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attering.1. Introdu
tion. It is 
ommon pra
ti
e for mathemati
al models to be studiedunder the assumption that data de�ning the models are pre
isely understood. In real-ity, however, this simplifying assumption is often not valid, and there is 
onsiderableun
ertainty in spe
i�
ation of models. Sour
es of un
ertainty in
lude geologi
al prop-erties of transporting media, material properties of stru
tures, and unknown aspe
tsof boundary 
onditions.One approa
h for addressing this issue is to treat poorly spe
i�ed data as randomvariables having some given statisti
al properties su
h as means and higher ordermoments, and then to determine analogous statisti
al properties of solutions. Forboundary value problems with un
ertain data (sto
hasti
 partial di�erential equa-tions), a methodology known as the sto
hasti
 �nite element method has generated
onsiderable attention in the last de
ade [6, 7, 11, 12, 15℄. This approa
h starts with aboundary value problem in d-dimensional physi
al spa
e. The sto
hasti
 
omponentof the problem statement is then spe
i�ed approximately using anm-dimensional aux-iliary spa
e whi
h is derived from an underlying probability spa
e asso
iated with thedata. The result is a (d+m)-dimensional model, whi
h 
an be stated in a weak formon a suitable fun
tion spa
e using a 
ombination of standard variational 
onstru
tionsfor the physi
al 
omponent of the problem together with averaging for the sto
hasti

omponent. We will outline the details of this methodology in Se
tion 2.On
e this weak formulation is spe
i�ed, a numeri
al solution of the sto
hasti
partial di�erential equation 
an be 
omputed in essentially the same manner as fordeterministi
 problems. In parti
ular, the introdu
tion of �nite dimensional subspa
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leads to an algebrai
 system of equations whose solution 
an be used to approximatestatisti
al properties of the physi
al solution, su
h as its mean, varian
e and 
ovari-an
es. Our 
on
ern in this paper is to explore the 
omputational 
osts of solving thesystems in question and of generating statisti
al analyses of the solution.We will fo
us on problems where randomness only a�e
ts the right hand sides ofthe algebrai
 systems, that is, where the for
ing terms or boundary data are randomfun
tions. A natural example of this arises in models of a
ousti
 or ele
tromagneti
s
attering, where la
k of information about the material properties of s
atterers orthe shape and stru
ture of boundaries su
h as o
ean bottoms leads to un
ertaintyin boundary 
onditions. We will use this model, spe
i�
ally, the numeri
al solutionof the Helmholtz equation, as a ben
hmark problem, and in our assessment we willexplore 
omputational issues asso
iated with quantities su
h as moments and proba-bility distributions of a
ousti
 pressures, and how these are a�e
ted by 
hara
teristi
sof the problem su
h as wave numbers.One of the 
omputational tasks required is the solution of algebrai
 systems ofequations with multiple right hand sides. In the 
ase of un
ertain boundary data, the
osts of this 
omponent of the 
omputation 
an be kept low using the fa
t that thesolution has a Krone
ker produ
t stru
ture. For our s
attering example, the systems
an be solved eÆ
iently with a multigrid algorithm for the dis
rete Helmholtz equation[9℄, and we show that eÆ
ien
y 
an be enhan
ed in some 
ases using blo
k iterativemethods for systems with multiple right hand sides [4, 10, 17, 22℄. With this strategyfor solving the algebrai
 systems, the dominant 
ost of the 
omputation is that of
omputing statisti
al quantities. We also show that the Krone
ker produ
t stru
tureof the solution allows storage 
osts to be kept relatively low, and moreover it enablesthe statisti
al 
omputations to be performed using eÆ
ient matrix-oriented operationsthat are trivially parallelizable and amenable to implementation using Level 3 Basi
Linear Algebra Subprograms (BLAS3) [8℄. This means that it is possible to handlerelatively �ne \dis
retization" in the sto
hasti
 domain that would otherwise not bepossible.We note that an alternative approa
h for handling random right hand sides hasbeen developed in S
hwab and Todor [20℄, where it is shown that the mean andse
ond moment of the solution 
an be 
omputed dire
tly, where the latter entails thesolution of a fourth order equation derived for this quantity. It is shown in [20℄ thatwhen the underlying di�erential operator is 
oer
ive, then so is the asso
iated fourthorder system, and eÆ
ient multilevel algorithms (but dependent on spe
ial sparsegrids) 
an be developed to solve it. The approa
h under 
onsideration here has theadvantage that it readily yields more general statisti
al information su
h as higherorder moments and probability distributions. It is also relatively straightforward toimplement, essentially only requiring algorithm te
hnology for se
ond order problems.In parti
ular, if, as in the example 
onsidered here, the underlying problem is not
oer
ive, it is still possible to take advantage of eÆ
ient algorithms for that problem.A summary of the 
ontents of the paper is as follows. Se
tion 2 
ontains ades
ription of the sto
hasti
 �nite element methodology and identi�es the stru
tureof the algebrai
 systems derived from dis
retization. Se
tion 3 des
ribes the iterativealgorithms that we 
onsider for solving the dis
rete Helmholtz equation and the blo
kversions designed to handle multiple right hand sides, and then it presents someexperimental results demonstrating the performan
e of these solvers. Se
tion 4 thenoutlines the 
osts of 
omputing statisti
al quantities asso
iated with the solution andshows the results of these 
omputations. Finally, Se
tion 5 
ontains some 
on
luding2



remarks.2. The sto
hasti
 �nite element method. We brie
y des
ribe the generalmethodology with an eye towards showing the stru
ture of the algebrai
 systems. Forour des
ription we use the problem that we will study in experiments, the Helmholtzequation; it will be obvious that the approa
h is general. See [12℄ for 
omplete de-s
riptions of this methodology.2.1. Introdu
tion: weak formulation. A model of a
ousti
 s
attering froma bounded obsta
le is given by the Helmholtz equation��u� k2u = f in DB(u) = g on ��u�n = L(u) on �1 (2.1)where the solution domain D � Rd is bounded internally by the obsta
le boundary� � �D and externally by an arti�
ial boundary �1. The boundary di�erentialoperator B is su
h that Diri
hlet, Neumann or Robin boundary 
onditions resultalong �, and L is the Diri
hlet-to-Neumann operator [13℄ or a suitable approximationthereof.The weak form of this problem is to �nd u 2 Vg su
h thata(u; v) = `(v) 8v 2 V (2.2)where V and Vg denote the linear and aÆne subspa
es ofH1(D) of fun
tions satisfyingany homogeneous resp. inhomogeneous essential boundary 
onditions along �. Inthe simplest 
ase of Diri
hlet boundary data along all of �, the sesquilinear forma : H1(D)�H1(D)! C isa(u; v) = ZD�ru � rv � k2uv� dx� Z�1 vL(u) dsand the right hand side fun
tional ` : H1(D)! C is`(v) = ZD fv dx:To introdu
e randomness into this formulation, let (
;A; P ) denote a probabilityspa
e with sample spa
e 
, �-algebra A and probability measure P . Let � : 
 ! Cbe a 
omplex-valued random variable with � 2 L1(
). The mean or expe
ted value of� is h�i = Z
 �(!) dP (!) = ZC z d�(z);where � is the distribution probability measure asso
iated with � and de�ned on theBorel sets B in the 
omplex plane by �(B) = P (��1(B)). Given a bounded domainD � Rd as above, a random fun
tionu : D � 
! C ; (x; !) 7! u(x; !)is one that is jointly measurable with respe
t to Lebesgue measure on D and themeasure P on 
 and for whi
h 
ku(�; !)kL2(D)� <1:3



The spa
e of random fun
tions is a Hilbert spa
e ~L2(D�
) with respe
t to the innerprodu
t (u; v)~L2 = 
(u(x; �); v(x; �))L2(D)� :The sto
hasti
 Sobolev spa
es ~Hk(D � 
) are de�ned analogously.If any of the data in the Helmholtz equation (2.1) is random (e.g., the wavenumber k, for
ing fun
tion f , or Diri
hlet boundary data g), then the solution u willbe a random fun
tion. The weak form of the sto
hasti
 problem is then to �nd u 2 ~Vgsu
h that ha(u; v)i = h`(v)i 8v 2 ~V0; (2.3)where ~Vg and ~V0 are the sto
hasti
 Sobolev spa
es analogous to Vg and V0.2.2. The Karhunen-Lo�eve expansion and derived weak form. We 
on-sider the development of the sto
hasti
 �nite element method using the Karhunen-Lo�eve (KL) expansion, a representation of random fun
tions in series form using theeigenfun
tions of the 
ovarian
e operator. For the sake of 
on
reteness, we des
ribeits use under the assumption that the for
ing fun
tion f of (2.1) is random; we willdis
uss other possibilities in Se
tion 2.3.Let the 
ovarian
e fun
tion asso
iated with f be denoted by
(x; y) = hf(x)f(y)i � hf(x)i hf(y)i :Consider the integral equation(C
)(x) = � 
(x); where (C
)(x) = ZD 
(x; y)
(y) dy: (2.4)This is a linear integral eigenvalue problem in whi
h, by de�nition, the kernel issymmetri
 and positive-semide�nite. It follows from the general theory of integralequations [5, Ch. 3℄ that C is a 
ompa
t operator and there exists a 
ountable se-quen
e of eigenpairs f(�r; fr)g where the eigenvalues f�rg are nonnegative and theeigenfun
tions ffrg are orthogonal in L2(D). Let the eigenvalues be ordered so that�1 � �2 � � � � � 0. The Karhunen-Lo�eve expansion for f isf(x; �) = f0(x) + 1Xr=1p�r fr(x)�r ; (2.5)where f0(x) = hf(x)i is the mean of f , and f�r(!)gr�1 are un
orrelated randomvariables with mean zero and varian
e one [23, pp. 447�℄.For 
omputation, the in�nite series (2.5) is approximated by a �nite one with, say,m terms. In general, the more lo
alized the 
ovarian
e kernel of f (the smaller the
orrelation length), the slower the de
ay of its eigenvalues and the more terms needbe retained in the KL expansion to a
hieve good a

ura
y. Thus, the utility of thisapproa
h depends on the assumption that the properties of physi
al systems under
onsideration vary smoothly, i.e., there are signi�
ant 
orrelations in the random data.In this 
ase, it is expe
ted that a trun
ated version of (2.5) with a small number mof terms in the sum is suÆ
ient to 
apture the randomness in the system.Assume now that the random fun
tion is given by a �nite-term KL expansionf(x; �) = f0(x) + mXr=1p�r fr(x)�r : (2.6)4



Let Ir = �r(
) denote the image of �r, and let I = I1 � � � � � Im. Colle
ting thesevariables into the random ve
tor � = (�1; : : : ; �m), we have �(
) � I. Assume that �rpossesses the probability density fun
tion �r : Ir ! R, whi
h gives rise to the jointdensity fun
tion �(�) = �1(�1)�2(�2) � � � �m(�m):The sto
hasti
 variational formulation of the Helmholtz equation (2.1) uses astest fun
tions random fun
tions in the spa
e~V = �u(x; �) : ZI �kukH1(D)� �(�)d� <1� ; (2.7)with trial fun
tions in the spa
e ~Vg de�ned analogously. The sto
hasti
 variationalproblem is then spe
i�ed as in (2.3) withha(u; v)i = ZI �ZD�ru � rv � k2uv� dx� Z�1 vL(u) ds� �(�)d�h`(v)i = ZI �ZD fv dx � �(�)d�: (2.8)The weak solution u 
an be viewed as de�ned on a (d+m)-dimensional domain D�I.2.3. Dis
retization and the sto
hasti
 system. In order to establish no-tation, we brie
y dis
uss the dis
retization of the deterministi
 problem (2.1), as-suming Diri
hlet boundary 
onditions u = g hold on the obsta
le boundary �. LetVh = spanf�1; : : : ; �Nxg denote a �nite dimensional subspa
e of H10 (D), and let Vhgdenote the aÆne spa
e obtained by adding basis fun
tions f�Nx+1; : : : ; �Nx+NEg tohandle degrees of freedom on the boundary. As is well known, the dis
rete weakformulation entails �ndinguh = NxXj=1 uj�j + Nx+NEXj=Nx+1 g(xj)�jsu
h thatNxXj=1 a(�j ; �i)uj = ZD f�i dx � Nx+NEXj=Nx+1 a(�j ; �i)g(xj) 8i = 1; : : : ; Nx :This is a linear system of equations Au = f wheref = [(f; �i)℄Nxi=1 �AUEg ; (2.9)AUE represents the 
oupling between degrees of freedom 
onstrained by Diri
hletboundary 
onditions and other unknowns, and g = [g(xj)℄Nx+NEj=Nx+1 is the ve
tor ofnodal boundary values.Now 
onsider the sto
hasti
 problem de�ned by (2.3) and (2.8). For the dis-
retization, let~Vh = spanf�jq(x; �) = �j(x) q(�) : j = 1; : : : ; Nx; q = 1; : : : ; N�g;5



denote a �nite-dimensional subspa
e of ~V of (2.7), where f 1; : : : ;  N�g is a basisfor a �nite-dimensional subspa
e of L2(I). Let ~Vhg denote the aÆne spa
e satisfyinginhomogeneous essential boundary 
onditions. The dis
rete sto
hasti
 problem is thento �nd uh 2 ~Vhg ,uh(x; �) = N�Xq=1 NxXj=1 �j(x) q(�)ujq +NX+NEXj=Nx+1 �j(x)g(xj) (2.10)su
h that ha(uh; vh)i = h`(vh)i 8vh 2 ~Vh:The result is a linear system of equations, the sto
hasti
 system,Au = b (2.11)of order Nx �N�, for unknowns(u11;u21; : : : ;uNx�1;N� ;uNx;N�)T :On
e u is obtained, statisti
al properties of the asso
iated random fun
tion uh 
anbe 
omputed easily, see Se
tion 4.As we have noted, this study 
on
erns the 
ase where randomness only a�e
tsthe right hand side of the algebrai
 systems generated, i.e., where the sour
e termor boundary data is random. Let us 
onsider the stru
ture of the dis
rete problem(2.11) in this 
ase. The entries of the �nite element system matrix A areha(�jq ; �ip)i = ZI a(�j q ; �i p) �(�)d�= �Z�  q p�(�) d���ZDr�j � r�i � k2�j�i dx�Z�1 �iL�j ds�= h q pi a(�j ; �i);for 1 � i; j � Nx, 1 � p; q � N�. Denoting by G 2 RN��N� the Grammian matrix[G℄pq = h q pi ; p; q = 1; : : : ; N� ; (2.12)and by A 2 CNx�Nx the sti�ness matrix of the deterministi
 equation, the 
oeÆ
ientmatrix is seen to have the Krone
ker stru
tureA = G
A:Note that this impli
itly determines an ordering for the rows and 
olumns of A. Therows are ordered so that for ea
h p, indi
es i = 1; : : : ; Nx are grouped together, andthen p is ordered from 1 to N�; the same grouping applies to the 
olumns.For the right hand side, assume as in Se
tion 2.2 that the for
ing fun
tion israndom, and also assume for the moment that homogeneous Diri
hlet boundary 
on-ditions g = 0 hold on �. It then follows from (2.6) and (2.8) that the entry of f
orresponding to the test fun
tion �ip = �i p ish`(�ip)i = ZI `(f; �ip)�(�)d� = `(f0; �i) h pi+ mXr=1p�r `(fr; �i) h�r pi : (2.13)6



Let us de�ne the ve
tors fr = [(fr; �i)℄Nxi=1 ; r = 0; 1; : : : ;m 0 = [h pi℄N�p=1 r = [h�r pi℄N�p=1 ; r = 0; 1; : : : ;m (2.14)whereupon the dis
rete system has the form(G
A)u = f ; f =  0 
 f0 + mXr=1p�r ( r 
 fr) :That is, the right hand side lies in an (m+ 1)-dimensional subspa
e of RN��Nx . Thesolution is thenu = (G
A)�1f = (G�1 
A�1)f= (G�1 0)
 (A�1f0) + mXr=1p�r (G�1 r)
 (A�1fr) : (2.15)This entails the solution of m + 1 systems of size N� with 
oeÆ
ient matrix G, andm + 1 systems of size Nx with 
oeÆ
ient matrix A. In pra
ti
e, the basis fun
tionsf pg for the sto
hasti
 
omponent are often 
hosen to be orthogonal with respe
t tothe probability measure [7, 12℄, in whi
h 
ase G is a diagonal matrix. Thus, the main
omputational requirement is solution of the m+1 systems with 
oeÆ
ient matrix A.Although the derivation above is for the 
ase of sto
hasti
 for
ing fun
tion andhomogeneous boundary 
onditions, the 
on
lusion rea
hed is general. For example, ifa nonzero Diri
hlet 
ondition holds on �, then the 
onstru
tion is identi
al ex
ept f0has the form (
f. (2.9)) f0 = [(f0; �i)℄Nxi=1 �AUEg :More generally, if it is Diri
hlet boundary 
onditions that are random (we will explorethis in experiments des
ribed in Se
tion 3), then terms of the form 0 
 (AUEg0) +Xr p�r ( r 
 (AUEgr))will be in
luded in the right hand side. Similar 
onsiderations apply for Neumann
onditions on the obsta
le boundary.2.4. Implementation. The notation used in the previous se
tion treats theunknowns u of (2.11) as a ve
tor. In an implementation, it is in fa
t more 
onvenientto treat the solution as a two-dimensional array. In parti
ular, 
onsider the matri
esF = [f0; f1; ; : : : ; fm℄; � = diag(1;p�1; : : : ;p�m); 	 = [ 0; 1; ; : : : ; m℄;where the ve
tors ffrg and f rg are de�ned in (2.14). Then the system (2.11) isessentially of the form AU = B; (2.16)where B = F W T with W = G�1(	�). The solution 
an then be represented impli
-itly in outer-produ
t form as U = V W T ; (2.17)where V = A�1F is obtained by solving the system of equations AV = F with m+1right hand sides. 7



3. Iterative solution of the sto
hasti
 system. For the problem under 
on-sideration, the 
oeÆ
ient matrix of (2.16) is a dis
rete Helmholtz operator, whi
h is
omplex, symmetri
 and inde�nite. In this se
tion, we des
ribe an iterative algorithmthat 
an be used to solve this system and demonstrate its e�e
tiveness on a set ofben
hmark problems.3.1. Solution algorithm. The basi
 solution algorithm we use is a multigridmethod designed for the Helmholtz equation, adapted to handle multiple right handsides. As is well known, the prin
iple behind multigrid is to 
ombine smoothers toeliminate os
illatory 
omponents of the error on �ne grids, together with 
oarse grid
orre
tions to eliminate smooth 
omponents. For the Helmholtz equation, standardmultigrid approa
hes are not e�e
tive. There are two diÆ
ulties:1. Standard smoothers su
h as the Ja
obi and Gauss-Seidel methods do notwork be
ause 
ertain smooth modes are ampli�ed by these operations.2. The eigenvalues asso
iated with some smooth modes 
hange signs duringthe grid 
oarsening pro
ess, whi
h 
auses the 
oarse grid 
orre
tion to alsoamplify some smooth modes rather than eliminate them from the error.These diÆ
ulties derive from the inde�niteness of the system. In [9℄, we developeda method that addresses them. The �rst diÆ
ulty is handled by repla
ing standardsmoothers with Krylov subspa
e methods, i.e., GMRES iteration [19℄ is used as thesmoother. The se
ond one is handled by using the multigrid operation as a pre
on-ditioner for an outer Krylov subspa
e iteration, so that 
omponents of the error nottreated 
orre
tly by the multigrid 
oarse grid 
omputations are eliminated. Be
ausethe multigrid smoother is no longer a linear operator, the outer iteration must han-dle this via a so-
alled \
exible" GMRES algorithm [18℄. A 
omplete des
riptionand analysis of the pre
onditioning strategy is given in [9℄, where it is demonstratedthat the algorithm exhibits \textbook multigrid" 
onvergen
e behavior, that is, 
on-vergen
e rates that are independent of the dis
retization parameter; there is somedependen
e on the wave number k.We also adapt this approa
h to handle the system (2.16) with multiple right handsides, the number of whi
h is denoted by m within this se
tion. Re
all that Krylovsubspa
e methods generate an iterate at step s using a 
ertain subspa
e of dimensions. Two types of Krylov subspa
e algorithms have been proposed for problems withmultiple right hand sides:� Blo
k algorithms [2℄, [17℄ 
onstru
t a subspa
e of dimensionms formed by theunion of the s-dimensional subspa
es for ea
h right hand side. Then, for ea
hright hand side, they �nd the best solution within that subspa
e. De
ationis used to remove ve
tors that be
ome linearly dependent.� Seed algorithms [3℄, [21℄ form a Krylov subspa
e using one of the right handsides and then �nd the best solution for ea
h of the m problems within thatsubspa
e. If the seed problem 
onverges before the others, then a di�erentright hand side is 
hosen as the seed and the algorithm is repeated.Ea
h of these approa
hes has its advantages. Seed methods tend to perform bestwhen the right hand sides are related to ea
h other, for example, if they arise fromfun
tions evaluated at nearby points [3℄. This approa
h requires less storage thanblo
k methods: for systems of order N , the seed GMRES method requires storageproportional to sN , 
ompared to smN for a blo
k GMRES solver. On the otherhand, blo
k algorithms tend to 
onverge more rapidly for more general right handsides, or when a small number of eigenvalues are well-separated from the others [17℄.The blo
k algorithm also makes mu
h better use of 
omputer memory traÆ
, sin
e8



ea
h a

ess to the 
oeÆ
ient matrix is used for m matrix-ve
tor produ
ts.In our appli
ation, the right hand side ve
tors (
olumns of F in (2.16)) derive fromthe orthogonal eigenve
tors of the 
ovarian
e matrix, and we found the seed methodto be ine�e
tive. Therefore, we restri
t our attention to a blo
k method. The idea ofblo
k iterative methods is due to O'Leary and R. Underwood. The blo
k bi
onjugategradient algorithm was des
ribed in [17℄, and a blo
k quasi-minimum residual methodin [10℄. Algorithms for altering the blo
k size adaptively were given in [1℄. A blo
kGMRES algorithm was presented by Vital [22℄.We also need to modify the algorithm to handle the nonlinear pre
onditioner,as des
ribed in [4℄. To present this blo
k 
exible GMRES method for (2.16), we usethe generi
 notation Ax = b for the linear system, and w = M(v) to representa generi
 pre
onditioning operation. This may be a linear operation derived froma matrix, or (as in the present setting) a nonlinear operation. Let x(s)j denote anapproximation of the solution to the jth equation (ofm) 
omputed at iteration s. Theblo
k 
exible GMRES algorithm generates a sequen
e of matri
es fVjg of dimensionsN�m that together form a matrix V = [V1; : : : ; Vs℄, and a set of matri
es Zj =M(Vj),and Z = [Z1; : : : ; Zs℄. The blo
k-Hessenberg matrix H has blo
k entries Hij . Ea
h
omponent fx(s)j : j = 1; : : : ;mg of the iterative solution has the formx(s)j = x(0)j + Zy(s)j (3.1)su
h that the norm of the residual kbj � Ax(s)j k is minimal, where x(0)j is a possiblyarbitrary initial value. If M(v) is a linear operation (say Mv where M is a matrix),then Vs, the span of the 
olumns of V , is the same asspanfMr1;(MA)Mr1; : : : ; (MA)s�1Mr1; : : : ;Mrm; (MA)Mrm; : : : ; (MA)s�1Mrmg;the span of the Krylov ve
tors. In this 
ase, it is not ne
essary to store the auxiliarymatrix Z. IfM is a nonlinear operator, then Vs will not be a Krylov subspa
e, but thes'th iterate is still optimal among all possibilities of the form (3.1), whi
h 
orrespondsto an aÆne subspa
e of CN of dimension ms. The algorithm is as follows:Compute the residual r = b�Ax of dimension N �m.until (kr`k � Æ, ` = 1; : : : ;m),% Generate a subspa
e of dimension ms from the residual r.De�ne V1 to be the orthogonal fa
tor in the QR fa
torization of r.for i = 2; : : : ; s+ 1,% Generate the dire
tions de�ning the new basis ve
tors.Zi�1 =M(Vi�1)W = AZi�1%Orthogonalize these dire
tions against the previous ones.for j = 1; : : : ; i� 1,Hj;i�1 = V �j WW =W � VjHj;i�1end for j.Perform a QR fa
torization of W , obtaining the upper tri-angular fa
tor Hi;i�1 and the orthogonal matrix Vi.end for i.% Update ea
h of the solutions.for j = 1; : : : ;m, 9



Fig. 3.1. Spatial domain and initial mesh used in spatial dis
retization.
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 = V �rjSolve the least squares problem miny k
�Hyk .xj = xj + Zyend for j.r = b�Axend untilThe loop on i 
an break down if the matrix W be
omes rank-de�
ient. In this 
ase,we redu
e the size of the blo
k by dropping the dependent 
olumns, updating thesolutions, and 
ontinuing with the residuals that have not 
onverged.3.2. Experimental results. We tested the performan
e of the blo
k 
exi-ble GMRES algorithm for solving the sto
hasti
 Helmholtz equation on the two-dimensional domain D 
onsisting of the 
omplement within the unit 
ir
le of a s
at-terer taken to be a semi-open 
avity. Diri
hlet-to-Neumann 
onditions are spe
i�edon the external boundary �1. The dis
retization in spa
e 
onsists of pie
ewise linearelements on triangles. Figure 3.1 shows the s
atterer and the initial mesh used in alltests. For ea
h wave number k, this mesh is re�ned until khmax was on the order of�=5 � :63, so that there are approximately ten points per wavelength. All 
ompu-tations were done using Matlab. Mesh 
onstru
tion was done using the MatlabPDE Toolbox routines initmesh and refinemesh, whi
h performs a uniform meshre�nement.All un
ertainty in the spe
i�
ation of the boundary value problem o

urs in thestatement of boundary 
onditions on �, the boundary of the s
atterer, where Diri
hletboundary 
onditions u = g are su
h that g is a random fun
tion as spe
i�ed in (2.6),with mean determined by an in
ident plane wave g(x1; x2) = �eik(x1 
os �+x2 sin �) atangle � = �=4. We assume as in [6, 7℄ that the random variables f�rg making up theKL expansions are uniformly distributed on an interval Ir = [��; �℄, giving rise tothe joint uniform distribution on I = [��; �℄m with joint density fun
tion�(�) = � 12��m : (3.2)The 
onvention that h�i�ji = Æij leads to the 
ondition � = p3. The sto
hasti
10



Table 3.1Number of matrix-ve
tor produ
ts required to solve m + 1 systems arising from m-term KL-expansion, using pre
onditioned FGMRES. Numbers in parentheses are average iteration 
ounts ornumber of blo
k iterations.kh = :72, Nx = 4170 m = 4 m = 6 m = 8k = 5� Blo
k FGMRES 35 (7) 49 (7) 54 (6)FGMRES 37 (7.4) 52 (7.4) 67 (7.4)kh = :36, Nx = 16; 196 m = 4 m = 6 m = 8Blo
k FGMRES 40 (8) 56 (8) 72 (8)FGMRES 45 (9.0) 63 (9.0) 81 (9.0)kh = :72, Nx = 16; 196 m = 4 m = 6 m = 8k = 10� Blo
k FGMRES 85 (17) 105 (15) 135 (15)FGMRES 153 (30.6) 214 (30.6) 276 (30.7)kh = :36, Nx = 63; 816 m = 4 m = 6 m = 8Blo
k FGMRES 90 (18) 119 (17) 162 (18)FGMRES 157 (31.4) 220(31.4) 282 (31.3)kh = :72, Nx = 63; 816 m = 4 m = 6 m = 8k = 20� Blo
k FGMRES 200 (40) 245 (35) 288 (32)FGMRES 360 (72.0) 495 (70.7) 636 (80.7)domain I = [��; �℄m is dis
retized using a uniform mesh: ea
h of the m 
oordinateintervals is subdivided into n� equal subintervals, resulting in N� = nm� elements, ea
hof whi
h is an m-dimensional 
ube with side length h� = 2�=n�. Sin
e there are no
ontinuity requirements on the probability spa
e, the basis fun
tions are taken to bepie
ewise 
onstants, that is, the basis fun
tion  q has the value one on the 
ube withindex q and zero elsewhere. This leads to the parti
ularly simple diagonal stru
turefor the Grammian matrix G of (2.12), G = 1N� I . (Re
all that this is always the 
aseif the basis fun
tions for the sto
hasti
 dis
retization are orthogonal with respe
t tothe probability measure.)To de�ne the KL expansion, the 
ovarian
e fun
tion asso
iated with g is assumedto have the form
(x1; x2) = �2e�(j(x1)1�(x2)1j)=2+ j(x1)2�(x2)2j)); x1; x2 2 �:A general requirement of this methodology is that the �rst m eigenfun
tions andeigenvalues of the 
ovarian
e operator, or dis
rete approximations to them, be avail-able. In some 
ir
umstan
es, these may be obtained in 
losed form [12, pp. 27�℄,or, alternatively, they may be approximated using a Galerkin dis
retization of theintegral equation (2.4). For the problems we are 
onsidering, the domain of g is one-dimensional, and the Galerkin 
omputation is inexpensive. The dis
rete eigenvaluesand eigenve
tors are 
omputed dire
tly from the Galerkin approximation. If the do-main in question is of higher dimension, this 
omputation 
an be done eÆ
iently usingsparse eigenvalue methods and fast summation te
hniques [14℄.11



Table 3.1 examines the performan
e of the blo
k 
exible GMRES algorithm and
ompares it with that of the 
exible GMRES algorithm (FGMRES) applied to ea
hright hand side separately. In these tests, the stopping 
riterion for the solvers wasfor the Eu
lidean norm of ea
h 
omponent of the residual to satisfykrjk=kbjk < 10�6; j = 1; : : : ;m+ 1:For the blo
k method, the iteration was stopped when the maximal individual residual
omponent meets this 
riterion. The table shows the total number of matrix-ve
torprodu
ts performed during the 
ourse of the 
omputation, and in parentheses, thenumber of iterations required for 
onvergen
e. For FGMRES, the latter number isthe average for m+1 right hand sides; for blo
k FGMRES, it is the number of blo
kiterations. Note that the dimension of the spa
es 
onstru
ted by the blo
k FGMRESmethod depends on m, the number of right hand sides, but not on the dis
retizationparameter n� asso
iated with the sto
hasti
 domain, sin
e F does not depend on n�in (2.16).It is 
lear from these results that the blo
k methods require fewer matrix-ve
torprodu
ts in all 
ases, and the di�eren
e in the number of these produ
ts be
omesmore dramati
 as the number of right hand sides in
reases and also as the wavenumber k grows, i.e., as the problem be
omes more diÆ
ult. The results providefurther eviden
e of the mesh independent performan
e of the multigrid algorithm.We note, however, that as the number of steps s in
reases, the advantages of theblo
k FGMRES method be
ome less pronoun
ed, sin
e the overhead in generatingthe Krylov spa
e grow like m2s2Nx, 
ompared to ms2Nx when the right hand sidesare pro
essed separately. A blo
k Krylov subspa
e method su
h as QMR [10℄ wouldnot su�er from this drawba
k, although it is not 
lear that this approa
h 
an beadapted to handle a nonlinear pre
onditioner. Be
ause solution of the linear systemsstep represents a low order 
ost for the 
omplete 
onstru
tion of statisti
al data (seethe next se
tion), we have not explored this issue.4. Computation of statisti
al data. On
e the random fun
tion uh of (2.10)is available, we are interested in statisti
al properties su
h as moments and probabil-ity distributions asso
iated with it. In the 
ase of time-harmoni
 wave propagation,an important quantity is the modulus juhj, whi
h indi
ates the signi�
an
e of the
omponent with wave number k in the wave �eld. In this se
tion, we des
ribe the
omputations required to generate statisti
al data asso
iated with the random fun
-tion juh(x; �)j.4.1. Computation of a distribution fun
tion. Consider the 
onstru
tion ofthe probability distribution fun
tion for the maximum modulusF (a) � Pr(maxx juh(x; �)j � a): (4.1)Let Sa = f� 2 I : maxx juh(x; �)j � ag:Using the de�nition of the joint density fun
tion (3.2), we haveF (a) = ZSa �(�)d� = jSaj� 12��m :12



Fig. 4.1. E�e
t of the sto
hasti
 dis
retization parameter n� on the estimate ofPr(maxx juh(x; �)j � a), for k = 5� and various 
hoi
es of m, the number of KL terms.
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To determine the volume of Sa, let � 2 I be given, and let q = q(�) be the index ofthe sto
hasti
 element Iq � I 
ontaining �. Thenmaxx juh(x; �)j = maxx ������NxXj=1 ujq�j(x)������ = maxj jujq jwhere the latter equality follows from the linearity of uh in spa
e. Lettingsa = ����fq : maxj jujq j � ag���� ;it follows that jSaj = (2�)mN� sa, and therefore F (a) = sa=N�. This 
onstru
tion requiresmaxj jujq j for ea
h q. On
e these maxima are 
omputed, they 
an then be used to
ompute F (a) for any a. 13



Fig. 4.2. E�e
t of the number of terms m in the KL expansion on the estimate ofPr(maxx juh(x; �)j � a), for k = 5�.
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aWe show in Figures 4.1{4.2 the results of 
omputing the distribution fun
tion(4.1) for various parameter values. There is no analyti
 expression for this quantity,so it is diÆ
ult to make a rigorous assessment of the a

ura
y of the 
omputations.Nevertheless, it is possible to identify 
ertain qualitative aspe
ts of the results as wellas to pla
e the 
osts of produ
ing them in 
ontext. First, note that dis
retization ofthe random 
omponent of the problem 
an be viewed from two perspe
tives, derivedfrom the number of termsm used in the �nite KL expansion, and, on
em is �xed, fromthe value n� of the dis
retization parameter in I. Convergen
e of the KL expansiondepends on the 
orrelations within the pro
ess; when the �nite expansion is �xed, itis shown in [7℄ that the error in the sto
hasti
 dis
retization (assuming an a

uratespatial dis
retization) is proportional to n�1� . Sin
e the number of sto
hasti
 degreesof freedom is proportional to N� = nm� , it would be desirable to keep m as small aspossible.In Figure 4.1, we 
onsider the impa
t of the two parameters m and n� , for a�xed wave number k = 5�. (The spatial dis
retization was su
h that kh = :36.) Ea
hsubplot in this �gure 
orresponds to a �xed value of m for whi
h n� is allowed to vary.Ea
h plot shows 
onvergen
e to a �xed 
urve with re�nement in n�, as expe
ted. It isalso noteworthy that as m is in
reased, the quality of the solution for �xed n� appearsto improve. (For example, the solution for n� = 4 is 
loser to the limiting value forea
h su

essive 
hoi
e m = 2, 4, 6.) This indi
ates that the 
onstants asso
iated withthe error bounds are smaller asm in
reases. Figure 4.2 explores the impa
t of m more
losely. For this example, the results suggest that m = 8 is an appropriate limitingvalue for the number of terms in the KL expansion. With n� = 4, this yields 65; 536spatial degrees of freedom.1 The 
ombination of smaller values of m together withlarge n� (e.g., m = 2 and n� = 10, yielding 1024 sto
hasti
 degrees of freedom) is able
onvey the qualitative stru
ture of the distribution at signi�
antly smaller 
ost.1We also remark that for m = 10, n� = 4 was the largest dis
retization parameter we 
ould usein our Matlab environment. This led to N� = 1; 048; 576 sto
hasti
 degrees of freedom.14



Fig. 4.3. Estimated probability distribution fun
tion Pr(maxx juh(x; �)j � a), for variousvalues of the wave number k.
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Finally, Figure 4.3 shows the estimated distribution fun
tion (4.1) for di�erentvalues of k. These results suggest that this probability distribution fun
tion does notvary dramati
ally as the wave number in
reases.4.2. Computation of higher moments. For examples of other statisti
al datato be 
omputed, 
onsider the moments of the modulus of uh. Let ah(x; �) � juh(x; �)j,and let a(�)h (x) � hah(x; �)�i ; � = 1; 2; 3; : : :denote the moments of ah. We havea(�)h (x) = ZI juh(x; �)j��(�)d�= N�Xp=1 ZIp ������ N�Xq=10�NxXj=1 ujq�j(x)1A q(�)������� �(�)d�= N�Xp=1 ZIp �(�)d�! ������NxXj=1 ujp�j(x)�������= 1N� N�Xp=1 ������NxXj=1 ujp�j(x)������� :This is straightforward to evaluate on
e the 
oeÆ
ients fujpg are available. In par-ti
ular, the nodal values area (�)i � a(�)h (xi) = 1N� N�Xp=1 juipj� ;15



Fig. 4.4. Estimated mean �h, standard deviation �h, ratio �h=�h, and skewness of juhj, fork = 5�.

0

1

2

3

4

5

6

7

8

9

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mean, k=5π

0

1

2

3

4

5

6

7

8

9

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Standard deviation, k=5π

0  

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Standard deviation ÷ mean, k=5π

0.02

0.04

0.06

0.08

0.1 

0.12

0.14

0.16

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Skewness, k=5π

giving the pie
ewise linear interpolant of the �'th moment,â(�)h (x) = NxXj=1 a (�)j �j(x):The 
omputations required for 
entral moments D�ah � a(1)h ��E are identi
al in stru
-ture.We examine some of these quantities in Figures 4.4{4.6. Four things are shown:the mean �h, standard deviation �h, ratio of standard deviation to mean, and s
aledthird 
entral moment (the 
oeÆ
ient of skewness [16℄)1�3h ��ah � a(1)h �3�of ah. The data used for these plots 
ome from the parameter 
hoi
es m = 8 forthe trun
ated KL expansion, sto
hasti
 dis
retization parameter n� = 4 and spatial16



Fig. 4.5. Estimated mean �h, standard deviation �h, ratio �h=�h, and skewness of juhj, fork = 10�.

dis
retization satisfying kh = :36 for both k = 5� and 10� and kh = :72 for k = 20�.Within ea
h �gure, the means and standard deviations are displayed using the sames
alings. The magnitudes of the standard deviations largely mirror those of the means,and there is virtually no di�eren
e in the relative sizes of these quantities for di�erentwave numbers. This indi
ates that size of the wave number k will not have a signi�
antimpa
t on the 
on�den
e that 
an be attributed to 
omputed mean solutions. Thedepi
tions of skewness indi
ate that near the 
orner singularities, the distributionstend to be more skewed toward the right (positive dire
tion) with respe
t to themean, and inside the 
avity they are skewed more toward the left; this may be of usein identifying the shape of s
atterers.Note that all these 
omputations require the 
omplete set of values fujq : j =1; : : : ; Nx; q = 1; : : : ; N�g, whi
h are obtained from (2.17) asujq = mXr=0 vjrwqr :17



Fig. 4.6. Estimated mean �h, standard deviation �h, ratio �h=�h, and skewness of juhj, fork = 20�.

Consequently, the 
ost is of order O(NxN�) and these 
omputations represent thedominant expense of the pro
ess. The storage 
osts are also of this magnitude but
an be redu
ed to order m max(Nx; N�) by taking advantage of the outer-produ
trepresentation (2.17) and re
omputing ujq whenever it is needed. The tradeo� hereis a (small) additional 
omputational expense of magnitude O(mNxN�). This makesit feasible to handle large values of m or n� that storage restri
tions would otherwiseprevent.5. Con
luding remarks. Our aim in this work was to 
arefully outline the 
om-putational issues asso
iated with implementing the sto
hasti
 �nite element methodand pro
essing the results for a model of a
ousti
 s
attering, where un
ertainty isrestri
ted to boundary data. We have shown that a representation of the solution inouter produ
t form leads to signi�
ant savings in storage and also enables the rel-atively inexpensive 
omputation of the random solution. The dominant 
ost 
omesfrom postpro
essing of the solution to 
ompute statisti
al data, although the outer18



produ
t form in this setting redu
es the storage overhead of these 
omputations. Fi-nally, we note that if un
ertainty appears in the di�erential operator instead of theright hand side, then the outer produ
t formulation of the sto
hasti
 system is notavailable, and this problem would be more 
ostly to solve.A
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