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Networked multi-agent systems have become an integral part of many engi-

neering systems. Collaborative decision making in multi-agent systems poses many

challenges. In this thesis, we study the impact of information and its availability to

agents on collaborative decision making in multi-agent systems.

We consider the problem of detecting Markov and Gaussian models from ob-

served data using two observers. We consider two Markov chains and two observers.

Each observer observes a different function of the state of the true unknown Markov

chain. Given the observations, the aim is to find which of the two Markov chains has

generated the observations. We formulate block binary hypothesis testing problem

for each observer and show that the decision for each observer is a function of the

local likelihood ratio. We present a consensus scheme for the observers to agree on

their beliefs and the asymptotic convergence of the consensus decision to the true

hypothesis is proven. A similar problem framework is considered for the detection

of Gaussian models using two observers. Sequential hypothesis testing problem is



formulated for each observer and solved using local likelihood ratio. We present a

consensus scheme taking into account the random and asymmetric stopping time of

the observers. The notion of “value of information” is introduced to understand the

“usefulness” of the information exchanged to achieve consensus.

Next, we consider the binary hypothesis testing problem with two observers.

There are two possible states of nature. There are two observers which collect

observations that are statistically related to the true state of nature. The two

observers are assumed to be synchronous. Given the observations, the objective

of the observers is to collaboratively find the true state of nature. We consider

centralized and decentralized approaches to solve the problem. In each approach

there are two phases: (1) probability space construction: the true hypothesis is

known, observations are collected to build empirical joint distributions between

hypothesis and the observations; (2) given a new set of observations, hypothesis

testing problems are formulated for the observers to find their individual beliefs

about the true hypothesis. Consensus schemes for the observers to agree on their

beliefs about the true hypothesis are presented. The rate of decay of the probability

of error in the centralized approach and rate of decay of the probability of agreement

on the wrong belief in the decentralized approach are compared. Numerical results

comparing the centralized and decentralized approaches are presented.

All propositions from the set of events for an agent in a multi-agent sys-

tem might not be simultaneously verifiable. We study the concepts of event-state-

operation structure and relationship of incompatibility from literature and use them

as a tool to study the structure of the set of events. We present an example from



multi-agent hypothesis testing where the set of events do not form a boolean al-

gebra, but form an ortholattice. A possible construction of a ’noncommutative

probability space’, accounting for incompatible events (events which cannot be si-

multaneously verified) is discussed. As a possible decision-making problem in such

a probability space, we consider the binary hypothesis testing problem. We present

two approaches to this decision-making problem. In the first approach, we repre-

sent the available data as coming from measurements modeled via projection valued

measures (PVM) and retrieve the results of the underlying detection problem solved

using classical probability models. In the second approach, we represent the mea-

surements using positive operator valued measures (POVM). We prove that the

minimum probability of error achieved in the second approach is the same as in the

first approach.

Finally, we consider the binary hypothesis testing problem with learning of

empirical distributions. The true distributions of the observations under either hy-

pothesis are unknown. Empirical distributions are estimated from observations. A

sequence of detection problems is solved using the sequence of empirical distribu-

tions. The convergence of the information state and optimal detection cost under

empirical distributions to the information state and optimal detection cost under

the true distribution are shown. Numerical results on the convergence of optimal

detection cost are presented.
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Chapter 1: Introduction

Networked multi-agent systems are ubiquitous systems whose presence is

rapidly expanding in all aspects of life and work. Examples of such systems include

smart grids, a group of drones (or robots) collaboratively performing a task, net-

worked vehicles, etc. Some of these networked systems also involve humans, e.g.

networked vehicles (human-driven cars and autonomous cars) and the internet. The

topic of multi-agent systems has drawn wide interest from the research community.

Control and decision making in multi-agent systems has been studied from various

perspectives and with different objectives. [1] provides a survey on decentralized con-

trol, hierarchical control, and methods of analysis of large scale systems. [2] provides

a survey of multi-agent systems from a machine learning perspective. [3] provides

a survey of distributed and hierarchical control with emphasis on model predictive

control. [4] and [5] focus on networked control systems, distributed estimation and

optimization.

This thesis focuses on addressing some of the challenges in multi-agent decision

making. In the following sections, we provide a chapter-wise introduction to the

motivations, problems considered and main contributions.

• Chapter 2: The motivation for the problems considered in this chapter is

1



two-fold. (1)Hypothesis testing problems have been studied extensively in the

literature. Often the observations are assumed to be independent and identi-

cally distributed. We are interested in studying hypothesis testing problems

where the observations are correlated. (2) In multi-agent systems, agents ex-

change information to collaborate over the decision-making process. When the

agents exchange information, some questions that arise are (i) what informa-

tion to exchange; (ii) how much information to exchange (when information

exchange is costly); (iii) how useful is the information exchanged. Taking into

account both motivations, we consider the problem of identifying Markovian

and Gaussian models using two collaborating observers. Due to Markovian

and Gaussian models, the observations received by the observers are corre-

lated and the collaboration between observers leads to information exchange.

• Chapter 3: Consider the scenario where an experiment is observed by a single

observer. The outcomes of the experiment (observations) are collected by the

observer. Based on the observations collected, the observer can find the dis-

tribution of the observations empirically and the Kolmogorov’s construction

of probability space is applicable. In another scenario, there are two observers

collecting different subsets of the observations. Each observer can find the dis-

tribution of their locally collected observations. To find the joint distribution

of the observations they collect, they would have to exchange information. If

the observers do not exchange information, then the joint distribution cannot

be constructed. Hence, when multiple observers (multiple agents) collaborate

2



in a decision-making problem it is important to understand (a) what informa-

tion they exchange and (b) how the probability space has been constructed.

In literature, most of the studies on multi-agent decision-making problems as-

sume that the joint distribution between observations collected by the agents

is known to the agents. Such an assumption implicitly implies that there was

a central agent (which could be one of the agents in the network itself) who

collected the observations from all the agents and found the joint distribution.

Hence a decision strategy which depends on knowing the joint distribution will

not be a truly decentralized strategy. With this motivation we consider the

binary hypothesis testing problem with two observers.

• Chapter 4: The existence of a classical probability space for formulating and

solving decision-making problems imposes restrictions on the set of events, i.e.,

the set verifiable propositions. By assuming that we can construct a classical

probability space we assume that the set of events is a Boolean algebra. This

assumption implies that all subsets of events are simultaneously verifiable. In

multi-agent systems, agents collect observations and exchange information. In

asynchronous multi-agent systems, the agents might not have a common notion

of time. Propositions involving information from different agents might not

be simultaneously verifiable as the information might not be simultaneously

available, thus violating the structure of a Boolean algebra. Hence it might

be inappropriate for us to assume that a classical probability space can be

constructed for an agent. We hypothesize that the set of events for an agent

3



form an orthomodular ortholattice, a more general (than Boolean algebra)

algebraic structure. Our objective is to study multi-agent decision-making

problems. Our objective leads to study the algebraic structure of the set of

events and then “suitably” construct a probability space where the decision-

making problems can be formulated and solved.

• Chapter 5: Most of the studies in stochastic control start with the assump-

tion that there exists a probability space, (Ω,F ,P), and that the stochastic

control problem can be formulated and solved in this probability space. This

probability space can be obtained either from data or from models. When

the probability space is built from models, the models used in formulating

the stochastic control problem dictate the probability measure. When the

probability space is built from data, empirical probability distributions are es-

timated from data and the probability measure is obtained from the empirical

distributions. The true probability distribution under which the observation

database is generated remains unknown. When we want to formulate and

solve stochastic optimal control problems, we would like to do so with respect

to the true measure under which the observations are generated. Since the

true measure is unknown the best that can be done is to formulate and solve

the problems with respect to the estimated empirical distributions.

4



1.1 Problems considered

• Chapter 2: The first problem we consider is the problem of detecting Marko-

vian and Gaussian Models from observed data. We consider two Markov

chains and two observers. Each observer observes a different function of the

state of the true Markov chain. The underlying Markov chain generating the

observations is the same for both the observers. Using these observations,

the observers aim to collaboratively find which of the two Markov chains has

generated the observations. Next, we consider the problem of detecting Gaus-

sian models from observed data. As possible generative models, we consider

two linear systems driven by white Gaussian noise with Gaussian initial condi-

tions. We consider two collaborating observers that observe different functions

of the state of the true Gaussian model. Given the observations, the objective

of the observers is to collaboratively find which of the two Gaussian models

has generated the observed data.

• Chapter 3: The problem we consider is the binary hypothesis testing problem

with two observers. There are two possible states of nature. There are two

observers which collect observations that are statistically related to the true

state of nature. The two observers are assumed to be synchronous. Given the

observations, the objective of the observers is to collaboratively find the true

state of nature.

• Chapter 4: The problem that we consider is the binary hypothesis testing

5



problem with three observers and a central coordinator. There are two possi-

ble states of nature, one of which is the true state of nature. There are three

observers collecting measurements (samples) that are statistically related to

the true state of nature. The joint distribution of the measurements collected

by the observers is unknown. Each observer knows the marginal distribu-

tion of the observations it alone collects. Each observer performs sequential

hypothesis testing and arrives at a binary decision. The binary decision is

then sent to a central coordinator. The objective of the central coordinator is

to find its own belief about the true state of nature by treating the decision

information that it receives as measurements. At the central coordinator a

suitable probability space is to be constructed for formulating and solving the

hypothesis testing problem.

• Chapter 5: The fourth problem that we consider is the binary hypothesis

testing problem based on learning distributions. We consider a single ob-

server. The true distributions of the observations under either hypothesis are

unknown. Empirical distributions are estimated from samples. We consider

a sequence of detection problems formulated using the generated sequence

of empirical distributions. The objective is to solve the detection problems

and understand the asymptotic behavior of the optimal detection cost under

empirical distributions.

6



1.2 Main contributions

• Chapter 2: For the detection of Markovian models, we formulate the binary

hypothesis testing problem for each observer and prove that the decision for

each of the observers is a function of the local information state. Then we

present a consensus algorithm (for the observers to agree upon their beliefs)

and prove asymptotic convergence of the consensus decision (arrived at using

the algorithm) to the true hypothesis. The notion of “value of information”

is defined empirically to understand the “usefulness” of the information ex-

changed to achieve consensus. For a particular simulation setup, it was found

that the value of information was positive, i.e., the exchange of information

improved the performance of the two observer system and helped it outperform

the single observer system. For the detection of Gaussian models, we formu-

late sequential hypothesis testing problem for each observer and show that

the decision policies are functions of the local likelihood ratios. Taking into

account the random and asymmetric stopping times of the two observers, we

present a consensus algorithm with monotonically changing thresholds which

guarantees asymptotic convergence of the consensus decision (arrived at using

the algorithm) to the true hypothesis. For a particular simulation setup, the

value of information was found to be positive.

• Chapter 3: We consider different approaches to solving the problem with each

approach having two phases: (1) probability space construction: the true hy-

7



pothesis is known, samples are collected to build empirical joint distributions

between hypothesis and the observations; (2) given a new set of observations,

hypothesis testing problems are formulated for the observers to find their in-

dividual beliefs about the true hypothesis. Consensus algorithms for the ob-

servers to agree on their beliefs about the true hypothesis are developed. In

the first approach, the samples collected by both observers are sent to a cen-

tral coordinator. The empirical joint distribution of the hypothesis and the

observations from both observers is found using which the joint probability

space is built. Given new observations from both the observers, a hypothesis

testing problem is formulated and solved in the joint probability space to find

the belief about the true hypothesis. In the second approach, each observer

constructs its own probability space based on the joint distribution of the

true hypothesis and the observations collected by it. Given new observations,

each observer solves a hypothesis testing problem in its own probability space.

Thus, the decision policies of the observers are functions of their local infor-

mation state. A consensus algorithm is designed which involves the exchange

of their decision information. When an observer receives the decision from

the alternate observer it treated it as an exogenous random variable. The

convergence of the consensus algorithm is proven. In the third approach, an

aggregated probability space is constructed for each observer based on the em-

pirical joint distributions of the true hypothesis, the observations (collected by

the observer), and decisions of the alternate observer. Given a new set of obser-

vations, hypothesis testing problems are formulated for the observers (in their

8



respective probability spaces) to find their individual beliefs about the true

hypothesis based on locally collected observations. The consensus algorithm

designed in this approach involves the exchange of their individual decisions

and the ratio of their respective probability of miss detection to that of the

probability of false alarm. The convergence of the consensus algorithm is also

proven. The novelty of the second and third approaches in this solution is that

they are a completely decentralized approach to hypothesis testing. Given the

same fixed number of samples, n, n sufficiently large, for the centralized (first)

and decentralized (second) approaches, we prove that if the observations col-

lected by the observers are independent conditioned on the hypothesis, then

the minimum probability that the two observers agree and are wrong in the

decentralized approach is upper bounded by the minimum probability of error

achieved in the centralized approach.

• Chapter 4: The set of events, i.e, the set of propositions that can be verified

by the central coordinator is enumerated. We show that the set along with

suitable relation of implication and unary operation of orthocomplmentation

is not a Boolean algebra. Hence the construction of a classical probability

space is ruled out. We construct an event-state structure (a generalization of

measure spaces) for the central coordinator along the lines of von -Neumann

Hilbert space model. We associate operations (a generalization of conditional

probability) with the event-state structure and construct a noncommutative

probability space for the central coordinator. We consider the binary hy-

9



pothesis testing problem in the non-commutative probability framework. We

present two approaches to the decision-making problem. In the first approach,

We represent the available data as coming from measurements modeled via

projection valued measures (PVM) and retrieve the results of the underlying

detection problem solved using classical probability models. In the second

approach, we represent the measurements using positive operator valued mea-

sures (POVM). We prove that the minimum probability of error achieved in

the second approach is the same as in the first approach.

• Chapter 5: We show that the Radon-Nikodym derivative of the empirical dis-

tributions with respect to the true measure converges to 1 in measure. The

detection problems are solved using the likelihood ratios computed from the

empirical distributions. The convergence of the likelihood ratio and optimal

detection cost under empirical distributions to the likelihood ratio and optimal

detection cost under the true distribution are shown. We present simulation

results consistent with the results mentioned above. The methodology devel-

oped to prove convergence of the optimal detection cost can be extended to a

larger class of stochastic control problems.
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Chapter 2: Value of Information in Model Detection

2.1 Detection of Markov models

2.1.1 Introduction

Hidden Markov Models are models in which the state of the Markov chain

cannot be observed directly, instead only a function of the state can be observed.

These models are used in speech recognition, econometrics, computational biology

and computer vision and many other fields [6]. Hypothesis testing problems have

been well studied in literature, one of the standard assumptions being that the

observations are i.i.d. Hidden Markov models are instances of models in which ob-

servations have memory and hence are not i.i.d. [7] have formulated the problem of

quickest detection of transient signals using hidden Markov models. They develop a

procedure analogous to Page’s test for dependent observations which can be applied

to the detection of a change in hidden Markov modeled observations, i.e., a switch

from one HMM to another. [8] consider the problem where individual nodes in a

network receive noisy observations whose distributions depend on the hypotheses.

They analyze an update rule (for the belief of hypotheses),where each agent per-

forms a Bayesian update based on local observations and a linear consensus among

11



its neighbors. They prove that the belief of any agent in any incorrect hypotheses

converges to zero exponentially fast.

[9] address the problem where N sensors are observing an event and obtain noisy ob-

servations. The sensor network is modeled by a graph and the sensors are restricted

to exchange messages alone. They characterize conditions under which the N sen-

sors achieve consensus and derive conditions under which the consensus converges

to the centralized MAP estimate. [10], sequential problems in decentralized detec-

tion are considered. Peripheral sensors make noisy measurements of the hypothesis

and send a binary message to a fusion center. Two scenarios are considered. In

the first scenario, the fusion center waits for the binary message(i.e., the decisions)

from all the peripheral sensors and then starts collecting observations. In the sec-

ond scenario, the fusion center collects observations from the beginning and receives

binary messages from the peripheral sensors as time progresses. In either scenario,

the peripheral sensor and the fusion center need to solve a stopping time problem

and declare their decision. Parametric characterization of the optimal policies are

obtained and a sequential methodology for finding the optimal policies is presented.

In this chapter, we consider two Markov chains and two observers. Under the al-

ternate hypothesis, each observer observes a different function of the state of the

first Markov chain. Under the null hypothesis, each observer observes a different

function of the state of the second Markov chain. Thus each observer has its own se-

quence of observations. Given two sequences of observations(one for each observer),

the objective is to find if the sequences were generated under the null hypothesis or

under the alternate hypothesis.

12



An example of this scenario would be when there are 2 cameras observing an envi-

ronment/scene and have different perspectives / views of the scene. The elementary

events in sample space could be defined based on the environment. Consider the

problem where the environment has two states. The manner in which the scene or

the environment changes in each state with time is Markovian. The images (or the

observations in the present example) obtained by the cameras are functions of the

states of the environment. Given the images we would like to arrive at a consensus

on the state of environment.

For both observers , the hypothesis testing problem is formulated and solved as

partially observed stochastic control problem. Thus both observers make individual

decisions on the hypothesis. Then they communicate their decisions. If they have

arrived at the same decision, then they have arrived at a consensus on the hypothe-

sis though it could be wrong. If their decisions are different, then they collect more

observations and repeat the hypothesis testing problem. This algorithm is repeated

until consensus has been achieved. The convergence of this consensus algorithm has

been proven. Figure 2.1 depicts the proposed framework.

To understand as to what was gained by the use of 2 observers and the 1 bit com-

munications, the notion of value of information has been introduced. We define the

value of information and perform simulations to obtain the value of information for

particular setup.

13



Figure 2.1: Proposed framework for Markov model detection using two observers

2.1.2 Problem formulation

2.1.2.1 System model

Let (Ω,F ,P) be a probability space. Two systems are considered whose dy-

namics are described as follows: State of system 1 is described by a finite-state,

homogeneous, discrete time Markov chain X1
k , k ∈ N. The distribution of X1

0 is

assumed to be known. State of system 2 is also described by a finite-state, homoge-

neous, discrete time Markov chain X2
k , k ∈ N and the distribution of X2

0 is assumed

to be known. The state space of X1
k and X2

k is assumed to be have Ns elements and

is identified by the set

SX = {e1, ..., eNs},

where ei are unit vectors in RNs with unity as ith element and zeros elsewhere. Let

F1
k be the complete σ algebra generated by {X1

0 , ..., X
1
k} and F2

k be the complete σ

14



algebra generated by {X2
0 , ..., X

2
k}. The Markov property implies that:

P(X1
k+1 = ej|F1

k ) = P(X1
k+1 = ej|X1

k), P(X2
k+1 = ej|F2

k ) = P(X2
k+1 = ej|X2

k).

The transition matrices for the Markov chains can be defined as:

a1
ji = P(X1

k+1 = ej|X1
k = ei), A

1 = (a1
ji) ∈ RNs×Ns ,

a2
ji = P(X2

k+1 = ej|X2
k = ei), A

2 = (a2
ji) ∈ RNs×Ns .

Thus Markov property also implies,

E[X1
k+1|F1

k ] = E[X1
k+1|X1

k ] = A1X1
k , E[X2

k+1|F2
k ] = E[X2

k+1|X2
k ] = A2X2

k .

Define:

W 1
k+1 = X1

k+1 − A1X1
k , W

2
k+1 = X2

k+1 − A2X2
k .

So that

X1
k+1 = A1X1

k +W 1
k+1, X

2
k+1 = A2X2

k +W 2
k+1.

H (signifying the hypothesis) is a Bernoulli random variable such that

P(H = 1) = p̄1, P(H = 0) = p̄0 = 1− p̄1.
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It is assumed that H, X1
0 and X2

0 are independent random variables. Let Fk =

σ{H,X1
0 , . . . , X

1
k , X

2
0 , . . . , X

2
k} denote the complete σ algebra generated by H,X1

0 ,

. . . , X1
k , X

2
0 , . . . , X

2
k . It is also assumed that:

E[X1
k+1|Fk] = A1X1

k , E[X2
k+1|Fk] = A2X2

k .

The state processes for these systems are not observed directly. Consider Observer

1, under H = 1, it observes a function c1(., .) (with finite range ) of X1
k :

Y 1
k+1 = c1(X1

k , v
1
k+1), k ≥ 0, (2.1)

where v1
k is a sequence of independent, identically distributed random variables. It

is assumed that {v1
k}k≥1 are independent of H, X1

0 , X2
0 , {W 1

k }k≥1 and {W 2
k }k≥1.

Similarly under H = 0, it observes a function c2(., .)(with finite range) of X2
k :

Y 2
k+1 = c2(X2

k , v
2
k+1), k ≥ 0, (2.2)

where v2
k is a sequence of independent, identically distributed random variables. It

is assumed that {v2
k}k≥1 are independent of H, X1

0 , X2
0 , {W 1

k }k≥1, {W 2
k }k≥1 and

{v1
k}k≥1. Let G1

k denote the complete σ algebra generated by H,X1
0 , ..., X

1
k , X

2
0 , ...,

X2
k , Y 1

1 , ..., Y
1
k , Y

2
1 , ..., Y

2
k . Without loss of generality, we can assume that range of

c1(., .) and c2(., .) consists of M1 points and identify it with set of unit vectors

SY = {f 1
1 , ..., f

1
M1
},
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where f 1
j are unit vectors in RM1 with unity as jth element and zeros elsewhere.

(2.1) and (2.2) imply

P(Y 1
k+1 = f 1

j |G1
k) = P(Y 1

k+1 = f 1
j |X1

k), P(Y 2
k+1 = f 1

j |G1
k) = P(Y 2

k+1 = f 1
j |X2

k).

The state to output transition matrices are defined as:

c1
ji = P(Y 1

k+1 = f 1
j |X1

k = ei), C
1 = (c1

ji) ∈ RM1×Ns ,

c2
ji = P(Y 2

k+1 = f 1
j |X2

k = ei), C
2 = (c2

ji) ∈ RM1×Ns .

Thus,

E[Y 1
k+1|G1

k ] = E[Y 1
k+1|X1

k ] = C1X1
k , E[Y 2

k+1|G1
k ] = E[Y 2

k+1|X2
k ] = C2X2

k .

Define:

V 1
k+1 = Y 1

k+1 − C1X1
k , V

2
k+1 = Y 2

k+1 − C2X2
k .

Y 1
k+1 = C1X1

k + V 1
k+1, Y

2
k+1 = C2X2

k + V 2
k+1.

Hence when H = 1, Observer 1 is a discrete Hidden Markov Model (HMM) (under

P ) and is defined by the state space equations:

X1
k+1 = A1X1

k +W 1
k+1,

Y 1
k+1 = C1X1

k + V 1
k+1.
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and when H = 0, it is again a discrete HMM (under P )and is defined by the state

space equations:

X2
k+1 = A2X2

k +W 2
k+1,

Y 2
k+1 = C2X2

k + V 2
k+1.

Hence the observation equation for Observer 1, is given by:

Yk+1 =
[
(C1X1

k + V 1
k+1)H + (C2X2

k + V 2
k+1)(1−H)

]
,

where X1
k , X2

k ∈ SX , A1, A2, C1, C2 are matrices of transition probabilities. The

entries satisfy

Ns∑
j=1

a1
ji = 1,

Ns∑
j=1

a2
ji = 1,

M1∑
j=1

c1
ji = 1,

M1∑
j=1

c2
ji = 1, c1

ji > 0, c2
ji > 0.

W 1
k , W 2

k and V 1
k , V 2

k are martingale increments satisfying

E[W 1
k+1|F1

k ] = E[V 1
k+1|G1

k ] = 0, E[W 2
k+1|F2

k ] = E[V 2
k+1|G1

k ] = 0.

Observer 2, under H = 1 observes a function d1(., .) (with finite range ) of X1
k :

Z1
k+1 = d1(X1

k , u
1
k+1), k ≥ 0,
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where u1
k is a sequence of independent, identically distributed random variables. It

is assumed that {u1
k}k≥1 are independent of H, X1

0 , X2
0 , {W 1

k }k≥1, {W 2
k }k≥1, {v1

k}k≥1

and {v2
k}k≥1. Under H = 0, it observes a function d2(., .)(with finite range) of X2

k :

Z2
k+1 = d2(X2

k , u
2
k+1), k ≥ 0,

where u2
k is a sequence of independent, identically distributed random variables. It is

assumed that {u2
k}k≥1 are independent of H, X1

0 , X2
0 , {W 1

k }k≥1, {W 2
k }k≥1, {v1

k}k≥1,

{v2
k}k≥1 and {u1

k}k≥1. The range of d1(., .) and d2(., .) is assumed to have M2 points

in its range and the points are identified with set of unit vectors

SZ = {f 2
1 , ..., f

2
M2
},

where f 2
j are unit vectors in RM2 with unity as jth element and zeros elsewhere.

Following the procedure which was used to derive the observation equation for Ob-

server 1 , it can be shown that the observation equation for the second observer 2

is given by:

Zk+1 =
[
(D1X1

k + U1
k+1)H + (D2X2

k + U2
k+1)(1−H)

]
,

where D1, D2 are matrices of transition probabilities and the entries satisfy

M2∑
j=1

d1
ji = 1,

M2∑
j=1

d2
ji = 1, d1

ji > 0, d2
ji > 0.

19



Notation:

1. 〈a, b〉 denotes inner product in Euclidean space. Hence 〈a, b〉 = aT b.

2. Let a and b be real numbers. Then a ∧ b = min(a,b).

3. Y
j,(l)
k = 〈Y j

k , f
1
l 〉 so that Y j

k = (Y
j,(1)
k , ..., Y

j,(M1)
k )T . For each k ∈ N, exactly one

component =1, the reminder being 0. Y
(l)
k = Y

1,(l)
k H + Y

2,(l)
k (1 − H). Index

j corresponds to hypothesis and index l corresponds to the component. Thus

j = 1, 2 and l = 1, ...,M1. Z
j,(l)
k , Z

(l)
k are defined similarly.

4. c
j,(l)
k+1 = E[Y

j,(l)
k+1 |G1

k ] =
∑Ns

m=1 c
j
lm〈X

j
k, em〉. Thus cjk+1 = E[Y j

k+1|G1
k ] = CjXj

k

and ck+1 = E[Yk+1|G1
k ] = C1X1

kH + C2X2
k(1 − H) = c1

k+1H + c2
k+1(1 − H).

Define c
(l)
k+1 = c

1,(l)
k+1H + c

2,(l)
k+1(1−H). Again, index j corresponds to hypothesis

and index l corresponds to the component. Hence, j = 1, 2 and l = 1, ...,M1.

d
j,(l)
k+1, d

j
k+1, d

(l)
k+1, dk+1 are defined similarly.

5. Let X be a random variable in the mentioned probability space. σ(X) denotes

the smallest complete σ algebra generated by the random variable X.

6. If H1 and H2 are 2 sub σ algebras of F , then σ(H1∪H2) denotes the smallest

complete σ algebra generated by the sets in H1 and H2.

2.1.2.2 Hypothesis testing problem

We consider the 2 observer problem given by:

Under H = 1 : X1
k+1 = A1X1

k +W 1
k+1,
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Under H = 0 : X2
k+1 = A2X2

k +W 2
k+1,

Observer O1 : Yk+1 =
[
(C1X1

k + V 1
k+1)H + (C2X2

k + V 2
k+1)(1−H)

]
,

Observer O2 : Zk+1 =
[
(D1X1

k + U1
k+1)H + (D2X2

k + U2
k+1)(1−H)

]
.

Let Yk denote the complete σ algebra generated by Y1, ..., Yk and Zk denote the

complete σ algebra generated by Z1, ..., Zk. In this chapter, we consider the block

testing problem with fixed number of samples, T . t−1 denotes the number of times

the block testing problem has been performed. Hence when the block testing prob-

lem is performed for the tth time, tT number of observations have been collected.

For observer 1, the aim is to find D1
t ∈ {0, 1} which is YtT measurable, such that

the following cost is minimized:

J1(D1
t ) = E[C1

10H(1−D1
t ) + C1

01(1−H)D1
t ],

where C1
10and C1

01 are positive real numbers.

For observer 2, the aim is to find D2
t ∈ {0, 1} which is ZtT measurable, such that

the following cost is minimized:

J2(D2
t ) = E[C2

10H(1−D2
t ) + C2

01(1−H)D2
t ],

where C2
10and C2

01 are positive real numbers.
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2.1.2.3 Consensus

Let the optimal decisions at t for observer 1 and observer 2 be denoted by

D1,∗
t (ω) and D2,∗

t (ω) respectively.

while D1,∗
t 6= D2,∗

t

Repeat Binary Hypothesis testing by taking T more samples and finding D1,∗
t+1 and

D2,∗
t+1.

2.1.3 Solution

2.1.3.1 Hypothesis testing problem

First we discuss the solution to the binary hypothesis testing problem. We

present the solution for Observer 1. An identical procedure can be used to find the

solution for Observer 2. Let π1
k (the information state) be defined as:

π1
k = EP[H|Yk].

The optimal decision D1,∗
t is given by:

D1,∗
t = 0 if C1

01(1− π1
tT ) ≥ C1

10π
1
tT ,

= 1 otherwise.
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Also, π1
k can be calculated recursively as follows:

π1
k =

Num(k)

Num(k) +Den(k)

Num(k) =
Ns∑
r=1

qk(er);

qk+1(er) = M1

Ns∑
j=1

qk(ej)a
1
rj

M1∏
i=1

(c1
ij)

Y
(i)
k+1

q1(er) = M1 × p̄1 × [
Ns∑
l=1

M1∏
i=1

(c1
il)
Y

(i)
1 (P(X1

0 = el))a
1
rl]

Den(k) =
Ns∑
r=1

pk(er);

pk+1(er) = M1

Ns∑
j=1

pk(ej)a
2
rj

M1∏
i=1

(c2
ij)

Y
(i)
k+1

p1(er) = M1 × p̄0 × [
Ns∑
l=1

M1∏
i=1

(c2
il)
Y

(i)
1 (P(X2

0 = el))a
2
rl]

Proof :

From the tower law of conditional expectation, the cost function can be written as:

= E[E[C1
10H(1−D1

t ) + C1
01(1−H)D1

t ]|YtT ]

Since D1
t is YtT measurable and π1

tT = EP[H|YtT ] , it follows that the cost function

can be written as

E[(C1
10π

1
tT )× (1−D1

t ) + (C1
01(1− π1

tT ))×D1
t ]
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From monotonicity of expectation, it follows that:

D1,∗
t = 0 if C1

01(1− π1
tT ) ≥ C1

10π
1
tT ,

= 1 otherwise,

and the optimal cost is given by:

J1(D1,∗
t )) = EP[[C1

01(1− π1
tT )] ∧ [C1

10π
1
tT ]]

For the derivation of the recursion equations for the filter we refer to Appendix A.

2.1.3.2 Convergence to consensus

Theorem 2.1.1. (π1
k,Yk)k∈N and (π2

k,Zk)k∈N for are right-closable martingales.

Also,

lim
k→∞

πik = H P a.s, i = 1, 2, (2.3)

lim
k→∞

E[πik] = p1, i = 1, 2, (2.4)

lim
t→∞

J i(Di,∗
t ) = 0, i = 1, 2, (2.5)

inf
t∈N
J i(Di,∗

t ) = 0, i = 1, 2. (2.6)

Proof. The proof is mentioned for Observer 1. The same proof can be extended

for Observer 2 as well. E[π1
k+1|Yk] = E[EP[H|Yk+1]|Yk] = EP[H|Yk] = π1

k. Thus
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(π1
k,Yk)k∈N is a martingale. Since ∃, random variable π1

∞ = H such that

π1
k = E[π1

∞|Yk] ∀ k

it follows that (π1
k,Yk)k∈N, is a right-closable martingale. By Doob’s theorem ( [11])

for the convergence of right closable martinagles (2.3) follows. Since ( π1
k , Yk ) is

a martingale, it follows that E[π1
k] = p1 ∀k. Hence (2.4) follows. (2.3) implies that:

lim
k→∞

[C1
01(1− π1

k)] ∧ [C1
10π

1
k] = 0 P a.s

Also note that |[C1
01(1− π1

k)] ∧ [C1
10π

1
k]| ≤ C1

10 + C1
01, ∀ ω ∈ Ω, k. By the Lebesgue

dominated convergence theorem, (2.5) follows.

[C1
01(1− π1

tT )] ∧ [C1
10π

1
tT ] =

C1
01(1− π1

tT ) + C1
10π

1
tT − |C1

01(1− π1
tT )− C1

10π
1
tT |

2

=
C1

01 + π1
tT (C1

10 − C1
01)− |C1

01 − π1
tT (C1

01 + C1
10)|

2

Since (π1
k,Yk)k∈N is a martingale , it follows that ( C1

01 + π1
tT (C1

10 − C1
01),YtT )t∈N

and ( C1
01 − π1

tT (C1
10 + C1

01),YtT )t∈N are martingales. As Φ(x) = |x| is convex, from

the conditional Jensen’s inequality, it follows that (|C1
01 − π1

tT (C1
01 + C1

10)|,YtT )t∈N

is a submartingale. Hence([C1
01(1 − π1

tT )] ∧ [C1
10π

1
tT ],YtT )t∈N is a supermartingale.

Hence

J1(D1,∗
t+1) ≤ J1(D1,∗

t ) ∀ t

25



Hence by the monotone convergence theorem, (2.6) follows.

The main result of the above theorem is that, the information state converges

to the true hypothesis. This result is used in proving the convergence of the con-

sensus algorithm which is done in the following theorem.

Theorem 2.1.2. ∀ ω ∈ Ω , ∃ t̂(ω) ∈ N such that

D1,∗
t̂(ω)

(ω) = D2,∗
t̂(ω)

(ω) = H(ω) (2.7)

Proof. Fix ω ∈ Ω. From (2.3), it follows that ∀ ε > 0 , ∃ N i(ε, ω) such that

|πik(ω)−H(ω)| < ε ∀ k ≥ N i(ε, ω), i = 1, 2.

SupposeH(ω) = 1 , then let εi1 = 1− Ci
01

Ci
10 + Ci

01

. Then, ∀ k ≥ max(N1(ε11, ω), N2(ε21, ω)),

πik(ω) >
Ci

01

Ci
10 + Ci

01

, i = 1, 2.

Thus ∀ t̂(ω) > dmax(N1(ε11, ω), N2(ε21, ω))

T
e,

D1,∗
t̂(ω)

(ω) = D2,∗
t̂(ω)

(ω) = H(ω) = 1.

SupposeH(ω) = 0 , then let εi2 =
Ci

01

Ci
10 + Ci

01

. Then, ∀ k ≥ max(N1(ε12, ω), N2(ε22, ω)),

πik(ω) <
Ci

01

Ci
10 + Ci

01

, i = 1, 2.
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Thus ∀ t̂(ω) > dmax(N1(ε12, ω), N2(ε22, ω))

T
e

D1,∗
t̂(ω)

(ω) = D2,∗
t̂(ω)

(ω) = H(ω) = 0.

This completes the proof of (2.7). Hence convergence is guaranteed.

The above result states that, for every sample path, there is a index t̂ such

that the optimal decision of both the observers is the same and is equal to the true

hypothesis. Since the result is an asymptotic result, in practice it is possible that

the observers arrive at a consensus to the wrong hypothesis even before reaching

the index t̂.

2.1.4 Simulation results

We are also interested in understanding the “ value of information” associated

with the repeated 1 bit communication. So through simulations we would like to

understand whether through the 1 bit communications, the number of false alarms

and number of misses reduced. A heuristic way to calculate the value of information

for this specific problem would be as follows. Calculate the average reduction in

detection error as:

α = Number of simulations in which consensus occurs to correct hypothesis after

one iteration

β = Number of simulations in which consensus occurs to wrong hypothesis while the

decision for either observers after the first iteration was equal to true hypothesis.
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γ = Total number of bits communicated in all the simulations

total = Total number of simulations

V alue of information =

α− β
total
γ

total

=
α− β
γ

Probability of error is calculated as:

υ = Number of simulations in which consensus occurs to wrong hypothesis.

Probability of error =
υ

total

Average time to consensus is calculated as:

% = Sum of the time to consensus over all simulations.

Average time to consensus = d %

total
e

The simulations were performed with two 3 state Markov chains. The transition

matrices for the two Markov chains were chosen as:

A1 =


0.2 0.4 0.2

0.3 0.35 0.6

0.5 0.25 0.2

 , A
2 =


0.6 0.25 0.25

0.15 0.5 0.35

0.25 0.25 0.4


Observer 1 was considered to have 2 outputs. The state to output transition matrices

were chosen as:

C1 =

0.7 0.5 0.4

0.3 0.5 0.6

 , C2 =

0.35 0.5 0.55

0.65 0.5 0.45


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Observer 2 was considered to have 4 outputs. The state to output transition matrices

were chosen as:

D1 =



0.25 0.1 0.35

0.15 0.15 0.5

0.2 0.5 0.05

0.4 0.25 0.1


, D2 =



0.5 0.1 0.15

0.2 0.5 0.05

0.15 0.1 0.50

0.15 0.3 0.3


The costs were assigned the values C1

10 = 8, C1
01 = 5, C2

10 = 11, C2
01 = 9. T was set

50 samples. p̄1 was set to 0.6. The number of simulations was varied from 10 to 105.

The value of information, probability of error and average time to consensus were

calculated in each case and have been tabulated [table 2.1, table 2.2]. Convergence

Number of Simulations Value of Information Probability of Error
10 0.2181 0.2
100 0.2115 0.15
1000 0.2197 0.1650
10000 0.2212 0.1647
100000 0.2198 0.1684

Table 2.1: Value of information and probability of error for the considered simulation
setup

Number of Simulations Average Time to Consensus
10 76
100 84
1000 85
10000 93
100000 93

Table 2.2: Average time to consensus for the considered simulation setup

of the information states of the two observers for two different sample paths have

been shown in figures 2.2 and 2.3. 105 simulations were performed with C1
10 = 0.9,
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Figure 2.2: The information state for Observer 2 converging to the true hypothesis.

C1
01 = 0.1, C2

10 = 0.1, C2
01 = 0.9. T and p̄1 were not changed. It was observed that

value of information = 0.0949, probability of error = 0.0316 and average time to

consensus = 250. By choosing these values for the weights, Observer 1 is biased

towards alternate hypothesis while observer 2 is biased towards the null hypothesis.

Hence their decisions are not the same for a longer period of time. This increases

the communication cost. After collecting sufficiently large number of samples, the

information state for both the observers converge to the true hypothesis. Hence their

decisions become the same and equal to the true hypothesis with greater probability.

Hence there is significant reduction in probability of error but value of information

drops as communication cost is higher. This study motivates the following question:

Can C1
10, C1

01, C2
10, C2

01 and T be chosen optimally so that higher value of information

is achieved for a given probability of error ?

2.1.5 Conclusion

In this section of the chapter, the binary hypothesis testing problem with

observations generated by Markov chains and two communicating observers has
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Figure 2.3: The information state for Observer 1 converging to the true hypothesis.

been solved by formulating the problem as a partially observed stochastic control

problem. Convergence of the information state to the true hypothesis and optimal

cost to zero has been studied. The convergence of the consensus algorithm has

been proven. To understand the value of the 1 bit communication used to achieve

consensus, simulations were performed. It was observed there was a reduction in

miss and false detection. For the simulation setup considered, it was observed that

on an average, if the observers exchanged their decisions 3 times it led to reduction

in a miss or false detection.

2.2 Detection of Gaussian models

2.2.1 Introduction

Hypothesis testing and changepoint problems arise in various branches of engi-

neering including quality control, detection and tracking of targets in war scenarios,

detection of signals in seismology, econometrics , speech segmentation etc. Some

recent applications are structural health monitoring of bridges, wind turbines, air-

crafts, video scene analysis and sequential steganography, [12]. Sequential analysis
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is a principal tool in addressing these problems. A sequential method is character-

ized by a stopping rule and a decision rule. These methods have been extensively

studied in the literature when there is a single observer collecting all observations.

In this chapter we focus on a problem where there are multiple detectors collecting

observations and work collaboratively to identify the true hypothesis.

The authors in [13] consider the problem where two detectors making indepen-

dent observations need to decide which one of two hypotheses is true. The decision

of the two detectors are coupled through a common cost function. They prove that

the optimal decisions are characterized by thresholds which are coupled and whose

computation requires the solution of two coupled sets of dynamic programming

equations. In [14] an information theoretic approach is presented to the distributed

detection problem. They consider an entropy based cost function which maximizes

the information transferred from the input to the output. They derive optimal de-

cision and fusion rules with and without a fusion center. In [15], a decentralized

sequential detection problem is considered. In their formulation, they consider a set

of sensors making independent observations which need to decide as to which of the

two hypotheses is true. The decision errors by the sensors are penalized through

a common cost function. Each observation collected by the sensors as a team is

assigned a positive cost. Optimal sensor decision rules are characterized through

generalized sequential probability ratio tests (GSPRTs) and a technique for find-

ing optimal thresholds is presented. In [16], the problem of noisy Bayesian active

learning is addressed. They consider a hypothesis testing problem with observations

corrupted by independent noise. Their objective is to find the true hypothesis using
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as few observations as possible by choosing the observations in an adaptive and

strategic manner. They propose a sampling strategy which is based on collecting

observations which maximize the Extrinsic Jensen - Shannon divergence at each

step.

In this chapter, we consider two Gaussian models and two observers. Under

the alternate hypothesis, each observer observes a different function of the state

of the first Gaussian model. Under the null hypothesis , each observer observes a

different function of the state of the second Gaussian model. Thus each observer

has its own sequence of observations. Given two sequences of observations (one for

each observer), the objective is to find if the sequences were generated under the

alternate hypothesis or under the null hypothesis. For each observer we formulate

a sequential hypothesis testing problem which is solved using SPRT. We present a

detection -estimation separation lemma which is useful in finding the likelihood ratio

which is used in the SPRT. Based on the result of the SPRT, the observers could stop

taking observations and arrive at the decision at the same time or at different times.

We present a consensus algorithm which takes into account the various scenarios.

Only the decisions made by the observers are exchanged in arriving at consensus.

To understand the benefit of the 1 bit communication and the use of 2 observers, the

notion of value of information has been discussed. Value of information, probability

of error and average time to consensus have been calculated through Monte Carlo

simulations. It should be noted that the two key differences of this chapter from the

previous works mentioned here are: (i) each observer has its individual cost function

(ii) the observations are not i.i.d.
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2.2.2 Problem formulation

2.2.2.1 System model

Let (Ω,F ,P) be a probability space. Two systems are considered whose dy-

namics are described as follows: Dynamics of the state of system 1 is described by

a linear Gaussian model as follows:

X1
k+1 = A1X1

k +B1W 1
k , ∀ k ≥ 1,

where W 1
k is white noise process with zero mean and covariance R1δkk′ . X1

0 is

assumed to be Gaussian random variable with zero mean and variance Σ1. The

dynamics of the state of system 2 is also described by a linear Gaussian model as

follows:

X2
k+1 = A2X2

k +B2W 2
k , ∀ k ≥ 1,

where W 2
k is white noise process with zero mean and covariance R2δkk′ . X2

0 is

assumed to be Gaussian random variable with zero mean and variance Σ2. We

assume X1
k and X2

k belong to RNs for all k. H (signifying the hypothesis) is a

Bernoulli random variable such that

P(H = 1) = p1, P(H = 0) = p0 = 1− p1.
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Consider Observer 1. Under the alternate hypothesis, it observes a function of the

state of system 1 and is described as follows:

Y 1
k = C1X1

k + V 1
k , ∀ k ≥ 0,

where V 1
k is white noise process with zero mean and covariance Q1δkk′ . Under the

null hypothesis, it observes a function of the state of system 2 and is described as

follows

Y 2
k = C2X2

k + V 2
k , ∀ k ≥ 0,

where V 2
k is white noise process with zero mean and covariance Q2δkk′ . Similarly,

Observer 2, under the alternate hypothesis, observes a function of the state of system

1 (different from the function observed by Observer 1) and is described as follows:

Z1
k = D1X1

k + U1
k , ∀ k ≥ 0,

where U1
k is white noise process with zero mean and covariance S1δkk′ . Under the

null hypothesis, it observes a function of the state of system 2 (different from the

function observed by Observer 1) which is described as:

Z2
k = D2X2

k + U2
k , ∀ k ≥ 0,
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where U2
k is white noise process with zero mean and covariance S2δkk′ . Thus, the

dynamics of the observations at Observer 1 can be compactly written as:

Yk = [(C1X1
k + V 1

k )H + (C2X2
k + V 2

k )(1−H)],

and the dynamics of the observations at Observer 2 can be compactly written as:

Zk = [(D1X1
k + U1

k )H + (D2X2
k + U2

k )(1−H)].

It is assumed that {W 1
k }k≥0, {W 2

k }k≥0, {V 1
k }k≥0, {V 2

k }k≥0, {U1
k}k≥0 , {U2

k}k≥0, X1
0 ,

X2
0 and H are independent. The dimension of Yk is assumed to be M1, while

the dimension of Zk is assumed to be M2. Let Ykn denote the complete σ alge-

bra generated by {Yn, ..., Yk}. Let Zkn denote the complete σ algebra generated by

{Zn, ..., Zk}. A Ykn stopping time is a random time τ : Ω → {n, n + 1, ...,∞} such

that {ω ∈ Ω : τ(ω) ≤ k} ∈ Ykn. The sigma algebra associated with a Ykn stopping

time τ is defined as: Fτ = {A ∈ Y∞n : A ∩ {τ ≤ k} ∈ Ykn ∀ k}. Let {S1
n , n ≥ 0}

denote the set of all possible Ykn stopping time τ such that P(τ < ∞) = 1. Also,

let {S2
n , n ≥ 0} denote the set of all possible Zkn stopping time τ such that

P(τ <∞) = 1.
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2.2.2.2 Sequential hypothesis testing problem

We consider the 2 observer problem given by:

Under H = 1 : X1
k+1 = A1X1

k +B1W 1
k ,

Under H = 0 : X2
k+1 = A2X2

k +B2W 2
k ,

Observer O1 : Yk = [(C1X1
k + V 1

k )H + (C2X2
k + V 2

k )(1−H)] ,

Observer O2 : Zk = [(D1X1
k + U1

k )H + (D2X2
k + U2

k )(1−H)] .

We define the following collection of optimization problems for each observer. n

denotes the starting time for the optimization problem. The objective of Observer

1 is to find τ 1
n ∈ S1

n and D1
τ1n
∈ {0, 1} which is Fτ1n measurable such that following

cost is minimized:

J1(τ 1
n, D

1
τ1n

) = E[α1τ 1
n +H(1−D1

τ1n
) + (1−H)D1

τ1n
], (2.8)

where α1 > 0. The objective of Observer 2 is to find τ 2
n ∈ S2

n and D2
τ2n
∈ {0, 1}

which is Fτ2n measurable such that following cost is minimized:

J2(τ 2
n, D

2
τ2n

) = E[α2τ 2
n +H(1−D2

τ2n
) + (1−H)D2

τ2n
],

where α2 > 0.

37



2.2.2.3 Consensus

The optimal decisions (beliefs of the true hypothesis) by Observer 1 and Ob-

server 2 are obtained (as result of the previous optimization problem) at random

times. The objective is to design an algorithm so that the two observers arrive at

consensus about their beliefs by only exchanging their decisions.

2.2.3 Solution

In Appendix A we present some standard results which address stopping time

problems in a stochastic control framework. The main issue with the results is that

they are not numerically computable. Hence in the following section we discuss the

structure of the optimal strategy and use it to solve the problem numerically.

2.2.3.1 Sequential probability ratio test

The sequential probability ratio test (SPRT) is very well studied in the lit-

erature, [12] and [17], and is often used as a tool in sequential analysis. In the

following, we discuss the SPRT for observations which are not i.i.d. We use ideas

and techniques which are similar to the instance where the SPRT is derived for i.i.d

observations. Consider the optimization problem (2.2.2.2) for Observer 1 starting

at time 0. Define:

π1
0 = f(H = 1|Y0 = y0).
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It follows that,

π1
0 =

f(Y0 = y0|H = 1)× p1

f(Y0 = y0|H = 1)× p1 + f(Y0 = y0|H = 0)× p0

,

f(Y0 = y0|H = 1) =

∫
RNs

fV 1(y0 − C1x)fX1
0
(x)dx,

f(Y0 = y0|H = 0) =

∫
RNs

fV 2(y0 − C2x)fX2
0
(x)dx.

Minimizing the cost function (2.8) of the optimization problem starting at time 0 is

equivalent to minimizing:

J1(τ 1
0 , D

1
τ10

) = E[α1τ 1
0 ] + π1

0P(D1
τ10

= 0|H = 1) + (1− π1
0)P(D1

τ10
= 1|H = 0)

Define:

V1
1(π) = inf

{τ10 ∈ S10 :τ10 (ω)≥1 ∀ω∈Ω},{D1
τ10

∈{0,1}}
E
[
α1τ 1

0

]
+ π

[
P(D1

τ10
= 0|H = 1)

]
+

(1− π)
[
P(D1

τ10
= 1|H = 0)

]
.

For every τ 1
0 ∈ S1

0 , and D1
τ10
∈ {0, 1} , E [α1τ 1

0 ] + π
[
P(D1

τ10
= 0|H = 1)

]
+ (1 −

π)
[
P(D1

τ10
= 1|H = 0)

]
is affine function of π. Hence V1

1(π) is continuous and

concave in π. The posterior cost incurred at time 0 is min((1 − π1
0), (π1

0)). Let

φ0(π) = 1 − π and ϕ0(π) = π. Let π∗U = {0 < π < 1 : V1
1(π) = φ0(π)} and

π∗L = {0 < π < 1 : V1
1(π) = ϕ0(π)}. By concavity of V1

1(π), it follows that if

π0 ≤ π∗L, it is optimal to stop with D1
0 = 0. If π0 ≥ π∗U , it is optimal to stop with

D1
0 = 1. Else the optimal strategy is to collect the next observation. At time k, let
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π1
k = f(H = 1|{Ym = ym}m=k

m=0). Define:

V1
k+1(π) = inf

{τ10 ∈ S10 :τ10 (ω)≥k+1 ∀ω∈Ω},{D1
τ10

∈{0,1}}
E
[
α1τ 1

0

]
+ π

[
P(D1

τ10
= 0|H = 1)

]
+

(1− π)
[
P(D1

τ10
= 1|H = 0)

]
.

The posterior cost incurred at time k is α1k + min((1 − π1
k), (π

1
k)). Let πkU = {0 <

π < 1 : V1
k+1(π) = α1k+1−π} and πkL = {0 < π < 1 : V1

k+1(π) = α1k+π}. By same

arguments as before, if πk ≤ πkL, it is optimal to stop with D1
k = 0. Else if πk ≥ πkU ,

it is optimal to stop with D1
k = 1. Else the optimal strategy is to collect the next

observation. Hence threshold policies are optimal. We define the Likelihood Ratio

(LLR ) at time k (denoted by λ1
k) as follows:

λ1
k =

f(Yk = yk, Yk−1 = yk−1, ..., Y0 = y0|H = 1)

f(Yk = yk, Yk−1 = yk−1, ..., Y0 = y0|H = 0)

=
f(Y 1

k = yk, Y
1
k−1 = yk−1, ..., Y

1
0 = y0)

f(Y 2
k = yk, Y 2

k−1 = yk−1, ..., Y 2
0 = y0)

.

From the above definition and definition of π1
k, it follows , that

π1
k =

p1λ
1
k

p0 + p1λ1
k

⇒π1
k ≥ πkU ⇔ λ1

k ≥
p0π

k
U

p1(1− πkU
)

π1
k ≤ πkL ⇔ λ1

k ≤
p0π

k
L

p1(1− πkL)
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Hence, it suffices to compute the LLR and its associated thresholds. It remains to

find the thresholds. Instead of finding the optimal thresholds, we find one pair of

thresholds which is used at every k to achieve a desired level of performance. We

denote the lower threshold associated with LLR by A and the upper threshold by

B. To find the pair (A,B), we use Wald’s approximation.

Lemma 2.2.1. Let βd denote the desired probability of false alarm (P(D1
τ10

= 1|H =

0)) and γd denote the desired probability of miss detection (P(D1
τ10

= 0|H = 1)) to

be achieved . Then the thresholds associated with LLR can be approximated as:

A =
γd

1− βd
, B =

1− γd
βd

. (2.9)

Proof. Following the proof for i.i.d observations in [17], suppose (τ 1, D1
τ1) is the

sequential rule associated with thresholds (A,B). β = P(D1
τ1 = 1|H = 0)) and

γ = P(D1
τ10

= 0|H = 1). Let,

Q1
n = {{yi}i=∞i=0 ∈ (RM1)∞ : τ 1 = n, λ1

n ≥ B and A < λ1
i < B, i = 0, ..., n− 1},

χ1
1 = {{yi}i=∞i=0 ∈ (RM1)∞ : λ1

τ1 ≥ B and A < λ1
i < B, i = 0, ..., τ 1 − 1} and =

∞⋃
n=0

Q1
n,

P 1
n = {{yi}i=∞i=0 ∈ (RM1)∞ : τ 1 = n, λ1

n ≤ A and A < λ1
i < B, i = 0, ..., n− 1},

χ1
2 = {{yi}i=∞i=0 ∈ (RM1)∞ : λ1

τ1 ≤ A and A < λ1
i < B, i = 0, ..., τ 1 − 1} and =

∞⋃
n=0

P 1
n .

Then,

β = P(λ1
τ1 ≥ B|H = 0)
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=
∞∑
n=0

∫
Qn

f(Y 2
n = yn, Y

2
n−1 = yn−1, ..., Y

2
0 = y0)dyn+1

≤ B−1

∞∑
n=0

∫
Qn

f(Y 1
n = yn, Y

1
n−1 = yn−1, ..., Y

1
0 = y0)dyn+1

= B−1(1− γ).⇒ B ≤ 1− γ
β

γ = P(λ1
τ1 ≤ A|H = 1)

=
∞∑
n=0

∫
Qn

f(Y 1
n = yn, Y

1
n−1 = yn−1, ..., Y

1
0 = y0)dyn+1

≤ A
∞∑
n=0

∫
Qn

f(Y 2
n = yn, Y

2
n−1 = yn−1, ..., Y

2
0 = y0)dyn+1

= A(1− β).⇒ A ≥ 1− γ
β

From the above inequalities, we approximate (A,B) as in (2.9). This approximation

will be accurate if τ 1 is large on an average.

Further, if βd = γd, then the actual probabilities of false alarm (βa) and miss detec-

tion (γa) are bounded above:

βa ≤ βd +O(β2
d), γa ≤ γd +O(γ2

d).

Thus, given desired probabilities of false alarm and miss detection, the thresholds

associated with LLR can be computed. The test can be defined as:

SPRT(A,B) :

λ1
k ≥ B ⇒ τ 1

0 = k,D1
τ10

= 1,

A < λ1
k < B ⇒ collect next observation,
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λ1
k ≤ A ⇒ τ 1

0 = k,D1
τ10

= 0,

2.2.3.2 Detection estimation separation lemma

To calculate the LLR, the joint distribution of the observations under either

hypothesis needs to be found. The calculation of the joint distribution can be

be simplified by invoking the following lemma. The general detection estimation

separation theorem was studied in [18].

Lemma 2.2.2. Consider Observer 1 with observations {Ym = ym}m=k
m=0. Then,

λ1
k =

∏j=k
j=1 fΓ1

j
(yj − C1A1x̂1

j−1)fY 1
0

(y0)∏j=k
j=1 fΓ2

j
(yj − C2A2x̂2

j−1)fY 2
0

(y0)
,

where, for i = 1, 2, k ≥ 1,

x̂ik = Aix̂ik−1 + Ki
kη

i
k,

ηik = yk − CiAix̂ik−1,

M i
k = AiP i

k−1A
iT +BiRiB

iT ,

Ki
k = M i

kC
iT
[
CiM i

kC
iT +Qi

]−1

,

P i
k = (I −Ki

kC
i)M i

k,

x̂i0 = ΣiC
iT
[
CiΣiC

iT +Qi

]−1

× y0,

P i
0 = Σi − ΣiC

iT
[
CiΣiC

iT +Qi

]−1

CiΣi,

fΓik
= N (0, CiM i

kC
iT +Qi),
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fY i0 = N (0, CiΣiC
iT +Qi).

Proof. Using the theory of Kalman filters, it follows that the observation equations

for Observer 1 under either hypothesis can be equivalently written as:

H = 1 :

{
Y 1
k = C1A1X̂1

k−1 + Γ1
k,

X̂1
k−1 = A1X̂1

k−1 + K1
kΓ

1
k.

H = 0 :

{
Y 2
k = C2A2X̂2

k−1 + Γ2
k,

X̂2
k−1 = A2X̂2

k−1 + K2
kΓ

2
k.

where Ki
k follows the recursions mentioned in the statement of the lemma and Γik

are the innovation processes. Hence Γik is independent of the past observations

{Y i
m}m=k−1

m=0 . Using the definition of λ1
k,

λ1
k =

∏j=k
j=1 f(Y 1

j = yj|Y 1
j−1 = yj−1, ..., Y

1
0 = y0)fY 1

0
(y0)∏j=k

j=1 f(Y 2
j = yj|Y 2

j−1 = yj−1, ..., Y 2
0 = y0)fY 2

0
(y0)

.

The numerator of the R.H.S can be further simplified as:

j=k∏
j=1

f(C1A1X̂1
j−1 + Γ1

j = yj|{Y 1
m = ym}m=j−1

m=0 )fY 1
0

(y0)

=

j=k∏
j=1

f(Γ1
j = yj − C1A1x̂1

j−1|{Y 1
m = ym}m=j−1

m=0 )fY 1
0

(y0).

A similar simplification for the denominator can also be obtained. Since {Γik}k≥0

are the innovation processes, the result of the lemma follows.
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2.2.3.3 Consensus algorithm

Each observer arrives at its decision about the true hypothesis based on its own

observations at random times. We now present the algorithm used by the observers

to arrive at a consensus. We first mention the pseudo code for SPRT [Algorithm 1].

The consensus algorithm is described in detail in Algorithm 2. The summary of the

Algorithm 1: SPRT

1: function SPRT(λ,A,B, n, τ,D, k) . Where λ - LLR, A,B are the
thresholds, n denotes number of decisions, τ denotes stopping time, D denotes
current decision and k denotes time

2: true← 0
3: if λ ≥ B then
4: n← n+ 1 , τ ← k
5: Store k , D = 1

6: A ← 1

(B + 1)× ν − 1
, B ← (B + 1)× ν − 1

7: true← 1
8: else if λ ≤ A then
9: n← n+ 1 , τ ← k

10: Store k , D = 0

11: A ← 1

(B + 1)× ν − 1
, B ← (B + 1)× ν − 1

12: true← 1
return [D,A,B, n, τ, true]

consensus algorithm is as follows: The observers start taking observations at k = 0

with the objective of achieving certain probability of error. At each time instant

they collect their observations and update their LLR. Using the updated likelihood

ratio they perform SPRT test. They could stop or continue collecting observations

depending on the result of the test. If both the observers stop at the same time, then

they exchange their decisions. If their decisions are the same, then they stop. If their

decisions are different then they repeat SPRT test starting from next time instant
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with updated thresholds. If Observer 1 (Observer 2) stops first, it communicates its

decision to Observer 2 (Observer 1). Observer 2 (Observer 1) continues with SPRT

(with updated thresholds). When Observer 2 (Observer 1) stops, it checks its own

decision with the decision obtained from Observer 1 (Observer 2). If the decisions

are the same, then consensus has been achieved, else Observer 1 (Observer 2) starts

performing SPRT again. When Observer 1 (Observer 2) starts performing SPRT

again, note that it has not collected observations from τ 1
0 + 1 to τ 2

0 (for Observer 2

it would be from τ 2
0 + 1 to τ 1

0 ). Observer 1 updates its LLR as follows:

λ1
τ20 +1 =

fY 1
τ20+1

(yτ20 +1)λ1
τ10

fY 2
τ20+1

(yτ20 +1)
,

λ1
k =

fΓ1
k
(yk − C1A1x̂1

k−1)λ1
k−1

fΓ2
k
(yk − C2A2x̂2

k−1)
, k ≥ τ 2

0 + 2.

The filter updates are done as per Lemma 2.2.2. The Kalman filtering begins afresh,

i.e., for k ≥ τ 2
0 + 2, the observations from τ 2

0 + 1 to k are considered while filtering.

The influence of the past information is considered in the LLR calculation. The

LLR is calculated as the product of the LLR at τ 1
0 and ratio of the joint distribution

of the observations from τ 2
0 + 1 to k under H = 1 to that under H = 0. Observer 1

(Observer 2) performs SPRT based on the LLR computed and updated thresholds.

When Observer 1 (Observer 2) stops it compares its decision to that of Observer 2

(Observer 1). If they are not equal then Observer 2 (Observer 1) starts SPRT at

time τ 1
τ20 +1

+ 1 (τ 2
τ10 +1

+ 1). Hence, the observers alternatively collect observations

and perform SPRT until consensus is achieved.
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Algorithm 2: Consensus Algorithm

1: procedure Consensus
2: D1

f ← −1 , D2
f ← −2 , true← 0

3: τ 1 ←∞ , τ 2 ←∞ , count← 0
4: n← 0 , m← 0 , µ← 3 , ν ← 2

5: Aj ← 1

µ− 1
, Bj ← µ− 1 , j = 1, 2

6: State← 1 , i← 0 ,
7: while D1

f 6= D2
f do

8: i← i+ 1 ,
9: if State = 1 then

10: Update λ1
i , λ

2
i

11: [D1
f ,A1,B1, n, τ 1, true]← SPRT (λ1

i ,A1,B1, n,D1
f , τ

1)
12: [D2

f ,A2,B2,m, τ 2, true]← SPRT (λ2
i ,A2,B2,m,D2

f , τ
2)

13: if τ 1 = τ 2 then
14: State← 1
15: else if τ 1 > τ 2 then
16: State← 2
17: else if τ 1 < τ 2 then
18: State← 3
19: else if State = 2 then
20: if count = 0 then

21: A1 ← 1

µ× ν − 1
, B1 ← µ× ν − 1

22: count← 1
23: Update λ1

i

24: [D1
f ,A1,B1, n, τ 1, true]← SPRT (λ1

i ,A1,B1, n,D1
f , τ

1)
25: if true = 1 then
26: State← 3
27: else if State = 3 then
28: if count = 0 then

29: A2 ← 1

µ× ν − 1
, B2 ← µ× ν − 1

30: count← 1
31: Update λ2

i

32: [D2
f ,A2,B2,m, τ 2, true]← SPRT (λ2

i ,A2,B2,m,D2
f , τ

2)
33: if true = 1 then
34: State← 2
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Figure 2.4: Consensus Algorithm

In algorithm 2, at the first iteration, if the observers stop at the same time,

then State = 1. At the first iteration, if Observer 2 stops before Observer 1, then

State = 2. Else if Observer 1 stops before Observer 2, then State = 3. After the

first iteration, if the State = 1, the State remains at 1 if the observers stop at the

same time in further iterations as well. The first time, Observer 2 (Observer 1) stops

before Observer 1 (Observer 2), the State changes from 1 to 2 (3). Once the State

is equal to 2 or 3 it oscillates between these two states until the algorithm stops. It

is also possible that the State remains at 1 until consensus is achieved.

In figure 2.4, a simple scenario is depicted where Observer 2 arrives at its de-

cision first and sends it to Observer 1. After Observer 1 has arrived at its decision,

it compares its own decision to that of Observer 2. Since they are not equal, it com-

municates its decision to Observer 2 and Observer 2 starts collecting observations

from the next time instant onwards. The algorithm is executed until consensus is

achieved. The thresholds are updated for each observer after every iteration. The

lower threshold is monotonically decreasing with every iteration while the upper

threshold is monotonically increasing. Thus, the consensus algorithm has been de-

signed in such way that at the nth iteration, i.e., after both observers have made

48



their final decisions n times, the probability of error is bounded above by
2

µ× νn−1

where µ and ν are greater than 1. Hence as n tends to ∞ the probability of error

tends to zero.

2.2.4 Simulation results

As studied in first section of this chapter, an important objectives of this

section is also to understand the “ value of information” associated with the 1 bit

communication. So through simulations we would like to understand if the exchange

of the decision information has helped improve the performance of the 2 observer

system significantly. We measure performance by the number of erroneous decisions

about the true hypothesis. A heuristic way to calculate the value of information for

this specific problem would be to calculate the average reduction in detection error

as:

α = Number of simulations in which consensus occurs to correct hypothesis after

one iteration.

β = Number of simulations in which consensus occurs to wrong hypothesis. while

the decision for either observers after the first iteration was equal to true hypothesis.

γ = Total number of bits communicated in all the simulations.

total = Total number of simulations.

V alue of information =

α− β
total
γ

total

=
α− β
γ

.
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Probability of error is calculated as:

υ = Number of simulations in which consensus occurs to wrong hypothesis.

Probability of error =
υ

total
.

Average time to consensus is calculated as:

% = Sum of the time to consensus over all simulations.

Average time to consensus = d %

total
e.

The simulations were performed with two Gaussian models. The states for both

models were considered to be 3-dimensional. The parameters defining the systems

under either hypothesis were considered as follows:

A1 =


−0.5 0 0

0 −0.25 0

0 0 0.6

 , A
2 =


0.7 0 0

0 −0.4 0

0 0 0.35

 ,

B1 = B2 = I3, Σ1 = Σ2 = R1 = R2 = 3 ∗ I3. Observer 1 was considered to have

3-dimensional observations. The other parameters which define the observer were

chosen as:

C1 =


1 3 5

2 4 0

7 0 0

 , C
2 =


2 4 6

1 3 0

8 0 0

 ,

Q1 = Q2 = I3. Observer 2 was considered to have 2-dimensional observations. The

other parameters which define the observer were chosen as:
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D1 =

1 1 0

1 0 1

 , D2 =

1 2 1

0 1 3

 ,
S1 = I2 , S2 = 2 ∗ I2. The number of simulations was varied from 10 to 104.

The value of information, probability of error and average time to consensus were

calculated in each case and have been tabulated [table 2.3] and [table 2.4].

Number of Simulations Value of Information probability of error
10 0.3333 0.00
100 0.3066 0.03
1000 0.2609 0.068
10000 0.2719 0.0616

Table 2.3: Value of information and probability of error for the considered simulation
setup

Number of Simulations average time to consensus
10 10
100 13
1000 13
10000 12

Table 2.4: Average time to consensus for the considered simulation setup

2.2.5 Conclusion

In this section of the chapter, we considered two collaborating detectors per-

forming sequential hypothesis testing based on observations generated by Gaussian

models. The SPRT is used to solve the hypothesis testing problem. A consensus

algorithm with monotonically changing thresholds is presented. The convergence

of the algorithm is discussed. To understand the value of the 1 bit communication

used to achieve consensus, simulations were performed. It was observed that there
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was a reduction in erroneous detection. For the simulation setup considered, on an

average, 25% of the information exchange resulted in an improved performance; i.e.

the original decision of one or both of the observers was wrong while the consensus

decision was the true hypothesis.

52



Chapter 3: Cooperative Binary Hypothesis Testing Using Two Ob-

servers

3.1 Introduction

Hypothesis testing problems arise in various aspects of science and engineering.

The standard version of the problem has been studied extensively in the literature.

The inherent assumption of the standard problem is that even if there are multi-

ple sensors collecting observations, the observations are transmitted to single fusion

center where the observations are used collectively to arrive at the belief of the true

hypothesis. When multiple sensors collect observations, there could be other detec-

tion schemes as well. One possible scheme is that, the sensors could send a summary

of their observations as finite valued messages to a fusion center where the final de-

cision is made. Such schemes are classified as “Decentralized Detection”. One of

the motivations for studying decentralized detection schemes is that, when there are

geographically dispersed sensors, such a scheme could lead to significant reduction

in communication cost without compromising much on the detection performance.

In [19], the binary hypothesis testing problem is considered. The formulation

considers two sensors and the joint distribution of the observations collected by the
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two sensors is known under either hypothesis. The objective is to find a decision pol-

icy for the sensors based on the observations collected at the sensor locally through

a coupled cost function. Under assumptions on the structure of the cost function

and independence of the observations conditioned on the hypothesis, it is shown

that likelihood ratio test is optimal with thresholds based on the decision rule of

the alternate sensor. Conditions under which threshold computations decouple are

also presented. In [20], the authors consider the problem of distributed estimation.

There are multiple agents receiving noisy observations which are functions of ran-

dom vector they want to estimate. Every time an agent receives an observation or

an estimate made by another agent, it updates its own estimate as well. In each

turn, the agents transmits their estimate to a random subset of agents. If each agent

in a communication ring knows that it is a member of the ring, then the estimates

of all the agents in the ring asymptotically agree. The common limit could depend

on the order in which the agents exchange information. In [21], the author consid-

ers the problem of distributed quickest detection with two detectors. The quickest

detection problem is described as follows. There are two possible states of nature,

one of which is the true state of nature. At a random time instant, the true state

of nature changes to other possible state and remains in the new state there after.

The objective of the detectors is to find the time of change as accurately as pos-

sible based on the measurments it alone receives. In [21], stopping time problems

were formulated for each detector with the decision policies being coupled through

a common cost function. It has been shown that for each detector the optimal

strategy is a threshold policy. The thresholds of the detectors are coupled and can
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be determined by the solutions of nonlinear algebraic equations. [22], distrubited

estimation of a random variable is considered. Two agents sequentially revise and

exchange estimates of the same random variable. The two agents might have differ-

ent models of the underlying probability structure. It has been shown that either

the two estimates will converge to the same value or the beliefs of the two agents

are inconsistent. In [23], the M -ary hypothesis testing problem is considered. A

set of sensors collect observations and transmit finite valued messages to the fusion

center. At the fusion center, a hypothesis testing problem is considered to arrive at

the final decision. For the sensors, to decide what messages they should transmit,

the Bayesian and Neyman-Pearson versions of the hypothesis testing problem are

considered. The messages transmitted by the sensors are coupled though a common

cost function. For both versions of the problem, it is shown that if the observa-

tions collected by different sensors conditioned on any hypothesis are independent,

then the sensors should decide their messages based on likelihood ratio test. The

results are extended to the cases when the sensor configuration is a tree and when

the number of sensors is large. In [24], the binary decentralized detection problem

over a wireless sensor network is considered. A network of wireless sensors collect

measurements and send a summary individually to a fusion center. Based on the

information received, the objective of the fusion center is to find the true state of

nature. The objective of the study was to find the structure of an optimal sensor

configuration with the formulation incorporating constraints on the capacity of the

wireless channel over which the sensors are transmitting. For the scenario of detect-

ing deterministic signals in additive Gaussian noise, it is shown that having a set of
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identical binary sensors is asymptotically optimal. Extensions to other observation

distributions are also presented.

We consider the binary hypothesis testing problem. There are two possible

states of nature. There are two observers, Observer 1 and Observer 2. Each observer

collects its individual set of observations. The observations collected by the observers

are statistically related to the true state of nature. After collecting their sets of

observations, the objective of the two observers is to find the true hypothesis and

to agree on their decision as well. The motivation of this chapter is to understand

decentralized detection problem from scratch.

Let us consider the construction of the probability space (Kolmogorov con-

struction) when there is single observer. Let E be an experiment that is performed

repeatedly. Let the outcomes of the experiment be O. The observer observes a

function of the outcome of the experiment, Y = f(O). Let the set of values that

can be observed by the observer be S, i.e., Y ∈ S. Based on a model for the exper-

iment or the data it collects, the observer builds the distribution of its observation.

If S is a finite set, then the distribution will be of the form µ(Y = y), y ∈ S. If

S = R, then distribution is of the form µ(Y ∈ U), where U is an open subset of

R. Such a distribution would be possible only if it is possible to assign measures

to all open subsets of R from the model. Given the set S, a semiring F of subsets

of S and a distribution µ on F ( µ is finitely additive and countably monotone),

by the Caratheodory - Hahn theorem, the Caratheodory measure µ̄ induced by µ,

is an extension of µ. Let M be the σ algebra of sets which are measurable with

respect to µ∗ (the outer measure induced by µ). The probability space constructed
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by the observer after observing the experiment is (S,M, µ̄). Suppose each trial of

the experiment is observed over time and multiple observations are collected, then

the observation space is S×T , where T denotes the instances at which the observa-

tions are collected. If T is finite then the probability space construction can be done

by following the methodology above. If T is a countable or uncountable set, then

the distributions need to satisfy the Kolmogorov Consistency conditions. Further,

the measure obtained by extending the distributions is a measure on the σ algebra

generated by the cylindrical subsets of S × T .

Now we consider the scenario where the experiment is observed by two ob-

servers, Observer 1 and Observer 2. Observer 1 observers a function of the out-

come of the experiment, Y = f(O), while Observer 2 observes a different function

Z = g(O) of the outcome of the experiment. Observer 1 (Observer 2) can find the

distribution of its observation Y (Z) form the data or the model. Neither observers

can find the joint distribution of Y, Z as Observer 1 and Observer 2 do not know

Z and Y respectively. Even if both of the observers share the same model for the

experiment, Observer 1 (Observer 2) cannot find the distribution of Z (Y ) without

knowing the g (f) function. Hence, without sharing information, the observers can-

not build the joint distribution of the observations. If the joint distribution does not

exist, it is incorrect to state that Y and Z are observations of a common probability

space. To build the joint distribution, the observers could send their observations

or the functions f and g to a central coordinator. If the observers do not exchange

information then they could build their individual probability spaces from their local

observations.
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In our work, we do not assume that the observations of the two observers

belong to the same probability space, as such an assumption implies the existence

of joint distribution of the observations and hence information exchange between the

observers. We emphasize on probability space construction from the data. Another

key motivation is to understand the information exchange between the observers to

perform collaborative detection.

We present four different approaches. In each approach there are two phases:

(a) probability space construction: the true hypothesis is known, observations are

collected to build empirical distributions between hypothesis and the observations;

(b) In the second phase, given a new set of observations, we formulate hypothesis

testing problems for the observers to find their individual beliefs about the true

hypothesis. We discuss consensus algorithms for the observers to agree on their

beliefs about the true hypothesis. In the first approach (standard) the observations

collected by both observers are sent to a central coordinator, the joint distribution

between the observations and hypothesis is built and hypothesis testing is done us-

ing the collective set of observations. It should be noted that the joint distribution

between the observations collected by the observers is found only for the purpose of

comparison between the centralized and decentralized detection schemes. It is not

available to observers for processing any information they receive. In the second

approach, each observer builds its own probability space using local observations.

Hypothesis testing problems are formulated for each observer in their respective

probability spaces. The observers solve the problems to arrive at their beliefs about

the true hypothesis. A consensus algorithm involving exchange of beliefs is pre-
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sented. In the third approach, the observers build aggregated probability spaces by

building joint distributions between their observations and the alternate observer’s

decisions. The decisions transmitted by the observers for probability space con-

struction are the decisions obtained in the second approach. Hypothesis testing

problems are formulated for each observer in their new probability spaces. The

original decision of the observers is a function of their observations alone. The

construction of the aggregated probability space enables an observer to update its

information state based on the accuracy of the alternate observer. Based on the

updated information state the observer updates its belief about the true hypoth-

esis. A modified consensus algorithm is presented where the observers exchange

their decision information twice; the first time they exchange their original beliefs

and the second time time their updated beliefs. In the fourth approach, we assume

that the observations collected by the observers are independent conditioned on the

hypothesis. In such a case the construction of the aggregated sample space can be

skipped. An observer receives the accuracy information (to update its information

state) from the alternate observer. Hence, the observers exchange real valued infor-

mation. In this approach also the observers solve the detection problem twice; once

with information state obtained from the observations alone and the second time

with the information state updated form the accuracy information. The consensus

algorithm involves exchange of (i) original decision (ii) accuracy information (iii)

updated decision.

The contributions of the chapter are: (i) probability space construction in dis-

tributed detection (ii) consensus algorithm involving exchange of binary information
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and its convergence in distributed detection. (iii) comparing the rate of decay of

probability of error in centralized and decentralized approach to detection (iv) con-

sensus algorithm incorporating alternate observer’s accuracy and its convergence in

distributed detection.

In the next section, we present the sample space construction and hypothesis

testing problems for the first two approaches. In section 3.3, we discuss the solution

for the first two approaches and the consensus algorithm for the second approach.

In section 3.4, we compare the rate of decay of probability of error achieved using

the two approaches. The third approach and fourth approaches are studied in detail

in section 3.5. Simulation results have been presented in the section 3.6. The

conclusions are presented in section 3.7. The proof of the main result of the chapter

has been discussed in B.

3.2 Problem formulation

In this section, we discuss the probability space construction and hypothesis

testing problems for the first two approaches.

3.2.1 Assumptions

1. Both the observers operate on the same time scale. Hence their actions are

synchronized.

2. The observations collected by Observer 1 are denoted by Yi, Yi ∈ S1 where S1 is

a finite set of real numbers or real vectors of finite dimension. The observations
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collected by Observer 2 are denoted by Zi, Zi ∈ S2, where S2 is a finite set of

real numbers or real vectors of finite dimension. Let M = |S1| × |S2|.

3. State of nature is the same for both observers. The two states of nature are

represented by 0 and 1.

The observers collect data strings which are obtained by concatenating the obser-

vations and the true hypothesis.

3.2.2 Centralized approach

In this approach both the observers send the data strings collected by them

to a central coordinator. The central coordinator generates new strings by concate-

nating the observations from Observer 1, observations from Observer 2 and the true

hypothesis. From the data strings, the empirical joint distributions are found. The

joint distribution when the true hypothesis is 0 is denoted by f0(y, z) and when

the true hypothesis is 1 is denoted by f1(y, z). We assume, 0 < DKL(f0||f1) < ∞,

where DKL(f0||f1) denotes the Kullback Leibler divergence between distributions f0

and f1. The prior distribution of the hypothesis is denoted by ph for h = 0, 1. Let

Ω = {0, 1} × S1 × S2. ω ∈ Ω, is given by the triple (h, y, z), h ∈ {0, 1}, y ∈ S1

and z ∈ S2. Let F = 2Ω. Since Ω is finite it suffices to define the measure for

each element in Ω. Hence the measure, P is defined as follows: P(ω) = phfh(y, z).

The probability space constructed by the central coordinator is (Ω,F,P). Consider

the case when the central coordinator receives observations which are i.i.d. condi-

tioned on the hypothesis, {Yi, Zi}ni=1, n ∈ N. In such a case, these observations are
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Figure 3.1: Schematic for centralized approach

studied as random variables in the product space. The product space is defined as

(Ωn,Fn,Pn), where Ωn = {0, 1}×Sn1 ×Sn2 , Fn = 2Ωn and Pn(ω) = ph
∏n

i=1 fh(yi, zi).

The schematic for the centralized approach is shown in figure 3.1. Given an obser-

vation sequence {Yi, Zi = yi, zi}ni=1, the objective is to find Dn : Sn1 × Sn2 −→ {0, 1}

such that the following cost is minimized

EPn [C10H(1−Dn) + C01(Dn)(1−H)],

where H denotes the hypothesis random variable. The joint probability space is ex-

tended as follows. A sample space consisting of sequences of the form (H, (Y1, Z1), (

Y2, Z2), (Y3, Z3), . . .) is considered. For n ∈ N, Let B be a subset of ({0, 1} × {S1 ×

{S2}}n). A cylindrical subset of ({0, 1} × {S1 × {S2}}∞) is:

In(B) = {ω ∈ {0, 1} × {S1 × {S2}}∞ : ω(1), ..., ω(n+ 1)) ∈ B}.
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Let F∗ be the smallest σ algebra generated by all cylindrical subsets of the sample

space. Since the sequence of product measures Pn is consistent, i.e.,

Pn+1(B × S1 × S2) = Pn(B) ∀ B ∈ Σ1
n,

by the Kolmogorov extension theorem, there exists a measure P∗ on ({0, 1} × {S1 ×

S2}∞,F∗), such that,

P∗(In(B)) = Pn(B) ∀ B ∈ 2{0,1}×{Si×S2}n ,

3.2.3 Decentralized approach

In this approach each observer constructs its own probability space. From the

data strings collected locally, the observers find their respective empirical distribu-

tions. For Observer 1, the distribution of observations when the true hypothesis

is 0 is denoted by f 1
0 (y) and when the true hypothesis is 1 is denoted by f 1

1 (y).

Similarly, Observer 2 finds f 2
0 (z) and f 2

1 (z). We assume that the prior distribution

of the hypothesis remains the same as in the previous approach. We assume, for

i = 1, 2, 0 < DKL(f i0||f i1) <∞. For consistency we impose:

∑
z∈S2

fh(y, z) = f 1
h(y),∀y ∈ S1, h = 0, 1.

∑
y∈S1

fh(y, z) = f 2
h(z),∀z ∈ S2, h = 0, 1.
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Figure 3.2: Schematic for decentralized approach

Based on these distributions, the probability space constructed by Observer 1 is

(Ω1,F1,P1). Ω1 = {0, 1} × S1, F1 = 2Ω1
and P1(ω) = phf

1
h(y). As in the previ-

ous approach, when Observer 1 receives observations which are i.i.d. conditioned

on the hypothesis, the observations are treated as random variables in the prod-

uct space (Ω1
n,F1

n,P1
n). For Observer 2 the probability space is (Ω2,F2,P2) =

({0, 1}×S2, 2
Ω2
, phf

2
h(z)), while the product space is denoted (Ω2

n,F2
n,P2

n). Given the

observation sequences {Yi = yi}ni=1 and {Zi = zi}ni=1 for Observer 1 and Observer 2

respectively, the objective is to find Di
n : Sni −→ {0, 1} such that following cost is

minimized

EPin [Ci
10Hi(1−Di

n) + Ci
01(Di

n)(1−Hi)],

where Hi denotes the hypothesis random variable for observers in their respective

probability spaces. Since the sequences of product measures ({Pin}n≥1, i = 1, 2) are

consistent, by the Kolmogorov extension theorem, for i = 1, 2, there exists measures

P∗i on ({0, 1} × {Si}∞,F∗i ), where F∗i is the σ algebra generated by cylindrical sets
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Figure 3.3: Sufficient Statistic

in ({0, 1} × {Si}∞), such that,

P∗i (I in(B)) = Pin(B) ∀ B ∈ 2{0,1}×{Si}
n

,

where

I in(B) = {ω ∈ {0, 1} × {Si}∞ 3 (ω(1), ..., ω(n+ 1)) ∈ B}.

Thus, the extended probability space at Observer i is ({0, 1} × {Si}∞,F∗i ,P∗i ).

Consider the scenario where fh(y, z) = f 1
h(y)f 2

h(z), h = 0, 1. Consider the

estimation problem, where H is estimated from {(Y1, Z1), ..., (Yn, Zn)}. Let T : Sn1 ×

Sn2 → Sn1 × {0, 1}n be the mapping T (Y1, Z1), ..., (Yn, Zn) = Y1, D
2
1), ..., (Yn, D

2
n. We

can consider another Bayesian estimation problem of estimating H from Y1, D
2
1), ...,

(Yn, D
2
n). T is a sufficient statistic(figure 3.3) for original estimation problem if and

only if

∏n
i=1 f

2
1 (zi)∑

zn1 ∈Sd

∏n
i=1 f

2
1 (zi)

=

∏n
i=1 f

2
0 (zi)∑

zn1 ∈Sd

∏n
i=1 f

2
1 (zi)

, ∀ zn1 ∈ Sd,∀ Sd,
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where Sd is set of sequences in S2
n which leads to a decision sequence {D2

1 =

d2
1, ..., D

2
n = d2

n}. The above condition is very stringent and might not be true

in most cases. Even though the T is not a sufficient statistic, our objective is to

design a consensus algorithm based on just the exchange of decision information.

The advantage of such a scheme is that, the exchange of information is restricted to

1 bit and the observers do not have do any other processing on their observations.

3.3 Solution

We now discuss the solution for the hypothesis testing problems formulated in

the previous sections and the consensus algorithm.

3.3.1 Centralized approach

The problem formulated in section 2.B is the standard Bayesian hypothesis

testing problem. The decision policy is a threshold policy and is function of the

likelihood ratio. The likelihood ratio is defined as, πn =
∏n

i=1
f1(yi,zi)
f0(yi,zi)

. Then the

decision is given by

Dn =


1, if, πn ≥ Tc,

0, otherwise.

where Tc = C01

C01+C10
.
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3.3.2 Decentralized approach

The information state for the observers is defines as ψin = EPin [H|I in], i =

1, 2, where I1
n denotes the σ algebra generated by Y1, ..., Yn and I2

n denotes the σ

algebra generated by Z1, ..., Zn. The decisions are memoryless functions of ψin. More

precisely, they are threshold policies. Let π1
n =

∏n
i=1

f11 (yi)

f10 (yi)
and π2

n =
∏n

i=1
f21 (zi)

f20 (zi)
.

Hence, ψin = p1πin
p1πin+p0

. For 0 < ti < 1, ψin ≥ ti ⇔ πin ≥
tip0

p1−tip1 . Hence the decision

policy for Observer i can be stated as function of πin as:

Di
n =


1, if, πin ≥ Ti,

0, otherwise.

For an observer, a variable is said to be exogenous random variable if it is not

measurable with respect to the probability space of that observer. When Observer

1 receives the decision of Observer 2 (and vice-versa), it treats that decision as an

exogenous random variable as no statistical information is available about the new

random variable. Based on this 1 bit information exchange we consider a simple

consensus algorithm: Let n = 1,

1. Observer 1 collects Yn while Observer 2 collects Zn.

2. Based on Y1, ..., Yn, D1
n is computed by Observer 1 while D2

n is computed by

Observer 2 based on Z1, ..., Zn.

3. If D1
n = D2

n , stop. Else increment n by 1 and return to step 1.
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3.3.3 Convergence to consensus

{ψin, I in}n≥1 are martingales in ({0, 1} × {Si}∞,F∗i ,P∗i ). Hence by Doob’s the-

orem [11], it follows that

lim
n→∞

ψin = Hi, P∗i a.s.

Hence there exist integers N(ωi) such that Di
n = Hi ∀ n ≥ N(ωi), ωi ∈ {0, 1} ×

{Si}∞. The result can be interpreted as follows: For observer i, for any sample path

(or any sequence of observations),ωi, there exists a finite natural number N(ωi)

such that the decision after collecting N(ωi) observations or more will be the true

hypothesis. Hence, after both observers collect max(N(ω1), N(ω2)) number of sam-

ples, both their decisions will be the true hypothesis. Hence convergence of the

consensus algorithm is guaranteed. Figure 3.2 depicts the scenario where consensus

occurs at stage n.

3.4 Comparison of error rates

In this section we study the rate at which probability of error decays as more

observations are collected. We compare the rates achieved using the two approaches.
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3.4.1 Centralized approach

In this subsection we define probability of error and its optimal rate of decay

for the centralized approach. Let,

An = {(Yi, Zi)ni=1 ∈ Sn1 × Sn2 3 Dn = 1},

κn = Pn(An|H = 0), ξn = Pn(Acn|H = 1).

Then, probability of error γn is

γn = Pn(Dn 6= H) = p0κn + p1ξn.

The optimal rate of decay of probability of error for the centralized approach is

defined as,

R∗c = lim
n→∞

− 1

n
log2

(
min

An⊆Sn1×Sn2
γn

)

We define the following distributions which will help us characterize R∗c ,

Qh
τh

(y, z) =
(fh(y, z))

1−τh(f1−h(y, z))
τh∑

y,z(fh(y, z))
1−τh(f1−h(y, z))τh

(3.1)

Then,

R∗c = max
τ0,τ1≥0

min
[
DKL(Q0

τ0
||f0),DKL(Q1

τ1
||f1)

]
. (3.2)
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3.4.2 Decentralized Approach

To compare the rate of decay of the probability of error in the second approach

to that in the first approach, we consider that in the second approach there is a

hypothetical central coordinator where the joint distribution was built. Let,

B1
n = {(Yi, Zi)ni=1 ∈ Sn1 × Sn2 3 D1

n = 1 and D2
n = 1}. (3.3)

B2
n = {(Yi, Zi)ni=1 ∈ Sn1 × Sn2 3 D1

n = 0 and D2
n = 0}. (3.4)

µn = Pn(B1
n|H = 0), νn = Pn(B2

n|H = 1).

For the probability space (Ωn,Fn,Pn), the algebra Fn contains all possible subsets

of the product space. Hence B1
n and B1

n are measurable sets. Note that, the decision

regions B1
n and B2

n depend on thresholds T1 and T2 respectively. Hence by changing

the thresholds different decision regions can be generated. Given a fixed number

of samples, n, to both the observers, let D1
n and D2

n denote their decisions. The

probability that the two observers agree on the wrong belief is, ρn,

ρn = Pn(Dc 6= H) = p0µn + p1νn,

where Dc = D1
n = D2

n. The rate of decay of probability of agreement on wrong

belief for the decentralized approach is defined as:

Rd = lim
n→∞

− 1

n
log2 (ρn) .
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The optimal rate of decay of probability of agreement on wrong belief for the de-

centralized approach is defined by optimizing over thresholds:

R∗d = lim
n→∞

− 1

n
log2

(
min

B1n,B2n⊆Sn1×Sn2
ρn

)
.

Define, the following probability distributions: for h = 0, 1,

Qh
λh,σh

(y, z) =
Khfh(y, z)(f

1
0 (y))s(h)λh(f 2

0 (z))s(h)σh

(f 1
1 (y))s(h)λh(f 2

1 (z))s(h)σh
,

Kh =

[∑
y,z

fh(y, z)(f
1
0 (y))s(h)λh(f 2

0 (z))s(h)σh

(f 1
1 (y))s(h)λh(f 2

1 (z))s(h)σh

]−1

, (3.5)

where s(h) = 1 if h = 1 and s(h) = −1 if h = 0. Then,

R∗d = max
λh≥0,σh≥0,h=0,1

min
[
DKL(Q0

λ0,σ0
||f0),DKL(Q1

λ1,σ1
||f1)

]
. (3.6)

Further, if f0(y, z) = f 1
0 (y)f 2

0 (z) and f1(y, z) = f 1
1 (y)f 2

1 (z), then

R∗d ≥ R∗c . (3.7)

For the proof of equations (3.1),(3.2),(3.5),(3.6) and the above result, (3.7), we refer

to the appendix.

3.4.3 Probability of error

First, we note that the number of samples collected by the two observers before

they stop is random. Let the random number of samples collected by the observers
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before they stop be τd. τd is a stopping time of the filtration generated by the se-

quence, {Yn, Zn}n∈N, and hence is random variable in the extended joint probability

space,({0, 1} × {S1 × S2}∞,F∗,P∗). Let Dτd denote the decision at consensus. We

note that Dτd is also a random variable in the extended joint probability space.

Then the probability of error for the consensus scheme is:

P∗(Dτd 6= H) =
∞∑
n=1

P∗((Dτd 6= H) ∩ τd = n)

=
∞∑
n=1

P∗(({D1
i 6= D2

i }n−1
i=1 ) ∩ (D1

n = D2
n) ∩ (D1

n 6= H))

=
∞∑
n=1

Pn(({D1
i 6= D2

i }n−1
i=1 ) ∩ (D1

n = D2
n) ∩ (D1

n 6= H))

≤
∞∑
n=1

Pn((D1
n = D2

n) ∩ (D1
n 6= H)) ≈

∞∑
n=1

2−nRd =
1

2Rd − 1
.

The first equality follows from the law of total probability. The second equal-

ity follows from the stopping rule of the consensus algorithm. Let B = {{h} ×

(yi, zi)
n
i=1 ∈ {0, 1} × Sn1 × Sn2 3 {d1

i 6= d2
i }n−1
i=1 , d

1
n = d2

n 6= h}. ω such that

{D1
i (ω) 6= D2

i (ω)}n−1
i=1 , D

1
n(ω) = D2

n(ω) 6= H} are the set of sequences for which

{(H, (Yi, Zi)ni=1)} ∈ B which corresponds to cylindrical set with, B, B ∈ {0, 1} ×

Sn1 ×Sn2 . Hence the third equality follows. The usefulness of the approximate upper

bound for the probability of error depends on Rd. By choosing different values for

the thresholds, T1 and T2, different values of Rd can be obtained. Hence the upper

bound is function of the thresholds. Given the distributions under either hypothe-

ses and the thresholds for the observers, it is difficult to numerically compute the

probability of error (given by the first equality above) as it requires an exhaustive
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search over the observation space for high values of n. We estimate the probability

of error empirically using simulations and the results have been presented in section

3.6.

The result of equation (3.7) can be interpreted as follows: Given a fixed number

of samples n, the minimum probability of error achieved in the centralized approach

is approximately 2−nR
∗
c . Given the same number of samples for the decentralized

approach, the minimum probability that the observers agree and are wrong is 2−nR
∗
d .

Hence the above result implies that, for sufficiently large n, the minimum probability

of the observers agreeing and being wrong in the decentralized approach is upper

bounded by the minimum probability of error in the centralized approach. The result

can be understood heuristically as follows: The observation space after collecting

n observations is Y n × Zn. In the centralized approach, the observation space is

divided into two regions, one where decision is 1 (An) and the other is where the

decision is 0 (Acn)(figure 3.4a). In the decentralized approach, the observation space

is divided into four regions (figure 3.4b): (1) Decision of Observer 1 is 1 and Decision

of Observer 2 is 1 (B1
n) (2) Decision of observer 1 is 0 and Decision of observer 2

is 0. (B2
n) (3) Decision of observer 1 is 0 and Decision of observer 2 is 1 (B3

n) (4)

Decision of Observer 1 is 1 and Decision of observer 2 is 0 (B4
n). The observers can

be wrong only in regions B1
n and B2

n depending on the true hypothesis. Since the

measure of regions B1
n and B2

n are likely going to be less than the measure of the

regions An or Acn the probability of the observers agreeing and being wrong in the

second approach is going to be likely less than the probability of error of the central

coordinator.
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Figure 3.4: Observation space divided in to (a) two regions (b) four regions

Remark 1. The consensus algorithm presented in section 3.3.3 translates to con-

sidering sets of the form {(Yi, Zi)ni=1 ∈ Sn1 × Sn2 3 {D1
i 6= D2

i }n−1
i=1 , D

1
n = D2

n = 1}

and {(Yi, Zi)ni=1 ∈ Sn1 × Sn2 3 {D1
i 6= D2

i }n−1
i=1 , D

1
n = D2

n = 0} in section 3.4.2. It

is essential that these sets can equivalently captured by a set of distributions in the

probability simplex in R|S1×S2| for computation of the rates as done in section Ap-

pendix B. Since these sets cannot be equivalently captured by a set of distributions,

we consider a superset of the sets described in (3.3) and (3.4). Thus we are able to

only obtain an upper bound for the probability of error in section 3.4.3.

Remark 2. Since the two observers are operating on different probability spaces,

when Observer 1 (Observer 2) receives D2
n (D1

n) information it treats it as an exoge-

nous random variable as D2
n (D1

n) is not measurable with respect its own probability

space. Since it does not posses any statistical knowledge about the information it

receives, it cannot process it and just treats it as a “number”. in the next section

we discuss an approach where the observers build aggregated probability spaces by

empirically building the statistical knowledge.

Remark 3. There could be other possible schemes for decentralized detection. For
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example each observer could individually solve a stopping time problem. The times

at which they stop are a functions of the probability of error they want to achieve.

Hence the observers stop at random times and send their decision information when

they stop. The same consensus protocol could be used, i.e., the observers stop only

when they both arrive at the same decision. In this scheme the probability of error

of the decentralized scheme is upper bounded by the max of the probability of error

of the individual observers.

3.5 Alternative decentralized approach

In the previous section, the decision from the alternate observer was considered

as an exogenous random variable by the original observer. In this section we propose

a scheme where the observers build joint distributions between their own observa-

tions and the decision they receive from the alternate observer. The assumptions

mentioned in section 3.2.1 are retained.

3.5.1 Probability space construction

The probability space construction for Observer 1 is described as follows: Ob-

server 1 collects strings of finite length: [H, Y1, D
2
1, Y2, D

2
2, ..., Yn, D

2
n], where Yn ∈ S1

and D2
n is the decision of Observer 2, after repeating the hypothesis testing problem

n times. This is done by Observer 1 for every n ∈ N . Y1, ..., Yn are assumed to

be i.i.d. conditioned on the hypothesis and hence can be interpreted in the prod-

uct space described before (section 3.2.3). The decisions, D2
1, ..., D

2
n are obtained
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by Observer 2 using the decision policy described in section 3.3.2. Since πin are

controlled Markov chains, Di
n are correlated. From the data strings, Observer 1

finds the empirical joint distribution of {H, {Yi, D2
i }ni=1} denoted as P1,n. Hence,

Observer 1 builds a family of joint distributions, {P1,n}n≥1. We assume that the

family of distributions is consistent:

P1,n+1(B × S1 × {0, 1}) = P1,n(B) ∀ B ∈ 2{0,1}×{S1×{0,1}}n .

Let B belong to 2{0,1}×{S1×{0,1}}n . Then a cylindrical subset of ({0, 1} × {S1 ×

{0, 1}}∞) is:

I1
n(B) = {ω ∈ {0, 1} × {S1 × {0, 1}}∞ : (ω(1), ..., ω(n+ 1)) ∈ B}

Let F1 be the smallest σ algebra such that it contains all cylindrical sets, i.e., for

all n and all B. By the Kolmogorov extension theorem there exists a measure P1 on

({0, 1} × {S1 × {0, 1}}∞,F1) such that,

P1(I1
n(B))) = P1,n(B) ∀ B ∈ 2{0,1}×{S1×{0,1}}n ,

where, I1
n(B) is defined as above. Thus, two aggregated probability spaces are

constructed. For Observer 1, (Ω̄1,F1,P1) is constructed where Ω̄1 = {0, 1} × {S1 ×

{0, 1}}∞. For Observer 2, (Ω̄2,F2,P2) is constructed where Ω̄2 = {0, 1} × {S2 ×

{0, 1}}∞. The sequence of measures {P1,n}n≥1 is function of the thresholds T1 and

T2. Thus, when the thresholds for the decentralized scheme in 3.3.2 change, the
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probability space constructed as above also changes.

3.5.2 Discussion

We consider the sample space constructed for observer 1. Let n be a natural

number. The observation space at sample n is Sn1 × Sn2 . Two sequences {yi, zi}i=ni=1

and {yi, z̄i}i=ni=1 are said to be related,i.e., {yi, zi}i=ni=1 ∼ {yi, z̄i}i=ni=1 if {zi}i=ni=1 and

{z̄i}i=ni=1 lead to the same decision sequence, {d2
i }ni=1. The relation ′ ∼′ is:

• reflexive: {yi, zi}i=ni=1 ∼ {yi, zi}i=ni=1 ,

• symmetric: {yi, zi}i=ni=1 ∼ {yi, z̄i}i=ni=1 ⇒ {yi, z̄i}i=ni=1 ∼ {yi, zi}i=ni=1 ,

• transitive: {yi, zi}i=ni=1 ∼ {yi, z̄i}i=ni=1 , {yi, z̄i}i=ni=1 ∼ {yi, ẑi}i=ni=1 ⇒ {yi, zi}i=ni=1 ∼

{yi, ẑi}i=ni=1 .

Hence ′ ∼′ is a equivalence relation. Let En = Sn1 × Sn2 / ∼ be the collection of

equivalent classes, i.e., collection of classes where each class contains all sequences

which are equivalent to each other. Ēn = {{0, 1}×C,C ∈ En}, Ēn is the collection

of classes obtained by taking the Cartesian product of {0, 1} and classes in En. Let

Σ1
n be the σ algebra generated by the classes in Ēn. Σ1

n is obtained by taking finite

unions of classes in Ēn. For Observer 2, a similar equivalence relation can be defined

and Σ2
n can be found. Let Ên be the set of all sequences of the forms (0, {yi, d2

i }i=ni=1 )

and (1, {yi, d2
i }i=ni=1 ). Since each class in Ēn corresponds to a unique sequence from

Ên, there is an injection φ, from Ēn on to Ên. The mapping need not be surjective

as some decision sequences need not be observed. The measure on (Ēn,Σ
1
n) can be
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defined as,

P̄1
n(E) = P1

n(φ(E)),∀ E ∈ Ēn

From the consistency of P1
n, it follows that

P̄1,n+1(B × S1 × S2) = P̄1,n(B) ∀ B ∈ Σ1
n.

Let B belong to Σ1
n. Then a cylindrical subset of ({0, 1} × {S1 × S2}∞) is:

In(B) = {ω ∈ {0, 1} × {S1 × S2}∞ : (ω(1), ..., ω(n+ 1)) ∈ B}

Let G1 be the smallest σ algebra such that it contains all cylindrical sets, i.e., for

all n and all B. By the Kolmogorov extension theorem there exists a measure P̄1 on

({0, 1} × {S1 × S2}∞, G1) such that,

P̄1(In(B)) = P1,n(B) ∀ B ∈ Σ1
n,

where,

In(B) = {ω ∈ {0, 1} × {S1 × S2}∞ : (ω(1), ..., ω(n+ 1)) ∈ B}.

Let G2 be the smallest σ algebra which contains all the cylindrical sets constructed

from {Σ2
n}∞n=1. For Observer 2, the probability space constructed is ({0, 1} × {S1 ×
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S2}∞, G2, P̄2), where P̄2 is the measure obtained from Kolmogorov extension theo-

rem. Now let us consider the central coordinator (mentioned in section II.B). We

recall that F∗ is the smallest σ algebra which contains all the cylindrical sets con-

structed from {2{0,1}×Sn1×Sn2 }∞n=1 and the extended probability space associated with

central coordinator is ({0, 1} × {S1 × S2}∞,F∗,P∗).

First, we note that the sample space for the two observers and the central

coordinator are the same. The associated σ algebra’s are different. If |S1| > 2 and

|S2| > 2, then, for all n, Σ1
n,Σ

2
n ⊂ {2{0,1}×S

n
1×Sn2 }∞n=1. Hence the set of all cylindrical

subsets for Observer 1 (and Observer 2) is a strict subset of the set of all cylindrical

subsets for the central coordinator, which implies that G1 ⊆ G3 and G2 ⊆ G3.

Suppose {yi, zi}i=ni=1 ∼ {yi, z̄i}i=ni=1 , then the cylindrical set,

Ĉs = {ω ∈ {0, 1} × {S1 × S2}∞ : (ω(1), ..., ω(n+ 1)) = (0, {yi, zi}i=ni=1 )}

belongs to G3, but does not belong to G1. Suppose X1 = {{yi, ẑi}i=ni=1} : {yi, ẑi}i=ni=1 ∼

{yi, zi}i=ni=1 . Then, the cylindrical set,

C̃s = {ω ∈ {0, 1} × {S1 × S2}∞ : (ω(1), ..., ω(n+ 1)) ∈ {0} ×X1} ∈ G1

Ĉs cannot be obtained from C̃s as set X1\{yi, zi}i=ni=1 6∈ Σ1. Hence G1 ⊂ G3. By

similar arguments we can prove that G2 ⊂ G3. Thus, in the approach mentioned in

section 3.5.1, probability measure is not assigned to every subset of the observation

space, but is assigned to those subsets which correspond to an observable outcome.
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The same concept has been emphasized in [25], i.e., models often require coarse

event sigma algebra. Through examples, it is shown that in certain experiments it

might not be possible to assign measure to Borel sigma algebra.

3.5.3 Decision scheme

Based on the new probability space constructed, the observers could find a

new pair of decisions. Given the observation sequences {Yi = yi, D
2
i = d2

i }ni=1 and

{Zi = zi, D
1
i = d1

i }ni=1 for Observer 1 and Observer 2 respectively, the objective is

to find Oi
n : {Si × {0, 1}}n −→ {0, 1} such that following cost is minimized

EPi [Ci
10Hi(1−Oi

n) + Ci
01(Oi

n)(1−Hi)].

To solve the problem for Observer 1, we define a new set of filters as:

α1
1 = EP1 [H1|Y1, D

2
1], α1

n = EP1 [H1|{Yi, D2
i }ni=1].

α1
1 =
P1(D2

1 = d2
1|Y1 = y1, H1 = 1)P1(Y1 = y1, H1 = 1)∑

i=0,1P1(D2
1 = d2

1|Y1 = y1, H1 = i)

P1(Y1 = y1, H1 = i)

=
ψ1

1

(1− β2
1)ψ1

1 + β2
1

,

where,

β2
1 =
P1(D2

1 = d2
1|Y1 = y1, H1 = 0)

P1(D2
1 = d2

1|Y1 = y1, H1 = 1)
.
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The decision by Observer 1 after finding α1
1 is O1

1 = 1 if α1
1 ≥ T3 =

C1
01

C1
01+C1

10
else

O1
1 = 0. O1

1 is sent to Observer 2 which treats it as an exogenous random variable.

O2
1 is found by Observer 2 and sent to Observer 1 which treats it as an exogenous

random variable. Suppose β2
1 = 1+x, then α1

1 =
ψ1
1

1+x(1−ψ1
1)

. Consider the case where

D2
1 = 0 and D1

1 = 1. If β2
1 > 1, i.e., x > 0, then α1

1 < ψ1
1, α1

1 could be less than the

threshold, which implies O1
1 = 0. If O2

1 = 0 then consensus is achieved. If β2
1 < 1,

i.e., x < 0, then α1
1 > π1

1, α1
1 remains greater than the threshold, which implies

O1
1 = 1. Hence β2

1 could be interpreted as an estimate of the accuracy of Observer

2 by Observer 1.For any n,

α1
n =

P1(Yn = yn, D
2
n = d2

n|{Yi = yi,

D2
i = d2

i }n−1
i=1 , H1 = 1)α1

n−1∑
j=0,1P1(Yn = yn, D

2
n = d2

n|{Yi = yi,

D2
i = d2

i }n−1
i=1 , H1 = j)[1j=1α1

n−1 + 1j=0(1− α1
n−1)]

and the decision policy is:

O1
n =


1, if, α1

n ≥ T3,

0, otherwise.

Using a similar procedure, {α2
n}n≥1 can be defined and {O2

n}n≥1 can be found by

Observer 2. The consensus algorithm can be modified as follows. Let n = 1,

1. Observer 1 collects Yn while Observer 2 collects Zn.

2. Based on Yn, π
1
n−1, D1

n is computed by Observer 1 while D2
n is computed by

Observer 2 based on Zn, π
2
n−1.
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Figure 3.5: Schematic for decentralized approach with new probability space

3. If D1
n = D2

n , stop. Else O1
n is computed by Observer 1 using α1

n−1, {Yi, D2
i }ni=1

and O2
n is computed by Observer 2 using α2

n−1, {Zi, D1
i }ni=1.

4. If O1
n = O2

n, stop. Else increment n by 1 and return to step 1.

Figure 3.5 captures this approach. Even though the two observers do not share a

common probability space, to compare the probability error we consider the same

joint distribution as the centralized scenario. The probability of error is given by:

Pe,n =
∑

{yn,zn3(α1
n≥T3 ∩ α2

n≥T4)}

f0(y, z)+

∑
{yn,zn3(α1

n<T3 ∩ α2
n<T4)}

f1(y, z),

where T4 =
C2

01

C2
10+C2

01
. In this scenario, it is difficult to characterize the error rate.

In the previous section the method of types was used to find the error rate. The

sets used to characterize the error rate would now depend on the decision sequence

from the alternate observer. For a particular type, there could be multiple decision

sequences. Hence, the same approach cannot be extended. The convergence of the

above consensus algorithm follows from the convergence of the consensus algorithm
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mentioned in the previous section, 3.3.3. The advantage of this algorithm is that

it has faster rate of convergence due to step 4 of the consensus algorithm. The

drawback of the above mentioned scheme (i.e., the third approach) is the construc-

tion of the aggregated probability space. Finding the collection of distributions,

{Pi,n}n≥1, i = 1, 2, might be expensive. In such a scenario, an alternate approach

would be the following: The probability space construction can be done by finding

the joint distribution of the observations. Hence both observers will have the same

probability space. The hypothesis testing can be done in a decentralized manner.

The same approach can be used, if instead of empirically finding {Pi,n}n≥1, i = 1, 2,

they are computed from the joint distribution.

3.5.4 Alternative decentralized approach with greater than 1 bit ex-

change

Suppose for Observer 1 the observations collected are independent of the de-

cisions received from Observer 2 conditioned on either hypothesis, i.e., for j = 0, 1,

P1({Yi = yi, D
2
i = d2

i }ni=1|H1 = j) =

P1({Yi = yi}ni=1|H1 = j)P1({D2
i = d2

i }ni=1|H1 = j)

=

[
n∏
i=1

P1(Yi = yi|H1 = j)

]
P1({D2

i = d2
i }ni=1|H1 = j).
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Similarly for Observer 2, for j = 0, 1,

P2({Zi = zi, D
1
i = d1

i }ni=1|H2 = j) =[
n∏
i=1

P2(Zi = zi|H2 = j)

]
P2({D1

i = d1
i }ni=1|H2 = j).

A sufficient condition for the above is that under either hypothesis the observations

collected by Observer 1 and Observer 2 are independent. The α1
n computation can

be simplified as:

α1
n =

[
∏n

i=1 P1(Yi = yi|H1 = 1)]

P1({D2
i = d2

i }ni=1|H1 = 1)p1∑
j=0,1 [

∏n
i=1 P1(Yi = yi|H1 = j)]

P1({D2
i = d2

i }ni=1|H1 = j)pj

=

P1(Yn = yn|H1 = 1)P1(D2
n = d2

n|
{D2

i = d2
i }n−1
i=1 , H1 = 1)α1

n−1∑
j=0,1 P1(Yn = yn|H1 = j)P1(D2

n = d2
n|{D2

i =

d2
i }n−1
i=1 , H1 = j)[1j=1α1

n−1 + 1j=0(1− α1
n−1)]

=
P1(Yn = yn|H1 = 1)α1

n−1

P1(Yn = yn|H1 = 1)α1
n−1+

P1(Yn = yn|H1 = 0)(1− α1
n−1)β2

n

.

Hence, the main component needed for the computation is

β2
n =
P1(D2

n = d2
n|{D2

i = d2
i }n−1
i=1 , H1 = 0)

P1(D2
n = d2

n|{D2
i = d2

i }n−1
i=1 , H1 = 1)

.

Since the distributions where found statistically, β2
n can be approximated by

P2
n(D2

n=d2n|{D2
i=d2i }

n−1
i=1 , H2=0)

P2
n(D2

n=d2n|{D2
i=d2i }

n−1
i=1 , H2=1)

, which can be computed by Observer 2 from the product
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probability space created by it.

P2(D2
1 = 1) =

∑
{j=0,1}

∑
{z1∈S2:π2

1≥T2}

P2(Z1 = z1|H2 = j)pj.

P2
2(D2

1 = 1, D2
2 = 1) =

∑
{j=0,1}

∑
{z1∈S2:π2

1≥T2}∑
{z2∈S2:π2

2≥T2}

P2(Z2 = z2|H2 = j)P2(Z1 = z1|H2 = j)pj.

For any n, given {D2
i = d2

i }ni=1,

P2
n({D2

i = d2
i }ni=1) =

∑
{j=0,1}

∑
{z1∈S2:1

d21=1
(π2

1≥T2)+1
d21=0

(π2
1<T2)}∑

{z2∈S2:1
d22=1

(π2
2≥T2)+1

d22=0
(π2

2<T2)}

...

∑
{zn∈S2:1

d2n=1
(π2
n≥T2)+1

d2n=0
(π2
n<T2)}

[
n∏
i=1

P2(Zi = zi|H2 = j)

]
pj.

Using the above joint distributions, {β2
n}n≥1 can be computed. Similarly {β1

n}n≥1

can be computed by Observer 1. From the above discussion, we propose a modified

scheme for detection using two observers: Following the steps discussed in section

3.2.3, each observer constructs its own collection of product spaces,{(Ωi
n,Fin,Pin)}n≥1.

Then the following algorithm is executed: Let n = 1,

1. Observer 1 collects Yn while Observer 2 collects Zn.

2. Based on Yn, π1
n−1, π1

n is found by Observer 1. Using π1
n, D1

n is found by

Observer 1. Based on Zn, π2
n−1, π2

n is found by Observer 2. Using π2
n, D2

n is

85



Figure 3.6: Schematic for decentralized approach, > 1 bit exchange

found by Observer 2.

3. The observers exchange their decisions. D1
n is treated as an exogenous random

variable by Observer 2 while D2
n is treated as an exogenous random variable by

Observer 1. If D1
n = D2

n, then stop. Else β1
n is sent by Observer 1 to Observer

2 while β2
n is sent by Observer 2 to Observer 1.

4. Using Yn, α
1
n−1 and β2

n, α1
n is computed by Observer 1 while using Zn, α

2
n−1 and

β1
n, α2

n is computed by Observer 2. Using α1
n, O1

n is computed by Observer 1

while using α2
n, O2

n is computed by Observer 2.

5. The observers exchange their new decisions. O1
n is treated as an exogenous

random variable by Observer 2 while O2
n is treated as an exogenous random

variable by Observer 1. If O1
n = O2

n, then stop. Else increment n by 1 and

return to step 1.

Figure 3.6 captures the above modified algorithm. The advantage of this scheme is

that the construction of the aggregated probability space is not needed. The scheme

can be executed even when conditions on the joint distribution of the observations
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and decisions from the alternate observer do not hold, though it might not be useful.

3.6 Simulation results

Simulations were performed to evaluate the performance of the algorithms.

The setting is described as follows. The cardinality of the sets of observations col-

lected by observer 1 and 2 are 3 and 4 respectively. The joint distribution of the

observations under either hypothesis is given in table 3.1. Note that under either

hypothesis, the observations received by the two observers are independent. The

f0(y, z) Z = 1 Z = 2 Z = 3 Z = 4
Y = 1 0.02 0.05 0.07 0.06
Y = 2 0.03 0.075 0.105 0.09
Y = 3 0.05 0.125 0.175 0.15

f1(y, z) Z = 1 Z = 2 Z = 3 Z = 4
Y = 1 0.18 0.135 0.09 0.045
Y = 2 0.1 0.075 0.05 0.025
Y = 3 0.12 0.09 0.06 0.03

Table 3.1: Joint distribution of observations under either hypothesis

prior distribution of the hypothesis was considered to be p0 = 0.4 and p1 = 0.6.

DKL(f1||f0) = 0.7986 and DKL(f0||f1) = 0.7057. The empirical probability of error

achieved by using the centralized scheme as n increases has been plotted in figure

3.7 (Algo-1). The empirical probability of the observers agreeing on the wrong belief

conditioned on the observers agreeing in the decentralized scheme(3.3.2) has been

plotted in figure 3.7(Algo-2). In order to construct the aggregated sample space,

the joint distribution of the observations and decision was found by the frequentist

approach. 2 × 107 samples were used to construct the aggregated sample space.
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The empirical probability of error achieved by the centralized sequential hypothesis

testing scheme (using sequential probability ratio test), by the decentralized scheme

in section 3.3.2, by the decentralized scheme in section 3.5.3, by the decentralized

scheme in section 3.5.4 has been plotted against the expected stopping time in figure

3.8, Algo-1, Algo-2, Algo-3, and Algo-4 respectively. It is clear that the centralized

sequential scheme performs the best among the four schemes. 13 aggregated proba-

bility sample spaces ware constructed by varying T1 and T2. The pairs of T1 and T2

which were considered are {(1, 1), (2, 1
2
), (1

2
, 2), ..., (n, 1

n
), ( 1

n
, n), ..., (7, 1

7
), (1

7
, 7)}. By

varying T3and T4 and choosing the best pair of expected stopping time and prob-

ability of error, the graphs Algo-3 and Algo-4 were obtained in Figure 3.8. The

construction of the aggregated probability space (3.5.1) is helpful as for given ex-

pected stopping time the probability of error achieved by the second decentralized

scheme(3.5.3) is lower than the probability of error achieved by the first decentralized

scheme (3.3.2). As discussed in section 3.5.4, the performance of the decentralized

scheme with greater than 1 bit exchange (figure 3.8, Algo-4) is similar to that of

the decentralized scheme with the construction of the aggregated probability space

(figure 3.8, Algo-3) as observations received by the observers are independent condi-

tioned on the hypothesis. Thus there is a trade off between the following:(i) repeated

exchange of observations for finding the joint distribution and better performance

(than distributed schemes) in hypothesis testing problem;(ii) exchange of real valued

information only during hypothesis testing and lower performance (than centralized

scheme) in hypothesis testing problem. Consider the scenario where both the ob-

servers know the joint distribution of the observations. When observer 1 needs
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Figure 3.7: Probability of error / conditional probability of agreement on wrong
belief vs number of samples

to compute α1
n, it needs to find the conditional probability of receiving Yn = yn

and D2
n = d2

n given its own past observations Y1, ..., Yn−1 and the past decisions

it receives from observer 2 D2
1, ..., D

2
n−1. This computation can be carried out in

more than two ways. The first approach would be to search over the observation

space, Y n×Zn for sequences which lead to observed observation and decision pairs

((Y1, D
2
1), ..., (Yn, D

2
n)) and then use the joint distribution with the appropriate se-

quences to find the conditional probability. This is not an efficient approach as

computation time increases exponentially with increase in number of samples. An

alternate approach would be store the sequences found at stage n and then use them

to find the sequences at stage n+ 1. In this approach the memory used for storage

increases exponentially. Hence even upon knowing the joint distribution of the ob-

servations, the computation of α1
n is intensive. For the fourth approach, Observer

i needs to compute βin which requires the joint distribution of the Di
1, ..., D

i
n, and

H. Again, each observer needs to search over its observation space for finding the

observation sequences which lead to that particular decision sequence. Since this

approach is computationally intensive, the joint distribution of the decisions was
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Figure 3.8: Probability of error vs expected stopping time

estimated by the frequentist approach. For each observer, 2 × 27 = 256 decision

sequences are possible. From 2 × 107 samples, the joint distribution of the deci-

sion sequence and hypothesis is estimated. We considered another setup, where the

cardinality of the sets of observations collected by observers 1 and 2 are 2 and 3

respectively. The joint distribution of the observations under either hypothesis is

given in table 3.2. Under either hypothesis, the observations received by the two

observers are not independent. The prior distribution of the hypothesis was consid-

f0(y, z) Z = 1 Z = 2 Z = 3
Y = 1 0.1 0.15 0.2
Y = 2 0.15 0.2 0.2

f1(y, z) Z = 1 Z = 2 Z = 3
Y = 1 0.15 0.15 0.25
Y = 2 0.18 0.14 0.13

Table 3.2: Joint distribution of observations under either hypothesis

ered to be p0 = 0.4 and p1 = 0.6. DKL(f1||f0) = 0.0627 and DKL(f0||f1) = 0.0649.

The empirical probability of error achieved by using the centralized scheme as n

increases has been plotted in figure 3.9 (Algo-1). The empirical probability of the

observers agreeing on the wrong belief conditioned on the observers agreeing in the

decentralized scheme has been plotted in figure 3.9 (Algo-2). 2× 107 samples were

used to construct the aggregated probability space, while the maximum number
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Figure 3.9: Probability of error / conditional probability of agreement on wrong
belief vs number of samples

of possible sequences is 2 × 27 × 37 = 559872. The empirical probability of error

achieved by the centralized sequential hypothesis testing scheme (using sequential

probability ratio test), by the decentralized scheme in section 3.3.2, by the decentral-

ized scheme in section 3.5.3, by the decentralized scheme in section 3.5.4 has been

plotted against the expected stopping time in figure 3.10, Algo-1, Algo-2, Algo-3,

and Algo-4 respectively. There is a significant difference between performance of the

centralized and the decentralized schemes. One possible reason is that the marginal

distributions are closer, i.e., DKL(f 1
1 ||f 1

0 ) = 0.0290 and DKL(f 2
0 ||f 2

1 ) = 0.0244. The

performance of the first decentralized scheme ( 3.3.2) and the second decentralized

scheme are almost similar. Hence the construction of the aggregated probability

space is not helpful in this example.

3.7 Conclusion

In this chapter, we considered the problem of collaborative binary hypothesis

testing. We considered different approaches to solve the problem with emphasis on
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Figure 3.10: Probability of error vs expected stopping time

probability space construction and the information exchanged for the construction.

The first approach was the centralized scheme. In second approach, we presented a

decentralized scheme with exchange of decision information. It was shown that, if the

observation collected by Observer 1 was independent of the observation collected by

Observer 2 conditioned on either hypothesis then the rate of decay of the probability

of agreement on the wrong belief in decentralized scheme is lower bounded by rate of

decay of probability of error in the centralized scheme. The third approach included

construction of aggregated probability spaces and a decentralized detection scheme

similar to the second approach. However, the construction of the new probability

space could be costly. We presented an alternate scheme where the construction

of the bigger probability space could be avoided. Simulation results comparing the

different approaches were presented. For the simulation setup considered, it was

observed that the centralized sequential solution achieves lower probability of error

for the same stopping time than the decentralized sequential scheme.
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Chapter 4: Order Effects of Measurements in Multi-Agent Hypoth-

esis Testing

4.1 Introduction

As discussed in the previous chapter, the joint distribution of measurements

collected by agents in a multi-agent system might not be always available. When a

probability space is to be constructed for an agent in the multi-agent system, the

first step would be to enumerate the list of events / propositions that the agent can

verify. We recall that in Kolomogorov’s axioms for classical probability, it is assumed

the set of events ( assocciated with subsets of sets ) form a Boolean algebra, a very

specific algebraic structure. Before we construct a classical probability space for a

agent, we would first have to verify that the set of events indeed form a Boolean

algebra. Our hypothesis is that the algebraic structure of the set events need not

be a Boolean algebra, it can be an orthomodular ortholattice. We present an exam-

ple from multi-agent decision making supporting our hypothesis. This hypothesis

is motivated from the observation that for an agent there could exist propositions

which are not “simultaneously verifiable” by the agent. Such events exist in quan-

tum mechanical systems, which leads to the set of events forming an orthomodular
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ortholattice. The algebraic structure of the set of events in quantum mechanical

systems have been well investigated in literature. One of the earliest papers in this

direction, is [26]. More recently, in [27] the author argues that quantum logic is

a fragment of independent friendly logic. Noncommuting observables are assumed

to be mutually dependent variables. Independent friendly logic allows all possi-

ble patterns of dependence/ independence to be expressed among variables, which

is not possible in first order logic. Independent friendly logic violates the law of

excluded middle ( every proposition, either its positive or negative form is true).

This violation stems from the fact that truth value for propositions is assigned by

finding winning strategy for a player in a suitable game. In [27], the author argues

that one can a find a suitably analogy between quantum logic and an extension of

independent friendly logic.

In this chapter, we adopt the methodology developed in [28]. In the next

section, section 4.2, we present the methodology from [28] which we can used to

investigate the structure of the set of events. In section 4.3, we discuss a specific

example from multi-agent decision making supporting our hypothesis. In section

4.4, we discuss hypothesis testing problem in a non commutative probability space,

the probability space from von Neumann Hilbert space model.

4.2 Algebraic structure of the set of events

In the following section we introduce some definitions and identities from

propositional calculus that have been mentioned in the literature, for e.g., [26].
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We have mentioned them to keep this thesis self contained.

4.2.1 Introduction to propositional calculus

Let E be an experiment. Let B be the set of experimentally verifiable propo-

sitions, i.e., propositions to which we can assign truth value based on the outcome

of the experiment E.

Example 4.1 [29]. Let the experiment E be ‘observing the environment (surround-

ings)’. Suppose the set of propositions is B ={it is raining, it is snowing, it is warm,

it is cold, the sun is shining, it is not raining, it is not snowing, it is not warm, it is

not cold, the sun is not shining}. By performing the experiment(i.e., by observing

the surroundings) one can assign truth value to each proposition, i.e., each propo-

sition is either true or false. On the domain of propositions, we are given the the

relation of implication(≤) which satisfies the following properties:

• reflexive: for any proposition p1 ∈ B, p1 ≤ p1,

• transitive: for propositions p1, p2 and p3 belonging to B, if p1 ≤ p2 and p2 ≤ p3,

then p1 ≤ p3.

In example 4.1, ‘it is warm ’≤ ‘it is not snowing’, ‘it is raining’ ≤ ‘it is not shining’

and, ‘it is cold’ ≤ ‘it is snowing’( this implication need not be true always). We can

define the relation of cotestable on the set of propositions as follows: two propositions

are cotestable if and only if they can be assigned truth values simultaneously. This

relation is reflexive, symmetric but is not transitive. When we verify the relation

of implication between two propositions p1 and p2, we are simultaneously assigning
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truth value to both the propositions, i.e., we are assuming that the propositions are

cotestable. If we impose the condition that the relation of implication between two

propositions can be verified only when the propositions are co-testable, we loose the

transitivity property of the relation of implication. The concept of simultaneous

testability was introduced in [29].

The domain B and the relation implication , L = (B,≤) form a partially ordered

set(POSET). The transitivity property of the relation of implication is essential for

the construction of the partially ordered set. Hence we assume all propositions are

simultaneously verifiable. We assume that the domain B includes the identically

true proposition, denoted by 1, and the identically false proposition, denoted by 0.

Both L = (B,≤) and L̂ = (B̂ = B ∪ {0,1},≤) are partially ordered sets. Using the

relation of implication, we can define operations on the set B.

Definition 4.2.1. Let L = (B,≤) be a POSET. A proposition p ∈ B is said to be

the conjunction (greatest lower bound or “meet”) of propositions p1 ∈ B and p2 ∈ B

if p ≤ p1, p ≤ p2, and, for any other proposition q ∈ B such that q ≤ p1 and q ≤ p2,

q ≤ p. The conjunction of p1 and p2 is denoted by p1 ∧ p2.

Definition 4.2.2. Let L = (B,≤) be a POSET. A proposition p ∈ B is said to be

the disjunction (least upper bound or “join”) of propositions p1 ∈ B and p2 ∈ B if

p1 ≤ p, p2 ≤ p, and, for any other proposition q ∈ B such that p1 ≤ q and p2 ≤ q,

p ≤ q. The disjunction of p1 and p2 is denoted by p1 ∨ p2.

Definition 4.2.3. Let L = (B,≤) be a POSET. A proposition p ∈ B is said to be

logically equivalent to proposition q ∈ B if p ≤ q and q ≤ p.
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In the example, the meet and join of the propositions are not included in B. We

obtain the set B̄, by taking the closure of the set B with respect to the conjunction

and disjunction operations. L̄ = (B̄,≤) is also a partially ordered set.

Definition 4.2.4. Let L = (B,≤) be a POSET with with 1and 0. A mapping ′ :

B→ B is an orthocomplementation,(denoted by ′) provided it satisfies the following

identities: for p, p1, and p2 ∈ B,

1. (p′)′ = p,

2. p ∧ p′ = 0 and p ∨ p′ = 1,

3. p1 ≤ p2 implies p′2 ≤ p′1.

If ′ : B→ B is an orthocomplementation, the relation of orthogonality(⊥) is defined

as p1 ⊥ p2 if and only if p1 ≤ p′2.

The relation of orthogonality is not reflexive or transitive. From identity [3], it

follows that the relation is indeed symmetric. From the definitions of the conjunction

operator, disjunction operator and the identities, [1], [2], and [3], the following result

can be proven,

4. (p1 ∧ p2)′ = p′1 ∨ p′2 and (p1 ∨ p2)′ = p′1 ∧ p′2.

Definition 4.2.5. A partially ordered set L = (B,≤) is said to be lattice if: for

every proposition p1 ∈ B and p2 ∈ B, p1 ∧ p2 and p1 ∨ p2 belong to B.

From the above definition it follows that neither L nor L̂ are lattices but L̄ is a

lattice. The distributive identity of propositional calculus can be stated as follows:

for p1, p2, p3 ∈ B,
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5. p1 ∨ (p2 ∧ p3) = (p1 ∨ p2) ∧ (p1 ∨ p3) and p1 ∧ (p2 ∨ p3) = (p1 ∧ p2) ∨ (p1 ∧ p3).

A lattice which satisfies [2] and [5] is a Boolean algebra. In classical probability,

the probability space consists of a sample space, a sigma algebra of subsets of the

sample space and a probability measure on the sigma algebra. The sigma algebra

along with set inclusion as the relation of implication, union of sets as the disjunction

operation, and intersection of sets as conjunction operation is a Boolean algebra.

Hence in classical probability we are defining measures over a Boolean algebra. The

modular identity can be stated as follows:

6. If p1 ≤ p3, then p1 ∨ (p2 ∧ p3) = (p1 ∨ p2) ∧ p3

The finite dimensional subspaces of a Hilbert space, along with subspace inclusion as

the relation of implication, closed linear sum (instead of union of sets) as the disjunc-

tion operation, and set products (corresponding to intersection of sets)as conjunction

operation satisfy the modular identity, but do not satisfy the distributive identity.

Thus, if the propositions from the experiment along with implication relation sat-

isfy the modular identity, but not the distributive identity, they can be represented

by the finite dimensional subspaces of Hilbert space with the direct sum operation

corresponding to the disjunction operation and set product operation corresponding

to conjunction operation. In our study we consider the set of propositions as the

propositions which describe the outcomes of experiments on multi-agent systems.

They can be assigned truth values based on the outcome of the experiments. For

propositions which arise from experiments on multi-agent systems, the relation of

implication and unary operation of orthocomplementation are yet to be defined, but
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the properties and identities that they satisfy were discussed in the section.

4.2.2 Event state operation structure

4.2.2.1 Event-state structures

We are interested in studying the structure of the set experimentally verifiable

propositions. We associate operations with the propositions(events as defined below)

and measures on the set of propositions. From the properties of the operations and

measures we infer the algebraic structure of the set of propositions. We follow the

definitions mentioned in [28]:

Definition 4.2.6. An event state structure is a triple (E ,S,P) where:

1. E is a set called the logic of the event state structure and an element of E is

called an event,

2. S is a set and an element of S is called an state,

3. P is a function P : E × S → [0, 1] called the probability function and if E ∈ E

and ρ ∈ S then P(E, ρ) is the probability of occurrence of event E in state ρ,

4. if E ∈ E, then the subsets S1(E) and S0(E) of S are defined by S1(E) = {ρ ∈

S : P(E, ρ) = 1}, S0(E) = {ρ ∈ S : P(E, ρ) = 0}, and if ρ ∈ S1(E)(ρ ∈ S0(E))

then the event E is said to occur (not occur) with certainty in the state ρ,

5. axioms I.1 to I.7 are satisfied.

Axioms:
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I.1 If E1, E2 belong to E and S1(E1) = S1(E2) then E1 = E2.

I.2 There exists an event 1 such that S1(1) = S.

I.3 If E1, E2 belong to E and S1(E1) ⊂ S1(E2) then S0(E2) ⊂ S0(E1).

I.4 If E ∈ E then there exists an event E ′ such that S1(E) = S0(E ′) and S0(E) =

S1(E ′).

I.5 If E1, E2, .... are a sequence of events such that S1(Ei) ⊂ S0(Ej) for i 6= j then

there exists a E such that (a) S1(Ei) ⊂ S1(E) for all i (b) if there exits F

such that S1(Ei) ⊂ S1(F ) for all i, then S1(E) ⊂ S1(F ), and (c) if ρ ∈ S then∑
i P(Ei, ρ) = P(E, ρ).

I.6 If ρ1, ρ2 ∈ S such that P(E, ρ1) = P(E, ρ2) for every E ∈ E then ρ1 = ρ2.

I.7 ρ1, ρ2, . . . ∈ S, ti ∈ [0, 1] and
∑

i ti = 1 then exists an ρ ∈ S such that

P(E, ρ) =
∑

i tiP (E, ρi) for all E ∈ E .

There are different interpretations that could be associated with the state, [30]. The

state could refer to the physical state of the system. The state could be interpreted

as a special(probabilistic) representation of information about the results of possible

measurements on an ensemble of identically prepared systems. The second inter-

pretation is appropriate given our context. An event may be identified with the

occurrence or non-occurrence of a particular phenomenon pertaining to the multi-

agent system. The event is associated with an observation procedure which interacts

with multi-agent system resulting in a yes or no corresponding to the occurrence or
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non-occurrence of the phenomenon. The interpretation of P(E, ρ) for E ∈ E and

ρ ∈ S is as follows: we consider an ensemble of the systems such that the state

is ρ. We determine the occurrence or non-occurrence of the event E by executing

the associated the observation procedure associated with E on each system in the

ensemble. If the ensemble is large enough then the frequency of occurrence of E

is close to P(E, ρ). Axiom [I.1] states the condition for uniqueness of events. Ax-

iom [I.2] guarantees the existence of the certain event. Axiom [I.4] guarantees the

existence of the orthocomplement of any event. Axiom [I.3] ensures that the third

part of definition 4.2.4 is satisfied. Axiom [I.5] is equivalent to countable additivity

of measures. Axiom [I.6] states the condition for uniqueness of states. Axiom [I.7]

leads to σ convexity of the probability function.

Definition 4.2.7. If (E ,S,P) is an event state structure, then the relation of im-

plication, ≤, is defined as follows: for E1, E2 ∈ E, E1 ≤ E2 if and only if S1(E1) ⊆

S1(E2).

The relation of implication is defined using the states and the probability function.

Thus E1 is said to imply E2 if and only if the set of states for which E1 occurs with

certainty is a subset of the set of states for which E2 occurs with certainty. Since the

subset relation(⊆) is reflexive and transitive, it follows that the implication relation

is also reflexive and transitive. The antisymmetry property of the subset (⊆) relation

and axiom [I.1] imply that the implication relation is also antisymmetric. Hence the

relation of implication (≤) is partial ordering of E .

Definition 4.2.8. Let (E ,S,P) be an event state structure. Then the unique event
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1 ∈ E such that S1(1) = S and S0(1) = ∅ is the certain event. If E ∈ E, then

the unique event E ′ ∈ E such that S1(E1) = S0(E ′1) and S0(E1) = S1(E ′1) is called

the complement(negation) of E. The unique event 0 ∈ E such that S1(0) = ∅ and

S0(1) = S is the impossible event.

Axiom [I.2] implies the existence of the certain event and axiom [I.1] implies that the

certain event is unique. Further, the certain event is the greatest event corresponding

to ≤, as E ≤ 1, for all E ∈ E . Axiom [I.4] applied to the certain event yields the

unique event 0 such that S1(0) = ∅, S0(0) = S and 0 ≤ E for all E ∈ E .

Theorem 4.2.9. If (E ,S,P) is an event state structure, then:

• (E ,≤) is a POSET,

• 1 and 0 are the greatest and least elements of the POSET, (E ,≤),

• E → E ′ is an orthocomplementation on (E ,≤),

• if E1, E2 ∈ E, the following are equivalent: (a) E1 ≤ E2 (b) S1(E1) ⊆ S1(E2)

(c) S0(E2) ⊆ S0(E1),

• if E1, E2 ∈ E, the following are equivalent: (a) E1 ⊥ E2 (b) S1(E1) ⊆ S0(E2)

(c) E1 ≤ E ′2,

• if E1 ∈ E, the following are equivalent; (a) E1 = 0 (b) S1(E1) = ∅ (c) S0(E1) =

S.

For the proof of above theorem we refer to [28].

102



Example 4.2 [28] We consider the classical probability model, the probability space

constructed based on Kolomogorov’s axioms. Let Ω be the sample space and F be

a sigma algebra of subsets of Ω. The relation of implication is defined as follows:

E1 ≤ E2 if and only if E1 ⊆ E2, where the relation ⊆ is the set theoretic inclusion.

µ : F → [0, 1] is a probability measure if (a)µ(∅) = 0 and µ(Ω) = 1 (b)if {Ei}i≥1

is a sequence of pairwise orthogonal events, then µ(∪iEi) =
∑

i µ(Ei). Let S be a

collection of σ convex, strongly order determining set of probability measures on F .

Let P(E, ρ) = ρ(E). Then (F ,S,P) is an event-state structure. The sample space Ω

corresponds to the certain event (thus verifying axiom I.2) and the ∅ corresponds to

the impossible event. Axiom [I.1] follows from the strong order determining property

of the set S. The orthocomplementation is given by E ′ = Ec, where c demotes the

set theoretic complement, satisfies axiom [I.4]. Since F is a σ algebra, the countable

union of events in F also belongs to F . This property of the σ algebra along with

countable additivity of the measures imply that axiom [I.5] is also satisfied. Axiom

[I.7] follows from the σ convex property of the set S.

Example 4.3 [28] Let H be a separable complex Hilbert space. Let B(H) denote the

set of bounded linear operators which map from H to H. Let T ∗ denote the adjoint

of T ∈ B(H). For T ∈ B(H), let R(T ) = {u ∈ H : u = T (v) for some v ∈ H} and

N (T ) = {v ∈ H : T (v) = θ}. Let B+
s (H) denote the set of hermitian, positive semi-

definite bounded linear operators. For the following definitions and results we refer

to [31]. Let B00(H) denote the set of operators in B(H) which have finite rank. The

set of compact operators B0(H) is closed subspace of B(H). The set B00(H) is dense

in B0(H) with the operator norm. Let {ei}i≥1 denote an orthonormal basis for H
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(since H is separable the orthonormal basis exists). For T ∈ B(H), the trace norm

is defined as ||T ||1 =
∑

i〈|T |(ei), ei〉, where |T | = (T ∗T )
1
2 and 〈·, ·〉 corresponds

to inner product on the Hilbert space H. The trace norm is independent of the

choice of orthonormal basis. The set of trace class operators is set of operators

in B(H) which have finite trace norm, B1(H) = {T ∈ B(H) : ||T ||1 < ∞}. The

set of trace class operators is a subspace of B(H). The vector space B1(H) along

with the trace norm (|| · ||1) is a nonreflexive Banach Space. It can be shown that

||T || ≤ ||T ||1, T ∈ B1(H). B00(H) is a dense subset of the Banach space B1(H)

with the trace norm. For T ∈ B1(H), there exits {Tn}n≥1 ⊂ B00(H) such that

{||Tn − T ||1} → 0. Since ||T || ≤ ||T ||1, T ∈ B1(H), {||Tn − T ||} → 0. When a

sequence of compact operators converge to a bounded operator, that operator is

also compact. Thus T is compact. Hence B1(H) ⊆ B0(H), i.e., every trace class

operator is compact. Let the closed (in norm topology) convex cone of hermitian,

positive semidefinite trace class operators be denoted by T +
s (H). Let S = {T ∈

T +
s (H) : ||T ||1 = 1}. Let P(H) denote the set of all orthogonal projections onto H,

P(H) = {T ∈ B(H) : T ◦ T = T, T ∗ = T}. Let P(E, ρ) for E ∈ P(H) and ρ ∈ S

be defined as P(E, ρ) = Tr[ρE] =
∑

i〈ρ(E(ei)), ei〉. Then (P(H),S,P) is an event

state structure. The identity operator (IH) corresponds to the certain event and null

operator(ΘH) corresponds to the impossible event. IH ∈ B(H) but does not belong

to B1(H). Axioms [I.1], [I.2] and [I.3] can be verified. The orthocomplementation

is given by E ′ = IH − E which satisfies axiom [I.4]. Axioms [I.5] and [I.6] can

be verified. Since S is convex and the trace operator is linear, axiom [I.7] is also

satisfied. E1 ≤ E2 if and only if {ρ ∈ S : Tr[ρE1] = 1} ⊆ {ρ ∈ S : Tr[ρE2] = 1}
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which is equivalent to stating that E1E2 = E1. With this definition for the relation

of implication, it can be shown that for E1, E2 ∈ P(H), E1 ∧ E2 is the projection

onto the subspace R(E1) ∩ R(E2) and E1 ∨ E2 is the projection on the subspace

R(E1)⊕R(E2).

4.2.2.2 Relation of compatability

Definition 4.2.10. The relation of compatibility (C) is defined on the set of events,

E, as follows: for E1, E2 ∈ E, E1CE2 if and only if there exists F1, F2, F3 ∈ E such

that (a)F1 ⊥ F2 (b)F1 ⊥ F3 and E1 = F1 ∨ F3 and (c) F2 ⊥ F3 and E2 = F2 ∨ F3.

The relation C on E satisfies following properties, [28]:

1. if E1, E2 ∈ E and E1 ≤ E2 then E1CE2,

2. if E1, E2 ∈ E and E1CE2 then (a) E1CE ′2, (b) E2CE1 (c) E1 ∧E2 and E1 ∨E2

exist in E ,

3. if E1, E2, E3 ∈ E , E1CE2, E2CE3, E1CE3, and (E1∨E3)∧ (E2∨E3) exists then

(E1 ∧ E2)CE3 and (E1 ∧ E2) ∨ E3 = (E1 ∨ E3) ∧ (E2 ∨ E3).

The relation C is determined by the following property, [28]: for E1, E2 ∈ E , E1CE2

if and only if there is Boolean sublogic B ⊂ E such that E1, E2 ∈ B.

Theorem 4.2.11. Let (E ,S,P) be an event state structure. If E1, E2 ∈ E and there

exists an E3 ∈ E such that S1(E3) = S1(E1)∩ S1(E2) then the conjunction of E1, E2

with respect to ≤ exists and is equal to E3.

For the proof of above theorem we refer to [28].
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4.2.2.3 Operations

The concepts of conditional probability and conditional expectation are very

important in classical probability theory. They enhance the utility of the theory

and deepen the mathematical structure of the theory. They are extensively used

in estimation, detection, filtering and control. Conditional probability is defined as

a measure on a restricted sample space, with the ’observed event’ leading to the

restriction. Conditional expectation of a random variable given a σ algebra is a ran-

dom variable which is measurable with respect to the σ algebra and its expectation

is equal to the expectation of the original random variable over the sets of the σ

algebra. Our goal is to obtain concepts analogous to conditional probability and

conditional expectation for general event-state structures. Conditional probability

can be viewed as map from a probability measure to a probability measure restricted

to the observed event. Since states in the event-state structure are “analogous” to

probability measures in classical probability, we first define maps from the set of

states to the set of states and its associated properties.

Definition 4.2.12. Let (E ,S,P) be an event state structure.

1. Let O denote the set of all maps T : DT → RT with domain DT ⊂ S and range

RT ⊂ S. If T ∈ O and ρ ∈ S then T (ρ) denotes the image of ρ under T .

2. For T1, T2 ∈ O, T1 = T2 if and only if DT1 = DT2 and T1(ρ) = T2(ρ) ∀ρ ∈ DT1.

3. 0 : D0 → R0 is defined by D0 = ∅.

4. 1 : D1 → R1 is defined by D1 = S and 1(ρ) = ρ ∀ρ ∈ S.
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5. If T1, T2 ∈ O, then T1 ◦ T2 : DT1◦T2 → RT1◦T2 is defined by DT1◦T2 = {ρ ∈ DT2 :

T2(ρ) ∈ DT1} and T1 ◦ T2(ρ) = T1(T2(ρ)) ∀ρ ∈ DT1◦T2.

In order to predict the result when consecutive experiments are performed on a

system, it is essential to define the composition of maps. The state obtained up on

applying the composition of maps T1 and T2 to a state ρ, denoted by (T1 ◦T2(ρ)), is

the state obtained by applying the map T2 first to ρ and then applying T1 to T2(ρ).

We impose an axiomatic framework on the set of maps (O) resulting in “operations”

which can be associated with events from the experiment.

Definition 4.2.13. An event-state-operation structure is a 4-tuple (E ,S,P,T) where

(E ,S,P) is an event-state structure and T is mapping T : E → O(T : E → TE) which

satisfies axioms [II.1] to [II.7].

If E ∈ E , then TE is called the operation corresponding to event E. If E ∈ E

and ρ ∈ DTE , then TE(ρ) is called the state conditioned on the event E and state

ρ. If E1 ∈ E , then P(E1, TE(ρ)) is the probability of E1 conditioned on the event

E and state ρ. Let OT denote the subset of O defined by OT = {T ∈ O : T =

TE1 ◦ TE2 . . . ◦ TEn ;E1, E2, . . . , En ∈ E}. An element of OT is called as operation.

II.1 If E ∈ E , then the domain DTE of TE coincides with the set DE = {ρ ∈ S :

P(E, ρ) 6= 0}.

II.2 If E ∈ E , ρ ∈ DE and P(E, ρ) = 1 then TE(ρ) = ρ.

II.3 If E ∈ E and ρ ∈ DE, then P(E, TE(ρ)) = 1.
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II.4 If E1, E2, . . . , En, F1, F2, . . . , Fn are subsets of E , and TE1 ◦ TE2 ◦ . . . ◦ TEn =

TF1 ◦ TF2 ◦ . . . ◦ TFn then TEn ◦ TEn−1 ◦ . . . ◦ TE1 = TFn ◦ TFn−1 ◦ . . . ◦ TF1 .

II.5 If T ∈ OT , then there exists a ET such that S1(ET ) = {ρ ∈ S : ρ /∈ DT}.

II.6 If E1, E2 ∈ E , E2 ≤ E1 and ρ ∈ DE1 , then P(E2, TE1(ρ)) = P(E2,ρ)
P(E1,ρ)

.

II.7 If E1, E2 ∈ E , E1CE2 and ρ ∈ DE1 then P(E2, TE1(ρ)) = P(E1 ∧ E2, TE1(ρ)).

Example 4.2 Operations for the classical probability space: The event state structure

is (F ,S,P). For E ∈ F , the operation is defined as follows:

(TE(µ))(F ) =
µ(E ∩ F )

µ(E)

The domain of TE is {µ : µ(E) 6= 0}, satisfying axiom [II.1]. Axioms [II.2], and [II.3]

can be verified. For axiom [II.4], it is given that µ(E1∩E2∩...∩En∩G)
µ(E1∩E2∩...∩En)

= µ(F1∩F2∩...∩Fn∩G)
µ(F1∩F2∩...∩Fn)

for all µ in domain and G ∈ F . Since the ∩ operation is commuting, it follows that

µ(En∩En−1∩...∩E1∩G)
µ(En∩En−1∩...∩E1)

= µ(Fn∩Fn−1∩...∩F1∩G)
µ(Fn∩Fn−1∩...∩F1)

for all µ in domain and G ∈ F . For axiom

[II.5], let TE = TE1 ◦ TE2 ◦ . . . TEn . Domain of TE is {µ : µ(E1 ∩E2 ∩ . . .∩En) 6= 0}.

The states which do not belong to the domain are: {µ : µ(E1 ∩E2 ∩ . . .∩En) = 0}.

Let F = (E1∩E2∩. . .∩En)c, that is the set theoretic complement of E1∩E2∩. . .∩En.

F ∈ F as F is a σ algebra. {µ : µ(E1 ∩ E2 ∩ . . . ∩ En) = 0} = {µ : µ(F ) = 1}.

Hence there exists unique event satisfying axiom [II.5]. Axioms [II.6] and [II.7] can

be verified.

Example 4.3 Operations for the von Neumann Hilbert space model: given an event
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E, the operation corresponding to event E is defined as:

TE(ρ) =
EρE

Tr[ρE]

The domain of TE is {ρ : Tr[ρE] 6= 0}, satisfying axiom [II.1]. Axioms [II.2], and

[II.3] can be verified. For the verification of axioms [II.4] and [II.5] we refer to

sections C.1.1 and C.1.2. Axioms [II.6] and [II.7] can be verified. We note that in

this von Neumann Hilbert space model, the orthocomplementation corresponds to

orthogonal complement of subspaces and not the set theoretic complement. This

concept has been discussed in [27].

Definition 4.2.14. Let (E ,S,P,T)) be an event-state-operation structure. The map-

ping ∗ : OT → OT is defined as: if T ∈ OT, there exists E1, E2, . . . , En such that

T = TE1 ◦ TE2 . . . ◦ TEn, then T ∗ = TEn ◦ TEn−1 . . . ◦ TE1.

Axiom [II.4] ensures that even if there are two sequences of operations which result

in the same operation, i.e., for T ∈ OT, ∃E1, E2, . . . , En, F1, F2, . . . , Fn subsets of E

such that T = TE1 ◦ TE2 ◦ . . . ◦ TEn = TF1 ◦ TF2 ◦ . . . ◦ TFn , then the involution is

unique as TEn ◦ TEn−1 ◦ . . . ◦ TE1 = TFn ◦ TFn−1 ◦ . . . ◦ TF1 .

Theorem 4.2.15. If (E ,S,P,T)) be an event-state-operation structure, then OT is

a subsemigroup of O. Further,

1. T1 = 1 and T0 = 0,

2. if E ∈ E, then TE ◦ TE = TE, i.e., TE is a projection and the range of TE =

S1(E),
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3. ∗ : OT → OT is the unique mapping such that

(a) ∗ is an involution on the semigroup (O, ◦),

(b) (TE)∗ = TE for all E ∈ E, and

(c) if E1, E2 ∈ E, then the following properties are equivalent: (i) E1 ≤ E2,

(ii) S1(E1) ⊆ S1(E2), (iii) S0(E2) ⊆ S0(E1), (iv) TE1 ◦ TE2 = TE1, (v)

TE2 ◦ TE1 = TE1.

For proof we refer to [28]. The theorem asserts that (OT, ◦,∗ ) is an involution

semigroup such that:

1. For each E ∈ E , TE is a projection, that is TE belongs to the set P (OT) =

{T ∈ OT : T ◦ T = T ∗ = T}.

2. E ∈ E → TE ∈ P (OT) is order preserving map of (E ,≤) into (P (OT),≤) where

TE ≤ TF means TE ◦ TF = TE for TE, TF ∈ P (OT).

Definition 4.2.16. If (E ,S,P,T)) is event state operation structure then the map-

ping ′ : OT → P (OT) is defined as follows: for T ∈ OT, T ′ = TET where ET ∈ E is

the unique element of E such that S1(ET ) = {ρ ∈ S : ρ /∈ DT}.

Axiom [II.5] ensures the existence of an element as required by the above definition.

Uniqueness of the event follows from axiom [I.1]. Axioms [II.4] and [II.5] were

included to ensure that the involution and orthocomplementation operations can be

defined on the set of operations. These operations are needed in order to construct

a specific kind of semigroup, the Baer∗-semigroup, on the set of operations. This
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additional structure helps us find equivalence between compatibility of events and

the commutativity of their corresponding operations.

Definition 4.2.17. A Baer∗-semigroup (S, ◦,∗ ,′ ) is an involution semigroup (S, ◦,∗ )

with a zero 0 and a mapping ′ : S → P (S) such that if T ∈ S then {U ∈ S : T ◦U =

0} = {U ∈ S : U = T ′ ◦ V, for some V ∈ S}. If (S, ◦,∗ ,′ ) is Baer∗-semigroup, then

an element of P ′(S) = {T ∈ S : (T ′)′ = T} is called as closed projection.

Theorem 4.2.18. Let (S, ◦,∗ ,′ ) be a Baer∗-semigroup.

1. P ′(S) = {T ∈ S : (T ′)′ = T} = {T ′;T ∈ S}.

2. If T ∈ P ′(S), then T ′ ∈ P ′(S).

3. (P ′(S),≤,′ ) is an orthomodular lattice where ≤ is the relation ≤ on P (S)

restricted to P ′(S) and ′ is the restriction of ′ : S → P (S) to P ′(S). If

T1, T2 ∈ P ′(S), then T1 ∧ T2 = (T ′1 ◦ T2)′ ◦ T2.

4. If T, U ∈ P ′(S) then the following are equivalent:(i) there exists T0, U0, V0 ∈

P ′(S) such that T0 ⊥ U0, T0 ⊥ V0, U0 ⊥ V0, T = T0 ∨ V0 and U = U0 ∨ V0(ii)

T ◦ U = U ◦ T . If T ◦ U = U ◦ T then T ∧ U = T ◦ U .

For the proof of above theorem we refer to [32]. From the axioms associated with

operations, we conclude that (OT, ◦,∗ ,′ ) is a Baer∗-semigroup. Let P ′(OT) = {T ∈

OT : (T ′)′ = T}. From the above theorem it follows that, (P ′(OT),≤,′ ) is an

orthomodular ortholattice.

Commutative Baer∗-semigroup for Example 4.2 : Let O denote the set of all maps

from S to S. Let OT = {T ∈ O : (T (µ))(F ) = µ(E1∩E2∩...∩En∩F )
µ(E1∩E2∩...∩En)

, E1, E2, . . . En ∈ F}.
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Since the axioms associated with involution and orthocomplmentation are satisfied,

(OT, ◦,∗ ,′ ) forms Baer∗-semigroup. Since the set theoretic intersection operation

(∩) is commutative(E1 ∩ E2 = E2 ∩ E1, E1, E2 ∈ F) the composition operation is

commutative, i.e, T1 ◦ T2 = T2 ◦ T1, T1, T2 ∈ OT. Thus (OT, ◦,∗ ,′ ) is a commutative

Baer∗-semigroup.

Noncommutative Baer∗-semigroup for Example 4.3 : First we note (B(H), ◦) is a

semigroup. The usual operator adjoint, T → T ∗ is an involution for (B(H), ◦).

Let BO(H) = {T ∈ B(H) : T = P1 ◦ P2 ◦ . . . Pn, {Pi}ni=1 ⊂ P(H)}. It is clear that

(BO(H), ◦,∗ ) is an involutive semigroup. For T ∈ BO(H), the orthocomplementation

of T is the projection corresponding to the unique event satisfying axiom [II.5].

Hence (BO(H), ◦,∗ ,′ ) is Baer∗-semigroup. The semigroup is noncommutative as

the composition of projections (multiplication of projections) is noncommutative.

Let O denote the set of all maps from S to S. Let OT = {T ∈ O : T (ρ) =

∏n
i=1 Eiρ

∏1
i=n Ei

Tr[
∏n
i=1 Eiρ

∏1
i=n Ei]

, E1, E2, . . . En ∈ E}. Every V ∈ BO(H), corresponds to a unique

operation T ∈ OT and for every T ∈ OT, there exists unique V such that T (ρ) =

V ∗ρV
Tr[V ∗ρV ]

∀ρ ∈ DT . Thus (OT, ◦,∗ ,′ ) is also a noncommutative Baer∗ semigroup.

P ′(OT) = {T : T (ρ) = EρE
Tr[ρE]

, E ∈ P(H)}. (P ′(OT),≤,′ ) is isomorphic to (P(H),≤

,′ ) as indicated by the following theorem.

Theorem 4.2.19. If (E ,S,P,T)) is event state operation structure then (OT, ◦,∗ ,′ )

is Baer∗-Semigroup. The mapping E ∈ E → TE ∈ P (OT) is an isomorphism of the

orthomodular orthoposet (E ,≤,′ ) onto the orthomodular orthoposet (P ′(OT),≤,′ ).

For proof we refer to [28].
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4.2.2.4 Compatibility and commutativity

Theorem 4.2.20. If (E ,S,P,T)) is event state operation structure then (E ,≤,′ ) is

an ortholattice; further more, if E1, E2 ∈ E then TE1∧E2 = (TE′1 ◦ TE2)
′ ◦ TE2

Proof: Since (P ′(OT),≤,′ is an orthomodular ortholattice and TE1 and TE2 ∈ P ′(OT),

from theorem 4.2.18 it follows that TE1∧TE2 = (T ′E1
◦TE2)

′ ◦TE2 . Since the mapping

E ∈ E → TE ∈ P (OT) is an isomorphism of (E ,≤,′ ) onto (P ′(OT),≤,′ ), TE1∧E2 =

TE1 ∧ TE2 and TE′1 = T ′E1
. Hence the result follows.

Theorem 4.2.21. If (E ,S,P,T)) is event state operation structure and E1, E2 ∈ E,

then the following are equivalent

1. E1CE2

2. TE1 ◦ TE2 = TE2 ◦ TE1

If E1CE2, then TE1∧E2 = TE1 ◦ TE2.

Proof: Let us define a new relation on the ortholattice (P ′(OT),≤,′ ) as T C̄U if

and only if ∃ T0, U0, V0 ∈ P ′(OT) such that T0 ⊥ U0, T0 ⊥ V0, U0 ⊥ V0, T =

T0 ∨ V0 and U = U0 ∨ V0. From theorem 4.2.18, it follows that T C̄U if and only if

T ◦ U = U ◦ T . Since the mapping E ∈ E → TE ∈ P (OT) is an isomorphism of

(E ,≤,′ ) onto (P ′(OT),≤,′ ), E1CE2 if and only if TE1 C̄TE2 . Hence E1CE2 if and only

if TE1 ◦ TE2 = TE2 ◦ TE1 . From theorem 4.2.18 it also follows that, if E1CE2, then

TE1 ◦ TE2 = TE2 ◦ TE1 , which implies that TE1∧E2 = TE1 ∧ TE2 .

Thus, we started of with a set of experimentally verifiable propositions whose el-

ements we refer to as events. We were interested in understanding the algebraic
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structure of the set of events and then suitably construct a “probability space” on

it. We associated states, measures, and operations with set the of events. The set

of events, implication relation on the set, and unary operation of orthocomplemen-

tation on the set was shown to be isomorphic to the set of closed operations with

implication relation and unary operation. Hence the algebraic structure of the set

of events is equivalent to the algebraic stucture of the closed set of operations. In

the following problem, we infer the algebraic structure of the set of events by finding

the algebraic structure of the set of operations.

4.3 Example: multi-agent decision making

4.3.1 Problem description

We consider the binary hypothesis testing problem with three observers and a

central coordinator. There are two possible states of nature. The observer collects

observations which are statistically related to the true state of nature. Following

are the assumptions:

1. The state of nature is the same for the three observers and the central coor-

dinator.

2. Each observer knows the marginal distribution of the observations it alone

collects.

3. The joint distribution of the observations is unknown.

4. There is no common notion of time for the observers. Each observer has a
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local notion of time; equivalently number of samples.

Each observer constructs its own classical probability space (as discussed in section

3.2.3). The observers then formulate a sequential hypothesis testing problem in their

respective probability spaces. The sequential hypothesis testing problem is solved

using SPRT. Let the decision of Observer i be Di. The observers transmit their

decision to the central coordinator. The decisions are received by the central coor-

dinator. It is possible that the central coordinator receives decisions from multiple

observers simultaneously. We consider the scenario where the observer can collect

(measure) only one observation at a given instant. When multiple observations from

different observers arrive simultaneously, then observations are collected with fol-

lowing order of preference: Observer 2, followed by Observer 1 and then Observer

3. For e.g., if D1 and D2 arrive simultaneously that then the observer measures

D2 first and then D1. If all the three observations arrive simultaneously then D2 is

collected first followed by D1 and then D3. The objective of the central coordinator

is to find its belief about the true of nature by treating the decision information

that it receives as observations. The central coordinator has to construct a suit-

able probability space where the hypothesis testing problems can be formulated and

solved.

Under either state of nature, the set of atomic propositions that can be verified by

the central coordinator is B = { ’D1 is equal to 1’, ’D1 is equal to 0’, ’D2 is equal to

1’, ’D2 is equal to 0’, ’D3 is equal to 1’, ’D3 is equal to 0’,0, 1 }. The propositions

do not include the time at which the decision was received. We will elaborate more
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on this statement at the end of this section. Let B̄ denote the set of experimentally

verifiable events for the central coordinator. Clearly B ⊆ B̄. At this juncture, we

do not include the conjunction and the disjunction of the events in B in B̄. As

discussed in the following sections, if some of the events are compatible then their

conjunction and disjunction will be included as separate events in B̄.

Hypothesis: We hypothesize that the set of events along with the set inclusion as

the relation of implication form a Boolean algebra and thus the states correspond to

classical probability measures.

From our hypothesis it follows that (B̄,≤), where ‘≤’ is the set inclusion is a Boolean

algebra. B̄ includes events of the form E1∧E2, E1∧E2∨E3, etc., and the distributive

identity is satisfied. Assuming that the hypothesis is true, the central coordinator

can construct an event state structure along the lines of example 4.2. The operation

corresponding to an event E ∈ B̄ ( as in example 4.2 ) is defined as

(TE(ρ))(F ) =
ρ(E ∧ F )

ρ(E)

Since we are hypothesizing that the set of events form a Boolean lattice, it is expected

that TE ◦ TF (ρ) = TF ◦ TE(ρ) for all E,F ∈ B̄ and for all states in the domain. The

marginal distributions for the observers have been listed in tables 4.1. We are

interested in verifying if the event E1 =’D1 is equal to 1’ and the event E2=’D2 is

equal to 1’ are compatible. Verifying E1CE2 is equivalent to verifying TE1 ◦TE2(ρ) =

TE2 ◦ TE1(ρ), for all states in the domain. Let E3 = ’D3 is equal to 1’. The

probabilities in tables 4.2 and 4.3 have been estimated from 107 simulations using
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X h = 0 h = 1
1 0.20 0.40
2 0.10 0.20
3 0.15 0.10
4 0.30 0.15
5 0.25 0.15

Y h = 0 h = 1
1 0.20 0.25
2 0.40 0.30
3 0.30 0.20
4 0.10 0.25

Z h = 0 h = 1
1 0.25 0.35
2 0.35 0.50
3 0.40 0.15

Table 4.1: Distribution of observations under either hypothesis for Observer 1, Ob-
server 2 and Observer 3

P(T(·) ◦ T(·)(ρ), (·)) E ′3 E3

TE′1 ◦ TE′2(ρ)(·) 0.5880 0.4120

TE′1 ◦ TE2(ρ)(·) 0.5203 0.4797

TE1 ◦ TE′2(ρ)(·) 0.5915 0.4085

TE1 ◦ TE2(ρ)(·) 0.5372 0.4628

P(T(·) ◦ T(·)(ρ), (·)) E ′3 E3

TE′2 ◦ TE′1(ρ)(·) 0.6113 0.3887

TE2 ◦ TE′1(ρ)(·) 0.6026 0.3974

TE′2 ◦ TE1(ρ)(·) 0.6154 0.3846

TE2 ◦ TE1(ρ)(·) 0.6095 0.3905

Table 4.2: Conditional probabilities when true hypothesis is zero

P(T(·) ◦ T(·)(ρ), (·)) E ′3 E3

TE′1 ◦ TE′2(ρ)(·) 0.1547 0.8453

TE′1 ◦ TE2(ρ)(·) 0.1184 0.8816

TE1 ◦ TE′2(ρ)(·) 0.1530 0.8470

TE1 ◦ TE2(ρ)(·) 0.1220 0.8780

P(T(·) ◦ T(·)(ρ), (·)) E ′3 E3

TE′2 ◦ TE′1(ρ)(·) 0.1569 0.8431

TE2 ◦ TE′1(ρ)(·) 0.1518 0.8482

TE′2 ◦ TE1(ρ)(·) 0.1595 0.8405

TE2 ◦ TE1(ρ)(·) 0.1560 0.8440

Table 4.3: Conditional probabilities when true hypothesis is one

the relative frequency. TE2 ◦ TE1(ρ) is the state conditioned on the event E1 and

then the event E2 and the state ρ. P(TE2 ◦ TE1(ρ), E3) is approximated as follows.

Let α be the number of simulations in which D1 = 1, followed by D2 = 1, and

then D3 = 1. Let β be the number of simulations in which D1 = 1, followed by

D2 = 1, and then D3 = 0. Then P(TE2 ◦ TE1(ρ), E3) = α
α+β

. From tables 4.2 and

4.3, we infer that under either state of nature, for some state ρ in the domain,

TE2 ◦ TE1(ρ) 6= TE1 ◦ TE2(ρ). Hence events E1 and E2 are not compatible. For the

same marginal distributions for the observers, it was observed that pairs E1, E3 and

E2, E3 were incompatible. The set of experimentally verifiable events B̄ is equal to
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B. Our initial hypothesis that the set of events form a Boolean algebra is incorrect.

Instead, the set of events form an orthomodular ortholattice as discussed in the next

section.

4.3.2 Probability space construction

Let us consider the construction of von Neumann Hilbert space model for the

central co-ordinator. Let H = R2. Let P(R2) denote the set of orthogonal pro-

jections onto H. Let S denote the set of symmetric, positive semidefinite matrices

whose trace is 1. Let Ei, i = 1, 2, 3 ∈ P(R2) denote the projections of rank one

corresponding to the events ’Di’ is equal to one. The projections do not commute,

EiEj 6= EjEi. The set of events is E = {E1, E2, E3, IR2−E1, IR2−E2, IR2−E3,Θ, IR2}.

The probability function is defined as P(ρ, E) = Tr[ρE]. The event-state structure

constructed for the central coordinator corresponds to (E ,S,P). The definition of

the relation of implication is retained, i.e., E1 ≤ E2 if and only if S1(E1) ⊆ S1(E2).

It is clear that E is a lattice as E ∧ F = θ, andE ∨ F = I, E, F ∈ E , E 6= F .

Let O denote the set of all mappings from S to S. The operation conditioned

on an event is defined as TE = EρE
Tr[ρE]

, as defined in example 4.3. Let OT be

the set of operations of the form T = TF1 ◦ TF2 ◦ . . . ◦ TFn , F1, F2, . . . , Fn ∈ E .

For an operation T = TF1 ◦ TF2 ◦ . . . ◦ TFn , the event corresponding to the ortho-

complementation is the projection on to nullspace of FnFn−1 . . . F1. If for some

i, FiFi+1 is such that Fi+1 = IR2 − Fi, then FnFn−1 . . . F1 = Θ. In such a case

the projection is IR2 . Else, R(F1) is not orthogonal to R(F2). F2F1(h) 6= θ for
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Figure 4.1: Schematic for the multi-agent system

h /∈ R(I − F1). Suppose for FmFm−1 . . . F1(h) 6= θ for h /∈ R(I − F1) for some m,

2 ≤ m ≤ n − 1. FmFm−1 . . . F1(h) ∈ R(Fm). Since R(Fm) is not orthogonal to

R(Fm+1), Fm+1Fm . . . F1(h) 6= θ. Thus, FnFn−1 . . . F1(h) 6= θ for h /∈ R(I − F1).

FnFn−1 . . . F1(h) = θ for h ∈ R(I − F1). Hence the projection is I − F1. The

other axioms associated with operations can be verified. The set of operations, the

composition of operations, involution, and orthocomplmentation, (OT, ◦,∗ ,′ ), form

a noncommutative Baer∗ semigroup. The set of closed projections, composition,

and orthocomplememtation, (P ′(OT),≤,′ ) is an orthomodular ortholattice. Since

(P ′(OT),≤,′ ) is isomorphic to (E ,≤,′ ), (E ,≤,′ ) is an orthomodular ortholattice.

Figure 4.1 depicts the schematic and the probability spaces associated with the

agents.

4.3.3 Discussion

Suppose the three observers and the central coordinator have a common no-

tion of time and the joint distribution of the measurements collected by the three
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observers is known. We can then construct a common probability space for the

three agents and the central coordinator. Let τi denote the stopping time of Ob-

server i. τ1, τ2, and τ3 are random variables in the common probability space. Let

Di denote the decision of observer i at stopping time τi. Suppose the central coor-

dinator can collect multiple observations simultaneously, i.e., when τ1 = τ2 = τ3(or

τi = τj, i 6= j) then the central coordinator can simultaneously collect D1, D2 and

D3 (or Di and Dj). In this scenario, when the joint distribution is known and

the central coordinator is able to simultaneously collect observations from different

observers, the concern of order effects does not arise. Different orders of measure-

ment correspond to specific events in the sigma algebra. When the true state of

nature is 1, P(TE2 ◦ TE1(ρ), E3) = P(D3 = 1|D2 = 1, D1 = 1, τ3 ≥ τ2 > τ1, H = 1)

and P(TE1 ◦ TE2(ρ), E3) = P(D3 = 1|D2 = 1, D1 = 1, τ3 ≥ τ1 ≥ τ2, H = 1). It

is not necessary that P(D3 = 1|D2 = 1, D1 = 1, τ3 ≥ τ2 > τ1, H = 1) equals

P(D3 = 1|D2 = 1, D1 = 1, τ3 ≥ τ1 ≥ τ2, H = 1). In the absence of the joint distribu-

tion, when the probabilities P(TE2 ◦TE1(ρ), E3) and P(TE1 ◦TE2(ρ), E3) are estimated

from samples one could expect the “order effects” to occur. The information (or

knowledge) available to the central coordinator, its inability /ability to collect dif-

ferent observations simultaneously and the asynchrony in the observations plays an

important role in determining the presence or absence of order effects. In the pre-

vious chapter, we considered two synchronous observers with specific observation

and information exchange pattern. Each observer either collects an observation or

receives information from the other agent, but not both. Hence the issue of “si-

multaneous verifiability” does not arise and the order effect was not observed. The
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situation in which the joint distribution is not available but the central coordinator

is able to collect multiple observations simultaneously, it might be possible to con-

struct a classical probability space by considering events of the form ’time = k and

D1 = 1’,’time = k and D1 is unknown ’, etc. This case requires further investigation.

Our original goal was to study hypothesis testing problem at the central coordinator.

Given the noncommutative probability space, we now discuss how hypothesis testing

problems can be formulated and solved in such spaces.

4.4 Binary hypothesis testing problem

4.4.1 Problem formulation

We consider a single observer. The observation collected by the observer is

denoted by Y , Y ∈ S, |S| = N where S is a finite set of real numbers or real

vectors of finite dimension. A fixed number of data strings consisting of observation

and true hypothesis are collected by the observer. From the data strings, empirical

distributions are found. Let phi , 1 ≤ i ≤ N be the distribution under hypothesis h.

The prior probabilities of hypotheses can be found from the data and are represented

by ζ1 (for H = 1) and ζ0 (for H = 0). In the quantum probability framework,

there are multiple ways in which measurements can be captured. Two of them

are: (a) Projection valued measures (PVM) (b) Positive operator valued measures

(POVM). In this section we discuss the formulation of the detection problem in

classical probability framework and von Neumann probability framework with both

representations for measurements.
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4.4.1.1 Classical probability

Let Ω = {0, 1}×S be the sample space. Let F = 2Ω be the associated algebra.

An element in the sample space can be represented by ω = (h, y), where h ∈ {0, 1}

and y ∈ S. The measure is P(ω) = ζhp
h
y . The probability space is (Ω,F ,P). Given

a new observation, Y = y the detection problem is to find D such that the following

cost is minimized:

EP[H(1−D) + (1−H)D],

i.e, the probability of error is minimized. H represents the hypothesis random

variable. Once the decision is found the optimal cost also needs to be found.

4.4.1.2 Projection valued measure

Projection Valued Measure(PVM): Let (X,Σ) be a measurable space. A pro-

jection valued measure is a mapping F from Σ on to P(H) such that,

(i) F (X) = I,

(ii) A,B ∈ Σ such that A ∩B = ∅, then F (A ∪B) = F (A) + F (B),

(iii) If {Ai}i≥1 ⊆ Σ, such that A1 ⊂ A2 ⊂ ..., then F (∪∞i=1Ai) = lim
i→∞

F (Ai).

For the detection problem, X = {1, 2, ..., N}, Σ = 2X . The second condition implies

that the minimum dimension of the complex Hilbert space in consideration is N .

We let H = CN . The first objective is to find ρh ∈ T +
s (CN), h = 0, 1 and F : Σ →
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P(CN), such that

Tr[ρhF (i)] = phi , h = 0, 1, 1 ≤ i ≤ N, (4.1)

F (i)F (j) = ΘCN , 1 ≤ i, j ≤ N, i 6= j and
N∑
i=1

F (i) = ICN , (4.2)

where ΘCN is zero operator and ICN is identity operator. Given the state and

the PVM, we consider the formulation of the detection problem mentioned in [33],

section 3.4. Let Cij denote the cost incurred when the decision made is i while the

true hypothesis is j. Since the objective is to minimize the probability of error, we

let C10 = 1, C00 = 0, C01 = 1 and C11 = 0. The decision policy, {α1
i }Ni=1 and {α0

i }Ni=1

denotes the probability of choosing D = 1 and D = 0 respectively when observation

i is received. Given observation i, the probability of choosing D = 1 (D is the

decision) and the true hypothesis being 0 is ζ0Tr[ρ0F (i)]α1
i . Hence, the probability

of choosing D = 1 and true hypothesis being 0 is
∑N

i=1 ζ0Tr[ρ0F (i)]α1
i . Similarly, the

probability of choosing D = 0 and true hypothesis being 1 is
∑N

i=1 ζ1Tr[ρ1F (i)]α0
i .

The probability of error is:

Pe =
N∑
i=1

ζ0Tr[ρ0F (i)]α1
i +

N∑
i=1

ζ1Tr[ρ1F (i)]α0
i

= Tr

[
ζ0ρ0

[
N∑
i=1

α1
iF (i)

]
+ ζ1ρ1

[
N∑
i=1

α0
iF (i)

]]

We define the risk operators as:

W1 = ζ0ρ0, W0 = ζ1ρ1
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and note that,

N∑
i=1

αhi F (i) ≥ 0, h = 0, 1
N∑
i=1

[
α1
iF (i) + α0

iF (i) = ICN
]
.

Instead of minimizing over the decision policies, we minimize over pairs of opera-

tors which are semi-definite and sum to identity. Hence, the detection problem is

formulated as follows

P1 : min
Π1,Π0

Tr[W1Π1 +W0Π0]

s.t Π1 ∈ B+
s (CN), Π0 ∈ B+

s (CN),

Π1 + Π0 = ICN

The solution of the above problem, Π∗1, Π∗0 are the detection operators which are to

be realized using the PVM:

P2 : ∃{α1
i }Ni=1 and {α0

i }Ni=1

s.t α1
i ≥ 0, α0

i ≥ 0, α1
i + α0

i = 1, 1 ≤ i ≤ N,

and Π∗1 =
n∑
i=1

α1
iF (i), Π∗0 =

n∑
i=1

α0
iF (i).

Suppose for two pairs of states, (ρ1, ρ0), (ρ̄1, ρ̄0) and PVM F , (4.1) is satisfied,i.e.,

Tr[ρhF (i)] = Tr[ρ̄hF (i)] = phi , h = 0, 1, 1 ≤ i ≤ N.
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If we consider the solution to P1 alone, the corresponding detection operators (Π∗1,

Π∗0), (Π̄∗1, Π̄∗0) and the respective minimum costs achieved, Pe, P̄e could be different.

However, if we consider solution to P1 such that P2 is feasible, i.e., the detection

operators are realizable, then,

Pe = Tr[W1Π∗1 +W0Π∗0]

=
N∑
i=1

ζ0Tr[ρ0F (i)]α1
i +

N∑
i=1

ζ1Tr[ρ1F (i)]α0
i

=
N∑
i=1

ζ0Tr[ρ̄0F (i)]α1
i +

N∑
i=1

ζ1Tr[ρ̄1F (i)]α0
i ≥ P̄e.

Similarly, P̄e ≥ Pe. Hence P̄e = Pe. For a given PVM, the optimal cost does not

change with different states that achieve the empirical distribution.

4.4.1.3 Positive operator valued measure

Consider the scenario the observer collects two observations, Y = [Y1, Y2]. Let

Y1 ∈ Z1, |Z1| = η1 and Y2 ∈ Z2, |Z2| = η2. Then Y1 and Y2 can be individually

represented as PVMs in Hilbert space of dimension η, η = max{η1, η2}. Let the

PVM corresponding to Y1 and Y2 be µ and ν respectively. Let the state be ρ.

Suppose Y1 is measured first and value obtained is i ∈ Z1. Then the state after

measurement of Y1 changes from ρ to ( [34]):

ρi =
µ(i)ρµ(i)

Tr[ρµ(i)]
.
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After measuring Y1, Y2 is measured. The conditional probability of Y2 = j given

Y1 = i is,

Tr[ρiν(j)] =
Tr[µ(i)ρµ(i)ν(j)]

Tr[ρµ(i)]
=
Tr[ρµ(i)ν(j)µ(i)]

Tr[ρµ(i)]
.

Thus the probability of obtaining Y1 = i and then Y2 = j is Tr[ρµ(i)ν(j)µ(i)].

Further, the measurement corresponding to Y is, σ1(i, j) = µ(i)ν(j)µ(i), 1 ≤ i ≤

η1, 1 ≤ j ≤ η2. If Y1 is measured after Y2, then the measurement corresponding

to Y is, σ2(i, j) = ν(i)µ(j)ν(i), 1 ≤ i ≤ η2, 1 ≤ j ≤ η1. If for any (i, j), µ(i) and

ν(j) do not commute, σ1(i, j) and σ2(i, j) are not projections. They are positive,

Hermitian and bounded. Hence σ1, σ2 are not PVMs, and belong to a larger class

of measurements, i.e., the POVMs.

Positive Operator Valued Measure (POVM): Let (X,Σ) be a measurable space. A

positive operator valued measure is a mapping M from Σ on to B+
s (H) such that,

if {Xi}i≥1 is partition of X, then

∑
i

M(Xi) = I (Strong Operator Topology)

Further for A,B ∈ Σ such that A∩B = ∅, if M(A)M(B) = ΘH, then M is a PVM.

We consider the dimension of the Hilbert space to be k, k ≥ 2. As in the previous

formulation, the first objective is to find states, ρ̂h ∈ T +
s (Ck), h = 0, 1 and POVM,
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M : Σ→ B+
s (Ck) such that

Tr[ρ̂hM(i)] = phi , h = 0, 1, 1 ≤ i ≤ N and
N∑
i=1

M(i) = ICk . (4.3)

The probability of error calculation is analogous to the previous section. We define

the new risk operators as:

Ŵ1 = ζ0ρ̂0, Ŵ0 = ζ1ρ̂1.

Given states and POVM, the detection problem with the same cost parameters as

P1, is formulated as:

P3 : min
Π̂1,Π̂0

Tr[Ŵ1Π̂1 + Ŵ0Π̂0]

s.t Π̂1 ∈ B+
s (Ck), Π̂0 ∈ B+

s (Ck),

Π̂1 + Π̂0 = ICk .

The decision policies {β1
i }Ni=1 and {β0

i }Ni=1 are found by solving the following problem:

P4 : ∃{β1
i }Ni=1 and {β0

i }Ni=1

s.t β1
i ≥ 0, β0

i ≥ 0, β1
i + β0

i = 1, 1 ≤ i ≤ N,

and Π̂1 =
n∑
i=1

β1
iM(i), Π̂0 =

n∑
i=1

β0
iM(i).
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Consider the problem:

P5 : min
Π̂1,Π̂0,{β1

i }Ni=1

Tr[Ŵ1Π̂1 + Ŵ0Π̂0]

s.t Π̂1 ∈ B+
s (Ck), Π̂0 ∈ B+

s (Ck),

Π̂1 + Π̂0 = ICk ,

0 ≤ β1
i ≤ 1, 1 ≤ i ≤ n,

Π̂1 =
n∑
i=1

β1
iM(i), Π̂0 =

n∑
i=1

(1− β1
i )M(i).

Let the feasible set of detection operators for P3 be S1 and for P5 be S2. Due

to additional constraints in P5, S2 ⊆ S1. The detection operators obtained by

solving P3 may or may not be realizable,i.e., P4 may not be feasible. In P5, the

optimization is only over detection operators which are realizable. If the solution

of P3 is such that P4 is feasible then it is the solution for P5 as well. It is also

possible that P3 is solved, P4 is not feasible and P5 is solved. The objective is

to understand the minimum probability of error which can achieved by detection

operators which are realizable. Hence, we consider the solution of P5 and compare

it with the minimum error achieved in PVM approach.

Let M be set of all POVMs on Σ. Let Ŝ ⊂ T +
s (Ck)× T +

s (Ck)×M be the set

of, pairs of states and a POVM such that (4.3) is satisfied. Let S̄ ⊆ Ŝ be the triples

for which the optimization problem P5 can be solved. For a triple (ρ̂0, ρ̂1,M) in S̄,

we define Q(ρ̂0, ρ̂1,M) to be the optimal value achieved by solving P5.
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4.4.2 Solution

4.4.2.1 Classical probability

It suffices to minimize,

EP[H(1−D) + (1−H)D|Y = y].

EP[H|Y = y] =
p1yζ1

p1yζ1+p0yζ0
. D = 1 if p1

yζ1 ≥ p0
yζ0 else D = 0. Thus the cost paid when

the observation is y is
min{p1yζ1,p0yζ0}
p1yζ1+p0yζ0

. The expected cost is:

N∑
i=1

[
min{p1

i ζ1, p
0
i ζ0}

p1
i ζ1 + p0

i ζ0

]
× P(Y = i) =

N∑
i=1

min{p1
i ζ1, p

0
i ζ0}.

4.4.2.2 Projection valued measure

Define,

ρh =


ph1

. . .

phN

 and F (i) = eie
H
i ,

where ei represents the canonical basis in CN . Clearly equations (4.1) and (4.2) are

satisfied.

Theorem 4.4.1 ( [33], [35]). There exists a solution to the problem

minTr[W0Π0 +W1Π1]

129



over all two component POM’s, where W0,W1 ∈ B+
s (CN). A necessary and sufficient

condition for Π∗i to be optimal is that:

W0Π∗0 +W1Π∗1 ≤ Wi, i = 0, 1 (4.4)

Π∗0W0 + Π∗1W1 ≤ Wi, i = 0, 1 (4.5)

Furthermore, under any of above conditions the operator

O = W0Π∗0 +W1Π∗1 = Π∗0W0 + Π∗1W1

is self-adjoint and unique solution to the dual problem.

To solve P1, we invoke the above theorem. Π∗1 and Π∗0 solve P1 and P2 can

be solved if they satisfy the following conditions:

W1Π∗1 +W0Π∗0 ≤ W1, W1Π∗1 +W0Π∗0 ≤ W0,

Π∗1,Π
∗
0 ∈ B+(CN),Π∗1 + Π∗0 = ICN .

and are diagonal matrices. The realisability condition in P2 forces Π∗1 and Π∗0 to be

diagonal matrices. Let Π∗1 = diag(n1
1, . . . , n

1
N) and Π∗0 = diag(1 − n1

1, . . . , 1 − n1
N).

Then for optimality,

for 1 ≤ i ≤ N,


ζ0p

0
in

1
i + ζ1p

1
i (1− n1

i ) ≤ ζ0p
0
i ,

ζ0p
0
in

1
i + ζ1p

1
i (1− n1

i ) ≤ ζ1p
1
i
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For both inequalities to hold, it follows that if ζ0p
0
i ≥ ζ1p

1
i , then n1

i = 0. Else n1
i = 1.

The minimum cost achieved is,

P∗e =
N∑
i=1

min{ζ0p
0
i , ζ1p

1
i } ≤ min{ζ0, ζ1}.

Clearly αji = nji , 1 ≤ i ≤ N, j = 1, 0. As in the classical probability scenario, we

obtain pure strategies, i.e , when measurement i is obtained , if ζ0p
0
i ≥ ζ1p

1
i then

the decision is 0 with probability 1, else decision is 1 with probability 1.

Let ρ̄h, h = 0, 1 be another pair of states and G : Σ → P(CN), be another

PVM such that equations (4.1) and (4.2) are satisfied. Since each G(i) is a rank one

matrix,

∃vi ∈ CN s.t vHi vi = 1, G(i) = viv
H
i , 1 ≤ i ≤ n,

vHi vj = 0, 1 ≤ i, j ≤ n, i 6= j.

Let T = [v1; v2, ..., vn]. T is a n × n matrix with its columns composed by vectors

vi. Thus,

THT = TTH = ICN , THG(i)T = F (i), 1 ≤ i ≤ n

Since T is an isometry, ρ̃h = TH ρ̄hT ∈ T +
s (CN), h = 0, 1. Hence,

Tr[ρ̄hG(i)] = Tr[ρ̄hTT
HG(i)TTH ] = Tr[TH ρ̄hTT

HG(i)T ] = Tr[ρ̃hF (i)].
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Hence the optimal cost does not change with different PVM and state representa-

tions. The proof can be extended, for state and PVM representations in CM ,M > N .

4.4.2.3 Positive operator valued measure

To find the states and the POVM, a numerical method is proposed. If a

feasibility problem is formulated with the state and POVM as optimization variables,

the resulting problem is nonconvex. Hence we consider a finite set of states, S ⊂

T +
s (Ck), |S| < ∞. For a pair of states, (ρ̂0, ρ̂1) ∈ S × S, ρ̂0 6= ρ̂1, the following

feasibility solved:

P6 : min
t∈R,{M(i)}Ni=1⊂Ck×k

t

s.t Tr[ρ̂hM(i)]− phi = t, h = 0, 1, 1 ≤ i ≤ N

M(i) ≤ −t, 1 ≤ i ≤ N,
N∑
i=1

M(i)− ICk = tICk .

If for a particular pair of states, ρ̂0, ρ̂1 the optimal value of the above feasibility prob-

lem, t∗ is less than or equal to zero, then the corresponding minimizers, {M(i)}Ni=1

is the POVM. If for every pair of states, the optimal value of the feasibility problem

is greater than zero, then optimization problems need to be solved for a new set

of states. In appendix C, section C.2.1, we consider the problem where given a

POVM and a finite dimensional probability distribution, we need to check if there

exists a state such that the state and POVM combination achieves the probability

distribution. In appendix C, section C.2.2, we present sufficient conditions under
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which the problem can be solved.

Theorem 4.4.2. (Naimark’s dilation Theorem), [36]. Let M : Σ → B+
s (H) be

POVM. There exists a Hilbert Space K, a PVM P : Σ → P(K) and an isometry

T : H → K such that

M(S) = T ∗P (S)T ∀ S ∈ Σ,

where T ∗ is the adjoint of the operator T .

For completeness, we find the isometry T when X = {1, 2, . . . , N}, Σ = 2X ,

and H = Ck. For any vector x ∈ H, let xe be representation of the vector in the

standard canonical basis of H. Let L =
⊕N

i=1H. Let {ei}N×ki=1 be the canonical

basis of L. For vector v ∈ L, there exist unique coefficients vij such that v =∑N
i=1

∑k
j=1 vije(i−1)×N+j. Let vi = [vi1; vi2; . . . , vik] and ve = [v1, . . . , vN ]. Let M =

diag(M(1), . . . ,M(N)). Note that M = M
H

. The inner product on L is defined as:

〈v, u〉 = vHe Mue =
N∑
i=1

vHi M(i)ui

Let N = {v ∈ L : 〈v, v〉 = 0}. We define K =
⊕N

i=1H/N , the closure of the

quotient space. Thus T : H → K can be defined as: T (v) = (v, . . . , v). In the

standard canonical basis, the matrix representation of T would be

V H =

[
ICk ICk . . . ICk ,

]
k×(N×k)

.
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Let the matrix representation of T ∗ in the canonical basis be U . From the adjoint

equation it follows that (Uye)
Hxe = yHe MV xe, ∀ xe ∈ Ck and ∀ ye ∈ CN×k. Hence

U = V HM =

[
M1 M2 . . . MN

]
k×(N×k)

, UV = ICk .

Let P : Σ→ P(CN×k) be defined as:

P (i) =



ΘCk ΘCk . . .

ΘCk . . .

... (ICk)i,i . . .

ΘCk


(N×k)×(N×k)

P (i) is a collection of N2, k×k matrices, where the i diagonal matrix is the identity

matrix and the rest are zero matrices. Hence M(i) = UP (i)V . Let ρ̃h ∈ T +
s (CN×k)

be equal to V ρ̂hU for h = 0, 1, then

j×k∑
i=(j−1)×k+1

eHi ρ̃hei = phj , h = 0, 1, j = 1, 2, . . . N.

Lemma 4.4.3. If S̄ 6= ∅, let,

Q∗e = min
(ρ̂0,ρ̂1,M)∈S̄

Q(ρ̂0, ρ̂1,M).
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Then,

Q∗e = P∗e (4.6)

Proof. For a triple (ρ̂0, ρ̂1,M) ∈ S̄, let (Π̂∗1, Π̂
∗
0) and

{β1,∗
i , β0,∗

i }i=ni=1 solve P5. Then,

Tr[Ŵ1Π̂∗1 + Ŵ0Π̂∗0] =

= Tr[Ŵ1

n∑
i=1

β1,∗
i M(i) + Ŵ0

n∑
i=1

β0,∗
i M(i)]

=
n∑
i=1

ζ0Tr[ρ̂0M(i)]β1,∗
i + ζ1Tr[ρ̂1M(i)]β0,∗

i

=
n∑
i=1

ζ0Tr[ρ̂0UP (i)V ]β1,∗
i + ζ1Tr[ρ̂1UP (i)V ]β0,∗

i

=
n∑
i=1

ζ0Tr[V ρ̂0UP (i)]β1,∗
i + ζ1Tr[V ρ̂1UP (i)]β0,∗

i

=
n∑
i=1

ζ0Tr[ρ̃0P (i)]β1,∗
i + ζ1Tr[ρ̃1P (i)]β0,∗

i

=
n∑
i=1

ζ0p
0
iβ

1,∗
i + ζ1p

1
i (1− β

1,∗
i )

For any other pair of realizable detection operators (Π̂1, Π̂0), with decision policy

{β1
i , β

0
i }i=ni=1 ,

Tr[Ŵ1Π̂∗1 + Ŵ0Π̂∗0] =
n∑
i=1

ζ0p
0
iβ

1
i + ζ1p

1
i (1− β1

i ).
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Hence for any decision policy {β1
i , β

0
i }i=ni=1 ,

n∑
i=1

ζ0p
0
iβ

1,∗
i + ζ1p

1
i (1− β

1,∗
i ) ≤

n∑
i=1

ζ0p
0
iβ

1
i + ζ1p

1
i (1− β1

i ).

Thus,

β1,∗
i =


1, if, ζ1p

1
i ≥ ζ0p

0
i ,

0, otherwise.

T r[Ŵ1Π̂∗1 + Ŵ0Π̂∗0] =
N∑
i=1

min{ζ0p
0
i , ζ1p

1
i } = P∗e

Since the above result is true for every triple in S̄, [4.6] follows. Since every PVM is

a POVM, S̄ is non empty for k ≥ N .

Given the PVM P , by Gleason’s theorem, [33] ∃ρ̄h ∈ T +
s (CN×k) such that

Tr[ρ̄hP (i)] = phi . Suppose there exists ρ̂h such that ρ̄h = V ρ̂hU , then

phi = Tr[ρ̄hP (i)] = Tr[V ρ̂hUP (i)] = Tr[ρ̂hM(i)]

Hence theorem 2 gives a possible approach to solve P6. Note that ρ̄h = V ρ̂hU ⇒

ρ̂h = Uρ̄hV , but ρ̂h = Uρ̄hV ⇒ V ρ̂hU = V Uρ̄hV U . By the given construction of V

and U , V Uρ̄hV U 6= ρ̄h,. Hence ρ̂h = Uρ̄hV is not a possible solution.
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4.4.3 Numerical results

Consider the scenario described in the beginning of section 4.4.1.3. We describe

a simple example of that scenario. Let η1 = 3 and η2 = 2. When Y2 is collected

after Y1, the distribution of the observations under hypothesis 0 and 1 is tabulated

in the second and third columns of table 4.4 respectively. When Y1 is collected after

Y2, the distribution of the observations under hypothesis 0 and 1 is tabulated in

the fifth and sixth columns of table 4.4 respectively. The prior distribution of the

hypothesis is set to (ζ0 = 0.4, ζ1 = 0.6). The minimum probability of error when Y2

is measured after Y1 is 0.35. The minimum probability of error when Y1 is measured

after Y2 is 0.266. Hence in this example the optimal strategy is first measure Y2

and then measure Y1. We consider the problem described in section 4.3.1 and the

[Y1, Y2] h = 0 h = 1 [Y2, Y1] h = 0 h = 1
1, 1 0.1 0.15 1, 1 0.25 0.15
1, 2 0.2 0.3 2, 1 0.05 0.30
2, 1 0.2 0.15 1, 2 0.25 0.13
2, 2 0.15 0.25 2, 2 0.1 0.27
3, 1 0.25 0.1 1, 3 0.05 0.12
3, 2 0.1 0.05 2, 3 0.3 0.03

Table 4.4: Distribution of observations under either hypothesis

marginal distributions mentioned in table 4.1. The state ρ, the projections E1, E2,

E3 which achieve the empirical distributions of the decisions, are not necessarily

unique. The set {ρ ∈ S, E1, E2, E3 ∈ P(R2) : Tr[ρEi] = P(Di = 1), i = 1, 2, 3}

is not necessarily a singleton set. Given the ordered distributions, distribution of

D1 and then D2, distribution of D1 and then D3, etc., it might be possible to find
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ρ, E1, E2, E3 uniquely. There are six different orders in which measurements can be

collected. Given unique E1, E2 and E3, the POVM for each order measurement can

be found uniquely. This problem has not been addressed in this chapter. We directly

consider a POVM representation for each order of measurement. The hypothesis

testing problem for central coordinator is formulated as in section 4.4.1.3 and solved

as in 4.4.2.3. For each order the minimum probability of error that can be achieved

is mentioned in table 4.5. The sequence of measurements where Di is measured first,

followed by Dj, and then Dk is denoted as Di, Dj, Dk. The two orders in which D3

is measured first, D3, D1, D2 and D3, D2, D1 have higher probability of error.

Order of measurements Probability of error
D2, D1, D3 0.1740
D1, D2, D3 0.1713
D3, D1, D2 0.1913
D1, D3, D2 0.1711
D2, D3, D1 0.1745
D3, D2, D1 0.1918

Table 4.5: Minimum probability of error for different orders of measurements

4.5 Conclusion

To conclude, in the first section of this chapter we discussed a methodology

from literature which can be used to investigate the structure of the set of events.

In the second section, we considered a multi-agent hypothesis testing problem with

three observers and a central coordinator. The structure of the set of events for

central coordinator was studied. We showed that the set of events did not form

a Boolean algebra, instead form a ortholattice. In the third section we consid-
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ered the binary hypothesis testing problem with finite observation space. First,

the measurements were represented using PVM, and detection problem was formu-

lated to minimize the probability of error. The solution to the detection problem

was pure strategies and the expected cost with optimal strategies was the same as

the minimum probability of error that could be achieved using classical probability

models. In another approach, the measurements were represented using POVM and

the hypothesis testing problem was solved. This approach was used for the cen-

tral coordinator in the multi-agent hypothesis testing problem resulting in different

minimum probabilities of error for different orders of measurement.
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Chapter 5: Binary Hypothesis Testing with Learning of Empirical

Distributions

5.1 Introduction

In the standard binary hypothesis testing problem, the true distribution un-

der either hypothesis is assumed to be known. In many applications of hypothesis

testing, the true distribution under the hypotheses and the prior probabilities are

unknown. In such a scenario the empirical distributions are estimated from samples

(data). The expectation is that as the number of samples increases, the empirical

distributions “converge” to the true distribution. In chapters 3 and 4, the proposed

solutions involved estimating empirical distributions from samples. In this chap-

ter, the objective is to understand how the optimal detection cost (e.g., minimum

probability of error) behaves as the empirical distributions “converge” to the true

distribution. Due to uncertainty in the distributions, we treat this problem as a

robust detection problem.

Other notions of robustness can also be considered. In [37], the authors study

the problem of detecting a signal of known form in additive, nearly Gaussian noise.

The robust detection problem is formulated as a min-max problem. The solution
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to the min-max problem is obtained when the signal amplitude is known and the

nearly Gaussian noise is specified by a mixture model. They show that the solution

takes the form of a correlator-limiter detector. For a constant signal, the correlator-

limiter detector reduces to a limiter detector, which is shown to be robust in terms

of power and false alarm. In [38], the authors consider a Tukey-Huber contami-

nated noise model to obtain min-max detectors in the asymptotic case for known

signals in additive noise. According to their model, the noise density is defined by

f(x) = (1 − ε)g(x) + εh(x) for a given ε, g(x), and h(x). They find the most ro-

bust detector for additive contaminated noise with g(x) satisfying certain regularity

conditions. In [39], the problem of detecting signals in noise with asymmetric prob-

ability density functions is considered. The noise density model allows symmetric

contaminated nominal central part and an arbitrary tail behavior. For the detection

of known signals, the robust nonlinear-correlator (NC) detector is obtained based

on detector efficiency as the performance criterion. The robust M-detector structure

for constant-signal detection was also explicitly obtained. In [40], the problem of

designing robust systems for detecting constant signals in the presence of weakly

dependent noise with uncertain statistics is considered. A moving-average represen-

tation is used to model the dependence structure of the noise process. It is shown

that the robust detector for this dependent noise model is characterized by the least

favorable noise distribution which coincides with the distribution that is least favor-

able for the corresponding independent-noise case. In [41], the author considers the

problem of robust detection of a signal for the case of independent and identically

distributed observations. An asymptotic approach is considered with the exponen-
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tial rates of decrease of the error probabilities as the measure of performance. Under

this measure, a robust detection structure for the symmetric density case is derived.

The primary motivation for these works were [42] and [43].

There are different notions of distance that can be considered on the space of

probability measures on the observation space. For example, we can consider the L1

norm, the L2 norm, the L∞ norm, etc. One can also consider metrics which do not

satisfy the triangle inequality like, Bregman Divergences (which encompasses Kull-

back - Liebler divergence), [44]. Assuming that the empirical distributions converge

to the true distribution in the chosen notion of distance, ‘ d’, one can formulate the

following “robust” detection problem:

min
D

EP [C(H,D)]

d(P,Q) < ε,

where P is the true unknown measure, Q is the empirical distribution and C(H,D)

denotes the detection cost. The distance between P and Q can be made arbitrar-

ily small by taking more samples (due to “convergence”). To solve the detection

problem, we need to find the likelihood ratio (or information state) under the true

measure. The problem with the above formulation is that, knowing the distance

between the empirical and true distribution is not enough information to estimate

the likelihood ratio under the true measure.

In our formulation, the empirical distribution after collecting n samples is cal-

culated by finding the relative frequency of each set. We assume that the empirical
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distributions are absolutely continuous with respect to the true measure, which guar-

antees the existence of the associated Radon-Nikodym derivatives. This derivative

is helpful in expressing the information state under empirical distribution in terms

of the true measure. This technique is helpful in showing convergence of optimal

detection cost.

The main contributions of this chapter are: (i) convergence of the information

state and optimal detection cost under empirical distributions to the information

state and optimal detection cost under the true distribution, (ii) numerical study

with different distributions supporting (i). In the next section, 5.2, we discuss the

problem formulation. In section 5.3 we present the key results and their proofs.

In 5.4, we present the numerical results. Finally, the conclusions are presented in

section 5.5.

5.2 Problem formulation

5.2.1 Unknown distributions

Let (Ω,F ,P) be a probability space. This probability space is unknown. Let

{Hi, Xi}i≥1 be a sequence of independent and identically distributed random vari-

ables on the probability space. Hi is binary valued and Xi takes values in a finite set,

X. Extension to the case where X is a countable set can also be considered. The true

distribution of random variable Xi conditioned on hypothesis Hi is unknown and is

represented by µh. The true prior probabilities of the hypothesis, Hi, is represented

by ph. Let M be the sigma algebra of all subsets of X for which µh is defined. Let M
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be the sigma algebra generated by the sets of the form E = {{0, 1} ×E1, E1 ∈M}.

For a set E = {h}×E1, µ(E) is defined as µ(E) = phµh(E1) and for E = {0, 1}×E1,

µ(E) = p0µ0(E1)+p1µ1(E1). The probability space associated with a single random

vector Hi, Xi is (Ω̄,M, µ), where Ω̄ = ({0, 1}) × X. The joint probability space of

{Hi, Xi}i=ni=1 is (Ω̄n,Mn, µn), where Ω̄n = {0, 1}n×Xn. Mn is the σ algebra generated

by sets of the form F1 ×E1 × F2 ×E2 . . .× Fn ×En where Fi ∈ {0, 1} and Ei ∈M

for 1 ≤ i ≤ n. µn is the product measure (from independence of the sequence),

µn(h1 × E1 × h2 × E2 . . . hn × En) =
∏i=n

i=1 p
hiµhi(Ei).

5.2.2 Learning distributions

Since the true distributions are unknown, we estimate them. Given a sequence

of independent and identically distributed random variables, {Hi, Xi}i≥1 on the

probability space (Ω,F ,P) the empirical measure (at stage n) of an atom E of the

sigma algebra M is

νn(E) =
i=n∑
i=1

1(Hi,Xi)∈E

n
, E = {h} × E1,

where 1{}(·) is the indicator function.
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5.2.3 Detection problem

Given a new observation Y , the detection problem is to find decisionD ∈ {0, 1}

which is σ(Y ) measurable such that the following cost is minimized:

J = min
D

Eµ[H(1−D) +D(1−H)],

where H represents the hypothesis random variable and σ(Y ) denotes the sigma

algebra generated by the random variable Y which is a sub σ algebra of M. Since

the true measure is unknown, we instead solve the following optimization problem

Jn = min
D

Eνn [H(1−D) +D(1−H)].

The conditional expectation of the random variable H given σ(Y ) under measure

νn is a random variable Zn such that, Zn is σ(Y ) measurable, and

∫
S

Hdνn =

∫
S

Zndνn,∀ S ∈ σ(Y ).

The conditional expectation of the random variable H given σ(Y ) under measure µ

is a random variable Z such that, Z is σ(Y ) measurable and

∫
S

Hdµ =

∫
S

Zdµ,∀ S ∈ σ(Y ).
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If Z was known then the optimal cost is,

J =

∫
Ω̄

[Z ∧ (1− Z)]dµ.

5.2.4 Objectives

The first objective is to find the rate of convergence of νn to µ. The second

objective is to prove the convergence of the information state and optimal detection

cost under empirical distributions to the information state and optimal detection

cost under the true distributions, i.e., to prove that {Zn} converges to Z almost

everywhere on Ω̄ and to prove that {Jn} → J .

5.2.5 Assumptions

1. It is assumed that for all n, νn is absolutely continuous with respect to µ, i.e.,

νn << µ. This assumption implies that sets which have true measure zero are

not observed, i.e., the realizations of Xi do not belong to sets of true measure

zero. This assumption also implies the condition that that µ({x}) 6= 0, the

measure µ of singleton sets is not zero. Hence µ cannot be a measure on the

real line with a σ algebra like the Borel σ algebra. We restrict X be a finite /

countable set.

2. If X is a countable set, it is assumed that, µ is tight, i.e., for every ε > 0 there

exists Sε ∈M such that µ(Ω̄ ∼ Sε) < ε.
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5.3 Solution

From the strong law of large numbers it follows that,

lim
n→∞

νn(E) = µ(E), ∀E ∈M, P a.s

Hence for “almost all” realizations of the sequence {Hi, Xi}i≥1 the empirical mea-

sures converge strongly to the true measure on ({0, 1} × R,M). When X is a finite

set, there are finite number of elements in M. The set wise convergence implies

uniform convergence, i.e.,

lim
n→∞

sup
E
|νn(E)− µ(E)| = 0.

When X is a countable set, we need further investigation to prove the uniform

convergence. From the almost sure convergence, it also follows that {νn(E)} → µ(E)

in L1 norm.

5.3.1 Azuma’s inequality / McDiarmid’s inequality

Let ψ(X1, X2, ..., Xn) = νn(E). |ψ(x1, x2, ..., xi, ...xn)−ψ(x1, x2, ..., x̄i, ...xn)| ≤

1
n
, 1 ≤ i ≤ n. By McDiarmid’s inequality [45] it follows that,

P(|νn(E)− µ(E)| > t) < 2e−2nt2 .
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5.3.2 Large deviation bound

Let Yi = 1(Hi,Xi)∈E−EP[1(Hi,Xi)∈E] = 1(Hi,Xi)∈E−µ(E). Then νn(E)−µ(E) =

1
n

∑n
i=1 Yi. For all i, Yi takes the value −µ(E) with probability 1 − µ(E) and the

value 1−µ(E) with probability µ(E). Let M(θ) = E[expθYi ] = exp−θµ(E)(1−µ(E))+

expθ(1−µ(E)) µ(E), for all i. Define the conjugate function as:

φ(l) = sup
θ

[θl − log(M(θ))].

From the theory of large deviations [46] we obtain the following bounds:

lim
n→∞

1

n
P(νn(E)− µ(E) > δ) = −φ(δ),

lim
n→∞

1

n
P(νn(E)− µ(E) < −δ) = φ(−δ).

The above inequalities (also known as concentration inequalities [45]) provide upper

bounds on the true measure of the events of the form, |νn(E)−µ(E)| > t. Since the

true measure is unknown these bounds are not useful. Nevertheless, they provide

an insight into the rate of convergence.

5.3.3 Convergence

From the first assumption (mentioned in 5.2.5), it follows that for all n, there

exists fn [ Radon-Nikodym derivative of νn with respect to µ] which is M measurable,

148



non negative, such that

∫
E

fndµ = νn(E) ∀ E ∈M.

By the Vitali- Hahn-Saks theorem [47], it follows that {νn} is uniformly absolutely

continuous with respect to µ. Hence, for any ε > 0, there exists δ > 0 such that

µ(E) < δ ⇒ νn(E) < ε, ∀n.

Thus, for any ε > 0, there exists δ > 0 such that

µ(E) < δ ⇒
∫
E

fndµ =

∫
E

|fn|dµ < ε, ∀n,

that is, {fn}n≥1 is uniformly integrable. Consider the L1 norm of |fn − 1|:

∫
{ω∈Ω̄:(fn−1)≥0}

(fn − 1)dµ ≤ sup
E
|νn(E)− µ(E)|,

∫
{ω∈Ω̄:(fn−1)<0}

(fn − 1)dµ ≤ sup
E
|νn(E)− µ(E)|, ∀n.

∫
Ω̄

|fn − 1|dµ ≤ 2sup
E
|νn(E)− µ(E)|, ∀n.

When X is finite, the R.H.S of the above inequality converges to 0 as n tends to

infinity. Hence {fn} converges to 1 in L1 norm. This further implies that {fn}

converges to 1 in measure µ. The convergence of the {fn} in measure can be

alternatively shown as follows. {fn} converges in measure µ to 1 if and only if
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for every subsequence {fnk} of {fn} has a further subsequence {fnkl} that converges

µ almost surely to 1 on Ω̄. We prove the result by contradiction. Suppose {fn}

does not converge in measure µ to 1. Then there exists a subsequence {fnk} whose

no subsequence converges to 1 µ almost surely, i.e., {fnk} does not converge 1, µ

almost surely. Thus, there exists a set A with measure, µ(A), greater than zero

(µ(A) = ε > 0) and positive real number δ > 0 such that

|fnk(ω)− 1| > δ ∀ω ∈ A, k ∈ N.

The sets {fnk > 1 + δ} = {ω ∈ Ω̄ : fnk(ω) > 1 + δ} and {fnk < 1 − δ} = {ω ∈ Ω̄ :

fnk(ω) > 1− δ} are M measurable. There exits an infinite index set I1 such that

µ(A ∩ {fj > 1 + δ}) ≥ ε

2
∀j ∈ I1, or

µ(A ∩ {fj < 1− δ}) ≥ ε

2
∀j ∈ I1.

Since M has finite number of sets, there exists an infinite index set I2 such that

µ( ∩
j∈I2
{A ∩ {fj > 1 + δ}}) = γ ≥ ε

2
> 0. Thus for every k in I2,

∫
∩

j∈I2
{A∩{fj>1+δ}}

(fk − 1)dµ >

∫
∩

j∈I2
{A∩{fj>1+δ}}

δdµ > δγ.

Hence,

lim
k∈I2,k→∞

∫
∩

j∈I2
{A∩{fj>1+δ}}

(fk − 1)dµ ≥ δγ,
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which is a contradiction as,

lim
k∈I2,k→∞

∫
∩

j∈I2
{A∩{fj>1+δ}}

(fk − 1)dµ = 0.

Let lim
n→∞

Zn(ω) = Z̄(ω), ∀ω ∈ Ω̄. Since {Zn}n≥1 is a sequence of σ(Y ) measurable

random variables, Z̄ is σ(Y ) measurable as well. Further, {Znfn} converges in

measure to Z̄ and {Hfn} converges in measure to H. Since |Zn| ≤ 1∀ n, H ≤ 1,

fn ≤ 1
min
x∈X

µ(x)
∀ n, Znfn and Hfn are bounded above a integrable function, µ almost

surely for all n. By the Dominated Convergence theorem [47], it follows that

lim
n→∞

∫
S

Znfndµ =

∫
S

lim
n→∞

Znfndµ =

∫
S

Z̄dµ,∀S ∈ σ(Y ), (5.1)

lim
n→∞

∫
S

Hfndµ =

∫
S

lim
n→∞

Hfndµ =

∫
S

Hdµ, ∀S ∈ σ(Y ). (5.2)

Thus, Z̄ is a σ(Y ) measurable random variable such that

∫
S

Z̄dµ =

∫
S

Hdµ, ∀S ∈ σ(Y ).

Thus Z = Z̄, µ almost surely. The minimum detection cost with empirical distri-

bution, νn, is

∫
Ω̄

[(1− Zn) ∧ Zn]dνn =

∫
Ω̄

[(1− Zn) ∧ Zn]fndµ.
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Since |[(1 − Zn) ∧ Zn]fn| ≤ |fn|, the sequence {[(1 − Zn) ∧ Zn]fn}n≥1 is bounded

above a integrable function, µ almost surely for all n. The sequence converges to

[(1−Z)∧Z] in measure µ. By the Dominated Convergence theorem [47], it follows

that

lim
n→∞

∫
Ω̄

[(1− Zn) ∧ Zn]fndµ =∫
Ω̄

lim
n→∞

[(1− Zn) ∧ Zn]fndµ =

∫
Ω̄

[(1− Z) ∧ Z]dµ, (5.3)

which is indeed J . When X is a countable set, we utilize the tightness of the measure

µ. From the uniform absolute continuity and tightness of µ, it follows that the

sequence {νn}n≥1 is tight. The tightness of µ and uniform integrability of {fn}n≥1

imply that {fn}n≥1 is tight. Since |Zn| ≤ 1∀ n, |H| ≤ 1, the sequences {Znfn}n≥1

and {Hfn}n≥1 are also uniformly integrable and tight. When X is a countable set,

if we are able to show that {fn} converges in measure µ to 1 then by the Vitali

convergence theorem [47] (5.1) and (5.2) follow. Since |[(1 − Zn) ∧ Zn]fn| ≤ |fn|,

the sequence {[(1−Zn)∧Zn]fn}n≥1 is uniformly integrable and tight. Again by the

Vitali convergence theorem (5.3) follows.

When X is a countable set, there are different approaches that we can consider to

show convergence of {fn} in measure. In the first approach, we attempt to prove

that {fn} → 1 in L1(Ω̄, µ) which implies {fn} converges in measure. From the

definition of the Radon-Nikodym derivative it follows that for all simple functions
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φ on (Ω̄,M),

lim
n→∞

∫
Ω̄

fnφdµ =

∫
Ω̄

φdµ.

Since simple functions are dense in L∞(Ω̄, µ) and {fn}n≥1 is bounded in L1(Ω̄, µ) it

follows that

lim
n→∞

∫
Ω̄

fngdµ =

∫
Ω̄

gdµ, ∀g ∈ L∞(Ω̄, µ).

{fn}⇀ 1 in L1(Ω̄, µ). It is clear that {||fn||1} → 1. To show {fn} → 1 in L1(Ω̄, µ),

we can follow the procedure used to prove the Radon-Riesz theorem. This procedure

requires uniform convexity of the L1(Ω̄, µ) space which typically does not hold. If

{fn} converges in measure to 1, then a subsequence of {fn}, {fnk}, converges µ

almost surely to 1. Scheffé’s theorem [48] implies that lim
k→∞

sup
E
|νnk(E)− µ(E)| = 0,

{νnk} converges uniformly to µ over the same subsequence. {fn} ⇀ 1 in L1(Ω̄, µ)

and {fn} → 1 in measure imply that {fn} → 1 in L1(Ω̄, µ). Note that for any E,

|νn(E)− µ(E)| = |
∫
E

(fn − 1)dµ| ≤
∫
E

|fn − 1|dµ

Hence, sup
E
|νnk(E)− µ(E)| ≤

∫
Ω̄

|fn − 1|dµ

{fn} → 1 in L1(Ω̄, µ) implies uniform convergence of {νn}. In the given scenario,

if we prove that {fn} converges in measure it implies {νn} converges uniformly.

Instead of proving {fn} → 1 in L1(Ω̄, µ), we might consider to prove the uniform
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convergence of {νn}.

Using the Arzelà-Ascoli theorem: The objective is to find a metric ρ on X such that

the metric space (X, ρ) is compact and the functions {fn}n≥1 are equicontinuous

on this metric space. If such a metric space exists and we assume that the fn are

uniformly bounded then the Arzelà-Ascoli theorem tell us that there is a subsequence

of {fn}n≥1 that converges uniformly on X to 1. Using the uniform convergence and

a contradiction argument we can show that {fn} → 1 in L1(Ω̄, µ).

Using the Glivenko-Cantelli theorem: There are three steps to the proving the

theorem. Let us consider the estimation of µ0. Let {Yn}n≥1 and {Zn}n≥1 be i.i.d

sequences drawn from the distribution µ0. Let,

αn(E) =
i=n∑
i=1

1(Yi)∈E

n
and βn(E) =

i=n∑
i=1

1(Zi)∈E

n
E ∈ 2X.

The first step is symmetrization. ∀ε > 0,∃Nε such that

P(sup
E
|αn(E)− µ0(E)| > ε) ≤ 2P(sup

E
|αn(E)− βn(E)| > ε

2
), ∀n ≥ Nε.

The above condition can be proven along the lines of the proof of symmetrization

lemma in chapter 2 of [49]. Let Tn = max(Y1, . . . , Yn, Z1, . . . , Zn)−min(Y1, . . . , Yn,

Z1, . . . , Zn). For the next step, we impose the condition that P(Tn ≤ nk) = 1 for

some k ∈ N. When E = {x}, a singleton set, then |αn(E) − βn(E)| can take at

most n+ 1 different values. Suppose these n+ 1 values are achieved at x1, . . . , xn+1.
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Then,

P(sup
E
|αn(E)− βn(E)| > ε

2
) ≤ P(

i=Tn⋃
i=1

max
Ei∈{x1,...,xn+1}

|αn(Ei)− βn(Ei)| >
ε

2
)

≤ nk
n+1∑
i=1

P(|αn(xi)− βn(xi)| >
ε

2
)

In the above, the first inequality uses the property that X is discrete and countable.

The third step is to use Hoeffding’s inequality. From the inequality, it follows that

P(sup
E
|αn(E)− µ0(E)| > ε) ≤ nk(4n+ 4) exp

−nε2
8

Hence P(sup
E
|αn(E) − µ0(E)| > ε) converges to zero as n tends to infinity. From

the Borel-Cantelli lemma, we infer almost sure convergence of sup
E
|αn(E)− µ0(E)|

to zero which implies uniform convergence of {αn} to µ0. This approach needs to

be further investigated to show that {νn} converges uniformly to µ. We use the

approach described for the case when X is finite to show uniform convergence of

{νn} implies convergence of {fn} in measure. Among the three approaches, the

third approach is most promising and requires further investigation.

One of the main assumptions in this work was that, the samples used to estimate

the empirical distributions were independent in the true measure, which is difficult

to verify. One can attempt to find weaker conditions under which we can estimate

empirical distributions and show the convergence to true distribution. One possible

approach would be to assume that the sequence of empirical distributions is tight.

By Prokhorov’s theorem [50] there exists a subsequence which coverges weakly to a
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measure on the observation space. We would have to show that the measure to which

the subsequence converges is indeed the true measure. In [51], the authors present

necessary and sufficient conditions for a uniform law of large numbers for stationary

ergodic sequences of random variables. We can investigate robust detection problems

with stochastic processes.

5.4 Simulation results

In this section we present a numerical study of the robust detection problem.

The setting is described as follows. The cardinality of the set of observations is

6. The true distribution of the observations under either hypothesis is given in

table 5.1. The prior distribution of the hypothesis is considered to be p0 = 0.4

f(y) H = 0 H = 1
Y = 1 0.1 0.15
Y = 2 0.2 0.15
Y = 3 0.05 0.1
Y = 4 0.15 0.3
Y = 5 0.3 0.2
Y = 6 0.2 0.1

Table 5.1: Distribution of observations under either hypothesis

and p1 = 0.6. The number of stages till which the empirical distributions are

found is denoted by N . N was set to 104. Simulations were performed with this

set up. Empirical distributions, νn, were obtained for every n ≤ N . Point wise

convergence of the distributions was observed. Convergence of the distributions to

the true distribution in L1 norm was observed. The L1 norm of the error in empirical
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Figure 5.1: Convergence of distribution in L1 norm

Figure 5.2: Optimal detection cost vs number of samples

distributions from the true distribution has been plotted in figure 5.1. The optimal

detection cost under the true distribution is 0.38. The optimal detection cost under

the empirical distributions varied between 0.355 and 0.425 and has been plotted in

figure 5.2. For 1 ≤ n ≤ 150 it was observed that some of the entries of empirical

distributions were 0. These empirical distributions were skipped while plotting figure

5.2. Simulations were repeated with a second setting. The setting is described as

follows: The cardinality of the set of observations is 10. The true distribution of the

observations under either hypothesis is given in Table 5.2. The prior distribution

of the hypothesis was considered to be p0 = 0.3 and p1 = 0.7. N was set 105. The

L1 norm of the error in empirical distributions from the true distribution has been
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f(y) H = 0 H = 1
Y = 1 0.1 0.08
Y = 2 0.05 0.09
Y = 3 0.15 0.1
Y = 4 0.07 0.08
Y = 5 0.08 0.12
Y = 6 0.06 0.14
Y = 7 0.12 0.09
Y = 8 0.18 0.10
Y = 9 0.06 0.18
Y = 10 0.13 0.12

Table 5.2: Distribution of observations under either hypothesis

Figure 5.3: Convergence of distribution in L1 norm

plotted in figure 5.3. The optimal detection cost under the true distribution is 0.30.

The optimal detection cost under the empirical distributions varied between 0.2875

and 0.33 and has been plotted in figure 5.4. Since the cardinality of the observation

set is greater than the first setting, the number of samples taken to converge is

larger. In both cases the convergence of the L1 norm of the error was found to be

approximately exponential, consistent with the concentration inequalities. It should

be noted that the empirical distributions and true distribution are not tight. Since

the {fn} sequence is bounded, the results mentioned in the previous section continue

to hold and the numerical results are consistent with the same.
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Figure 5.4: Optimal detection cost vs number of samples

5.5 Conclusion

In this chapter, we considered the problem of robust detection. The binary

hypothesis testing problem was considered. The true distribution under either hy-

pothesis was unknown. The empirical distributions were found from observations.

Convergence of the information state and optimal detection cost were proven. The

theoretical results were supported by numerical simulations.
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Chapter 6: Conclusions

In this thesis, we considered some problems in multi-agent decision making,

specifically multi-agent hypothesis testing. In chapter 2, we considered the detection

of models using two observers. In chapter 3, we considered the binary hypothesis

testing problem with two synchronous observers. In chapter 4, we considered the

binary hypothesis testing problem with three asynchronous observers and a central

coordinator. In chapter 5, we considered the binary hypothesis testing problem with

unknown true distributions and learning of empirical distributions. From chapter 2,

we infer that in some multi-agent decision-making problems collaboration (exchange

of information) among agents enhances the performance of the multi-agent system

compared to the performance of a single agent (from the multi-agent system) with

respect to the decision-making problem. From chapter 3, we conclude that informa-

tion exchange among agents plays a central role in probability space construction,

which is the key to formulating and solving stochastic decision-making problems.

From chapter 4, we infer that the absence of the joint distribution (information),

the inability of agents to simultaneously collect multiple observations (information),

and asynchrony among agents could potentially change the structure of the problem,

i.e., the formulation and solution to the decision-making problem. From chapter 5,

160



we infer that as the number of observations (information) available to the observer

increases, the estimate of the empirical distribution and the optimal detection cost

improves. The commonality across the chapters is that the information available to

the agents, where the information could be observations (from nature or from other

agents) or the joint distribution of the observations, plays an important role in for-

mulation and solution of the multi-agent decision-making problems, thus justifying

the title to this thesis.
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Appendix A: Filter Equations and Stopping Time Problems

A.1 Derivation of recursions for filter

To prove the recursions mentioned for π1
k mentioned in subsection 2.1.3.1, we

consider a change of measure. Define:

αl =

M1∏
i=1

(
M−1

1

c
(i)
l

)Y
(i)
l

, Γk =
k∏
l=1

αl

Recall that G1
k denotes the complete σ algebra generated by H,X1

0 , ..., X
1
k , X

2
0 , ...,

X2
k , Y

1
1 , ..., Y

1
k , Y

2
1 , ..., Y

2
k . Thus,

EP[αk+1|G1
k ] = EP[

M1∑
i=1

Y
(i)
k+1

M1c
(i)
k+1

|G1
k ] =

1

M1

M1∑
i=1

1

c
(i)
k+1

P(Y
(i)
k+1 = 1|G1

k) =

1

M1

M1∑
i=1

1

c
(i)
k+1

· c(i)
k+1 = 1. EP[Γk+1|G1

k ] = EP[Γkαk+1|G1
k ] = ΓkEP[αk+1|G1

k ] = Γk

Hence (Γk,G1
k)k∈N is a martingale. We now define a new probability measure P̄ on

(Ω,∪∞l=1G1
l ) by restricting the Radon- Nikodym derivative, dP̄/dP to the σ algebra

G1
k equal to Γk. Thus

dP̄
dP

∣∣∣∣
G1k

= Γk ⇒ P̄(B) =
∫
B

ΓkdP ∀B ∈ G1
k . The existence of

such a measure P̄ follows from Kolmogorov’s Extension Theorem, [52].

1. Under, P̄, {Yk} , k ∈ N, is a sequence of i.i.d random variables each having
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uniform distribution that assigns probability 1
M1

to each point f 1
i , 1 ≤ i ≤M1,

in its range space. Thus P̄(Y
(i)
k+1 = 1|G1

k) =
1

M1

.

P̄(Y
(i)
k+1 = 1|G1

k) = EP̄[〈Yk+1, f
1
i 〉|G1

k ] =
EP[Γk+1〈Yk+1, f

1
i 〉|G1

k ]

EP[Γk+1|G1
k ]

=
ΓkEP[αk+1〈Yk+1, f

1
i 〉|G1

k ]

ΓkEP[αk+1|G1
k ]

= EP[αk+1〈Yk+1, f
1
i 〉|G1

k ]

= EP[

M1∑
j=1

Y
(j)
k+1

Mc
(j)
k+1

〈Yk+1, f
1
i 〉|G1

k ] = EP[

M1∑
j=1

Y
(j)
k+1Y

(i)
k+1

M1c
(j)
k+1

|G1
k ]

=
1

M1c
(i)
k+1

EP[Y
(i)
k+1|G

1
k ] =

1

M1c
(i)
k+1

× c(i)
k+1 =

1

M1

= P̄(Y
(i)
k+1 = 1)

2. Under P̄ , X1
k and X2

k remain Markov chains with transition matrices A1 and

A2 respectively . First, we note the following:

EP[W 1
k+1|σ(G1

k ∪ σ(Yk+1))] = EP[W 1
k+1|σ(Fk, {v1

m}m=k+1
m=1 , {v2

m}m=k+1
m=1 )]

= EP[W 1
k+1|Fk] = 0

where the second equality holds by the independence assumption. Hence,

EP[X1
k+1|σ(G1

k ∪ σ(Yk+1))] = EP[A1X1
k +W 1

k+1|σ(G1
k ∪ σ(Yk+1))] = A1X1

k

EP̄[X1
k+1|F1

k ] = EP̄[EP̄[X1
k+1|G1

k ]|F1
k ], EP̄[X1

k+1|G1
k ] =

EP[Γk+1X
1
k+1|G1

k ]

EP[Γk+1|G1
k ]

= EP[αk+1X
1
k+1|G1

k ] = EP[

M1∑
j=1

Y
(j)
k+1

M1c
(j)
k+1

X1
k+1|G1

k ]

= [

M1∑
j=1

1

M1c
(j)
k+1

P(Y
(j)
k+1 = 1|G1

k)]× EP[X1
k+1|σ(G1

k ∪ σ(Yk+1))]

= EP[X1
k+1|G1

k ] = A1X1
k
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⇒ EP̄[X1
k+1|F1

k ] = EP̄[A1X1
k |F1

k ] = A1X1
k

Similarly it can be proven that: EP̄[X2
k+1|F2

k ] = A2X2
k . Hence it also follows

that:

EP̄[W 1
k+1|G1

k ] = EP̄[X1
k+1 − A1X1

k |G1
k ] = A1X1

k − A1X1
k = 0

and EP̄[W 2
k+1|G1

k ] = 0.

3. EP̄[W 1
k+1|Yk+1] = 0 and EP̄[W 2

k+1|Yk+1] = 0

EP̄[X1
k+1|σ(G1

k ∪ σ(Yk+1))] =
EP[Γk+1X

1
k+1|σ(G1

k ∪ σ(Yk+1))]

EP[Γk+1|σ(G1
k ∪ σ(Yk+1))]

=
Γk+1EP[X1

k+1|σ(G1
k ∪ σ(Yk+1))]

Γk+1

= EP[X1
k+1|σ(G1

k ∪ σ(Yk+1))]

= A1X1
k

⇒ EP̄[W 1
k+1|σ(G1

k ∪ σ(Yk+1))] = 0

⇒ EP̄[W 1
k+1|Yk+1] = EP̄[EP̄[W 1

k+1|σ(G1
k ∪ σ(Yk+1))]|Yk+1] = 0 (A.1)

Similarly it can be shown that, EP̄[W 2
k+1|Yk+1] = 0.

Given probability measure P̄ on (Ω,∪∞l=1G1
l ) such that 1 and 2 hold true and matrices

Ĉ1 and Ĉ2, we construct a measure P̂ as follows: Let ĉk+1 = Ĉ1X1
kH+ Ĉ2X2

k(1−H)
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and ĉ
(i)
k+1 = 〈ĉk+1, f

1
i 〉 = c

1,(i)
k+1H + c

2,(i)
k+1(1−H). Let

ᾱl =

M1∏
i=1

(M1ĉ
(i)
l )Y

(i)
l , Γ̄k =

k∏
l=1

ᾱl ,
dP̂
dP̄

∣∣∣∣∣
G1k

= Γ̄k

Again, the existence of such a measure P̂ follows from Kolmogorov’s Extension The-

orem ( [52]). With the above definitions, the following are satisfied:

1. EP̄[ᾱk+1|G1
k ] = 1

EP̄[ᾱk+1|G1
k ] = EP̄[

M1∏
i=1

(M1ĉ
(i)
k+1)Y

(i)
k+1|G1

k ]

= M1

M1∑
i=1

ĉ
(i)
k+1P̄(Y

(i)
k+1 = 1|G1

k ] = M1 × [

M1∑
i=1

ĉ
(i)
k+1

M1

] =

M1∑
i=1

ĉ
(i)
k+1 = 1

Thus (Γ̄k,G1
k)k∈N is a martingale.

2. EP̂[Yk+1|G1
k ] = Ĉ1X1

kH + Ĉ2X2
k(1−H)

P̂(Y
(i)
k+1 = 1|G1

k) = EP̂[〈Yk+1, f
1
i 〉|G1

k ]

=
EP̄[Γ̄k+1〈Yk+1, f

1
i 〉|G1

k ]

EP̄[Γ̄k+1|G1
k ]

=
EP̄[ᾱk+1〈Yk+1, f

1
i 〉|G1

k ]

EP̄[ᾱk+1|G1
k ]

= EP̄[(

M1∏
j=1

(M1ĉ
(j)
k+1)Y

(j)
k+1)〈Yk+1, f

1
i 〉|G1

k ]

= M1 × ĉ(i)
k+1 × EP̄[〈Yk+1, f

1
i 〉|G1

k ] = ĉ
(i)
k+1

Hence the result follows.
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If C1 = Ĉ1 and C2 = Ĉ2 then it follows that P̂ = P on (Ω,∪∞l=1G1
l ). Thus by

letting C1 = Ĉ1 and C2 = Ĉ2, we obtain EP[H|Yk] =
EP̄[Γ̄kH|Yk]
EP̄[Γ̄k|Yk]

. Define:

Num(k) = EP̄[Γ̄kH|Yk]

Den(k) = EP̄[Γ̄k(1−H)|Yk]

qk(er) = EP̄[Γ̄kH〈X1
k , er〉|Yk]

pk(er) = EP̄[Γ̄k(1−H)〈X2
k , er〉|Yk]

It follows that,

Num(k) = EP̄[Γ̄kH|Yk] = EP̄[Γ̄kH
Ns∑
r=1

〈X1
k , er〉|Yk] =

Ns∑
r=1

qk(er)

Den(k) = EP̄[Γ̄k(1−H)|Yk] = EP̄[Γ̄k(1−H)
Ns∑
r=1

〈X2
k , er〉|Yk] =

Ns∑
r=1

pk(er)

EP̄[Γ̄k|Yk] = EP̄[Γ̄k[H + (1−H)]|Yk] = Num(k) +Den(k)

⇒π1
k = EP[H|Yk] =

Num(k)

Num(k) +Den(k)

We now prove the recursion for qk(er):

qk+1(er) = EP̄[Γ̄k+1H〈X1
k+1, er〉|Yk+1]

= EP̄[Γ̄kH(

M1∏
i=1

(M1(c
1,(i)
k+1H + c

2,(i)
k+1(1−H)))Y

(i)
k+1)〈X1

k+1, er〉|Yk+1]

= M1 × EP̄[Γ̄kH(

M1∏
i=1

(c
1,(i)
k+1H)Y

(i)
k+1)〈X1

k+1, er〉|Yk+1]

= M1 × EP̄[Γ̄kH(

M1∏
i=1

(c
1,(i)
k+1H)Y

(i)
k+1)〈A1X1

k , er〉|Yk+1]
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+M1 × EP̄[Γ̄kH(

M1∏
i=1

(c
1,(i)
k+1H)Y

(i)
k+1)〈W 1

k+1, er〉|Yk+1]

The second term in the summation equals:

EP̄[Γ̄kH(

M1∏
i=1

(c
1,(i)
k+1H)Y

(i)
k+1)〈W 1

k+1, er〉|Yk+1]

= EP̄[Γ̄kH(

M1∏
i=1

(c
1,(i)
k+1H)Y

(i)
k+1)EP̄[〈W 1

k+1, er〉|σ(G1
k ∪ σ(Yk+1))]|Yk+1]

From (A.1), it follows that the above term is zero. Thus,

qk+1(er) = M1 × EP̄[Γ̄kH(

M1∏
i=1

(c
1,(i)
k+1H)Y

(i)
k+1)〈A1X1

k , er〉|Yk+1]

= M1 × EP̄[Γ̄kH(

M1∏
i=1

(〈C1X1
k , f

1
i 〉)Y

(i)
k+1)〈A1X1

k , er〉|Yk+1]

= M1 × [
Ns∑
j=1

EP̄[Γ̄kH(〈X1
k , ej〉)|Yk+1]a1

rj(

M1∏
i=1

(c1
ij)

Y
(i)
k+1)

Since under P̄ , σ(σ(H) ∪ σ(X1
k) ∪ Yk) is independent of σ(Yk+1),

= M1 × [
Ns∑
j=1

EP̄[Γ̄kH(〈X1
k , ej〉)|Yk]a1

rj(

M1∏
i=1

(c1
ij)

Y
(i)
k+1 ]

= M1 × [
Ns∑
j=1

qk(ej)a
1
rj(

M1∏
i=1

(c1
ij)

Y
(i)
k+1)]

The initial condition , q1(er),

q1(er) = EP̄[ᾱ1H(〈X1
1 , er〉)|Y1]
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= EP̄[

M1∏
i=1

(M1(c
1,(i)
1 H + c

2,(i)
1 (1−H)))Y

(i)
1 H(〈X1

1 , er〉)|Y1]

= M1 × EP̄[

M1∏
i=1

(c
1,(i)
1 H)Y

(i)
1 H(〈X1

1 , er〉)|Y1]

= M1 × EP̄[

M1∏
i=1

(c
1,(i)
1 H)Y

(i)
1 H(〈A1X1

0 , er〉)|Y1]

= M1 × [
Ns∑
l=1

EP̄[

M1∏
i=1

(c1
il)
Y

(i)
1 H(〈X1

0 , el〉a1
rl)|Y1]]

= M1 × [
Ns∑
l=1

M1∏
i=1

(c1
il)
Y

(i)
1 EP̄[H(〈X1

0 , el〉)|Y1]a1
rl]

= M1 × [
Ns∑
l=1

M1∏
i=1

(c1
il)
Y

(i)
1 EP̄[H(〈X1

0 , el〉)]a1
rl]

the last equality is true since under P̄, σ(σ(H), σ(X1
0 )) is independent of Y1. Since

EP[α1|σ(σ(H), σ(X1
0 ))] = 1, it follows that:

EP̄[H(〈X1
0 , el〉)] = EP[α1H(〈X1

0 , el〉)]

= EP[EP[α1H(〈X1
0 , el〉)|σ(σ(H), σ(X1

0 ))]]

= EP[H(〈X1
0 , el〉)EP[α1|σ(σ(H), σ(X1

0 ))]]

= EP[H(〈X1
0 , el〉)]

= EP[H]EP[〈X1
0 , el〉] = p̄1 × (P(X1

0 = el))

⇒ q1(er) = M1 × [
Ns∑
l=1

M1∏
i=1

(c1
il)
Y i1 p̄1 × (P(X1

0 = el))a
1
rl]

The recursion for pk+1 and p1 can found by the exact same procedure. This completes

the proof.
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A.2 Stopping time problems in dynamic programming framework

A.2.1 Finite horizon stopping problem

In this section we discuss the result for finite and infinite horizon stopping

time problems using dynamic programming framework.

Theorem A.2.1. Consider Observer 1 [2.2.2.1] and the optimization problem start-

ing at time 0 [2.2.2.2]. The horizon is considered to be N . Let πk (the filter) be

defined as:

πk = EP[H|Yk0 ].

Let ψ = {ψk}k≥1. Define ψk as

ψk = α1k + [πk] ∧ [1− πk].

Clearly ψk is adapted to Yk0 . Define the following:

MN
k = {τ ∈ S1

0 : k ≤ τ ≤ N P a.s},

VN
k = inf

T∈MN
k

E[ψT ], WN
k = essinf

T∈MN
k

E[ψT |Yk0 ]. (A.2)

WN
k can be recursively defined as:

WN
N = ψN ,
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WN
k = min{ψk,EP[WN

k+1|Yk0 ]}, k = N − 1, ..., 1.

Then the optimal truncated stopping rule from the class MN
k is given by:

τNk = min{k ≤ n ≤ N : ψn = WN
n }.

Therefore the optimal N truncated stopping rule τ ∗ is given by:

τ ∗ = min{1 ≤ n ≤ N : ψn = WN
n }.

Also the optimal decision D∗(ω) is given by:

D∗(ω) = 0 if (1− πτ∗) ≥ πτ∗ ,

= 1 .Otherwise

and the optimal cost is given by:

VN
1 = E[ψτ∗ ].

For proof, we refer to [12].
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A.2.2 Infinite horizon stopping problem

Consider Observer 1 and the optimization problem starting at time 0. We

consider a new cost function:

J1(τ,D) = EP

[
τ∑
i=1

ci + C10H(ω)(1−D(ω)) + C01(1−H(ω))D(ω)

]
,

J1(τ,D∗(ω, τ)) = EP

[
τ∑
i=1

ci + [C01(1− πτ )] ∧ [C10πτ ]

]
.

where C10 and C01 are are non-negative real numbers and 0 < c < 1. Our aim is to

find τ ∈ S1
0 such that J1(τ,D∗(ω, τ)) is minimized. With the new cost function, ψk

is defined as:

ψk =
k∑
i=1

ci + [C01(1− πk)] ∧ [C10πk].

MN
k ,VN

k ,WN
k are defined as in (A.2). Define,

Mk = {τ ∈ S1
0 : τ ≥ k P a.s},

Vk = inf
T∈Mk

E[ψT ],

Wk = essinf
T∈Mk

E[ψT |Yk0 ].

Theorem A.2.2. (Refer [53] ) Let {Wk}k≥1 satisfy the recursion:

Wk = min { ψk, EP[Wk+1|Yk0 ] },
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and stopping rule τ ∗k be defined as,

τ ∗k = min { n ≥ k : ψn = Wk }, k ≥ 1, inf(φ) =∞.

If EP[sup
k≥1
|ψk|] <∞ and P(τ ∗k <∞), then τ ∗k is the optimal stopping rule for (2) and

τ ∗1 is optimal in the class of non truncated stopping rules , S1
0 .

The above theorem cannot be used in practice as the recursions cannot be

solved explicitly. Note that the posterior costs WN
k and optimal costs VN

k are de-

creasing in N. Similarly the stopping times τNk are increasing in N. Therefore the

following limits exist P a.s ∀ k ≥ 1:

W∞k = lim
N→∞

WN
k , τ

∞
k = lim

N→∞
τNk , V∞k = lim

N→∞
VN
k .

By the monotone convergence theorem for conditional expectation,

lim
N→∞

EP[WN
k+1|Yk0 ] = EP[ lim

N→∞
WN

k+1|Yk0 ] = EP[W∞k+1|Yk0 ].

Hence W∞k satisfies the recursion,

W∞k = min{ ψk, EP[W∞k+1|Yk0 ]} ∀ k ≥ 1. (A.3)

The corresponding stopping rule is

τ∞k = inf{ n ≥ k, ψn = W∞n } ∀ k ≥ 1. (A.4)
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Note that:

WN
k ≥Wk ∀ N ≥ k ⇒ lim

N→∞
WN

k ≥Wk ⇒W∞k ≥Wk,

VN
k ≥ Vk ∀ N ≥ k ⇒ lim

N→∞
VN
k ≥ Vk ⇒ V∞k ≥ Vk. (A.5)

Theorem A.2.3. Let {W∞k }k≥1 satisfy the recursion (A.3) and τ∞k be defined as

(A.4). Then

W∞k = Wk, τ
∞
k = τ ∗k , Vk = V∞k ∀ k ≥ 1.

Proof. This theorem characterizes the solution to the infinite horizon problem. From

(A.3), it follows that (W∞
k ,Yk0 )k≥1 is a submartingale. First we note that,

EP[sup
k≥1
|ψk| ] ≤ 1

1− c
+ [dC10e+ dC01e] <∞. (A.6)

From (A.6), it follows that:

EP[ψk] <∞ ∀ k ≥ 1 , EP[ψτ ] <∞ ∀ τ ∈Mk.

By the Lebesgue dominated convergence theorem, it follows that

lim inf
k→∞

EP[ |ψk| 1τ>k ] = 0.
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Hence using the optional sampling theorem, we can conclude that,

EP[ W∞τ | Yk0 ] ≥W∞k P a.s ∀ τ ∈Mk , k = 1, 2, 3....

(A.3) implies that

W∞n ≤ ψn P a.s, ∀ n ≥ 1

⇒W∞τ ≤ ψτ P a.s, ∀ τ ∈Mk

⇒EP[W∞τ |Yk0 ] ≤ EP[ψτ |Yk0 ] P a.s, ∀ τ ∈Mk

⇒W∞k ≤ EP[ψτ |Yk0 ] P a.s, ∀ τ ∈Mk, ∀ k ≥ 1.

By definition of essinf, it follows that,

W∞k ≤Wk P a.s, ∀ k ≥ 1.

From (A.5),

W∞k = Wk P a.s ∀ k ≥ 1

⇒ τ∞k = τ ∗k P a.s ∀ k ≥ 1.

MN
k ⊂MN+1

k ⇒ VN+1
k ≤ VN

k . Thus {VN
k }N≥k is a decreasing sequence and bounded

below by 0. By monotone convergence theorem , it follows that ,

V∞k = lim
N→∞

VN
k = inf

N≥k
VN
k .
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Now we prove that inf
N≥k

VN
k = Vk. From (A.5) it follows that, Vk is a lower bound

for the set, {VN
k , N ≥ k}. From the definition of Vk, it follows that, ∀ ε > 0,

∃ τε ∈Mk such that,

Vk ≤ EP[ ψτε ] < Vk + ε.

If ∃ N , such that:

τε ≤ N P a.s ⇒ τε ∈ MN
k ⇒ VN

k ≤ EP[ ψτε ]

⇒Vk ≤ VN
k ≤ EP[ ψτε ] < Vk + ε,

else ∀ n ∈ N, P(τε > n ) > 0. Define,

Υ =
1

1− c
+ 2× [dC10e+ dC01e],

δ = Vk + ε− EP[ ψτε ] > 0.

Claim: ∃ nδ ∈ N, such that P(τε > nδ ) <
δ

4 × Υ
. The proof follows by

contradiction. Suppose the claim is not true. Then,

P(τε > n ) ≥ δ

4 × Υ
∀ n ∈ N ⇒ lim

n→∞
P(τε > n ) ≥ δ

4 × Υ
.

By monotonicity of measure

⇒ P( lim
n→∞

τε > n ) ≥ δ

4 × Υ
⇒ P(τε = ∞) ≥ δ

4 × Υ
> 0,

175



which is clearly a contradiction as P(τε = ∞) = 0. Hence the claim follows. Define:

τnδε (ω) = τε(ω) if τε(ω) ≤ nδ,

= nδ if τε(ω) > nδ.

τnδε ∈ Mnδ
k ⇒ τnδε ∈ Mk.

Consider,

| EP[ ψτε ] − EP[ ψτnδε ] | ≤ EP[|
τε∑
i=1

ci −
τ
nδ
ε∑
i=1

ci| +

|[C01(1− πτε)] ∧ [C10πτε ]− [C01(1− πτnδε )] ∧ [C10πτnδε ]|]

≤ EP[ [
τε∑

i=nδ+1

ci ]1τε>nδ + 2× [dC10e+ dC01e]1τε>nδ ]

≤ [
∞∑

i=nδ+1

ci + 2× [dC10e+ dC01e]] × EP[1τε>nδ ]

≤ [
∞∑

i=nδ+1

ci + 2× [dC10e+ dC01e]] × P(τε > nδ)

≤ Υ × δ

4 × Υ
=
δ

4
.

Thus,

| EP[ ψτε ] − EP[ ψτnδε ] | ≤ δ

4

⇒EP[ ψτnδε ] ≤ EP[ ψτε ] +
δ

4

⇒EP[ ψτnδε ] ≤ Vk + ε.
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Hence, it follows that

Vk ≤ EP[ ψτnδε ] ≤ Vk + ε

⇒ Vk ≤ Vnδ
k < Vk + ε.

Thus ∀ ε > 0, ∃ nε ∈ N such that,

⇒ Vk ≤ Vnε
k < Vk + ε.

Thus,

V∞k = inf
N≥k

VN
k = Vk.
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Appendix B: Rate of Decay of Probability of Agreement on Wrong

Belief

B.1 Centralized approach

Before we get to the proofs, we mention some standard results from the method

of types [54], [55]. Notation: (Y n, Zn) = [(Y1, Z1), ..., (Yn, Zn)]. 1{·} is the indicator

function. For an observation sequence (Y n, Zn = yn, zn), the type associated with

it is:

QY n,Zn(y, z) =
1

n

n∑
i=1

1(yi,zi)=(y,z)∀(y, z) ∈ S1 × S2.

With the above definition, when (Y1, Z1), ..., (Yn, Zn) are i.i.d. conditioned on the

hypothesis, for h = 0, 1,

Pn(Y n, Zn = yn, zn|H = h) = 2−n(H(QY n,Zn )+DKL(QY n,Zn ||fh)).
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Let TU = max
(y,z)∈S1×§2

log2
f1(y,z)
f0(y,z)

and TL = min
(y,z)∈S1×§2

log2
f1(y,z)
f0(y,z)

. For threshold T such

that TL < log2T < TU the likelihood ratio test can be equivalently written as,

DKL(QY n,Zn||f0)− DKL(QY n,Zn||f1) ≥ 1

n
log2 T.

We present the proof for equation (3.2).

Proof. Let S denote the set of probability distributions on S1 × S2. For vector

Q ∈ S, Q = [Q(1), Q(2), . . . , Q(|S1| × |S2|)], the element Q(i) corresponds to the

joint probability of observing yl and zk, where l = d i
|S2|e, k = i − b i

|S2|c × |S2|. If

i− b i
|S2|c × |S2| = 0, then k = |S2|. Q(i) and Q(y, z) are used interchangeably. For

set S, let int(S) denote the interior of the set and S denote the closure set. Let,

V =

[
log2

f1(y1, z1)

f0(y1, z1)
, log2

f1(y1, z2)

f0(y1, z2)
, . . . , log2

f1(y|S1|, z|S2|)

f0(y|S1|, z|S2|)

]
.

For the given threshold T , the objective is to find the rate of decay of probability of

error. The set of distributions for which the decision in the centralized case is 1 is

S1 = Q ∈ S 3
{
DKL(Q||f0)− DKL(Q||f1) ≥ log2 T

}
,

Let ei(ey,z), 1 ≤ i ≤ |S1| × |S2| represent the canonical basis of R|S1|×|S2|. The set S1

can also be described as:

S1 = {Q ∈ R|S1|×|S2| : −V TQ+ log2 T ≤ 0,
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∑
y,z

Q(y, z) = 1,−eiQ ≤ 0, 1 ≤ i ≤ |S1| × |S2|}

Since TL < log2T < TU , int(S1) 6= ∅ and int(Sc1) 6= ∅. Since S1 and Sc1 are closed,

connected sets with nonempty interiors they are regular closed sets i.e., S1 = int(S1)

and Sc1 = int(Sc1). Thus by By Sanov’s theorem [54], it follows that

lim
n→∞

− 1

n
log2(κn) = DKL(Q0

τ0
||f0),

lim
n→∞

− 1

n
log2(ξn) = DKL(Q1

τ1
||f1),

Q0
τ0

= arg min
Q∈S1

DKL(Q||f0),Q1
τ1

= arg min
Q∈Sc1

DKL(Q||f0).

Since the optimization problems are convex, to solve them the Lagrangian can be

setup as follows:

Kh(Q(y, z), τh, υh, εh) =

[∑
y,z

Q(y, z) log2

(
Q(y, z)

fh(y, z)

)]
+

s(h)τh

[∑
y,z

Q(y, z) log2

(
f1(y, z)

f0(y, z)

)
− log2 T

]
−[∑

y,z

υh(y, z)e
T
y,zQ(y, z)

]
+ εh

[∑
y,z

Q(y, z)− 1

]
.

where s(h) = −1 if h = 0 and s(h) = 1 if h = 1. Setting ∂Kh(Q,τh,υh,εh)
∂Q(y,z)

= 0, for

(y, z) ∈ S1 × S2,

log2

(
Q(y, z)

fh(y, z)

)
− shτh log2

(
f1(y, z)

f0(y, z)

)
+ εh − υh(y, z) = −1.

log2

(
Q(y, z) (f0(y, z))s(h)τh

fh(y, z) (f1(y, z))s(h)τh

)
= −εh − 1 + υh(y, z).
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Hence the equation (3.1) follows. The dual functions for the above optimization

problems are:

Jh(τh, υh, εh) = Kh(Qh
τh
, τh, υh, εh),

and the dual optimization problems are:

∆∗h = max
τh∈R,υh∈R|S1|×|S2|,εh∈R

Jh(τh, υh, εh)

s.t − τh ≤ 0,−eiυh ≤ 0, 1 ≤ i ≤ |S1| × |S2|

Since the interior of the sets S1 and Sc1 are non empty, Slater’s condition holds and

hence strong duality holds. Suppose τ ∗h is such that:

d

dτh

[∑
y,z

Qh
τh

(y, z) log2

(Qh
τh

(y, z)

fh(y, z)

)
+ s(h)τh×[∑

y,z

Qh
τh

(y, z) log2

(
f1(y, z)

f0(y, z)

)]] ∣∣∣∣∣
τh=τ∗h

= s(h) log2 T. (B.1)

Then, since strong duality holds,

lim
n→∞

− 1

n
log2(κn) = ∆∗0, lim

n→∞
− 1

n
log2(ξn) = ∆∗1,

∆∗h = Jh(τ ∗h , 0, 0)

181



Thus, for the given threshold T , the rate of decay of probability of error is:

lim
n→∞

− 1

n
log2(γn) = min

[
DKL(Q0

τ∗0
||f0),DKL(Q1

τ∗1
||f1)

]
.

By changing the threshold T (or equivalently τ0 and τ1) different decay rates can be

achieved. Thus the optimal rate of decay is achieved by searching over pairs (τ0, τ1)

such that τ0 ≥ 0 and τ1 ≥ 0. Further if R∗c is achieved by the pair τ̄0, τ̄1,i.e.,

R∗c = min
[
DKL(Q0

τ̄0
, ||f0),DKL(Q1

τ̄1
||f1)

]
,

then R∗c = DKL(Q0
τ̄0
, ||f0) or R∗c = DKL(Q1

τ̄1
||f1). The threshold which achieves

the optimal decay rate is found by evaluating the L.H.S of equation (B.1) at the

appropriate τ̄h(the one that achieves R∗c).

B.2 Decentralized approach

In the decentralized scenario, the observation sequence (Y n, Zn = yn, zn) in-

duces a type on S1 and S2:

Q1
Y n(y) =

1

n

n∑
i=1

1yi=y =
∑
z∈S2

QY n,Zn(y, z) ∀ y ∈ S1,

Q2
Zn(z) =

1

n

n∑
i=1

1zi=y =
∑
y∈S1

QY n,Zn(y, z) ∀ z ∈ S2.

Let T 1
U = max

y∈S1

log2
f11 (y)

f10 (y)
, T 2

U = max
z∈S2

log2
f21 (z)

f20 (z)
, T 1

L = min
y∈S1

log2
f11 (y)

f10 (y)
and

T 2
L = min

z∈S2

log2
f21 (z)

f20 (z)
. Let T1 and T2 be such that T 1

L < log2 T1 < T 1
U and T 2

L <
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log2 T2 < T 2
U . The individual likelihood ratio tests for the observers with thresholds

T1 and T2 are:

DKL(Q1
Y n||f 1

0 )− DKL(Q1
Y n||f 1

1 ) ≥ 1

n
log2 T1,

DKL(Q2
Zn||f 2

0 )− DKL(Q2
Zn||f 2

1 ) ≥ 1

n
log2 T2.

Now, we present the proof for equation (3.6).

Proof. Let,

v = [1, 1, ..., 1] ∈ R|S2|, v1 = [1, 1, . . . , 1] ∈ R|S1|×|S2|

u =

[
log2

f 2
1 (z1)

f 2
0 (z1)

, log2

f 2
1 (z2)

f 2
0 (z2)

, ..., log2

f 2
1 (z|S2|)

f 2
0 (z|S2|)

]
∈ R|S2|,

v2 =

[
log2

f 1
1 (y1)

f 1
0 (y1)

× v, log2

f 1
1 (y2)

f 1
0 (y2)

× v, ..., log2

f 1
1 (y|S1|)

f 1
0 (y|S1|)

× v
]

∈ R|S1|×|S2|, v3 = [u, u, ..., u] ∈ R|S1|×|S2|, ||Q||∞ =

max
i
|Q(i)|, Q ∈ R|S1|×|S2|, M1 =

[∑
y∈S1

∣∣∣∣log2

f 1
1 (y)

f 1
0 (y)

∣∣∣∣
]
× |S2|.

For the given pair of thresholds T1, T2, the objective is to find the rate of decay of

probability of false alarm and probability of miss detection. We first focus on the

rate of decay of probability of false alarm. The set of distributions for which the

decisions of both observers is 1 is

S1 = Q ∈ S 3


DKL(Q1||f 1

0 )− DKL(Q1||f 1
1 ) ≥ log2 T1

DKL(Q2||f 2
0 )− DKL(Q2||f 2

1 ) ≥ log2 T2

 ,
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where Q1 and Q2 are types induced by Q on S1 and S2 respectively. The set S1 can

also be described as:

S1 = {Q ∈ R|S1|×|S2| : −vT2 Q+ log2 T1 ≤ 0, vT1 Q = 1,

− vT3 Q+ log2 T2 ≤ 0, −eiQ ≤ 0, 1 ≤ i ≤ |S1| × |S2|}

The first objective is to find threshold pairs T1, T2 for which S1 is non empty. Note

that,

max
Q∈S

vT2 Q = max
y∈S1

log
f 1

1 (y)

f 1
0 (y)

, max
Q∈S

vT3 Q = max
z∈S2

log
f 2

1 (z)

f 2
0 (z)

,

min
Q∈S

vT2 Q = min
y∈S1

log
f 1

1 (y)

f 1
0 (y)

, min
Q∈S

vT3 Q = min
z∈S2

log
f 2

1 (z)

f 2
0 (z)

.

Since T 2
L < log2 T2 < T 2

U , and g(Q) = vT3 Q is continuous, ∃ Qa ∈ S such that

vT3 Qa = log2 T2. For a feasible T2, we would like to find the set of feasible T1 so that

that the set S1 is nonempty. Consider:

Ψ(T2) = max
Q∈R|S1|×|S2|

vT2 Q

s.t − vT3 Q+ log2 T2 ≤ 0, vT1 Q = 1,

− eiQ ≤ 0, 1 ≤ i ≤ |S1| × |S2|

Φ(T2) = min
Q∈R|S1|×|S2|

vT2 Q

s.t − vT3 Q+ log2 T2 ≤ 0, vT1 Q = 1,

− eiQ ≤ 0, 1 ≤ i ≤ |S1| × |S2|
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Since the above optimization problems are linear programs for every T2, the max-

imum and the minimum occur at one of the vertices of the convex polygon, S2 =

S ∩ {Q : −vT3 Q − log2 T2 ≤ 0}. Let int(S) denote the interior of a set S. Let

Q be a boundary point of the set S. Let C(Q,S) = {h : ∃ε̄ > 0 s.t Q + εh ∈

int(S)∀ε ∈ [0, ε̄]}. Since the set S is convex, for any point Qa in the interior of

the set and Q on its boundary, the vector Qa −Q belongs to C(Q,S). For a given

T1, T2, if Φ(T2) < log2 T1 < Ψ(T2) then the pair is feasible pair. If not, we choose

an alternative T1 which satisfies the above inequalities. Further we choose T be

such that Φ(T2) < log2 T1 < log2 T < Ψ(T2). Since the function f(Q) = vT2 Q is

continuous, ∃ Qa ∈ S2 such that f(Qa) = log2 T . Hence Qa ∈ S is such that

vT2 Qa > log2 T1 and vT3 Qa ≥ log2 T2. Hence the set S1 is nonempty. If Qa is an

interior point of S2 then it is an interior point for S1. Suppose Qa is a boundary

point of S2, such that vT3 Qa = log2 T2 and Qa(i) > 0 for all i. There exists a di-

rection h such that vT3 h > 0 and for epsilon small enough, (Qa + εh) belongs to

interior of S2. Suppose Qa is a boundary point of S2, such that Qa(i) = 0 for some

i. The set C(Qa,S) ∩ {h : vT3 h ≥ 0} is nonempty. Indeed, if the set is empty

then C(Qa,S) ⊆ {h : vT3 h < 0} which implies that vT3 Q < log2T2 ∀Q ∈ int(S),

which is a contradiction as log2 T2 < T 2
U . This can be proven by the following argu-

ment. Let Qc be such that vT3 Qc = T 2
U . Note that Qc is boundary point of S. Let

ε =
T 2
U−log2T2

4
. By continuity of vT3 Q, there exits δ > 0 such that ||Q − Qc||∞ < δ

implies |vT3 Q − vT3 Qc| < ε. This implies for every Q such that ||Q − Qc||∞ < δ,

vT3 Q > T 2
U − ε > log2 T2. Since Qc is a boundary point of S, there exists atleast

one interior point of S in the ball, ||Q − Qc||∞ < δ. Hence there exists an in-
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terior point, Qd such that vT3 Qd > log2 T2, which contradicts our conclusion that

vT3 Q < log2T2 ∀Q ∈ int(S).

Thus, there exits Qb an interior point of S, such that Qb(i) > 0 ∀ i, vT3 Qb > log2 T2,

||Qa −Qb||∞ < ε and

vT2 Qb = vT2 Qa + vT2 Qb − vT2 Qa

≥ log2 T − ||Qa −Qb||∞ ×M1

≥ log2 T − ε×M1.

We choose ε such that ε < log2 T−log2 T1
2×M1

. Then, vT2 Qb >
log2 T+log2 T1

2
> log2 T1. Hence

Qb is an interior point of S1. Thus, for the T1, T2 pair, there exists Q ∈ S such that

Q(i) > 0 ∀ i, vT2 Q > log2T1, vT3 Q > log2T2. Hence the interior of the set S1 is also

nonempty. Clearly, S1 is closed and convex. Since S1 is connected, closed set with

nonempty interior it is a regular closed set (S1 = int(S1)).[Let X be a topological

space. A connected set in X is a set A ⊆ X which cannot be partitioned into

two nonempty subsets which are open in the relative topology induced on the set A.

Equivalently, it is a set which cannot be partitioned into two nonempty subsets such

that each subset has no points in common with the set closure of the other. Using

this definition and a contradiction argument we can show that a closed,connected

set with nonempty interior is a regular closed set.]

By Sanov’s theorem [54], it follows that,

lim
n→∞

− 1

n
log2(µn) = DKL(Q0

λ0,σ0
||f0),
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where,

Q0
λ0,σ0

= arg min
Q∈S1

DKL(Q||f0).

To find Q0
λ0,σ0

, the Lagrangian can be set up as follows:

L(Q, λ0, σ0, ζ0, θ0) =

[∑
y,z

Q(y, z) log2

(
Q(y, z)

f0(y, z)

)]
+

λ0

[
log2 T1 −

∑
y

(∑
z

Q(y, z)

)
log2

(
f 1

1 (y)

f 1
0 (y)

)]
+

σ0

[
log2 T2 −

∑
z

(∑
y

Q(y, z)

)
log2

(
f 2

1 (z)

f 2
0 (z)

)]
−[∑

y,z

ζ(y, z)eTy,zQ(y, z)

]
+ θ0

[∑
y,z

Q(y, z)− 1

]
.

Setting ∂L(Q,λ0,σ0,ζ0,θ0)
∂Q(y,z)

= 0, for (y, z) ∈ S1 × S2,

log2

(
Q(y, z)

f0(y, z)

)
− λ0 log2

(
f 1

1 (y)

f 1
0 (y)

)
−

σ0 log2

(
f 2

1 (z)

f 2
0 (z)

)
+ θ0 + 1− ζ(y, z) = 0.

log2

(
Q(y, z) (f 1

1 (y))
−λ0 (f 2

1 (z))
−σ0

f0(y, z) (f 1
0 (y))

−λ0 (f 2
0 (z))

−σ0

)
= −θ0 − 1 + ζ(y, z).

Hence the definition of Q0
λ0,σ0

as in equation (3.5) follows. The dual function is

defined as:

G(λ0, σ0, ζ0, θ0) = L(Q0
λ0,σ0

, λ0, σ0, ζ0, θ0).
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The dual optimization problem is defined as

d∗ = max
λ0∈R,σ0∈R,ζ0∈R|S1|×|S2|,θ0∈R

G(λ0, σ0, ζ0, θ0)

s.t − λ0 ≤ 0,−σ0 ≤ 0,

− eiζ0 ≤ 0, 1 ≤ i ≤ |S1| × |S2|

Since the interior of the set S1 is nonempty, Slater’s condition holds and hence

strong duality holds. Hence,

lim
n→∞

− 1

n
log2(µn) = d∗.

Suppose λ∗0 and σ∗0 are such that:

∂

∂λ0

[[∑
y,z

Q0
λ0,σ0

(y, z) log2

(Q0
λ0,σ0

(y, z)

f0(y, z)

)]
−

λ0

[∑
y

∑
z

Q0
λ0,σ0

(y, z) log2

(
f 1

1 (y)

f 1
0 (y)

)]
−

σ0

[∑
z

∑
y

Q0
λ0,σ0

(y, z) log2

(
f 2

1 (z)

f 2
0 (z)

)]] ∣∣∣∣∣
λ∗0,σ

∗
0

= − log2 T1

∂

∂σ0

[[∑
y,z

Q0
λ0,σ0

(y, z) log2

(Q0
λ0,σ0

(y, z)

f0(y, z)

)]
−

λ0

[∑
y

∑
z

Q0
λ0,σ0

(y, z) log2

(
f 1

1 (y)

f 1
0 (y)

)]
−

σ0

[∑
z

∑
y

Q0
λ0,σ0

(y, z) log2

(
f 2

1 (z)

f 2
0 (z)

)]] ∣∣∣∣∣
λ∗0,σ

∗
0

= − log2 T2 (B.2)

By solving above equations, the optimizers λ∗0 and σ∗0 can be found as functions
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of T1 and T2 and the distribution which achieves the optimal rate for this pair of

thresholds is Q0
λ∗0,σ

∗
0
. To study the rate of decay of probability of miss detection we

consider the set of distributions for which the the decision of both observers is 0,

S3,

S3 = {Q ∈ R|S1|×|S2| : vT2 Q− log2 T1 ≤ 0, vT1 Q = 1,

vT3 Q− log2 T2 ≤ 0, −eiQ ≤ 0, 1 ≤ i ≤ |S1| × |S2|}.

It is clear that S3 is closed, convex and has nonempty interior (as T 2
L < T2 and

Φ(T2) < log2 T1). Again by Sanov’s theorem,

lim
n→∞

− 1

n
log2(νn) = DKL(Q1

λ1,σ1
||f1),

where,

Q1
λ1,σ1

= arg min
Q∈S1

DKL(Q||f1).

The optimization problem can be solved to show that Q1
λ1,σ1

satisfies equation (3.5)

for h = 1. The dual problem can be solved to find λ∗1 and σ∗1. Thus for the given

thresholds (and hence decision policy), the error rate is

lim
n→∞

− 1

n
log2 (ρn) = min

[
DKL(Q0

λ∗0,σ
∗
0
||f0),DKL(Q1

λ∗1,σ
∗
1
||f1)

]
,

since the exponential rate is determined by the worst exponent. By changing the
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thresholds (and hence λh, σh, h = 0, 1), different error rates can be obtained. Thus

the best error rate is obtained by taking maximum over λh ≥ 0 and σh ≥ 0, h =

0, 1. Thus, equation (3.6) follows. Suppose the above maximum is achieved at

(λ̄0, σ̄0), (λ̄1, σ̄1). Then R∗d = DKL(Q0
λ̄0,σ̄0
||f0) or R∗d = DKL(Q1

λ̄1,σ̄1
, ||f1). Suppose

R∗d = DKL(Q0
λ̄0,σ̄0
||f0). Then the thresholds which achieve the optimal rate of decay

can be found by evaluating the L.H.S of (B.2) at (λ̄0, σ̄0). For the other case, the

thresholds can be found from equations analogous to (B.2) which arise from the

dual optimization problem obtained while finding the rate of decay of probability of

miss detection.

Suppose the observation collected by Observer 1 is independent of the observa-

tion collected by Observer 2 under either hypothesis, i.e., f0(y, z) = f 1
0 (y)f 2

0 (z),

f1(y, z) = f 1
1 (y)f 2

1 (z). Let C1 be a subset of the positive cone, C1 = {(λ0, σ0, λ1, σ1)

∈ R4 : λ0, σ0, λ1, σ1 ≥ 0, λ0 = σ0, λ1 = σ1}. For such quadruplets,

Qh
λh,σh

∣∣∣
λh=σh=τh

= Qh
τh
.

Thus,

R∗d = max
λh≥0,σh≥0,h=0,1

min
[
DKL(Q0

λ0,σ0
||f0),DKL(Q1

λ1,σ1
||f1)

]
≥ max

(λh≥0,σh,h=0,1)∈C1

min
[
DKL(Q0

λ0,σ0
||f0),DKL(Q1

λ1,σ1
||f1)

]
= max

τ0,τ1≥0
min

[
DKL(Q0

τ0
||f0),DKL(Q1

τ1
||f1)

]
= R∗c

The above result can be understood as follows: in the centralized case, the proba-
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Figure B.1: Bifurcation of the probability simplex in the two approaches: (a) Cen-
tralized (b) Decentralized

bility simplex is divided into two regions by a hyperplane, while in the decentralized

case the simplex is divide into 4 regions by two hyperplanes. Hence, the minimum

of the Kullback - Liebler divergence between the decision regions(in the probability

simplex) and the observation distributions in the centralized scenario is likely to

be lower than in the decentralized case as the sets are “larger” in the centralized

scenario (figure B.1).
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Appendix C: Verification of Axioms and Existence of state

C.1 Verification of axioms II.4 and II.5

C.1.1 Axiom II.4

Let the domain of T = TE1 ◦ TE2 ◦ . . . ◦ TEn = TF1 ◦ TF2 ◦ . . . ◦ TFn be DT .

Let U =
∏1

i=nEi = EnEn−1 . . . E1, U∗ =
∏n

i=1 Ei = E1E2 . . . En, V =
∏1

i=n Fi and

V ∗ =
∏n

i=1 Fi. Thus DT = {ρ ∈ S : Tr[U∗ρU ] 6= 0} = {ρ ∈ S : Tr[V ∗ρV ] 6= 0}.

TE1 ◦TE2 ◦ . . .◦TEn = TF1 ◦TF2 ◦ . . .◦TFn is equivalent to U∗ρU
Tr[U∗ρU ]

= V ∗ρV
Tr[V ∗ρV ]

∀ρ ∈ DT .

We claim that ∃α ∈ C, α 6= 0 such that U = αV . We prove by contradiction.

Suppose our claim is not true. Then for every α, there exists h1 ∈ H, h1 6= θ and

h2 ∈ H, h2 6= θ such that U(h1) 6= αV (h1) and U∗(h2) 6= ᾱV ∗(h2) where ᾱ denotes

the complex conjugate of α. Let ρ(h) = 〈h,h2〉h2
||h2||2 ∀h ∈ H. Hence ρ is the orthogonal

projection on to the subspace spanned by h2. 〈ρ(h), h〉 ≥ 0 ∀h ∈ H and ρ = ρ∗.

Tr[ρ] =
∑

i〈ρ(ei), ei〉 = 1
||h2||2

∑
i〈h2, ei〉2 = 1. Hence ρ ∈ S.

Case 1: Suppose h2 is such that h2 ∈ N (U∗). Then h2 /∈ N (ᾱV ∗). h2 ∈ N (U∗) im-

plies that Tr[U∗ρU ] = 0. 〈αV (h), h2〉 = 0 ∀h ∈ H implies that h2 ⊥ R(αV ). Since

[R(αV )]⊥ = N (ᾱV ∗), it follows that h2 ∈ N (ᾱV ∗). Hence, h2 /∈ N (ᾱV ∗) implies

that ∃h3 ∈ H such that 〈αV (h3), h2〉 6= 0. This further implies that Tr[V ∗ρV ] 6= 0.
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Hence the domains of the two operations TE1 ◦TE2 ◦ . . .◦TEn and TF1 ◦TF2 ◦ . . .◦TFn

are unequal which implies that the operations are unequal. Similarly, we can obtain

a contradiction if h2 ∈ N (ᾱV ∗) and h2 /∈ N (U∗).

Case 2: Let U(h1) = αV (h1) + h3. ρ(U(h1)) = 〈U(h1),h2〉h2
||h2||2 and ρ(αV (h1)) =

〈αV (h1),h2〉h2
||h2||2 .

U∗(ρ(U(h1))) =
〈U(h1), h2〉
||h2||2

U∗(h2) and ᾱV ∗(ρ(αV (h1))) =
〈αV (h1), h2〉
||h2||2

ᾱV ∗(h2)

〈U∗(u), v〉 = 〈u, U(v)〉∀u, v ∈ H. Letting u = U(h1), v = h1 we get,

〈U∗(U(h1)), h1〉 = 〈U(h1), U(h1)〉

= 〈U(h1), αV (h1)〉+ 〈U(h1), h3〉

= 〈ᾱV ∗U(h1), h1〉+ 〈αV (h1) + h3, h3〉.

〈U∗(U(h1))− ᾱV ∗(U(h1)), h1〉 = 〈αV (h1), h3〉+ 〈h3, h3〉.

Suppose U(h1) 6= θ and 〈αV (h1), h3〉+〈h3, h3〉 6= 0. Then U∗(U(h1)) 6= ᾱV ∗(U(h1)).

We let h2 = U(h1). For this choice of h2, if h2 ∈ N (U∗)(and h2 /∈ N (ᾱV ∗)) or

h2 ∈ N (ᾱV ∗)(and h2 /∈ N (U∗)) then we already have a contradiction (by case 1).

We consider the scenario where h2 /∈ N (U∗) and h2 /∈ N (ᾱV ∗). Thus, ρ belongs to

the domain of both operations. U∗(ρ(U(h1))) = U∗(U(h1)) and ᾱV ∗(ρ(αV (h1))) =

〈αV (h1),U(h1)〉
||U(h1)||2 ᾱV ∗(U(h1)). U∗(ρ(U(h1))) = ᾱV ∗(ρ(αV (h1))) if and only if ∃β 6= 1

such that U∗(U(h1)) = βᾱV ∗(U(h1)) and β = 〈αV (h1),U(h1)〉
||U(h1)||2 . β = 〈αV (h1),U(h1)〉

||U(h1)||2 ⇐⇒

β = 〈h1,ᾱV ∗(U(h1))〉
||U(h1)||2 ⇐⇒ β = 1

β̄

〈h1,U∗(U(h1))〉
||U(h1)||2 ⇐⇒ β = 1

β̄
⇐⇒ |β|2 = 1. β 6= −1 as
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U∗ρU ≥ 0, V ∗ρV ≥ 0. Hence U∗(ρ(U(h1))) 6= ᾱV ∗(ρ(αV (h1))). The above proof

holds even if αV (h1) = θ.

Case 3: Suppose 〈αV (h1), h3〉 + 〈h3, h3〉 = 0 (U(h1) = θ also implies the same).

〈ᾱV ∗(u), v〉 = 〈u, αV (v)〉∀u, v ∈ H. Letting u = αV (h1), v = h1 we get,

〈ᾱV ∗(αV (h1))), h1〉 = 〈αV (h1), αV (h1)〉

= 〈αV (h1), U(h1)〉 − 〈αV (h1), h3〉

= 〈U∗(αV (h1)), h1〉+ 〈h3, h3〉.

〈ᾱV ∗(αV (h1)))− U∗(αV (h1)), h1〉 = 〈h3, h3〉 6= 0.

Hence U∗(αV (h1)) 6= ᾱV ∗(αV (h1))). Let h2 = αV (h1). For this choice of h2, if

h2 ∈ N (U∗)(and h2 /∈ N (ᾱV ∗)) or h2 ∈ N (ᾱV ∗)(and h2 /∈ N (U∗)) then we already

have a contradiction (by case 1). We consider the scenario where h2 /∈ N (U∗)

and h2 /∈ N (ᾱV ∗). Thus, ρ belongs to the domain of both operations. Using the

definition of ρ, U∗(ρ(U(h1))) = 〈U(h1),αV (h1)〉
||αV (h1)||2 U∗(αV (h1)) and ᾱV ∗(ρ(αV (h1))) =

ᾱV ∗(αV (h1)). U∗(ρ(U(h1))) = ᾱV ∗(ρ(αV (h1))) if and only if ∃β 6= 1 such that

βU∗(αV (h1)) = ᾱV ∗(αV (h1)) and β = 〈U(h1),αV (h1))〉
||U(h1)||2 . β = 〈U(h1),αV (h1)〉

||αV (h1)||2 ⇐⇒ β =

〈h1,U∗(αV (h1))〉
||αV (h1)||2 ⇐⇒ β = 1

β̄

〈h1,ᾱV ∗(αV (h1))〉
||αV (h1)||2 ⇐⇒ |β|2 = 1. Again, β 6= −1. For every α

in C, ∃ρ ∈ S, U∗ρU 6= |α|2V ∗ρV . Thus, U∗ρU
Tr[U∗ρU ]

6= V ∗ρV
Tr[V ∗ρV ]

, if not for α1, such that

|α1|2 Tr[U
∗ρU ]

Tr[V ∗ρV ]
, there should not exist ρ ∈ DT such that U∗ρU 6= |α1|2V ∗ρV . This a

contradiction. Hence our claim is true. Since U = αV , U∗ = ᾱV ∗. Hence for every

ρ ∈ S, ρU∗ = ρᾱV ∗. This implies that UρU∗ = |α|2V ρV ∗ ∀ρ ∈ DT , which further

implies that UρU∗

Tr[UρU∗]
= V ρV ∗

Tr[V ρV ∗]
∀ρ ∈ DT . The final equality is equivalent stating

194



that TEn ◦ TEn−1 ◦ . . . TE1 = TFn ◦ TFn−1 ◦ . . . TF1 , thus verifying axiom [II.4].

C.1.2 Axiom II.5

For T ∈ OT, there exists E1, E2, . . . , En, such that T = TE1 ◦ TE2 ◦ . . . TEn =

∏n
i=1 Eiρ

∏1
i=n Ei

Tr[
∏n
i=1 Eiρ

∏1
i=n Ei]

. The domain of T is DT = {ρ ∈ S : Tr[
∏n

i=1Eiρ
∏1

i=nEi] 6= 0}.

The set of states which do not belong to the domain is {ρ ∈ S : Tr[
∏n

i=1Eiρ
∏1

i=nEi]

= 0}.

{ρ ∈ S : Tr[
n∏
i=1

Eiρ
1∏
i=n

Ei] = 0} (a)
= {ρ ∈ S :

n∏
i=1

Eiρ
1∏
i=n

Ei = Θ}

= {ρ ∈ S : R(ρ
1∏
i=n

Ei) ⊆ N (
n∏
i=1

Ei)}.

The equality
(a)
= follows from the observation that

∏n
i=1 Eiρ

∏1
i=nEi is a positive

semi-definite operator. Let Q denote the orthogonal projection on to the null space

of
∏n

i=1 Ei, N (
∏n

i=1Ei), which is a closed subspace. N (
∏n

i=1 Ei) = R(Q). Then,

{ρ ∈ S : R(ρ
1∏
i=n

Ei) ⊆ N (
n∏
i=1

Ei)}
(b)
= {ρ ∈ S : ρ(R(I −Q)) ⊂ R(Q)}

(c)
= {ρ ∈ S : (I −Q)ρ(I −Q) = Θ}

= {ρ : Tr[ρQ] = 1}

The equality,
(b)
=, can be proven as follows. First we note that [R(Q)]⊥ = R(I −Q).

The closure of the range of
∏1

i=nEi is the the closed subspace R(I − Q). For

all h ∈ R(
∏1

i=nEi), ρ(h) ∈ R(Q) implies that ρ(h) ∈ R(Q) ∀h ∈ R(
∏1

i=nEi).
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Thus, {ρ ∈ S : ρ(R(I − Q)) ⊂ R(Q)} ⊆ {ρ ∈ S : R(ρ
∏1

i=nEi) ⊆ N (
∏n

i=1 Ei)}.

Let h be a closure point of R(
∏1

i=nEi), i.e., ∃{hn}n≥1 ⊂ R(
∏1

i=nEi) s.t {hn} →

h, h /∈ R(
∏1

i=nEi). By continuity of ρ, {ρ(hn)} → ρ(h). Since R(Q) is closed,

ρ(hn) ∈ R(Q) ∀n implies that ρ(h) ∈ R(Q). Hence, {ρ ∈ S : R(ρ
∏1

i=nEi) ⊆

N (
∏n

i=1 Ei)} ⊆ {ρ ∈ S : ρ(R(I − Q)) ⊂ R(Q)}. The equality,
(c)
=, can be proven

as follows. Suppose ρ is such that ρ(R(I − Q)) ⊂ R(Q). Then for every h ∈ H,

ρ(I−Q)h ∈ R(Q), which implies that (I−Q)ρ(I−Q)h = Θ asR(Q) is the null space

of I −Q. Hence, {ρ ∈ S : ρ(R(I −Q)) ⊂ R(Q)} ⊆ {ρ ∈ S : (I −Q)ρ(I −Q) = Θ}.

Suppose ρ is such that (I − Q)ρ(I − Q) = Θ. Then R(ρ(I − Q)) is subset of the

null space of I − Q which is R(Q). Thus, {ρ ∈ S : (I − Q)ρ(I − Q) = Θ} ⊂ {ρ ∈

S : ρ((I −Q)H) ⊆ Q(H)}, proving that the two sets are indeed equal. Hence, there

exists Q ∈ P(H) such that {ρ ∈ S : Tr[
∏n

i=1 Eiρ
∏1

i=nEi] = 0} = {ρ ∈ S : Tr[ρQ] =

1}, verifying axiom [II.5].

C.2 Existence of a State for a Given P.O.V.M

C.2.1 Problem considered

Let {pi}{1≤i≤N} be a given probability distribution on a finite observation

space. Let X = {1, 2, ..., N}, Σ = 2X . Let O be a POVM from Σ on to B+
s (Ck),

where B+
s (Ck) denotes the set of positive semidefinite Hermitian matrices on Ck.

The objective is to find sufficient conditions on O, so that ∃ρ, ρ ∈ T +
s (Ck) such
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that:

Tr[ρO(i)] = phi , 1 ≤ i ≤ N,

where Tr[·] is the trace operator.

C.2.2 Solution

Let Mk be the vector space of k × k complex matrices over the field of real

numbers. The dimension of Mk is 2k2. Let Hk be the subspace of hermitian matrices.

The dimension of Hkis k
2. Let Sk be the cone of positive semi-definite matrices. Sk

is closed and convex. Let the vector space be endowed with following inner product:

〈A,B〉 = Tr[AHB],

where AH denotes the conjugate transpose of the matrix A. Let {emn}{1≤m,n≤k} be

a set of orthonormal basis vectors for the subspace Hk. For every matrix O ∈ Sk,

there exits unique real numbers Omn such that O =
∑
{1≤m,n≤k}Omnemn. The k2

dimensional vector obtained from the real numbers is represented by Ō. Let the

collection of all the vectors obtained from the matrices in Sk be represented by S̄k.

S̄k is a closed convex cone in Rk2 . Hence, for each O(i), there exists unique real

numbers Omn(i) such that, O(i) =
∑
{1≤m,n≤k}Omn(i)emn and the corresponding

vectors are represented by Ōi. P = [p1; p2, . . . , pN ] is a N dimensional vector. Let

A = [ŌH
1 , Ō

H
2 , . . . , Ō

H
N ]. Let C = {Ax, x ∈ S̄k}. From [56], we note that S̄k is
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self-dual cone. Hence the original problem can be recast as: Is P ∈ C or P 6∈ C.

It should be noted that C is a convex cone and is not necessarily closed. One of the

sufficient conditions for C to be closed is mentioned in [57]. The condition is that

ri(S̄k) ∩ R(AH) 6= ∅. ri(S) denotes the relative interior of a set S and is defined

as ri(S) = {x ∈ S : ∃ε > 0, Nε(x) ∩ aff(S) ⊆ S}, where aff(S) denotes the affine

hull of S. The affine hull of Sk is Hk. The positive definite matrices belong to the

interior of Sk. Also R(AH) = span(Ō1, Ō2, . . . , ŌN). Hence, if one elements of the

POVM is a positive definite matrix then the sufficient condition for the closedness

of the set C is satisfied. The first condition imposed on the POVM is that atleast

one of elements is positive definite. With this condition, set C is closed convex cone

and set {P} is closed, convex and compact. Hence if the two sets are disjoint, i.e,

@x ∈ S̄k : Ax = P , then by separating hyperplane theorem there exists a vector v

and real number α > 0 such that:

vHP < α and vHc > α ∀ c ∈ C.

Since C is cone it follows that,

vHP < 0 and vHc > 0 ∀ c ∈ C.

Hence, if there does not exist a vector v such that vHAx > 0 ∀x ∈ S̄k and vHP < 0,

then the state ρ exists.
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