steps that are dynamically chosen during the simulation

to maintain numerical stability, resulting in an average time-step of about 4 ns.

The initial electron and ion temperatures are set to Te0 = 1500 K and Ti0 = 1000

K, consistent with measurements of ionospheric temperatures before heating using

incoherent scatter radars [64, 65], using Maxwellian electron and ion velocity distri-

butions. In velocity space, we chose a two-dimensional grid of 160x160 points for

both the electrons and ions. For the electrons, the velocity space covers the range

±25vTe0 in the vx and vy directions, while for the ions it covers the range ±17.6vT i0
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where vTe0 =
√
kBTe0/me = 1.508 × 105 m/s is the electron thermal speed and

vT i0 =
√
kBTi0/mi = 2.873× 103 m/s is the ion thermal speed.

As initial conditions for the electron and ion number densities, a Gaussian

density striation superimposed on a background plasma density,

ni(x) = ne(x) = n0

[
1− α exp

(
−x2/R2

)]
, (4.6)

with a relative density depletion of α = 0.1 and transverse size of R = 1.5 m. A

schematic of the simulation set-up is shown in Figure 4.1. The external magnetic

field B0 = 5.17 × 10−5 T corresponds to the background field at a mid-latitude

HF heating facility like HAARP and has associated cyclotron frequencies of ωce =

eB0/me = 9.09× 106 s−1 (1.447 MHz), and ωci = eB0/mi = 4.952× 103 s−1 (0.788

kHz). The combination of the ambient electron density ne = n0 and the pump wave

frequency ω0 are chosen such that the pump frequency matches the local upper

hybrid frequency ωUH(x) =
√
ω2
pe(x) + ω2

ce at the edges of the striation where ne =

0.95n0, where ωpe(x) =
√
ne(x)e2/ (ε0me) is the local electron plasma frequency.

We consider two cases cases, the first is off-resonance where the pump frequency is

between the second and third gyroharmonics, and on-resonance where we consider

the pump frequency close to the fourth gyroharmonic, consistent with HAARP

experiments described in previous chapters. A summary of the physical parameters

is shown in Table 4.1.

For heating off resonance, the background plasma density is n0 = 1.27× 1011

m−3 with corresponding plasma frequencies of the electrons ωpe = 20.09 × 106 s−1

(3.197 MHz), and ions ωpi = 4.691 × 105 s−1 (74.66 kHz). The pump frequency
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is ω0 = 21.59 × 106 s−1 (3.436 MHz), the pump amplitude is E0 = 2.0 V/m, and

ω0/ωce = 2.37. The lower hybrid frequency is ωLH = 1.95× 105 s−1 (31.04 kHz)

For heating on resonance, we consider two sub-cases, the first with ω0 below the

fourth gyroharmonic, and the second with ω0 very close to the fourth gyroharmonic,

ω0/ωce = 3.80 and 4.01. The ambient density n0 is 3.67× 1011 m−3 and 4.12× 1011

m−3 with corresponding plasma frequencies of the electrons ωpe = 34.20 × 106 and

36.23 × 106 s−1 (5.443 and 5.766 MHz) and of the ions ωpi = 7.982 × 105 and

8.455× 105 s−1 (127.03 and 134.57 kHz) chosen to maintain ω0 = ωUH at 0.95n0 as

ω0 is moved through the gyroharmonic, simulating increasing interaction altitude of

higher frequency waves. The pump frequency is ω0 = 34.55 × 106 and 36.46 × 106

s−1 (5.499 and 5.803 MHz). The pump amplitude is E0 = 2.0 V/m, and the lower

hybrid frequencies are ωLH = 2.051×105 and 2.058×105 s−1 (32.64 and 32.76 kHz).

For test particle simulations, we use the explicit Beeman predictor-corrector

algorithm [66]

xi+1 = xi + ∆t (vi) + ∆t2
(

2

3
ai −

1

6
ai−1

)
+O(∆t4) (4.7)

vi+1,p = vi + ∆t

(
3

2
ai −

1

2
ai−1

)
+O(∆t3) (4.8)

vi+1,c = vi + ∆t

(
5

12
ai+1 +

8

12
ai −

1

12
ai−1

)
+O(∆t3) (4.9)

the time step is identical to the Vlasov simulations, and accelerations are computed

from the Lorentz force given in equation 4.2 with the magnetic field B0 and the

electric fields interpolated from the self-consistent Vlasov simulation. At each time

step, the particle positions at the next time step are computed, the velocities are

predicted, the velocity dependent acceleration is computed, and the velocity is cor-
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Figure 4.1: Simulation overview: The profile of the initial density striation with the

density at ω0 = ωUH indicated.

rected using the computed accelerations. The Beeman algorithm combines a fast

solver with energy drift over our simulation of ≈ 7%. Convergence was tested over

103−106 particles with test particles assigned initial velocities from the 2D Maxwell

distribution corresponding to Te0 and initial positions drawn from the distribution

given in equation 4.6.

4.3 Results

Here we present the results of simulations for both off-resonance and on-

resonance heating. For off-resonant heating with ω0/ωce = 2.37, we present only
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ω0/ωce 2.37 3.80 4.01

n0 (m−3) 1.27× 1011 3.67× 1011 4.12× 1011

ωpe (s−1) (MHz) 20.09× 106 (3.20) 34.20× 106 (5.44) 36.23× 106 (5.77)

ωpi (s−1) (kHz) 4.691× 105 (74.7) 7.982× 105 (127) 8.455× 105 (134)

ω0 (s−1) (MHz) 21.59× 106 (3.44) 34.55× 106 (5.50) 36.46× 106 (5.80)

E0 (V/m) 2.0

B0 (T) 5.17× 10−5

wce (s−1) (MHz) 9.09× 106 (1.45)

wci (s−1) (kHz) 4.952× 103 (0.79)

ωLH (s−1) (kHz) 1.95× 105 (31.0) 2.051× 105 (32.6) 2.058× 105 (32.8)

Te0 (K) 1500

Ti0 (K) 1000

vTe (m/s) 1.508× 105

vT i (m/s) 2.873× 103

Table 4.1: Summary of physical parameters used in the Vlasov simulations, for off-

resonant (first column) and on-resonant (second and third columns) heating, and

some derived plasma parameters.
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Vlasov simulation results, while for the on-resonant heating with ω0/ωce = 3.80 and

4.01, we include both Vlasov and test-particle simulations.

4.4 Off-Resonance Heating

4.4.1 Ion Density

A plot of the time evolution of the ion density in space and Fourier space is

shown in figure 4.2.

The seeded density striation shown in figure 4.1 is visible in figure 4.2(a) for

−1.5 ≤ x ≤ 1.5 m. Large amplitude ion density fluctuations appear after about

0.05 ms, in the form of a standing wave pattern oscillating in time with a frequency

close to the lower hybrid frequency. The wavenumber spectrum of the ion density

in figure 4.2(b) shows notable features: a consistent component near k = 10 − 20

m−1 and another peak near k = 40 − 60 m−1, corresponding to wavelengths of

λ = 0.30 − 0.60 m and λ = 0.10 − 0.15 m respectively. Wave components below

k = 3 m−1 have been trimmed as they correspond to the time-stationary density

striation seen in figure 4.2(a).

4.4.2 Electron Heating

The evolution of the electron temperature in space and time is shown in fig-

ure 4.3.

The electron heating is significant, with a rise of the electron temperature

by several thousands of Kelvin, which is correlated with the onset of lower hybrid
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(a) (b)

Figure 4.2: Time evolution of the normalized ion density ni/n0 in (a) space and (b)

wavenumber space.

oscillations seen in figure 4.2. From figure 4.3 and the snapshots of the spatial

temperature profiles in figure 4.4(a) we see that the most efficient heating occurs

near the center of the striation, while the electron temperature outside the central

cavity rises more slowly. The time evolution of the electron temperature, spatially

averaged over the center of the striation is shown in figure 4.4(b). After the initial

0.05 ms turn-on time, the electrons are heated rapidly to Te ≈ 4000 K over the next

0.05 ms, after which they heat more slowly up to Te ≈ 6000 K over the remaining

0.20 ms to the end of the simulation.

The heating gives rise to an electron distribution function which is gyrotropic

in (vx, vy) space. A cut of the electron distribution along vx is shown in figure 4.5.

The initially Maxwellian velocity distribution widens and develops into a more flat-

topped distribution as the bulk electrons are accelerated by the turbulence.
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Figure 4.3: Evolution of the electron temperature Te (K) in time and space.

(a) (b)

Figure 4.4: (a) Spatial profiles of Te at different times, and (b) the time evolution

of Te averaged over space -1.5 m ≤ x ≤ 1.5 m at the center of the striation.
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Figure 4.5: Profiles of the electron velocity distribution at different times. Initially,

the velocity profile is Maxwellian, but as the electrons are heated, the distribution

widens and becomes more flat-topped.
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4.4.3 Observed High-Frequency and Low-Frequency Wave Modes

Inside of the striation, both high-frequency and low-frequency waves are ex-

cited by the external pump wave. To diagnose these, we investigate the temporal

and spatial wave spectra of the simulation electric field data. We concentrate here on

the frequencies covering the lower hybrid components f < 100 kHz and frequencies

covering the upper hybrid components 3.3 < f < 3.6 MHz. In the low-frequency

spectrum in figure 4.6(a) there is a peak between 30 and 35 kHz, near the lower

hybrid frequency fLH ≈ 31 kHz (see table 4.1). In the high-frequency frequency

spectrum in figure 4.6(b), the pump wave is visible at f0 = 3.436 MHz, and two

downshifted peaks are visible at f = 3.41 and 3.38 MHz. The difference in fre-

quency between adjacent peaks in the high-frequency spectrum corresponds to the

lower hybrid frequency.

After separating the frequency spectrum, the high and low frequency compo-

nents is inverse Fourier transformed back into space and time. The amplitude of the

high and low frequency components are shown in figure 4.7. While both the high

and low frequency waves appear to be mostly confined to the initially seeded den-

sity striation, there is noticeable leaking of high-frequency waves propagating away

from the striation which we later identify as short wavelength electron Bernstein

waves. Low-frequency electric fields are visible after about 0.05 ms, similar to the

ion density fluctuations in figure 4.1

Plots of the wavenumber spectra of the low- and high-frequency components of

the electric field are shown in figure 4.8. For the most part, the components occupy
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distinct scales. The high-frequency components in figure 4.8(b) show a condensation

at small wavenumber k < 7m−1, while the low-frequency components in figure 4.8(a)

peak at k ≈ 7m−1. This is typical for an inverse cascade of upper hybrid waves to

smaller wavenumbers, downshifted in frequency, accompanied by lower hybrid waves

at larger wavenumbers. There are also spectral components at large wavenumbers

k ≈ 50 − 70m−1 in the low-frequency spectrum and k ≈ 40 − 60m−1 in the high-

frequency spectrum, which we associate with short wavelength electron Bernstein

waves interacting with lower hybrid waves.

The power spectrum of the electric field in wavenumber and frequency space

is shown in figure 4.9 and is compared with numerical solutions of the dispersion

relations for electron Bernstein and lower hybrid waves in figure 4.10. The pump

wave is seen just below f = 3.5 MHz at k = 0. The immediately neighboring non-

zero wavenumbers are upper hybrid waves, and the spectral components extending

out to higher wavenumbers are associated with the second electron Bernstein mode.

Similarly, the arched features near k = 50 m−1 and f = 2.0 MHz are associated

with the first electron Bernstein mode. The electron Bernstein mode associated

with the upper hybrid frequency has a resonance at the second cyclotron resonance,

f = 2fce = 2.9 MHz, while the first electron Bernstein mode is associated with the

first cyclotron resonance f = fce = 1.45 MHz at large wavenumbers. Components

of the third Bernstein mode are visible for frequencies near f = 4.5 MHz. Lower

hybrid waves are visible for |k| < 100 m−1 and f < 100 kHz. The excitations of

Bernstein modes at large wavenumbers cover wide bands in ω − k space, which

indicates that the plasma parameters change in time. The increase in the electron
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temperature from Te0 = 1500 to 6000 K in the striation (see figures 4.3 and 4.4)

affects the dispersion properties of the electron Bernstein modes.

The dispersion relation for electron Bernstein waves is given by [67]

1 +
ω2
pe

ω2
ce

exp(−λ)

sin(πΩ)

∫ π

0

sin(ψΩ) sin(ψ) exp[−λ cos(ψ)] dψ = 0, (4.10)

where λ = k2v2
Te/ω

2
ce and Ω = ω/ωce. The low-frequency mode associated with lower

hybrid waves is derived from the dispersion relation

1 + χe + χi = 0 (4.11)

where the ion and electron susceptibilities are respectively given by

χi = −
ω2
pi

ω2 − ω2
ci − γiv2

Tik
2

(4.12)

and

χe = −
ω2
pe

ω2 − ω2
ce − γev2

Tek
2
. (4.13)

In the frequency range ω2
ci � ω2 � ω2

ce, we obtain the low-frequency dispersion

relation

ω2 = γiv
2
T ik

2 +
ω2
pi(ω

2
ce + γev

2
Tek

2)

ω2
pe + ω2

ce + γev2
Tek

2
, (4.14)

where the adiabatic factors are γi = 3 and γe = 1. The electron and ion thermal

effects lead to an increase of the frequency with wavenumber.

The three first electron Bernstein branches and the lower hybrid branch are

plotted in figure 4.10 for different electron temperatures. We note from figure4.10

that the electron Bernstein dispersion curves contract in wavenumber space for

higher electron temperatures. Since the electron temperature is time-dependent in
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(a) (b)

Figure 4.6: Frequency spectra of the electric field showing (a) the low frequency and

(b) high frequency components.

the simulations, and the Fourier transform in space and time effectively averages over

time and space, figure 4.9 shows signatures of electron Bernstein modes at different

temperatures mapped into the same plot. By applying a Gaussian window in time

and space before performing the Fourier transforms, and by shifting the center of the

window in time, we obtain an approximate time dependence of the wave spectrum.

A few snapshots are shown in figure 4.11 with time and space centers and standard

deviations, σx and σt, given for each snapshot. At t = 0.02 ms, we see only the pump

wave and a narrow spectrum of neighboring upper hybrid waves, and a similar band

of low frequency lower hybrid waves. At t = 0.04 ms, electron Bernstein modes

near the upper hybrid frequency are excited, but the principle components are the

upper hybrid and lower hybrid waves. At t = 0.08 ms, the Bernstein modes have

significantly increased in amplitude, and by t = 0.30 ms, they have clearly contracted

in wavenumber space due to the increase of electron temperature.
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(a) (b)

Figure 4.7: The amplitudes of (a) the low-frequency electric field, and (b) the high-

frequency electric field.

(a) (b)

Figure 4.8: Electric field Ex wavenumber spectrum separated into (a) low-frequency

and (b) high-frequency components.
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Figure 4.9: Frequency-wavenumber power spectrum of Ex (10 log10 scale). The

pump wave is seen near k = 0 at f = 3.44 MHz. Electron Bernstein modes are

visible near k = ±50 m−1 and f = 2.0 MHz. Lower hybrid waves are seen for

|k| < 100 m−1 and f < 100 kHz.
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(a) (b)

(c)

Figure 4.10: Electron Bernstein and lower hybrid dispersion curves for (a) 1500 K,

(b) 4000 K, and (c) 6000K. In each figure, the first three branches of the electron

Bernstein modes are shown, with resonances at the respective electron cyclotron

harmonic at large wavenumbers.
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(a) (b)

(c) (d)

Figure 4.11: Ex Frequency-wavenumber plots with Gaussian windows to isolate the

bottom of the seed density striation (x = 0) in space (σx = 1 m) , and to cover

principally ±0.01 ms (σt = 0.01 ms) from their focus time. Shown are spectra at:

(a) t = 0.02 ms, (b) t = 0.04 ms, (c) t = 0.05 ms, (d) t = 0.30 ms.
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4.4.4 Parametric Decay of Upper Hybrid to Upper Hybrid and Lower

Hybrid Waves

Linear mode conversion of the pump wave (E0, ω0) to upper hybrid waves takes

place at the edge of the density cavity where the plasma density is 95% of the ambient

density, so that ω0 = 21.59 × 106 s−1 (see Table 4.1). The mode converted upper

hybrid wave can propagate to the center of the striation and interact nonlinearly

with lower hybrid waves in the form of a three-wave decay creating a daughter upper

hybrid wave and a lower hybrid wave. Correcting for kinetic effects of finite ωce/ωpe

ratio, the dispersion relation for upper hybrid waves is [68]

ω2 = ω2
UH +

3v2
Tek

2ω2
pe

ω2 − 4ω2
ce

, (4.15)

which can be derived from Eq. 4.10 for vTek/ωce � 1. The bottom of the density

cavity is homogenous to first order, so we can assume a constant density at 90% of

the ambient density. For a given frequency ω = ω0, the wavenumber k = k0 can be

obtained from

ω2
0 = 0.9ω2

pe + ω2
ce +

3v2
Tek

2
00.9ω2

pe

ω2
0 − 4ω2

ce

.

We consider three separate temperatures, the initial Te0 = 1500 K, and two temper-

atures Te = 4000 K and Te = 6000 K observed later in the simulation. For each of

these temperatures and using the parameter values in Table 4.1, the upper hybrid

wavenumber k0 and associated wavelength λ0 = 2π/k0 are given in table 4.2.

The lower hybrid frequency at the bottom of the striation at small wavenum-
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bers is

ωLH ≈
1√

(ωciωce)
−1 + ω−2

pi /0.9
, (4.16)

giving ωLH = 1.92 × 105 s−1 (30.48 kHz). The frequency difference between the

driving frequency and the local upper hybrid frequency at the bottom of the cavity

is

∆ω =
√

0.95ω2
pe + ω2

ce −
√

0.90ω2
pe + ω2

ce,

= 4.73× 105s−1 = 75.26 kHz. (4.17)

Hence, since ∆ω/ωLH = 2.47 there is sufficient room in frequency space for a double

decay of upper hybrid waves to down-shifted daughter upper hybrid waves, with

successive downshifts equal to the lower hybrid frequency.

The three-wave decay obeys the matching conditions

ω0 = ω1 + ωLH , (4.18)

k0 = k1 + kLH . (4.19)

for the frequencies and wave vectors, when an upper hybrid wave, (ω0, k0), decays

into a daughter upper hybrid wave, (ω1, k1) and a lower hybrid wave, (ωLH , kLH).

Using Eq. 4.18 to eliminate ω1 in the upper hybrid dispersion relation for (ω1, k1)

(ω0 − ωLH)2 = 0.9ω2
pe + ω2

ce +
3v2

Tek
2
10.9ω2

pe

(ω0 − ωLH)2 − 4ω2
ce

, (4.20)

from which the resulting wavenumbers k1 and wavelengths λ1 = 2π/k1 are obtained

and summarized in table 4.3.
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The corresponding lower hybrid wavenumber is obtained from Eq. 4.19 as

kLH = k0 − k1. In the second decay, the new frequency matching condition will be

ω1 = ω2 + ωLH ,

which combined with Eq 4.18 gives

ω0 = ω2 + 2ωLH , (4.21)

and the corresponding dispersion relation for (ω2, k2) becomes

(ω0 − 2ωLH)2 = 0.9ω2
pe + ω2

ce +
3v2

Tek
2
20.9ω2

pe

(ω0 − 2ωLH)2 − 4ω2
ce

, (4.22)

together with kLH = k1 − k2. These results are summarized in table 4.4.

Thus, through a three-wave parametric decay process in two steps, the upper

hybrid waves cascades to daughter upper hybrid waves at smaller wavenumber and

downshifted by the lower hybrid frequency in each step. This corresponds to the

two downshifted peaks seen near 3.41 MHz and 3.38 MHz in figure 4.6. Similar

results linking downshifted frequency peaks to the decay of trapped upper hybrid

waves were found using fluid simulations by Mjølhus [69].

In addition to the three-wave decay scenarios discussed here, it should be noted

that the modulational instability (a four-wave process) and strong turbulence [70]

may contribute to the localization of wave energy. Some features of localized electron

heating in figure 4.3 and localized high-frequency electric fields in figure 4.7(b) during

the onset of turbulence indicate that upper hybrid wave collapse takes place. In

figure 4.3 there are stationary pockets of heated electrons inside the striation that

have the largest increase in temperatures, and in figure 4.7(b) there are pockets
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of large amplitude electric field inside the striation that collapse in advance of the

onset of fast electron heating.

4.4.5 Parametric Decay of Upper Hybrid to Electron Bernstein and

Lower Hybrid Modes

In addition to upper hybrid waves at small wavenumbers, there are also exci-

tations of electron Bernstein waves at large wavenumbers, visible in figures 4.9 and

4.11 at k ≈ 40−60 m−1 and frequencies near 2 MHz and 3.4 MHz. These excitations

are associated with the first and second electron Bernstein modes seen in figure 4.10.

As seen in figure 4.9, an upper hybrid pump wave near 3.44 MHz can decay into fre-

quency downshifted daughter waves on the same electron Bernstein branch at four

different wavenumbers, near ±50 m−1 and ±5 m−1, and to lower hybrid waves at

four different wavenumbers. We see regions of the frequency-wavenumber spectrum

consistent with this decay channel in figure 4.9, and in particular figures 4.11(b)

and 4.11(c). Additionally, the high-wavenumber decay modes described here can

account for the lower hybrid wavenumber spectrum peaks near k = 60 m−1 seen in

figure 4.8(a), which is not possible to explain by the single or double decay of an

upper hybrid wave into upper hybrid and lower hybrid waves.

In figure 4.9, excitations of the first electron Bernstein mode has its maximum

intensity near f = 2 MHz and k = 40 m−1. For the pump wave close to 3.44 MHz

and with wavenumber k < 10 m−1, we note that the difference between the second

and the first branches of the electron Bernstein modes intersects the first branch
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Te(K) k0(m−1) λ0(m)

1500 10.38 0.60

4000 6.36 0.99

6000 5.19 1.21

Table 4.2: Upper hybrid wavenumber and wavelength for different electron tem-

peratures, representing the initial temperature 1500 K and higher temperature 4000

K and 6000 K observed later in the simulation.

of the electron Bernstein mode at about 1.7 MHz with k ≈ ±50 m−1. Thus, a

potential decay mode could be to two Bernstein modes of frequency 1.7 MHz, but

with slightly asymmetric wavenumbers near k = 50 m−1 to satisfy k0 = kEB,1+kEB,2.

For a decay of the pump into one wave of 1.72 MHz and k = 55 m−1, the frequency

of the third wave should be 3.44−1.72 = 1.72 MHz, while the resulting wavenumber

is 7.01−55 = −47.99 m−1. These decay products are clearly seen in figure 4.9 where

their diffuseness is explained by the temperature dependence of the Bernstein mode

dispersion curve shown in figure 4.10. Notably, unlike the first decay channel, figure

4.11 indicates that this mode becomes significanly excited only much later in the

simulation, indicating a smaller growth-rate of the instability governing the decay

of an upper hybrid wave to two electron Bernstein waves.

4.4.6 Stochastic Heating Mechanism

Here we discuss the stochastic heating of electrons by large amplitude electron

Bernstein waves. It has been recognized that the acceleration of charged particles

100



Te (K) k1 (m−1) λ1 (m) kLH (m−1) λLH (m)

1500 -7.68 0.82 18.06 0.35

4000 -4.70 1.34 11.06 0.57

6000 -3.84 1.64 9.03 0.70

Table 4.3: Daughter upper hybrid, and lower hybrid wavenumber and wavelength

for different electron temperatures, representing the initial temperature 1500 K and

higher temperature 4000 K and 6000 K observed later in the simulation.

Te (K) k2 (m−1) λ2 (m) kLH (m−1) λLH (m)

1500 4.00 1.57 -11.69 0.54

4000 2.45 2.56 -7.16 0.88

6000 2.00 3.14 -5.84 1.08

Table 4.4: Double decay daughter upper hybrid and lower hybrid wavenumbers and

wavelengths for different electron temperatures representing the initial temperature

1500 K and higher temperature 4000 K and 6000 K observed later in the simulation.
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(a) (b)

Figure 4.12: Decay scenarios of a pump upper hybrid wave to (a) either a down-

shifted upper hybrid wave or electron Bernstein modes and a lower hybrid wave,

and (b), to two electron Bernstein modes.
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by electric field gradients perpendicular to a stationary magnetic field can lead to

stochastic motion of the individual particles and a rapid heating of the plasma. The

equations of motion for a charged particle in the presence of an electrostatic plane

wave propagating across the ambient magnetic field can be cast into a dimensionless

model problem of the form [59, 58, 60].

d2v

dt2
+ v = A cos (v − Ωt) , (4.23)

dx

dt
= v, (4.24)

for the particle’s velocity v and position x, where A = (mk2φ)/(qB2
0) is a normalized

wave amplitude, Ω = ω/ωc is the ratio between the wave frequency and cyclotron

frequency, and φ is the amplitude of the electrostatic potential. For small values of Ω

and v, it was noted [60] that stochasticity sets in for A > 1. At this value, the particle

displacement due to polarization drift becomes comparable to the wavelength of

the electrostatic wave, and the drift approximation breaks down. An equivalent

condition for stochastic electron and ion heating by large amplitude gradients in the

electric field was given by Balikhin et al. [61] and Stasiewicz et al. [62] as

|A| =
∣∣∣∣ mqB2

0

∂Ex
∂x

∣∣∣∣ > 1. (4.25)

When this condition is fulfilled [61] the particle orbits, initially very close in phase

space, diverge exponentially in time, leading to rapid heating of the particles.

Following the above ideas, we have plotted the normalized electric field gradi-

ent

A =
me

eB2
0

∂Ex
∂x

, (4.26)
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in figure 4.14. Zooming in on the center of the striation near t ≈ 0.05ms, in fig-

ures 4.14(b) and 4.14(c), we find |A| > 1 which is also correlated with the char-

acteristic turn-on time of both electron heating (figure 4.4(b)) and lower hybrid

waves (figure 4.7) in the center of the striation. High-frequency waves escaping the

striation are short wavelength electron Bernstein waves, seen in figures 4.14(a) and

4.14(b) for t > 0.055 ms. They contribute to the heating of the electrons outside

the striation electrons at later times, seen in figure 4.4(a).

By using windowed Fourier transforms in the same manner as in figure 4.11, we

can isolate which particular decay modes are associated with the stochastic heating.

From figure 4.15, it is evident that the primary contributions to A during the fast

heating comes from frequencies near the upper hybrid frequency at a broad spectrum

of large wavenumbers. This indicates that the electron heating is due primarily to

the decay of upper hybrid modes to short wavelength electron Bernstein waves

where the large amplitude electron Bernstein waves lead to stochastic heating of the

electrons.

To study the dependence of the electron heating on pump amplitude we have

carried out simulations using a series of pump amplitudes between 1.00 V/m and

2.50 V/m. We found that over the course of our simulation time, the average

temperature of electrons in the density striation depends non-linearly on the pump

field. These results are summarized in figure 4.16. We find that a quadratic fit for

the temperature scaling with the pump field yields good agreement.
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Figure 4.13: Frequency-wavenumber power spectrum of the normalized electric field

gradient A (10 log10 scale). The pump wave is seen near k = 10 m−1 and f = 3.44

MHz. Electron Bernstein modes near k = ±50 m−1 and f = 2.0 MHz. Lower hybrid

waves are visible for |k| < 100 m−1 and f < 100 kHz.
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(a)

(b) (c)

Figure 4.14: (a) Colormap of the normalized electric field gradient A from Eq. 4.26.

Panels (b) and (c) show closeups of the initial phase of turbulence.
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(a) (b)

Figure 4.15: Windowed frequency-Wavenumber spectra of the normalized electric

field gradient A from Eq.4.26, (a) immediately before heating burst (t = 0.04 ms),

and (b) during heating burst (t = 0.05 ms).

(a) (b)

Figure 4.16: Scaling of the electron temperature averaged over space -1.5 m ≤ x ≤

1.5 m. (a) Time dependence of Te for different pump amplitudes and (b) the relative

temperature at t = 0.33 ms as a function of the pump amplitudes, where the solid

line shows the least-squares fit to a quadratic function.
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4.4.7 Summary

We have presented the results of Vlasov simulations of ionospheric heating

near the upper hybrid resonance layer and in the presence of a small-scale density

striation. The pump wave mode-converts to upper hybrid waves trapped in the

striation, which in turn decays to high-frequency upper hybrid and electron Bern-

stein waves and low-frequency lower hybrid waves. The upper hybrid and lower

hybrid pairs are responsible for the inverse cascade to small wavenumbers, while the

electron Bernstein modes produce high-frequency, large wavenumber components

escaping the striation. As the amplitude of the electron Bernstein waves exceeds

a threshold of stochasticity, they become the primary source of stochastic electron

bulk heating. Further, we find that the average temperature inside the striations

exceeds the thresholds proposed by Eliasson et al. [36] for the efficient accelera-

tion of fast electrons by strong Langmuir turbulence in the formation of descending

artificial ionospheric layers.

4.5 Resonant Heating

Here we present the results of continued Vlasov and test-particle simulations

approaching the simultaneous upper hybrid resonance, and fourth electro gyrohar-

monic, with pump frequencies ω0/ωce = 3.80 (5.50 MHz) and 4.01 (5.80 MHz).
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4.5.1 Vlasov Simulation

Plots of the evolution of the ion density and electron temperature are shown in

figure 4.17. For both pump frequencies, ions inside the striation are dominated by

standing lower hybrid oscillations with slightly different onset times. For pumping

below the gyroharmonic, lower hybrid oscillations maintain constant amplitude from

0.03 ms until the end of the simulation, while pumping above the gyroharmonic has

a similar initial onset time, but does not reach full strength until 0.12 ms. In both

cases, electrons inside the striation are heated significantly, but heating below the

gyroharmonic starts at the edge of the striation and then fills inward and does

not exceed about 5000 K. Above the gyroharmonic, heating starts at the center

of the striation and turns into a more localized pocket with average kinetic energy

exceeding 10000 K.

Plots of both the time evolution of the electric field, and the time averaged

frequency-wavenumber spectrum are shown in figure 4.18. Although the pump wave

is only 2.0 V/m, in both cases, trapped upper electrostatic upper hybrid oscillations

of near 40 V/m evolve from the upper hybrid resonance, and are constrained to the

striation. Qualitatively the spectra in figures 4.18(c) and 4.18(d) are similar. In both

cases, the pump frequency is visible between 5.50-5.80 MHz and near k = 0. Upper

hybrid waves extend out from the pump wave frequency to larger wavenumbers, to

k = 50 for below gyroharmonic heating and only to k = 20 for heating above the

gyroharmonic. The lower hybrid waves mirror this at ≈ 30 kHz. Bernstein waves

that asymptotically approach Nωce = 1.5, 3.0, 4.5, 6.0 MHz for large wavenumbers
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(a) (b)

(c) (d)

Figure 4.17: Evolution of ion density and electron temperature. Below the gyro-

harmonic in (a) and (c), above gyroharmonic in (b) and (d).

are present in both cases.

4.5.2 Test-Particle Simulation

Plots of the electron velocity distribution functions for test particles are shown

in figure 4.19. For pumping below resonance, we observe bulk heating of the elec-

trons, while for pumping above resonance, only the tail is accelerated. This is a

significant difference that does not have an obvious correspondence in the electric
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(a) (b)

(c) (d)

Figure 4.18: Evolution of electric field (a) below gyroharmonic, (c) above gy-

roharmonic. ω − k spectrum of electric field (b) below gyroharmonic, (d) above

gyroharmonic.
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field spectra shown in figure 4.18.

By filtering all but a single wave mode at a time, we can push particles to

see the approximate effects of individual wave modes on the electron distribution

functions. The results are shown in figure 4.20 where we include a trace for the initial

and final vavg distribution with all wave modes, as well as a final distribution with

isolated lower hybrid (LH) waves, upper hybrid (UH) waves, and electron Bernstein

modes (EBM). For pumping below resonance, the dominant contribution to the bulk

heating comes from electron Bernstein waves, while for pumping above resonance

the only contribution to the electron tail heating comes from upper hybrid waves.

Although the electric field spectra seen in figure 4.18 are qualitatively sim-

ilar for each of the pump frequencies, they produce distinct particle distribution

functions. Figures 4.18(c) and 4.18(d) indicate the presence of upper hybrid waves

and electron Bernstein waves in both simulations, but there is only bulk heating

for the below resonance simulation, and only tail heating for the above resonance

simulation.

By projecting into frequency space we can see many differences between the

overall spectra. This projection is shown in figure 4.21, with the overall frequency

spectra shown in figure 4.21(a), while a focus on the electron Bernstein wave spectra

with labeled features is shown in figure 4.21(b) and a similar focus on the upper

hybrid spectra is shown in figure 4.21(c). The region from 1.5 MHz to 3.0 MHz

corresponds to the first electron Bernstein wave. For ω0/ωce = 3.80, there are peaks

near 1.8, 2.2, and 2.6 MHz, while for ω0/ωce = 4.01, there are peaks only at 1.8

and 2.2 MHz. We can isolate the electric field due to each of these peaks and and
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run the test-particle simulations to estimate the relative contribution of each peak

to the final electron distribution function. The results are shown in figure 4.22(a)

we find that the peak at 2.6 MHz, which is present in the below resonance heating,

and absent in the above resonant heating, is the primary driver of bulk electron

heating. We can do a similar analysis on the upper hybrid spectrum seen in figure

4.21(c). The region from about 5.4 MHz to 6 MHz comprises the bulk of the upper

hybrid wave spectrum for each case. For each heating frequency, we have indicated

both the pump frequency and a number of downshifted maxima or peaks (DM)

mutually separated from the pump by the lower hybrid frequency. For the case of

a pump near ω0/ωce = 4.01, the pump and its associated DMs are between 10-40

dB greater than the spectra of the ω0/ωce = 3.80 in the same frequency range. We

can isolate the electric field due to each of these downshifted maxima and estimate

their contribution to the final electron distribution function as before. The results

are shown in figure 4.22(b). We find that the primary contributions to the long tail

of the electron distribution comes from the first downshifted maximum, closest to

the pump frequency, and secondarily, due to the pump itself. Both the pump and

the first downshifted maxima bracket the fourth gyroharmonic 4ωce = 5.79 MHz.

4.5.3 Heating Wave Modes

In the previous section, we have shown the effects of the electric fields on the

distribution function of the electrons, and by extending this analysis to the particle

phase and configuration spaces we can learn more about the heating mechanism. In
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(a) (b)

(c)

Figure 4.19: Evolution of average electron velocity distribution for ω0/ωce = (a)

3.80 on linear scale and (b) 4.01 on log scale to illustrate the long tail. (c) initial

and final distributions from both pump frequencies on log-scale.
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(a) (b)

Figure 4.20: Evolution of average electron velocity distribution with initial and final

distributions for all wave modes, as well as final distributions with individual wave

modes for ω0/ωce = (a) 3.80, and (b) 4.01. Each plot includes traces with the initial

distribution, final distribution with all wave modes, final distribution with only the

lower hybrid (LH), upper hybrid (UH), first electron Bernstein mode (EBM-01) and

higher order Bernstein modes.
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(a)

(b) (c)

Figure 4.21: Comparison of frequency spectra for the ω0/ωce = 3.80 and 4.01. The

overall frequency range from 0-10 MHz is given in (a), while a zoom in on the

1.5-3.0 MHz, corresponding to the first electron Bernstein wave and 5.4-6.0 MHz,

corresponding to the upper hybrid frequencies are seen in (b) and (c) respectively.
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(a) (b)

Figure 4.22: Test particle vavg distributions for (a) ω0/ωce = 3.80 showing that

the primary contribution to the bulk heating from the electron Bernstein waves

comes from the peak near 2.6 MHz, and (b) ω0/ωce = 4.01 showing that the primary

contribution to long-tail acceleration comes from upper hybrid waves near the pump

and the first DM.

figure 4.23 we show the initial and final x− vavg phase space of electrons for each of

the two pump waves we have considered above. In both cases, heated particles are

primarily drawn from those inside the striation (−1.5 < x < 1.5). For the below

resonant pump, particles initially occupying phase space from from −1.5 < x < 1.5

and 0 < vavg < 2vTe have been pushed up into 2 < vavg < 7vTe, while particles

outside the striation or with initial velocity greater than about 3-5 vTe experience

little or no acceleration. For the pumping above resonance, it is a small number

of already fast particles that are further accelerated. Particles with small intial

velocities are ignored no matter where in the striation they are.

We can further focus our attention to a sample particle that is heated. In figure

4.24, we show vx − vy phase space trajectories for a selected particle in 4.24(a) and

117



4.24(b), and then the time dependence of vavg for those same particles in 4.24(c) and

4.24(d). These plots show the difference between the more steady bulk heating of an

initially slow particle in the below resonance pump, and the discrete ”kicks” received

by an initially fast particle in the above resonance pump. Most interestingly, figures

4.24(c) and 4.24(d) give enough information to estimate an onset time that can be

correlated with electric field data. For ω0/ωce = 3.80, the onset of bulk heating

comes after ≈ 0.07 ms, while for ω0/ωce = 4.01, the resonant acceleration does not

begin until ≈ 0.12− 0.15 ms.

In figure 4.25 we show the initial evolution of the electric field spectrum, by

taking 2D Fourier transforms after applying a Gaussian window centered on the

bottom of the striation, x = 0 m, with σx = 1.0 m, and centered on 0.00 ms for

4.25(a) and 4.25(b) time, and centered on 0.03 ms for 4.25(c) and 4.25(d) with σt =

0.005 ms in each case. At 0.03 ms, the below resonant pumping has developed a

broad wavenumber spectrum of upper hybrid and lower hybrid waves, while the

above resonant case has developed a very narrow upper and lower hybrid spectrum

while simultaneously exciting all of the first four electron Bernstein waves. In figure

4.26, we see the further development of the electric field spectra in the neighborhood

of the onset times noted from the test-particle simulations above. We employ the

same Gaussian window, advancing the time center through the times of interest. In

figures4.26(a), 4.26(c), and 4.26(e), the first Bernstein wave is absent at 0.05 ms,

but starts to develop at 0.07 ms, and is fully formed by 0.09 ms, consistent with the

observed heating onset onset time of ≈ 0.07, and also with the observation that the

first Bernstein wave is a primary driver of bulk heating. In figures 4.26(b), 4.26(d),
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(a) (b)

Figure 4.23: Initial and final x − vavg phase space for pump wave (a) below res-

onance, and (b) above resonance. In both cases, heated particles are drawn from

within the striation (−1.5 < x < 1, 5) while particles outside the striation are mostly

unperturbed.

and 4.26(f), the upper and lower hybrid spectra grow sharply in both amplitude

and wavenumber from 0.09 ms, expanding the upper hybrid spectrum to nearly

k = 50 m−1 at 0.15 ms, consistent with the observed heating onset in test particle

simulations of ≈ 0.12 − 0.15 ms, and also with the upper hybrid spectrum near 4

ωce as the primary cause of tail heating.

The onset times from the test-particle simulations are also consistent with the

onset of wave modes from the Vlasov simulations. In figure 4.17, the ion density

fluctuations have distinct onset times, with stationary lower hybrid oscillations from

about 0.03 ms onward for ω0/ωce = 3.80, and some oscillations visible at 0.05 ms,

but not fully developed until ≈ 0.12− 0.15 ms for ω0/ωce = 4.01.
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(a) (b)

(c) (d)

Figure 4.24: Phase space and vavg time dependence for a sample heated particle in

each pump wave. In (a) and (c) an initially cold particle on the edge of the striations

in the below resonant pump, is steadily heated to several times vT e after an onset

time of ≈ 0.07 ms. In (b) and (d), an initially fast particle is resonantly accelerated

to over 20 vTe in discrete steps that occur after an onset time of ≈ 0.15 ms.
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(a) (b)

(c) (d)

Figure 4.25: Frequency-Wavenumber spectra of electric field data from Vlasov simu-

lations. Gaussian window centered x = 0 m, with σx = 1.0 m, t = 0.00 and 0.03 ms,

and σt = 0.005 ms. (a) and (c) show the spectra for pump wave below resonance,

while (b) (d) show the spectra for pump wave above resonance.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.26: Frequency-Wavenumber spectra of electric field Gaussian window

centered x = 0 m, with σx = 1.0 m, t is indicated in each figure, and σt = 0.005

ms. (a), (c), and (e) show the development of the first electron Bernstein wave near

t = 0.07 ms for ω0/ωce = 3.80. (b), (d), and (f) show the development of broader

wavenumber spectrum and larger amplitude upper hybrid and lower hybrid waves

near t = 0.12 ms for ω0/ωce = 4.01.
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4.5.4 Excitation of Electron Bernstein waves

We have identified the specific wave mode associated with bulk heating as

the high frequency 2.6-2.7 MHz peak of the first electron Bernstein wave. In figure

4.27 , we show the frequency-wavenumber spectrum of the first electron Bernstein

wave for both pump frequencies. To excite this wave, we consider the linear mode

conversion of the pump wave (E0, ω0) to upper hybrid waves as the edge of the

density cavity where n = 0.95n0 and a subsequent three-wave decay obeying the

matching condition

ω0 = ω1 + ω2, (4.27)

k0 = k1 + k2. (4.28)

for frequency and wave number. A direct decay from a mode converted upper hybrid

pump wave at ω0 = 3.80ωce = 5.50 MHz to two electron Bernstein waves of frequency

2.6-2.7 MHz (see peak 03 from figure 4.21(b)) is prohibited by frequency matching.

However, if the pump wave first decays to upper hybrid and lower hybrid waves,

and then a daughter upper hybrid wave decays to two electron Bernstein waves,

frequency matching could be satisfied, and this would also explain the observed

onset time of electron Bernstein waves after the formation of a broad wavenumber

spectrum of upper and lower hybrid turbulence.

Following the work previously developed in Najmi et al. [71], we consider a

mode converted upper hybrid wave that propagates to the center of the striation

and undergoes a three-wave decay to a daughter upper hybrid wave and a lower
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hybrid wave. The frequency difference between the pump frequency and the local

upper hybrid frequency at the bottom of the cavity is given by

∆ω =
√

0.95ω2
pe + ω2

ce −
√

0.90ω2
pe + ω2

ce,

= 136.38 kHz. (4.29)

The lower hybrid frequency (ωLH) is given in section 4.2 as 32.64 kHz, and ∆ω/ωLH

= 4.18, giving enough room in frequency space for the possibility of up to four

successive decays of an upper hybrid wave to a downshifted upper hybrid wave,

with a downshift equal to the lower hybrid frequency. To find the frequency and

wavenumber of the daughter upper hybrid waves, we take the dispersion relation for

upper hybrid waves given by [68]

ω2 = ω2
UH +

3v2
Tek

2ω2
pe

ω2 − 4ω2
ce

, (4.30)

and substitute both the frequency matching condition (Eq. 4.27), and the local up-

per hybrid frequency, assuming that the bottom of the density cavity is homogenous

to first order. The N th daughter upper hybrid wave (ω0−NωLH , kN) has dispersion

relation

(ω0 −NωLH)2 = 0.9ω2
pe + ω2

ce +
3v2

Tek
2
Nω

2
pe

(ω0 −NωLH)2 − 4ω2
ce

, (4.31)

For N = 4, we have ω4 = 5.37 MHz, k4 = 5.12 m−1. The frequency ω4 can satisfy the

frequency matching condition for decay to two Bernstein waves with frequencies 2.6-

2.7 MHz since ω4/2 = 2.68 MHz, and the wavenumber k4 can satisfy the wavenumber

matching condition for waves from k = 15-20 m−1 which are the observed ranges of

the third peak of the first Bernstein wave seen in figure 4.27(a)
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(a) (b)

Figure 4.27: Frequency-Wavenumber plot for the first electron Bernstein wave (a)

below resonance, and (b) above resonance. Peaks corresponding to figure 4.21(b) are

indicated. Peak 03 of (a), previously associated with the bulk heating of electrons

corresponds to a frequency of 2.6-2.7 MHz and a wavenumber of 15-20 m−1.

For the case of ω0/ωce = 4.01, we can use this same procedure to show that

a decay is prohibited. ∆ω/ωLH = 4.43, ω4 = 5.67 MHz, which is prohibited by the

frequency matching condition to decay to two electron Bernstein waves of 2.6-2.7

MHz.

4.5.5 Comparison with Experiments

A significant motivation for exploring the mechanism of heating near the dou-

ble resoannce of the fourth gyroharmonic and the upper hybrid layer is that this

frequency range has been explored by experiments that can ground our simulations.

In previous work, [45] we performed heating at the HAARP facility stepping an O-

mode pump wave from 300 kHz below, to 200 kHz above, the fourth gyroharmonic,

while simultaneously remaining below the F2 critical layer to be near the upper
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hybrid resonance. While there were no electric field measurements in the heated

region, instruments operated by the Naval Research Laboratory (NRL) were able to

detect Stimulated Electromagnetic Emissions (SEE) on the ground, approximately

200 km below the heated region. We show spectra obtained from the SEE measure-

ments alongside electric field spectra from our Vlasov simulations at similar pump

frequencies in figure 4.28, and these results correlate strongly with the simulations.

As mentioned previously, in the F-region, the dominant ion species is atomic oxygen,

which is 9 times heavier than the proton mass used in our simulations, and has a

corresponding lower hybrid frequency of 1/
√

9 = 1/3 of our simulation value of ≈ 32

kHz. Therefore, while our simulations show a separation between the pump and the

DMs of ≈ 32 kHz, the separation from the NRL data shows a separation of ≈ 10

kHz, and this discrepancy is expected. For the below resonance cases, compared in

4.28(a) and 4.28(b), there is a clear pump wave, a DM separated from the pump

by the appropriate lower hybrid frequency, and an upshifted maximum (UM) that

is upshifted by a similar amount. In the above resonance case, shown in figures

4.28(c) and 4.28(d) additional DMs are visible, and there is also a broad upshifted

component associated with the fourth electron Bernstein wave. Previous SEE mea-

surements have concentrated on the narrow range of 300-400 kHz around the pump

frequency. In future experiments, we have proposed that the frequency range be

expanded to 3-4 MHz to allow for the detection of electron Bernstein waves, which

our simulations predict should be present in experiments where the pump wave is

absorbed between the upper hybrid layer and the F2 peak.

126



(a) (b)

(c) (d)

Figure 4.28: Comparison of SEE from (a) and (a) ground based detectors, with

(b) and (d) simulation results for similar pump frequencies.
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4.5.6 Strong Langmuir Turbulence

The original motivation for exploring heating near the upper hyrbid layer, was

to use this as an initial condition for strong Langmuir turbulence in the theory of

formation of DAILs. Since we are able to obtain velocity distribution functions at

various heating frequencies, we can use these distribution functions as inputs to

strong Langmuir turbulence simulations such as those described in Eliasson et al.

[36]. The most interesting comparison is between the thermal distributions used

by the authors, and the non-Maxwellian long-tail distributions described by our

Vlasov simulations of heating above the gyroharmonic. We present two compar-

isons, with strong Langmuir turbulence produced by an HF pump corresponding

to 1.0 V/m and 2.0 V/m. These results are shown in figure 4.29 with velocities

normalized to vTe = 1500K, the same initial temperature of electrons in the Vlasov

simulations presented above. For each pump field, we show four traces, the initial

and final vx distribution function corresponding to the Vlasov simulation, and to

a thermal distribution of 4500 K which was previously studied by Eliasson et al.

[36]. The threshold for ionization of neutrals in the F region is about 10 eV, which

corresponds to 9-10 vTe, and in both cases, a long tail develops that exceeds this

threshold, with ten times more particles with velocities greater than 10vTe with a

pump field of 2.0 V/m as compared to 1.0 V/m. With a pump field of 1.0 V/m, the

distribution obtained from Vlasov simulations produces more hot electrons, and at a

higher cut-off (40vTe compared to 60vTe) as compared with the 4500 K Maxwellian

distribution. For the pump field of 2.0 V/m, the Maxwellian produces more hot
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(a) (b)

Figure 4.29: Electron velocity distribution functions normalized to vTe correspond-

ing to 1500 K for a strong Langmuir turbulence produced by a HAARP pump wave

of (a) 1.0 V/m, (b) 2.0 V/m. Threshold for ionization is 9-10 vTe.

electrons, but cut-offs are similar, close to 65vTe. Future DAIL production exper-

iments could explore this further, we propose that heating close to and above the

fourth gyroharmonic might be able to produce DAILs at lower heater ERPs, than

heating between gyroharmonics, and should be comparable for higher ERPs.

4.6 Conclusions

We have presented the results of Vlasov and test-particle simulations and

showed that there is heating of electrons inside density cavities that changes from

a bulk heating when the pump frequency is below the a gyroharmonic, to a long

tail acceleration when the pump frequency is above a gyroharmonic. We found that

each type of heating is associated with a different set of waves. The bulk heating is

driven by electron Bernstein waves near 2.6 MHz, and not directly by upper hybrid
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waves, even though the Bernstein waves are nearly 20 dB lower amplitude. The tail

acceleration is a resonant effect caused by upper hybrid waves if within 10-20 kHz

of 4ωce. Our current simulations are in good agreement with experiments performed

in similar parameter spaces, and we have provided predictions on the detection of

broader band Stimulated Electromagnetic Emission for future experiments. We have

applied the results of our Vlasov simulations to strong Langmuir turbulence in the

formation of DAILs, and found that for lower heater ERPs, the long tail associated

with heating above the gyroharmonic may produce DAILs where heating between

gyroharmonics might be close to, or below the DAIL formation threshold.
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Chapter 5: Conclusions

We have presented a number of novel results deriving from the artificial mod-

ification of the F region ionosphere near the upper hybrid layer. These include the

first experimental observations of super small striations (SSS) excited by the High-

Frequency Auroral Research Project (HAARP), the first detection of high-frequency

(HF) waves from the HAARP transmitter over a distance of 16× 103 km, the first

simulations indicating that upper hybrid (UH) turbulence excites electron Bernstein

waves associated with all gyroharmonics, and the first simulations that indicate that

the resulting bulk electron heating is due primarily to electron Bernstein waves near

the first gyroharmonic.

Chapter 2 presented the results of heating experiments at HAARP that re-

sulted in the first detection of super-small striations (SSS). By combining a number

of satellite and ground based diagnostics that included GPS flyover, ground-based

stimulated electromagnetic emission (SEE) detectors, and HAARP’s ionosonde, we

were able to detect the effects of these striations, as well as observe a hysteresis

effect for key SEE spectral features.

In chapter 3, we introduced a novel diagnostic, ground based receivers located

16 Mm away from HAARP at the Ukrainian Antarctic Station (UAS) in Verdansky.
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These experiments resulted in the first detection of a signal from HAARP injected

into the ionospheric waveguide by direct scattering off of dekameter scale density

structures directly above HAARP. They also detected for the first time, a 90%

saturation of SEE features at 50% of HAARP’s maximum ERP. This threshold had

been inaccessible to experiments at other facilities which were limited to 25% of

HAARP’s maximum ERP.

Chapter 4 described the results of Vlasov simulations of the upper hybrid

layer. We found that in parameter ranges accessible to HAARP, bulk heating of

electrons inside meter scale density structures was possible, and consistent with

heating required by models of descending artificial ionized layer (DAIL) formation.

Further simulations showed that the heating changes from a bulk heating when the

pump frequency is below the fourth gyroharmonic, to a tail acceleration when the

pump frequency is above the fourth gyroharmonic. Our test particle simulations

allowed us to isolate the effects of specific wave modes, and we found that the

bulk heating is driven by electron Bernstein waves particularly those near the first

gyroharmonic, while the tail acceleration is caused by upper hybrid waves near

the fourth gyroharmonic. Our current simulations are in good agreement with our

previous experiments performed in similar parameter spaces, and we have provided

predictions on the detection of broader band SEE for future experiments. Finally,

we have applied the results of our Vlasov simulations as input to codes simulating

strong Langmuir turbulence (SLT) and the formation of DAILs, and found that for

lower heater ERPs, the long tail associated with heating above the gyroharmonic

may produce DAILs where heating between gyroharmonics might be at or below

132



the DAIL formation threshold.
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edly strong and narrow electromagnetic emissions stimulated by high-frequency

137

http://dx.doi.org/10.1029/2001JA005082
http://dx.doi.org/10.1029/2001JA005082
http://link.aps.org/doi/10.1103/PhysRevLett.110.065002
http://dx.doi.org/10.1029/2008JA013338
http://dx.doi.org/10.1029/2008JA013338
http://dx.doi.org/10.1029/2009GL041895
http://dx.doi.org/10.1029/1999JA900039
http://dx.doi.org/10.1029/1999JA900039
http://link.aps.org/doi/10.1103/PhysRevLett.95.255002
http://link.aps.org/doi/10.1103/PhysRevLett.95.255002


radio waves in the ionosphere. Phys. Rev. Lett., 102:065003, Feb 2009. doi:
10.1103/PhysRevLett.102.065003. URL http://link.aps.org/doi/10.1103/

PhysRevLett.102.065003.
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