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When lipid molecules are immersed in aqueous environment at a proper con-

centration they spontaneously aggregate into a bilayer or membrane that forms an

encapsulating bag called vesicle. This phenomenon is of interest in biophysics be-

cause lipid membranes are ubiquitous in biological systems, and an understanding

of vesicles provides an important element to understand real cells. Also lately there

has been a lot of activity when different types of lipids are used in the membrane.

Doing mathematics in such a complex physical phenomena, as most problems com-

ing from the bio-world, involves cyclic iterations of: modeling and analysis, design

of a solving method, its implementation, and validation of the numerical results.

In this thesis, motivated by the modeling and simulation of biomembrane shape

and behavior, new techniques and tools are developed that allow us to handle large

deformations of surface flows and fluid-structure interaction problems using the fi-

nite element method (FEM). Most simulations reported in the literature using this

method are academic and do not involve large deformation. One of the questions



this work is able to address is whether the method can be successfully applied to

more realistic applications. The quick answer is not without additional crucial in-

gredients. To make the method work it is necessary to develop a synergetic set of

tools and a proper way for them to interact with each other. They include space

refinement/coarsening, smoothing and time adaptivity. Also a method to impose

isoperimetric constraints to machine precision is developed. Another use of the

computational tools developed for the parametric method is mesh generation. A

mesh generation code is developed that has its own unique features not available

elsewhere as for example the generation of two and three dimensional meshes com-

patible for bisection refinement with an underlying coarse macro mesh. A number of

interesting simulations using the methods and tools are presented. The simulations

are meant first to examine the effect of the various computational tools developed.

But also they serve to investigate the nonlinear dynamics under large deformations

and discover some illuminating similarities and differences for geometric and coupled

membrane-fluid problems.
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Chapter 1

Introduction

When lipid molecules are immersed in aqueous environment at a proper concen-

tration they spontaneously aggregate into a bilayer or membrane that forms an

encapsulating bag called vesicle. This phenomenon is of interest in biophysics be-

cause lipid membranes are ubiquitous in biological systems, and an understanding of

vesicles provides an important element to understand real cells. Also lately there has

been a lot of activity when different types of lipids are used in the membrane. Doing

mathematics in such a complex physical phenomena, as most problems coming from

the bio-world, involves cyclic iterations of:

• modeling and analysis,

• design of a solving method,

• its implementation, and

• validation of the numerical results.

In this thesis, motivated by the modeling and simulation of biomembrane shape

and behavior, new techniques and tools are developed that allow us to handle large

deformations of surface flows and fluid-structure interaction problems using the finite

element method (FEM). The type of FEM can be traced back to Dziuk [Dzi91]

for the mean curvature flow. The method applies to evolutionary surfaces whose
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flow can be written in Eulerian coordinates. But at the discrete level the method

becomes parametric or Lagrangian in the sense that the new position of the mesh is

a function defined in a reference or parameter domain. However, on a time iteration

setting, the reference domain is the domain at the previous time step. Therefore the

reference domain is changing at every time step and is close to an Eulerian domain.

The advantage of such a method is that any standard finite element code can be

adapted to handle it without much change. This is mostly due to the fact that

a finite element code does all computations on a master element and the surface

gradient becomes the master element gradient properly mapped (see [Dzi88] for

details). The drawback is that as the computational domain is changing in time

the underlying mesh can get easily distorted, to the extent of making the domain

useless for computations and the method unusable. Reasons for the distortion are

the initial mesh, the type of flow and the time step. Most simulations reported in

the literature using this method are academic and do not involve large deformation.

One of the questions this work is able to address is whether the method can be

successfully applied to more realistic applications. The quick answer is not without

additional crucial ingredients. To make the method work it is necessary to develop

a synergetic set of tools and a proper way for them to interact with each other.

They include space refinement/coarsening, smoothing and time adaptivity. Also a

method to impose isoperimetric constraints to machine precision is developed.

Having these tools at hand allows us to implement geometric models for

biomembranes in two and three dimensions and obtain simulations unseen before.

These are the first reported simulations of Willmore flow with constraints using a
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parametric piecewise linear and piecewise quadratic finite element method.

One step further in the degree of complexity is the extension of the geometric

method to deal with the coupling of a free boundary surface with a bulk newtonian

fluid. This in turn allows us to simulate the dynamics of biomembranes in two and

three dimensions. Three dimensions non-axisymmetric simulations in this area have

not been reported in the literature using this or any other method.

It is important to emphasize the computational cost of this approach. Small

but still interesting three dimensional fluid simulations are obtained in a single pro-

cessor computer. For the geometric three dimensional model a laptop with a 1.2GHz

Celeron processor, 512MB of RAM takes about an hour to obtain relevant simula-

tions (about 120K degrees of freedom). This computational appeal is a combination

of the parametric method, the space and time adaptivity and to a lesser extend the

fact that the code is written in the C language and uses state of the art library

solvers.

Another use of the computational tools developed for the parametric method

is mesh generation. A mesh generation code is developed that has its own unique

features not available elsewhere as for example the generation of two and three

dimensional meshes compatible for bisection refinement with an underlying coarse

macro mesh.

1.1 Thesis Outline and Contributions

The outline of the reminder of this thesis is a follows
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• In Chapter 2 we describe the physical background for the biomembrane mod-

els. This is one of the most important applications of the numerical methods

developed here.

• In Chapter 3 we recall basic concepts and results from differential geometry,

shape differential calculus and continuum mechanics. We do this from a unified

point of view both in the notation as well as in the concepts.

• In Chapter 4 we present a set of applications that can be implemented within

the computational framework of Chapter 7. The applications are divided into

two groups (Sections 4.2 and 4.3). The first one is concerned with geometric

problems. The second group focuses on models to describe a fluid-membrane

interaction. The different problems are treated from a unified point of view

and a link is made on how the second group builds on the first.

• In Chapter 5 we provide the basics of the finite element method, with emphasis

on how it extends to parametric surfaces, and present the evolving parametric

method. In section 5.2 we provide the basic tools to work with finite elements

on a surface that we apply in the following sections 5.3, 5.4 and 5.5 to obtain

interpolation results, discrete formulas for curvature and a priori estimates for

the Laplace-Beltrami operator. In Section 5.6 we present a result for surface

quadratic isoparametric elements that will justify some methods of Chapter

7. We finish the chapter with a section where we present the parametric finite

element method for geometric evolution equations.
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• In Chapter 6 we present space and time discretizations of the continuous prob-

lems described in chapter 4. First we treat the geometric case. Doing this

provides helpful insight as to how to deal with the fluid-membrane schemes

treated later in the chapter. We discuss the benefits and drawbacks of different

possibilities and information about solving the discrete systems.

• In Chapter 7 we address the computational issues related to the implementa-

tion of the parametric AFEM for geometric evolution equations and coupled

fluid-membrane problems. A set of computational tools including: space and

time adaptivity; mesh enhancement and discrete constraints implementation

is presented. These tools are crucial to successfully use the parametric FEM.

In Section 7.1 we discuss the counterintuitive effect that a mismatch of the

finite element spaces may have on problems involving curvature. In Section

7.2 we propose a suitable remedy. Also here we deal with the issue of geomet-

ric adaptivity as means of describing the surface accurately with the minimal

number of degrees of freedom. First we propose a geometric estimator based

on the pointwise error. Then we define a geometric compatibility condition

that is key for the adaptivity not to deteriorate the flow. Based on this condi-

tion we provide a novel refinement procedure together with a theorem showing

the benefits of it. In Section 7.3 we present a novel method to compute the

solutions of discrete systems with isoperimetric constraints. In Section 7.4 we

deal with the issue of mesh improvement. When a parametric FEM is used

to discretize a geometric evolution equation it will create a discrete flow of
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the mesh. Even if the initial mesh has a perfect quality, as it moves with the

flow it will get distorted: the larger the overall domain deformation the larger

the mesh deterioration. We present an optimization method novel in many

aspects that improves the mesh quality, preserves the shape of its boundary,

maintains the local mesh size, and produces negligible changes to the finite

element functions defined on the mesh. Different cases are analyzed depend-

ing on the type of domain and the mesh degree. In Section 7.5 we describe a

novel hybrid affine-quadratic approach to the surface/boundary isoparametric

elements. The idea is to keep the quadratic element not far from its affine

support, but still allow it to have the characteristic rounded shape coming

from the quadratic bubble. Then the affine techniques for mesh improvement

and time-step adaptivity can be used on quadratic meshes. In Section 7.6 a

geometric timestep control is discussed. In general nonlinear time dependent

fourth-order problems present a highly varying time scale during its evolution.

Then a timestep control is indispensable to for computational success. Finally

in Section 7.7 we present the general parametric AFEM algorithm with the

incorporation of the computational tools previously developed in the chapter.

The order in which the tools are applied is important to potentiate themselves

in a synergic way.

• In Chapter 8 we present a number of interesting simulations using the methods

and tools of chapter 7 to solve the problems discussed in chapter 4 with the

schemes of chapter 6. The simulations are meant first to examine the effect of
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the various computational tools developed. They also serve to investigate the

nonlinear dynamics under large deformations and discover some illuminating

similarities and differences with an without fluid.

• In Chapter 9 we present another application of the computational tools to the

problem of mesh generation.

Our specific contributions are as follows:

• In Chapter 3 we extend the differential geometry matrix notation approach by

K. Mekchay [Mek05], originally developed for piecewise linear affine surfaces

to piecewise polynomial ones. The differential geometry, shape differential

calculus and continuum mechanics are treated from a unified approach to

concepts and notations pointing out the links.

• In Chapter 4 we obtain a non-dimensional formulation for the coupled Will-

more and Fluid-Biomembrane model. Also here we provide a proof for the

existence of multipliers.

• In Chapter 5 the treatment of the a priori estimate for the Laplace-Beltrami

operator is different from the existing one done in [Dzi88] or [Dem] in the sense

that we do not use the distance function and different from [Mek05] because

we do not use macro elements and it is done for any order isoparametric

representation of the surface. This proof will be crucial in the proof for the

novel result of Section 7.2.2. We extend interpolation results from flat elements

to surfaces. And we show a result to control surface quadratic isoparametric
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elements by its affine bases. This is a generalization of a result for the flat

case due to Ciarlet and Raviart.

• In Chapter 6 we analyze the different reasonable choices regarding the time

discretization of the Willmore flow that can be made for the explicit treatment

of certain terms. These new choices appear as a consequense of using quadratic

isoparametric element (not explored before for this problem). Also we propose

some methods to obtain an initial reasonable approximation to mean curvature

which is not addressed in previous works. Even though the numerical methods

presented are not new their application to this problem (constrained Willmore

and fluid Willmore) is.

• In Chapter 7 we present a discussion about the counterintuitive effect that a

mismatch of the finite element spaces may have on problems involving cur-

vature that is not reported in the literature. In Section 7.2 we propose a

geometric estimator for the pointwise error with a novel computational for-

mula using the second fundamental form. A new geometric compatibility

condition is defined that is key for the adaptivity not to deteriorate the flow.

A novel refinement procedure together with a theorem showing the benefits of

it is provided. In Section 7.3 we present a novel method to compute the solu-

tions of discrete systems with isoperimetric constraints to machine precision.

In Section 7.4 we deal with the issue of mesh improvement. We present an

optimization method novel in many aspects (finite element function interpo-

lation, definition of surface quality metric and optimization method to work
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with a surface star) that improves the mesh quality, preserves the shape of its

boundary, maintains the local meshsize, and produces negligible changes to

the finite element functions defined on the mesh. In Section 7.5 we describe a

novel hybrid affine-quadratic approach to the surface/boundary isoparametric

elements. In Section 7.6 a geometric timestep control is discussed; the idea of

using the element quality in its definition is new.

• In Chapter 8 many simulations are obtained for the first time using this

method, and others for the first time with this or any other method.

• In Chapter 9, a mesh generation algorithm is presented that allows one to

generate non trivial meshes in two and three dimensions which are compatible

with bisection refinement and have and underlying coarse mesh. There is no

other mesh generator with these features.

1.2 Notation

In this work R is the set of real numbers, N the set of natural numbers and N0 =

N ∪ {0}. The embedding dimension will be denoted by d + 1. For a set U ⊂

Rd+1, Ū denotes the closure and ∂U its boundary. We use meas(U) to denote

its measure (volume, area, perimeter, etc depending on the context). Given the

set U its convex hull is given by conv(U) := ∩U⊂V V . And the diameter of U is

diam(U) = sup{|x− y| : x, y ∈ U}.

We usually use Ω to denote a domain in Rd+1 and Γ to denote a surface.

We use bold type for vectors and tensors. and BLACKBOARDTYPE for finite

9



element spaces. For convenience we provide a table of symbols and notation on page

vi.

The concept of derivative as the best linear approximation allows to unify

concepts from differential geometry and continuous mechanics.

Definition 1.2.1 (Differentiable function: Derivative). Let U and W be Banach

spaces, let D be an open subset of U , and let

g : D →W .

We say that g is differentiable at x if there exists a linear transformation

Dg(x) : U → W

such that

g(x+ u) = g(x) +Dg(x)[u] + o(|u|)

as u→ 0. Dg(x) is called the derivative of g at x.

1.3 Function Spaces

Definition 1.3.1 (Polynomials). For a multi-index α ∈ Nd+1
0 , we define |α| =

∑
αi

and xα = Πxαi
i for x ∈ Rd+1. For k ∈ N0 we define

Pk(Ω) :=
{
p : Ω → R : p(x) = Σ|α|≤kcαx

α, cα ∈ R
}

Definition 1.3.2 (Spaces of Smooth Functions). Let α ∈ Nd+1
0 . If f : Ω → R is an

|α| times continuously differentiable function, then

Dαf :=
∂|α|

∂xα1
1 . . . ∂x

αd+1

d+1

10



For m ∈ N0 we define the spaces of continuous and differentiable functions

Cm(Ω) := {f : Ω → R : Dαf is continuous , |α| ≤ m}.

We will say the f is smooth to indicate that it is in Cm for whatever m the

context requires.

Definition 1.3.3 (Lebesgue Spaces). Let p ∈ [1,∞] we define the Lebesgue spaces

Lp(Ω) := {f : Ω → R : f is measurable, ‖f‖Lp <∞}

where ‖f‖Lp =
(∫

Ω
|f |p
)1/p

if p <∞ and ‖f‖L∞ = ess supΩ|f |.

Definition 1.3.4 (Sobolev Spaces). Let p ∈ [1,∞] and m ∈ N. We define the

Sobolev spaces

Wm
p (Ω) := {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) ∀ |α| ≤ m}

where Dαf denotes the weak derivative of f and ‖f‖W m
p

:= Σ|α|≤m‖Dαf‖Lp .

We use the standard notation Hm(Ω) := Wm
2 (Ω).
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Chapter 2

Biomembranes: Physical Background

This Chapter gives a quick survey of the physical properties and reasonable models

for biomembranes under a special set of conditions. This is not a chemical or physical

discussion but rather a mathematical idealization trying to account for the most

relevant properties of biomembranes. The biomembrane shape and dynamics is one

of the most important applications that we have in mind for our numerical methods.

When lipid molecules are immersed in aqueous environment at a proper con-

centration and temperature they spontaneously aggregate into a bilayer or mem-

brane that forms an encapsulating bag called vesicle. This happens because lipids

consist of a hydrophilic head group and one or more hydrophobic hydrocarbon tails.

Such a configuration allows the tails to be isolated from water, thus reducing the

hydrophobic effect (see figure 2.1). This phenomenon is of interest in biology and

biophysics because lipid membranes are ubiquitous in biological systems, and an

understanding of vesicles provides an important element to understand real cells.

We are interested in the case where the thickness of the membranes is negligible

compared to the size of the vesicle (about three orders of magnitude). The elas-

tic behavior under large deformations and the dynamics of such deformations are

poorly understood.

Canhan and Helfrich [Can70, Hel73] over 35 years ago, were the first to intro-

12



(a) Lipid Molecule (b) Aqueous Configurations

Figure 2.1: Figure 1(a) shows a typical lipid molecule. Figure 1(b) depicts some
aqueous configuration they like to take. We are concerned with the liposomes con-
figuration when the thickness of the membrane is negligible compared to the size of
the liposome. Taken from Wikipedia Commons.
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duce a model for the equilibrium shape of vesicles where the bending elasticity or

curvature energy had to be minimized. Jenkins in 1977 arrived to the same model

Figure 2.2: A three-dimensional ultra-structural image analysis of a T-lymphocyte
(right), a platelet (center) and a red blood cell (left), using a Hitachi S-570 scanning
with a super-duper electron microscope (SEM) equipped with a GW Backscatter
Detector. Author: Electron Microscopy Facility at The National Cancer Institute
at Frederick (NCI-Frederick). (Taken from Wikipedia Commons).

starting from continuum mechanical principles [Jen77a]; some later papers on the

subject are [Ste03, HZE07]. An equilibrium shape model is important for two rea-

sons. First, if the goal is to predict stationary shapes seen in the lab then this is

the required model. The second reason is to build a necessary step of the ladder to

reach more complex models, including its dynamics.

The next step consists of describing the dynamics of a vesicle. This is relevant

when we are interested not only in the final shape but also in how the membrane

evolves to that shape. We need to say here that there is no clear agreement as to

what a good model is (if any is at all). But it seems to be consensus that a coupling

between the membrane and the fluid is key in this respect [Sei97]. The analysis of

interacting fluid-structure problems has been the subject of research since the late

nineteenth century but only recently there are some results about local existence and

14



uniqueness of solutions when the elastic solid is a linear Kirchhoff elastic material

[CS05] and when is endowed of a bending energy [CCS07]. All this results are for

short time and assume high regularity of the membrane.

Below we briefly describe the membrane and fluid models. The mathematical

equations are subject of chapter 4

2.1 Membrane Model

The structure of lipid membranes is that of a two dimensional, oriented, incom-

pressible and viscous fluid [Jen77a]. We can find papers that starting from a pure

phenomenological approach [Hel73, Can70] or a rigorous continuum mechanical one

[Jen77a, Ste99, HZE07], agree that the membrane is endowed with a bending or

elastic energy. The simplest form this energy can take is

κ

∫
Γ

h2 + κG

∫
Γ

k, (2.1)

where h and k are the mean and Gaussian curvature respectively; and κ and κG

are the constant bending coefficients. In the case of a closed surface that does not

change topology the above energy becomes (up to a constant and a scaling) the

“Willmore” energy defined by (see [Wil93])

W (Γ) :=

∫
Γ

h2. (2.2)

This is a consequence of the Gauss-Bonnet theorem which states that
∫

Γ
k is a

topological invariant (see [MR05, Section 8.5]). The bending coefficient κ is hard to

determine experimentally. However, for lipid membranes (see Seifert [Sei97]), the
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typical range is

κ ≈ 2.10−20 − 2.10−19

[
kg
m2

s

]
.

The combined effect of the bending elasticity with the surface and volume constraints

generates a great variety of non-spherical shapes, in contrast to the characteristic

spherical equilibrium shapes of simple liquids which are governed by isotropic surface

tension.

If the temperature and osmotic pressure do not change, a convenient and

reasonable simplification can be done by assuming that the enclosed volume and

surface area are conserved. The former is a consequence of the assumed imper-

meability of the membrane. For the latter the fix number of molecules in the

membrane ensures a fixed internal area because stretching or compressing the mem-

brane involves much larger energies than the cost of bending deformations. Refer

to [ES80, Sei97, SBR+03] for more precision.

The area and volume constraints are good approximations for most cases.

Still we should bear in mind that under certain circumstances if the constraints are

imposed strictly the model is wrong. For example, in the lab spherical vesicles are

deformed into some other shapes by means of laser tweezers. Having strict area and

volume constraints makes this impossible to happen.

The local curvature energy model (2.1) is the basic building block. On top

of this, some additions and modification have been proposed. Some variations of

curvature model are:

• Spontaneous curvature model

16



• Bilayer couple model

• Area difference-elasticity model

A current area of active research is coexisting fluid domains. Membranes formed

from multiple lipid components can laterally separate into coexisting liquid phases,

or domains, with distinct compositions. Models for coupling the curvature and

composition have been flourishing after the work of Baumgart et al. [BHW03].

In this work we consider the local curvature energy model with isoperimetric

area and volume constraints. Describing the membrane by quantities all defined on

the surface (energy, area and volume) allows us to model certain aspects of it, like

the equilibrium shape, as a geometric evolution equation (see section 4.2). For other

aspects one needs to take into account the dynamics and in particular the inertial

and frictional effects provided by the bulk fluid. Obviously, the second approach is

more complete than the former but also more expensive and tricky computationally.

2.2 Fluid Model

The fluid embedding the membrane is quite complex. However as a first approxi-

mation we assume it to be viscous, incompressible and homogeneous. Therefore the

Navier-Stokes equation can be used to model it. The Reynolds number of a fluid,

being the ratio between the inertial forces and the viscous forces, is defined by

Re =
ρV L

µ
,

where ρ is the density of the fluid, V and L the characteristic speed and length

respectively, and µ the dynamic fluid viscosity. Typical velocity and length for the
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experiments considered are

V = 10−6 [m/s], L = 10−5 [m],

so that Re ≈ 10−8 � 1 for a water like bulk fluid. Therefore, as proposed in [Sei97],

only Stokes equation needs to be considered. The effect of the membrane appears

as a immerse boundary force exerted by a massless object on the fluid. This force is

given by the variational derivative of some free membrane energy. The membrane

is transported by the fluid (adherence or no slip condition).
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Chapter 3

Preliminaries

In this Chapter we summarize some concepts and results from differential geometry,

shape differential calculus and continuum mechanics. We do this from a unified point

of view both in the notational as well as in the concepts. The natural language

for geometric evolution equations (section 4.2) or any problem where curvature

plays an important role is the one of differential geometry. Depending on the way

used to represent the surface one obtains different expressions for the quantities

of interest. The very elegant and also abstract language of differential manifolds

becomes unfriendly to do finite element computations. In section 3.1 we recall

basic concepts and results from differential geometry. It consist of a mixture of

several references adapted to the necessity and requirements of the present work;

in particular something not standard is the use of matrix notation. A detailed

treatment can be found in [dC76, Gig06, GT83]. In section 3.2 we describe some

useful tools from the shape differential calculus in the spirit of [SZ92]. In section

3.3 we introduce some concepts and notation from continuum mechanics; a full

treatment can be found in [Ant95, Gur81].

3.1 Differential Geometry

Intuitively a surface is locally a piece of plane smoothly bent.
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Definition 3.1.1 (Hyper-Surface). A set Γ ⊂ Rd+1 is a hyper-surface of dimension

d if, for each q ∈ Γ, there exist an open set U ∈ Rd, an open neighborhood V of q

in Γ, and a differentiable map x : U → Rd+1 such that

1. x(U) = V .

2. x : U → V is a homeomorphism.

3. Dx(q) : Rd → Rd+1 is injective for all q ∈ U .

A function f : Γ → R is differentiable if for any parametrization x : U → Γ,

the composition f ◦ x is differentiable.

Definition 3.1.2 (Tangent Plane TqΓ). Given a surface Γ and q ∈ Γ, the tangent

plane TqΓ at q is the set of all vectors t such that there exists a curve α : (−ε, ε) → Γ

with ε > 0, α(0) = q and α′(0) = t.

It is easy to see that TqΓ is the range of Dx(q).

Definition 3.1.3 (Normal vector ν). Given a surface Γ and q ∈ Γ, a vector ν is a

normal vector at q if ν ∈ (TqΓ)⊥.

Definition 3.1.4 (Orientable). A surface Γ is orientable if there is a continuous

function ν : Γ → Sd with |ν| = 1 and ν(q) normal to TqΓ for each q ∈ Γ.

The useful result stated next about orientability, whose proof can be found in

[Sam69], will allow us to simplify some required hypothesis later.

Theorem 3.1.1. Every compact surface in R3 is orientable.

20



The concept of derivative as the best linear approximation can be extended to

a function defined on a surface by means of the tangent plane.

Definition 3.1.5 (Differential of a Function). Let Γ be a surface and f : Γ → Rm

a differentiable vector valued function. For a point q ∈ Γ, we define the differential

of f at q, which we denote by Df(q), in the following manner: Given t ∈ TqΓ,

we choose a curve α : (−ε, ε) → Γ such that α(0) = q and α′(0) = t, and then

Df(q)t = (f ◦ α)′(0)

Remark 3.1.1. Df(q) : TqΓ → Rm is a well defined linear map, i.e. independent of

the chosen curve (cf. definition 1.2.1).

Remark 3.1.2. The definition of differential can be extended in a similar way to

mappings f : Γ1 → Γ2 between surfaces.

Remark 3.1.3. The chain rule and inverse function theorem hold for differentials.

When a surface is given by local coordinates as in definition 3.1.1 we say that

we have a parametric representation of it, U being the space of parameters. There

are other ways to represent a surface that can be shown to satisfy definition 3.1.1.

Two important examples are the level set and graph representations.

For computations on surfaces it is convenient to use matrices to describe ge-

ometric quantities. The following notational ideas were suggested by the works

[Mek05, DD07]. Let (x, K̂) be a local parametric representation of a surface Γ,

x : K̂ → K ⊂ Γ. Then we define T = Dx ∈ M(d+1)×d(K̂) to be the Jacobian

matrix of x and G = TTT the first fundamental form. It easy to see that G is

symmetric and positive definite because T is full rank; then we define D = TG−1.
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With these definitions T and D are pseudo-inverses, in particular we have

Lemma 3.1.2 (Pseudo Inverses). The matrices T and D satisfy

TTD = Id, (3.1)

TDT = Id+1 − ν ⊗ ν, (3.2)

where ν is the outer normal.

Proof. The first equation follows trivially from the definitions as TTD = TTTG−1 =

GG−1 = Id. For the second one observe that the columns of T and ν form a basis

of Rd+1. Now, TDT = TG−1TT so TDTT = T which implies that TDT is the

identity restricted to the tangent plane. Since TDTν = 0, and the unique linear

transformation with this mapping of the basis is Id+1 − ν ⊗ ν, (3.2) follows.

With these notation we can give a formula for the the differential Df(q) of the

function f : Γ → Rm in embedding space coordinates.

Lemma 3.1.3 (Differential in Embedding Space). Let f : Γ → Rm be a differentiable

function and x a local parametrization of Γ. Then the differential Df(q) is given by

(
D(f ◦ x)DT

)
◦ x−1, (3.3)

which is independent of the chosen parametrization x.

Proof. If t ∈ TqΓ then t = Σti∂ix. Recalling Definition 3.1.5 we can define α̂(s) =

q̂ + st̂ and α = x ◦ α̂, where t̂ = Σtiei. Since t = Dx α̂′ = Tt̂, using equation (3.1)

we get t̂ = DTt. So finally, Df(q)t = (f ◦α)′(0) = ((f ◦x) ◦ α̂)′(0) = D(f ◦x)DTt.

The independence of the parametrization x follows from Remark 3.1.1.
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Remark 3.1.4 (Differential Geometry Notation). Classical differential geometry deals

with coefficients gij := ∂ix · ∂jx. According to our definitions see that (G)ij = gij

and the coefficients gij verified gij := (G−1)ij. This shows the explicit connection

between classical differential geometry and the previous matrix notation.

For integration on the surface we define the area element q by q2 = det(G).

Useful differential operators can be defined on a surface, thereby making rigorous

the idea of tangential derivatives of any order. Invoking the Ritz representation

theorem we define the surface gradient.

Definition 3.1.6 (Surface Gradient). Given a differentiable function f : Γ → R,

and a point q ∈ Γ, the surface gradient is the unique vector ∇Γf(q) ∈ TqΓ such that

Df(q) t = ∇Γf · t for all t ∈ TqΓ.

Remark 3.1.5 (Surface Gradient in Embedding Space). Equation (3.3) gives the

differential in embedding space coordinates as a matrix vector product. The matrix-

vector representation transforms into scalar product representation by taking the

transpose, so we get

∇Γf = (D∇(f ◦ x)) ◦ x−1.

Following Remark 3.1.5 we define the tangential derivatives with respect to

the i-th embedding coordinate Dif := (∇Γf)i. This recursively defines tangential

derivatives of any order. In abstract setting the surface divergence is defined as

∇Γ · w = Lw, where Lw denotes the Lie derivative in the direction of the vector

field w. In our case we can use the previous definition of tangential derivatives

and define ∇Γ ·w = ΣDiw
i. Finally combining the last two definitions the surface
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Laplacian or Laplace-Beltrami operator con be defined.

Definition 3.1.7 (Surface Laplacian). Given a differentiable function f : Γ → R,

and a point q ∈ Γ, the surface Laplacian of f is given by ∆Γf = ∇Γ · ∇Γf .

Definitions 3.1.6 through 3.1.7 take the following computational form when the

function on the surface is extended to embedding space or define in parameter space.

If ṽ and q̃ are smooth extensions of v and q to a neighborhood of Γ respectively,

then

∇Γv = ∇ṽ − (∇ṽ · ν)ν, (3.4)

∇Γ · q = ∇ · q̃ − ν(Dq̃)ν, (3.5)

∆Γv = ∇Γ · ∇Γv = ∆ṽ − ν(D2ṽ)ν − (∇ṽ · ν)∇ · ν, (3.6)

where ∇,∇ · and ∆ denote the usual gradient, divergence and Laplacian in Rd+1.

In parametric coordinates we have the following formulas:

(∇Γf)i = gij∂jf, (3.7)

∇Γ ·w =
1

q
∂i

(
qwi
)
, (3.8)

∆Γf =
1

q
∂i

(
qgij∂jf

)
. (3.9)

Applying definitions 3.1.6 through 3.1.7 to each component we can define the surface

gradient of a vector field that will be a tensor. Also the surface divergence of a tensor,

and consequently the surface Laplacian of a vector field. The curvature of a surface

measures the change of its normal vector. The second fundamental form Π := ∇Γν

is a tensor that defines the principal curvatures κ1, . . . , κd−1 as its eigenvalues. We

denote by h := κ1 + · · · + κd−1 the total mean curvature, by k := κ1 · · ·κd−1 the
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Gauss curvature, and by h := hν the vector mean curvature. It can be shown that

with the previous differential operators definitions the following integration by parts

formula for surfaces holds:

Theorem 3.1.4 (Integration by Parts on Surfaces). If f is a scalar function defined

on the surface Γ, then ∫
Γ

∇Γf =

∫
Γ

fh+

∫
∂Γ

fνs, (3.10)

where ∂Γ is the boundary of Γ and νs its conormal vector.

Proof. See [GT83, Lemma 16.1].

From here the divergence theorem for surfaces follows.

Corollary 3.1.5 (Divergence Theorem for Surfaces). Let q be a vector field defined

on the surface Γ. Then ∫
Γ

∇Γ · q =

∫
Γ

q · h+

∫
∂Γ

q · νs. (3.11)

Proof. Theorem 3.1.4 component wise reads∫
Γ

Dif =

∫
Γ

fhi +

∫
∂Γ

fνi
s. (3.12)

By definition ∇Γ · q = ΣDiq
i, then∫

Γ

∇Γ · q = Σ

∫
Γ

Diq
i = Σ

∫
Γ

qihi + Σ

∫
∂Γ

qiνi
s =

∫
Γ

q · h+

∫
∂Γ

q · νs. (3.13)

Lemma 3.1.6 (Total Mean Curvatures). The following useful formulas to compute

mean curvature are valid:

h = ∇Γ · ν and h = −∆ΓId. (3.14)
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Proof. See [GT83, page 390].

Lemma 3.1.7 (Weak Formulas for Curvatures). Let Γ be a smooth surface without

boundary. Then for all smooth functions w : Γ → Rd+1 we have∫
Γ

h ·w =

∫
Γ

∇ΓId : ∇Γw, (3.15)∫
Γ

Πj ·w = −
∫

Γ

νj∇Γ ·w −
∫

Γ

νjh ·w. (3.16)

Proof. First observe that ∇ΓId = Id+1 − ν ⊗ ν. Formula (3.14) gives
∫

Γ
h · w =∫

Γ
−∆ΓId ·w and the product rule yields ∇Γ · (∇ΓIdw) = ∇ΓId : ∇Γw+w ·∆ΓId.

Then using (3.10) we get
∫

Γ
∇Γ · (∇ΓIdw) =

∫
Γ
∇ΓIdw · h, whence∫

Γ

h ·w = −
∫

Γ

∇ΓIdw · h+

∫
Γ

∇ΓId : ∇Γw

But ∇ΓIdw ·h = (I− ν ⊗ ν)h ·w = 0 ·w, and (3.15) follows. Equation (3.16) can

be obtained in a similar way.

With the definitions of tangential derivatives we use H1(Γ), W j
p (Γ), etc to

denote the Sobolev spaces of functions defined on Γ possessing j weak derivatives

in Lp(Γ). For future reference we consider the following result that states that for

subset of planes the tangential derivatives are equivalent to the partial derivatives

of any rigid parametrization. We say that Γ is a rigid deformation of Ω̂ it there is

F : Ω̂ → Γ such that F (x̂) = Bx̂+ b with BTB = I.

Lemma 3.1.8. (Tangential derivative of flat surfaces) Let the surface Γ be a rigid

deformation of Ω̂ ⊂ Rd. then there exist constant C1, C2 > 0 depending on d such

that

C1|v̂|k,p,Ω̂ ≤ |v|k,p,Γ ≤ C2|v̂|k,p,Ω̂, (3.17)
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for any v ∈ W k
p (Γ), where v̂ = v ◦ F and F is the rigid deformation.

Proof. By definition F (x̂) = Bx̂ + b, where B is matrix with BTB = I. For this

parametrization on the surface we have T = I then D = B From Remark 3.1.5

∇Γv = B∇v̂ then |∇Γv| = |B||∇v̂| but |B| = 1 The other bound is obtain in a

similar way using BT. The previous argument can be repeated for higher order

derivatives.

3.2 Shape Differential Calculus

In this work we will use shape functionals J(Γ) or J(Ω) as for example:

• the volume functional: J(Ω) =
∫

Ω
1 = meas(Ω),

• the area functional: J(Γ) =
∫

Γ
1 = meas(Γ),

• the bending energy functional: J(Γ) =
∫

Γ
h2.

The functional derivatives can be defined and computed in the context of the velocity

method and shape differential calculus [SZ92]. A useful summary of results can be

found in [Dog06]. Let D ⊂ Rd+1 be a domain containing Γ. Let v be a smooth

vector field defined in D. Then through an autonomous system of ODEs prescribed

by v the surface Γ = Γ0 is deformed in a sequence of perturbed surfaces {Γt}t≥0.

Under these considerations we define the shape derivative of J .

Definition 3.2.1 (Shape Derivative). The Eulerian or shape derivative of the func-

tional J(Γ) at Γ, in the direction of the vector field v is defined as the limit

dJ(Γ;v) = lim
t→0

1

t
(J(Γt)− J(Γ)). (3.18)
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A similar definition holds if the surface Γ is replaced by a domain Ω. When

the functional is of the form J(Γ) =
∫

Γ
ψ with ψ not depending on the geometry we

have

Lemma 3.2.1 ([SZ92],Prop. 2.45). Let ψ ∈ W 1
1 (Rd+1) and Ω be a smooth and

bounded domain. The functional

J(Ω) =

∫
Ω

ψ

is shape differentiable and if v = v · ν, then

dJ(Ω;v) =

∫
Ω

∇ · (ψv) =

∫
Γ

ψv.

Lemma 3.2.2 ([SZ92],Prop. 2.50 and (2.145)). Let ψ ∈ W 2
1 (Rd+1) and Γ be of class

C2. Then the functional

J(Γ) =

∫
Γ

ψ

is shape differential and

dJ(Γ;v) =

∫
Γ

(∇ψ · v + ψ∇Γ · v) =

∫
Γ

(∂νψ + ψh)v.

Now we want to allow the function ψ to depend also on the geometry, i.e.

ψ = ψ(x,Γ). To carry on the previous result to this case we need the definition of

the material and shape derivatives of ψ.

Definition 3.2.2 (Material Derivative). The material derivative ψ̇(Γ;v) of ψ in the

direction v is defined as follows

ψ̇(Γ;v) = lim
t→0

1

t
(ψ(x(·, t),Γt)− ψ(·,Γ0)) . (3.19)
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Definition 3.2.3 (Shape Derivative). The shape derivative ψ′(Γ;v) of ψ in the

direction v is defined as follows

ψ′(Γ;v) = ψ̇(Γ;v)−∇ψ · v. (3.20)

With these definitions a similar result to Lemma 3.2.2 follows.

Theorem 3.2.3 ([SZ92], Sect. 2.31, 2.33). Let ψ = ψ(x,Γ) be given so that the

material derivative ψ̇(Γ;v) and the shape derivative ψ′(Γ;v) exist. Then J(Γ) is

shape differentiable and

dJ(Γ;v) =

∫
Γ

ψ′(Γ;v) +

∫
Γ

(∂νψ + ψh)v. (3.21)

Now we state some geometric results that will be useful for our applications.

Lemma 3.2.4 ([Dog06],Lemma 2.1.3 and 2.1.4). The shape derivatives of the nor-

mal and mean curvature of a boundary Γ of class C2 with respect to velocity v are

given by

ν ′ = ν ′(Γ;v) = −∇Γv (3.22)

h′ = h′(Γ;v) = −∆Γv. (3.23)

In addition the normal derivative of the mean curvature is

∂νh = −
∑

κ2
i . (3.24)

In the particular case of a two dimensional surface in R3, ∂νh = −(h2 − 2k).

Proof. See [SZ92, Sect. 2.31, 2.33].
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Theorem 3.2.5 (Hadamard-Zolésio). The shape derivative of a domain or boundary

functional always has a representation of the form

dJ(Γ;v) =< δJ, v >Γ,

where v = v · ν.

Proof. See [SZ92] Section 2.11 and Theorem 2.27.

We call δJ the first variation of J .

3.3 Continuum Mechanics

Let E be the Euclidean point space with the associated vector space V such that

y − x ∈ V if y,x ∈ E . A reference configuration Ω̂ is a chosen regular region

of space. A point p ∈ Ω̂ is called a material point. A deformation is a mapping

f : Ω̂ → E smooth, one to one and such that det(Df) > 0. Hereafter, Df is called

the deformation gradient. A motion of Ω̂ is a smooth function x : Ω̂ × [0, T ] → E

such that x(·, t) is a deformation for each t ∈ [0, T ]. The point x = x(p, t) is the

place occupied by material point p at time t, and Ωt = x(Ω̂, t) is the place occupied

by the body Ω̂ at time t. Sometimes it is convenient to work with places and time

instead of material points, for which we define the trajectory

GT = {(x, t) : x ∈ Ωt, t ∈ [0, T ]}.

The condition det(Df) > 0 implies the existence of the reference map p : GT → Ω̂

such that x(p(x, t), t) = x and p(x(p, t), t) = p. Given a motion x, ẋ and ẍ are
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the velocity and acceleration respectively. A spatial description of the velocity is

defined by

v(x, t) = ẋ(p(x, t)).

In general any field associated with a motion can be described either as a function

of space or material points. The Euclidean space E in not a normed vector space.

However we can define the derivative of functions defined in a region of E or taking

values on it by replacing U and/or W , in Definition 1.2.1 by the associated vector

space V . For future reference we state the derivative of the determinant.

Lemma 3.3.1 (Derivative of Determinant). If A is an invertible tensor, then

D(det)(A)[U] = (det(A)) tr(UA−1).

Proof. See [Gur81] page 23.

Given a smooth vector field w the divergence operator is defined by

∇ ·w := tr(∇w), (3.25)

and for a tensor field S, as the unique linear operator ∇ · S such that

(∇ · S)a = ∇ · (STa) for all vector a. (3.26)

Next we summarize some derivatives of products that will be used extensively.

Proposition 3.3.2 (Product Rules). Let φ, u and S be spatial scalar, vector and
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tensor fields. Then

∇(φu) = φ∇u+ u⊗∇φ,

∇ · (φu) = φ∇ · u+ u · ∇φ,

∇ · (STu) = S : ∇u+ u · ∇ · S,

∇ · (φS) = φ∇ · S + S∇φ,

∇(u ·w) = (∇u)Tu+ (∇w)Tu.

(3.27)

Proof. See [Gur81] page 30.

Given a spatial field it is convenient to define the material or convective time

derivative. Roughly speaking, it represents the time derivative of the spatial field

holding the material point fixed.

Definition 3.3.1 (Material Derivative II). If φ is a spatial field, then the material

derivative is given by

φ̇(x, t) =
∂

∂t
φ(x(p, t), t)|p=p(x,t).

This definition is quite similar to Definition 3.2.2. The difference is that there

the velocity was an arbitrary parameter, here it is the specific velocity given by the

motion.

Lemma 3.3.3. If φ is a scalar and w a vector spatial fields, then

φ̇ =
∂φ

∂t
+ v · ∇φ,

ẇ =
∂w

∂t
+∇wv.
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Lemma 3.3.4 (Reynolds Transport Theorem). If Φ is a smooth spatial field, then

d

dt

∫
Pt

Φ =

∫
Pt

(Φ̇ + Φ∇ · v) =

∫
Pt

Φ′ +

∫
∂Pt

Φv · ν.

Proof. See [Gur81] page 78.

So far all definitions and results have been stated independently of a coordinate

system. Also we have been using what is known as the direct notation as opposed to

component notation. To do computations a coordinate system is necessary. For this

purpose we fix a Cartesian frame, i.e. an orthonormal basis of V and a point in E

called the origin. Then any point in E and any vector in V have associated uniquely

its Cartesian components in Rd+1. Then the body becomes a region in Rd+1 and

the derivatives in the sense of Definition 1.2.1 become arrays of partial derivatives.

In particular, if f : Rd+1 → R, w : Rd+1 → Rd+1 and S : Rd+1 → Rd+1 × Rd+1 then

(Df)ij =
∂f i

∂xj

(∇w)ij =
∂wi

∂xj

(∇ · S)i =
∑

j

∂Sij

∂xj

(3.28)

In this work we abuse notation and refer to a function defined in Euclidean space

or in Rd+1 for a given coordinate system with the same name.

So far we have been dealing with kinematics (description of motions), now we

proceed to survey the dynamics (i.e. reasons for motion). An important property

of bodies is that they posses mass. This is reflected in a motion by the existence of

a density function ρ(x, t).

During a motion mechanical interaction between parts of a body or between
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a body and its environment are described by forces. Forces between parts of a

body or exerted on the boundary by the environment are called contact forces.

Forces that the environment exerts on the interior of the body are called body forces

and we will denote them by b. One of the most important axioms in continuum

mechanics is Cauchy’s hypothesis on the form of the contact forces, which together

with the balance of momentum axioms, gives one of the central results of continuum

mechanics.

Theorem 3.3.5 (Existence of the stress tensor). There exists a symmetric spatial

tensor field Σ (called the Cauchy stress) such that it satisfies the equation of motion

ρv̇ = ∇ ·Σ + b (3.29)

Proof. See [Gur81] page 101.

The equation of motion is true for all bodies in nature. But it does not distin-

guish between different types of material. Additional hypothesis called constitutive

equations are then added to account for different type of material behaviors.

3.3.1 Newtonian Fluids

Friction in fluids generally manifests itself through shearing forces which retard the

relative motion of fluid particles. This can be measured by the velocity gradient.

When the stress tensor is a pressure plus a linear function of the velocity gradient

the fluid is called Newtonian. They furnish the simplest model for viscous fluids and

34



consist of constitutive equations of the form:

Σ = −pI + µD(v),

∇ · v = 0,

where D(v) = ∇v+∇vT is twice the symmetric part of the velocity gradient. This

leads to the famous Navier-Stokes equations for incompressible fluids

ρv̇ −∇ · (−pI + µD(v)) = b,

∇ · v = 0.

in GT (3.30)

For numerical computations it is quite convenient to express the problem in dimen-

sionless form. For this we define the new dimensionless variables

x̄ =
x

L
v̄ =

v

V
t̄ =

tV

L
p̄ =

p

V 2ρ
, (3.31)

where L is the characteristic length (size of the domain) and V the characteristic

speed (main stream velocity). Using the change of variables (3.31) and the chain

rule for differentiation in equation (3.30) we get

˙̄v −∇ · Σ̄ = b̄

∇ · v̄ = 0,

in ḠT̄ (3.32)

where Σ̄ = −p̄I + 1
Re

D̄(v̄), b̄ = bL
ρV 2 and recall that Re is the Reynolds number

Re =
ρV L

µ
.

Also ḠT̄ is naturally defined by the change of variables from GT . The same change

of variable gives the following relation for the stress tensors

Σ(Lx̄, t̄(L/V )) = ρV 2Σ̄(x̄, t̄). (3.33)
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In section 4.3.1 we will use the classical capillarity number Ca, and in section 4.3.3

we will introduce a similar bending number Be to put the bending force problem in

a dimensionless form.
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Chapter 4

Continuous Problems: Models

This chapter presents a set of applications that can be implemented within the

computational framework of chapter 7. The applications are divided into two groups

(section 4.2 and 4.3). The first one is concerned with geometric problems on a

surface (or curve). The goal is to find a shape that minimizes certain geometric

energy. This is studied in the context of what is known as geometric evolution

equations: basically, a gradient flow that prescribes the evolution of the surface

in a direction that decreases the energy. The second group focuses on models to

describe a fluid-membrane interaction. The membrane is immersed and assumed to

be endowed of a geometric energy, thus making the link back to the first group.

The addition of constraints is quite important for both groups of applications.

So we start this chapter with a section describing how they are added. For each ap-

plication the classical and a convenient weak formulation to use a FEM are provided

together with some characteristic properties. Both types of models have applica-

tions to biomembranes. In the geometric model all quantities live on the surface. So

from a computational point of view the number of degrees of freedom corresponds

to a one dimensional (curve) or a two dimensional (surface) problem. On the other

hand, for the coupled fluid-membrane model the number of degrees of freedom cor-

responds to two or three dimensional problems. The drawback of the geometric
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model is that the generated dynamics is non-physical. If all that matters is to find

the final equilibrium shape then a geometric model may be adequate. However, if

what matters is the dynamics, then the coupled model is the proper one. In chapter

6 discrete schemes of these problems will be studied.

4.1 Constraints

Many times when dealing with geometric flows or fluid-membrane interactions com-

ing from applications, they have an area or [and] volume constraint[s] attached. This

global type of constraints is called isoperimetric. They are imposed to the contin-

uous problem by means of Lagrange multipliers that define an augmented energy.

To illustrate the idea consider the evolution of a surface {Γ(t)}t≥0 prescribed as the

gradient flow of some energy E(Γ) =
∫

Γ
w. Formally, it can be written as

v = −δE, (4.1)

where v is the velocity that prescribes the evolution {Γ(t)}t≥0 and δE is the func-

tional derivative of E. The augmented energy to account for area and volume

constraints, using Lagrange multipliers λ and π, is

Ẽ(Γ, λ, π) :=

∫
Γ

w + λ

(∫
Γ

1−
∫

Γ0

1

)
+ π

(∫
Γ

Id · ν −
∫

Γ0

Id · ν
)
, (4.2)

where Γ0 is the given initial shape, Id denotes the identity function and ν the outer

unit normal. Finally the geometric flow equations obtained from the new energy

(4.2) are supplemented with the two scalar conservation equations (for the area and
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volume) to give the new system

v = −δẼ(Γ, λ, π) = −δE − λ δA− π δV

A(Γ) = meas(Γ) = meas(Γ0)

V (Γ) = meas(Ω) = meas(Ω0),

(4.3)

where Ω is the volume enclosed by Γ. For more details on imposing constraints

using Lagrange multipliers see [GH96].

Remark 4.1.1. The λ term in equation (4.2) obviously imposes the area conservation.

The π term imposes the volume conservation as long as the surface does not self

intersect. Indeed, invoking the divergence theorem we obtain

∫
Γ

Id · ν =

∫
Ω

∇ · Id = (d+ 1) meas(Ω).

Remark 4.1.2 (Physical Interpretation of Multipliers). In the context of biomem-

brane modeling the λ multiplier can be interpreted as the uniform surface tension

that the membrane should posses for the bending force not to change the surface

area. Similarly the π multiplier can be interpreted as the uniform pressure differ-

ence between the interior and exterior of the membrane for the bending force not

to change the enclose volume.

Similarly, for the general case if we want to impose N isoperimetric constraints

of the form Fi(Γ) =
∫

Γ
fi, the augmented system will be

v = −δẼ(Γ, λ1, . . . , λN) = −δE +
N∑

i=1

λi δFi

Fi(Γt) = Fi(Γ0) i = 1, . . . , N.

(4.4)
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In section 7.3 a novel method to solve for the multipliers in the discrete approx-

imation to the solution of system (4.4) is presented. For future use we state the

variational derivative of the area and volume functionals.

Theorem 4.1.1. Let Γ be a surface without boundary. Let A(Γ) =
∫

Γ
1 and V (Γ) =

1
d+1

∫
Γ
Id·ν be the area and volume functionals. Then, for all smooth vector functions

φ, we get

dA(Γ;φ) =

∫
Γ

δA · φ =

∫
Γ

h · φ, (4.5)

dV (Γ;φ) =

∫
Γ

δV · φ =

∫
Γ

φ · ν. (4.6)

Proof. To prove (4.5) invoke Lemma 3.2.2 with v = φ. It follows that dA(Γ;φ) =∫
Γ
∇Γ · φ, and using equation (3.10) with q = φ the result follows. For the second

equation observe that 1
d+1

∫
Γ
Id · ν = V (Ω) =

∫
Ω

1 and use Lemma 3.2.1 with ψ = 1

to deduce dV (Ω,φ) =
∫

Ω
∇ · φ =

∫
Γ
φ · ν.

A sufficient condition for the Lagrange multipliers to exist (at the equilibrium),

see [GH96, Theorem 2 p.91], is given by the existence of φ and ψ such that

det


∫

Γ
h · φ

∫
Γ
h ·ψ∫

Γ
ν · φ

∫
Γ
ν ·ψ

 6= 0. (4.7)

Lemma 4.1.2 (Existence of Multipliers). Let Γ be an equilibrium shape, which is

not the trivial case of the sphere. Then the multipliers exist.

Proof. Recall the relation h = hν and choose φ = h and ψ = ν to obtain

(∫
Γ

h2

)(∫
Γ

1

)
−
(∫

Γ

h

)2

6= 0.
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Since h is not constant, because the sphere is the only surface with constant h, h is

linearly independent to 1 and the Cauchy-Schwarz inequality implies

(∫
Γ

h

)2

<

(∫
Γ

h2

)(∫
Γ

1

)
.

Therefore, (4.7) holds with φ = h and ψ = ν ensuring the existence of the two

multipliers λ and π at every non spherical equilibrium, as asserted.

4.2 Geometric Evolution Laws

When the motion of a surface only depends on its geometry, the governing equa-

tions are called a geometric evolution equation. More specifically, given an initial

surface Γ0 a geometric evolution equation prescribes the normal velocity v = v ·ν =

f(t,x,ν,∇Γν) as a function of time, position, the normal ν, and the curvatures.

The most famous example of such an equation may be the mean curvature flow (sec-

tion 4.2.1) introduced by W. Mullins in 1956 [Mul56] to describe motion of grain

boundaries. Geometric evolution equations have a wide range of applications such

as in the field of material sciences, image processing and biophysics among others.

They are in general nonlinear equations which can develop singularities in finite

time, which make their study both interesting and challenging.

There are different approaches to deal with a geometric evolution equation on

a surface rooted in the different ways a surface can be represented (cf. section 3.1).

For example we have the graph, parametric, level set and phase field approaches.

Each one has its advantages and disadvantages. In this work we are interested in

the parametric approach.
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A typical way to obtain a geometric evolution equation is from a gradient flow

using the shape derivative of some energy J . More precisely given a Hilbert space

H(Γ) of functions defined on Γ and the associated scalar product <,> one can define

the following problem

< v,w >= −dJ(Γ;w) ∀w ∈ H(Γ).

This will give a geometric evolution equation.

4.2.1 Mean Curvature Flow

Flow by mean curvature is given by the geometric law

v = −h,

that prescribes the normal velocity to be the negative of the total mean curvature.

It is the L2-gradient flow of the area functional A(Γ) =
∫

Γ
1. This follows from

the definition (4.1) and Theorem 4.1.1 equation 4.5 that states that δA = h. In

applications it represents an interfacial energy. In one dimension, it is referred to as

the curve shortening flow. Mathematically, the problem is the following:

Problem 4.2.1 (Mean Curvature Flow: Lagrangian Formulation). Given a refer-

ence surface Γ0 find x : Γ0 × [0, T ] → Rd+1 such that

∂x

∂t
(p, t) = −h(x(p), t) in Γ0 × [0, T ]

x(p, 0) = IdΓ0(p) in Γ0.

(4.8)

Assuming that the evolving surfaces {Γt} are continuous in space and time

and that all quantities which we shall use make sense, Problem 4.2.1 can be written

in trajectory space GT = {(x, t) : x ∈ Ωt, t ∈ [0, T ]} as:
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Problem 4.2.2 (Mean Curvature Flow: Eulerian Formulation). Given an initial

surface Γ0 and u0 = IdΓ0 find u : GT → Rd+1 such that u = IdΓt and

v(x, t) = −h(x, t) in GT . (4.9)

where v : GT → Rd+1 = u̇, the material derivative of u.

Remark 4.2.1 (Special Solutions). A known exact solution for the mean curvature

flow is dimension d + 1 is the shrinking sphere of initial radius R0. The radius in

time is given by R(t) =
√
R2

0 − 2dt.

A useful property for numerical tests is the following result

Lemma 4.2.1. Let v be the solution of Problem 4.2.2. Then

∫ T

0

∫
Γt

|v|2 = meas(Γ0)−meas(Γt). (4.10)

Remark 4.2.2. Under reasonable hypothesis it was shown that this flow shrinks to

a point in finite time [Gig06, page 4]. This is no longer the case if we add a volume

constraint. We achieve this using the constraint methods of section 4.1. Another

method to attain the volume constraint that appears in the computational literature

is rescaling. This one is applied at the discrete level, after each time step the surface

is rescaled to have a prescribed volume [DDE05].

Assume for simplicity that Γ0 has no boundary (and as a consequence so

do all Γt). A weak formulation for the mean curvature flow can be obtained by

multiplying equation (4.9) by a smooth test function φ. Using formula (3.14) and

then integrating by parts (Theorem 3.1.4), we obtain
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Problem 4.2.3 (Mean Curvature Flow: Weak Form). Given an initial surface Γ0

and u0 = IdΓ0 , find u : GT → Rd+1 such that u = IdΓt and

∫
Γ

u̇ · φ = −
∫

Γ

∇ΓId : ∇Γφ, (4.11)

for all smooth φ.

Remark 4.2.3 (Discrete Surface). Observe that even though the velocity is normal

we use a vector test function φ in the weak formulation. The reason is that by doing

this we get ν as part of the solution. In the discretization presented in section 6.1.1

this will give a continuous normal, even though the representation of the surface has

a discontinuous one because is piecewise polynomial.

Using the method of section 4.1 and Theorem 4.1.1 on Problem 4.2.3, the

mean curvature flow with volume constraint can be formulated as follows:

Problem 4.2.4 (Mean Curvature Flow with Volume Constraint). Given an initial

surface Γ0 and u0 := IdΓ0 , find u : GT → Rd+1 and π : [0, T ] → R such that

u = IdΓt and ∫
Γ

u̇ · φ = −
∫

Γ

∇ΓId : ∇Γφ+ π

∫
Γ

φ · ν,

meas(Ωt) = meas(Ω0),

(4.12)

for all smooth φ.

4.2.2 Willmore Flow

This is the L2-gradient flow of the Willmore energy [Wil93]

W (Γ) =
1

2

∫
Γ

h2. (4.13)
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Using the tools of shape differential calculus we can compute the shape derivatives

and the first variation of the shape functional W .

Lemma 4.2.2. In 3D the Willmore shape derivative is given by

dW (Γ,φ) =

∫
Γ

(
−∆Γh−

1

2
h3 + 2kh

)
ν · φ, (4.14)

whereas in 2D it is given by

dW (Γ,φ) =

∫
Γ

(
−∆Γh−

1

2
h3

)
ν · φ. (4.15)

Proof. From Lemma 3.2.2 we obtain

dW (Γ,φ) = −
∫

Γ

h∆Γφ+

∫
Γ

(h∂νh+
1

2
h3)φ. (4.16)

Using Lemma 3.2.4, ∂νh = −h2 + 2k, and integrating by parts we deduce

dW (Γ,φ) =

∫
Γ

(
−∆Γh−

1

2
h3 + 2kh

)
ν · φ, (4.17)

which is (4.14). Upon taking k = 0 we arrive at (4.15).

From here it follows that the functional derivative is

δW =

(
∆Γh+

1

2
h3 − 2kh

)
ν. (4.18)

It is also possible to show that

δW =

(
∆Γ(hν)− 2∇Γ · (h∇Γν) + h∇Γh−

1

2
h3ν

)
. (4.19)

A geometric evolution equation describing this flow is
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Problem 4.2.5 (Willmore Flow: Lagrangian Formulation). Given a reference sur-

face Γ0, find x : Γ0 × [0, T ] → Rd+1 such that

∂x

∂t
(p, t) = −

(
∆Γh+

1

2
h3 − 2kh

)
ν in Γ0 × [0, T ]

x(p, 0) = IdΓ0(p) in Γ0.

(4.20)

Lemma 4.2.3 (Special Solutions). The sphere is a solution in three dimensions.

An expanding circle is a solution in two dimensions.

Proof. Consider a sphere in R3 of radius R then we have h = 2
R

and k = 1
R2 . Using

formula (3.14) and (3.5) with ν = x
|x| we get ∆Γh = 0 and plugging this in (4.18)

gives δW = 0, which implies that any sphere is a solution of the Willmore flow.

By the symmetry of the Willmore energy if the initial shape is a circle it should

remain a circle. Under this restriction the Willmore flow (4.20) becomes an ODE

R′(t) =
1

2R3
(4.21)

and the solution is R(t) = (2(t− t0) +R4
0)1/4.

Lemma 4.2.4 (Rescaling Property in 3D). If Γ is an equilibrium solution of the

Willmore flow in three dimensions, then αΓ = {αx : x ∈ Γ} is another equilibrium

for any α > 0.

Proof. This is a consequence of how the mean curvature rescales by dilations. It is

simple to see that h(αx) = 1
α
h(x). Since the surface area is magnified by a factor

of α2 we get

W (αΓ) =
1

2

∫
αΓ

h2 =
1

2

∫
Γ

α2h2 1

α2
= W (Γ), (4.22)

which is the assertion.
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Remark 4.2.4 (Untangling of Curves). For curves the Willmore flow has the unwind-

ing property. This means that self intersecting curves evolved by the Willmore flow

tend to finish in a circle like shape [DKS02].

Multiplying (4.18) by a smooth function φ and using integration by parts,

weak formulations for the Willmore energy can be obtained. We consider two of

them. The first one is due to Rusu [Rus05].

∫
Γ

δW · φ = −
∫

Γ

[(I − 2ν ⊗ ν)∇Γh] : ∇Γφ

+
1

2

∫
Γ

|h|2∇ΓId : ∇Γφ ∀φ. (4.23)

The second one is due to Dziuk [Dzi]

∫
Γ

δW · φ = −
∫

Γ

∇Γh : ∇Γφ+

∫
Γ

∇Γh : [D∇ΓId]

−
∫

Γ

∇Γ · h∇Γ · φ−
1

2

∫
Γ

|h|2∇Γ · φ, ∀φ. (4.24)

where D(φ)ij = (∇Γ)iφ
j + (∇Γ)jφ

i. This second discretization is claimed to be

more stable [Dzi]. We refer to our numerical experiments of chapter 8 that indicate

similar performances of both formulations. To complete the previous equations

recall from (3.14) that h and x are related by

∫
Γ

h ·ϕ =

∫
Γ

∇ΓId : ∇Γϕ ∀ϕ, (4.25)

which becomes part of the weak formulations. Using either (4.24) or (4.23), the

weak form of the Willmore flow becomes:

Problem 4.2.6 (Willmore Flow: Weak Form). Given an initial surface Γ0 and
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u0 = IdΓ0 , find u : GT → Rd+1 such that u = IdΓt and

∫
Γ

u̇ · φ = −
∫

Γ

δW · φ, (4.26)∫
Γ

h ·ϕ =

∫
Γ

∇ΓId : ∇Γϕ, (4.27)

for all smooth φ and ϕ.

4.2.3 Biomembranes

The geometric model for biomembranes is given by the Willmore flow (section 4.2.2)

when it is subject to surface area and enclosed volume constraints. Also the Will-

more energy has a bending rigidity coefficient κ. In this context we refer to the

Willmore energy as bending energy (section 2.1). This energy is believed to be the

main driving force in biomembranes (see [Hel73, Jen77b] and chapter 2) to such an

extent that a minimizer of this energy, in the family of all surfaces that share the

same enclosed volume and surface area, has been successful in predicting the shapes

of artificial vesicles in the lab and even the shape of a red blood cell. Using the

method of section 4.1 and Theorem 4.1.1 we have

Problem 4.2.7 (Geometric Flow for Biomembrane Modeling). Given an initial

surface Γ0 and u0 = IdΓ0 , find u : GT → Rd+1 such that u = IdΓt ; λ : [0, T ] → R
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and π : [0, T ] → R∫
Γ

u̇ · φ = −
∫

Γ

δW · φ+ λ

∫
Γ

h · φ+ π

∫
Γ

φ · ν, (4.28)∫
Γ

h ·ϕ =

∫
Γ

∇ΓId : ∇Γϕ, (4.29)

meas(Ωt) = meas(Ω0), (4.30)

meas(Γt) = meas(Γ0), (4.31)

for all smooth φ and ϕ.

4.2.4 Surface Diffusion

In a motion by surface diffusion the normal velocity is proportional to the surface

Laplacian of mean curvature:

v = ∆Γh.

In applications in material sciences they are used to model morphological changes

in stressed epitaxial films [AT72, SDV93, CT94].

4.3 Fluid-Structure Interaction Model

The idea to couple an immerse membrane (structure) with a fluid is to balance

the boundary force of the fluid with the force the membrane exerts on it. Re-

calling the notation of section 3.3, consider two motions: x : Ω̂× [0, T ] → E and

χ : Γ̂× [0, T ] → E , where Ω̂ is a reference domain and Γ̂ a reference surface. Let-

ting Ωt = x(Ω̂, t) and Γt = χ(Γ̂, t) we have the corresponding trajectories

GT = {(x, t) : x ∈ Ωt, t ∈ [0, T ]} and GT = {(x, t) : x ∈ Γt, t ∈ [0, T ]}.
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For the coupling to take place we will require the following two coupling assumptions:

Assumption 4.3.1. The membrane is immersed, i.e. GT ⊂ GT .

Assumption 4.3.2. The membrane is endowed of some energy E that only depends

on geometric quantities of Γt (cf. with introduction of section 4.2). The force gΓ

the membrane exerts is given by the variational derivative of E, i.e. gΓ = −δE.

The coupling problem (see figure 4.1) can be stated as follows. Given the

initial velocity v0 and domain Ω0, find the velocity v, pressure p and free boundary

Γt such that:

ρv̇ −∇ · Σ = b in Ωt, (4.32)

∇ · v = 0 in Ωt, (4.33)

[Σ]ν = δE on Γt, (4.34)

v = ϑ on Γt, (4.35)

v(·, 0) = v0 in Ω0, (4.36)

where [Σ] = Σin − Σout is the jump of the stress tensor and ϑ is the membrane

velocity. Equation (4.35) represents the adherence or no slip condition. Figure

4.2 gives and explanation for (4.34). Assumptions 4.3.1 and 4.3.2 are necessary for

(4.34) to make sense.

In our applications it is always possible to define a constant α such that with

the definitions (3.31), the problem (4.32)-(4.36) can be written in dimensionless
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Ω
out

in
Ω

D
Γ

g

Ω

Γ

Figure 4.1: Schematic picture for the coupling problem. Ω is a fluid domain being
split into two components by the immersed membrane Γ. The membrane exerts
a force g to the fluid, which is the by-product of an endowed energy that only
depends on geometric quantities of Γ. ΓD is the (exterior) boundary of Ω that could
be considered to have zero velocity.

1
Σ

2
Σ

Figure 4.2: Justification of equation (4.34). We take a pillbox around the dotted
membrane. The total force in the pillbox when the thickness goes to zero as the
volume goes to zero is −Σ2ν2 − Σ1ν1 = gΓ. Let ν = ν2 = −ν1, then we get
(Σ2 −Σ1)ν = −gΓ.
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variables as:

˙̄v −∇ · Σ̄ = b̄ in Ω̄, (4.37)

∇ · v̄ = 0 in Ω̄, (4.38)

αRe[Σ̄]ν = δE on Γ̄t, (4.39)

v̄ = ϑ̄ on Γ̄t, (4.40)

v̄(·, 0) = v̄0 in Ω̄0. (4.41)

From now on, unless explicitly stated, we will drop the bar and work with the

dimensionless system. Also we assume that Ω2 is vacuum so that [Σ] = Σin and use

Σ = Σin. If we test (4.37) with a smooth test function φ in Ω(t) we get∫
Ω

v̇ · φ−
∫

Ω

φ · b =

∫
Ω

φ · ∇ ·Σ

=

∫
Ω

∇ · (Σφ)−
∫

Ω

Σ : ∇φ

=

∫
Γ

(Σφ) · ν −
∫

Γ

Σ : ∇φ

(4.42)

For the first integral of the last term in (4.42) we use (4.39) to get

∫
Γ

(Σφ) · ν =

∫
Γ

(Σν) · φ =
1

αRe

∫
Γ

δE · φ. (4.43)

For the second integral after integration by parts

−
∫

Ω

Σ : ∇φ =

∫
Ω

p ∇ · φ− 1

Re
D(v) : ∇φ. (4.44)

Combining the last equations

∫
Ω

v̇(t) · φ+

∫
Ω

1

Re
D(v) : ∇φ−

∫
Ω

p ∇ · φ =

∫
Ω

φ · b− 1

αRe

∫
Γ

δE · φ. (4.45)

52



Equation (4.45) provides the starting point for the discrete formulations of chapter

6. Next we specialize this equation to the capillarity, Willmore and biomembrane

forces deriving in each the value of α.

4.3.1 Capillarity

In this case α is the well known capillary number

Ca =
µV

σ
,

where µ is the viscosity of the liquid, V is a characteristic velocity and σ is the

surface or interfacial tension between the two fluid phases. See for example [Bän01].

In this case the energy E is the area functional, which enters the momentum equation

(4.45) as δE = h (see Section 4.2.1).

4.3.2 Willmore

The coupled Willmore problem is by definition the replacement of E in equation

(4.34) by W (equation (4.13)), which gives

ρv̇ −∇ · Σ = b in Ωt,

∇ · v = 0 in Ωt,

[Σ]ν = δW on Γt,

v = ϑ on Γt,

v(·, 0) = v0 in Ω0.

(4.46)
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To write a non dimensional formulation of problem (4.46), we need to see how the

curvature rescales. Using the definitions (3.31) it easy to see that

h(x̄) = Lh(x),

k(x̄) = L2k(x),

∆x̄h(x̄) = L3∆xh(x).

(4.47)

Using (4.47) in equation (4.18) gives

δW (x) =
1

L3

(
∆x̄h(x̄) +

1

2
h(x̄)3 − 2k(x̄)h(x̄)

)
ν(x̄). (4.48)

Then equations (3.32), (3.33) and problem (4.46) yield the dimensionless coupled

Willmore problem:

˙̄v −∇ · Σ̄ = b̄ in Ω̄,

∇ · v̄ = 0 in Ω̄,

ρV 2L3Σ̄ν =

(
∆Γh+

1

2
h3 − 2kh

)
ν on Γ̄t.

(4.49)

As ρV 2L3 = ReµL2V then (4.49) gives α = µL2V .

4.3.3 Biomembranes

Recall from section 4.2.3 that this is the coupled Willmore problem (4.49) with area,

volume constraints and a bending rigidity coefficient. As the volume is preserved

due to the incompressibility of the fluid, what remains to do is to add a Lagrange

multiplier for the area. Using the result obtain in (4.49) and taking into account

the bending rigidity coefficient κ we arrive at the dimensionless model for the fluid
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biomembrane in terms of the Reynolds and bending numbers:

˙̄v −∇ · Σ̄ = b̄,

∇ · v̄ = 0,

ReBeΣ̄ν =

(
∆x̄h(x̄) +

1

2
h3 − 2kh+ λh

)
ν,

(4.50)

where the bending number is

Be =
µV L2

κ
.

55



Chapter 5

Finite Element Method

The finite element method is one of the most successful tools to approximate so-

lutions of PDEs. The theory of the method has reached a maturity level for

fixed domains, as it is reflected by the number of advanced books on the subject

[Cia78, BS02, AO00, BS01]. Still the theory for moving finite elements, in particular

when the domain is part of the unknown is lacking behind. Some references on the

latter can be found in [Bän01, BG04, FN04, DE07, BMN05]. This is the case of

problems presented in Chapter 4.

First in Section 5.1 we gather some classical results of the finite element method

in flat domains that are used later to define finite elements for surfaces and moving

domains. Except for a slight change in notation most concepts are extracted from

[Cia78, BS02]. In Section 5.2 we provide the concepts of surface finite elements and

the basic tools to work with them. These concepts get applied in the subsequent

sections 5.3, 5.4 and 5.5 to obtain interpolation results for surfaces, discrete formulas

for curvature and a priori estimates for the Laplace-Beltrami operator. The proofs

of the latter will be crucial in the proof of the refinement result (Section 7.2). The

first a priori estimate for Laplace-Beltrami operator appears in [Dzi88], a posteriori

results can be found in [Mek05, DD07, MMN] for piecewise linear elements. A priori

estimates for higher order elements can be found in a preprint by Demlow [Dem].
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The approach in Section 5.2 is different from the last in the sense that we do not

use the distance function and different from [Mek05] because we do it for any order

isoparametric representation of the surface. In Section 5.6 we present a result for

surface quadratic isoparametric elements that will justify some methods of Chapter

7. We finish the chapter with Section 5.7 where we present the parametric finite

element method for geometric evolution equations.

5.1 Finite Elements for Flat Domains

We recall the finite element method for the Poisson equation. When this problem is

posed in variational form it can be stated as follows: given a domain Ω and a source

f ∈ L2(Ω) find u ∈ V = H1
0 (Ω) such that

a(u, v) :=

∫
Ω

∇u∇v =

∫
Ω

fv ∀v ∈ V.

The conforming Galerkin method for approximating the solution u consists of defin-

ing approximate problems in finite dimensional subspaces of V. The finite element

method is a specific process to construct finite dimensional subspaces Vh of V called

finite element spaces. It is formally characterized by three basic aspects:

1. an underlying triangulation T of the domain;

2. piecewise polynomial elements in Vh;

3. existence of basis functions with small support.

Formally the finite dimensional space Vh is defined as the set of functions v ∈ V such

that v|K is a polynomial for each K ∈ T . The typical finite element mesh-space pair

57



is a triangulated domain into simple elements such that a function in the space is

a polynomial when restricted to each element of the triangulation. Very important

is the existence of points in the triangles (degrees of freedom) such that a function

in Vh is uniquely determined by its values at these points. We proceed to make the

previous ideas rigorous.

Definition 5.1.1 (Triangulation). Given a domain Ω a conforming triangulation T

is a finite family of subsets K ⊂ Ω such that:

1. Ω̄ =
⋃

K∈T K,

2. K is closed and with nonempty interior for all K ∈ T ,

3. K◦
1

⋂
K◦

2 = ∅ for all K1, K2 ∈ T ,

4. ∂K is Lipschitz-continuous for all K ∈ T ,

5. Any face1 of any K ∈ T is either a subset of the boundary or a face of another

K2 ∈ T .

Remark 5.1.1 (Conformity property). Property 5 requires the set K to have faces,

which is clear for simplices (definition 5.1.3 below). It also makes sense for other

sets that are deformation of simplices as isoparametric elements.

Definition 5.1.2 (Finite Element). Following Ciarlet [Cia78] a finite element in

Rd+1 is a triplet (K,P ,N ) where:

1. K is a closed subset of Rd+1 with non empty interior and Lipschitz continuous

boundary,

1See Remark 5.1.1.
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2. P is a finite dimensional space of real valued functions (typically polynomials)

defined on K,

3. N is a finite basis of P ′, the dual of P .

Of extreme importance is the case when K is a simplex.

Definition 5.1.3 (n-simplex in Rd+1). Given A = {a0, . . . ,an} a set of n+1 points

in Rd+1, the set K = conv(A) is known as the n-simplex spanned by A.

An n-simplex is nondegenerate if the set {a1 − a0, . . . ,an − a0} is linearly

independent. A sub-simplex of a simplex K is the convex hull of any subset of A.

If d = 2 and n = 2 a non-degenerate simplex is a triangle and its sub-simplices are

its edges (n=1) and vertices (n=0). The size and shape of a (d + 1)-simplex are

characterized by the following quantities

hK := diam(K),

ρK := sup{diam(B) : B ⊂ K,B is a ball},

σK :=
hK

ρK

.

(5.1)

Also useful are the associated global quantities h := max{K∈T }{hK} and σ :=

sup{K∈T }{σK}.

Given a finite element (K̂, P̂ , N̂ ), and given a function v : K → R, sufficiently

smooth so that the degrees of freedom φi(v) are well defined, we let

IKv = Σφi(v)pi,

denote the P-interpolant of v.
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Approximation results are an essential part of the finite element method the-

ory, quite general results can be found for interpolation error in Sobolev spaces for

domains in Rd+1, later we see how these results can be extended to surfaces. Next

we restrict to the case when the degree of freedoms are given by φ(p) = p(ai) with

ai ∈ K.

Definition 5.1.4 (Affine Equivalent). Two finite elements (K̂, P̂ , N̂ ) and (K,P ,N )

are affine equivalent if there exists an invertible affine mapping:

F (x̂) = Bx̂+ b (5.2)

such that

K = F (K̂) (5.3)

P = {p : K → R : p = p̂ ◦ F−1, p̂ ∈ P̂} (5.4)

ai = F (âi) (5.5)

Theorem 5.1.1. Let (K̂, P̂ , N̂ ) be a finite element satisfying the following inclu-

sions for some integers m ≥ 0 and k ≥ 0 and for some numbers p, q ∈ [1,∞],

1. W k+1
p (K̂) ⊂ C0(K̂),

2. W k+1
p (K̂) ⊂ Wm

q (K̂),

3. Pk(K̂) ⊂ P̂ ⊂Wm
q (K̂).

Then there exists a constant C(K̂, P̂ , N̂ ) such that, for all affine equivalent finite

elements (K,P ,N ) and all functions v ∈ W k+1,p(K)

|v − IKv|m,q,K ≤ C(K̂, P̂ , N̂ ) meas(K)(1/q)−(1/p)h
k+1
K

ρm
K

|v|k+1,p,K . (5.6)
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Proof. See [Cia78] Theorem 3.1.5.

5.1.1 Some Finite Elements

Here we define some examples of finite elements that will be used later, the Lagrange

finite elements, the “mini” element and the Taylor-Hood elements.

Definition 5.1.5 (Lagrange nodes of order k on K). If K is a simplex spanned by

{a1, . . . ,an+1}, and k ∈ N, then we define the Lagrange nodes on K by

Lk(K) :=
{
x = Σn+1

l=1 λlal; Σn+1
l=1 λl = 1, λl ∈ {0, 1/k, . . . , k/k}, 1 ≤ l ≤ n+ 1

}
.

Lemma 5.1.2. Let K be a simplex, k ∈ N and p ∈ Pk. Then p is uniquely identified

by its value at the Lagrange nodes Lk(K).

Proof. See [Cia78] page 49.

Theorem 5.1.3. Let k ∈ N, T be a triangulation of Ω by simplices, and

Xk
h(Ω) = {φh ∈ C0(Ω̄) : φh|K ∈ Pk(K), K ∈ T }

Define

Lk =
⋃

K∈T

Lk(K)

as the global Lagrange nodes of order k for the triangulation T . Then a function

φh ∈ Xk
h(Ω) is uniquely determined by the values in the nodes N ∈ Lk.

The Taylor-Hood elements were first proposed in [TH73].
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Definition 5.1.6 (Taylor-Hood Element). Let k ∈ N. Define

Vk
h = (Xk+1

h )d+1

Qk
h = Xk

h,

as the Taylor-Hood element space of order k.

The MINI element was first propose in [ABF84] and consists of continuous

piecewise linear elements enriched with bubble functions, also see [GR86, BF91].

Definition 5.1.7 (MINI Element). Let k ∈ N. Define Bk = {v : v|K = α(K)λ1 . . . λd+1}

then the MINI element is given by

Vh = (X1
h)d+1 ⊕ (Bd+2)d+1

Qh = X1
h.

The most significant property of the Taylor-Hood and MINI element is that

they satisfies a discrete LBB condition for the Stokes problem.

5.2 Finite Elements for Surfaces

Throughout this section Γ denotes a compact, oriented, smooth d-hypersurface in

Rd+1 with or without boundary (see Section 3.1).

Definition 5.2.1 (Polyhedral surface). A pair (Γ̃, T̃ ) is a polyhedral surface if

Γ̃ ⊂ Rd+1 and T̃ is a finite family of closed, non degenerate, d-simplices in Rd+1

such that:
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• the intersection of two simplices in the family is either empty or a (d − k)-

dimensional sub-simplex of both simplices with k = 1, . . . , d, and

• Γ̃ =
⋃

K̃∈T̃ K̃.

Remark 5.2.1 (Surface triangulation). The previous definition of T̃ is the right ex-

tension of definition 5.1.1 to define a surface triangulation.

Definition 5.2.2 (Polyhedral Approximation. Lift). A polyhedral surface (Γ̃, T̃ )

is an approximation to Γ if there exists a continuous bijection l : Γ̃ → Γ such that

l|K̃ : K̃ → Γ is smooth for all K̃ ∈ T̃ . Then a polyhedral approximation to Γ is the

triplet (Γ̃, T̃ , l). The function l is called the lift.

Observe for example that with these definitions the two polygonal approxima-

tions shown in figure 5.1 are different even though Γ̃ is the same.

Figure 5.1: In this picture the hyper-surface Γ is the circle, a polygonal Γ̃ is the
triangle. These approximations are different as T̃ on the left has three elements and
T̃ on the right has four.

If for example the polyhedral surface (Γ̃, T̃ ) is within a small tubular neighbor-

hood of Γ where the distance function is smooth then a polyhedral approximation is
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defined by taking l(x) = x+ d(x)ν(y) where y = y(x) is the orthogonal projection

of x onto Γ.

Remark 5.2.2. Using the polyhedral approximation approach in the sense of Defini-

tion 5.2.2 is more general than using the distance function. In particular there are

instances, both theoretical and computational, when the distance function is not

available. See for instance the work of Mekchay [Mek05].

Having the polyhedral approximation (Γ̃h, T̃ , l) we can define higher order

piecewise polynomial approximations to Γ in the following isoparametric way (refer

to figure 5.2). Let K̂ ⊂ Rd be the reference element spanned by the canonical

0 11/2

K̂

x1

x̃12

x2

x12

ΓK2

K̃

FK̃

Figure 5.2: Relation among Γ, Γ1
h and Γ2

h. The picture shows an illustrative situation
showing the reference simplex K̂ the affine simplex K̃ = K1 and the “quadratic
simplex” K2.

basis {e1, . . . , ed} and FK̃ : K̂ → K̃ be the unique injective affine map such that

the vertices of K̂ are mapped to the vertices of K̃. Given a positive integer γ we

define FKγ : K̂ → Rd+1 as the unique Rd+1-valued polynomial of degree γ such

that FKγ (x̂i) = l(FK̃(x̂i)) for all Lagrange nodes x̂i of degree γ (definition 5.1.5).

This defines for each γ a piecewise polynomial surface Γγ
h with the associated curved

triangulation T γ with the curved elements Kγ. A finite element space on Γγ
h can
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then be defined as follows

Sγ,k
h = {φ ∈ C0(Γγ

h) : φ ◦ FKγ ∈ Pk(K̂)}, (5.7)

where Pk(K̂) is the set of polynomial of degree less or equal k in d variables. Observe

that we have a degree γ for the mesh Γγ
h and a degree k for the polynomials, we will

say that Γγ
h is a mesh of degree γ.

The polyhedral approximation (Γ̃h, T̃ , l) also provides a local parametric rep-

resentation of both Γγ
h and Γ. More precisely, the parametric representation is given

by the family {FKγ : K̂ → Kγ : Kγ ∈ T γ}. With the convention that γ can be

“nil”, and FK := l ◦ FK̃ the previous family includes a parametrization of Γ as a

particular case.

Next we obtain formulas to relate differentials over different domains. They

are the main tool to work with finite elements on surface as they allow one to

transform the problem to a flat reference element. Before proceeding further recall

the definitions of the geometric quantities T, G, D and q given in Section 3.1. Let

f : K → Rm be a given function, then f̂ and fγ will denote the corresponding

functions defined by the commutative diagram (5.8). Note that to simplify notation

below we use F−γ for (F γ)−1.

Kγ � F γ

F−γ
- K̂

F -�
F−1

K

Rm

f̂

?

f

�

fγ

-

(5.8)

From Remark 3.1.5

∇Kγfγ = (Dγ∇K̂ f̂) ◦ F−γ (5.9)
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and inverting this equation through (3.1) we get

∇K̂ f̂ = (Tγ)T(∇Kγfλ ◦ F γ). (5.10)

Combining the last two equations we obtain

∇Kf =
(
D(Tγ)T∇Kγfλ

)
◦ l−γ and ∇Kγfλ =

(
Dγ(T)T∇Kf

)
◦ lγ. (5.11)

where lγ = F ◦ F−γ. Also the integration change of variables is given by

∫
Kγ

fγ =

∫
K̂

f̂ qγ

∫
K

f =

∫
Kγ

fγδγ (5.12)

where δγ = q
qγ ◦ F−γ and recalling definitions of Section 3.1 qγ =

√
det(Gγ).

5.3 Interpolation Results for Surfaces

In this section we extend Theorem 5.1.1 to a surface finite element. Then the result

is applied to the surface approximation, This will be used to define the estimator

for refining and coarsening in Section 7.2.

Similarly to the flat case, we can say that a surface finite element (K,P ,N )

is affine equivalent to a flat finite element (K̂, P̂ , N̂ ) if the function F of Definition

5.1.4 satisfies that BTB is invertible. Using the equivalence of tangential derivatives

for rigid deformations of Lemma 3.1.8 we can extend Theorem 5.1.1 to a surface

finite element. It all consists in changing the partial derivatives by tangential ones.

Corollary 5.3.1. Let (K̂, P̂ , N̂ ) be a finite element satisfying the following inclu-

sions for some integers m ≥ 0 and k ≥ 0 and for some numbers p, q ∈ [1,∞],

1. W k+1
p (K̂) ⊂ C0(K̂),
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2. W k+1
p (K̂) ⊂ Wm

q (K̂),

3. Pk(K̂) ⊂ P̂ ⊂Wm
q (K̂).

Then there exists a constant C(K̂, P̂ , N̂ ) such that, for all affine equivalent finite

elements (K,P ,N ) and all functions v ∈ W k+1,p(K)

|v − IKv|m,q,K ≤ C(K̂, P̂ , N̂ ) meas(K)(1/q)−(1/p)h
k+1
K

ρm
K

|v|k+1,p,K . (5.13)

Proof. Use Lemma 3.1.8 and Theorem 5.1.1.

Lemma 5.3.2 (Surface Approximation). Let (Γ̃h, T̃ , l) be a polyhedral approxima-

tion. Then

|l− lγ|m,q,K ≤ C(K̂, P̂ , N̂ ) meas(K)(1/q)−(1/p)h
k+1
K

ρm
K

|l|k+1,p,K .

5.4 Discrete Curvature Computations

From equations (3.15) and (3.16) we obtain discrete formulas for curvatures. Let

hh and Πj
h in (Sγ,k

h )d+1 be functions that satisfy

∫
Γh

hh ·wh =

∫
Γh

∇Γh
xh : ∇Γh

wh, (5.14)∫
Γγ

h

Πj
h ·wh = −

∫
Γγ

h

νj∇Γh
·wh,−

∫
Γγ

h

νjhh ·wh, (5.15)

for all wh ∈ (Sγ,γ
h )d+1, then the following error formulas [Hei] are obtained.

Theorem 5.4.1. Let Γ be a hypersurface of class Cm, m > 3, without boundary

and let (Γ̃, T̃ , l) be a polyhedral approximation to Γ, such that T̃ is a quasi uniform
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triangulation, Then for 1 ≤ γ < m, we have

‖h− hh‖L2(Γγ
h) ≤ chγ−1; (5.16)

‖Π−Πh‖L2(Γγ
h) ≤ chγ−1. (5.17)

where c = c(σ,Γ, γ).

Proof. See [Hei].

Remark 5.4.1. Note that in the one dimensional case the nodal interpolant is equiv-

alent to the elliptic projection and ensures the convergence of the curvature even

with piecewise linear element; compare to (5.16). This is not the case in higher

dimension.

5.5 Finite Elements for the Laplace-Beltrami Equation

Here we study the Laplace-Beltrami Equation. The proofs presented are the key for

proofs of geometric refinement in Section 7.2.2. Given a closed smooth surface Γ

and f ∈ L2(Γ) with integral zero, u : Γ → R is a solution to the Laplace-Beltrami

equation if ∫
Γ

∇Γu∇Γφ =

∫
Γ

fφ ∀φ ∈ H1(Γ), (5.18)

Given a scalar α it can be shown [Aub98] that the previous equation has a unique

solution u with mean value α.

If Γ̃ is a polyhedral approximation to Γ in the sense of Section 5.2, then given

γ and k, a finite element approximation to equation (5.18) is given by∫
Γγ

∇Γγuh
γ∇Γγφγ =

∫
Γγ

fh
γφγ ∀φγ ∈ Sγ,k

h (Γγ) (5.19)
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where fh
γ is some approximation to fγ. For simplicity of notation let us con-

sider the bilinear form BΓγ : H1(Γγ) × H1(Γγ) → R defined by BΓγ (uγ, wγ) =∫
Γγ ∇Γγuγ∇Γγwγ, and the restricted BKγ obtained by replacing Γγ by Kγ in the

previous definition.

Lemma 5.5.1 (Quasi Galerkin Orthogonality of the Error). Let u and uh
γ be the

solutions to (5.18) and (5.19) respectively, then

BΓγ (uγ − uh
γ, wh

γ) =

∫
Γγ

(fγδγ − fh
γ)wh

γ +

∫
Γγ

∇KγuγTAγ∇Kγwh
γ, (5.20)

for all wh
γ in Sγ,k

h (Γγ), where Aγ =
(

1
qγ T

γ(qγGγ−1 − qG−1)TγT
)
◦ F−γ.

Proof. By linearity

BKγ (uγ − uh
γ, wh

γ) =

∫
Kγ

∇Kγuγ∇Kγwγ −
∫

Kγ

fγ
hwh

γ. (5.21)

Also observe that

∫
Kγ

fγwh
γ q

qγ
=

∫
K

fwh =

∫
K

∇Ku
T∇Kwh

=

∫
Kγ

∇KγuγT

(
TγG−1TγT q

qγ

)
◦ F−γ∇Kγwh

γ.

Then adding and subtracting the first and last terms to equation (5.21) we get

BKγ (uγ − uh
γ, wh

γ) =

∫
Kγ

fγwh
γδγ − fh

γwh
γ +

∫
Kγ

∇Γu
γ∇Γw

γ

−
∫

Kγ

∇KγuγT

(
TγG−1TγT q

qγ

)
◦ F−γ∇Kγwh

γ,

whence

BKγ (uγ − uγ
h, wh

γ) =

∫
Kγ

(fγδγ − fh)γwh
γ

+

∫
Kγ

∇KγuγT

(
1

qγ
Tγ(qγG−γ − qG−1)TγT

)
◦ F−γ∇Kγwh

γ,
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because TγG−γTγT = D−γTγT = I−νγ⊗νγ according to (3.1). This is the desired

result.

Theorem 5.5.2 (Strang’s Lemma). Let Γ̃ be a polyhedral approximation to Γ, u

and uh
γ be the solutions to (5.18) and (5.19) respectively. If eh

γ = uγ − uh
γ, then

1

4
|eγ

h|
2
H1(Γγ) ≤ |uγ|2H1(Γγ)‖Aγ‖2

L∞(Γγ) + C|(fγδγ − fh
γ)|2L2(Γγ)

+ inf
wh

γ∈Sγ,k
h (Γγ)

{
|uγ − wh

γ|2H1(Γγ) + |uγ|H1(Γγ)‖Aγ‖L∞(Γγ)|uγ − wh
γ|H1(Γγ)

+ |(fγδγ − fh
γ)|L2(Γγ)|uγ − wh

γ|L2(Γγ)

}
. (5.22)

Proof. Rewriting eh
γ = uγ−wh

γ +wh
γ−uh

γ for all wh
γ ∈ Sγ,k

h (Γγ) we readily obtain

BΓγ (eh
γ, eh

γ) = BΓγ (eh
γ, uγ − wh

γ)︸ ︷︷ ︸
1

+BΓγ (eh
γ, wh

γ − uh
γ)︸ ︷︷ ︸

2

. (5.23)

Cauchy-Schwarz inequality yields for 1

| 1 | ≤ |eh
γ|H1(Γγ)|uγ − wh

γ|H1(Γγ) ≤
1

4
|eh

γ|2H1(Γγ) + |uγ − wh
γ|2H1(Γγ).

Invoking Lemma 5.5.1 we obtain for 2

| 2 | ≤
∣∣∣∣∫

Γγ

(fγδγ − fh
γ)(wh

γ − uh
γ)

∣∣∣∣︸ ︷︷ ︸
3

+

∣∣∣∣∫
Γγ

∇ΓγuγTAγ∇Γγ (wh
γ − uh

γ)

∣∣∣∣︸ ︷︷ ︸
4

.

Applying Cauchy-Schwarz inequality and adding and subtracting uγ leads to

3 ≤ |(fγδγ − fh
γ)|L2(Γγ)

(
|uγ − wh

γ|L2(Γγ) + |eh
γ|L2(Γγ)

)
. (5.24)

Employing Poincare’s inequality |eh
γ|L2(Γγ) ≤ C|eh

γ|H1(Γγ) implies

3 ≤ |(fγδγ−fh
γ)|L2(Γγ)|uγ−wh

γ|L2(Γγ)+
1

4
|eh

γ|2H1(Γγ)+C|(fγδγ−fh
γ)|2L2(Γγ). (5.25)
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Similarly for 4

4 ≤ ‖Aγ‖L∞(Γγ)|uγ|H1(Γγ)|wh
γ − uh

γ|H1(Γγ)

≤ |uγ|H1(Γγ)‖Aγ‖L∞(Γγ)|uγ − wh
γ|H1(Γγ) + |uγ|H1(Γγ)‖Aγ‖L∞(Γγ)|eh|H1(Γγ))

≤ |uγ|H1(Γγ)‖Aγ‖L∞(Γγ)|uγ − wh
γ|H1(Γγ) +

1

4
|eh

γ|2H1(Γγ) + |uγ|2H1(Γγ)‖Aγ‖2
L∞(Γγ).

(5.26)

Finally, gathering the above estimates an recalling the coercitivity |eh
γ|2H1(Γγ) =

BΓγ (eh
γ, eh

γ) we get

1

4
|eh

γ|2H1(Γγ) ≤|uγ − wγ
h|

2
H1(Γγ) + C|(fγδγ − fh

γ)|2L2(Γγ)

+ |uγ|H1(Γγ)‖Aγ‖L∞(Γγ)|uγ − wh
γ|H1(Γγ) + |uγ|2H1(Γγ)‖Aγ‖2

L∞(Γγ)

+ |(fγδγ − fh
γ)|L2(Γγ)|uγ − wh

γ|L2(Γγ).

The desired result follows by taking the infimum over all possible wh
γ ∈ Sγ,k

h (Γγ).

5.6 Quadratic Isoparametric Elements

Some of the computational methods of Chapter 7 use a hierarchical approach to

quadratics by working with its affine base. In this section we present a result that

gives a geometric condition ensuring that the hybrid approach will work. The result

is based on an idea by Ciarlet and Raviart [Cia78, Theorem 4.3.3] for flat elements.

Here we extend it to surfaces.

Let K̃ be a d-simplex in Rd+1 then definitions 5.1 make sense. Let K̂ ⊂ Rd be

the reference element spanned by the canonical basis {e1, . . . , ed} and FK̃ : K̂ → K̃

be the unique injective affine map such that the vertices of K̂ are mapped to the

vertices of K̃. Then hK̃/σK̃ ≈
√

(DFK̃)T(DFK̃) = q̃. Here we are interested in
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surface quadratic isoparametric elements. For simplicity of notation we let K = K2

and F : K̂ → K. We denote the quadratic midnodes by xij and x̃ij, see Figure 5.3.

By definition of isoparametric element we have

0 11/2

K̂

x1

x̃12

x2

x12

K
K̃

FK̃

F

Figure 5.3: The picture shows the elements involve in the approximation result for
quadratic isoparametric element: K is the quadratic elements, K̃ its affine base and
K̂ the master element.

F (x̂) = Bx̂+ b+ Σp̂ij(x̂)(xij − x̃ij),

where p̂ij is the reference nodal Lagrange basis function of degree 2.

Theorem 5.6.1 (Quadratic Approximation). Let (Γ̃, T̃ , l) be a polyhedral approxi-

mation with shape regularity parameter σ such that

|xij − x̃ij| ≤ O(h2
K̃

). (5.27)

Then for small hK there are constants C0 and C1 depending on σ such that

C0|q̃|K̃ ≤ |q|∞,K ≤ C1|q̃|K̃ ,

where q =

√
det((DF )T(DF )) is the area element.

Proof. From the definition of F

DF (x̂) = B(x̂) + E(x̂),
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where E(x̂) = ΣDp̂ij(x̂)(xij − x̃ij). Since the basis function p̂ij are independent of

K and using Assumption (5.27), we find that

sup
K̂

|E(x̂)| ≤ Ch2.

Since the first fundamental form G = (DF )T(DF ) = BTB + BTE + ETB + ETE,

it follows that G = BTB + O(h2) and det(G) = det(BTB) + O(h4). This implies

q2 = q̃2 +O(h4) and ,since q̃ ≈ hK/σK , the result follows for hK small.

5.7 FEM for Geometric Evolution Equations

To define an approximate solution of a geometric evolution equation (Section 4.2)

v = −δE a Petrov-Galerkin finite element method for the space variable is solved at

each time. Here E(x) stands for some energy, δE for its functional derivative and

v for the velocity prescribing the surface Γ. In order to obtain a practical method

we still have to discretize in time. Consider the time partition t0 = 0 < · · · <

tM+1 = T of [0, T ], with time step τn := tn+1− tn, n = 0, . . . ,M . Let Sh := Sγ,k
h and

xn+1
h ∈ Sh(Γn

h) be a parametric approximation to IdΓ(tn+1). Let Γ0
h be a polyhedral

approximation to Γ(0) of degree γ. Then a sequence {xn
h} of approximations to

{IdΓ(tn)} is defined recursively by

xn+1
h ∈ Sh(Γn

h) :

∫
Γn

h

(xn+1
h − IdΓn

h
)

τn
· φh = −

∫
Γn

h

δEφh ∀φh ∈ Sh(Γn
h). (5.28)

Then Γn+1
h is obtained from xn+1

h , preserving the connectivity of Γn
h. The specific

schemes obtained by applying this method to the different flows (i.e. different ener-

gies E) of Chapter 4 will be described in detail in Chapter 6.
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5.8 Gradient Recovery

Recall the finite element method for the Poisson equation on a domain Ω ⊂ R2

a(u, v) :=

∫
Ω

∇u∇v =

∫
Ω

fv ∀v ∈ V.

Let uh be the finite element solution in X1
h(Ω), i.e. uh is a piecewise linear function.

Up to a log and a constant the following error estimates are satisfied

‖u− uh‖L∞ . h2‖D2u‖L∞ ,

‖∇u−∇uh‖L∞ . h‖D2u‖L∞ .

(5.29)

Sometimes one wishes to build and approximation to D2u from uh. This is

the goal of the gradient recovery technique (see for example [HSWW01]). The idea

is to use some sort of average of ∇uh to gain information on the second derivatives.

Below we discuss the idea of the method applied to the Poisson’s problem. From the

discussion we obtain the size of the patch in terms of h. Let r := ∂iu and rh := ∂iuh

with i = 1, 2. Let

∇hrh = Grh :=

∫
∇δ(z − x)rh(x)dx,

where for a given number H > 0, δ is a function such that:

1. supp(δ) ⊂ B(z,H),

2.
∫

B
∇δ . 1/H,

3.
∫

B(z,H)
δ = 1.
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Then for B = B(z,H) ⊂ Ω we have

Grh(z)−∇r(z) =

∫
B

∇δ(z − x)rh(x)dx−
∫

B

δ(z − x)∇r(z)dx

=−
∫

B

∇δ(z − x)r(x)dx+

∫
B

∇δ(z − x)(rh(x)− r(x))dx

−
∫

B

δ(z − x)∇r(z)dx

=

∫
B

δ(z − x)∇r(x)dx+

∫
B

∇δ(z − x)(rh(x)− r(x))dx

−
∫

B

δ(z − x)∇r(z)dx

=

∫
B

∇δ(z − x)(rh(x)− r(x))dx+

∫
B

δ(z − x)(∇r(z)−∇r(x))dx.

From here and the finite element error estimates (5.29) we get

|Grh(z)−∇r(z)| . h

H
‖D2u‖∞,B +H‖D2r‖∞,B =

h

H
C1 +HC2,

provided u ∈ W 3
∞. The inequality is optimal when H =

√
C1h/C2, and gives

|Grh(z)−∇r(z)| ≤ C
√
h.

This calculation extends to the Laplace-Beltrami operator on close and smooth

surfaces.
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Chapter 6

Numerical Schemes

In this chapter we present space and time discretizations of the continuous problems

described in chapter 4. A Petrov-Galerkin finite element method for the space

variable is solved at each time. First we treat the geometric case. Doing this

provides helpful insight as to how to deal with the fluid-membrane schemes treated

later in this chapter.

6.1 Geometric Evolution Equations Schemes

First we describe a discrete weak formulation and then the matrix formulation of the

problems. This is because of notational convenience as many matrices and equations

are shared by the different problems. The discrete schemes in this section are obtain

by applying the general method proposed in section 5.7 to the continuous problems

of section 4.2. Continuous piecewise polynomial finite element spaces will be used

for the space discretization of all the variables. The use of a mixed finite element

method for the fourth order problems allows us to compute the curvature vector even

when the representation of the surface is only continuous [Rus05, DD07, DDE05].

In particular, finite elements globally C1 are not needed in this context. Other

methods to avoid global C1 elements for surfaces are described in [COS00] and the

references therein.
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Recalling the notation of section 5.7 where xn+1
h ∈ Sh(Γn

h) is a parametric

approximation to IdΓ(tn+1), we can define vn+1
h ∈ Sh(Γn

h) an approximation to the

velocity through the equation

xn+1
h = IdΓn

h
+ τnv

n+1
h . (6.1)

The following remarks explain general choices taken in the discretizations. In the

corresponding Subsections the specific choices are described.

Remark 6.1.1 (Velocity and Position). At the discrete level it is equivalent to work

either with the velocity or the position, it’s just a change of variable. Working with

the velocity helps make the exposition more coherent as this is the natural variable

when the membrane is coupled with the fluid. So we will work all our discrete

schemes using vn+1
h instead of xn+1

h .

Remark 6.1.2 (Geometric Built-in Linearization). The surface gradients as well as all

the integrals are computed in the previous domain. This linearizes the “geometrical”

nonlinearity coming from the free surface.

Remark 6.1.3 (Time Discretization). As in Section 4.2 let u(·, t) = IdΓ(t). For

the time discretization we use an implicit Euler scheme obtained by the velocity

approximation u̇(tn+1) ≈ vn+1
h and using equation (6.1) the position approximation

IdΓ(tn+1) ≈ xn+1
h = IdΓn

h
+ τnv

n+1
h .

6.1.1 Discrete Weak Formulations

We assume that the initial surface Γ0 is known and Γ0
h is a polyhedral approximation

to Γ0 (Definition 5.2.2). To avoid notational complications Γ0
h could also denote a

77



piecewise polynomial surface without explicit use of the superscript γ. Also we use

Sh(Γn
h) to denote the finite element space Sγ,k

h with k = γ.

6.1.1.1 Mean Curvature Flow

A discrete scheme to approximate Problem 4.2.3 follows. Given the initial polyhedral

approximation Γ0
h and a time partition t0 = 0 < · · · < tM+1 = T of [0, T ], with time-

step τn := tn+1 − tn, n = 0, . . . ,M , find the velocity vn+1
h ∈ Sh(Γn

h) such that

∫
Γn

h

vn+1
h ·φh + τ

∫
Γn

h

∇Γn
h
vn+1

h : ∇Γn
h
φh = −

∫
Γn

h

∇Γn
h
IdΓn

h
: ∇Γn

h
φh ∀φh ∈ Sh(Γn

h),

(6.2)

is satisfied. And Γn+1
h is obtained from vn+1

h through equation (6.1) keeping the

connectivity of Γn
h. This scheme is due to Dziuk [Dzi91].

Similarly, for the constraint Problem 4.2.4 we have: find the velocity vn+1
h ∈

Sh(Γn
h) and the scalars πn+1 such that

∫
Γn

h

vn+1
h · φh + τ

∫
Γn

h

∇Γn
h
vn+1

h : ∇Γn
h
φh

= −
∫

Γn
h

∇Γn
h
IdΓn

h
: ∇Γn

h
φh + πn+1

∫
Γn

h

φh · νn
h ∀φh ∈ Sh(Γn

h), (6.3)

meas(Ωn+1
h ) = meas(Ωn

h). (6.4)

And again Γn+1
h is obtained from vn+1

h through equation (6.1) keeping the connec-

tivity of Γn
h. The reason to take the term involving the multiplier explicit is due to

the solving method described in Section 7.3.
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6.1.1.2 Willmore Flow

A discrete scheme to approximate Problem 4.2.6 is the following. Given an initial

approximation Γ0
h, an initial approximation to curvature h0

h ∈ Sh(Γ0
h) and a time

partition t0 = 0 < · · · < tM+1 = T of [0, T ], with time-step τn := tn+1 − tn,

n = 0, . . . ,M , find the velocity vn+1
h ∈ Sh(Γn

h) and the curvature hn+1
h ∈ Sh(Γn

h)

such that ∫
Γn

h

vn+1
h · φh = −

∫
Γn

h

δW n+1
h · φh, ∀φh ∈ Sh(Γn

h), (6.5)

and∫
Γn

h

hn+1
h ·ψh − τ

∫
Γn

h

∇Γn
h
vn+1

h : ∇Γn
h
ψh = τ

∫
Γn

h

∇Γn
h
Idn

h : ∇Γn
h
ψh, ∀ψh ∈ Sh(Γn

h),

(6.6)

are satisfied. Here δW n+1
h := δW n+1

h (Γn
h,h

n
h,v

n+1
h ,hn+1

h ) is an approximation of δW ,

equation (6.5) is an approximation of (4.26) and equation (6.6) is an approximation

of the mean curvature equation consistent with (6.2). Recall that δW is given by

equation (4.19), and satisfies (from equation (4.23))

∫
Γ

δW · φ = −
∫

Γ

[(I− 2ν ⊗ ν)∇Γh] : ∇Γφ

+
1

2

∫
Γ

|h|2∇ΓId : ∇Γφ ∀φ. (6.7)

The following choices have been made concerning the time integration of the above

relation:

• The surface gradients, the outer unit normal as well as all the integral are

computed using the previous domain in order to remove the “geometrical”

nonlinearity coming from the free surface (cf. Remark 6.1.2);
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• the curvature in the nonlinear term

∫
Γ

|h|2∇ΓId : ∇Γφ

is treated explicitly, which removes the “algebraic” nonlinearity;

• the term −
∫

Γ
[(I− 2ν ⊗ ν)∇Γh] : ∇Γφ leads to a system with positive and

negative eigenvalues difficult to solve numerically (see Figure 6.1). There-

fore, bearing in mind the use of an iterative method to solve positive definite

systems, following [CDD+04], the above term is split into two parts

∫
Γ

∇Γh · ∇Γφ− 2

∫
Γ

(I− ν ⊗ ν)∇Γh · ∇Γφ

and the former is treated implicitly whilst the latter needs to be treated explic-

itly. Note that the above splitting does not solve the issue of zero eigenvalues.

Under these considerations the chosen approximation of δW reads∫
Γh

δW n
h · φh =−

∫
Γn

h

∇Γn
h
hn+1

h : ∇Γn
h
φh

− τ

2

∫
Γn

h

|h̃n
h|2∇Γn

h
vn+1

h : ∇Γn
h
φh

+ 2

∫
Γn

h

[
(I− ν ⊗ ν)∇Γn

h
h̄n

h

]
: ∇Γn

h
φh

+
1

2

∫
Γn

h

|h̃n
h|2∇Γn

h
Idn

h : ∇Γn
h
φh ∀φh.

(6.8)

Remark 6.1.4 (Explicit Treatment of h and ν). In (6.8) there are several possibilities

for what is meant by h̄n
h, h̃n

h and ν. In [CDD+04], they use the element normal for ν

and the transported hn
h from Γn−1

h to Γn
h for h̃n

h. This is because they use piecewise

linear elements and then the element curvature is 0. Instead for h̄n
h they decide to

80



Figure 6.1: Condition number of the matrix [M + τAh,−Aν ;−τA,M ] in terms of
the time-step. This shows that for some τ the system has zero eigenvalues. The
matrix corresponds to a 2x1 aspect ratio ellipse in R2.

use an explicit computation of curvature on Γn
h. When using quadratic isoparametric

elements other possible choice would be to use the element curvature for h̃n
h. We

use the approach of [CDD+04] for both our piecewise linear and piecewise quadratic

computations. We plan to investigate how the other choices compare in the near

future.

Remark 6.1.5 (Initial Curvature). In practice the initial mean curvature may be

difficult to provide. And the Willmore flow highly depends on having a good ap-

proximation to curvature. Figures 6.2 and 6.3 show that using piecewise linear and

a explicit computation of curvature can be very stiff for the flow. Observe in Fig-

ure 6.3 that it takes about 5 iterations for the linear flow to get into a reasonable

regime. This is due to the bad initial approximation to curvature that can be seen

from Figure 6.2. This one is a rather simple and nice initial mesh so the flow gets
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started, but there are other instances that the flow can never get started. One pos-

sible solution is to use higher order interpolation to compute the initial curvature.

Another one is to apply a gradient recovery method to the explicit computation of

curvature.

Figure 6.2: The figure shows the initial curvature obtained for the Willmore flow
using piecewise linear and piecewise quadratic elements. As can be seen from the
picture using piecewise linears the approximation of curvatrure is rather bad. This
is reflected in the energy graph of Figure 6.3

Remark 6.1.6 (Gradient Recovery). For small h, the surface approximation looks

locally as a flat domain. So it makes sense to apply the gradient recovery method

of Section 5.8, using h in place of u.

6.1.1.3 Biomembranes

Recalling section 4.2.3, the geometric model for biomembranes is given by the Will-

more flow when it is subject to surface area and enclosed volume constraints. Then

using equation (6.8), and considering the area and volume multipliers, the chosen
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Figure 6.3: Energy graph for the first few iterations of Willmore flow. The initial
shape is the 3x3x1 ellipsoid of Figure 6.2. The graph compares the behavior using
piecewise linears and piecewise quadratics. Observe that it takes about 5 iterations
for the linear flow to get into a reasonable regime. This is due to the bad initial
approximation to curvature. This one is a rather simple and nice initial mesh so the
flow gets started, but there are other instances that the flow can never get started.

approximation of δE reads∫
Γh

δEn
h · φh =−

∫
Γn

h

∇Γn
h
hn+1

h : ∇Γn
h
φh

− τ

2

∫
Γn

h

|h̃n
h|2∇Γn

h
vn+1

h : ∇Γn
h
φh

+ 2

∫
Γn

h

[
(I− ν ⊗ ν)∇Γn

h
h̄n

h

]
: ∇Γn

h
φh

+
1

2

∫
Γn

h

|h̃n
h|2∇Γn

h
Idn

h : ∇Γn
h
φh

+ λn+1

∫
Γn

h

h̃n
h · φh + πn+1

∫
Γn

h

φh · ν ∀φh.

(6.9)

So that the fully discrete scheme for the geometric biomembrane model is as follows:

given an initial approximation Γ0
h, an initial approximation to curvature h0

h ∈ Sh(Γ0
h)
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and a time partition t0 = 0 < · · · < tM+1 = T of [0, T ], with time-step τn := tn+1−tn,

n = 0, . . . ,M , find the velocity vn+1
h ∈ Sh(Γn

h), the curvature hn+1
h ∈ Sh(Γn

h) and the

scalars πn+1 and λn+1, such that equation (6.5) with δW n
h given by (6.9), equation

(6.6) and

meas(Ωn+1
h ) = meas(Ωn

h), meas(Γn+1
h ) = meas(Γn

h), (6.10)

are satisfied. The actual computation of the Lagrange multipliers λn+1 and πn+1

will be explained in Section 7.3.

6.1.2 Matrix Formulation

In this section we turn our attention to equivalent matrix formulations of the fully

discrete problems of the previous Subsection. We comment about the solution

method for the resulting linear systems. Also definitions from this section will be

used in section 6.2.2.

Let {φi}N
i=1 be the finite element basis of Sh. Let {ek}d+1

k=1 be the canonical

basis of Rd+1. Then by definition φi,k = φiek is the finite element basis of (Sh)d+1.

Let (M)ij indicate the (i, j)-th component of matrix M, and let ~M be a matrix

whose components ( ~M)ij are d+ 1 square matrices. We then define

• (M)ij =
∫

Γh
φiφj, ( ~M)ij = (M)ijId+1,

• (A)ij =
∫

Γh
∇Γh

φi · ∇Γh
φj, (~A)ij = (A)ijId+1,

• (Ah)ij =
∫

Γh
|h|2∇Γh

φi · ∇Γh
φj, ( ~Ah)ij = (Ah)ijId+1,

• ( ~Aν)ij =
∫

Γh
(I− νh ⊗ νh)∇Γh

φi · ∇Γh
φj.
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Given a function vh ∈ (Sh)d+1 it follows that vh = Σi,kVi,kφi,k. We denote its nodal

values by ~V . Similarly we use ~X to denote the nodal values of IdΓh
.

To go from a discrete weak formulation to an equivalent matrix system, we

have to compute the entries that the weak formulation produces for a pair of basis

functions. To illustrate the process assume the weak formulation has a bilinear form

B(φ,ψ) =
∫

Γ
B∇φ : ∇ψ, where B is a d + 1 square matrix. The corresponding

finite element matrix using our notation would be ~B. Let D := (~B)i,j, then using

the product rules (3.27) we get

(D)k,l =

∫
Γ

B∇φi,k : ∇φj,l

=

∫
Γ

(Bek ⊗∇φi) : (el ⊗∇φj) =

∫
Γ

((Bek)⊗∇φi) : (el ⊗∇φj)

=

∫
Γ

(Bek · el)(∇φi · ∇φj) =

∫
Γ

bkl∇φi · ∇φj,

(6.11)

which implies that B = D. This gives a justification for all previously defined

matrices and is the proof of the following equivalence lemmas.

6.1.2.1 Matrix System for Mean Curvature Flow

Lemma 6.1.1 (Mean Curvature Flow). Using the definitions at the beginning of

Section 6.1.2, let ~Cn = ~Mn + τn~An and ~Fn = − ~Mn
~Xn. Then equation (6.2) is

equivalent to

~Cn
~Vn+1 = ~Fn, (6.12)

and equation (6.3) is equivalent to

~Cn
~Vn+1 = ~Fn + πn+1 ~F π

n , (6.13)

where ( ~F π
n )i,k =

∫
Γn

h
φi,k · ν.
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Remark 6.1.7. The matrix ~Cn is symmetric and positive definite. So the precondi-

tioned conjugate gradient method (PCG) can be use to solve equation (6.12).

6.1.2.2 Matrix System for Willmore and Bending Flow

Lemma 6.1.2 (Geometric Willmore). Using the definitions at the beginning of Sec-

tion 6.1.2, equations (6.5), (6.6) and (6.7) are equivalent to the matrix system

~Mn
~Vn+1 + ~An

~Hn+1 + τn ~Ahn
~Vn+1 = 2 ~Aνn

~Hn − ~Ahn
~Xn,

~Mn
~Hn+1 − τn~An

~Vn+1 = ~An
~Xn.

(6.14)

Here ~Hn is computed according to the decision taken in Remark 6.1.4.

The next two remarks describe two different ways in which the previous system

can be solved.

Remark 6.1.8 (Full System). Multiplying the second equation of (6.14) by −1/τn

the system matrix can be written in a symmetric way as ~Mn + τn ~Ahn
~An

~An − 1
τn

~Mn

 . (6.15)

Since this matrix is not positive definite the CG method does not work. We can use

instead either of the iterative solvers MINRES or GMRES.

Remark 6.1.9 (Schur Complement). As the mass matrix is invertible we can solve

the second equation of (6.14) for ~Hn+1:

~Hn+1 = ~M−1
n
~An( ~Xn + τn ~Vn).

We next plug this into the first equation in (6.14) to get:

~Mn
~Vn+1 + ~An

~M−1
n
~An

~Xn + τn~An
~M−1

n
~Vn + τn ~Ahn

~Vn+1 = 2 ~Aνn
~Hn − ~Ahn

~Xn.
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Collecting terms, and using that according to Remark 6.1.4 ~Hn is computed explic-

itly by ~Hn = ~M−1
n
~An

~Xn, we get

(
~Mn + τn

(
~Ahn + ~An

~M−1
n
~An

))
~Vn+1 =

(
2 ~Aνn

~M−1
n
~An − ~Ahn

)
~Xn (6.16)

If we define

S := ~Mn + τn

(
~Ahn + ~An

~M−1
n
~An

)
and ~F :=

(
2 ~Aνn

~M−1
n
~An − ~Ahn

)
~Xn,

then we can rewrite equation (6.16) as

S~Vn+1 = ~F . (6.17)

The matrix S is symmetric and positive definite so PCG can be used to solve this

system.

Similarly, according to (6.9), the previous Lemma yields

Lemma 6.1.3 (Geometric Biomembrane). Using the definitions at the beginning of

Section 6.1.2, the matrix system for the biomembrane model is given by

~Mn
~Vn+1 + ~An

~Hn+1 + τn ~Ahn
~Vn+1 = 2 ~Aνn

~Hn − ~Ahn
~Xn + λn+1 ~F λ

n + πn+1 ~F π
n ,

~Mn
~Hn+1 − τn~An

~Vn+1 = ~An
~Xn,

(6.18)

where ( ~F π
n )i,k =

∫
Γn

h
φi,k · ν and ~F λ

n = ~Mn
~Hn.

6.2 Fluid-Membrane Schemes

The discussion for the discretization of geometric evolution equations (section 6.1

gives useful guidelines as to how to proceed in certain aspects of the discretization
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of the fluid-membrane problems. One example is what terms of the boundary force

to make explicit when solving the system. We expect the solution of this problem to

be more regular than the corresponding geometric model: in fact, before we equate

the velocity of the membrane to a force (or variational derivative of energy), whereas

now we equate the latter with the acceleration (which involves one more derivative).

6.2.1 Discrete Weak Formulation

The space time discretization of the Stokes system is standard in the finite element

community, see for instance the monographs [Tem84, GR86, Glo03] and the refer-

ences therein. Among all the stable finite element pairs, depending on the degree

used to parametrize the boundary we have chosen either

• the “mini” element if the boundary is piecewise linear. This element consists of

continuous piecewise linears enriched with cubic bubble functions for velocity

and continuous piecewise linears for pressure.

• The Taylor-Hood element of order 1 if the boundary is piecewise quadratic.

This element consists of continuous piecewise quadratics for velocity and con-

tinuous piecewise linears for pressure.

See Section 5.1.1 for more details on the definitions and properties of these elements.

Therefore, the trace of the velocity vh is in the same space as the finite element

describing the interface, i.e it is continuous piecewise linear or quadratic on the

boundary (see coupling equation (4.35)). A discussion of the importance of the

finite element choices for moving free boundaries is reported in Section 7.1. V(Ωn
h)
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denotes the finite element space for the velocity and Q(Ωn
h) the one for the pressure.

Also V(Γn
h) is the finite element space obtained as the trace of V(Ωn

h).

From the weak formulation (4.45) we obtain the following scheme: given an

initial domain approximation Ω0
h, a time partition t0 = 0 < · · · < tM+1 = T of

[0, T ], with time-step τn := tn+1 − tn, n = 0, . . . ,M , and an initial velocity v0, let

v0
h ∈ V(Ω0

h) be defined by

∫
Ω0

h

v0
h · φh =

∫
Ω0

h

v0 · φh, ∀φh ∈ V(Ω0
h).

Find for n ≥ 0, the velocity vn+1
h ∈ V(Ωn

h) and the pressure pn+1
h ∈ Q(Ωn

h) such that

∫
Ωn

h

vn+1
h · φh +

τ

Re

∫
Ωn

h

(
∇vn+1

h + (∇vn+1
h )T

)
: ∇φh − τ

∫
Ωn

h

pn+1
h ∇ · φh

=

∫
Ωn

h

vn
h · φh + τ

∫
Ωn

h

b(tn+1) · φh +
τ

αRe

∫
Γn

h

δEn+1
h · φh, ∀φh ∈ V(Ωn

h),

(6.19)

and ∫
Ωn

h

∇ · vn+1
h qh = 0 ∀qh ∈ Q(Ωn

h), (6.20)

are satisfied. And the new domain Ωn+1
h is obtained from Ωn

h and vn+1
h , by the

parametrization

xn+1
h = IdΩn

h
+ τnv

n+1
h , (6.21)

maintaining the connectivity of Ωn
h. This choice also updates the membrane with

the velocity of the fluid. The quantity
∫

Γn
h
δEn+1

h ·φh in (6.19) will be specified below

for the different problems. The number α can be either the capillary number Ca or

the bending number Be (see Section 4.3.3).
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Remark 6.2.1 (Time Discretization of Material Derivative). In equation (6.19) we

have use the approximation v̇ ≈ vn+1
h −vn

h

τn
. This is justify because of equation (6.21)

all mesh nodes are moved with the velocity field. And can be considered to be a

particle advected with the fluid.

6.2.1.1 Capillarity

From the discussion on the discrete mean curvature flow scheme in section 6.1.1.1,

we obtain (see equation (6.2))

∫
Γn

h

δEn+1
h · φh = −

∫
Γn

h

∇Γn
h
IdΓn

h
: ∇Γn

h
φh − τ

∫
Γn

h

∇Γn
h
vn+1

h : ∇Γn
h
φh. (6.22)

Plugging this in (6.19) and using α = Ca gives the discrete scheme for capillarity:∫
Ωn

h

vn+1
h · φh+

τ

Re

∫
Ωn

h

(
∇vn+1

h + (∇vn+1
h )T

)
: ∇φh − τ

∫
Ωn

h

pn+1
h ∇ · φh

=

∫
Ωn

h

vn
h · φh + τ

∫
Ωn

h

b(tn+1) · φh

+
τ

CaRe

(
−
∫

Γn
h

∇Γn
h
IdΓn

h
: ∇Γn

h
φh

−τ
∫

Γn
h

∇Γn
h
vn+1

h : ∇Γn
h
φh

)
∀φh ∈ V(Ωn

h),

(6.23)

and ∫
Ωn

h

∇ · vn+1
h qh = 0 ∀qh ∈ Q(Ωn

h). (6.24)

The previous scheme is basically the one reported by Bänsch [Bän01].
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6.2.1.2 Willmore

Here again from the discussion of the Willmore flow in section 6.1.1.2, equation (6.8)

gives ∫
Γn

h

δEn+1
h · φh =−

∫
Γn

h

∇Γn
h
hn+1

h : ∇Γn
h
φh

− τ

2

∫
Γn

h

|h̃n
h|2∇Γn

h
vn+1

h : ∇Γn
h
φh

+ 2

∫
Γn

h

[
(I− ν ⊗ ν)∇Γn

h
h̄n

h

]
: ∇Γn

h
φh

+
1

2

∫
Γn

h

|h̃n
h|2∇Γn

h
Idn

h : ∇Γn
h
φh ∀φh ∈ V(Γn

h).

(6.25)

Plugging this in (6.19) and using α = ρV L2 and adding (6.6) gives the discrete

scheme for the coupled Willmore problem:∫
Ωn

h

vn+1
h · φh+

τ

Re

∫
Ωn

h

(
∇vn+1

h + (∇vn+1
h )T

)
: ∇φh − τ

∫
Ωn

h

pn+1
h ∇ · φh

=

∫
Ωn

h

vn
h · φh + τ

∫
Ωn

h

b(tn+1) · φh

+
τ

αRe

(
−
∫

Γn
h

∇Γn
h
hn+1

h : ∇Γn
h
φh

−τ
2

∫
Γn

h

|h̃n
h|2∇Γn

h
vn+1

h : ∇Γn
h
φh

+2

∫
Γn

h

[
(I− ν ⊗ ν)∇Γn

h
h̄n

h

]
: ∇Γn

h
φh

+
1

2

∫
Γn

h

|h̃n
h|2∇Γn

h
Idn

h : ∇Γn
h
φh

)
∀φh ∈ V(Ωn

h),

(6.26)

and ∫
Ωn

h

∇ · vn+1
h qh = 0 ∀qh ∈ Q(Ωn

h), (6.27)
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6.2.1.3 Bending

This is the same as the scheme of section 6.2.1.2 upon adding the area constraint

and taking α = Be in (6.19).

Remark 6.2.2. (Volume Constraint) The volume conservation is ensured (up to con-

sistency) by the incompressibility condition (6.20). Therefore, the Lagrange multi-

plier π used in Section 6.1.1.3, is not needed anymore and can be “hidden” in the

pressure. This is the option chosen in practice.

6.2.2 Matrix Formulation

Here we follow the notation of Section 6.1.2, the main addition is that now we have

matrices both in the volume Ω and on the surface Γ. Recall that V(Ω) is the finite

element space for the velocity, isoparametric mesh and curvature; and Q(Ω) is the

space for the pressure. Also V(Γ) is the finite element space obtained as the trace

of V(Ω). Now we enlarge the matrix list defined in Section 6.1.2 with the volume

matrices.

• (MΩh
)ij =

∫
Ωh
φiφj, ( ~MΩh

)ij = (M)ijId+1,

• (AΩh
)ij =

∫
Ωh
∇φi · ∇φj, (~AΩh

)ij = (A)ijId+1,

• (BΩh
)m
ij =

∫
Ωh

∂φi

∂xm
ψj.
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6.2.2.1 Matrix System for Capillarity

Lemma 6.2.1 (Capillarity). Using the definitions at the beginning of Section 6.1.2

and 6.2.2, let

~CΩn
h

= ~MΩn
h

+
τn
Re

~AΩn
h

+
τ 2
n

CaRe
~AΓn

h

and ( ~Fn)i,k =
∫

Γn
h
φi,k · b(tn+1). Then equation (6.23) is equivalent to ~CΩn

h
−τnBΩn

h

BΩn
h

T 0


~Vn+1

Pn+1

 =

 ~MΩn
h

~Vn + τn ~Fn − τn

CaRe
~AΓn

h

~Xn

0

 . (6.28)

Here two different methods to solve system (6.28) can be used. The first

one is to solve the full system (6.28) either with a direct solver or a preconditioned

GMRES. The second one is the Uzawa Method as explained in the following remark.

Remark 6.2.3. (Uzawa Method) At each time step, a Conjugate-Gradient Uzawa

method is used to decouple the computation of the pressure pn+1
h from the velocity

vn+1
h . Refer to [Glo03] for more precision on the CG-Uzawa algorithm. As an inner

loop, given the pressure pn+1
h , equation (6.19) is solved using the same techniques

as presented in Subsection 6.1.2.1.

6.2.2.2 Matrix System for Fluid-Biomembranes

Lemma 6.2.2 (Fluid Willmore). Using the definitions at the beginning of Section

6.1.2 and 6.2.2, let

~CΩn
h

= ~MΩn
h

+
τn
Re

~AΩn
h

+
τ 2
n

2BeRe
~AhΓn

h
,

~Gn = − τn
BeRe

(
2 ~AνΓn

h

~Hn +
1

2
~AhΓn

h

~Xn

)
,
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and ( ~Fn)i,k =
∫

Γn
h
φi,k · b(tn+1). Then equation (6.26) is equivalent to

~CΩn
h

τn

2BeRe
~AΓn

h
−τnBΩn

h

τn

2BeRe
~AΓn

h
−BeRe ~MΓn

h
0

BΩn
h

T 0 0




~Vn+1

~Hn+1

Pn+1

 =


~MΩn

h

~Vn + τn ~Fn + ~Gn

~AΓn
h

~Xn

0

 (6.29)

Remark 6.2.4. (Uzawa Method) Similarly to Remark 6.2.3 at each time step, a

Conjugate-Gradient Uzawa method is used to decouple the computation of the pres-

sure pn+1
h from the velocity-curvature (vn+1

h ,hn+1
h ). Refer to [Glo03] for more preci-

sion on the CG-Uzawa algorithm. As an inner loop, given the pressure pn+1
h , equation

(6.19) is solved using the same techniques as presented in Subsection 6.1.2.2.
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Chapter 7

Implementation of a Parametric AFEM

In this chapter we address the computational issues related to the implementa-

tion of the parametric AFEM for geometric evolution equations and coupled fluid-

membrane problems. A set of computational tools including space and time adaptiv-

ity, mesh enhancement and discrete constraints implementation, is presented. These

tools are crucial to successfully use the parametric FEM. It is important to mention

the synergic nature of the tools. Even though individually each tool provides its

contribution, the effect is multiplied when they collaborate with each other. For

this to happen they need to be applied in the proper order.

In Section 7.1 we discuss the counterintuitive effect that a mismatch of the

finite element spaces may have on problems involving curvature. In a personal

communication with Kunibert Siebert it was mentioned the loss of half an order

for capillary problems. We have seen the loss of a whole order in the case of mean

curvature flow. We discover that this is associated to the violation of a geometric

condition that reappears in the setting of refinements and coarsenings.

In Section 7.2 we propose a suitable remedy. Also here we deal with the issue of

geometric adaptivity as means of describing the surface accurately with the minimal

number of degrees of freedom. First we propose a geometric estimator based on the

pointwise error. Then we define a geometric compatibility condition that is key for
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the adaptivity not to deteriorate the flow. Based on this condition we provide a

novel refinement procedure together with a theorem showing the benefits of it.

In Section 7.3 we present a novel method to compute the solutions of discrete

systems with isoperimetric constraints. Some of its features are: the preservation of

constraints to machine precision; same computational effort as the problem without

constraints; and a more predictable and less oscillating behavior than the penaliza-

tion method.

In Section 7.4 we deal with the issue of mesh improvement. When a parametric

FEM is used to discretize a geometric evolution equation it will create a discrete

flow of the mesh. Even if the initial mesh has a perfect quality, as it moves with the

flow it will get distorted: the larger the overall domain deformation the more the

mesh deteriorates. We present an optimization method novel in many aspects that

improves the mesh quality, preserves the shape of its boundary, maintains the local

meshsize, and produces negligible changes to the finite element functions defined on

the mesh. Different cases are analyzed depending on the type of domain and the

mesh degree.

In Section 7.5 we describe a novel hybrid affine-quadratic approach to the

surface/boundary isoparametric elements. The idea is to keep the quadratic element

not far from its affine support, but still allow it to have the characteristic rounded

shape coming from the quadratic bubble. Then the affine techniques for mesh

improvement and time-step adaptivity can be used on quadratic meshes.

In Section 7.6 a geometric timestep control is discussed. In general nonlinear

time dependent fourth order problems present a highly varying time scale along its
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evolution. The timestep control presented here serves two geometric purposes. The

first one is to ensure that it is not too big as to produce node crossing. Secondly,

it guarantees that if the velocity is too small the timestep is big enough so that it

does not take too many timesteps to produce a negligible evolution. The treatment

is different from the one in [BMN05] in the sense that we use the element quality in

the time selection method.

Finally in Section 7.7 we present the general full Algorithm where the order

in which the tools previously described should be applied to potentiate themselves

in a synergic way.

7.1 Effect of the Different Finite Element Spaces

Because of the nature of the parametric FEM approach (Section 5.7), the selection

of the finite element spaces involved may have counterintuitive behavior depending

on how the surface is approximated by the mesh. For instance, consider an affinely

triangulated approximation of a smooth surface. The dynamics of the surface co-

ordinate corresponding to a mean curvature flow (6.2) can be approximated with

any polynomial degree. Formally, by analogy with the flat case, one would expect a

better order of convergence when using higher polynomial degree for the flow. But

this does not occur and in fact it could get even worse. This situation is due to

a mismatch between the finite element spaces used for the flow and for the repre-

sentation of the surface. What is unexpected is not the lack of improvement but

rather the actual deterioration of the approximation when for example linear ele-
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ments are replace by quadratics. Some light can be shed as to what happens with

the following simple example. Suppose we approximate the unit circle with a mesh

formed by line segments (affine elements). Let us use formula (5.14) to compute the

curvature taking first the coordinates of the flow and the corresponding curvature

in S1,1
h (linear FEM) and then in S1,2

h (quadratic FEM). The results are shown in

Figure 7.1, the exact answer being radial arrows of length one pointing outwards.

When using the degree pair (1, 1) a good approximation is observed, whereas em-

ploying the pair (1, 2) yields arrows with alternating directions and different lengths.

An intuitive explanation can be grabbed from Figure 7.2. We see that when using

(a) Using piecewise linear elements. (b) Using piecewise quadratic elements.

Figure 7.1: Vector curvature of the unit circle computed on a uniform mesh of
degree one made of 16 segments using formula (5.14) with piecewise linear (left) and
piecewise quadratic elements (right). The exact answer is given by radial arrows of
unit length pointing outwards, indicated in the figure by the blue dashed circle. A
good approximation is observed in 7.1(a) whereas 7.1(b) shows alternating directions
with different arrow lengths. The arrows in the left figure have length 1, and both
figures are plotted with the same scale.

piecewise quadratic functions for the coordinates of the flow but piecewise affine

elements to represent the circle, we add degrees of freedom (the midpoint of the

segments), which do not lie on the circle. This reinforces a mismatch between the
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computational domain and the exact one. We have more degrees of freedom but

we do not exploit them correctly as is reflected in the discrete curvature formula

for example. The mismatch behavior observed in this one dimensional example also

(a) Piecewise linear representation of the cir-
cle with P1 finite elements.

� �� � ��

(b) Piecewise linear representation of the cir-
cle with P2 finite elements. The midpoints lie
outside the circle.

� �� � ��

(c) Smooth curve that the weak formula for
curvature assumes from the position of the
nodes in Figure 7.2(b).

Figure 7.2: Zoom on piece of circle of Figure 7.1. If we use piecewise quadratic ele-
ments for the spaces where the curvature and coordinates belong but linear elements
to represent the circle, we add degrees of freedom (the midpoint of the segments rep-
resented with a box). This degree of freedom is not on the circle, thereby providing
misleading geometric information to the curvature formula which assumes somehow
that the nodes describe another curve (shown in 7.2(c))in the best way they can. A
similar situation also occurs when using piecewise linear elements and refining them
(see Section 7.2).

happens for surfaces in three dimensions. Not surprisingly, the optimal order of

convergence for piecewise quadratics elements is recovered immediately if we use

quadratic isoparametric elements to represent the surface.

One may think at this point that it is extremely logical to use the same degree

for the coordinate function describing the flow as for the elements approximating

the surface. Even though this point is correct, what we point out is the unexpected
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effect that happens if we do not. Using quadratic elements for the flow coordinates

provides more degrees of freedom but does not change the polygonal shape of the

surface. Then one would not expect a better order of approximation but would not

expect a worse order either. Suppose that now we match the polynomial degree of

the mesh and the coordinate function and we perform some refinement. A similar

deterioration of the rate of convergence reappears again in this setting. In Section

7.2.2 we identify the source of conflict as the violation of some discrete geometric

condition, that happens to be exactly the same as the one violated by the previous

example, and we propose a suitable remedy.

7.2 Space Adaptivity

We would like to describe a surface accurately while keeping the number of degrees

of freedom minimal, and so computationally affordable. A simple strategy for this is

to equidistribute the pointwise error as proposed in [BMN05]. This is motivated by

error estimates of geometric problems like mean curvature flow [LN05] and Laplace-

Beltrami equation [DD07, Mek05, MMN]. In our case the surface is unknown, but

it becomes crucial to be able to modify locally its resolution. This is achieved by

means of refinements and coarsenings. The geometric estimator for this purpose

(Section 7.2.1) is an approximation to the upper bound of the pointwise error of

the domain approximation. Once it is known where to refine, say where the local

indicators are relatively large, a decision has to be made as to where to place the

newly created nodes (recall the surface is unknown). A new paradigm appears as for
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example naive linear interpolation introduces a numerical artifact (Section 7.2.2).

We also resolve the paradigm in Section 7.2.2.

7.2.1 Estimator

Recalling the interpolation result for surfaces of Lemma 5.3.2 when p = q = ∞ for

the surface element K, we get

|l− lγ|L∞(K̃) ≤ Chγ+1

K̃
|l|W k+1

∞ (K̃), (7.1)

where C depends on the shape regularity σ of the triangulation. For the case of a

polyhedral approximation (γ = 1) the right hand side of (7.1) can be approximated

by the second fundamental form ∇Γν, as stated in the following Lemma.

Lemma 7.2.1 (Second Derivatives Approximation). Given ε > 0 there is h and l

such that if hK̃ < h then

|l|W k+1
∞ (K̃) ≤ (1 + ε)|∇Γν|L∞(K).

Sketch of proof. The idea is that a smooth surface is locally like a graph then follow-

ing [GT83, Section 14.6] and taking l to be the one defined by the graph it follows

that the second derivatives of l are the second fundamental form.

The estimator we use is a computable approximation to η(K) = h2
K |∇Γν|∞,K .

For a shape regular polyhedral surface this quantity can be approximated by

η∗(K) =

∫
K

|∇Kν|, (7.2)

where |.| denotes any matrix norm. At this point it is crucial to make a remark

on how |∇Kν| is computed. Since the surface is approximated by affine elements
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(γ = 1) the normal is only piecewise constant, to get a meaningful estimator we use

a gradient recovery technique [HSWW01]. More precisely, let Ni be a triangulation

node and ωi = {K ∈ T : Ni ∈ K} be the star center at Ni. Now we construct

a piecewise linear normal by defining its nodal value at Ni by ΣK∈ωi
νK meas(K).

Then its gradient which will be piecewise constant can be computed and used in

(7.2). If the mesh is of degree γ ≥ 2 one could use the previous estimator and in

Figure 7.3: Geometric estimator for piecewise ellipsoid. The estimator (7.2) is used
to refine a 3x3x1 ellipsoid. The nodes are projected after the refinement. Observe
how the areas of high curvature are the ones refined more and also how the color
becomes uniform showing the equidistribution of the estimator.

fact averaging is not necessary as one could use equation (5.15) which is convergent

in view of Theorem 5.4.1. But the main drawback is that in the light of (7.1) this

estimator is not sharp. For example for quadratic elements, the power of hK as well

as the number of derivative should be 3. In this case an alternative is to use

hS‖ν+ − ν−‖L∞(S)

where S is any side and ν+, ν− are the unit normals of the adjacent elements K+

and K− to S. The heuristics behind is as follows:

hγ+1
K ‖Dγ+1z‖L∞
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is the correct quantity on the right-hand side of (7.1), where γ is the polynomial

degree and z represents the surface as a graph, provided z ∈ Cγ+1. Now

‖ν+ − ν−
hK

‖L∞(∂K) ≈ ‖D2(z − Iz)‖L∞(K)

and the right-hand side exhibits the correct order of convergence regardless of the

regularity of z (because it is an interpolation error). If z ∈ Cγ+1, then ‖D2(z −

Iz)‖L∞(K) ≤ Chγ−1
K . Therefore, the replacement for the right hand side of (7.1)

reads

h2
K‖D2(z − Iz)‖L∞(K) ≈ hK‖ν+ − ν−‖L∞(∂K).

The refinement algorithm consists of the bisection of simplices. In two di-

mensions we use the newest vertex bisection and in three dimensions the bisection

procedure of Kossaczky [Kos94]. For the mesh refinement strategy we use the max-

imum strategy [SS05], described in Algorithm 7.2.1.

7.2.2 Geometrically Consistent Refinement

As it was mentioned in the introduction and commented at the end of Section

7.1, providing a new degree of freedom to represent a surface that happens not to

lie exactly on the surface may lead to a mismatch that manifests as a numerical

artifact. This is also the case when we want to refine an element on a surface and

we need to specify the position of the new nodes. A numerical artifact appears for

example if we use affine elements to approximate a surface and place the new nodes

by linear interpolation. The problem seemingly does not appear if we use quadratic

isoparametric elements and quadratic interpolation to place the new node. But this
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Algorithm 7.2.1 Mesh Adaptation. Maximum Strategy

1: procedure Adapt Mesh(T )

2: Let γ, γc ∈ (0, 1) with γ > γc

3: Compute η(K) for each η(K) ∈ T

4: η = max(η(K), η(K) ∈ T

5: for η(K) ∈ T do

6: if η(K) > γη then

7: Mark K for refinement

8: end if

9: end for

10: Refine

11: for η(K) ∈ T do

12: if η(K) < γcη then

13: Mark K for coarsening

14: end if

15: end for

16: Coarsen

17: end procedure

is not the case as a careful look reveals the loose of an order in the convergence rate.

In this section we identify the new nodes mismatch with the violation of a geometric

relation. Building on this relation we present a refinement algorithm for piecewise

polynomial surfaces of any degree which approximate a smooth free surface and

neither creates numerical artifacts nor reduces the optimal order of convergence.
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The key idea is the use of extra geometric information that is available to define the

refinement. More precisely, we use the approximation to vector mean curvature h.

From formula (3.14), the mean curvature h of a surface Γ is related to the position

IdΓ by the equation

h = −∆ΓIdΓ.

In the discretizations presented in chapter 6, this equation is satisfied approximately

by requiring that

hn+1
h = −∆Γn

h
xn+1

h (7.3)

is satisfied in a weak form. Upon refinement of Γn
h, both xn+1

h and hn+1
h are enlarge

with new degrees of freedom. If an upper bar denotes refinement by linear interpo-

lation then the equation hn+1
h = −∆Γn

h
xn+1

h may be violated. We refer to equation

(7.3) as the geometric consistent condition.

By examining the mean curvature flow scheme (6.2), one may be tempted

to think that, as hh does not enter the scheme, just doing linear interpolation for

xh should work fine. However, in that case, the approximation to the velocity

deteriorates. This deterioration may eventually be compensated with the pass of

time due to the smoothing effect of the mean curvature flow. The point is that we

introduce a non negligible numerical artifact upon doing a geometrically inconsistent

refinement that would not have appeared otherwise. As a numerical example, Figure

7.4 shows the effect of linear refinement for the motion of the unit circle by mean

curvature. From here one could infer how disastrous this effect could be for more

complicated flows such as the Willmore flow, which use point values of curvature in
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the scheme (equation (6.8)). Below we propose a novel refinement procedure, and

Figure 7.4: Mean Curvature Flow for the unit circle with a fixed time step of 1.0e-
4. An almost uniform polygonal approximation to the unit circle with 64 nodes
is subject to the discrete flow of equation (6.2) and after 5 iterations is globally
refined, thereby giving 128 nodes. The picture shows the L2 norm of the velocity
with and without refinement: the dramatic spike due to refinement is damped by
the regularizing effects of the flow.

we prove that with this method hh = −∆Γh
xh, and the approximations to x and

h are as good as before introducing the new degrees of freedom. It is important

to realize that on adding degrees of freedom there is no hope to expect xh to be a

better approximation than xh. Only after a solve we expect the former to be better.

7.2.2.1 The Method

Let Γn
h be a piecewise polynomial approximation to Γtn . Let hn+1

h and xn+1
h in

Sγ
h(Γn

h) be approximations to mean curvature and position respectively. Also assume
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the following geometric consistent condition hn+1
h = −∆(Γγ

h)
nxn+1

h is satisfied. To

simplify the notations in this Section we use (Γγ
h)n = Γn

h as γ is fixed. Observe that in

general xn+1
h is not Γn

h but rather Γn+1
h . We also assume that some criteria is available

to decide where more or less resolution would be beneficial for the flow, which in

our case means having a marking decision on where to perform refinements and

coarsenings (cf. Section 7.2). The issue treated here is how to perform refinement if

our only knowledge of the domain is the current approximate surface Γn
h that we are

about to refine. Algorithm 7.2.2 gives a method to add more resolution to Γn
h that

satisfies the geometric consistent condition after the refinement and that does not

change the approximation error that we had before the refinement for both position

and curvature. Finally we define rigorously what we mean by a marking decision:

If M = {(K, j) : K ∈ T , j ∈ N0} denotes the marked set, then element K is to

be bisected at least j times. For example if the pair (K, 2) ∈ M then the element

K ∈ T will be refined twice. M is obtained by using some estimator and a marking

strategy. In line 2 of Algorithm 7.2.2, Γn
h is obtained by refining Γn

h by isoparametric

Algorithm 7.2.2 Surface Refinement Algorithm

1: procedure
(

Γn
h,x

n+1
h ,hn+1

h

)
= Surf Ref(Γn

h,h
n+1
h ,xn+1

h ,M)

2: Γn
h = isoparametric refinement(Γn

h)

3: hn+1
h = Interpolation(hn+1

h )

4: Compute xn+1
h the solution to hn+1

h = −∆Γn
h
xn+1

h

5: end procedure

interpolation as explain in the next remark.
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Remark 7.2.1 (Isoparametric interpolation and refinement). An isoparametric ele-

ment is by definition given by the deformation of the master element K̂ through the

mapping F (x̂) = Σxip̂i(x̂). Where p̂i are the Lagrange basis function on K̂ and

{xi} the Lagrange node in K. Isoparametric interpolation means given a function

f : K → R the interpolant is given by If = Σf(xi)p̂i ◦ F−1. Refinement is done by

bisection. First the bisection edge is bisected in the master element K̂ this creates

the corresponding new Lagrange nodes x̂∗j , and by isoparametric interpolation we

obtain the new nodes that bisect K, i.e., x∗j = IF (x̂∗j).

This in particular implies that Γn
h = Γn

h, i.e. they are the same surface. But

card(T ) > card(T ). Before the refinement (Γn
h, T ) is a piecewise polygonal approx-

imation to Γ(tn) meaning that there is lift l. By construction given K̄ ∈ T there

exists a unique K ∈ T such that K̄ ⊂ K. Then we can define the lift l̄ by l̄|K̄ = l|K

for K̄ ∈ T . And given a parametrization (K̂, FK : K̂ → K)) of Γn
h we can define the

associated parameterization ( ˆ̄K, F̄K̄) of Γn
h by ˆ̄K = (FK)−1(K̄) and F̄K̄ = (FK)| ˆ̄K .

Now we are in a position to prove that the Algorithm 7.2.2 does what it promises.

Theorem 7.2.2 (Geometrically Consistent Refinement). With the definitions and

hypothesis assumed in Algorithm 7.2.2 the following is satisfied

1. ‖h− hn+1
h ‖L2(Γn

h) = ‖h− hn+1
h ‖L2(Γn

h);

2. |IdΓ(tn+1) − xn+1
h |H1(Γn

h) ≤ A; and

3. hn+1
h = −∆Γn

h
xn+1

h .

where A is the optimal upper bound from Theorem 5.5.2 for |IdΓ(tn+1)−xn+1
h |H1(Γn

h).
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Proof. Lines 2 and 3 in Algorithm 7.2.2 imply that hn+1
h and hn+1

h are the same

functions defined on the same domain, then statement 1 is satisfied. By line 4 in

Algorithm 7.2.2 statement 3 is true. To prove statement 2 observe that IdΓ(tn) is

the solution of the Laplace Beltrami equation with h as the right hand side. Both

xn+1
h and xn+1

h are approximations to IdΓ(tn). Then invoking Theorem 5.5.2 and

observing that ‖A‖L∞(Γn
h) = ‖Ā‖L∞(Γn

h) and Sh(Γn
h) ⊂ Sh(Γn

h)).

Remark 7.2.2 (Implementation Trick). In practice Algorithm 7.2.2 works very fast

and reliably as far as our simulations have shown. It is also possible to fix the old

nodes (as a Dirichlet condition in line 4) and only solve for the position of the newly

created nodes. In our simulation two or three iterations of the conjugate gradient

method were enough to solve line 4, making the refinement method quite efficient

computationally.

Remark 7.2.3 (Effect of Coarsening). So far we have been mostly talking about

refinement. To a smaller extend the problem also appears when doing coarsening.

7.3 Constraints

In Section 4.1 we described how to impose constraints via Lagrange multipliers.

Now we present a method to implement these isoperimetric type of constraints at

the discrete level, that preserves them to machine precision. First we describe the

method as it applies to a flow with volume and area constraints (for example see

Problem 4.2.7 and the discrete scheme of Section 6.1.1.3). Then we generalize it

for the discrete version of the general system (4.4). Consider the continuous system
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(4.3). In chapter 6 we considered discrete schemes for different energies E. The first

step is to take the terms involving the multipliers explicitly in the discretization. At

the matrix level the discrete system can be written as

En(V n+1
h , . . . ) = Fw + λn+1Fa + πn+1Fv. (7.4)

The idea then is to solve the above system by solving a similar system for three

different right hand sides and find the multipliers using the area and volume con-

servation relations

Area(Γn+1
h ) = Area(Γn

h) and Vol(Γn+1
h ) = Vol(Γn

h). (7.5)

More precisely, let Vw
n+1
h , Vah

n+1 and Vvh
n+1 be the solutions of

En(Vwh
n+1) = Fw,

En(Vah
n+1) = Fa,

En(Vvh
n+1) = Fv,

respectively. Using the linearity of system (7.4) we have

V n+1
h = Vwh

n+1 + λn+1Vah
n+1 + πn+1Vvh

n+1

where λn+1 and πn+1 are determined so that (7.5) are satisfied. To this end, observe

that given Vw
n+1
h , Va

n+1
h and Vv

n+1
h , the couple (λn+1, πn+1) is a root of f : R2 → R

defined by

f(λ, π) :=

Area(Γh(λ, π))− Area(Γn
h)

Vol(Γh(λ, π))− Vol(Γn
h)

 , (7.6)

where

Γh(λ, π) := Γn
h + τ

(
V n+1

wh + λV n+1
ah + πV n+1

vh

)
.

110



A Newton method can now be used to find the roots λn+1 and πn+1 of f . The

derivatives of f can be obtained from the rules of shape differential calculus.

Lemma 7.3.1 (Derivatives of f). The derivatives of the function f of equation (7.6)

is given by

Df =


∫

Γn
h
∇Γh

· Vah

∫
Γn

h
∇Γh

· Vvh)∫
Γn

h
ν · Vah

∫
Γn

h
ν · Vvh)

 (7.7)

Proof. Using the velocity method of the shape differential calculus of Section 3.2

with t replaced by λ or π and Theorem 4.1.1 the result follows.

Remark 7.3.1 (Initial Guess). A good computable initial guess for the Newton

method can be obtained from the formulas

Area(λ, π) =
1

d

∫
Γ

∇Γ · Id,

Vol(λ, π) =
1

d+ 1

∫
Ω

∇ · Id =
1

d+ 1

∫
Γ

Id · ν.

If we use the approximations Γ(λ, π) ≈ Γn and IdΓ ≈ IdΓn + τV n+1
h , then

Area(λ, π) ≈ τ

d
(

∫
Γn

∇Γn
h
· Vw + λ

∫
Γn

∇Γn
h
· Va + π

∫
Γn

∇Γn
h
· Vv) + Area(Γ) (7.8)

Vol(Γ(λ, p)) ≈ τ

d+ 1
(

∫
Γn

n · Vw + λ

∫
Γn

ν · Va + π

∫
Γn

ν · Vv) + Vol(Γ) (7.9)

Let αi =
∫

Γ
∇Γ · Vi and βi =

∫
Γ
ν · Vi with i ∈ {w, a, v} , then we can solve the

following system for λ and pαa αv

βa βv


λ
π

 =

−αw

−βw

 , (7.10)

to get an initial guess.
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In Figures 7.5, 7.6 and 7.7 we show the features of the method for a 3x3x1

ellipsoid evolved with a Willmore flow with surface area and enclosed volume con-

straints. Similarly, for the general case (4.4) of N isoperimetric constraints of the

Figure 7.5: This sequence shows the evolution of an initial ellipsoid of aspect ratio
3x3x1 under the bending flow of Problem 4.2.7 subject to surface area and enclose
volume constraints. Figures 7.6 and 7.7 show how the constraints are preserved
exactly together with the behavior of the multipliers.

Figure 7.6: Graph for the volume and volume multiplier corresponding to simulation
depicted in Figure 7.5. Observe how the constraint is preserve to machine precision
and that at equilibrium there is no oscillation of the multiplier. A penalization
methods usually exhibits and oscillatory behavior when reaching equilibrium.
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Figure 7.7: Graph for the area and area multiplier corresponding to simulation
depicted in Figure 7.5. Observe how the constraint is preserve to machine precision
and that at equilibrium there is no oscillation of the multiplier. A penalization
methods usually exhibits and oscillatory behavior when reaching equilibrium.

form Fi(Γ) =
∫

Γ
fi, the previous discussion leads to a matrix level discrete system

that can be written as

En(V n+1
h , . . . ) = F0 +

N∑
i=1

λn+1
i Fi, (7.11)

together with N scalar constraints

Fi(Γt) = Fi(Γ0) i = 1, . . . , N. (7.12)

The method consists in solving N + 1 matrix systems

En(Vih
n+1) = Fi,
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and find λ ∈ RN a root of f : RN → R give by

f(λ) =


F1(Γh(λ)− F1(Γ0)

...

FN(Γh(λ)− FN(Γ0)

 . (7.13)

Remark 7.3.2 (Implementation Issues). If a direct solver is used to solve the system,

then it is only necessary to do the factorization once and use it to solve all the

systems. This implies that the computational cost of using this method to impose

the constraints is basically the same as not having the constraints. On the other

hand if an iterative solver is used then the system has to be solved N number of

times, but each system is independent from the others so a parallel implementation

is very straightforward.

Remark 7.3.3 (Comparison with Penalization Method). The previous method ex-

hibits a couple of advantages over penalization: penalization is sensitive to the pe-

nalization parameter and the solution oscillates when reaching equilibrium. These

drawbacks do not happen with the previous method.

7.4 Mesh Improvement

In the finite element community mesh generation is assumed as a given. The main

effort goes to design a method to compute discrete approximations to solutions of

PDEs and study their convergence when the meshsize goes to zero.

Mesh generation is a community by itself. They tend to think in the following

way: given a mesh, is it of sufficient quality to be passed to the consumer? The
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consumer can be a finite element code, a video game designer or the movie industry.

This way of thinking differs from the PDE rooted thinking of the finite element

community [FG00].

If a parametric FEM is used to discretize a geometric evolution equation it will

create a discrete flow of the mesh. Even if the initial mesh has a perfect quality, as it

moves with the flow it will get distorted: the larger the overall domain deformation

the larger mesh deterioration. Thus, it is crucial to include something in the method

to preserve a good quality mesh along the deformation. Observe that for us mesh

quality control is part of the design of a robust finite element method.

We start the section with a discussion of mesh improvement methods in par-

ticular optimization and smoothing. Then we survey the concepts of mesh quality

and objective functions. In Section 7.4.3 we present the geometric optimization

algorithm that we specialize to the different scenarios of application.

7.4.1 Optimization and Smoothing Techniques

Techniques for mesh improvement such as smoothing, optimization and edge swap-

ping can be classified as either maintaining the connectivity or acting on the con-

nectivity of the mesh. To allow refinements and coarsenings (Section 7.2) the mesh

is implemented using a binary tree structure. This inhibits the application of the

second type of improvements.

The classical example of a global smoothing method is Laplacian smoothing

(see [FG00] Section 18.4.1). For moving domains, the theory of elasticity can be
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used to smooth the mesh after moving the boundary. One example is the harmonic

extension method [Gas01, Bän01, Kos06]. These methods are ad hoc and do not

necessarily improve the mesh quality. Their advantage relies on being easy to im-

plement and computationally cheap. But interpolation of finite element functions

is extremely costly as it involves a global mesh search for each node.

Optimization techniques use classical optimization strategies. The idea is to

define a smooth cost function over the set of all vertices [LAF97], and find a min-

imizer. This problem is almost impossible to solve globally so in practice it is

approximated by defining local subproblems on stars. Then iterations of the Gauss-

Seidel type are performed, each optimizing one local subproblem. This means that

the iterations are performed in a sequential order and the previous iterations affect

the latter. In particular the output will depend on the ordering of the iterations.

We propose a mesh optimization which consists in a reallocation of the nodes

(tangential in the case of surfaces) such that:

• improves the mesh quality,

• preserves the shape of its boundary,

• maintains the local mesh size, and

• produces negligible changes to the finite element functions defined on the mesh.

The last point is desirable to minimize the effect that the reallocation transfers to

the flow. It is attained by interpolating the finite element functions on the old mesh

for the new mesh position. One reason why a local optimization method is preferred
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to global smoothing is because as each iteration is performed locally on a star, a

finite element function can be cheaply updated by interpolation over the old star.

The smoothing algorithm will differ depending on:

• the degree of the mesh,

• whether it is a bulk or a surface mesh,

• whether it is an interior or a boundary node,

• whether the domain is known or not.

7.4.2 Quality Metrics and Objective Functions

There is a big number of element quality metrics in the literature. Simply put one

expects the quality of a triangle to be one if equilateral, zero if degenerate and

negative if inverted.

In 2001, Knupp [Knu01] worked on a theory to define quality metrics. It is

based on the Jacobian matrix of a map from an ideal reference element. Building

on an algebraic framework that uses the matrix norm, trace and determinant he

classifies what quantities are meaningful and what are redundant in the definition

of a quality metric.

Let K̄ be the perfect quality element and let F : K̄ → K, be the unique affine

mapping F = Sx̄ + s that sends vertices of K̄ to vertices of K. Then S is the

Jacobian matrix of F and let σ := det(S). Under the previous framework it can be
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shown that

q2(K) =
2σ

tr(STS)
and q3(K) =

3σ(2/3)

tr(STS)
(7.14)

define good quality metrics in two and three dimensions respectively (see [Knu01]).

Quality metrics (7.14) and slight modification of them have been the choice in our

computations. It is important to remark that the theory explained here works for

any reasonable quality metric.

Consider the mesh (N , T ). Let Ni ∈ N be a node of coordinates x and

ωi = {K ∈ T : Ni ∈ K} be the star center at Ni. An optimization function can

be derived from an element quality metrics as the p-norm of η(K) := 1
q(K)

, the

reciprocal of the element quality. More precisely, given p ≥ 1

Υi(x) :=

(∑
K∈ωi

η(K)p

)1/p

, (7.15)

defines a star objective function to be minimized. Figure 7.8 shows the level set of

the function Υ for a two dimensional star of formed by three triangles. As can be

seen from the picture if the singular barrier at the exterior edges is crossed or if the

mesh is tangled the optimization will not converge. In this case a variant of η to

deal with tangling can be found in [ERM+03].

For surfaces we develop a similar quantity ηS that we proceed to describe.

Recall from (7.14) that

q2(K) =
2σ

tr(STS)
,

observe that σ2 = det(STS) so up to a sign σ =
√

det(STS). In the case of a surface

element K, the function F becomes F : K̄ ⊂ R2 → K ⊂ R3 and S cannot have

a determinant, but STS is a 2 by 2 invertible matrix. Then we can make sense of
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Figure 7.8: Contour plot of objective function Υ for a two dimensional star of
formed by three triangles with p = 2. The argument of the function is the position
of the star center. From the picture is can be infer that a center at approximately
(0.25,−0.2) minimizes Υ. Also observe that when the center approaches the star
boundary the function goes to infinity (refer to as the singular boundary barrier).
If the optimization tool crosses the edge then it will not converge.

(7.14) in the following way,

qS(K) =
2
√

det(STS)

tr(STS)
. (7.16)

and the corresponding

ηS(K) =
tr(STS)

2
√

det(STS)
. (7.17)

For optimization routines it is important to be able to evaluate the derivatives of η.

Lemma 7.4.1 (Derivatives of η). Let α ∈ {x1, . . . , xd+1} and η the function defined

in (7.14). Then for d = 1

∂αη = 2η

[
∂αS : S

S : S
− ∂ασ

3σ

]
, (7.18)
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and for d = 2

∂αη = 2η

[
2∂αS : S

S : S
− ∂ασ

σ

]
. (7.19)

Proof. The proof is done for d = 2 as the case d = 1 is similar. Using the quotient

and chain rules in (7.19) we get

∂αη =
1

3

[
2 ∂αS : S σ2/3 − S : S 2

3
∂ασ

σ4/3

]

=
2 S : S

3σ2/3

[
2∂αS : S

S : S
− ∂ασ

σ

]
And the result follows.

Remark 7.4.1 (Derivative of σ). Recall that σ = det(S), using the chain rule and

the derivative of the determinant from Lemma 3.3.1 we get

∂ασ = det(S) tr((∂αS)S−1).

7.4.3 Geometric Optimization Algorithm

The general process for mesh improvement using local geometric optimization is

described in Algorithm 7.4.1 . Given the star ωi the optimization process (line 4)

will find new coordinates for its center such that Υi is minimize and thus the star

quality is improved. Some remarks about the algorithm are pertinent. They will be

explained in details later in this section.

Remark 7.4.2 (Quadratic Meshes). Algorithm 7.4.1 is stated for affine elements.

Still we will make use of it when working with quadratics. This is possible because

we propose the use of a hierarchical approach to quadratics based on Theorem 5.6.1.

This means that to optimize a quadratic star, first we optimize the affine base using
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Algorithm 7.4.1 General mesh optimization algorithm.

1: procedure Improve Mesh(Mesh)

2: Build list of affine stars L = {ωi}

3: for ωi ∈ L do

4: Minimize Υi

5: Interpolate FE functions at the new center.

6: end for

7: end procedure

Algorithm 7.4.1 and then we use a proper handling of the quadratic part. The

details which are not trivial are the subject of Section 7.5.

Remark 7.4.3 (Interpolation). Even though for a pedagogical better understanding

line 5 says “new center”, interpolation has to be performed at all interior nodes.

If the function to be interpolated is piecewise linear then there is only one interior

point (the center), but if it is piecewise quadratic the interior nodes also include the

interior edges midpoints.

Before describing the details involve in the implementation Algorithm 7.4.1

Figure 7.9 shows mesh smoothing in action. The full simulation is presented in

Section 8.5.1. In the following Subsubsection we discuss lines 4 and 5 of Algorithm

7.4.1 in details. The treatment of these lines is different depending on the dimension

or codimension of the mesh.
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Figure 7.9: This is a zoom on the mesh for the simulation presented in full in Section
8.5.1. In this simulation the domain suffers quite a dramatic motion. Not only it
evolves with a constrained bending surface force but it is also subject to an external
sheering force that cause it to rotate faster and faster in time. Even though all the
nodes are moving with the flow the mesh preserves its quality due to the smoothing
described in Algorithm 7.4.1 being applied in each time iteration. Zoom on meshes
for iterations 0, 20, 50 and 135 are shown.

7.4.3.1 Interior Volume Star

This is the case of a (d+1)-dimensional affine mesh in Rd+1 with the center of a star

being an interior node. For the minimization of line 4 the objective function (7.15)

is used. Below we describe line 5, i.e, how we perform the finite element function

interpolation after a new center x∗ has been found. It is helpful at this point to read

the explanation in Figure 7.10 before and while reading Algorithm 7.4.2. In line
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Algorithm 7.4.2 Interpolation on a Star

1: procedure Interpolate function(f , ω, x∗)

2: Let D = {N̄j : N̄j is a dof of Xf interior to ω}

3: for N̄j ∈ D do

4: Let x∗j new coordinate of N̄j.

5: Find Kj ∈ ω such that x∗j ∈ Kj

6: λj = λ(x∗j):

7: f(x∗j) = interpolate(f,λj, Kj)

8: end for

9: end procedure

4 of Algorithm 7.4.1, for a given star ωi a new coordinate x∗i for its center node Ni

has being found. We assume there is a list of finite element functions define on the

mesh ({Ni}, T ) that have to be updated to reflect the change in the mesh. In line

2 of Algorithm 7.4.2, given a function f in the finite element space Xf we collect in

the set D the degrees of freedom of Xf that are interior points of the star ωi. For

each N̄j ∈ D the new coordinate x∗ of the center will induce new coordinates for

N̄j that we call x∗j (line 4). In lines 5 and 6 we search to which element K ∈ ω

the point x∗j belong to and what is its barycentric coordinate λj = λ(x∗j) in this

element. Finally, in line 7 , knowing the barycentric coordinates of x∗j the actual

interpolation is computed.

Remark 7.4.4 (Order of improvement iterations). Algorithm 7.4.1 is not invariant

under the order in which the stars are optimized.In general this is random, but it

seems possible that defining a smart ordering would lead to faster improvement.
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(a) Original and improved star.

5

11

3.5

(b) Interpolation of FE function at new point

(c) New quadratic interior nodes. (d) Search elements for each red node

Figure 7.10: Optimization quality improvement and finite element interpolation on
a 2D affine star. The old star where mesh optimization has been performed is in
black. The new center and corresponding new star are depicted in red. Figure
7.10(b) illustrates the process of interpolation for a piecewise linear function. First
the element holding the new center and its barycentric coordinates with respect to
this element have to be found among all the elements of the original star. Then
interpolation is performed on the element. Figures 7.10(c) and 7.10(d) illustrate the
case of piecewise quadratic interpolation. In this case the search and interpolation
process described before has to be repeated for each new interior node.

Remark 7.4.5 (Number of Interior dofs). Suppose Xf is the Lagrange finite element

space of degree 2, and d+1 = 2. If ω is a star with n elements, then card(D) = n+1.

To illustrate Algorithms 7.4.1 and 7.4.2 for a particular example consider the
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initial unit circle of Figure 7.11. We applied a sequence of geometric mesh opti-

Figure 7.11: Initial affine mesh of unit circle. The color represents a linear scalar
function defined on it. A sequence of geometric mesh optimization is going to be
applied.

mization as described in Algorithms 7.4.1 and 7.4.2. Figure 7.12 shows the meshes

at some of this iterations. The maximum, mean and minimum element quality as a

function of the number of iteration is depicted in Figure 7.13. It can be seen from

the picture how the minimum and mean quality is improved and the maximum is

not changed much. In this example, the final mean quality is close to 0.95, which

is an equilateral triangle for the eye. Also the minimum is of very high quality.

The other matter is the interpolation of functions defined on the mesh after the

optimization has changed it. For illustration this linear function is defined on the

initial circle mesh. Algorithm 7.4.1 is applied with and without the interpolation

step. Without the interpolation step the nodal values of the function are transported

with the flow. As the function is linear interpolation preserves it exactly through

the smoothing. Figure 7.14 shows a comparison of the function values along the line
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Figure 7.12: Subsequent meshes for iterations 3, 10 and 20, when the smoothing
method of Algorithm 7.4.1 has being applied to the unit circle of Figure 7.11.

Figure 7.13: Plot of the mesh quality (minimum, mean and maximum element
quality) as a function of the number of iterations for the smoothing described in
figure 7.12. It can be seen from the picture how the minimum and mean quality
is improved and the maximum is not changed much. In this example, the final
mean quality is close to 0.95, which is an equilateral triangle for the eye. Also the
minimum is of very high quality.

y = 0.8 with and without the interpolation step.
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Figure 7.14: A linear function is defined on the initial circle mesh of Figure 7.11.
Optimization Algorithm 7.4.1 is applied with and without the interpolation step.
Without the interpolation step the nodal values of the function are transported
with the flow. As the function is linear interpolation preserves it exactly through
the smoothing. The graphs show the function values with and without interpolation
step over the probe line y = 0.8 for iterations 3,10 and 20. The value should remain
constant and it does when the interpolation step is applied, otherwise observe that
when it is not applied the function looses it linearity.

7.4.3.2 Boundary Volume Star

This is the case of a (d+ 1)-affine mesh in Rd+1 with the center of the star being a

boundary node. For the minimization of line 4 the objective function (7.15) is used

subject to the constraint that the minimizer is on the boundary. This constraint

brings some additional complications. The first one is related to the knowledge of

the boundary. For mesh generation (Section 9) the boundary is known and the extra

constraint equation is available to be added to the optimization code. In the case

of a free boundary problem (as the ones of chapter 6) we only know the boundary

by its approximation, that by the way, it is the one that we are trying to enhance.

So a decision has to be made as to what the boundary is. In this case two options

are possible: either use some smooth reconstruction of the boundary (e.g. splines)

and pass it to the optimization code as a constraint, or replace the boundary part of

the star by an approximating flat d-dimensional star and do the smoothing here as
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explained in Section 7.4.3.3. The second complication is the interpolation of finite

element functions. As the new node may be located where there was no mesh before

Algorithm 7.4.2 may fail. Again in this case our approach is to use the surface flat

star and a lift as described in Section 7.4.3.3.

7.4.3.3 Surface Star

This is the case of a d-dimensional affine mesh in Rd+1. The center of the star has

to be reallocated to a new position that minimizes an objective function subject to

the constraint of remaining in a position that preserves the shape of the discrete

boundary. The objective function to optimize in this case is the one obtained in

equation (7.17). Two different scenarios are possible, either the boundary is known

(as it is the case of mesh generation), or all we know about the boundary is the cur-

rent mesh (as it is the case for free boundary problems). In the first case the smooth

function defining the surface is passed to the optimization code as a constraint. A

particular case of this scenario when the surface is described as a deformation of

simple domains is studied in Section 9.

We proceed to explain a smoothing method used when the domain is unknown.

The key idea is to work on a projection plane Π so to reduce the problem to the

previous discussion. Consider a surface affine star ωi, we want to find a plane Π

and an injection P : ωi → Π as close as possible to the identity function (see Figure

7.15). The idea is that we want the quality of the projected star ω̃i = P (ωi) to be

as close as possible to the quality of ωi. At this point optimization is performed on
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ω̃i using Algorithm 7.4.1. In this case line 4 generates the new center x̃∗. All that

remains to do is to map the new ω̃∗i to ω̃i using the lift l = P−1.

For the interpolation step, line 5 of Algorithm 7.4.1, Algorithm 7.4.2 can be

used without change provided that P is linear (e.g. the orthogonal projection to

Π). The reason is that P being linear implies that the barycentric coordinates are

invariant. More precisely, let K ∈ ωi, K̃ = P (K), x ∈ K and x̃ = P (x), then

λK(x) = λK̃(x̃). As a particular case of interpolation, if we pass the coordinates as

one of the functions f to be interpolated, we obtain the new surface star ω∗i . The

previous discussion is summarized in Algorithm 7.4.3.

Algorithm 7.4.3 Optimization of a Surface Star

1: procedure Surf Star Optim(ωi)

2: Find Π and P : ωi → Π

3: Let ω̃i = P (ωi)

4: Minimize Υ̃i

5: Use Alg. 7.4.2 on (ω̃i, x̃
∗, f)

6: end procedure

Remark 7.4.6 (Computation of Π). One computationally convenient way to find the

plane Π is by defining it to be the unique plane perpendicular to the star normal

through the star center of mass. The normal has to be understood in the average

sense discussed in Section 7.2.1.

Suppose that with the affine surface star ω we pass a quadratic vector function

to be interpolated to Algorithm 7.4.3. Assume now that this quadratic function is

the one defining a quadratic isoparametric element. Figure 7.16 shows what happens
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P

Π

ω

ω̃

x̃

x̃∗

x∗

Figure 7.15: Smoothing process for an affine surface star. The picture on the left
shows a 1D curve start in R2. The star ω (which has 2 elements) is shown together
with a projection plane Π and the projection map P that define the projected star
ω̃. A quality optimization routine is applied on ω̃ producing a new center x̃∗ (picture
on the right). The new star ω̃∗ is then lifted by l = P−1 to yield the new surface
star ω∗.

to the quadratic star if Algorithm 7.4.3 is applied to the corresponding affine star

and the quadratic coordinates are passed for interpolation.
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Figure 7.16: This Figure shows what happens to the quadratic star if Algorithm
7.4.3 is applied to the corresponding affine star and the quadratic coordinates are
passed for interpolation. The first frame show the quadratic star together with its
affine base. The red dot are the linear dofs and the green boxes the quadratic ones.
In the second frame we proceed to optimize the linear star as described in Figure
7.15. In the third frame a quadratic function is passed for interpolation, so the
interior quadratic dofs have to be considered, these are mapped through the lift to
the original affine star. In the forth frame these are map by the quadratic function.
The fifth frame shows the newly obtained dofs which determine the new shape of
the quadratic star.
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7.5 Quadratic Correction

Quadratic isoparametric elements are good for boundary approximation and compu-

tation of curvatures. But for moving meshes it is difficult to control their behavior to

avoid crossing and mesh distortion (see Figure 7.17). In this work a hybrid affine-

Figure 7.17: The picture shows two quadratic isoparametric elements with the same
affine support shown on the right. The first one is a good element whereas in the
second nodes are crossing.

quadratic approach to the surface/boundary isoparametric elements is proposed.

The idea is to keep the quadratic element not far from its affine support, but still

allow it to have the characteristic rounded shape coming from the quadratic bub-

ble. Recalling the notation of Section 5.6 (summarized in Figure 7.18) let K be the

quadratic isoparametric element and K̃ its affine base or support. Let x̂i, x̃i and xi

0 11/2

K̂

x1

x̃12

x2

x12

K
K̃

FK̃

F

Figure 7.18: Picture to recall the notation of the different objects involved with
quadratic isoparametric element and its affine base.
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be the vertices of the reference, affine support and quadratic element respectively.

We have that x̃i = xi. Let x̂ij and x̃ij be the midpoint between x̂i and x̂j, and

xij = F (x̂ij).

The measure of how close K is to K̃ is based on the result of Theorem 5.6.1.

To make the concept computationally precise, we define a number θ ∈ (0, 1) to be

the closeness threshold. Define the ij-th edge length eij := |xi − xj| and the ij-th

discrepancy dij := |xij − x̃ij|. Given θ we say that the quadratic mesh T is under

the control of its affine base if

dij ≤ θe2ij ∀xi,xj ∈ K ∀K ∈ T .

For dij to be a sharp measure of the discrepancy we require that the condition

(xij − x̃ij) ⊥ (xi − xj) (7.20)

is satisfied (see Remark 7.5.2).

Lemma 7.5.1 (Affine Control). Let the closeness threshold θ and a quadratic isopara-

metric mesh be given. Then by local refinement it is always possible to put it under

the control of its affine mesh.

Proof. When doing refinement of the mesh the new nodes are projected to the

quadratic parent element. For the affine mesh it is equivalent to doing interpolation

of a quadratic function with piecewise linears. Then from interpolation results it

follows that the pointwise error is O(h2).

When working with a quadratic mesh, after any motion we apply a quadratic

correction. The motion can be either because the mesh is advanced with a given ve-
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locity and time-step or because a smoothing is performed. The quadratic correction

consist in:

• correction of the midnode to satisfy (7.20),

• computation of dij and eij,

• refinement until dij ≤ θe2ij.

Having this quadratic correction applied assures that the quality of the affine support

controls the quality of the quadratic element. Then the affine techniques for mesh

improvement of Section 7.4 can be used on quadratic meshes. Also as the quality

of the affine element is used for time-step adaptivity in Section 7.6, the quadratic

correction will allow us to apply the time-step control to quadratic meshes.

In the following Subsubsections we explain how the correction of the midnode

to satisfy (7.20) is attained. First we treat the simpler case of isoparametric quadratic

elements of dimension one in R2 and then we proceed to an element of dimension

two in R3.

7.5.1 Quadratic Correction: One Dimensional Element

The key observation is that given three points in R2 there is a unique parabola

through them. A quadratic isoparametric element in this setting is a parabola but

controlled by three points x1, x2 and x12, see Figure 7.19. In order to to satisfy

(7.20) we want to have this same parabola controlled by the points x1, x2 and x∗12,

where x∗12 is the intersection of the parabola with the perpendicular bisector of the

affine support.
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ν

x1

x̃12

x12

x2

x∗12

ν

x1

x̃12

x12

x2

x∗12

Figure 7.19: A quadratic isoparametric element in this setting is a parabola con-
trolled by the three points x1, x2 and x12. In order to to satisfy (7.20) we want to
have this same parabola controlled by the points x1, x2 and x∗12, where x∗12 is the
intersection of the parabola with the perpendicular bisector of the affine support,
namely the line emanating from the midpoint x̃12 and perpendicular to the segment
x1 − x2. The figure shows the control nodes before and after the correction.

Now we proceed to describe the implementation of a method to find x∗12.

It is convenient to express the equations using the barycentric coordinates. Let

x(λ) := F (x̂(λ)) where x̂(λ) is the transformation between barycentric coordinates

and the master element. Let K be the parabola and K̃ its affine support (the line

segment connecting x1 and x2. The first step is to find the unit normal ν to K̃.

Then find λ = (λ1, λ2) ∈ R2 and α ∈ R such that

λ1 + λ2 = 1, λi ≥ 0,

(x(λ)− x̃12)− αν = 0.

(7.21)

The root (λ∗, α∗) of system (7.21) yields the desire position x∗12 = x(λ∗) and α gives

the quantity d12 (i.e. the measure of how far the quadratic element is from its affine
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support).

Remark 7.5.1 (Newton Method Initial Guess). As a Newton method is used to solve

system (7.21) a reasonable initial guess is to take λ = (0.5, 0.5) and α = θh2, where

θ is the closeness threshold of the quadratic mesh.

Remark 7.5.2 (Perpendicularity Condition). The previous discussion shows that

given a one dimensional parametric quadratic mesh in R2 it is always possible to

move the midnodes to satisfy equation (7.20) without changing the shape of the

mesh.

7.5.2 Quadratic Correction: Two Dimensional Element

There are two differences between the one dimensional case and the two dimensional

one. The first one is that the quadratic midnode is not anymore the sole position

of one element but now it is shared by two. And the other one is the there is an

additional degree of freedom for the parabolic side (see Figure 7.20). Now in the

quadratic correction we want to exploit this extra degree of freedom to reallocate the

the quadratic midnode. So on top of requiring that the perpendicularity condition

(7.20) is satisfied; we require that xij − x̃ij is perpendicular to the element. One

problem that appears is that xij is shared by to different elements K1 and K2 that

may have different normals. The solution is to take a weighted average normal ν as

in Section 7.2.1. Then the corrected node x∗ij ∈ K1 ∩K2 is the solution to

x∗ij = x̃ij + αν (7.22)

(x∗ij − x̃ij) · (xj − xi). (7.23)
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Figure 7.20: These pictures show two surface quadratic isoparametric elements in R3.
Both of them have the same affine base (the red triangle) and the same discrepancy
measures dij. The difference is that in the picture on the left the discrepancy is
in a tangential direction to the affine base, and in the picture on right it is in the
normal direction to the affine base. Observe that the element on the right has a
much better quality. This shows that a 2D quadratic isoparametric element in R3

has an extra degree of freedom coming from the angle between the element normal
ν and xij − x̃ij.

7.6 Time Adaptivity

In general nonlinear time dependent fourth order problems present a highly varying

time scale along its evolution (see for example simulation 8.3.4). Consequently, an

adaptive timestep control indispensable. But even more important for a parametric

finite element method is the geometric aspect of the timestep control. The timestep

control presented here serves two geometric purposes. The first one is to ensure that

it is not too big as to produce node crossing. Secondly, it guarantees that if the

velocity is too small the timestep is big enough so that it does not take too many

timesteps to produce a negligible evolution.

Another timestep control more suited for optimization problems is backtrack-

ing. This technique is used in particular when close to a minimizer. It consists of

checking, after a time iteration, if the energy has decreased enough, and if not the
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timestep is reduced and the iteration repeated.

For a surface gradient flow we use a time step control in the spirit of Algorithm

5.3 in [BMN05] for surface diffusion. One difference is that we make use and take

advantage of the element quality in the computation. For fluid-structure problems

the previous time stepping does not apply so we present an appropriate version of

timestep control. As a matter of facts, first we present the timestep control for

fluid-structure problem and then we mention a modification that can be used for

surfaces.

The basic idea of the geometric time step control is that given a velocity to

evolve the mesh one wants to find the maximum timestep that will maintain the

mesh at reasonable quality and avoid node crossing.

First we show a lemma that justify the timestep control through the use of the

element quality. Any reasonable quality metric qK will be equivalent to ρK

hk
. This is

the case for all quality metrics mentioned in Section 7.4).

Lemma 7.6.1 (Quality for Perturbed Simplex). Let K be a non-degenerate simplex,

{xi}n its vertices. Given α < 1 there is C = C(α) > 0 such that if:

• Bi := B(xi, ChKqK),

• we choose x∗i ∈ Bi,

• let K∗ = span{x∗i },

then qK∗ ≥ αqK.
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Proof. Without loss of generality we can assume that qk = ρK

hk
. Let

C =
1− α

αρk + 1
.

Then d := ChKqK = ρk(1−α)
αρk+1

. Using the definition of convex hull it can be shown

that the ball B(y, ρk − d) ⊂ K∗. Also hK∗ ≤ hK + d then

qK∗ =
ρK∗

hK∗
≥ ρk − d

hK + d
= α

ρK

hk

,

which is the assertion.

Based on Lemma 7.6.1, given a mesh and a velocity Algorithm 7.6.1 presents

a geometric timestep selection.

The mesh is given by (N , T ) and V is the nodal velocity. A parameter ϑ to

determine how aggressive to be with the timestep selection is also provided. For

each K ∈ T , the quantity hKqK is a measure of how far a vertex of K can be

moved in any direction without entangling K. The nodal function d(N) takes the

minimum of hKqK over all K ∈ T that share this N . The quotient d(N)
|V (N)| gives the

maximum time step node N to move without entangling the mesh. Finally, if all

the nodes are moved at the same time with the same timestep τ , then such τ = ϑρ

with parameter ϑ < 0.5 avoids no crossing. For linear meshes theta = 1/3 is a good

choice. For quadratic meshes controlled by the method of Section 7.5, θ = 1/6 is

the safe choice.

Remark 7.6.1 (Surface Geometric Timestep Control). For surfaces one can be more

aggressive with the timestep. The idea is use the normal component of the velocity.

This is obtained replacing line 9 of Algorithm 7.6.1 by ρ = minN∈N{ d(N)
|v(N)

|}, where

v(N ) = max{V (N ) · νK : N ∈ K}.
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Algorithm 7.6.1 Algorithm for Timestep Selection

1: procedure Select Timestep(T , N , V , ϑ)

2: Compute qK for each K ∈ T

3: d(N ) = ∞ for each N ∈ N

4: for K ∈ T do

5: for N ∈ (N ∩K) do

6: d(N ) = min(d(N ), hKqK)

7: end for

8: end for

9: ρ = minN∈N{ d(N)
|V (N)

|}

10: τ = ϑρ

11: end procedure

An illustration on the timestep selection in action is shown in Figure 7.21.

Figure 7.21: The picture on the left shows the time step selected for each node for
the given mesh and the given velocity depicted in the picture on the right. The red
coloring corresponds to big timesteps the blue to small. The picture on the right is
color by the velocity. The timestep assigned to each node depends on the velocity,
the size and the quality of the elements.
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7.7 Full Algorithms

In this Section we present the general parametric AFEM algorithm with the incor-

poration of the computational tools previously developed in the chapter. The order

in which the tools are applied is important to potentiate themselves in a synergic

way. The general order is given in Algorithm 7.7.1.
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Algorithm 7.7.1 Full Algorithm

1: procedure Parametric AFEM

2: Start with a good inital mesh and final time T

3: Let t = 0 and τ the initial time step

4: while t < T do

5: ok = false

6: repeat

7: Assemble and Solve System

8: τ ∗ = time adaptivity (V )

9: if τ ≥ τ ∗ then ok=true

10: else τ = τ ∗

11: end if

12: until ok

13: Advance Mesh (V , τ)

14: t+ = τ and τ = τ ∗

15: Enhance the mesh

16: Geometric space Adaptivity

17: end while

18: end procedure
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Chapter 8

Numerical Results

This chapter presents a number of interesting simulations using the methods and

tools of chapter 7 to solve the problems discussed in chapter 4 with the schemes

of chapter 6. The simulations are meant first to examine the effect of the various

computational tools developed. But also they serve to investigate the nonlinear

dynamics under large deformations and discover some illuminating similarities and

differences with an without fluid.

In this chapter the simulations are divided in four sections. The first two

deal with geometric flows (mean curvature flow and Willmore flow with and with-

out constraints). The others with coupling membrane with fluid (capillarity and

fluid biomembrane). We end the chapter stating some conclusions drawn from the

simulations.

8.1 Software and computers

The software implementation is based on the finite element library ALBERTA devel-

oped by Schmidt and Siebert. It is based on hierarchical affine grids and employs

refinement by bisection. It handles mesh refinement and coarsening, matrix as-

sembling and various quadratures for numerical integration. A printed manual is

available [SS05]. Also with the addition by Koster [KKS08] it allows the use of grids
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of different dimension in one simulation. Most tools described in Chapter 7 were

coded by us in C. They include

• mesh smoothing,

• time adaptivity,

• space adaptivity,

• mesh generation.

The following auxiliary libraries and programs were used:

• The GNU Scientific Library (GSL) (http://www.gnu.org/software/gsl) was used

for the optimization routines.

• The GNU library libmatheval http://www.gnu.org/software/libmatheval was

used to parse and evaluate symbolic expressions input as text.

• The UMFPACK library http://www.cise.ufl.edu/research/sparse/umfpack/, was

use for direct solvers. UMFPACK is a set of routines for solving unsymmetric

sparse linear systems using the Unsymmetric Multi Frontal method.

• Paraview http://www.paraview.org was one the the programs used for visual-

ization. Paraview is an open source visualization tool developed by Kitware,

Sandia National Laboratories, Los Alamos National Laboratory, Army Re-

search Laboratory and CSimSoft.

• The General Mesh Viewer (GMV) http://www-xdiv.lanl.gov/XCM/gmv was
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also used for visualization. GMV was developed at the Los Alamos Labo-

ratory.

• The utility Gnuplot http://www.gnuplot.info/ was used for the plot graphs.

Gnuplot is a portable command-line driven interactive data and function plot-

ting utility

Most simulation were run in a PC with an AMD Athlon 64 5000+ processor and

4GB of memory. The computational time for interesting 3D geometric flows was

about 30 minutes to an hour. For fluid-membrane interaction it took about 2 days.

The phase field approach has been used to produce quite interesting simula-

tions using a geometric model for biomembranes in the work by Qiang Du et al

[DLW04, DLW06]. One advantage of the parametric method over the phase field is

the computational cost. In [DLW06] it is reported that for the 3D simulation they

used an OPENMP platform on a shared memory system with 16 CPUs (cluster)

compare with the low end laptop we can use. On the other hand the a phase field

approach allows for topological changes which the parametric one does not.

8.2 Mean Curvature Flow

In this section we present simulations for the mean curvature flow (Problem 4.2.1)

with and without enclosed volume constraint.

We start with two curves: the first one is the collapsing circle for which we

have an exact formula (see Remark 4.2.1). The other curve is a star shape curve that

ends up collapsing to a point with the regime of a circle. Then we show an ellipsoid
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and a twisted banana subject to the mean curvature flow with volume constraint.

8.2.1 Collapsing Circle

This simulation shows a circle of initial radius
√

8 evolved under a mean curvature

flow. From Remark 4.2.1 we know it is collapsing to a point in finite time. The

exact solution given by

R(t) =
√

8− 2t. (8.1)
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Figure 8.1: Evolution of a circle of initial radius
√

8 subject to mean curvature flow.
The evolution is characterize by a symmetric shrinking to a point in finite time with
radius given by (8.1). Figure 8.2 shows the evolution of the corresponding perimeter
and kinetic energy.
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Figure 8.2: The figure shows a combined graph of the perimeter and kinetic energy
as function of time corresponding to the simulation of Figure 8.1. Also the exact
perimeter computed with (8.1) is plotted. The left axis shows the perimeter scale
while the right one does it for the kinetic energy. Notice that the kinetic energy goes
to infinity when the shape approaches the point as expected. Also the numerical
predicted time for reaching the point is 4.03.
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8.2.2 2D Star Shape

This simulation shows another type of curve collapsing to a point. We also take

the opportunity to show how space adaptivity follows the shrinking by reducing the

number of degrees of freedom accordingly.

Figure 8.3: Evolution of a star shape curve subject to mean curvature flow. The
evolution is characterize first by a stage where the curves moves in and out reducing
its curvature until it reaches a circular shape and then it shrinks to a point in
finite time, following the regime prescribed in Remark 4.2.1. Figure 8.4 shows the
evolution of the corresponding perimeter and kinetic energy. And Figure 8.5 shows
the evolution of the of the number of degrees of freedom.
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Figure 8.4: The figure shows a combined graph of the perimeter and kinetic energy
as function of time corresponding to the simulation of Figure 8.3. The left axis
shows the perimeter scale while the right one does it for the kinetic energy. Notice
that the kinetic energy goes to infinity when the shape approaches the point.
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Figure 8.5: The figure shows a graph of the number of degrees of freedom as a
function of the number of iterations corresponding to the simulation of Figure 8.3.
Notice that as the size of the shape decreases also does the number of degrees of
freedom.
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8.2.3 Ellipsoid

Evolution of an initial axisymmetric ellipsoid of aspect ratio 2x1x1 subject to a

mean curvature flow with volume constraint. As expected it reaches the sphere in

finite time.

Figure 8.6: Evolution of an initial axisymmetric ellipsoid of aspect ratio 2x1x1 sub-
ject to mean curvature flow with volume constraint. The picture shows a 3D view
of the surface colored by mean curvature together with the wire-framed mesh. As
expected it reaches a sphere with the same initial volume in finite time, and is nu-
merically very stable once there. Figure 8.7 shows the evolution of the corresponding
area and kinetic energy. And Figure 8.8 shows the evolution of the area and volume
Lagrange multipliers.
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Figure 8.7: The figure shows a combined graph of the area and kinetic energy as
function of time corresponding to the simulation of Figure 8.6. The left axis shows
the area scale while the right one does it for the kinetic energy. Notice that the
kinetic energy becomes zero in finite time when the shape becomes the sphere. And
is very stable numerically.

153



Figure 8.8: The figure shows a graph of the volume Lagrange multiplier as function
of time corresponding to the simulation of Figure 8.6.
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8.2.4 Twisted banana

This is the twisted banana shape introduce in Section 8.3.4 for its characteristics to

check bending energy driven flows (please refer to Section 8.3.4 for more details).

This time it is subject to mean curvature flow with volume constraint. We include

it in here to show some mesh adaptivity in action.

Figure 8.9: Evolution of the initial twisted banana shape subject to mean curvature
flow with volume constraint. The initial banana reaches the a ball shape in finite
time and stays there. The picture shows a 3D view of the surface colored by mean
curvature. Figure 8.11 shows the space adaptivity in action for one end of the shape.
Figure 8.10 shows the area and kinetic energy as a function of time.
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Figure 8.10: The figure shows a combined graph of the area and kinetic energy as
function of time corresponding to the simulation of Figure 8.9. The axis on the left
has the area scale and the one on the right the kinetic energy scale. Observe that
when the area stabilizes (spherical shape) the kinetic energy is 0.
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Figure 8.11: The figure shows a zoom of one end of the simulation of Figure 8.9.
Each frame shows a 3D view of the zoomed in surface together with the wire-
framed mesh. Here we see that at the beginning the regions of high curvature are
more densely populated by degrees of freedoms. Throughout time as the banana
is evolving degrees of freedom are removed in such a way that at the end they are
approximately equidistribute.
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8.3 Willmore Flow and Geometric Biomembrane

In this section we present simulations for the Willmore flow (Problem 4.2.5) and

the geometric biomembrane model (Problem 4.2.7) which is a Willmore flow with

surface area and enclosed volume constraints.

We start with two families of shapes generated from initial axisymmetric el-

lipsoids. For the Willmore flow they all end in a sphere. For the biomembrane flow

we end up with axisymmetric shapes that have been obtained [Jen77b, SBL91] by

exploiting the axisymmetry an so reducing the problem to a system of ODEs. We do

not take advantage of the axisymmetry and we run the simulations as if they were

not axisymmetric. The fact that during the evolution the axisymmetry is preserved

is a good indication of the stability of the code.

Given that the ellipsoid has to be axisymmetric it implies that 2 of its 3 axes

are equal. Also from Lemma 4.2.4 for a surface under Willmore Flow what actually

matters is the aspect ratio of the ellipsoid and not the absolute value of its axes.

The first family of shapes is the one that yields a “dumbbell bar” shape. We

discover that it is obtained when the third axis is greater than about twice the

length of the other axes.

The second family of shapes is the one that yields a “red blood cell” or “dis-

cocyte” shape. It is obtained when the third axis on the initial ellipsoid is less than

about half the length of the other axes. In this case pinching is observed when

the third axis is 5 times smaller than the others. For higher aspects ratios actual

crossing of the upper and lower sides occurs. But given the local nature of the para-
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metric method it does not realize about the global crossing. For aspects ratios in

between (i.e. from twice to half) a “pill” like shape is obtained. We also include a

non axisymmetric ellipsoid. The simulation shows that at equilibrium it ends being

axisymmetric. Next we apply the flow to a “twisted banana” shape. This shape is

interesting for bending flows because it is not axisymmetric and also has two dif-

ferent bendings in it (the banana bending plus the twist). The timestep adaptivity

was crucial for this simulation as we detected two very different time scales along

the evolution.

8.3.1 Dumbbell Bar Shapes

This family of shapes is obtained when the third axis of an initial axisymmetric

ellipsoid is greater than about twice the length of the other axes. We present three

simulations for the aspects ratios of 8x1x1, 4x1x1 and 2x1x1. The last one is not

literally in the family but makes the transition phase to the “pill” shaped family

through the sphere to the next family of Section 8.3.2.
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Figure 8.12: Evolution of an initial axisymmetric ellipsoid of aspect ratio 8x1x1
subject to a geometric biomembrane model. For each frame the picture on the right
is a 3D view of the surface mesh and the picture on the left a corresponding 2D
cut through a symmetry plane. The evolution is characterize by the formation of
spherical shaped ends with a strongly cylindrical and long neck connecting them.
Figure 8.13 shows the evolution of the corresponding bending and kinetic energy.
And Figure 8.14 shows the evolution of the area and volume Lagrange multipliers.

160



Figure 8.13: The figure shows a combined graph of the bending and kinetic energy
as function of time corresponding to the simulation of Figure 8.12. The left axis
shows the bending energy scale while the right one does it for the kinetic energy.
Notice that the bending energy approaches the equilibrium as the kinetic energy
approaches 0. The bending energy for this aspect ratio is reduced approximately
22%.
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Figure 8.14: The figure shows a combined graph of the area and volume Lagrange
multipliers as function of time corresponding to the simulation of Figure 8.12. The
left axis shows the area multiplier scale while the right one does it for the volume
multiplier.
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Figure 8.15: Evolution of an initial axisymmetric ellipsoid of aspect ratio 4x1x1
subject to a geometric biomembrane model. For each frame the picture on the right
is a 3D view of the surface mesh and the picture on the left a corresponding 2D cut
through a symmetry plane. In this evolution the formation of spherical shaped ends
are observed but the connection is not so cylindrical and exhibits an indentation
in the center (compare with Figure 8.12). Figure 8.16 shows the evolution of the
corresponding bending and kinetic energy. And Figure 8.17 shows the evolution of
the area and volume Lagrange multipliers.
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Figure 8.16: The figure shows a combined graph of the bending and kinetic energy
as function of time corresponding to the simulation of Figure 8.15. The left axis
shows the bending energy scale while the right one does it for the kinetic energy.
Notice that the bending energy approaches the equilibrium as the kinetic energy
approaches 0. The bending energy for this aspect ratio is reduced approximately
14%.
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Figure 8.17: The figure shows a combined graph of the area and volume Lagrange
multipliers as function of time corresponding to the simulation of Figure 8.15. The
left axis shows the area multiplier scale while the right one does it for the volume
multiplier.
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Figure 8.18: Evolution of an initial axisymmetric ellipsoid of aspect ratio 2x1x1
subject to a geometric biomembrane model. For each frame the picture on the left
is a 3D view of the surface mesh and the picture on the right a corresponding 2D cut
through a symmetry plane. In this evolution instead of the formation of separate
spherical shaped ends they prefer to be part of the same “pill” shape. (compare
with Figures 8.12 and 8.15). Figure 8.19 shows the evolution of the corresponding
bending and kinetic energy. And Figure 8.20 shows the evolution of the area and
volume Lagrange multipliers.
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Figure 8.19: The figure shows a combined graph of the bending and kinetic energy
as function of time corresponding to the simulation of Figure 8.18. The left axis
shows the bending energy scale while the right one does it for the kinetic energy.
Notice that the bending energy approaches the equilibrium as the kinetic energy
approaches 0. The bending energy for this aspect ratio is reduced approximately
2%.
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Figure 8.20: The figure shows a combined graph of the area and volume Lagrange
multipliers as function of time corresponding to the simulation of Figure 8.18. The
left axis shows the area multiplier scale while the right one does it for the volume
multiplier.
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8.3.2 Red Blood Cell Shapes

This family of shapes is obtained when the third axis on the initial ellipsoid is less

than about half the length of the other axes. We present two simulations for the

aspects ratios of 3x3x1 and 5x5x1. Pinching is observed when the third axis is 5 or

more times smaller than the others. For higher aspects ratios actual crossing of the

upper and lower sides occurs. Given the local nature of the parametric method it

does not realize about the global crossing. But then the evolution after the crossing

is not useful anymore, at least to model a biomembrane. The aspect ratio 5x5x1

yields an equilibrium shape which barely touches the other side.
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Figure 8.21: Evolution of an initial axisymmetric ellipsoid of aspect ratio 3x1x1
subject to a geometric biomembrane model. For each frame the picture on the left
is a 3D view of the surface mesh and the picture on the right a corresponding 2D
cut through a symmetry plane. The evolution is characterize by the formation of a
depression in the center together with a rounding and thickening of the outer circular
edge. Figure 8.22 shows the evolution of the corresponding bending and kinetic
energy. And Figure 8.23 shows the evolution of the area and volume Lagrange
multipliers.
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Figure 8.22: The figure shows a combined graph of the bending and kinetic energy
as function of time corresponding to the simulation of Figure 8.21. The left axis
shows the bending energy scale while the right one does it for the kinetic energy.
Notice that the bending energy approaches the equilibrium as the kinetic energy
approaches 0. The bending energy for this aspect ratio is reduced approximately
24%.
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Figure 8.23: The figure shows a combined graph of the area and volume Lagrange
multipliers as function of time corresponding to the simulation of Figure 8.21. The
left axis shows the area multiplier scale while the right one does it for the volume
multiplier.
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Figure 8.24: Evolution of an initial axisymmetric ellipsoid of aspect ratio 5x5x1
subject to a geometric biomembrane model. For each frame the picture on the left
is a 3D view of the surface mesh and the pictures on the right from top to bottom
show a 2D cut through a symmetry plane; this cut with the velocity field shown as
arrows; and a 3D view from inside the surface. In this case the equilibrium shape
presents the formation of a depression of the center more to the point of almost
pinching. But the evolution to get there is different from the one of Figure 8.21. As
can be seen from the second frame, the thickening of the outer circular edge occurs
faster than what happens in the middle, so that instead of a depression a bump
is formed in the middle. Latter the evolution continues squeezing this bump to a
depression at the expense of thickening and rounding even more the outer circular
edge. Figure 8.25 shows the evolution of the corresponding bending and kinetic
energy. And Figure 8.26 shows the evolution of the area and volume Lagrange
multipliers.
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Figure 8.25: The figure shows a combined graph of the bending and kinetic energy
as function of time corresponding to the simulation of Figure 8.24. The left axis
shows the bending energy scale while the right one does it for the kinetic energy.
Notice that the bending energy approaches the equilibrium as the kinetic energy
approaches 0. The bending energy for this aspect ratio is reduced approximately
50%.
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Figure 8.26: The figure shows a combined graph of the area and volume Lagrange
multipliers as function of time corresponding to the simulation of Figure 8.24. The
left axis shows the area multiplier scale while the right one does it for the volume
multiplier.
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8.3.3 Non-axisymmetric Ellipsoid

Figure 8.27: Evolution of an initial non-axisymmetric ellipsoid of aspect ratio 2x3x5
subject to a geometric biomembrane model. For each frame the picture on the
left is a 3D view of the surface mesh and the picture on the right from top to
bottom are three cuts by the coordinate planes. The evolution seems to produce
an axisymmetric equilibrium. Figure 8.28 shows the evolution of the corresponding
bending and kinetic energy. And Figure 8.29 shows the evolution of the area and
volume Lagrange multipliers.
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Figure 8.28: The figure shows a combined graph of the bending and kinetic energy
as function of time corresponding to the simulation of Figure 8.27. The left axis
shows the bending energy scale while the right one does it for the kinetic energy.
Notice that the bending energy approaches the equilibrium as the kinetic energy
approaches 0.
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Figure 8.29: The figure shows a combined graph of the area and volume Lagrange
multipliers as function of time corresponding to the simulation of Figure 8.27. The
left axis shows the area multiplier scale while the right one does it for the volume
multiplier.
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8.3.4 Twisted Banana

The twisted banana is interesting for bending flows because it is not axisymmetric

and also has two different bendings in it (the banana bending plus the twist). The

timestep adaptivity was crucial for this simulation as we detected two very different

time scales along the evolution. First we introduce the shape and then show the full

simulation and the two time scales.

Figure 8.30: Introducing the twisted banana. The picture shows from left to right
the front, back an top views of the twisted banana shape. To help visualize the
shape it is plotted next to a thin cylinder in the z direction.
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Figure 8.31: Evolution of the initial twisted banana shape of Figure 8.30 subject to
a geometric biomembrane model. The frames show a 3D view of the surface mesh
colored by bending energy. The simulation was run in the time interval [0, 5]. the
final equilibrium was reached at about 0.6 this is reflected in the almost similar
shape of the last two frames despite the different times. Already in the first frame
there has been a lot of change in the shape. In Figures 8.33 and 8.35 we will describe
the two time scale and behavior leading to the first and third frame in this figure.
Figure 8.32 shows the evolution of the corresponding bending and kinetic energy.
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Figure 8.32: The figure shows a combined graph of the bending and kinetic energy
as function of time corresponding to the simulation of Figure 8.31. The left axis
shows the bending energy scale while the right one does it for the kinetic energy.
The balls are formed in the interval [0, 0.02]. For the time scale of the simulation it
looks like a vertical line but it is not.
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Figure 8.33: Time zooming to the interval [0, 0.02] for the evolution of the simulation
described in Figure 8.31. For each frame the picture on the left is a 3D view of the
whole surface mesh and the picture on the right is a corresponding zoomed an angled
to 3D view to see one of the ends. This stage that we refer to as the fast time scale
of the simulation, is characterize by the formation of spherical shaped ends and a
loose of the twist. At t = 0.01 the balls are formed and the evolution seems to reach
a steady state. The bending the energy decreases about 21% in this time interval
∆t = 0.01 (see Figure 8.34 for the energy plot). This is the first time scale that is
detected.
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Figure 8.34: The figure shows a combined graph of the bending and kinetic energy as
function of time corresponding to the simulation of Figure 8.31 in the time interval
[0, 0.2]. The formation of balls occurs in the interval [0, 0.02]. The bending energy
is reduced in this interval approximately 21%. Compare with the decrease observe
in Figure 8.36.
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Figure 8.35: Time zooming to the interval [0.04, 1.3] for the evolution of the sim-
ulation described in Figure 8.31. For each frame the picture on the left is a 3D
view of the surface mesh and the picture on the right shows a 2D cut through an
appearing symmetry plane together with the velocity field shown as arrows. This
stage ,that we refer to as the slow time scale of the evolution, is characterize by the
straitening of the ball shaped ends boomerang left at the end of the fast time scale
of the evolution. The bending the energy decreases about .3% in this time interval
∆t = 1.0 (see Figure 8.36 for the energy plot). This is the second time scale that is
detected. The reason for the steps in the graph is that the output was saved with 5
significant digits and the decrease inside the steps is in the 6th.
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Figure 8.36: The figure shows a combined graph of the bending and kinetic energy as
function of time corresponding to the simulation of Figure 8.31 in the time interval
[0.2, 1.0]. The boomerang shape is straitened at about t = 0.8. The bending the
energy decreases about .3%. Compare with the decrease observe in Figure 8.34.
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8.4 Capillarity

In this section we present simulations for the capillarity problem of Section 4.3.1.

8.4.1 2D Star Shape

This is a star shape very similar to the one on Section 8.2.2 but with a fluid interior.

Figure 8.37: Evolution of a star shape subject to capillarity flow. A damping os-
cillating behavior falling to a circle is observed. The color represents the pressure
and the arrows the direction of the velocity field (not the magnitude). Figure 8.38
shows the evolution of the corresponding perimeter and kinetic energy.
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Figure 8.38: The figure shows a combined graph of the perimeter and kinetic energy
as function of time corresponding to the simulation of Figure 8.37. The left axis
shows the perimeter scale while the right one does it for the kinetic energy. Notice
the damped oscillation characteristics of the inertial and viscous effects brought by
the fluid.

8.4.2 Ellipsoid

8.5 Fluid Biomembrane

In this section we present simulations for the fluid biomembrane model of equations

(4.50). In few word, the membrane is a massless object endowed with a bending

and surface area energy that exerts force on and moves with the fluid.

In this section the inertial and viscous effects of the fluid extensively appear

in the evolution (compare with Section 8.3 where these effects are absent). We also

observe how there seems to be a coincidence between the the points of maximum

bending energy and minimum kinetic energy and vice-versa. Both damped in time
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Figure 8.39: Evolution of an initial axisymmetric ellipsoid of aspect ratio 4x1x1
subject to a capillarity flow. A damped oscillating behavior falling to a sphere is
observed. The color represents the pressure.

in the absence of external forces.

8.5.1 2D Fluid Banana in a Shear Force Field

The 2D initial mesh we consider has a banana or boomerang shape as shown in

Figure 8.40. This simulation documents the effectivity of the smoothing techniques

described in Section 7.4. In this simulation the domain suffers quite a dramatic

motion. Not only it evolves with a area constrained bending surface force but it is

also subject to an external shearing force that cause it to rotate faster and faster
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Figure 8.40: Initial 2D banana shaped mesh to be evolved with the fluid-
biomembrane model.

in time. Even though all the nodes are moving with the flow the mesh preserves

its quality due to the smoothing described in Algorithm 7.4.1 being applied in each

time iteration.
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Figure 8.41: Evolution of the initial 2D banana shaped mesh of Figure 8.40 subject
to a biomembrane fluid model evolution plus a discontinuous shearing force depicted
in the picture with arrows. For each frame the picture on the left is a 2D view of the
mesh colored by speed and the picture on the right a corresponding zoom showing
the mesh wire frame. The evolution is characterize by the rounding and thickening
of the ends while unbending its shape. But also at the same time it stars slowly
rotating due to the external shear force. Then the object stars rotating faster and
faster. It’s important to notice how well the mesh is preserved by the methods of
Section 7.4, without any remeshing done. Figure 8.42 shows the evolution of the
corresponding bending and kinetic energy. And Figure 8.43 shows the evolution of
the area Lagrange multiplier.

190



Figure 8.42: The figure shows a combined graph of the bending and kinetic energy
as function of time corresponding to the simulation of Figure 8.41. The left axis
shows the bending energy scale while the right one does it for the kinetic energy.
Notice how the kinetic energy keeps increasing due to the applied external couple.
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Figure 8.43: The figure shows the graph of the area Lagrange multiplier as function
of time corresponding to the simulation of Figure 8.41.
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8.5.2 3D Fluid Banana

As in the case of Willmore and geometric biomembrane flow the banana shape is an

interesting candidate to use as initial shape because of its bended form. But now

we consider the banana with fluid interior.

Figure 8.44: Evolution of an initial non axisymmetric 3D banana shaped volume
mesh subject to a biomembrane fluid model evolution. For each frame the picture
on the left is a 3D view of the mesh and the pictures on the right from to bottom
show a longitudinal 2D cut colored by the fluid pressure and a transversal cut with
the velocity field represented by arrows. Figure 8.45 show some stream lines of
this flow. Figure 8.46 shows the evolution of the corresponding bending and kinetic
energy. And Figure 8.47 shows the evolution of the area Lagrange multiplier.
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Figure 8.45: The figure shows the streamlines for the simulation of Figure 8.44
colored by fluid speed. In the first frame, fluid starts flowing from the center to
the ends. At this point there is no indication of unbending. After the ends have
been thickened by the pumped fluid, taking the characteristic spherical shape, we
see some unbending or straitening of the banana. In the second frame we see how
the fluid in the ends now flows in an unbending direction. Observe that still fluid
is coming from the center of the banana toward the ends in a direction favorable to
bending. At some point this last behavior changes to a favorable one for unbending,
as can be seen in the third frame where the fluid goes from the center to the ends
but from the other side. This behavior ends up producing two distinctive curls as
shown in the fourth frame.
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Figure 8.46: The figure shows a combined graph of the bending and kinetic energy
as function of time corresponding to the simulation of Figure 8.44. The left axis
shows the bending energy scale while the right one does it for the kinetic energy.
Observe how there seems to be a coincidence between the the points of maximum
bending energy and minimum kinetic energy and vice-versa. Also notice the damped
behavior of the kinetic energy characteristic of the viscous dissipation. Finally the
bending energy approaches the equilibrium as the kinetic energy approaches 0.
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Figure 8.47: The figure shows the graph of the area Lagrange multiplier as function
of time corresponding to the simulation of Figure 8.44.
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8.5.3 3D Pinching Fluid Ellipsoid

In Section 8.3.2 we discovered for axisymmetric ellipsoids the approximate aspect

ratio for which the geometric biomembrane flow pinches off. In this section we

try this same aspect ratio for the initial shape but this time with fluid inside and

governed by the fluid biomembrane flow.

Figure 8.48: Evolution of an initial axisymmetric ellipsoid of aspect ratio 5x5x1
subject to a biomembrane fluid model evolution. For each frame the picture on
the left is a 3D view of the mesh and the picture on the right is a 2D cut through
a symmetry plane colored by the fluid pressure. In the first frame fluid from an
annular region between 2 and 3 thirds of the circular radius flows toward the outer
edge. At the same time fluid from the outer edge flows in collapsing with the first.
This produces the thickening of the outer edge and a circular annular depression.
In the second frame fluid from this depressed annular region flows also toward the
center producing a central bump. Then the fluid from this bump flows to the outer
edge turning the shape to look more and more like a torus.
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Figure 8.49: The figure shows a combined graph of the bending and kinetic energy
as function of time corresponding to the simulation of Figure 8.48. The left axis
shows the bending energy scale while the right one does it for the kinetic energy. At
about t = 2 it can be observed that a local minimum corresponding more or less to
the minimum of the geometric flow was reach but the fluid bypassed is indicating
the pinching will be produce in this other shape (compare with Figure 8.25).
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Figure 8.50: The figure shows the graph of the area Lagrange multiplier as function
of time corresponding to the simulation of Figure 8.48.
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8.5.4 3D Comparison: Geometric vs Fluid Ellipsoid

In this section we are going to compare the behaviors of the geometric biomembrane

model of Figure 8.24 and the fluid biomembrane model of Figure 8.48 for an initial

axisymmetric ellipsoid of aspect ratio 5x5x1. Off course the dynamics leading to

equilibrium is different, but what is most remarkable is the different shape taken

before pinching. This simulation illustrates that the fluid may change the shape in

which topological changes happens.

Figure 8.51: Comparison of the evolution of an initial axisymmetric ellipsoid of
aspect ratio 5x5x1 subject to a geometric and fluid biomembrane model. For each
frame the picture on the left is a 3D view of the surface meshes for the geometric
(white) and fluid (red) flows. The picture on the left show corresponding 2D cuts
through a symmetry plane. The detailed description for each separate simulation
can be found in Figures 8.24 and 8.48. What is particularly interested is the different
shapes of the last frame.
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Figure 8.52: The figure shows the comparison of the bending energies for the geo-
metric and the fluid biomembrane models as function of time. At t ≈ 2 the fluid flow
reaches the energy equilibrium level of the geometric flow. The fact that there is a
fluid inside does not let it stay comfortable here so it changes its “about to pinch”
shape. The fluid simulation does not continue because is indicating an imminent
pinching that the parametric method cannot handle.
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8.6 Conclusions

From the simulations presented in this chapter the following conclusions can be

drawn:

• Spherical caps. For a geometric flow when the initial shape has distinctive

ends (as in Simulations 8.3.1 and 8.3.4), the formation of spherical-shaped

ends connected by a cylindrical neck seems to be the most effective way to

minimize the energy. In fact, the formation of spherical-shaped ends decreases

the energy several orders of magnitude more than straightening of a bended

shape (see Simulation 8.3.4).

• Red cells. For a geometric flow when the initial shape is disc like (as Sim-

ulation 8.3.2) the evolution to decrease the energy is characterized by the

thickening of the outer circular edge with the formation of a depression in the

center.

• Exponential decay of kinetic energy. The geometric flow shows a clear

exponential decay of the kinetic energy when approaching the equilibrium

shape. The rate of decay seems to depend in a non trivial way on the equilib-

rium shape.

• Fluid effect. The coupling fluid produces quite a different dynamics from

the geometric flow as it brings in the inertial and viscous effects of the fluid.

• Equilibrium shapes. Sometimes the final stationary shape coincides for the

geometric and fluid models. But some other times (as in Simulations 8.5.3
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and 8.3.2) they do not. In particular the comparison in Section 8.5.4 indicates

that the fluid is an important factor dictating the shape prior to a topological

change.

• Geometry vs fluid. The geometry seems to be initially the leading mech-

anism to decrease the energy, but later the fluid catches up and affects the

dynamics. At this point an exchange between the bending and kinetic energy

is observed.
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Chapter 9

Mesh Generation

When we originally planned the project of implementing and using an AFEM as

described in the previous chapters the initial mesh was supposed to be a given. The

emphasis of our job was supposed to be the numerical approximation of a PDE over

that given initial mesh using the AFEM. What in paper seemed to be reasonable

was not so in practice. This initial mesh turned out not to be such a given.

Due to the adaptive finite element library we are using (ALBERTA) we need an

initial mesh:

• compatible for refinements (i.e. no recursive infinite loop is created),

• with not too many macro elements (because they cannot be coarsened).

For the applications presented in Chapter 4 we need interesting initial 3D bulk

and surface meshes. After some search and trials we could not find software that

would generate a good quality, compatible for refinements, binary tree structured

mesh that we could provide to our library. Specially the last two requirements were

missing. A first attempt was to use distmesh [PS04]. The idea of distmesh is

based on the physical analogy between a simplex mesh and a truss structure. Mesh

points are nodes of the truss. Assuming an appropriate force-displacement function

for the bars in the truss at each iteration, they solve for equilibrium. The forces

move the nodes, and a delaunay triangulation is performed to swap edges. The real
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signed distance function is essential to project boundary nodes and to distinguish

the interior from the exterior. The code is in Matlab and very friendly to the user

modification. The drawbacks are:

• the distance function is hard to provide (think of the distance function to a

simple ellipse),

• the suggested spring driven force is quite slow to converge,

• in 3D, slivers (flat tetrahedra) are a comfortable position for the springs.

Faced with these issues, and inspired by the drawbacks of distmesh we decided to

use the same ALBERTA library and our own tools of Chapter 7 to generate the initial

mesh. We replace the spring driven force by an optimization flow. This works in

3D and is fast. And we replace the distance function by a deformation of a simple

reference domain. It is important to say that the method thus obtained to generate

the mesh has its own contribution to the mesh generation community. Some features

like the compatibility for refinement together with a coarse underlying macro mesh

are not available elsewhere.

In Chapter 7 we have developed tools to handle large deformations of a mesh.

The idea is to apply them to mesh generation in the following way. Start with a

simple region that can be easily meshed (square, circle, etc). Provide a motion that

deforms the simple region into the desire one. Then the tools of Chapter 7 applied

to this motion will give the desire mesh.

In Section 9.1 we describe how we represent a region to be meshed and the

algorithm for mesh generation. One step required by the algorithm is the projection
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to the boundary of newly created nodes. In Section 9.2 we discuss how this projec-

tion can be done. Finally in Section 9.3 we present a few examples of the method

in action.

9.1 Mesh Generation Method

The first thing that it is necessary to mesh a domain is a description of its shape.

We chose to describe the shape as a deformation of a reference domain with a rather

simple shape (see figure 9.1). It is important that the reference domain has a simple

Figure 9.1: Illustration of a deformation. The region on the left is the reference
domain, the region on the right is the domain we intend to mesh and the function
F is the deformation.

shape because:

• we assume we have a good mesh of the reference domain;

• we take advantage of the analytical expressions that define its boundary (sphere

or planes for example).

In case the deformation is too dramatic it is convenient to generate the mesh in

progressive stages. For this purpose rather than a deformation we consider the
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mesh ΩT that we want to generate as the result of a motion x(p, t) of the reference

domain. In summary the necessary ingredients for the mesh generation to work are:

• a motion x : Ω̂× [0, T ] 7→ Rd+1,

• a mesh of Ωt0 for some time t0 ∈ [0, T ], such that it is refinement compatible,

of good quality and with a coarse underlying macro mesh,

• a reference mesh of the boundary Γ̂ = ∂Ω̂.

Remark 9.1.1 (Boundary Motion). The motion is only used on a small neighborhood

of the boundaries, so in practice it is not necessary to provide it on the whole Ω̂,

but only around the boundary Γ̂.

The mesh generation process is described in Algorithm 9.1.1. For line 4 of Algorithm

9.1.1 we use the time selection tools of Section 7.6. For line 6 we use the optimization

tools of Section 7.4. In this case for the boundary nodes the constraint is known

(see Section 7.4.3.3) so we can provide it to the optimization method. As we assume

a simple reference domain, it is more convenient to do the optimization here and

take advantage of the simple analytical expression that the boundary takes. Line 7

and the projection to the boundary involve here are described in the next section.

9.2 Refinements and Coarsenings

When doing refinements in line 7 of Algorithm 9.1.1 the new boundary nodes have

to be projected to the actual boundary. Depending on how good the approximation

of the mesh to the boundary is, we propose two different strategies to project the
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Algorithm 9.1.1 Algorithm for Mesh Generation

1: procedure Generate Mesh(x, Ωt0 ,Γ̂)

2: Let T be the final time and t = t0

3: while t < T do

4: Find τ s.t. Γt+τ can be obtain by moving the nodes of Γt without crossing

nodes in Ωt+τ .

5: Let t = t+ τ , and move the boundary Γt = x(Γ̂, t).

6: Adjust the interior and boundary nodes by an optimization flow.

7: Perform refinements and coarsening.

8: Repeat line 6 (optional)

9: end while

10: end procedure

nodes. The first one is very cheap computationally. But if the approximation is not

good enough it may deteriorate the quality of the mesh even to the point of inverting

elements. The second one is much better in terms of keeping the good quality but

it is computationally more demanding. Below we describe each strategy.

9.2.1 Projection on Reference Configuration

This is the simple, computationally cheap strategy to project a boundary node to

the actual boundary. It takes advantage of the analytically simple expression of

the reference domain. We describe the method for the particular case when the

reference boundary is the unit sphere.

Let F be the domain deformation, and p the reference coordinate correspond-
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ing to a newly created boundary node. First the bisection algorithm does it job and

defines p by linear interpolation. The location of the new node x∗ in the deformed

configuration is then obtained as follows: first let p∗ = p
|p| and then x∗ = F (p) will

give the projected new node.

9.2.2 Projection Through Distance Function

The natural way to project a point to a set is by using the distance function. It is

based on the following mathematical result.

Theorem 9.2.1. Let the surface Γ be the level set f = 0 of a smooth function f .

Then there exists Γε an ε-neighborhood of Γ such that given x ∈ Γε there is a unique

x∗ ∈ Γ such that d(x,Γ) = d(x,x∗). Moreover the following equation

∇f(x∗) = α(x∗ − x), (9.1)

is satisfied for some α.

Proof. See [GT83, Appendix 14.6].

Now let x be the coordinates corresponding to a newly created boundary node.

The bisection algorithm defines x by linear interpolation. The projection of x we are

looking for is the solution x∗ of equation (9.1). One way to find x∗ taking advantage

of the simple reference domain is described below for the particular case when the

reference boundary is the unit sphere. Assume that the reference boundary Γ̂ = Sd

is the unit sphere. Let F be the domain deformation and Γ := F (Γ̂). Then the
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surface Γ is the level set of the function

f(x) := |F−1(x)|2 − 1,

which in reference domain becomes

f(F (p)) = |p|2 − 1. (9.2)

Using the chain rule and equation (9.1) we get

(DF−1)
T
(p) = α(F (p)− x),

which leads to the following system for p and α

p− αDFT(F (p)− x) = 0 (9.3)

|p|2 − 1 = 0. (9.4)

A Newton type of method can then be used to solve this system. Moreover equation

(9.4) can be solve explicitly for one of the variables if desired.

9.3 Examples

In this section we present some examples of meshes generated using Algorithm 9.1.1.

They include a two dimensional star shape, an ellipsoid and an ellipsoidal ring.

9.3.1 2D Star Shape

A three buds curve can be obtain as a deformation of the unit circle through the

function F = ((0.8 cos(3θ) + 1.5) cos(θ), (0.8 cos(3θ) + 1.5) sin(θ)), where θ is the
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polar angle describing the circle. A motion that in time will reach this deformation

starting from the unit circle can be

x(p, t) = (1− t)p+ tF (p), (9.5)

with t ∈ [0, 1]. In Figure 9.2 we show the work produced by Algorithm 9.1.1 when

provided with the motion (9.5) and a reference unit disc mesh.
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Figure 9.2: A three buds curve can be obtain as a deformation of the unit cir-
cle through the function F = ((0.8 cos(3θ) + 1.5) cos(θ), (0.8 cos(3θ) + 1.5) sin(θ)),
where θ is the polar angle describing the circle. A motion that in time will reach
this deformation can be x(p, t) = (1− t)p+ tF (p), with t ∈ [0, 1]. The figure shows
the work produced by Algorithm 9.1.1 when provided with the previous motion and
a reference unit disc mesh. The iterations are 0 5 10 19.
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9.3.2 3D Ellipsoid

A solid ellipsoid of aspect ratio 2x3x5 can be obtained as a deformation of the unit

ball through the function

F (p) =


1 0 0

0 1.5 0

0 0 2.5

p. (9.6)

A motion that in time will reach this deformation can be

x(p, t) =


1 0 0

0 1
(t+1)

0

0 0 1
(3t+1)

p, (9.7)

with t ∈ [0, 0.5]. In Figure 9.3 we show the work produced by Algorithm 9.1.1

when provided with the motion (9.7) and a reference mesh of the unit ball. Also

transversal plane cuts showing some interior tetrahedra are shown in Figure 9.4.

Shows the generation of an ellipsoid of aspect ratio 2x3x5.
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Figure 9.3: A solid ellipsoid of aspect ratio 2x3x5 can be obtained as a deformation
of the unit ball through the function (9.6). A motion that in time will reach this
deformation can be the one given in equation (9.7) with t ∈ [0, 0.5]. The figure shows
the work produced by Algorithm 9.1.1 when provided with the previous motion
and the refence mesh of the unit ball shown in the first frame. The tetrahedra are
colored by its quality and the color bars on the left are scaled between the maximum
and minimum values taken in each case. Also corresponding transversal plane cuts
showing some interior tetrahedra are shown in Figure 9.4.
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Figure 9.4: A solid ellipsoid of aspect ratio 2x3x5 can be obtained as a deformation
of the unit ball through the function (9.6) as shown in Figure 9.3. This figure shows
transversal plane cuts to appreciate some interior tetrahedra. The cuts correspond
to the right side of the last three frames of Figure 9.3. The tetrahedra are colored
by its quality and the color bars on the left are scaled between the maximum and
minimum values taken in each case.
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9.3.3 2D Ellipsoidal Ring

In this example we want to generate a 2D ellipsoidal ring, i.e. a ring whose outer

and inner boundaries are ellipses. To accomplish this we proceed in two stages.

First we generate a circular ring using the macro mesh of Figure 9.5. In this case

Figure 9.5: This macro mesh with 16 elements can be used to generate 2D shapes
with and underlying ring topology. In particular this is the macro mesh used in the
meshes of Figures 9.6 and 9.7.

only a deformation instead of a motion is used. And rather than providing the full

deformation we only need to provide how the boundary nodes are affected by the

deformation. Some frames corresponding to this process are shown in Figure 9.6.

For the second part of the generation we use the circular ring generated in Figure

9.6 as the reference mesh. This one is evolved in time by a motion that sends the

outer circle to a vertically elongated ellipse and the inner circle to a horizontally

elongated one as shown in Figure 9.7.
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Figure 9.6: A circular ring using the macro mesh of Figure 9.5 is generated. This
is the first step in the generation of the ellipsoidal ring shown in Figure 9.7. In
this case only a deformation rather than a motion is necessary. The frames show
different iterations of refinement, smoothing and projection to the boundary of the
mesh generation process. The last frame is the reference mesh used in the generation
shown in Figure 9.7.
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Figure 9.7: Generation of an ellipsoidal ring. The figure shows the second part
of the generation process. We use the circular ring generated in Figure 9.6 as the
reference mesh. This one is evolved in time by a motion that sends the outer circle
to a vertically elongated ellipse and the inner circle to a horizontally elongated one.
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Chapter 10

Open Problems and Future Work

Some open problems are:

• Preconditioners. The important issue of iterative solvers for large linear

systems has not been addressed. Instead, a direct solver has been used for

the simulations. It is still an open problem the development of practical and

efficient preconditioner for the “basic” Willmore flow problem and related 4th

order problems, both geometric and coupled with fluids. The resulting systems

are extremely ill conditioned.

• Initial curvature. For the computation of the initial curvature of a poly-

hedral surface the method of gradient recovery has been proposed but not

tested. The present simulations rely on piecewise quadratic representation of

the surface which gives an acceptable, but not optimal, approximation of the

initial curvature. This is an important issue since sometimes piecewise linear

finite elements cannot get started.

• Divergence free velocities. The interpolation associated with the smooth-

ing techniques may cause that an originally discrete divergence free velocity

ends up having a non-zero divergence. In this case, the velocity should be

projected to the space of discrete divergence free functions. The extend of

this problem has not been fully checked, but seems to be minor with piecewise
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quadratic finite elements.

• Mesh generator. The proposed mesh generator has been tested with domain

topologies other than the sphere in 2d (see example of Section 9.3.3), but not

yet in 3d.

Some future directions are:

• Higher order time stepping. For the computations, a semi implicit Euler

scheme has been used for the time discretization. We believe using a higher

order scheme for time discretization will improve the accuracy and efficiency

of the computational method. Such methods have been used successfully for

the capillarity problem [Bän01].

• Optimal shape design. The computational tools developed in this thesis can

be applied to optimal shape design problems. We are currently investigating

the shape of an object that immersed in a Stokes fluid minimizes the drag.

Applications are ubiquitious in this field.

• Reaction-diffusion PDEs. Adding one or more reaction-diffusion PDEs on

the membrane may account for the formation of domains (different types of

lipids), line tension (interface within the surface), effect of surfactants and

director fields, etc. These are all quite interesting applications that couple

other physical and chemical effects to curvature, and are within grasp with

the computational tools developed in this work.
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