Implementation of
Rule Based Information Systems
for Integrated Manufacturing

by G. Harhalakis, C.P. Lin, L. Mark, and
P.R. Muro-Medrano

TECHNICAL
RESEARCH
REPORT

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 92-12

Implementation of
Rule Based Information Systems
for Integrated Manufacturing

G. Harhalakis, C.P. Lin, L. Mark

Systems Research Center
University of Maryland

P.R. Muro-Medrano

Electrical Engineering and Computer Science Department
University of Zaragoza, Spain

Abstract

This paper focuses on the development of a methodology within a software
environment for automating the rule based implementation of specifications of
integrated manufacturing information systems. The specifications are initially
formulated in a natural language and subsequently represented in terms of a
graphical representation by the system designer. A new graphical representation
tool is based on Updated Petri Nets (UPN) which we have developed as a specialized
version of Colored Petri Nets (CPN). The rule based implementation approach
utilize the similarity of features between UPN and the general rule specification
language used in the implementation. The automation of the translation of
UPN to the rule specification language reduces considerably the life cycle for
design and implementation of the system. The application presented here deals
with the control and management of information flow between Computer Aided
Design, Process Planning, Manufacturing Resource Planning and Shop Floor
Control databses. This provides an integrated information framework for Computer
Integrated Manufacturing (CIM) systems.

Index Terms — Rule base, information system, computer integrated manufacturing,
system modeling, knowledge verification, Petri nets, rule specification language,
reasoning, language translation.

1 Introduction

In a modern factory, besides parts being produced, there is also a tremendous amount of
data being processed. For an efficient operation, it is necessary not only to control the
manufacturing processes of products but also to manage and control the information
flow among all the computerized manufacturing application systems that exist in a
modern factory. The emphasis of most of the previous and current research projects
is placed on individual aspects of CIM, such as RPI [1] on developing a global database
framework, TRW [2] on synchronizing the interface between application systems and
distributed databases, and U. of Illinois [3] on developing a framework to perform common
manufacturing tasks such as monitoring, diagnostics, control, simulation, and scheduling.
Their approach aims at developing a generic CIM architecture, creating a global database
framework, or interfacing shop floor activities. However, the future in automation of
modern factories will be based on a distributed environment which needs not only a
generic database framework but also a controller, usually a knowledge rule-based system,
to control the relationships between activities within all the computerized manufacturing
application systems. Our approach is to develop such a control mechanism, in the form
of a rule based system, for managing the information flow among all the existing and new
manufacturing application systems, and to fill the gap between the high level production
management and the low level factory automation [4] [5]. A similar approach has been
used in [6] which, different from ours, emphasizes on the design of an integrated database
framework and lacks of a formal modeling tool for system validation and implementation.

As an example, an integrated manufacturing system with inter-related activities,
which have precedence constraints between each other, was developed based on this
methodology. The management and control of information flow is what differentiates our
work from others, whose primary objective is to develop a consistent database framework
or a standard communication protocol for data transformation. Our control mechanism,
accompanied by existing distributed database management systems as shown in figure 1,
can achieve a fully integrated manufacturing information system.

This paper presents a design methodology for transforming user specifications
(company policies and expert rules) into executable computer code to control the
information flow in a distributed environment with multiple databases. This methodology
reflects the procedure to build a knowledge base serving as the control mechanism. It
includes knowledge acquisition, graphical modeling, systematic validation and automated
implementation. It features an enhanced graphic modeling tool - Updated Petri Nets
(UPN) - which is capable of modeling database updates and retrievals, under specific
constraints and conditions, and uses a hierarchical modeling approach. The emphasis of
this paper is placed, however, on the automatic translation of the structural representation
(UPN) into a rule specification language, which facilitates the implementation stage and
reduces the design cycle of frequently changing rule-based systems.

o

A rule specification language is needed for the implementation of the system. There
exist a variety of programming languages and software development tools : LISP,
PROLOG, PASCAL, and C for general purposel programming purposes; OPS5 for
performing simulation, KEE for knowledge engineering, LOTOS (Language for Temporal
Ordering Specification) by the ISO, for specifying data communication protocols, services
and CIM system architectures, 7], and SAM by the National Institute of Standards
and Technology (NIST) in its Automated Manufacturing Research Facility (AMRE)
project for modeling data and activities in a manufacturing environment [8]. More recent
research has focused on object-oriented programming and database management systems,
which facilitate the development of new applications and improve system performance.
ROSE developed by the Rensselaer Polytechnic Institute [9] [10] and KRON (Knowledge
Representation Oriented Nets) by the University of Zaragoza [11] are some examples. The
Update Dependencies Language (UDL) [12] was selected for our implementation due to
the similarity of features between it and the UPN, and due to the advantage that UDL
is designed specially for rule specifications and data updates. It consists of a rule set
constructed for each separate database with its update and retrieval dependencies, to
control inter-database consistency through inter-database operation calls.

This paper is structured as follows. The second section presents the overall design
methodology of our INformation System for Integrated Manufacturing (INSIM), its
specifications and architecture, which is more extensively described in [5]. The third
section describes the Update Dependencies language used for the implementation of the
rule-based system. The fourth section details the implementation strategy, the translation
procedure, and provides examples of the automatic translation between UPN model and
UDL code, based on an example of a rule specification in the CAD/CAPP/MRP II/SFC
integrated system. The last section summarizes our conclusions with recommendations
for future work.

2 Knowledge Base Design Methodology

Our research, aiming at linking product and process design, manufacturing operations
and production management, focuses on the control of information flow between each
of the key manufacturing applications at the factory level, including Computer Aided
Design (CAD), Computer Aided Process Planning (CAPP), Manufacturing Resource
Planning (MRP 1I), and Shop Floor Control (SFC) systems. This linkage between
manufacturing application systems involves both the static semantic knowledge of data
commonalities and the dynamic control of functional relationships. The common data
entities, which form the basis of the integrated system, include: Parts, Bills of Material
in CAD, Parts, Bills of Material, Work Centers, Routings in CAPP, Parts, Bills of
Material, Routings, Work Centers, Manufacturing Orders in MRP II, Parts, Routings,

Work Centers, Manufacturing Orders in SFC. The functional relationships deal with the
inter-relationships of functions within those applications.

Our design methodology is depicted in figure 2 [5]. It starts from user defined rule
specifications - ‘0’, reflecting a specific company policy for the management and control
of information flow, which is then modeled using a special set of Colored Petri Nets -
UPN (Updated Petri Nets) and a hierarchical modeling methodology - ‘1’. The next step
is to convert the UPN model into a set of General Petri Nets (GPN) - ‘3’ - for model
validation purposes, and to feed the results back to the user to resolve (i) conflicting
company rules and (ii) errors introduced during the modeling phase - ‘4’. Once all
subnet, each representing a set of user specification, have been validated, they will then
been synthesized into a coherent net representing the integrated system specification -
‘2. After the integrated model has been validated, a parser translates the UPN model
into a rule specification language - ‘5’. The end result is a software package that controls
the data flow and accessibility between distributed databases. In short, the input is a set
of company rules and the output is an Al production system for controlling operations,
accessibility and updates of data within the manufacturing applications involved.

2.1 Knowledge Acquisition (Company Policy)

The design of the model is based on the information flow established between all the
manufacturing applications, namely CAD/CAPP/MRP II and SFC. The expert rules
embedded in the knowledge base are extracted from company expertise, which can be
obtained through a number of individual interviews and group meetings with experts
from all manufacturing application systems to be integrated, and managers responsible
for making company policy. Therefore, substantial effort may be required for gathering
all expert rules to form the knowledge based system. However, since we are here to
develop and demonstrate our design methodology, our prototype only includes limited
rules extracted from our own industrial experience and other industries involved with this
and other projects in the CIM Laboratory.

2.2 Structured Modeling of the Domain Knowledge

2.2.1 Evolution of Updated Petri Nets

Petri nets have been applied to most systems in representing graphically not only
sequential but also concurrent activities [13] [14]. Because of their mathematical
representation, they can be formulated into state equations, algebraic equations, and
other mathematical models. Therefore, Petri nets can be analyzed mathematically for
the verification of system models and are ideal for modeling dynamically and formally
analyzing complex dynamic relationships of interacting systems. Although Ggeneral Petri

nets initially adopted in this research can in principle handle the modeling of the domain
knowledge, it has become necessary to define more complex semantics in order to handle
the increasing complexity of it, due to the involvement of more applications and their
entities. Hence we have developed the Updated Petri Nets (UPN), which is a specialized
type of Colored Petri Nets (CPN) [15], and a hierarchical modeling methodology with a
systematic approach for the synthesis of separate nets. The use of UPN allows the model
designer to work at different levels of abstraction. Once we have this net we can selectively
focus the analysis and validation effort on a particular level within the hierarchy of a large
model.

An UPN is a directed graph with three types of nodes: places which represent facts
or predicates, primitive transitions which represent actions, and compound transitions
which represent metarules (subnets). Enabling and causal conditions and information
flow specifications are represented by arcs connecting places and transitions.

Formally, an UPN is represented as: UPN =< P, T,C,I~,I", Mo, I,, MT >, where:

1. P,T,C,I",I", M, represent the classic Color Petri net definition. They identify
the part of the information system that provides the conditions for the information
control. Only this part of the UPN net is used in the validation process. These
terms are defined as follows [15]:

e P={py,..,p,} denotes the set of places (represented graphically as circles).

o T = {t,...,tm } denotes the set of primitive transitions (represented graphically
as black bars).

¢« PNT =0 and PUT # 0.

o (is the color function defined from P |JT into non-empty sets. It attaches to
each place a set of possible token-data and to each transition a set of possible
data occurrence.

e I~ and I are negative and positive incidence functions defined on P x T,
such that I=(p,t),I"(p,t) € [C(t)ms — C(p)msly for V(p,t) € P x T,
where Syrs denotes the set of all finite multisets over the non-empty set S,
[C(t)ms — C(p)ms) the multiset extension of [C(t) — C(p)ms] and [...]z a
set of linear functions (although, any linear function is allowed in the general
color Petri net, only projections, identities and decoloring functions have been
used so far in our models).

e The net has no isolated places or transitions:
Yee P, 3teT: 1 (p,t)£0VIt(p,t)+#0and
VeeT, d3pe P: I (p,t)#£0VIt(p,t)#0

e M, the initial marking, is a funtion defined on P, such that:
My(p) € C(p),Vp € P. -

Attibute | Color set DB data type Description

weid WCID identification identification number

des DES text description

dep DEP text department

cap CAP integer capacity

sts MSTS {h,r} (hold, release) work center status code

ste MSTE | {na,av} (not avail., avail.) | work center state code

res RES text resource code

esd ESD date effectivity start date

Complete data structure for work centers in the MRP II database
Mwc(weid, des, dep, cap, sts, ste, res, esd)

Table 1: Data information.

2. I, is an inhibitor function defined on P x T, such that:
L(p;t) € [C(t)us — C(p)usle, V(p,t) € P xT.

3. MT = {mty,...,mt;} denotes the set of compound transitions (represented
graphically as blank bars); these are transitions which are refined into more detailed
subnets.

We have divided the representation of the domain knowledge in the following four
groups: Data, Facts, Rules, Metarules. Data and relations between different data are
used in relational database management systems. Facts are used to declare a piece of
information about some data, or data relations in the system. The control of information
flow is achieved by Rules. Here, we are considering domains where the user specifies
information control policies using ”if then” rules. Rules are expressed in UPN by means
of transitions and arcs. Metaknowledge, in the form of metarules, is represented by

net aggregation and hierarchical net decomposition (compound transition), and will be
detailed below.

An exarple, which represents the release of a work center in MRP 11, is explained in
natural language below and is modeled in UPN, as shown in figure 3. Invoking the work
center release transaction in MRP II triggers a set of consistency checks, which are as
follows: the WC L.D. provided must exist in MRP II with hold status; all the required
data fields should have been filled, and any data fields left out by users are requested at
this stage. If all these checks are satisfied, the system changes the work center status code
from ’hold’ to ’released’, and a skeletal work center record is automatically created in the
work center file in CAPP, with its status set to 'working’.

Data : In an information system environment, the user needs to refer to atomic data, and
establish relations between different data by structuring information into composed
data objects. UPN allows the specification of atomic and composed data objects.
As an example, let us suppose that a work center record in MRP II can be in one of
two different status: r (release), & (hold). An atomic data object is illustrated by

6

the status set: sts = {r, h}. Furthermore, composed data objects used in UPN are a
subset of the Cartesian product S; x S, x ... x S,,, where S; is a set of atomic data.
An example of a composed data object is illustrated by the work center relation
in MRP II with the record name as Mwec. Due to the specialized domain of this
representation schema and database update, a special syntax is used to identify
database relations: < R > (< A4; >,...,< A, >), where < R > is the database
relation and < A; > is the sth attribute of that relation. An example of the work
center relation in MRP 1II is listed in table 1.

Facts : Facts in UPN will be represented by places and these tokens in the places. The
fact asserted by one place is determined by the place name and its content (the
colors of tokens in it). We represent facts about a work center record in MRP II
with two places: EMwc, to describe the records that have been already introduced
in the MRP II database, and NMwec, which expresses the negation of this fact.
The UPN syntax of a fact within the database is < R > (< A4; >=< Val; >,...,<
A, >=< Val, >), where < R > is the database relation, < A; > is the ith attribute
of that relation, and < Val; > is the value or a corresponding variable of the :th
attribute. These facts can be seen in figure 3 where they are used to represent some
user specifications (places py, pq, ps, pa, Ps, N Mwe, EMwe, N Pwe and [Pwc).

Rules : Rules are expressed in UPN as the combination of two entities: transitions
and the arcs with their associated functions connecting the transition with its
input/output places. Arcs identify information flow and flow conditions. UPN
provide different types of arcs:

Enabling arcs are directed arcs which connect a place/action with a transition/rule
and define a precondition for the transition/action. They indicate which data must
mark each place in order to enable a transition, as well as which data must be
removed from that place on firing. In order to be closer to the formal view of the
net, let us focus for example on transition ¢s in figure 3. Firstable, the color sets for
the involved places and transitions must be identified:

C(EMwc) = MWC = WCID x DES x DEP x CAP x MSTS x MSTE x RES x ESD
C(NPwc)=WCID

C(EPwc)= PWC =WCID x DES x DEP x PSTS

C(ps) =WDDCS =WCID x DES x DEP x CAP

C(ts) = MWCSDD = WCID x DES x DEP x CAP x MSTE x RES x ESD x DES x DEP
Color sets WCID , DES, DEP,CAP,MSTS,MSTE,RES, ESD, PSTS are as specified in table 1.

Functions in I~ and It are defined in terms of lambda expresions having the form
f(e) = A(V)exp(c), where ¢ € C(t). For transition t5,V and ¢ € MWCSDD can
be represented as follows:

V = weid#, des0, dep0, cap#, mstel, res0, esd0, des#, dep# and

¢ = wcid, deso, depo, cap, msteo, reso, esdo, des, dep

-1

The enabling arcs for t5 are:

weid

o I~(t5,ps):exp= j:;ji , A(V)ezp € [MWCSDDprs — WDDCSps), such that

cap#
A(V)ezp(c) = weid, des, dep, cap
. I}:(ts,EM'wc) texp = [weid = weid#t |, A(V)ezp € [MWCSDDys — MW Cars), such
that
A(V)exp(c) = weid, despo, depo, —, —, msteo, reso, esdo
e I~ (t5, NPwc):exp = [weid#] , A(V)exp € [MWCSDDys — WCIDys), such that
A(V)ezp(c) = weid

Causal arcs are directed arcs which connect a transition/action with a place/fact
and define a post-condition for the transition/action. Causal arcs describe
modifications to be performed to the state of the net when a transition/rule is
fired, and more concretely, they indicate which colors must be added to a place on
firing. For example, these are the causal arcs for transition t5 :

[weid = weid#
des = des#t
o I*(t5, EMwec) : exp = dep = dep# AWV)exzp € [MWCSDDprs — MWCys), such
cap = cap#
sts=r
that
A(V)exp(c) = weid, deso, depo, cap, v, msteo, reso, esdo
[weid = weid#
des = d
o I*(ts, EPwc) : exp = d:;: dZ;ﬁ A(V)ezp € []V‘IWC'SDDMS — PWCys], such
sts = w

that
A(V)ezp(c) = weid, des, dep, cap, w

Checking arcs indicate which data must mark each place in order to enable a
transition but not remove data. It can be represented as an enabling and causal
arc together. The arcs connecting EMwec and ¢4 is an example being shown in
figure 3. Additional predicates can be attached to the transitions which represent
additional conditions applied on the values of variables used in the surrounding arcs.
For example: a predicate, cap# < 1000, may be attached to transition t4 to assure
that the capacity entered by the user is within a valid range.

Metarules : Metaknowledge and hierarchical net descriptions are represented by
Metarules (expressed by compound transitions of the UPN) and mainly used in
UPN as a mechanism to define subnets. They are used in two different directions
to allow a structural and hierarchical composition of the domain knowledge:

8

I- 12,1 2,2 23 12,4 2,5
E WCID MWCS MWCSC MWCSDD
NMwc | WCID 0 [wcid#] 0 0 0
werd = weid#
wcid = weid# des = des . .
EMwc MWC 0 0 sts =1 :l [dep = depj; [wetd = werd#]
sts=h
NPwe | WCID 0 0 0 0 [weid#]
EPwc PWC 0 0 0 0 0
P2,1 E abs 0 0 0 0
P2,2 WCID 0 [weid#] [weid#] [weid#] o
P2,3 WCID 0 0 0 0 0
P2,4 WCID 0 0 0 0 0
werdH#
des#
P2,5 wDDC 0 0 0 0 [depdt :l
cap#

Table 2: Negative incidence functions.

Horizontal metarules relate rules at the same level of abstraction and allow the
aggregation of rules under specific criteria. For example, the relationship of rules
shown in figure 3 is a horizontal metarule. The formal representation of that subnet
is specified by its incidence functions shown in tables 2 and 3, where:

E = {¢}
MWCSC =WCID x DES x DEP x CAP x MSTE x RES x ESD x DES x DEP x CAP
WDDC =WCIDx DES x DEP x CAP

Vertical metarules establish relationships between one rule and other rules which
define knowledge at a lower level of abstraction and allow the structure of rules to
form an abstraction hierarchy.

A UPN consists of all the features described above and is currently used to represent
the rules of the domain knowledge for manufacturing integration. The behavior of it is
based on the firing of the transitions both sequentially and concurrently. A transition,
which has in all its input places tokens satisfying the corresponding arc expressions and
the predicates of the transition, is enabled and is subjected to be fired (executed). The
results of firing one transition are the removal of tokens corresponding to the enabling
arc functions from its input places and the addition of tokens corresponding to the causal
arc functions to its output places. However, the tokens corresponding to the checking
arc remain unchanged.

An example of transition firing is shown in figure 3. Transition t4 is enabled if there
exists one token in place p, with the color of wecid# and one token in place EMwc with
the color Mwe(weid = weid#,sts = h). After the firing of this transition, one token
with the color of wcid# will be removed from place p; and one token with the color of

weid#, des#, dep#, cap#, sts#, ste#, res#, esd# will be added into ps.

I+ 3,1 2,2 23 i25 3 4

E WCID MWCS MWCSC MWCSDD
NMwe | WCID i [weid] 0 0 0
weid = weid# w;:: f :;Ie(z;i#
EMwe | MWGC 0 0 wetd = wetd#] des = des# dep = dep#
sts=r dep = dep# cap = cap
sts=h st: :; r
NPwe | WCID 0 0 0 0] 0)
[weid = weid#)
des = des#
EPwc PWC 0 0 0 0 dep = dep#
cap = capF
L sts == w
P21 E 0 abs 0 0 0)
p2,2 WCID | [wcid#] o] 0 0 0
P2,3 WCID 0 [weid#] 0 0 0
p2,4 WCID 0 0 [weid#] 0 0
wetd#
pss | WDDC | o0 0 0 { jz;ﬁ } 0
cap#t

Table 3: Positive incidence function.

2.2.2 Hierarchical Modeling Approach

Generally speaking, any ”company policy” starts from the specification of general global
rules which describe aggregate operations for a given entity within the system. These rules
are then further refined into more detailed specifications on a step-by-step basis, until no
aggregate operations are left. In an attempt to assimilate this concept, a hierarchical
modeling method using UPN has been developed, which allows the system designer to
start from abstract global nets and continue with successive refinements until the desired
degree of detail has been reached. In addition, company policies are usually provided for
one entity at the time. Hence, a technique is needed to synthesize all scenarios to form a
coherent net representing the unified company-wide policy for all entities in the system.

Some work in hierarchical representations using Petri nets has been done for various
applications [16], [17], [18], [19]. A hierarchical modeling methodology facilitates the
modeling task, and it incorporates:

Top-down stepwise refinement technique for the modeling of each scenario from
an abstract and aggregate level to a detailed level. This approach necessitates
the development of new Petri net modeling entities which include two types of
transitions as mentioned in the previous section; one to represent primitive rules,
and the other to represent metarules which can be further refined into subnets. The
connections are represented by calls from one compound transition of the net at the
abstract level to the subnets at the more detailed level, and an example is shown in
figure 4. The transition, where the call was made, is formed by a calling net which
contains one input transition (ti), one waiting place (pw), and one output transition

10

(to). There are, for each subnet being called, an arc connecting the input transiton
and that subnet, and a returning arc back to its output transition. The interface
between the input transition and the subnet being called is a place, representing
the initiation of the subnet. The interface between the output transition and that
subnet is a place, representing the satisfaction of the subnet.

Synthesis technique for synthesizing separate nets, which represent different scenarios
of the system, to form a coherent net. Our modeling approach is capable of
incorporating the modeling of the databases of the manufacturing application
systems involved, using UPN, by defining the database states as global variables.
We interface the application procedures (company policy) through the default
modification procedure (system dependent) and places representing database states,
and we synthesize nets through them systematically. More details can be found in

[5]

2.3 Knowledge verification

One of the major objective of creating a KBS using Petri nets is the ability of validating the
KBS mathematically and systematically. Completeness (dead-end rules, unfirable rules),
consistency (redundant rules, subsumed rules, under-constrained rules), and conflicts, are
the major issues in knowledge/rule validation [20], [21]. The incidence matrices of Petri
nets representing the rule base can be used to perform some of these validation checks and
verify them with the aid of specific domain knowledge. Several other analysis techniques
for Petri nets, including, reachability trees, behavioral nets, and net invariants, are also
used [14] [22]. The net invariants, which represent mutually exclusive conditions within
the "company policy”, can reveal logical conflicts in the specification of the original rules
and possibly errors introduced during the modeling process. The reachability tree can be
used to detect any deadlocks or inconsistencies in the model. The behavioral net can be
used to detect redundancies in the net and is a useful tool for reducing the complexity of
the model. The programs for computerizing these analysis methods have been developed
and applied extensively. Some reduction rules [23] have also been investigated for reducing
the complexity of nets prior to the analysis phase [5].

However, these analysis techniques were initially developed for Generalized Petri Nets
(GPN), and do not apply to Colored Petri Nets (CPN), since the latter are characterized
by a great diversity of linear functions that are associated to their arcs. Therefore, analysis
algorithms for GPN that use integer matrices are not applicable to CPN. To overcome
this obstacle, we have taken the approach of unfolding UPN into GPN before they are
analyzed [5].

11

2.4 Implementation

We have adopted a fairly new concept in systems integration, known as database
interoperability. It is being realized through the development of the Update Dependency
Language (UDL) in the Department of Computer Science, at the University of Maryland
[12]. Database interoperability can be described as the concatenation of the schemata of
each of the databases of the application systems, along with a rule set constructed for
each separate database, called update dependencies. These update dependencies control
inter-database consistency through inter-database operation calls. We propose the use of
UDL as a special rule specification language, to be used for the implementation of our
Knowledge Based System. The specifications of UDL and its features are described in the
following section 3.

3 The Update Dependency Language, Syntax and
Semantics

The Update Dependency Language (UDL) is a means to specify and control the semantics
of a database under update. A set of update dependency procedures give a declarative
operational specification of an update of a relation in terms of a set of alternative sequences
of implied updates of the relation, and possibly of other relations, and specifies the
conditions under which the implied updates must succeed for the original one to succeed.

The syntax and semantics of the language are formally presented in the following
subsections. In section 4, in addition to the translation algorithm from UPN to UDL, we
provide a number of examples of how the scenario used throughout this paper is translated
into the formalism presented here.

3.1 UDL Syntax

For each relation and view defined in a relational database, the database designer defines
procedures for the three database modifications: insertion, deletion, and update. In
addition, a set of application procedures for each relation may be defined, or as is the
case in this paper, automatically generated by the translation from UPN to UDL.

Procedures have the following form:

OR(Ay = Vi, .., Aw = Vi Ay = Wh, ooy An = Wa))
— 1701,17'“’01,71.1'

— Cm, Om,17 cery Om,nm-

where [] indicates an optional element.

A procedure is uniquely identified by its operation type O and the name R of the base
relation or view for which it is defined. The type of a modification procedure is either
insert, delete, or update; the type of an application procedure is a user-defined name.
The formal parameter list, required for all procedures, binds the values of relation R’s
attributes A; to the variables Vi, 1 <1 < n. The replacement parameter list, used only
in update procedures, binds the replacement values for relation R’s attributes A; to the
variables W;, 1 <1 <n.

As an example, an application procedure named release, is applied on the work
center relation in the MRP II database and involves two modification procedures: insert
and update. The example of releasing a work center record in MRP 11, is shown in figure
5 and discussed in detail below.

The body of a procedure consists of a set of procedure alternatives, each with the
elements:

- a condition C;, 1 <1 < m, on the database state; and,
- a sequence of procedure invocations O;1,...0; »,, 1 <7 < m.

Conditions are safe expressions formed through conjunction and negation of the
following atoms (parenthesis are used to alter the default precedence of operators):

o Tuple existence tests with the form, R(A; = Vi, ..., Ay = V), where R is the name
of any base relation or view defined in the database, A4;, 1 <1 < k, are attribute
names of R, and V; , 1 < i < k, are constants or variables. The relation, Mwc, used
in the above example represents the work center record in MRP II database and
it contains the following attributes: wecid, des,dep, cap, sts, ste,res,esd. A tuple
existence test evaluates to true if there exists at least one tuple in relation (or view)
R, such that, for every instantiated variable V;, the value of attribute A; is equal to
the value of V. A test of the existence of a work center record in MRP II with work
center identification number Weid, would have the following form:
Mwc(wecid=Wcid,des=Des,dep=Dep,cap=Cap)

Every uninstantiated variable V;, in this example Des, Dep, and Cap, will be
instantiated as a result of the evaluation. The instantiated variables act as selection
values and the uninstantiated variables act as either join or return value variables.
Similarly, the tuple non-existence tests are reprepresented in the following form:
~ R(A; = V},..., Ar = Vi). A test of the non-existence of a work center record in
MRP II is shown in the above example as:

~ Mwc(wcid=Wcid).

e Comparisons of the form, X § Y, where 6 is a comparison operator (<, <, =,>,>)
and X and Y are constants or variables. A comparison evaluates to true if the

13

algebraic relation # holds between X and Y.
¢ The empty condition. It always evaluates to true.

e Negative or positive variable instantiation tests with the form, var(V;) or nonvar(V;),
where V;, 1 <1 < n, are variables introduced in the head of the procedure. The
negative instantiation test evaluates to true if the variable V; is not supplied in the
invocation of the current procedure. The positive instantiation test evaluates to
true if the variable V; is supplied in the invocation of the current procedure. In
the above example, var (Weid) and nonvar(Wcid) are used to test the negative and
positive instantiation of the variable Wcid.

¢ FEzistential quantification, exists V4...V,, C. An existential qualification evaluates to
true if there is at least one substitution of values V;, 1 < ¢ < n that satisfies the
sub-condition C, which cannot contain any instantiation tests. There must be at
least one occurrence of each V; that is free in C.

Procedure invocations have one of the following forms:

e an application procedure invocation has the form: (e; and f; are values of the
respective attribute)

< user defined name > R(A, = ey, ..., Ax = ex[; Ay = f1, ..., Ak = fi]).
In the above example, the application procedure involved is:

release Mwc(wcid=Wcid,des=Des,dep=Dep,cap=Cap)

o insertion and deletion procedure invocations have the forms:
nsert R(A; = ey, ..., Ax =€) and delete R(A; = ey,..., Ay = e}), respectively.
In the above example, the insertion procedure involved is:

insert Pwc(wcid=Wcid,des=Des,dep=Dep,cap=Cap,sts=w)

e update procedure invocations have the form:
update R(A; = ey, ..., Ay = ex; A1 = f1, ..., Ar = fi).
In the above example, the update procedure involved is:
update Mwc(wcid=Wcid,sts=h;wcid=Wcid,cap=Cap,sts=r)
o physical insertion, deletion, and update invocations have the forms:
ins R(A; = ey, ..., An = e,),

del R(A; = ey, ..., A, = e,), and
U,pd R(Al = 617"'7A71 = €n; Al = fls-"vAn = fn)

14

e primitive i/o operations for read and write, and the operation fail are also included
in the update dependency formalism.

In the above example, the primitive i/o operations involved include:

write(’Enter wcid’)
read(Wcid)

The procedure abstraction/encapsulation hierarchy enforced by the syntax of the
update dependency formalism is illustrated in Figure 6. There are three levels in
the hierarchy. The bottom level corresponds to the physical operations; the middle
level corresponds to the modification procedures; and the top level corresponds to the
application procedures. Notice that physical insertion, deletion, and update invocations
on a base relation R are only allowed from insertion, deletion, and update procedures on
R, respectively.

Notice that physical insertion, deletion, and update, ins, del, and upd, respectively, on
a relation R can only be invoked from within insertion, deletion, and update procedures
on the relation R, respectively. Furthermore, physical insertion, deletion and update,
are not available on views; procedures for views are specified through the invocation of
insertion, deletion and update procedures on the base relations the views are defined from.
Finally, procedures may call each other and may call themselves recursively.

In the algorithm and examples in section 4, we utilize the procedures at the application
and modification procedure levels only; we assume that the DBMS has provided the
implementation of modification procedures, which work as the corresponding physical
operations. In other words, we have assume that procedures insert,.delete, and update are
working as operations ins,.del, and upd, respectively.

3.2 UDL Semantics

The execution of a procedure can be depicted by an AND/OR graph. The AND nodes
are those whose executions are tied together by an arc; the OR nodes are those whose
executions are not tied together by an arc. Each execution of an OR node represents the
execution of one procedure alternative. The ordered sequence (left-to-right) of executions
of an AND node represents the execution of the elements of one procedure alternative; the
first represents the evaluation of the condition, and the following represent the executions
of the invoked procedures. A ROOT node represents the execution of a user-invoked
procedure. A LEAF node represents the evaluation of a condition, the execution of a
physical insertion, deletion or update, or the execution of an i/o operation. An OR node
succeeds if one of its executions succeeds. An AND node succeeds if the evaluation of its
condition returns the value TRUF and the execution of each of the procedures it invokes
succeeds.

135

When a procedure is invoked, then its formal parameters are bound to the actual
parameters. The scope of a variable is one procedure. Conditions are submitted to the
database system as queries, thus the order of evaluation of atoms is determined at run-
time. The evaluation of a condition returns the value TRUEFE if the query corresponding
to the condition returns a non-empty result; existentially quantified variables are bound
to values that satisfy the query.

The execution of a physical insertion, deletion or update, and the execution of an i/o
operation always succeed.

The selection of execution of procedure alternatives is non-deterministic and executions
of procedure alternatives may be done in parallel. However, the effects of only one of the
alternative will be seen when the procedure succeeds. Furthermore, while an alternative
is executing, it will only see database updates that have occurred on its execution path; it
will not see database updates from other alternatives that might be executing in parallel.
If a procedure execution fails, i.e. none of its alternatives succeed, then the database is
left completely unchanged by the procedure invocation. Conditions are submitted to the
database system as queries, as mentioned above.

4 Translation of UPN to UDL

In this section, we focus on the implementation of the user specifications. Once we have
a structured and formal view of these specifications, we need to translate them to an
execution language. Starting with an UPN we attempt to create a program capable of
satisfying all specifications represented in that net.

User specifications do not necessarily need to be concerned with some problems which
are already managed by the existing computer software technology. For example, database
management systems are capable to deal with problems related to the concurrent access
to the database; furthermore, if one update operation can not be successfully completed
no part of that operation is performed. Therefore, these issues need not be part of the
model.

This section describes first the translation of particular features of UPN to UDL, then
proposes the translation procedure, and finally demonstrates the generation of UDL codes
with examples.

4.1 Data in UPN as UDL Relations

The information flowing through an UPN net can be atomic data, although this atomic
information can be aggregated into more complex data structures.

Atomic data and its data set can be translated to UDL as domains. For example, the

16

data set of a work center status in MRP II (which can have only two different values, A for
hold, and r for released: ST'S = {r,h}) is represented in UDL by a domain of character
type.

In UDL data structures are defined by a relation name and a tuple of data, which
correspond to specific attributes specified in UPN:

R(A;, = Vi, ..., Ay = V).

An example of a work center record in MRP II in the form of a UDL relation is shown
below. It represents a work center 1t101 (wcid) which is a lathe (des), located in the
machining (dep) department, having h(hold) status (sts), na(not available) state (ste),
null(unknown) capacity (cap), M12 resource code (res), and null(unknown) effectivity
start date (esd). (It is reminded that general work center record in MRP II is represented
as ch(wcid,des,dep,cap,sts,ste,res,esd)):

Mwc(wcid=1t101,des=lathe,dep=machining, cap=null,sts=h,ste=na,res=M12,esd=null)

4.2 TFacts in UPN as UDL Conditions

In order to verify whether a rule is enabled or not, it is necessary to verify that the
precondition part of the rule matches with the status information in the system. Status
information is represented by UPN places and their marking. Access to that information
is specified in UPN by means of arcs and arc expressions.

Two different types of status information can be distinguished: information about the
database status and information about the reasoning process status.

Database status : Requires access to a database record and reading the values of its
attributes. This is implemented by using the UDL relational form where the record
is identified by the record id number.

For example: In figure 3, the database check of work center It101 with a hold status,
corresponds in UPN to an arc from the place £ Mwc of the MRP II database, with
the function weid = [¢101,sts = h. This is translated into UDL in the same form:
Mwc(weid=1t101,sts=h)

On the other hand, the non-existence of the work center lt101 corresponds to the
UPN place NMwc of the MRP II database, with the function weid = 1t101; this can
be translated into the UDL form of: ~ Mwc(wcid=1t101)

Reasoning process status : Generally corresponds to the states of an UDL application
procedure. For example, places p; to ps in figure 3.

17

4.3 Database Related Arc Conditions in UPN as UDL
Checkings and Modification Procedures

The next step in the translation process is to identify UPN elements, which correspond to
arc conditions directly relating to database places, in order to translate them into UDL
elements. They are translated into UDL checking conditions or modification procedures
to access or modify the database. These elements are identified as follows:

e Checking a record. In UPN form, the database check is represented by a pair
of input and output arcs, which have the same arc expression, linked between a
transition and a database place. The check is implemented, as mentioned before,
for database access. The case of a database place representing the non-existence of
the record is implemented using the UDL negative form. For example, transition t3
in figure 3 has two arcs to and from place EMwc (in the MRP II database) with
the same arc expression: wcid = wcid#, sts = r. This is translated into UDL form
as:

Mwc(wecid=Wcid, sts=x)

¢ Inserting a record occurs when there is an arc from a database place to a transition
which represents non-existence of a record, and another arc from the transition to a
database place representing the existence of the same record. It is implemented using
the UDL modification procedure insert(< relation name >(< tuple spec >)).
For example, transition ¢5 in figure 3 has one arc from place N Pwc and one to place
EPwec (in the MRP II database) with the arc expression Pwe(weid = weid#, des =
des#,dep = dep#,cap = cap#, sts = w). This is translated into UDL form:

insert Pwc(wcid=Wcid, des=Des, dep=Dep, cap=Cap, sts=w)

e Deleting a record from the database can be recognized when an arc stems from a
database place representing the existence of a record to a transition, and another
arc stems from the transition to a database place representing the non-existence
of the same record. It is implemented using the UDL modification procedure:
delete(< relation name >(< tuple spec >))

e Updating a record in the database can be recognized when an arc stems from a
database place representing the existence of a record to a transition, and another arc,
in the reverse direction, but with a different function. It is implemented using the
UDL modification procedure update (< relation name >(< old tuple spec >;[<
new tuple spec >])). For example, transition ¢5 in figure 3 implies an update to
the record Mwec (in place EMwc) in the MRP II database that is translated into
UDL form as:

update(Mwc(wecid=Wcid;wcid=Wcid,cap=Cap,sts=r))

18

4.4 Requesting/Printing Information in UPN as UDL
Primitive i/o Operations

The next step is to identify UPN elements, which correspond to arc conditions
directly relating to information input/output, to translate them into UDL i/o primitives
operations. Thus requesting information from or printing information to the user can be
achieved. The primitive operations are identified as follows:

¢ Requesting information from the user. This is detected when a transition is a
source transition, where some information that is leaving the transition through the
outgoing arc(s) did not enter through any incoming arc(s). This new information
must be requested from the user. It is implemented using the UDL primitive
operation read (< domain variable >). For example, transition ¢; if figure 3 does
not receive information from place p;. Instead one needs to provide a work center
identification number in the variable weid#. This information must be provided by
the user and is implemented by:
read (Wcid)

For better legibility, a message like the following can be printed to prompt the user:

write (’Input the value for the variable wcid’)

e Printing a message to the user. This is detected when sink places appear in the
net. Some information arrives at such a place through the incoming arc(s), but
does not leave the place through any outgoing arc(s), generally because it has no
outgoing arcs. This information must be shown to the user. It is implemented
using the UDL primitive write(’ < place label text >’ ,< domain wvariable >).
If there is no domain variable, the label identifying the place is shown as write(’<
place label text >’). The last option may be used to show single error messages.
For example, place py in figure 3 is translated as an error message for the work
center identification provided in variable wecid#:
write(’Output in P4 for data: ' wcid#)
or, if the place has an associated label:

write(’work center already exists:’ wcid#)

4.5 Rules and Metarules as UDL Procedures

The following step corresponds to the translation of the transition set itself. UDL
procedures provide a very powerful mechanism to represent if-then rules (transitions). As
a first approach, each transition of an UPN net could be easily implemented by a separate
UDL procedure. This approach for the translation of transitions is general and simple but
it presents several problems. An important problem is that some additional local variables
are required to represent the completed firing of each transition within the transition set.

19

Secondly, the approach does not make use of some important programming capabilities
available in UDL, such as the use of procedures (application rules), and recursion. This
would result in an inefficient implementation.

For example, in order to implement transition 3 from figure 3 as a composed operation,
we need a new variable, varP2, to test if the value Wcid is in place P2 =

Release~Transition-t3 Mwc(wcid=Wcid,sts=Sts)
— (varP2 = Wcid) A Mwc(wcid=Wcid,sts=r),
write(’Work center already has ’’r’’ status in MRP II’).

On the other hand, UDL provides a way to implement a set of related rules in the
form of a composed rule. Also, procedures and procedure calls are typical decomposition
mechanisms used in UDL programs and recursion is also available. Finally, UPN allows for
a horizontal aggregation of related transitions that belong to a subnet. As an alternative
to the first approach, our strategy is to implement a set of related rules as one UDL
procedure. UDL procedures are used to represent subnets at any level of abstraction. It
is no longer necessary to use additional local variables (other than the formal parameters
of the procedures) to implement the transition status of the net execution.

To take all of these features into account, we follow what we call an information
driven approach. The purpose of the integrated manufacturing information system
is to collect some information which is used to affect the external world or the system
itself. This means that in each context (scenario) transitions can be differentiated by the
information they require and the information they provide. Parameters of the procedure
reflect the information that may be needed in a context. Using the UDL negative var or
positive nonvar variable instantiation tests, the availability of this informationm can be

checked.

However, only one transition is executed in each operation call. A situation in which
the outgoing arcs of a transition go to places internal to the subnet, which means that the
subnet will continue firing the other transitions, is implemented by making a recursive
call to the UDL procedure (subnet). Therefore, successive transition executions are made
by recursive calls to the same procedure. We need to identify when the recursive call
sequence has finished. This happens when none of the other transitions in the subnet can
be enabled by the output of the firing transition. We can identify this by determining
when the outgoing arcs of a transition do not connect to internal places (places can enable
the other transitions within the subnet).

Procedure parameters transfer data from one call (transition execution) to the
following one. The actual parameters sent in each recursive call correspond to the
information that is transmitted to the postconditions of the transition being executed.

We need now to discuss the problem of how to deal with conflicts in the net (for
example when two or more transitions are simultaneously enabled). This problem is
solved by making use of the UDL alternative procedure capability, presented in section 3.2.

20

Conflicts are resolved by identifying a successful path, through trying different evolution
alternatives which correspond to different transition firing sequences. Although this may
appear as an “ad hoc” solution, it is sufficient for our problem domain.

4.6 Translation Procedure

The translation of UPN to UDL can be seen as another special ”implementation” of Petri
nets, specific for this application domain. This implementation of UPN is simpler than the
implementation of a generic colored Petri net, due to the added constraints imposed by
UPN over the general Petri net formalism. Examples of such added constraints include:
the variety of preconditions that are highly constrained, rules that are supposed to be
well structured in metarules, specifications that are related to a manufacturing database
domain. The overall purpose of the translation procedure is to generate an eflicient code
in UDL, the language in which the specifications will be executed. To start the translation
procedure, the UPN model must be provided. The procedure for translating one subnet
into a piece of UDL code is detailed as follows:

Generate a UDL procedure heading, based on the UPN metarule name (< O >) and
its corresponding database relation (< R >). The set of attribute names to be included
in the formal parameter list of the procedure is defined by the set of all attribute names
that appear in the arc expressions of the subnet (A, ..., A,;). The procedure head is:
<O><R>(A =WV, Am = Vi),
where (Vi,...,V,,) is the set of formal variables for which the values of attributes,
Ay, ..., A, from the relation < R > are bound (these variable names can be the same as

those in the UPN model).

One UDL procedure is composed by several alternatives, one for each transition in the
metarule subnet. The following steps must be taken for each transition.

1. Conditions for alternatives (preconditions of transitions) are defined by incoming
arc(s) to a transition:

(a) Recognize checking UDL elements, as explained in section 4.3. The
conjunction of these checkings is a precondition for the procedure alternative:
<R>(An=Vp, ., A4 =V,)

(b) Find positive variable instantiations by looking at the variables in the arc,
expressions from the incoming arcs which do not belong to the database
checkings recognized above (Vari,...,Var;), and generate a positive variable
instantiation test for each one. The conjunction of these tests is another
precondition:
nonvar(V;) A ... A nonvar(V;)

21

(c) The rest of the formal variables have negative instantiations. Only variables
representing attributes that provide information to the output places and are
not coming from the input places (V,...,V,) must be checked. A negative
variable instantiation test must be generated for each of them. The conjunction
of these tests is another precondition:
var(Vz) A ... A var(Vy)

2. Operations for alternatives (postconditions of transitions) are defined by outgoing
arcs from a transition. Each one of the following steps can produce new operations:

(a) Recognize input and output UDL elements, as explained in section 4.4. For
each variable, that needs to be provided from the user, generate the appropriate
input sequence (< Text V, > that corresponds to the interpretation of the
attribute name bound by V, in the database record tables):
write(’Enter < Text V, >’), read(V,),

For each output variable generate: write(’ < place label text >’)

(b) Recognize deletion, insertion and update UDL modification procedures, as
explained in section 4.3 and generate the appropriate invocations:
delete(< relation name >(< tuple spec >))
insert (< relation name >(< tuple spec >))
update(< relation name >(< old tuple spec >;[< new tuple spec >]))

(c) Write the calls for all UDL application procedures associated with the
transition. The recognition of UDL application procedure calls is based on
the discussion in section 2.2.2.

(d) Generate a recursive call, if any of the transition’s output places, which is not
a database place, is an input place to any othertransition within the subnet.
Only the variables (V;, ..., V;) which are used in the outgoing arc expressions,
that connect to the output places mentioned above, are used in the parameter
list of the procedure call.

<O><R>(A=V,.,A =V))

4.7 Generation of UDL Code

The implementation of the knowledge based system is based on the translation from
the UPN subnets (which are designed, validated, and refined according to the system
specifications collected) into UDL code. There are two types of UPN subnets to be
translated: the first, a single-procedure subnet which involves only one application
procedure; the second, a multi-procedure subnet which involves more than one application
procedure with procedural calls among subnets. Each application procedure has to be
translated into one UDL code, following the translation procedure discussed in section

o
o

4.6, including the application procedure calls in the second case. Examples of translations
for both single-procedure UPN subnets and multi-procedure UPN subnets are detailed in
the following sections.

4.7.1 Example of Translating a Single-Procedure UPN Subnet into one UDL
Procedure

In order to clarify the translation procedure, we return to the example shown in figure 3,
which was used to illustrate the creation of UPN models described in section 2.2.1. This
net is simple because it does not require further refinement to create additional subnets.
The goal now is to translate the UPN representation to the respective UDL code.

The name of the UPN is 'release Mwc’ and the corresponding database records - work
center record in MRP II and work center record in CAPP - are described below (a more
detailed description of Mwec is given in table 1):

Work center record in MRP II: Mwc (wcid,des,dep,cap,sts,ste,res,esd)
Work center record in CAPP: Pwc (wcid,des,dep,cap,sts)

Translation procedure

1. Procedure heading generation:
< O >+« release (metarule name)
< R >« Muc (corresponding database record)
Attribute names that appear in the arc expressions are: weid, des, dep, cap, sts
and their corresponding variables (wcid#, des#, dep#, cap##) are modified into the
following UDL variable syntax: Weid, Des, Dep, Cap.
The procedure heading becomes =

release Mwc (wcid=Wcid, des=Des, dep=Dep, cap=Cap)
2. Conditions for the alternatives:

t1 There is no connection with database places (rows NMwc and EMwc in I~
and I are 0). This means there is no checking of the database. The column
of transition ¢, in I~ shows that there is only one incoming arc connected
with place p; with no variables attached to the arc expression. This means
that no positive variable instantiations are needed. The rest of the variables
(Wcid, Des, Dep and Sts) have negative instantiations; however, the column
of transition ¢; in I™ shows that there is only one outgoing arc connected with
place p, with arc expression wcid#. This means that in the incoming arcs
to the transition a work center identification number (variable Wcid) was not
provided, but will be provided to the outgoing arc. In order to reduce the code,
only this test is really needed: var(Wcid). The complete condition part is =
var(Wcid)

23

to It has incoming and outgoing arcs to NMwc (MRP II database) with the same arc
expression Mwc(wcid = wcid#). This is a checking for the non existence of Muc
with that specific work center identification number = ~Mwc(wcid=Wcid).
It has another incoming arc with wecid# from p, providing the work center id.
information this must be checked for positive instantiation == nonvar (Wcid).
There is no more outgoing information for the arc because the arc expression
to place p; has no variables. This means that no negative instantiation test
is necessary. The complete condition part is the conjunction of these two
conditions =

nonvar (Weid) A ~Mwc(wcid=Wcid)

t3 Similarly, the complete condition is ==

nonvar(Wcid) A Mwc(wcid=Wcid,sts=r)

t4 Similarly, the complete condition is ==
nonvar(Wcid) A var(Cap) A Mwc(wcid=Wcid,des=Des,dep=Dep,sts=h)

ts Similarly, the complete condition is =
nonvar{Wcid) A nonvar(Des) A nonvar(Dep) A nonvar(Cap) A
Mwc(wcid=Wcid, sts=h)

. Operations for the alternatives:

t; Column ¢, from I~ and IT shows that variable wcid# needs to be requested

(there are no incoming variables and variable wcid# is outgoing) =
write{’Enter wcid’),
read(Wcid),
No other UDL elements (output, deletion, creation or update) can be
recognized. However, transition ¢; has an output place, p,, which is an input
place to transitions, 5, t3 and t4. This means that the reasoning process is not
completed yet and a recursive call is required. The parameters of this call are
the ones required by the outgoing arcs (in this case only Weid) ==

release Mwc(wecid=Wcid)

t, An output primitive can be easily recognized here: place p; is an output place
(or a sink place), thus the information in the arc expression, wcid#, and the
text associated with the interpretation of p; must be displayed ==
write(’Work center ID does not exist in MRP II, enter again’, Wcid),

As before, a recursive call is required, in this case with no call parameters (arc
expression outgoing to place p; has no variables) =

release Mwc()

t3 Only an output statement is needed to display the information in the arc
expression, wcrd#, and the text associated to the interpretation of py =
write(°Work center alréady has ’’r’’ status in MRP II’, Wcid),

24

No new call is needed because the output place ps is not connected to any
other transition.

t4 The input for variable Cap is required and then a recursive call is made with the
information for the wcid, des, dep, cap and sts parameters =
write(’Enter capacity’),
read(Cap),
release Mwc (wcid=Wcid,des=Des,dep=Dep,cap=Cap).

ts An update modification procedure can be identified because there is an arc
coming from the database place EMwc with a different function (Mwc(weid =
wcid#)) to the one that is going back to EMwe (Mwc(werd = weid#, des =
des#,dep = dep#, cap = cap#,sts =r)) =
update Mwc(wcid=Wcid,sts<h;wcid=Wcid,cap=Cap,sts=1),
It also has an associated procedure call =

insert Pwc(wcid=Wcid,des=Des,dep=Dep,cap=Cap,sts=w).

The final UDL code resulting from this translation is shown in figure 5.

4.7.2 Example of Translating a Multi-Procedure UPN Subnet into UDL
Procedures

An UPN subnet, which has been designed using a top-down refinement technique into
a set of subnets, each representing one UDL application procedure, has to be translated
into more than one piece of UDL code segments. An example of this kind is the removal
of a work center record from MRP II presented here. MRP II is the execution function
in most companies and is the sole center for the procurement and allocation of resources,
and in turn, is the function through which equipment is phased out or removed from the
system. When the removal operation is invoked in MRP II, the following system checks
are initiated. A check is made to see that the work center being removed exists in MRP
I1. The status of the work center is not relevant to the operation. In addition, all routings
maintained by the MRP II routing module are checked. If any routing utilizing this
work center exist and are on ’hold’ or ’release’ status in CAPP, the operation fails and a
message to this effect is displayed. The reason is that work centers which are utilized by
active routings, cannot be removed. If the above checks are satisfied, the work center is
removed from the databases of MRP II, CAPP and SFC. The above specification is first
modeled in UPN at the abstract level as shown in figure 7 and then further refined down
to a more detailed level, as shown in figure 8. The complete net involves three subnets,
which are translated to three UDL procedures: one major procedure (procedure no. 1)
removes the work center via MRP Il and two other procedures check the MRP II and the
CAPP databases (see the dashed boxes in figure 8). The top-down refinement technique
used was discussed in section 2.2.2.

The goal now is to translate the UPN representations to the respective UDL codes.
Following the same translation procedure for all the subnets involved, three UDL
application procedures are generated as shown below (the UDL code is shown in figure
9).

(1). UPN subnet no. 1

During the translation of operations 2, the following two application procedures called
by it have to be satisfied, before any other modification procedures can be implemented
=
check.1 Mwc (wcid=Wcid), check.2 Prout (wcid=Wcid,psts=Psts),.

Three deletion modification procedures can be identified: an arc coming from the
database place EMwc with the expresion Mwc(wetd = weid#) and another one going
to the database place NMwc with the same expression (same is the case for CAPP and
SFC) =

delete Mwc{wcid=Wcid), delete Pwc(wcid=Wcid), delete Swc(wcid=Wcid).
(2). UPN subnet no. 2

During the translation of operation t;4, we observe that the output is a place py3;
which represents the interface with the higher level subnet. This place will receive a
token as long as all the pre-conditions are satisfied. Therefore, no operation is required
here.

(3). UPN subnet no. 3

During the translation of operation t,7, there are two negative checkings, which
are represented by the inhibitor arcs, for the non-existence of any routing EProut
(wcid=Wcid,psts=h) using that specific work center identification number and bearing
an h or r status =
~ EProut (wcid=Wcid,psts=h) and ~ EProut (wcid=Wcid,psts=1).

Similarly, the complete condition is the conjunction of all related conditions ==
nonvar(Wecid) A ~ EProut (wcid=Wcid,psts=h) A ~ EProut (wcid=Wcid,psts=r),

5 Conclusions

The INformation Systems for Integrated Manufacturing (INSIM) design and maintenance
methodology has been developed and implemented for generating knowledge based
systems to effectively manage and control the information flow among CAD/CAPP/MRP
II/SFC application systems. This knowledge base design methodology is fairly generic in
that it can be applied to generate knowledge based systems for other applications as well.
Its implementation strategy aims at facilitating the translation between UPN and UDL
(as a rule specification language) and provides us a powerful tool to reduce the life cycle

26

of developing knowledge bases. Depending on the rule specification language used, this
design methodology can be applied in the same way with a modified Petri Nets translator.
A prototype of the knowledge based system for integrating CAD/CAPP/MRP II/SFC
application systems has been developed based on the proposed methodology with UPN
and UDL technologies. This prototype has demonstrated the feasibility of our design
methodology and has won considerable attention from both industry and other related
research projects. The future work includes the incorporation of actual CAD, CAPP,
MRP II, and SFC software packages and a database management system (ORACLE) as
the next step of implementation. Furthermore, we will also focus on the developement of
new techniques for knowledge verification.

References

[1] C. Hsu, C. Angulo, A. Perry, and L. Rattner, ” A Design Method for Manufacturing
Information Management,” Proceedings of Conference on Data and Knowledge

Systems for Manufacturing and Engineering, Hartford, Connecticut, pp. 93-
102,1987.

[2] M. Sepehri, "Integrated Data Base for Computer Integrated Manufacturing,” IEEE
Circuits and Devices Magazine, pp. {8-54, March 1987.

[3] S.C.Y. Lu, "Knowledge-Based Expert System: A New Horizon of Manufacturing
Automation,” Proceedings of Knowledge-Based Ezpert Systems for Manufacturing in
the Winter Annual Meeting of ASME, Anaheim, California, pp. 11-23,1986.

[4] G. Harhalakis, C.P. Lin, H. Hillion, and K. Moy, "Development of a Factory Level
CIM Model,” Journal of Manufacturing Systems, vol. 9, no. 2, pp. 116-128,1990.

[5] G. Harhalakis, C.P. Lin, L. Mark, and P. Muro, "Formal Representation,
Verification and Implementation of Rule Based INformation Systems for Integrated
Manufacturing (INSIM),” Technical Report TR 91-19, Systems Research Center,
University of Maryland, College Park, 1991.

6] D.M. Dilts, and W. Wu, "Using Knowledge-Based Technology to Integrate CIM
Databases,” IEEE Transaction on Data and Knowledge Engineering, vol.3, no. 2,
pp. 237-245 ,1991.

[7] F. Biemans, and P. Blonk, ”On the Formal Specification and Verification of CIM
Architectures Using LOTOS,” Computers in Industry, vol. 7, pp. 491-504,1986.

[8] S.Y.W. Su, "Modeling Integrated Manufacturing Data With SAM*,” Computer, vol.
19, no. 1, pp. 84-49, 1986.

[9] M. Hardwick, and D. Spooner, ”The ROSE Data Manager: Using Object Technology
to Support Interactive Engineering Applications,” IEEE Transactions on Knowledge
and Data Engineering, pp. 285-289, 1989.

[10] D. Spooner, M. Hardwick, and et. al., ”The evolution of ROSE: An Engineering
Object-Oriented Database System,” Pro. of Conf. on CIM, RPI, pp. 16-23, 1990.

[11] P.R. Muro, J.L. Villarroel, J. Martinez, and M. Silva, ”A Knowledge Representation
Tool for Manufacturing Control Systems Design and Prototyping,” INCOM’89,
6th IFAC/IFIC/IFORS/IMACS Symposium on Information Control Problems in
Manufacturing Technology, Madrid, Spain, September 1989.

[12] L. Mark, and N. Roussopoulos, ”Operational Specification of Update Dependencies,”
Systems Research Center Technical Reprot No. SRC TR-87-37, University of
Maryland, 1987.

[13] J.L. Peterson, "Petri Net Theory and the Modeling of Systems,” Prentice Hall,
Englewood Cliffs, New Jersey, 1981.

[14] T. Murata, "Petri Nets: Properties, Analysis and Applications,” Proceedings of The
IEEE, vol. 77, no. 4, pp. 541-580, April 1989.

[15] K. Jensen, “Colored Petri Nets,” Petri Nets: Central Models and Their Properties.
Advances in Petri Nets 1986, Part I. Proceedings of an Advanced Course, Bad
Honnef, 8-19. September 1986, pp. 248-299, Edited by G. Goos and J. Hartmanis.
Springer-Verlag Berlin Heidelberg 1987.

[16] R. Valette, ” Analysis of Petri Nets by Stepwise Refinements,” Journal of Computer
and System Sciences 18, pp 35-46, 1979.

[17] I. Suzuki, and T. Murata, A method for stepwise refinement and abstraction of
Petri nets,” Journal of Computer System Science, vol. 27, pp. 51-76, 1983.

(18] Y. Narahari, and N. Viswanadham, ”A Petri Net Approach to the Modeling and
Analysis of Flexible Manufacturing Systems,” Annala of Operations Research, vol.
3, pp. 381-391, 1985.

[19] M. D. Jeng, and F. DiCesare, A Review of Synthesis Techniques for Petri Nets,”
Proceedings of IEEE Computer Integrated Manufacturing Systems Conference, RPI,
May 1990.

[20] T.A. Nguyen, W.A. Perkins, T.J. Laffey, and D. Pecora, ”"Knowledge Base
Validation,” Al Magazine, summer, pp. 67-75. 1987.

[21] B. Lopez, P. Meseguer, and E. Plaza, "Knowledge Based Systems Validation: A
State of the Art,” Al Communications, Vol.3, No. 2, pp. 58-72. June, 1990.

[22] J. Martinez, and M. Silva, A Simple and Fast Algorithm to Obtain All Invariants
of A Generalised Petri Net,” Second Furopean Workshop on Application and Theory
of Petri Nets, pp. 301-310, 1982.

[23] K.H. Lee, and J. Favrel, ”Hierarchical Reduction Method for Analysis and
Decomposition of Petri Nets,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. SMC-15, no. 2, 1985.

DB DB DB

DB
@ CAD @ CAPP @ MRPII @ SFC
Dﬂi\’ls

Sl P et
! ! v !
%ﬁ«———————» —

Figure 1: Information Flow Architecture for Manufacturing

Modeling, Analysis, and Feed Back
*Company Policy"

Knowled Knowledge
nowledge M:H . H»-‘ ;}.» H :,...» Based
Acquisition UPN's UP| N Sy:tse(:n

INPUT RESEARCH TASKS OouTPUT

Figure 2: Knowledge Base Design Methodology

30

MRPII

dBS pl
tl
Mwe(weid=weid#) -
wei
NMwc
Mwe(weid=wcid#
des=des#,dep=dep#, t4
gts=h)
X wcid#,des#,dep#,
EMvc
CAPP

Mwe(wcid=wcid#,sts=r) dBS

Mwe(weid=wcid#) NPwc

Mwe(wecid=wcid#,
cap=cap#,ste=r)

Pwc(wcid=wcid#,des=des#,
dep=dep#,cap=cap#,sts=w) | EPwc

release(mrpwc)
pl: user starts the transaction
t1: request and read wcid p2: wcid is provided
12: write error message and restart p3: work center ID does not exist in MRP I
t3: write error message p4: work center already has 'r' status in MRP 11
t4: request other information p5: all the necessary data is provided
t5: update work center record in MRP I dBase = EMwc: existence of work center in MRP 1I dBase
with sts=r, and additional data, NMwc: non-existence of work center in MRP II dBase

insert a work center record in CAPP dBase EPwe: existence of work center in CAPP dBase
NPwe: non-existence of work center in CAPP dBase

Figure 3: Subnet of the work center creation scenario “Release of a work center in MRP

I

31

p(initiation) CAD
ti
/ w |t
to
p(satisfaction)
Net being called Net making call

Figure 4: Example of call between UPN sub-nets

release Mwc(wcid=Wcid,des=Des,dep=Dep,cap=Cap)
— var(Wcid),

write(’Enter wcid’),

read(Wcid),

release Mwc(wcid=Wcid).

— nonvar(Wcid) A ~Mwc(wcid=Wcid),
write(’Work center ID does not exist in MRP II, enter again’, Wcid),
release Mwc().

— nonvar(Wcid) A Mwc(wcid=Wcid,sts=1),
write(’Work center already has ’’r’’ status in MRP II’, Wcid),

— nonvar(Wcid) A var(Cap) A Mwc(wcid=Wcid,des=Des,dep=Dep,sts=h),
write(’Enter capacity’),
read(Cap),
release Mwc(wcid=Wcid,des=Des,dep=Dep,cap=Cap).

— nonvar{(Wcid) A nonvar(Des) A nonvar(Dep) A nonvar(Cap),

update Mwc{wcid=Wcid,sts=h;wcid=Wcid,cap=Cap,sts=r),
insert Pwc(wcid=Wcid,des=Des,dep=Dep,cap=Cap,sts=w).

Figure 5: UDL code for the “Release of a work center in MRP II".

appl_proc_1 R(...)

/
insert R(...)
L i delete ...}
insert R{...)
insert R{...)
T geletes(.)
ios RY...)

appl_proc_2 §(...)

delete §{...)

~~ delete S(...)

~——— insert R{...)

del S(...)
L<‘

NN

Figure 6: Procedure abstraction/encapsulation hierarchy.

MRP II
dBS

NMwe

Mwe({weid=wcid#)

EMwe

Mwe(weid=weid#)

Figure 7: Subnet of the work center deletion scenario “Deletion of a work center in MRP

117,

CAPP SFC
dBS
‘ ‘ NPwe NSwc
Pwe(weid=wcid#) Oq_ -
EPwe ESwe
Pwe(weid=weid#) —O O
Swe(weid=wcid#)
Swe(weid=weid#)

CAPP
dBs

EProut
Prout(wcid=weid#,

Bte=r)
Prou /évcid#,

b ety

Prout(wcid=vydd#,
stg=r)

%p%l pzr‘;

weid# weid#

Mwec({weid=wcid#)

Mwc(wcid=weid#)

MRP II
dBS

t NMwe
A
EMwc gi

e

wec{weid=weid#)

Pwe(weid=wcid#)

Mwo(weid=wcid#)

Figure 8: Subnet of the work center deletion scenario “Deletion of a work center in MRP
.

34

remove Mwc(wcid=Wcid)

— var(Wcid),
write(’Enter wcid’),
read(Wcid),
remove Mwc(wcid=Wcid).

—— nonvar(Wcid),
checkl.rmv.mwc Mwc (wcid=Wcid),
check2.rmv.mwc Prout (wcid=Wcid,psts=Psts),
delete Mwc(wcid=Wcid),
delete Pwc(wcid=Wcid),
delete delete Swc(wcid=Wcid).

checkl Mwc(wcid=Wcid)
—— nonvar(Weid) A ~Mwc(wcid=Wcid),
write(’Work center ID does not exist in MRP II’, Wcid).

—— nonvar(Wcid) A Mwc(wcid=Wcid).

check?2 Prout(wcid=Wcid)
— nonvar(Wcid) A nonvar(Wcid) A EPwc (wcid=Wcid,psts=h),
write(’Work center is in use by active process plams’, Wcid).

— nonvar(Wcid) A nonvar(Wecid) A EPwc (wcid=Wcid,psts=1),
write(’Work center is in use by active process plans’, Wcid).

— nonvar(Weid) A ~ EProut (wcid=Wcid,psts=h) A ~ EProut (wcid=Wcid,psts=r).

Figure 9: UDL code for the “Delete of a work center in MRP II".

