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EFFICIENT ITERATIVE ALGORITHMS FOR THE STOCHASTICFINITE ELEMENT METHOD WITH APPLICATION TO ACOUSTICSCATTERINGhoward elmany, oliver g. ernstz, dianne p. o'learyx, and mihaelstewart{Abstrat. In this study, we desribe the algebrai omputations required to implement thestohasti �nite element method for solving problems in whih unertainty is restrited to righthand side data oming from foring funtions or boundary onditions. We show that the solutionan be represented in a ompat outer produt form whih leads to eÆienies in both work andstorage, and we demonstrate that blok iterative methods for algebrai systems with multiple righthand sides an be used to advantage to ompute this solution. We also show how to generate avariety of statistial quantities from the omputed solution. Finally, we examine the behavior ofthese statistial quantities in one setting derived from a model of aousti sattering.Key words. Stohasti, �nite element, multiple right hand side, multigrid, sattering.1. Introdution. It is ommon pratie for mathematial models to be studiedunder the assumption that data de�ning the models are preisely understood. In real-ity, however, this simplifying assumption is often not valid, and there is onsiderableunertainty in spei�ation of models. Soures of unertainty inlude geologial prop-erties of transporting media, material properties of strutures, and unknown aspetsof boundary onditions.One approah for addressing this issue is to treat poorly spei�ed data as randomvariables having some given statistial properties suh as means and higher ordermoments, and then to determine analogous statistial properties of solutions. Forboundary value problems with unertain data (stohasti partial di�erential equa-tions), a methodology known as the stohasti �nite element method has generatedonsiderable attention in the last deade [6, 7, 11, 12, 15℄. This approah starts with aboundary value problem in d-dimensional physial spae. The stohasti omponentof the problem statement is then spei�ed approximately using anm-dimensional aux-iliary spae whih is derived from an underlying probability spae assoiated with thedata. The result is a (d+m)-dimensional model, whih an be stated in a weak formon a suitable funtion spae using a ombination of standard variational onstrutionsfor the physial omponent of the problem together with averaging for the stohastiomponent. We will outline the details of this methodology in Setion 2.One this weak formulation is spei�ed, a numerial solution of the stohastipartial di�erential equation an be omputed in essentially the same manner as fordeterministi problems. In partiular, the introdution of �nite dimensional subspaesyDepartment of Computer Siene and Institute for Advaned Computer Studies, University ofMaryland, College Park, MD 20742. elman�s.umd.edu. This work was supported in part by theNational Siene Foundation under grants DMS9972490 and DMS0208015 and by the OÆe of NavalResearh under grant N000140110181.zDepartment of Mathematis and Computer Siene, TU Bergakademie Freiberg, 09596 Freiberg,Germany. ernst�math.tu-freiberg.de.xDepartment of Computer Siene and Institute for Advaned Computer Studies, University ofMaryland, College Park, MD 20742. oleary�s.umd.edu. This work was supported in part by theNational Siene Foundation under grants CCR-97-32022 CCR-0204084 and by the OÆe of NavalResearh under grant N000140110181.{Department of Mathematis and Statistis, Georgia State University, Atlanta, Georgia 30303-3083. mstewart�s.umd.edu. This work was supported in part by the OÆe of Naval Researh undergrant N000140110181. 1



leads to an algebrai system of equations whose solution an be used to approximatestatistial properties of the physial solution, suh as its mean, variane and ovari-anes. Our onern in this paper is to explore the omputational osts of solving thesystems in question and of generating statistial analyses of the solution.We will fous on problems where randomness only a�ets the right hand sides ofthe algebrai systems, that is, where the foring terms or boundary data are randomfuntions. A natural example of this arises in models of aousti or eletromagnetisattering, where lak of information about the material properties of satterers orthe shape and struture of boundaries suh as oean bottoms leads to unertaintyin boundary onditions. We will use this model, spei�ally, the numerial solutionof the Helmholtz equation, as a benhmark problem, and in our assessment we willexplore omputational issues assoiated with quantities suh as moments and proba-bility distributions of aousti pressures, and how these are a�eted by harateristisof the problem suh as wave numbers.One of the omputational tasks required is the solution of algebrai systems ofequations with multiple right hand sides. In the ase of unertain boundary data, theosts of this omponent of the omputation an be kept low using the fat that thesolution has a Kroneker produt struture. For our sattering example, the systemsan be solved eÆiently with a multigrid algorithm for the disrete Helmholtz equation[9℄, and we show that eÆieny an be enhaned in some ases using blok iterativemethods for systems with multiple right hand sides [4, 10, 17, 22℄. With this strategyfor solving the algebrai systems, the dominant ost of the omputation is that ofomputing statistial quantities. We also show that the Kroneker produt strutureof the solution allows storage osts to be kept relatively low, and moreover it enablesthe statistial omputations to be performed using eÆient matrix-oriented operationsthat are trivially parallelizable and amenable to implementation using Level 3 BasiLinear Algebra Subprograms (BLAS3) [8℄. This means that it is possible to handlerelatively �ne \disretization" in the stohasti domain that would otherwise not bepossible.We note that an alternative approah for handling random right hand sides hasbeen developed in Shwab and Todor [20℄, where it is shown that the mean andseond moment of the solution an be omputed diretly, where the latter entails thesolution of a fourth order equation derived for this quantity. It is shown in [20℄ thatwhen the underlying di�erential operator is oerive, then so is the assoiated fourthorder system, and eÆient multilevel algorithms (but dependent on speial sparsegrids) an be developed to solve it. The approah under onsideration here has theadvantage that it readily yields more general statistial information suh as higherorder moments and probability distributions. It is also relatively straightforward toimplement, essentially only requiring algorithm tehnology for seond order problems.In partiular, if, as in the example onsidered here, the underlying problem is notoerive, it is still possible to take advantage of eÆient algorithms for that problem.A summary of the ontents of the paper is as follows. Setion 2 ontains adesription of the stohasti �nite element methodology and identi�es the strutureof the algebrai systems derived from disretization. Setion 3 desribes the iterativealgorithms that we onsider for solving the disrete Helmholtz equation and the blokversions designed to handle multiple right hand sides, and then it presents someexperimental results demonstrating the performane of these solvers. Setion 4 thenoutlines the osts of omputing statistial quantities assoiated with the solution andshows the results of these omputations. Finally, Setion 5 ontains some onluding2



remarks.2. The stohasti �nite element method. We briey desribe the generalmethodology with an eye towards showing the struture of the algebrai systems. Forour desription we use the problem that we will study in experiments, the Helmholtzequation; it will be obvious that the approah is general. See [12℄ for omplete de-sriptions of this methodology.2.1. Introdution: weak formulation. A model of aousti sattering froma bounded obstale is given by the Helmholtz equation��u� k2u = f in DB(u) = g on ��u�n = L(u) on �1 (2.1)where the solution domain D � Rd is bounded internally by the obstale boundary� � �D and externally by an arti�ial boundary �1. The boundary di�erentialoperator B is suh that Dirihlet, Neumann or Robin boundary onditions resultalong �, and L is the Dirihlet-to-Neumann operator [13℄ or a suitable approximationthereof.The weak form of this problem is to �nd u 2 Vg suh thata(u; v) = `(v) 8v 2 V (2.2)where V and Vg denote the linear and aÆne subspaes ofH1(D) of funtions satisfyingany homogeneous resp. inhomogeneous essential boundary onditions along �. Inthe simplest ase of Dirihlet boundary data along all of �, the sesquilinear forma : H1(D)�H1(D)! C isa(u; v) = ZD�ru � rv � k2uv� dx� Z�1 vL(u) dsand the right hand side funtional ` : H1(D)! C is`(v) = ZD fv dx:To introdue randomness into this formulation, let (
;A; P ) denote a probabilityspae with sample spae 
, �-algebra A and probability measure P . Let � : 
 ! Cbe a omplex-valued random variable with � 2 L1(
). The mean or expeted value of� is h�i = Z
 �(!) dP (!) = ZC z d�(z);where � is the distribution probability measure assoiated with � and de�ned on theBorel sets B in the omplex plane by �(B) = P (��1(B)). Given a bounded domainD � Rd as above, a random funtionu : D � 
! C ; (x; !) 7! u(x; !)is one that is jointly measurable with respet to Lebesgue measure on D and themeasure P on 
 and for whih 
ku(�; !)kL2(D)� <1:3



The spae of random funtions is a Hilbert spae ~L2(D�
) with respet to the innerprodut (u; v)~L2 = 
(u(x; �); v(x; �))L2(D)� :The stohasti Sobolev spaes ~Hk(D � 
) are de�ned analogously.If any of the data in the Helmholtz equation (2.1) is random (e.g., the wavenumber k, foring funtion f , or Dirihlet boundary data g), then the solution u willbe a random funtion. The weak form of the stohasti problem is then to �nd u 2 ~Vgsuh that ha(u; v)i = h`(v)i 8v 2 ~V0; (2.3)where ~Vg and ~V0 are the stohasti Sobolev spaes analogous to Vg and V0.2.2. The Karhunen-Lo�eve expansion and derived weak form. We on-sider the development of the stohasti �nite element method using the Karhunen-Lo�eve (KL) expansion, a representation of random funtions in series form using theeigenfuntions of the ovariane operator. For the sake of onreteness, we desribeits use under the assumption that the foring funtion f of (2.1) is random; we willdisuss other possibilities in Setion 2.3.Let the ovariane funtion assoiated with f be denoted by(x; y) = hf(x)f(y)i � hf(x)i hf(y)i :Consider the integral equation(C)(x) = � (x); where (C)(x) = ZD (x; y)(y) dy: (2.4)This is a linear integral eigenvalue problem in whih, by de�nition, the kernel issymmetri and positive-semide�nite. It follows from the general theory of integralequations [5, Ch. 3℄ that C is a ompat operator and there exists a ountable se-quene of eigenpairs f(�r; fr)g where the eigenvalues f�rg are nonnegative and theeigenfuntions ffrg are orthogonal in L2(D). Let the eigenvalues be ordered so that�1 � �2 � � � � � 0. The Karhunen-Lo�eve expansion for f isf(x; �) = f0(x) + 1Xr=1p�r fr(x)�r ; (2.5)where f0(x) = hf(x)i is the mean of f , and f�r(!)gr�1 are unorrelated randomvariables with mean zero and variane one [23, pp. 447�℄.For omputation, the in�nite series (2.5) is approximated by a �nite one with, say,m terms. In general, the more loalized the ovariane kernel of f (the smaller theorrelation length), the slower the deay of its eigenvalues and the more terms needbe retained in the KL expansion to ahieve good auray. Thus, the utility of thisapproah depends on the assumption that the properties of physial systems underonsideration vary smoothly, i.e., there are signi�ant orrelations in the random data.In this ase, it is expeted that a trunated version of (2.5) with a small number mof terms in the sum is suÆient to apture the randomness in the system.Assume now that the random funtion is given by a �nite-term KL expansionf(x; �) = f0(x) + mXr=1p�r fr(x)�r : (2.6)4



Let Ir = �r(
) denote the image of �r, and let I = I1 � � � � � Im. Colleting thesevariables into the random vetor � = (�1; : : : ; �m), we have �(
) � I. Assume that �rpossesses the probability density funtion �r : Ir ! R, whih gives rise to the jointdensity funtion �(�) = �1(�1)�2(�2) � � � �m(�m):The stohasti variational formulation of the Helmholtz equation (2.1) uses astest funtions random funtions in the spae~V = �u(x; �) : ZI �kukH1(D)� �(�)d� <1� ; (2.7)with trial funtions in the spae ~Vg de�ned analogously. The stohasti variationalproblem is then spei�ed as in (2.3) withha(u; v)i = ZI �ZD�ru � rv � k2uv� dx� Z�1 vL(u) ds� �(�)d�h`(v)i = ZI �ZD fv dx � �(�)d�: (2.8)The weak solution u an be viewed as de�ned on a (d+m)-dimensional domain D�I.2.3. Disretization and the stohasti system. In order to establish no-tation, we briey disuss the disretization of the deterministi problem (2.1), as-suming Dirihlet boundary onditions u = g hold on the obstale boundary �. LetVh = spanf�1; : : : ; �Nxg denote a �nite dimensional subspae of H10 (D), and let Vhgdenote the aÆne spae obtained by adding basis funtions f�Nx+1; : : : ; �Nx+NEg tohandle degrees of freedom on the boundary. As is well known, the disrete weakformulation entails �ndinguh = NxXj=1 uj�j + Nx+NEXj=Nx+1 g(xj)�jsuh thatNxXj=1 a(�j ; �i)uj = ZD f�i dx � Nx+NEXj=Nx+1 a(�j ; �i)g(xj) 8i = 1; : : : ; Nx :This is a linear system of equations Au = f wheref = [(f; �i)℄Nxi=1 �AUEg ; (2.9)AUE represents the oupling between degrees of freedom onstrained by Dirihletboundary onditions and other unknowns, and g = [g(xj)℄Nx+NEj=Nx+1 is the vetor ofnodal boundary values.Now onsider the stohasti problem de�ned by (2.3) and (2.8). For the dis-retization, let~Vh = spanf�jq(x; �) = �j(x) q(�) : j = 1; : : : ; Nx; q = 1; : : : ; N�g;5



denote a �nite-dimensional subspae of ~V of (2.7), where f 1; : : : ;  N�g is a basisfor a �nite-dimensional subspae of L2(I). Let ~Vhg denote the aÆne spae satisfyinginhomogeneous essential boundary onditions. The disrete stohasti problem is thento �nd uh 2 ~Vhg ,uh(x; �) = N�Xq=1 NxXj=1 �j(x) q(�)ujq +NX+NEXj=Nx+1 �j(x)g(xj) (2.10)suh that ha(uh; vh)i = h`(vh)i 8vh 2 ~Vh:The result is a linear system of equations, the stohasti system,Au = b (2.11)of order Nx �N�, for unknowns(u11;u21; : : : ;uNx�1;N� ;uNx;N�)T :One u is obtained, statistial properties of the assoiated random funtion uh anbe omputed easily, see Setion 4.As we have noted, this study onerns the ase where randomness only a�etsthe right hand side of the algebrai systems generated, i.e., where the soure termor boundary data is random. Let us onsider the struture of the disrete problem(2.11) in this ase. The entries of the �nite element system matrix A areha(�jq ; �ip)i = ZI a(�j q ; �i p) �(�)d�= �Z�  q p�(�) d���ZDr�j � r�i � k2�j�i dx�Z�1 �iL�j ds�= h q pi a(�j ; �i);for 1 � i; j � Nx, 1 � p; q � N�. Denoting by G 2 RN��N� the Grammian matrix[G℄pq = h q pi ; p; q = 1; : : : ; N� ; (2.12)and by A 2 CNx�Nx the sti�ness matrix of the deterministi equation, the oeÆientmatrix is seen to have the Kroneker strutureA = G
A:Note that this impliitly determines an ordering for the rows and olumns of A. Therows are ordered so that for eah p, indies i = 1; : : : ; Nx are grouped together, andthen p is ordered from 1 to N�; the same grouping applies to the olumns.For the right hand side, assume as in Setion 2.2 that the foring funtion israndom, and also assume for the moment that homogeneous Dirihlet boundary on-ditions g = 0 hold on �. It then follows from (2.6) and (2.8) that the entry of forresponding to the test funtion �ip = �i p ish`(�ip)i = ZI `(f; �ip)�(�)d� = `(f0; �i) h pi+ mXr=1p�r `(fr; �i) h�r pi : (2.13)6



Let us de�ne the vetors fr = [(fr; �i)℄Nxi=1 ; r = 0; 1; : : : ;m 0 = [h pi℄N�p=1 r = [h�r pi℄N�p=1 ; r = 0; 1; : : : ;m (2.14)whereupon the disrete system has the form(G
A)u = f ; f =  0 
 f0 + mXr=1p�r ( r 
 fr) :That is, the right hand side lies in an (m+ 1)-dimensional subspae of RN��Nx . Thesolution is thenu = (G
A)�1f = (G�1 
A�1)f= (G�1 0)
 (A�1f0) + mXr=1p�r (G�1 r)
 (A�1fr) : (2.15)This entails the solution of m + 1 systems of size N� with oeÆient matrix G, andm + 1 systems of size Nx with oeÆient matrix A. In pratie, the basis funtionsf pg for the stohasti omponent are often hosen to be orthogonal with respet tothe probability measure [7, 12℄, in whih ase G is a diagonal matrix. Thus, the mainomputational requirement is solution of the m+1 systems with oeÆient matrix A.Although the derivation above is for the ase of stohasti foring funtion andhomogeneous boundary onditions, the onlusion reahed is general. For example, ifa nonzero Dirihlet ondition holds on �, then the onstrution is idential exept f0has the form (f. (2.9)) f0 = [(f0; �i)℄Nxi=1 �AUEg :More generally, if it is Dirihlet boundary onditions that are random (we will explorethis in experiments desribed in Setion 3), then terms of the form 0 
 (AUEg0) +Xr p�r ( r 
 (AUEgr))will be inluded in the right hand side. Similar onsiderations apply for Neumannonditions on the obstale boundary.2.4. Implementation. The notation used in the previous setion treats theunknowns u of (2.11) as a vetor. In an implementation, it is in fat more onvenientto treat the solution as a two-dimensional array. In partiular, onsider the matriesF = [f0; f1; ; : : : ; fm℄; � = diag(1;p�1; : : : ;p�m); 	 = [ 0; 1; ; : : : ; m℄;where the vetors ffrg and f rg are de�ned in (2.14). Then the system (2.11) isessentially of the form AU = B; (2.16)where B = F W T with W = G�1(	�). The solution an then be represented impli-itly in outer-produt form as U = V W T ; (2.17)where V = A�1F is obtained by solving the system of equations AV = F with m+1right hand sides. 7



3. Iterative solution of the stohasti system. For the problem under on-sideration, the oeÆient matrix of (2.16) is a disrete Helmholtz operator, whih isomplex, symmetri and inde�nite. In this setion, we desribe an iterative algorithmthat an be used to solve this system and demonstrate its e�etiveness on a set ofbenhmark problems.3.1. Solution algorithm. The basi solution algorithm we use is a multigridmethod designed for the Helmholtz equation, adapted to handle multiple right handsides. As is well known, the priniple behind multigrid is to ombine smoothers toeliminate osillatory omponents of the error on �ne grids, together with oarse gridorretions to eliminate smooth omponents. For the Helmholtz equation, standardmultigrid approahes are not e�etive. There are two diÆulties:1. Standard smoothers suh as the Jaobi and Gauss-Seidel methods do notwork beause ertain smooth modes are ampli�ed by these operations.2. The eigenvalues assoiated with some smooth modes hange signs duringthe grid oarsening proess, whih auses the oarse grid orretion to alsoamplify some smooth modes rather than eliminate them from the error.These diÆulties derive from the inde�niteness of the system. In [9℄, we developeda method that addresses them. The �rst diÆulty is handled by replaing standardsmoothers with Krylov subspae methods, i.e., GMRES iteration [19℄ is used as thesmoother. The seond one is handled by using the multigrid operation as a preon-ditioner for an outer Krylov subspae iteration, so that omponents of the error nottreated orretly by the multigrid oarse grid omputations are eliminated. Beausethe multigrid smoother is no longer a linear operator, the outer iteration must han-dle this via a so-alled \exible" GMRES algorithm [18℄. A omplete desriptionand analysis of the preonditioning strategy is given in [9℄, where it is demonstratedthat the algorithm exhibits \textbook multigrid" onvergene behavior, that is, on-vergene rates that are independent of the disretization parameter; there is somedependene on the wave number k.We also adapt this approah to handle the system (2.16) with multiple right handsides, the number of whih is denoted by m within this setion. Reall that Krylovsubspae methods generate an iterate at step s using a ertain subspae of dimensions. Two types of Krylov subspae algorithms have been proposed for problems withmultiple right hand sides:� Blok algorithms [2℄, [17℄ onstrut a subspae of dimensionms formed by theunion of the s-dimensional subspaes for eah right hand side. Then, for eahright hand side, they �nd the best solution within that subspae. Deationis used to remove vetors that beome linearly dependent.� Seed algorithms [3℄, [21℄ form a Krylov subspae using one of the right handsides and then �nd the best solution for eah of the m problems within thatsubspae. If the seed problem onverges before the others, then a di�erentright hand side is hosen as the seed and the algorithm is repeated.Eah of these approahes has its advantages. Seed methods tend to perform bestwhen the right hand sides are related to eah other, for example, if they arise fromfuntions evaluated at nearby points [3℄. This approah requires less storage thanblok methods: for systems of order N , the seed GMRES method requires storageproportional to sN , ompared to smN for a blok GMRES solver. On the otherhand, blok algorithms tend to onverge more rapidly for more general right handsides, or when a small number of eigenvalues are well-separated from the others [17℄.The blok algorithm also makes muh better use of omputer memory traÆ, sine8



eah aess to the oeÆient matrix is used for m matrix-vetor produts.In our appliation, the right hand side vetors (olumns of F in (2.16)) derive fromthe orthogonal eigenvetors of the ovariane matrix, and we found the seed methodto be ine�etive. Therefore, we restrit our attention to a blok method. The idea ofblok iterative methods is due to O'Leary and R. Underwood. The blok bionjugategradient algorithm was desribed in [17℄, and a blok quasi-minimum residual methodin [10℄. Algorithms for altering the blok size adaptively were given in [1℄. A blokGMRES algorithm was presented by Vital [22℄.We also need to modify the algorithm to handle the nonlinear preonditioner,as desribed in [4℄. To present this blok exible GMRES method for (2.16), we usethe generi notation Ax = b for the linear system, and w = M(v) to representa generi preonditioning operation. This may be a linear operation derived froma matrix, or (as in the present setting) a nonlinear operation. Let x(s)j denote anapproximation of the solution to the jth equation (ofm) omputed at iteration s. Theblok exible GMRES algorithm generates a sequene of matries fVjg of dimensionsN�m that together form a matrix V = [V1; : : : ; Vs℄, and a set of matries Zj =M(Vj),and Z = [Z1; : : : ; Zs℄. The blok-Hessenberg matrix H has blok entries Hij . Eahomponent fx(s)j : j = 1; : : : ;mg of the iterative solution has the formx(s)j = x(0)j + Zy(s)j (3.1)suh that the norm of the residual kbj � Ax(s)j k is minimal, where x(0)j is a possiblyarbitrary initial value. If M(v) is a linear operation (say Mv where M is a matrix),then Vs, the span of the olumns of V , is the same asspanfMr1;(MA)Mr1; : : : ; (MA)s�1Mr1; : : : ;Mrm; (MA)Mrm; : : : ; (MA)s�1Mrmg;the span of the Krylov vetors. In this ase, it is not neessary to store the auxiliarymatrix Z. IfM is a nonlinear operator, then Vs will not be a Krylov subspae, but thes'th iterate is still optimal among all possibilities of the form (3.1), whih orrespondsto an aÆne subspae of CN of dimension ms. The algorithm is as follows:Compute the residual r = b�Ax of dimension N �m.until (kr`k � Æ, ` = 1; : : : ;m),% Generate a subspae of dimension ms from the residual r.De�ne V1 to be the orthogonal fator in the QR fatorization of r.for i = 2; : : : ; s+ 1,% Generate the diretions de�ning the new basis vetors.Zi�1 =M(Vi�1)W = AZi�1%Orthogonalize these diretions against the previous ones.for j = 1; : : : ; i� 1,Hj;i�1 = V �j WW =W � VjHj;i�1end for j.Perform a QR fatorization of W , obtaining the upper tri-angular fator Hi;i�1 and the orthogonal matrix Vi.end for i.% Update eah of the solutions.for j = 1; : : : ;m, 9



Fig. 3.1. Spatial domain and initial mesh used in spatial disretization.
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 = V �rjSolve the least squares problem miny k�Hyk .xj = xj + Zyend for j.r = b�Axend untilThe loop on i an break down if the matrix W beomes rank-de�ient. In this ase,we redue the size of the blok by dropping the dependent olumns, updating thesolutions, and ontinuing with the residuals that have not onverged.3.2. Experimental results. We tested the performane of the blok exi-ble GMRES algorithm for solving the stohasti Helmholtz equation on the two-dimensional domain D onsisting of the omplement within the unit irle of a sat-terer taken to be a semi-open avity. Dirihlet-to-Neumann onditions are spei�edon the external boundary �1. The disretization in spae onsists of pieewise linearelements on triangles. Figure 3.1 shows the satterer and the initial mesh used in alltests. For eah wave number k, this mesh is re�ned until khmax was on the order of�=5 � :63, so that there are approximately ten points per wavelength. All ompu-tations were done using Matlab. Mesh onstrution was done using the MatlabPDE Toolbox routines initmesh and refinemesh, whih performs a uniform meshre�nement.All unertainty in the spei�ation of the boundary value problem ours in thestatement of boundary onditions on �, the boundary of the satterer, where Dirihletboundary onditions u = g are suh that g is a random funtion as spei�ed in (2.6),with mean determined by an inident plane wave g(x1; x2) = �eik(x1 os �+x2 sin �) atangle � = �=4. We assume as in [6, 7℄ that the random variables f�rg making up theKL expansions are uniformly distributed on an interval Ir = [��; �℄, giving rise tothe joint uniform distribution on I = [��; �℄m with joint density funtion�(�) = � 12��m : (3.2)The onvention that h�i�ji = Æij leads to the ondition � = p3. The stohasti10



Table 3.1Number of matrix-vetor produts required to solve m + 1 systems arising from m-term KL-expansion, using preonditioned FGMRES. Numbers in parentheses are average iteration ounts ornumber of blok iterations.kh = :72, Nx = 4170 m = 4 m = 6 m = 8k = 5� Blok FGMRES 35 (7) 49 (7) 54 (6)FGMRES 37 (7.4) 52 (7.4) 67 (7.4)kh = :36, Nx = 16; 196 m = 4 m = 6 m = 8Blok FGMRES 40 (8) 56 (8) 72 (8)FGMRES 45 (9.0) 63 (9.0) 81 (9.0)kh = :72, Nx = 16; 196 m = 4 m = 6 m = 8k = 10� Blok FGMRES 85 (17) 105 (15) 135 (15)FGMRES 153 (30.6) 214 (30.6) 276 (30.7)kh = :36, Nx = 63; 816 m = 4 m = 6 m = 8Blok FGMRES 90 (18) 119 (17) 162 (18)FGMRES 157 (31.4) 220(31.4) 282 (31.3)kh = :72, Nx = 63; 816 m = 4 m = 6 m = 8k = 20� Blok FGMRES 200 (40) 245 (35) 288 (32)FGMRES 360 (72.0) 495 (70.7) 636 (80.7)domain I = [��; �℄m is disretized using a uniform mesh: eah of the m oordinateintervals is subdivided into n� equal subintervals, resulting in N� = nm� elements, eahof whih is an m-dimensional ube with side length h� = 2�=n�. Sine there are noontinuity requirements on the probability spae, the basis funtions are taken to bepieewise onstants, that is, the basis funtion  q has the value one on the ube withindex q and zero elsewhere. This leads to the partiularly simple diagonal struturefor the Grammian matrix G of (2.12), G = 1N� I . (Reall that this is always the aseif the basis funtions for the stohasti disretization are orthogonal with respet tothe probability measure.)To de�ne the KL expansion, the ovariane funtion assoiated with g is assumedto have the form(x1; x2) = �2e�(j(x1)1�(x2)1j)=2+ j(x1)2�(x2)2j)); x1; x2 2 �:A general requirement of this methodology is that the �rst m eigenfuntions andeigenvalues of the ovariane operator, or disrete approximations to them, be avail-able. In some irumstanes, these may be obtained in losed form [12, pp. 27�℄,or, alternatively, they may be approximated using a Galerkin disretization of theintegral equation (2.4). For the problems we are onsidering, the domain of g is one-dimensional, and the Galerkin omputation is inexpensive. The disrete eigenvaluesand eigenvetors are omputed diretly from the Galerkin approximation. If the do-main in question is of higher dimension, this omputation an be done eÆiently usingsparse eigenvalue methods and fast summation tehniques [14℄.11



Table 3.1 examines the performane of the blok exible GMRES algorithm andompares it with that of the exible GMRES algorithm (FGMRES) applied to eahright hand side separately. In these tests, the stopping riterion for the solvers wasfor the Eulidean norm of eah omponent of the residual to satisfykrjk=kbjk < 10�6; j = 1; : : : ;m+ 1:For the blok method, the iteration was stopped when the maximal individual residualomponent meets this riterion. The table shows the total number of matrix-vetorproduts performed during the ourse of the omputation, and in parentheses, thenumber of iterations required for onvergene. For FGMRES, the latter number isthe average for m+1 right hand sides; for blok FGMRES, it is the number of blokiterations. Note that the dimension of the spaes onstruted by the blok FGMRESmethod depends on m, the number of right hand sides, but not on the disretizationparameter n� assoiated with the stohasti domain, sine F does not depend on n�in (2.16).It is lear from these results that the blok methods require fewer matrix-vetorproduts in all ases, and the di�erene in the number of these produts beomesmore dramati as the number of right hand sides inreases and also as the wavenumber k grows, i.e., as the problem beomes more diÆult. The results providefurther evidene of the mesh independent performane of the multigrid algorithm.We note, however, that as the number of steps s inreases, the advantages of theblok FGMRES method beome less pronouned, sine the overhead in generatingthe Krylov spae grow like m2s2Nx, ompared to ms2Nx when the right hand sidesare proessed separately. A blok Krylov subspae method suh as QMR [10℄ wouldnot su�er from this drawbak, although it is not lear that this approah an beadapted to handle a nonlinear preonditioner. Beause solution of the linear systemsstep represents a low order ost for the omplete onstrution of statistial data (seethe next setion), we have not explored this issue.4. Computation of statistial data. One the random funtion uh of (2.10)is available, we are interested in statistial properties suh as moments and probabil-ity distributions assoiated with it. In the ase of time-harmoni wave propagation,an important quantity is the modulus juhj, whih indiates the signi�ane of theomponent with wave number k in the wave �eld. In this setion, we desribe theomputations required to generate statistial data assoiated with the random fun-tion juh(x; �)j.4.1. Computation of a distribution funtion. Consider the onstrution ofthe probability distribution funtion for the maximum modulusF (a) � Pr(maxx juh(x; �)j � a): (4.1)Let Sa = f� 2 I : maxx juh(x; �)j � ag:Using the de�nition of the joint density funtion (3.2), we haveF (a) = ZSa �(�)d� = jSaj� 12��m :12



Fig. 4.1. E�et of the stohasti disretization parameter n� on the estimate ofPr(maxx juh(x; �)j � a), for k = 5� and various hoies of m, the number of KL terms.
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To determine the volume of Sa, let � 2 I be given, and let q = q(�) be the index ofthe stohasti element Iq � I ontaining �. Thenmaxx juh(x; �)j = maxx ������NxXj=1 ujq�j(x)������ = maxj jujq jwhere the latter equality follows from the linearity of uh in spae. Lettingsa = ����fq : maxj jujq j � ag���� ;it follows that jSaj = (2�)mN� sa, and therefore F (a) = sa=N�. This onstrution requiresmaxj jujq j for eah q. One these maxima are omputed, they an then be used toompute F (a) for any a. 13



Fig. 4.2. E�et of the number of terms m in the KL expansion on the estimate ofPr(maxx juh(x; �)j � a), for k = 5�.
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aWe show in Figures 4.1{4.2 the results of omputing the distribution funtion(4.1) for various parameter values. There is no analyti expression for this quantity,so it is diÆult to make a rigorous assessment of the auray of the omputations.Nevertheless, it is possible to identify ertain qualitative aspets of the results as wellas to plae the osts of produing them in ontext. First, note that disretization ofthe random omponent of the problem an be viewed from two perspetives, derivedfrom the number of termsm used in the �nite KL expansion, and, onem is �xed, fromthe value n� of the disretization parameter in I. Convergene of the KL expansiondepends on the orrelations within the proess; when the �nite expansion is �xed, itis shown in [7℄ that the error in the stohasti disretization (assuming an auratespatial disretization) is proportional to n�1� . Sine the number of stohasti degreesof freedom is proportional to N� = nm� , it would be desirable to keep m as small aspossible.In Figure 4.1, we onsider the impat of the two parameters m and n� , for a�xed wave number k = 5�. (The spatial disretization was suh that kh = :36.) Eahsubplot in this �gure orresponds to a �xed value of m for whih n� is allowed to vary.Eah plot shows onvergene to a �xed urve with re�nement in n�, as expeted. It isalso noteworthy that as m is inreased, the quality of the solution for �xed n� appearsto improve. (For example, the solution for n� = 4 is loser to the limiting value foreah suessive hoie m = 2, 4, 6.) This indiates that the onstants assoiated withthe error bounds are smaller asm inreases. Figure 4.2 explores the impat of m morelosely. For this example, the results suggest that m = 8 is an appropriate limitingvalue for the number of terms in the KL expansion. With n� = 4, this yields 65; 536spatial degrees of freedom.1 The ombination of smaller values of m together withlarge n� (e.g., m = 2 and n� = 10, yielding 1024 stohasti degrees of freedom) is ableonvey the qualitative struture of the distribution at signi�antly smaller ost.1We also remark that for m = 10, n� = 4 was the largest disretization parameter we ould usein our Matlab environment. This led to N� = 1; 048; 576 stohasti degrees of freedom.14



Fig. 4.3. Estimated probability distribution funtion Pr(maxx juh(x; �)j � a), for variousvalues of the wave number k.
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Finally, Figure 4.3 shows the estimated distribution funtion (4.1) for di�erentvalues of k. These results suggest that this probability distribution funtion does notvary dramatially as the wave number inreases.4.2. Computation of higher moments. For examples of other statistial datato be omputed, onsider the moments of the modulus of uh. Let ah(x; �) � juh(x; �)j,and let a(�)h (x) � hah(x; �)�i ; � = 1; 2; 3; : : :denote the moments of ah. We havea(�)h (x) = ZI juh(x; �)j��(�)d�= N�Xp=1 ZIp ������ N�Xq=10�NxXj=1 ujq�j(x)1A q(�)������� �(�)d�= N�Xp=1 ZIp �(�)d�! ������NxXj=1 ujp�j(x)�������= 1N� N�Xp=1 ������NxXj=1 ujp�j(x)������� :This is straightforward to evaluate one the oeÆients fujpg are available. In par-tiular, the nodal values area (�)i � a(�)h (xi) = 1N� N�Xp=1 juipj� ;15



Fig. 4.4. Estimated mean �h, standard deviation �h, ratio �h=�h, and skewness of juhj, fork = 5�.
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giving the pieewise linear interpolant of the �'th moment,â(�)h (x) = NxXj=1 a (�)j �j(x):The omputations required for entral moments D�ah � a(1)h ��E are idential in stru-ture.We examine some of these quantities in Figures 4.4{4.6. Four things are shown:the mean �h, standard deviation �h, ratio of standard deviation to mean, and saledthird entral moment (the oeÆient of skewness [16℄)1�3h ��ah � a(1)h �3�of ah. The data used for these plots ome from the parameter hoies m = 8 forthe trunated KL expansion, stohasti disretization parameter n� = 4 and spatial16



Fig. 4.5. Estimated mean �h, standard deviation �h, ratio �h=�h, and skewness of juhj, fork = 10�.

disretization satisfying kh = :36 for both k = 5� and 10� and kh = :72 for k = 20�.Within eah �gure, the means and standard deviations are displayed using the samesalings. The magnitudes of the standard deviations largely mirror those of the means,and there is virtually no di�erene in the relative sizes of these quantities for di�erentwave numbers. This indiates that size of the wave number k will not have a signi�antimpat on the on�dene that an be attributed to omputed mean solutions. Thedepitions of skewness indiate that near the orner singularities, the distributionstend to be more skewed toward the right (positive diretion) with respet to themean, and inside the avity they are skewed more toward the left; this may be of usein identifying the shape of satterers.Note that all these omputations require the omplete set of values fujq : j =1; : : : ; Nx; q = 1; : : : ; N�g, whih are obtained from (2.17) asujq = mXr=0 vjrwqr :17



Fig. 4.6. Estimated mean �h, standard deviation �h, ratio �h=�h, and skewness of juhj, fork = 20�.

Consequently, the ost is of order O(NxN�) and these omputations represent thedominant expense of the proess. The storage osts are also of this magnitude butan be redued to order m max(Nx; N�) by taking advantage of the outer-produtrepresentation (2.17) and reomputing ujq whenever it is needed. The tradeo� hereis a (small) additional omputational expense of magnitude O(mNxN�). This makesit feasible to handle large values of m or n� that storage restritions would otherwiseprevent.5. Conluding remarks. Our aim in this work was to arefully outline the om-putational issues assoiated with implementing the stohasti �nite element methodand proessing the results for a model of aousti sattering, where unertainty isrestrited to boundary data. We have shown that a representation of the solution inouter produt form leads to signi�ant savings in storage and also enables the rel-atively inexpensive omputation of the random solution. The dominant ost omesfrom postproessing of the solution to ompute statistial data, although the outer18
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