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ABSTRACT

The inverse power method involves solving shifted equations of the form (A—
ol)v = u. This paper describes a variant method in which shifted equations
may be solved to a fixed reduced accuracy without affecting convergence.
The idea is to alter the right-hand side to produce a correction step to be
added to the current approximations. The digits of this step divide into two
parts: leading digits that correct the solution and trailing garbage. Hence
the step can be be evaluated to a reduced accuracy corresponding to the
correcting digits. The cost is an additional multiplication by A at each step
to generate the right-hand side. Analysis and experiments show that the
method is suitable for normal and mildly nonnormal problems.

In many applications it is necessary to solve linear systems of the form
(A—ol)v = u, (1)

where A is of order n. If n is so large that direct methods are impractical, one must
use iterative methods such as GMRES to solve the system. Unfortunately, o often lies
within the spectrum of A, and experience shows that in such cases iterative methods
converge slowly, if at all. Moreover, good preconditioners are hard to find. For this
reason, recent efforts have been directed toward getting by with solutions (1) in which v
is compute to restricted accuracy. Of course, the definition of “getting by” will depend
on the application. For a useful survey see [1].

This note is concerned with the inverse power method. To motivate the method,
assume that A has a complete set of eigenpairs (A, x;) (i = 1,...,n). Let u (which we
assume to have 2-norm one) be expanded in the form

U =721+ Y202 + -+ Ynlp.
Then the solution v of (1) is

__n Tl + 72 T Tn
A — O

v Ay — 0O Ap — O

xI9. (2)

Now suppose that the o is near \j, say |\ — 0| = 1073, while |y; — o] = O(1) (i =
2,...,n). Then in passing from u to v, the component along z; is enhanced by a factor
of 1,000, while the sizes of the components along the other vectors remain essentially
unchanged. When this process is iterated, the resulting sequence of vectors, suitably
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normalized, converge to 1 — each successive vector adding three more significant digits
to the approximation of x;.

Since the method is self-correcting, it is only necessary to solve (1) to as many
digits as the approximation can be expected to be accurate —in the example of the last
paragraph to three additional significant digits with each iteration. However, it would
be better if we could solve the equation to a constant number of significant digits and
still converge to a fully accurate approximation. The purpose of this note is to describe
and analyze a method that realizes this desideratum, and least for normal and mildly
nonnormal matrices.

The key idea is to not compute v itself but to compute a correction to u that produces
v. Specifically, let

s =av—u, (3)

where « is a scalar to be defined later. Then the next approximation will be

u-+s

U =-—-:.
lu+ ]

(4)

The rationale is that, provided « is suitably chosen, we only have to compute s to the

accuracy necessary to make an effective correction —three digits in the example above.
To derive an equation for s, substitute (1) into (3) to get

s=a(A—ol) tu—u.
Multiplying by A — oI, we get
(A—ols=au— (A—ocl)u= (0 + a)u— Au. (5)

Thus if we know «, we can solve (5) for s.

The normalizing factor should be chosen so that w and awv are as near as possible.
For suppose that awv is, say, three orders of magnitude greater than u. Since u = av — s
has norm one, roughly three of the leading digits of s will have to be identical to
the corresponding digits of av. This means that s must be computed to three more
significant digits than if v and v were approximately the same size.

The ideal value for a@ would minimize ||u — awv||. This is a least squares problem in
the single variable «, and its solution is

4= viu u (A —ol) " u

vio (A —ol)TF(A—ol)"lu

Now u is an approximate eigenvector of A corresponding to A. Hence

a =)\ —o.
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Since we don’t know Ay, we will approximate it by its Rayleigh quotient A= u*Au.
Hence we take @ = A\; — o, which along with (5) gives

(A—ol)s = \u— Au. (6)

Equations (6) and (4) define our new algorithm. The vector Aju — Au is a residual — in
fact, given w it is the smallest possible residual. We will therefore call the algorithm the
residual inverse power method.

We turn now to an asymptotic analysis of this method. For brevity, we will drop
the subscript one from the eigenpair (A1,z1). By an orthogonal change of coordinates

we may assume that
A h* 1
A—<O B) and w—(()).

o ()

The vector u has norm one up to terms of order ||e||?; and if e is sufficiently small, the
normalization has negligible effect. In what follows we will ignore such second order
terms.

The Rayleigh quotient is

S=(1 e (g ’g) C) — A+ e+ O(]e|?).

Hence the right hand side of (6) is

3410 ) (2 ) 0)= Cant ) s

and s* = (sf s¥) is the solution of

<>\ 6 ’ Bﬁ*a[) (2;) - <—(B 8 /\[)e> +O0([le|?).

Let

Thus
s3=—(B—ol)~Y(B = A)e + O(||e]?)
= —(B—ol)[(B—0ol)— (A—o)l]e + O(e]?) (7)
=—e+(A—0)(B—-ol)te+O(|e]]?),
and

s1=~(A=0) W s+ O([le]®) = (A = o) 7'h* = h*(B — o) "'e + O(lle|*).  (8)
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Hence
1+ (A=)t —h*(B—0ol)7l]e o2
wrs= (MO T L ogep),

and on normalizing we get

o) FOdlel = (1) + odle.
(0= o5 -on) (2)

~

u =

where

é=\N—0)(B—-ol) e (9)
To see when the method can be expected to converge, take norms in (9) to get.
el < X = al-I(B = o) el (10)
The quantity ||[(B — oI)~!||~! is often written as sep(c, B). It satisfies the inequality
sep(o, B) < max{p € spectrum(B): |0 — ul},

so that in some sense it measures the separation of ¢ from the spectrum of B. Thus we
can rewrite (10) as

. A — o]
< ——le|l. 11
Jell < o lel ()
Thus if we compute s with no errors, our algorithm will work if
A= d]
=—F <1 12
P sep(o, B) (12)

and the smaller the ratio, the faster the convergence. Since sep is a continuous function
of o and B, we can make the p as small as we like by taking o sufficiently near \.!
We now turn to the question of how accurately we must compute s to attain the
reduction promised in (11). In the following discussion we will drop the O(|le||) terms.
Let g be the error we introduce when we solve equation (6) and let

_ lall

=1l (13)

be the normwise relative error. Since ||g|| must be smaller that ||é|| for full reduction,
we must have.

! An analysis of the method based on (2) gives a convergence ratio of |A\1 — o|/|\2 — o|, where Ao is
the eigenvalue nearest o after A1. The replacement of the denominator with sep(o, B) is the price we
pay for not having to assume that A has a complete system of eigenvectors. See [2, §2.1].
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Now
el = [X—o|-|(B = ol)~ el = Tp|e]|.
where .
B
(B =al)~[le]

and p is defined by (12). On the other hand, from (7)
Is2ll < X+ A =olI(B =) llell = (1 + p)llell,

and from (8)

. ]
< o 1 — 1 || 1 .
lsall < I3 = o= allsall = 7 oo 0 p)lel
Hence Al

< (1 i——_— .

Ish < (1497 s ) (o ol

It follows that R )

llell l

sl = (p+ seg'(’j]B)) (14 p)

Letting
il

sep(o, B)’

we require that the relative error v in s satisfy
2
TP _
VS T = 7(0)
(p+n)(1+p)

(14)

Note that for the values of p we are interested in, the factor 1 + p does not play an

important role, and we shall ignore it.

Let us first consider the case n = 0, which holds for any normal matrix and specifi-

cally for symmetric or Hermitian matrices. The inequality (14) becomes

VTP

This is a nice result: we need only solve the system (6) to a relative accuracy corre-
sponding to the decrease in the error, modified by the factor 7 (more on this later).
On the other hand if n > 0, then when p < 0.57, the function 7(p) becomes effectively

p%/n, and we must have

’y<pj
-

(15)
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v = 0.001 v =0.01 v=0.1

lell — lell/lel el Iel/lel Nl Nl /lel
9.8e—03 1.6e—02 | 1.3e—02 2.1e—02 | 7.3e—02 1.2e—01
7.0e—05 7.2e—03 | 2.6e—04 2.0e—02 | 9.2e—02 1.3e+00
6.7e—07 9.5e—03 | 2.5e—06 9.9e—03 | 3.7e—02 4.0e—01
6.5¢—09 9.8e—03 | 2.5e—08 9.7e—03 | 8.3e—02 2.2e+00
6.6e—11 1.0e—02 | 2.4e—10 9.7e—03 | 1.8e—02 2.1e—01
6.7e—13 1.0e—02 | 2.7e—12 1.1e—02 | 3.4e—03 1.9e—01
6.6e—15 1.0e—02 | 2.4e—14 8.9e—03 | 7.2e—04 2.1e—01

Figure 1: Example with n =0

Thus if n = 1 and p = 10™3 we have to solve the system to a relative accuracy of 1076
to get full reduction at each step.

The number 1+ 7 is a bound on the condition number of the eigenvalue \ [2, p. 48].
But we cannot really argue that the unfavorable requirement (15) is an artifact of ill-
conditioning, since we have just seen that an eigenvalue with a condition number of 2
can cause the p? problem. However, two factors mitigate the problem. First, we never
expect to have very small values of p. If we are working in IEEE double precision,
we can reduce the error by a factor of at most 10716, Thus a p = 10~® would give
convergence in two iterations, and little would be gained by using the residual inverse
power method. The second factor is that we do not have to opt for a full reduction in
the error. If we increase v by a factor of 10, we simple handicap the reduction by the
same factor. But eventually, the residual inverse power method will converge.

We give two examples to support our analysis. They are based on a diagonal matrix
A of order 51, with equally spaced eigenvalues in the interval [0, 1]. We consider the 25th
eigenvalue 0.48, and use a shift o = 0.4802. Since sep(A, B) = 0.02, we have p = 0.01.

In the first example, we take n = 0, so that J(p) = 0.017. Figure 1 exhibits the
behavior of the algorithm for v+ = 0.001,0.01,0.1. The starting vector is random, but
the same for all three cases. For each value of v we display the value ||é|| of the error
after the current step, and the ratio ||é]|/||e]|.

When v = 0.001, so that we are solving the system (6) to greater accuracy than is
required by our theory, we get steady convergence. The second column shows that the
convergence ratios are near 0.01.

For v = 0.01, the convergence is reasonable, but a little slower than for v = 0.001.
This is because the lesser accuracy in the solution throws away some information about
the correction.

For v = 0.1, the process flounders for a few iterations and then begins to converge.
Here it is important to keep in mind that our analysis is only valid up to second order
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Figure 2: Example with n =1

v = 0.0001 v = 0.001 v =0.01

el lell/llellllell— Nell/llell —flell lell/llell
8.8e—03 1.4e—02 | 9.2e—03 1.5e—02 | 1.3e—02 2.1e—02
1.3e—04 1.4e—02 | 1.1e—03 1.2e—01 | 2.9e—02 2.2e+00
7.5e—07 6.0e—03 | 4.9e—06 4.5e—03 | 6.5e—03 2.3e—01
6.0e—09 7.9e—03 | 7.8e—08 1.6e—02 | 1.2e—03 1.8e—01
4.8e—11 8.0e—03 | 4.0e—09 5.1e—02 | 2.2e—04 1.9e—01
5.0e—13 1.0e—02 | 1.7e—11 4.4e—03 | 4.3e—06 1.9e—02
4.2e—15 8.4e—03 | 6.8e—13 3.9e—02 | 8.6e—07 2.0e—01

Figure 3: Example with n = 1.

terms. Initially, these terms dominate and prevent convergence. Only by chance do the
second order terms become small enough enable convergence. In repeated runs of this
experiment with different starting vectors, more often than not the iteration failed to
converge at all.

In performing the experiments we also compared the value of the bound (14) with
the actual error, and found them to be reasonably close. Unfortunately, the bound is
not computable, and the proper value of v must be determined empirically. Curiously, 7
decreased with increasing -, being very near one for v = 0.001 and about 0.1 for v = 0.1.
The reason is that for small v the error e is concentrated in a few components of u. As
7 increases, the greater error introduced into s levels the error in w, thus decreasing 7.

As a second example, the elements Agy o5 and Agy 26 were set to make n = 1. The
value of 4 drops to about 0.0001. Figure 3 exhibits the results for v = 0.0001, 0.001, 0.01.
The method converges for each of the three values, but more slowly as « increases, as
predicted by our theory.

To conclude, the residual inverse power method appears to be an effective way of
reducing the the accuracy required in the solutions of the linear systems of the inverse
power method — certainly for normal matrices. For nonnormal matrices, our analysis
shows that a modest degree of deviation from normality can be tolerated, and our
limited experiments confirm this assertion. There are two drawbacks to the method.
First, the residual must be computed at each step; however, this additional cost is likely
to be small compared to the cost of solving (6) for the correction s, even at reduced
accuracy. The second drawback is the problem of determining the relative accuracy to
which the systems must be solved in the nonnormal case. Unfortunately, we cannot use
(14), since quantities  and 7 will not usually be available. Thus the user must be guided
by experiment and experience. Fortunately, the method is very easy to implement and
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try out.
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