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1. Introduction. It is common practice for mathematical models to be studied
under the assumption that data defining the models are precisely understood. In real-
ity, however, this simplifying assumption is often not valid, and there is considerable
uncertainty in specification of models. Sources of uncertainty include geological prop-
erties of transporting media, material properties of structures, and unknown aspects
of boundary conditions.

One approach for addressing this issue is to treat poorly specified data as random
variables having some given statistical properties such as means and higher order
moments, and then to determine analogous statistical properties of solutions. For
boundary value problems with uncertain data (stochastic partial differential equa-
tions), a methodology known as the stochastic finite element method has generated
considerable attention in the last decade [6, 7, 11, 12, 15]. This approach starts with a
boundary value problem in d-dimensional physical space. The stochastic component
of the problem statement is then specified approximately using an m-dimensional aux-
iliary space which is derived from an underlying probability space associated with the
data. The result is a (d + m)-dimensional model, which can be stated in a weak form
on a suitable function space using a combination of standard variational constructions
for the physical component of the problem together with averaging for the stochastic
component. We will outline the details of this methodology in Section 2.

Once this weak formulation is specified, a numerical solution of the stochastic
partial differential equation can be computed in essentially the same manner as for
deterministic problems. In particular, the introduction of finite dimensional subspaces
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leads to an algebraic system of equations whose solution can be used to approximate
statistical properties of the physical solution, such as its mean, variance and covari-
ances. Our concern in this paper is to explore the computational costs of solving the
systems in question and of generating statistical analyses of the solution.

We will focus on problems where randomness only affects the right hand sides of
the algebraic systems, that is, where the forcing terms or boundary data are random
functions. A natural example of this arises in models of acoustic or electromagnetic
scattering, where lack of information about the material properties of scatterers or
the shape and structure of boundaries such as ocean bottoms leads to uncertainty
in boundary conditions. We will use this model, specifically, the numerical solution
of the Helmholtz equation, as a benchmark problem, and in our assessment we will
explore computational issues associated with quantities such as moments and proba-
bility distributions of acoustic pressures, and how these are affected by characteristics
of the problem such as wave numbers.

One of the computational tasks required is the solution of algebraic systems of
equations with multiple right hand sides. In the case of uncertain boundary data, the
costs of this component of the computation can be kept low using the fact that the
solution has a Kronecker product structure. For our scattering example, the systems
can be solved efficiently with a multigrid algorithm for the discrete Helmholtz equation
[9], and we show that efficiency can be enhanced in some cases using block iterative
methods for systems with multiple right hand sides [4, 10, 17, 22]. With this strategy
for solving the algebraic systems, the dominant cost of the computation is that of
computing statistical quantities. We also show that the Kronecker product structure
of the solution allows storage costs to be kept relatively low, and moreover it enables
the statistical computations to be performed using efficient matrix-oriented operations
that are trivially parallelizable and amenable to implementation using Level 3 Basic
Linear Algebra Subprograms (BLAS3) [8]. This means that it is possible to handle
relatively fine “discretization” in the stochastic domain that would otherwise not be
possible.

We note that an alternative approach for handling random right hand sides has
been developed in Schwab and Todor [20], where it is shown that the mean and
second moment of the solution can be computed directly, where the latter entails the
solution of a fourth order equation derived for this quantity. It is shown in [20] that
when the underlying differential operator is coercive, then so is the associated fourth
order system, and efficient multilevel algorithms (but dependent on special sparse
grids) can be developed to solve it. The approach under consideration here has the
advantage that it readily yields more general statistical information such as higher
order moments and probability distributions. It is also relatively straightforward to
implement, essentially only requiring algorithm technology for second order problems.
In particular, if, as in the example considered here, the underlying problem is not
coercive, it is still possible to take advantage of efficient algorithms for that problem.

A summary of the contents of the paper is as follows. Section 2 contains a
description of the stochastic finite element methodology and identifies the structure
of the algebraic systems derived from discretization. Section 3 describes the iterative
algorithms that we consider for solving the discrete Helmholtz equation and the block
versions designed to handle multiple right hand sides, and then it presents some
experimental results demonstrating the performance of these solvers. Section 4 then
outlines the costs of computing statistical quantities associated with the solution and
shows the results of these computations. Finally, Section 5 contains some concluding
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remarks.

2. The stochastic finite element method. We briefly describe the general
methodology with an eye towards showing the structure of the algebraic systems. For
our description we use the problem that we will study in experiments, the Helmholtz
equation; it will be obvious that the approach is general. See [12] for complete de-
scriptions of this methodology.

2.1. Introduction: weak formulation. A model of acoustic scattering from
a bounded obstacle is given by the Helmholtz equation

~Au—Fku = f in D
B(u) =g onT (2.1)
g—z = L(u) on I

where the solution domain P C R? is bounded internally by the obstacle boundary
I’ € 9D and externally by an artificial boundary I',. The boundary differential
operator B is such that Dirichlet, Neumann or Robin boundary conditions result
along I'; and L is the Dirichlet-to-Neumann operator [13] or a suitable approximation
thereof.

The weak form of this problem is to find v € V, such that

a(u,v) = £(v) YoeV (2.2)

where V and V; denote the linear and affine subspaces of H!(D) of functions satisfying
any homogeneous resp. inhomogeneous essential boundary conditions along I'. In
the simplest case of Dirichlet boundary data along all of I', the sesquilinear form
a:HY (D) x HY(D) - C is

a(u,v) = /D(Vu Vv — kK*uv) dz — /F vL(u) ds

[=S)

and the right hand side functional ¢ : H*(D) — C is

£(v) :/va dz.

To introduce randomness into this formulation, let (2, .4, P) denote a probability
space with sample space (2, o-algebra A and probability measure P. Let ( : @ — C
be a complex-valued random variable with ¢ € L*(Q2). The mean or ezpected value of

(is
© = [ ) dpe) = [ zaue)

where p is the distribution probability measure associated with ¢ and defined on the
Borel sets B in the complex plane by u(B) = P((~!(B)). Given a bounded domain
D C R? as above, a random function

u:DxQ—C, (x,w) = u(z,w)

is one that is jointly measurable with respect to Lebesgue measure on D and the
measure P on 2 and for which

(lu(w)llz2(p)) < 0.
3



The space of random functions is a Hilbert space L?(D x Q) with respect to the inner
product

(u,v)f2 = <(u(aj, ), v(z, '))L2(D)> ’

The stochastic Sobolev spaces H*(D x Q) are defined analogously.

If any of the data in the Helmholtz equation (2.1) is random (e.g., the wave
number k, forcing function f, or Dirichlet boundary data g), then the solution u will
be a random function. The weak form of the stochastic problem is then to find u € V,
such that

(a(u,0)) = (L(v)) Vv eV, (2.3)
where Vg and ‘70 are the stochastic Sobolev spaces analogous to V; and V5.

2.2. The Karhunen-Loéve expansion and derived weak form. We con-
sider the development of the stochastic finite element method using the Karhunen-
Loéve (KL) expansion, a representation of random functions in series form using the
eigenfunctions of the covariance operator. For the sake of concreteness, we describe
its use under the assumption that the forcing function f of (2.1) is random; we will
discuss other possibilities in Section 2.3.

Let the covariance function associated with f be denoted by

c(z,y) = (f(2)f(y)) = (F(2)) {f(y))-

Consider the integral equation

(C1)() = Ay(z), where (C7)(z)= /D (,5)1(y) dy. (2.4)

This is a linear integral eigenvalue problem in which, by definition, the kernel is
symmetric and positive-semidefinite. It follows from the general theory of integral
equations [5, Ch. 3] that C is a compact operator and there exists a countable se-
quence of eigenpairs {(A,, f.)} where the eigenvalues {A,} are nonnegative and the
eigenfunctions {f,.} are orthogonal in L*(D). Let the eigenvalues be ordered so that
A1 > Ay > -+- > 0. The Karhunen-Loéve expansion for f is

f(@,€) = folz) + D VA fr (@), (2.5)

where fo(x) = (f(x)) is the mean of f, and {& (w)},>1 are uncorrelated random
variables with mean zero and variance one [23, pp. 4471f].

For computation, the infinite series (2.5) is approximated by a finite one with, say,
m terms. In general, the more localized the covariance kernel of f (the smaller the
correlation length), the slower the decay of its eigenvalues and the more terms need
be retained in the KL expansion to achieve good accuracy. Thus, the utility of this
approach depends on the assumption that the properties of physical systems under
consideration vary smoothly, i.e., there are significant correlations in the random data.
In this case, it is expected that a truncated version of (2.5) with a small number m
of terms in the sum is sufficient to capture the randomness in the system.

Assume now that the random function is given by a finite-term KL expansion

F@,8) = fol@) + > VA fr(@)é,. (2.6)
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Let Z, = &.(Q) denote the image of &,., and let Z = Z; x - -+ X Z;,. Collecting these
variables into the random vector & = (§1,...,&y), we have £(Q) C Z. Assume that &,
possesses the probability density function p, : Z, — R, which gives rise to the joint
density function

p(&) = p1(€1)p2(&2) -+ pm(Em)-

The stochastic variational formulation of the Helmholtz equation (2.1) uses as
test functions random functions in the space

b= {ute. e [ (i) o)t <ox (27)

with trial functions in the space f/g defined analogously. The stochastic variational
problem is then specified as in (2.3) with

(a(u,v)) = /I (/D (Vu- Vo — K*w) do — /Fm vL(u) ds) p(&)d€ 8
) = [([ o)

The weak solution u can be viewed as defined on a (d+m)-dimensional domain D xZ.

2.3. Discretization and the stochastic system. In order to establish no-
tation, we briefly discuss the discretization of the deterministic problem (2.1), as-
suming Dirichlet boundary conditions © = ¢g hold on the obstacle boundary I'. Let
VI = span{¢1,...,dn,} denote a finite dimensional subspace of H}(D), and let V;’
denote the affine space obtained by adding basis functions {¢n,+1,-.-, dN,+Ny | tO
handle degrees of freedom on the boundary. As is well known, the discrete weak
formulation entails finding

N, N.+Ng
un =Y widi+ Y g(w;)d
j=1 J=Na+1
such that
N, Nz+Ng
S a@ 0w = [ fords - 3 alyo0g(ey) Vimli.N.
j=1 D J=Na+1

This is a linear system of equations Au = f where
F=1(f,00li& — Avig (2.9)

Ayg represents the coupling between degrees of freedom constrained by Dirichlet
boundary conditions and other unknowns, and g = [g(a:])]jvz’”l"\}:\_ffl is the vector of
nodal boundary values.

Now consider the stochastic problem defined by (2.3) and (2.8). For the dis-
cretization, let

Dh = span{qu(:n,ﬁ) = (ﬁ](ﬂf)'(/)q(g) .] = ]-7"';N1'7 q= 17"';NE};
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denote a finite-dimensional subspace of V of (2.7), where {¥1,...,9¥nN, } is a basis

for a finite-dimensional subspace of L?(Z). Let fi;‘ denote the affine space satisfying
inhomogeneous essential boundary conditions. The discrete stochastic problem is then
to find uy € V;‘ ,

Ne N, Nx+Ng
ZZ¢J Hujg + Z ;(z (2.10)
g=1j=1 Jj=Nz+1

such that
(aun,vn)) = (L(op))  Von € V™.
The result is a linear system of equations, the stochastic system,
Au=5> (2.11)

of order IV, x N¢, for unknowns

(Ull,ﬂm; ‘e -;'U'wal,NE;'U'NmNE)T-
Once u is obtained, statistical properties of the associated random function uy can
be computed easily, see Section 4.

As we have noted, this study concerns the case where randomness only affects
the right hand side of the algebraic systems generated, i.e., where the source term
or boundary data is random. Let us consider the structure of the discrete problem
(2.11) in this case. The entries of the finite element system matrix A are

(@(jar Xip)) = /I a(ya Bithy) plE)dE

- ( JRG d&) ( [ V65 Voi-io0ide— [ oo ds)
T D '

= <¢q¢p> a(¢j:¢i):

for 1 <i,j < N,, 1 <p,q < Ne. Denoting by G € RNVe *Ne the Grammian matrix

[Glpg = (bgtbp), P, a=1,..., Ne, (2.12)

and by A € CN=*N= the stiffness matrix of the deterministic equation, the coefficient
matrix is seen to have the Kronecker structure

A=G®A.

Note that this implicitly determines an ordering for the rows and columns of A. The
rows are ordered so that for each p, indices i = 1,..., N, are grouped together, and
then p is ordered from 1 to N¢; the same grouping applies to the columns.

For the right hand side, assume as in Section 2.2 that the forcing function is
random, and also assume for the moment that homogeneous Dirichlet boundary con-
ditions ¢ = 0 hold on I'. It then follows from (2.6) and (2.8) that the entry of f
corresponding to the test function x;, = @it is

(0xip) / 0(F, xip)P €)dE = £(fo, 1) { ¢p+2f (o8 (Etly) . (2.13)
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Let us define the vectors
£ [(frr )N, 7=0,1,...,m
Bo = (W)l (2.14)
¥, = [(Gup)lpsi, r=0,1,...,m

whereupon the discrete system has the form

GeAu=f, f=p2f+y VA @ . 0F).

r=1

That is, the right hand side lies in an (m + 1)-dimensional subspace of RVe *N=_ The
solution is then

v = (GRA)f=G oA L)f

m 2.15
= (G )@ A fo)+ > VA (G y) oA ') (249)
r=1

This entails the solution of m + 1 systems of size N¢ with coeflicient matrix G, and
m + 1 systems of size N, with coefficient matrix A. In practice, the basis functions
{¢p} for the stochastic component are often chosen to be orthogonal with respect to
the probability measure [7, 12], in which case G is a diagonal matrix. Thus, the main
computational requirement is solution of the m + 1 systems with coefficient matrix A.

Although the derivation above is for the case of stochastic forcing function and
homogeneous boundary conditions, the conclusion reached is general. For example, if
a nonzero Dirichlet condition holds on I', then the construction is identical except f
has the form (cf. (2.9))

fo = [(fo, 612 — Avrg-

More generally, if it is Dirichlet boundary conditions that are random (we will explore
this in experiments described in Section 3), then terms of the form

Yo ® (Aupgo) + Y VA (@, @ (Aueg,))

will be included in the right hand side. Similar considerations apply for Neumann
conditions on the obstacle boundary.

2.4. Implementation. The notation used in the previous section treats the
unknowns w of (2.11) as a vector. In an implementation, it is in fact more convenient
to treat the solution as a two-dimensional array. In particular, consider the matrices

FZ[.fO?fl)?"'?.f’l’ﬂ]? AZdZG.Q(L\/E;;\/E); lII:["vbO;"vbln"';d’m];

where the vectors {f,} and {4, } are defined in (2.14). Then the system (2.11) is
essentially of the form

AU = B, (2.16)
where B = FWT with W = G~!(¥A). The solution can then be represented implic-
itly in outer-product form as

U=vwt, (2.17)

where V = A7LF is obtained by solving the system of equations AV = F with m +1
right hand sides.



3. Iterative solution of the stochastic system. For the problem under con-
sideration, the coefficient matrix of (2.16) is a discrete Helmholtz operator, which is
complex, symmetric and indefinite. In this section, we describe an iterative algorithm
that can be used to solve this system and demonstrate its effectiveness on a set of
benchmark problems.

3.1. Solution algorithm. The basic solution algorithm we use is a multigrid
method designed for the Helmholtz equation, adapted to handle multiple right hand
sides. As is well known, the principle behind multigrid is to combine smoothers to
eliminate oscillatory components of the error on fine grids, together with coarse grid
corrections to eliminate smooth components. For the Helmholtz equation, standard
multigrid approaches are not effective. There are two difficulties:

1. Standard smoothers such as the Jacobi and Gauss-Seidel methods do not
work because certain smooth modes are amplified by these operations.

2. The eigenvalues associated with some smooth modes change signs during
the grid coarsening process, which causes the coarse grid correction to also
amplify some smooth modes rather than eliminate them from the error.

These difficulties derive from the indefiniteness of the system. In [9], we developed
a method that addresses them. The first difficulty is handled by replacing standard
smoothers with Krylov subspace methods, i.e., GMRES iteration [19] is used as the
smoother. The second one is handled by using the multigrid operation as a precon-
ditioner for an outer Krylov subspace iteration, so that components of the error not
treated correctly by the multigrid coarse grid computations are eliminated. Because
the multigrid smoother is no longer a linear operator, the outer iteration must han-
dle this via a so-called “flexible” GMRES algorithm [18]. A complete description
and analysis of the preconditioning strategy is given in [9], where it is demonstrated
that the algorithm exhibits “textbook multigrid” convergence behavior, that is, con-
vergence rates that are independent of the discretization parameter; there is some
dependence on the wave number k.

We also adapt this approach to handle the system (2.16) with multiple right hand
sides, the number of which is denoted by m within this section. Recall that Krylov
subspace methods generate an iterate at step s using a certain subspace of dimension
s. Two types of Krylov subspace algorithms have been proposed for problems with
multiple right hand sides:

e Block algorithms [2], [17] construct a subspace of dimension ms formed by the
union of the s-dimensional subspaces for each right hand side. Then, for each
right hand side, they find the best solution within that subspace. Deflation
is used to remove vectors that become linearly dependent.

e Seed algorithms [3], [21] form a Krylov subspace using one of the right hand
sides and then find the best solution for each of the m problems within that
subspace. If the seed problem converges before the others, then a different
right hand side is chosen as the seed and the algorithm is repeated.

Each of these approaches has its advantages. Seed methods tend to perform best
when the right hand sides are related to each other, for example, if they arise from
functions evaluated at nearby points [3]. This approach requires less storage than
block methods: for systems of order IV, the seed GMRES method requires storage
proportional to sIN, compared to smN for a block GMRES solver. On the other
hand, block algorithms tend to converge more rapidly for more general right hand
sides, or when a small number of eigenvalues are well-separated from the others [17].
The block algorithm also makes much better use of computer memory traffic, since
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each access to the coefficient matrix is used for m matrix-vector products.

In our application, the right hand side vectors (columns of F in (2.16)) derive from
the orthogonal eigenvectors of the covariance matrix, and we found the seed method
to be ineffective. Therefore, we restrict our attention to a block method. The idea of
block iterative methods is due to O’Leary and R. Underwood. The block biconjugate
gradient algorithm was described in [17], and a block quasi-minimum residual method
n [10]. Algorithms for altering the block size adaptively were given in [1]. A block
GMRES algorithm was presented by Vital [22].

We also need to modify the algorithm to handle the nonlinear preconditioner,
as described in [4]. To present this block flexible GMRES method for (2.16), we use
the generic notation Az = b for the linear system, and w = M (v) to represent
a generic preconditioning operation. This may be a linear operation derived from

a matrix, or (as in the present setting) a nonlinear operation. Let Cﬂg-s) denote an

approximation of the solution to the jth equation (of m) computed at iteration s. The

block flexible GMRES algorithm generates a sequence of matrices {V;} of dimensions

N xm that together form a matrix V' = [V4, ..., V], and a set of matrices Z; = M (V}),

and Z = [Z1,...,Z,]. The block-Hessenberg matrix H has block entries H;;. Each
(s)

component {xj :j=1,...,m} of the iterative solution has the form

xg.s) = xgo) + Zyj(.s) (3.1)

such that the norm of the residual ||b; — Axgs)H is minimal, where xgo) is a possibly
arbitrary initial value. If M (v) is a linear operation (say Mwv where M is a matrix),

then Vg, the span of the columns of V', is the same as
span{Mry,(MAYMry,...,(MA* *Mry,...,Mry,, (MAMr,,,...,(MA)?**Mr,},

the span of the Krylov vectors. In this case, it is not necessary to store the auxiliary
matrix Z. If M is a nonlinear operator, then V, will not be a Krylov subspace, but the
s’th iterate is still optimal among all possibilities of the form (3.1), which corresponds
to an affine subspace of CV of dimension ms. The algorithm is as follows:

Compute the residual r = b — Az of dimension N X m.
until (||re]] <90, ¢=1,...,m),
% Generate a subspace of dimension ms from the residual r.
Define V7 to be the orthogonal factor in the Q) R factorization of r.
fort=2,...,s+1,
% Generate the directions defining the new basis vectors.
Zi1 = M(Vi1)
W - AZi,1
% Orthogonalize these directions against the previous ones.
forj=1,...,i—1,

Hj,i—l - ‘/]*W
W - W - V}'Hjﬂ',l
end for j.

Perform a QR factorization of W, obtaining the upper tri-
angular factor H; ;—; and the orthogonal matrix V;.

end for 3.
% Update each of the solutions.
forj=1,...,m,



Fic. 3.1. Spatial domain and initial mesh used in spatial discretization.
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c=Vrr;
Solve the least squares problem min, ||c — Hy||
rj=xj;+ 2y

end for j.

r=0— Az

end until

The loop on i can break down if the matrix W becomes rank-deficient. In this case,
we reduce the size of the block by dropping the dependent columns, updating the
solutions, and continuing with the residuals that have not converged.

3.2. Experimental results. We tested the performance of the block flexi-
ble GMRES algorithm for solving the stochastic Helmholtz equation on the two-
dimensional domain D consisting of the complement within the unit circle of a scat-
terer taken to be a semi-open cavity. Dirichlet-to-Neumann conditions are specified
on the external boundary I',. The discretization in space consists of piecewise linear
elements on triangles. Figure 3.1 shows the scatterer and the initial mesh used in all
tests. For each wave number k, this mesh is refined until kh,,., was on the order of
w/5 & .63, so that there are approximately ten points per wavelength. All compu-
tations were done using MATLAB. Mesh construction was done using the MATLAB
PDE TooOLBOX routines initmesh and refinemesh, which performs a uniform mesh
refinement.

All uncertainty in the specification of the boundary value problem occurs in the
statement of boundary conditions on I'; the boundary of the scatterer, where Dirichlet
boundary conditions u = g are such that g is a random function as specified in (2.6),

with mean determined by an incident plane wave g(z1,z2) = —gik(w1cosOtuzsind) y¢
angle § = /4. We assume as in [6, 7] that the random variables {{,} making up the
KL expansions are uniformly distributed on an interval Z, = [—a, ], giving rise to

the joint uniform distribution on 7 = [—«, a]™ with joint density function

o= () - (32)

The convention that (£;&;) = d;; leads to the condition a = V3. The stochastic
10



TABLE 3.1
Number of matriz-vector products required to solve m + 1 systems arising from m-term KL-
expansion, using preconditioned FGMRES. Numbers in parentheses are average iteration counts or
number of block iterations.

kh = .72, N, = 4170 m =4 m =6 m =38
k=5 Block FGMRES 35 (7) 19 (7) 54 (6)
FGMRES 37 (7.4) | 52(74) | 67 (7.4)
kh = .36, N, = 16,196 m =4 m =6 m =8
Block FGMRES 10 (8) 56 (3) 72 (8)
FGMRES 45 (9.0) | 63(9.0) | 81(9.0)
kh= .72, N, = 16,196 | m =4 m=6 m=8
k=107 Block FGMRES 517 | 105 (15) | 135 (1)
FGMRES 153 (30.6) | 214 (30.6) | 276 (30.7)
kh = .36, N, = 63,816 | m =4 m =6 m =8
Block FGMRES 90 (18) | 119 (17) | 162 (18)
FGMRES 157 (31.4) | 220(31.4) | 282 (31.3)
kh= .72, N, = 63,816 | m=4 m=6 m=8
k = 201 Block FGMRES 200 (40) | 245 (35) | 288 (32)
FGMRES 360 (72.0) | 495 (70.7) | 636 (80.7)
domain 7 = [—a, a]™ is discretized using a uniform mesh: each of the m coordinate

intervals is subdivided into n¢ equal subintervals, resulting in N¢ = ng elements, each
of which is an m-dimensional cube with side length h¢ = 2a/n¢. Since there are no
continuity requirements on the probability space, the basis functions are taken to be
piecewise constants, that is, the basis function v, has the value one on the cube with
index ¢ and zero elsewhere. This leads to the particularly simple diagonal structure
for the Grammian matrix G of (2.12), G = NLEI . (Recall that this is always the case
if the basis functions for the stochastic discretization are orthogonal with respect to
the probability measure.)

To define the KL expansion, the covariance function associated with g is assumed
to have the form

clwy, x) = g2e—U@)i— ($2)1|)/2+|($1)2—($2)2\)), z1, w2 € L.

A general requirement of this methodology is that the first m eigenfunctions and
eigenvalues of the covariance operator, or discrete approximations to them, be avail-
able. In some circumstances, these may be obtained in closed form [12, pp. 27ff],
or, alternatively, they may be approximated using a Galerkin discretization of the
integral equation (2.4). For the problems we are considering, the domain of g is one-
dimensional, and the Galerkin computation is inexpensive. The discrete eigenvalues
and eigenvectors are computed directly from the Galerkin approximation. If the do-
main in question is of higher dimension, this computation can be done efficiently using
sparse eigenvalue methods and fast summation techniques [14].
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Table 3.1 examines the performance of the block flexible GMRES algorithm and
compares it with that of the flexible GMRES algorithm (FGMRES) applied to each
right hand side separately. In these tests, the stopping criterion for the solvers was
for the Euclidean norm of each component of the residual to satisfy

lrll/11Bsll < 107%, j=1,...,m+1.

For the block method, the iteration was stopped when the maximal individual residual
component meets this criterion. The table shows the total number of matrix-vector
products performed during the course of the computation, and in parentheses, the
number of iterations required for convergence. For FGMRES, the latter number is
the average for m + 1 right hand sides; for block FGMRES, it is the number of block
iterations. Note that the dimension of the spaces constructed by the block FGMRES
method depends on m, the number of right hand sides, but not on the discretization
parameter ng associated with the stochastic domain, since F' does not depend on ng
in (2.16).

It is clear from these results that the block methods require fewer matrix-vector
products in all cases, and the difference in the number of these products becomes
more dramatic as the number of right hand sides increases and also as the wave
number k grows, i.e., as the problem becomes more difficult. The results provide
further evidence of the mesh independent performance of the multigrid algorithm.
We note, however, that as the number of steps s increases, the advantages of the
block FGMRES method become less pronounced, since the overhead in generating
the Krylov space grow like m?s2N,, compared to ms?N, when the right hand sides
are processed separately. A block Krylov subspace method such as QMR [10] would
not suffer from this drawback, although it is not clear that this approach can be
adapted to handle a nonlinear preconditioner. Because solution of the linear systems
step represents a low order cost for the complete construction of statistical data (see
the next section), we have not explored this issue.

4. Computation of statistical data. Once the random function uy of (2.10)
is available, we are interested in statistical properties such as moments and probabil-
ity distributions associated with it. In the case of time-harmonic wave propagation,
an important quantity is the modulus |uy|, which indicates the significance of the
component with wave number £ in the wave field. In this section, we describe the
computations required to generate statistical data associated with the random func-
tion |up(z,&)|-

4.1. Computation of a distribution function. Consider the construction of
the probability distribution function for the maximum modulus

F(a) = Pr(mgx lun(z,&)| < a). (4.1)
Let
S.=1{€€l: max lun(z,&)| < a}.
Using the definition of the joint density function (3.2), we have

Fla) = [ pleac =15, (%)m

12
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Fic. 4.1. Effect of the stochastic discretization parameter ng on the estimate of
Pr(maxz |up(x,§)| < a), for k =57 and various choices of m, the number of KL terms.
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To determine the volume of S, let £ € Z be given, and let ¢ = ¢(§) be the index of
the stochastic element Z, C Z containing £. Then

Nz

max un(z, €)| = max | Y wjo;(r)| = max|uy,|
=1

where the latter equality follows from the linearity of u; in space. Letting

Sq = ‘{q : m]ax|ujq| <a}|,

it follows that |S,| = (zﬁzm Sq, and therefore F'(a) = s,/N¢. This construction requires

max; |ujq| for each g. Once these maxima are computed, they can then be used to
compute F'(a) for any a.
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Fic. 4.2.  Effect of the number of terms m in the KL expansion on the estimate of
Pr(maxy |up(z, )| < a), for k= 5m.
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We show in Figures 4.1-4.2 the results of computing the distribution function
(4.1) for various parameter values. There is no analytic expression for this quantity,
so it is difficult to make a rigorous assessment of the accuracy of the computations.
Nevertheless, it is possible to identify certain qualitative aspects of the results as well
as to place the costs of producing them in context. First, note that discretization of
the random component of the problem can be viewed from two perspectives, derived
from the number of terms m used in the finite KL expansion, and, once m is fixed, from
the value n¢ of the discretization parameter in Z. Convergence of the KL expansion
depends on the correlations within the process; when the finite expansion is fixed, it
is shown in [7] that the error in the stochastic discretization (assuming an accurate
spatial discretization) is proportional to ngl. Since the number of stochastic degrees
of freedom is proportional to Ny = ng', it would be desirable to keep m as small as
possible.

In Figure 4.1, we consider the impact of the two parameters m and ng, for a
fixed wave number k = 57. (The spatial discretization was such that kh = .36.) Each
subplot in this figure corresponds to a fixed value of m for which ng is allowed to vary.
Each plot shows convergence to a fixed curve with refinement in n¢, as expected. It is
also noteworthy that as m is increased, the quality of the solution for fixed n¢ appears
to improve. (For example, the solution for ne = 4 is closer to the limiting value for
each successive choice m = 2, 4, 6.) This indicates that the constants associated with
the error bounds are smaller as m increases. Figure 4.2 explores the impact of m more
closely. For this example, the results suggest that m = 8 is an appropriate limiting
value for the number of terms in the KL expansion. With n¢ = 4, this yields 65, 536
spatial degrees of freedom.! The combination of smaller values of m together with
large n¢ (e.g., m = 2 and ng = 10, yielding 1024 stochastic degrees of freedom) is able
convey the qualitative structure of the distribution at significantly smaller cost.

LWe also remark that for m = 10, ne = 4 was the largest discretization parameter we could use
in our MATLAB environment. This led to N = 1,048,576 stochastic degrees of freedom.
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F1G. 4.3. Estimated probability distribution function Pr(maxy |up(z,€)| < a), for various
values of the wave number k.
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Finally, Figure 4.3 shows the estimated distribution function (4.1) for different
values of k. These results suggest that this probability distribution function does not
vary dramatically as the wave number increases.

4.2. Computation of higher moments. For examples of other statistical data
to be computed, consider the moments of the modulus of up. Let ap(x,&) = |up(z, €)],
and let

ol (@) = (an(z,)"), v=1,2,3,...

denote the moments of a;. We have
@ = [l ore

=§/I§

v
Ne

uj i (@) | ¥e(§)| p(E)dE

Ne . . N, !
= Z(/I p(f)d£> D> wip®5()

v
@

N,
Z ujp¢; ()
j=1

1 Qe
:E;

This is straightforward to evaluate once the coefficients {u;,} are available. In par-
ticular, the nodal values are
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F1G. 4.4. Estimated mean pyp,, standard deviation oy, ratio op/up, and skewness of |up|, for
k = b5m.
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giving the piecewise linear interpolant of the v’th moment,
N
) (2) =3 al ().
i=1

14
The computations required for central moments < (ah — agl)) > are identical in struc-

ture.

We examine some of these quantities in Figures 4.4-4.6. Four things are shown:
the mean py, standard deviation oy, ratio of standard deviation to mean, and scaled
third central moment (the coefficient of skewness [16])

(e -a))

—3 \ 0~y

Th
of ap. The data used for these plots come from the parameter choices m = 8 for
the truncated KL expansion, stochastic discretization parameter ng = 4 and spatial
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F1G. 4.5. Estimated mean py,, standard deviation oy, ratio oy, /puy, and skewness of |uy|, for

k = 10m.
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discretization satisfying kh = .36 for both k¥ = 57 and 107 and kh = .72 for k = 207.
Within each figure, the means and standard deviations are displayed using the same
scalings. The magnitudes of the standard deviations largely mirror those of the means,
and there is virtually no difference in the relative sizes of these quantities for different
wave numbers. This indicates that size of the wave number k& will not have a significant
impact on the confidence that can be attributed to computed mean solutions. The
depictions of skewness indicate that near the corner singularities, the distributions
tend to be more skewed toward the right (positive direction) with respect to the
mean, and inside the cavity they are skewed more toward the left; this may be of use

in identifying the shape of scatterers.

Note that all these computations require the complete set of values {uj, : j =
wNay g =1,...,N¢}, which are obtained from (2.17) as

m
Ujq = E Vjr Wy -
r=0

17
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Consequently, the cost is of order O(IN;N¢) and these computations represent the
dominant expense of the process. The storage costs are also of this magnitude but
can be reduced to order m max(N,, N¢) by taking advantage of the outer-product
representation (2.17) and recomputing w;, whenever it is needed. The tradeoff here
is a (small) additional computational expense of magnitude O(mN,N¢). This makes
it feasible to handle large values of m or n¢ that storage restrictions would otherwise
prevent.

5. Concluding remarks. Our aim in this work was to carefully outline the com-
putational issues associated with implementing the stochastic finite element method
and processing the results for a model of acoustic scattering, where uncertainty is
restricted to boundary data. We have shown that a representation of the solution in
outer product form leads to significant savings in storage and also enables the rel-
atively inexpensive computation of the random solution. The dominant cost comes
from postprocessing of the solution to compute statistical data, although the outer

18



product form in this setting reduces the storage overhead of these computations. Fi-
nally, we note that if uncertainty appears in the differential operator instead of the
right hand side, then the outer product formulation of the stochastic system is not
available, and this problem would be more costly to solve.
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