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Current Automatic Speech Recognition (ASR) systems fail to perform nearly 

as good as human speech recognition performance due to their lack of robustness 

against speech variability and noise contamination. The goal of this dissertation is to 

investigate these critical robustness issues, put forth different ways to address them 

and finally present an ASR architecture based upon these robustness criteria.  

 Acoustic variations adversely affect the performance of current phone-based 

ASR systems, in which speech is modeled as ‘beads-on-a-string’, where the beads are 

the individual phone units. While phone units are distinctive in cognitive domain, 

they are varying in the physical domain and their variation occurs due to a 

combination of factors including speech style, speaking rate etc.; a phenomenon 

commonly known as ‘coarticulation’. Traditional ASR systems address such 

coarticulatory variations by using contextualized phone-units such as triphones. 

Articulatory phonology accounts for coarticulatory variations by modeling speech as 
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a constellation of constricting actions known as articulatory gestures. In such a 

framework, speech variations such as coarticulation and lenition are accounted for by 

gestural overlap in time and gestural reduction in space. To realize a gesture-based 

ASR system, articulatory gestures have to be inferred from the acoustic signal. At the 

initial stage of this research an initial study was performed using synthetically 

generated speech to obtain a proof-of-concept that articulatory gestures can indeed be 

recognized from the speech signal. It was observed that having vocal tract 

constriction trajectories (TVs) as intermediate representation facilitated the gesture 

recognition task from the speech signal.  

 Presently no natural speech database contains articulatory gesture annotation; 

hence an automated iterative time-warping architecture is proposed that can annotate 

any natural speech database with articulatory gestures and TVs. Two natural speech 

databases: X-ray microbeam and Aurora-2 were annotated, where the former was 

used to train a TV-estimator and the latter was used to train a Dynamic Bayesian 

Network (DBN) based ASR architecture. The DBN architecture used two sets of 

observation: (a) acoustic features in the form of mel-frequency cepstral coefficients 

(MFCCs) and (b) TVs (estimated from the acoustic speech signal). In this setup the 

articulatory gestures were modeled as hidden random variables, hence eliminating the 

necessity for explicit gesture recognition. Word recognition results using the DBN 

architecture indicate that articulatory representations not only can help to account for 

coarticulatory variations but can also significantly improve the noise robustness of 

ASR system. 
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Chapter 1: Introduction 

Automatic Speech Recognition (ASR) is a critical component in applications 

requiring Human-Computer interaction such as automated telephone banking, hands-free 

cellular phone operation, voice controlled navigation systems, speech-to-text systems etc. To 

make such applications suitable for daily use, the ASR system should match human 

performance in a similar environment. Unfortunately the inherent variability in spontaneous 

speech as well as degradation of speech due to ambient noise, severely limits the capability of 

ASR systems as compared to human performance. The study reported in this dissertation 

aims to improve ASR robustness against speech variability and noise contamination. 

One of the earlier studies that compared the performance of human speech 

recognition (HSR) and automatic speech recognition (ASR) was done by Van Leeuwen et al. 

(1995). They used eighty sentences from the Wall Street Journal database to compare their 

performances and reported a total word error rate (WER) of 2.6% for HSR as compared to 

12.6% for ASRs. They noted that the ASR systems had greater difficulty with sentences 

having higher perplexity. Later, Lippman (1997) performed a similar study and showed that 

for word recognition experiments HSR performance was always superior to ASR 

performance as shown in Figure 1.1(a). Note, the ASR result in Figure 1.1(a) is from a recent 

study (Dharanipragada et al., 2007) and the Lippman’s (1997) actual work showed an even 

greater performance difference between HSR and ASR. More recently, Shinozaki & Furui 

(2003) compared HSR performance with that of the state-of-the-art Hidden Markov Model 

(HMM) based ASR, using a corpus of spontaneous Japanese speech. They have shown that 

the recognition error rates from HSR are almost half as those from the ASR system. They 

stated that this difference between the error rates of HSR and ASR is due to insufficient 

model accuracy and lack of robustness of the ASR system against “vague and variable 

pronunciations”.  
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Several studies have also been performed to compare HSR and ASR capability in 

background noise. It was observed (Varga & Steeneken, 1993) that the HSR error rate on a 

digit recognition task was less than 1% in quiet and also at a signal-to-noise ratio (SNR) of 

0dB. Another study (Pols, 1982) showed that HSR error rate was less than 1% at quiet and at 

an SNR as low as -3dB. For noisy speech, Varga & Steeneken (1993) showed that the least 

ASR error rate was about 2% in quiet condition and the error rates increased to almost 100% 

in noisy scenarios. This result was obtained when there was no noise adaptation of the HMM-

based back-end. However, with noise adaptation, ASR error rate was reduced to about 40%. 

Cooke et al. (2006) and Barker & Cooke (2007) studied the performance of HSR as opposed 

to ASR systems, where the speech signals were corrupted with speech-shaped noise at 

different SNR levels. The obtained results are shown in Figure 1.1(b), where the HSR and 

ASR performance were very close in clean condition, but the ASR accuracy falls drastically 

as the SNR level is reduced. This performance difference in noisy conditions clearly shows 

that ASR systems are still far below human speech perception capabilities. 

The above results have inspired a new direction in the field of speech recognition 

research which deals with incorporating robustness into existing systems and designing a new 

robust ASR architecture altogether. The comparison of HSR and ASR suggests that a robust 

ASR system should incorporate linguistic and speech processing factors that govern acoustic 

variations in speech, and also should consider the physiological speech production as well as 

speech perception model to distinguish and understand the dynamic variations in speech, both 

in clean and noisy scenarios. 
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Figure 1.1 Comparison of WER of HSR and ASR for (a) spontaneous speech dataset (HSR 

result taken from [Lippman, 1997] and ASR result taken from [Dharanipragada et al., 2007])  

(b) read-speech at different signal-to-noise ratios (SNR) (Cooke et al., 2006) 

 

1.1 What is meant by robustness in speech recognition systems? 

Robustness in speech recognition refers to the need to maintain reasonable 

recognition accuracy despite acoustic and/or articulatory and/or phonetic characteristic 

mismatch between the training and testing speech samples. Human speech, even for a single 

speaker, varies according to emotion, style (carefully-articulated speech vs. more casual 

speech), speaking rate, dialect and prosodic context.  This variability is the reason why even 

speaker-dependent ASR systems show appreciable degradation in performance when training 

and testing conditions are different. Variability can be even more pronounced when we factor 

in differences across speakers.   

The other obstacle to robustness in ASR systems is noise corruption, which may be 

due to additive or convolutive noise arising from the environment, channel-interference or the 

encoding-decoding process. Different approaches have been explored for dealing with noise. 

One such approach is to enhance the speech signal by suppressing the noise while retaining 

the speech content with minimal distortion. Such a technique is used in the front-end of an 

ASR system prior to estimating the features as shown in Figure 1.2. 
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Figure 1.2 Sources that degrade speech recognition accuracy, along with speech enhancement 

that enhances the degraded speech to improve speech recognition robustness 

 

1.2 How to incorporate robustness into speech recognition systems? 

Figure 1.3 outlines the ASR system envisioned in this dissertation, which uses speech 

articulatory information in the form of articulatory trajectories and gestures to incorporate 

robustness into the ASR system. The front-end processing encodes the acoustic speech signal 

into acoustic features and performs operations such as mean and variance normalization, 

contextualization, etc. The speech inversion block transforms the acoustic features into 

estimated articulatory trajectories, which in turn are used along with the acoustic features in a 

gesture-based ASR system to perform word recognition. 

 

 

 

 

 

Figure 1.3 Architecture of Gesture based ASR system 
 

 
In conversational speech, a high degree of acoustic variation in a given phonetic unit is 

typically observed across different prosodic and segmental contexts; a major part of which 

arises from contextual variation commonly known as coarticulation. Phone-based ASR 

systems represent speech as a sequence of non-overlapping phone units (Ostendorf, 1999) 
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and contextual variations induced by coarticulation (Ohman, 1966) are typically encoded by 

unit combinations (e.g., tri- or quin-phone). These tri- or quin-phone based models often 

suffer from data sparsity (Sun & Deng, 2002). It has been observed (Manuel & Krakow, 

1984; Manuel, 1990) that coarticulation affects the basic contrasting distinctive features 

between phones. Hence, an ASR system using phone-based acoustic models may be expected 

to perform poorly when faced with coarticulatory effects. Moreover triphone-based models 

limit the contextual influence to only the immediately close neighbors and, as a result are 

limited in the degree of coarticulation that they can capture (Jurafsky et al., 2001). For 

example, in casual productions of the word ‘strewn’, anticipatory rounding throughout the 

/str/ sequence can occur due to the vowel /u/. That is, coarticulatory effects can reach beyond 

adjacent phonemes and, hence, such effects cannot be sufficiently modeled by traditional tri-

phone inventories. 

In this study we propose that coarticulatory effects can be addressed by using an 

overlapping articulatory feature (or gesture) based ASR system. Articulatory phonology 

proposes the vocal tract constriction gestures of discrete speech organs (lips, tongue tip, 

tongue body, velum and glottis) as invariant action units that define the initiation and 

termination of a target driven articulatory constriction within the vocal tract. Articulatory 

phonology argues that human speech can be decomposed into a constellation of such 

constriction gestures (Browman & Goldstein, 1989, 1992), which can temporally overlap 

with one another. In articulatory phonology, gestures are defined in terms of the eight vocal 

tract constriction variables shown in Table 1.1 that are defined at five distinct constriction 

organs as shown in Figure 1.4. The tract variable time functions or the vocal tract constriction 

trajectories (abbreviated as TVs here) are time-varying physical realizations of gestural 

constellations at the distinct vocal tract sites for a given utterance. These TVs describe 

geometric features of the shape of the vocal tract tube in terms of constriction degree and 

location. For example the tract variable GLO and VEL are abstract measures that specify 
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whether the glottis and velum are open/close, hence distinguishing for unvoiced/voiced and 

nasal/oral sounds. The TTCD and TBCD define the degree of constriction for tongue-tip and 

tongue-body and are measured in millimeters representing the aperture created for such 

constriction. TBCL and TTCL specify the location of the tongue-tip and tongue-body with 

respect to a given reference (F in Figure 1.4) and are measured in degrees. LP and LA define 

the protrusion of the lip and the aperture created by the Lip, and both are measured in 

millimeters. Gestures are defined for each tract variable. The tract variable time functions or 

trajectories (abbreviated as TVs here) are time-varying physical realizations of gestural 

constellations at the distinct vocal tract sites for a given utterance. 

Figure 1.5 shows the gestural activations and TVs for the utterance “miss you” 

obtained from Haskins laboratories speech production model (aka TADA, Nam et al, 2004, 

see chapter 3 for details). A gestural activation is a binary variable that defines whether a 

gesture is active or not at a given time instant. In Figure 1.5 the gestural scores are shown as 

colored blocks, whereas the corresponding TVs are shown as continuous time functions. 

 

Table 1.1 Constriction organs, vocal tract variables corresponding to the articulatory gestures 

Constriction organ Vocal tract variables 

Lip Lip Aperture (LA) 

Lip Protrusion (LP) 

Tongue Tip 

 

Tongue tip constriction degree (TTCD) 

Tongue tip constriction location (TTCL) 

Tongue Body Tongue body constriction degree (TBCD) 

Tongue body constriction location (TBCL) 

Velum Velum (VEL) 

Glottis Glottis (GLO) 
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Figure 1.4. Vocal tract variables at 5 distinct constriction organs, tongue ball center (C), and 

floor (F) [Mermelstein, 1973; Browman & Goldstein, 1990] 

 

Note in Figure 1.5, there are three TBCD gestures shown by the three rectangular blocks in 

the 5th pane from the top, whereas the VEL, TTCL, LA and GLO gestures shown in 3rd, 4th, 

6th and 7th panes have only a single gesture. This is because the latter four gestures are 

responsible for only one constriction in the utterance ‘miss you’, LA and VEL for labial nasal 

/m/, GLO and TTCD for unvoiced tongue-tip critical constriction for consonant /s/, whereas 

TBCD is responsible for the vowels /IH/ in ‘miss’ and /Y/, /UW/ in ‘you’ that require narrow 

tongue body constrictions at mid-palatal, palatal and velic regions. The gestures can 

temporally overlap with one another within and across tract variables, which allows 

coarticulation and reduction to be effectively modeled.  
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Figure 1.5 Gestural activations for the utterance “miss you”. The active gesture regions are 

marked by rectangular solid (colored) blocks. The smooth curves represent the corresponding 

tract variables (TVs) 

 

Studying variability in speech using articulatory gestures also opens up the scope to 

better understand the relationship between acoustics and their corresponding articulation. 

Note that acoustic information relating to the production of speech sounds can sometimes be 

either hidden or, at the very least, quite subtle in the physical signal. For example, consider 

the waveforms, spectrograms and recorded articulatory information (obtained by placing 

transducers on the respective articulators) shown in Figure 1.6 for three pronunciations of 

“perfect memory” (Tiede et al., 2001). These utterances were produced slowly with careful 

articulation, at a normal pace and at a fast pace by the same speaker. From the waveforms and 

spectrograms, we can see that the /t/ burst of the end of the word “perfect”, that is evident in 
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the carefully articulated speech, is absent in the more fluent speech.  In fact, whereas the /m/ 

of “memory” occludes the release of the /t/ in the normal-paced utterance, it occludes the 

release of the /t/ and the onset of the preceding /k/ in the fast spoken utterance. Due to the 

change in speaking rate, the degree of overlap between the gestures shown in the bottom 

three plots in Figure 1.6 are altered. As expected from the acoustics, the gesture for the lip 

closure of the /m/ is overlapped more with the tongue body gesture for the /k/ and the tongue 

tip gesture for the /t/ in the fast spoken utterance. However, the overall gestural pattern is the 

same. This result points to the invariance property of gestures. Given different variations of 

the same utterance, the degree of overlap between the gestures as well as the duration of each 

gesture might vary, but the overall gestural pattern will remain the same. Thus, while the 

acoustic information about the /k/and /t/ is not apparent in the fast spoken utterance (which is 

closest to what we expect in casual spontaneous speech), the articulatory information about 

these obstruents is obvious. 

 

 

 
Figure 1.6 Waveforms, spectrograms, gestural activations and TVs for utterance ‘perfect-

memory’ (Tiede et al., 2001), when (a) clearly articulated (b) naturally spoken and (c) fast 

spoken. TB:  vertical displacement for tongue-body transducer, TT: vertical displacement for 

tongue tip transducer and LA:  lip aperture measured from upper and lower lip transducers 
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1.3 Objectives of this study 

The goal of this study is to propose an ASR architecture inspired by articulatory phonology 

that models speech as overlapping articulatory gestures (Browman & Goldstein, 1989, 1992) 

and can potentially overcome the limitations of phone-based units in addressing variabilities 

in speech. To be able to use gestures as ASR units, they somehow need to be recognized from 

the speech signal. One of the primary goals of this research is to evaluate if articulatory 

gestures and their associated parameters can indeed be estimated from the acoustic speech 

signal. Some of the specific tasks performed in this research are stated below:  

• In section 4.2, we present a model that recognizes speech articulatory gestures from 

speech (we name this model as the gesture-recognizer). We will explore different 

input conditions to obtain a better acoustic representation for articulatory gesture 

recognition. We will investigate the use of TVs as possible input and since we cannot 

expect to have prior knowledge about the TVs, we need to explore different ways to 

estimate TVs from a speech signal, motivating the task specified in the next bullet. 

• In section 4.1, we explore different models (based on support vector regression, 

artificial neural networks, mixture density networks, etc.) to reliably estimate TVs 

from the speech signal (we name these models as the TV-estimators) and compare 

their performance to obtain the best model among them. Estimation of the TVs from 

the speech signal is a speech-inversion problem. Traditionally flesh-point articulatory 

information also known as pellet trajectories (Ryalls & Behrens, 2000; Westbury, 

1994) has been used widely to perform speech inversion. In section 4.1.3.1 we will 

show that TVs are a better candidate for speech inversion than the pellet trajectories. 

• In sections 4.3.2.1 and 4.3.2.2 we report the performance of the TV-estimator when 

the speech signal has been corrupted by noise.  
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• To analyze the suitability of TVs and gestures as a possible representation of speech 

for ASR systems, we will use the estimated TVs and the recognized gestures for 

performing ASR experiments with clean and noisy speech in section 4.3 and report 

their results. 

• The experimental tasks specified above were all carried out using synthetic speech 

created in a laboratory setup. This approach is used because no natural speech 

database existed with gestural and TV annotations. Thus groundtruth TVs and 

gestural scores could only be obtained for synthetic speech. In chapter 5, we present 

an automated iterative time-warping algorithm that performs gestural score and TV 

annotation for any natural speech database. We annotate two databases: X-ray 

microbeam (XRMB [Westbury, 1994]) and Aurora-2 (Pearce & Hirsch, 2000) with 

gestural score and TV annotation and some analysis of the annotated data is 

presented. 

• In chapter 6, we train the TV-estimator using the TV-annotated natural database and 

present the results. In section 6.1 we compare the speech inversion task on the 

XRMB data using TVs and pellet trajectories and show that TVs can be estimated 

more accurately than the pellet trajectories. Further, we show that the acoustic-to-

articulatory mapping for the pellet trajectories are more non-unique than the TVs 

• Finally in section 6.2 we propose and realize a gesture-based Dynamic Bayesian 

Network (DBN) architecture for an utterance recognition task, where the utterances 

consist of digit strings from the Aurora-2 database. The recognizer uses the estimated 

TVs and acoustic features as input, and performs utterance recognition on both clean 

and noisy speech. 
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Chapter 2: Background: Robust Approaches to ASR 

Spontaneous speech typically has an abundance of variability, which poses a serious 

challenge to current ASR systems. Such variability has three major sources: (a) the speaker, 

introducing speaker specific variations such as dialectical - accentual - contextual variation, 

(b) the environment, introducing different background noises and distortions and (c) the 

recording device, which introduces channel variations and other signal distortions. In this 

dissertation we focus on (a) and (b). Usually contextual variability and noise-robustness are 

considered as two separate problems in ASR research. However while addressing speech 

variability in ASR systems, Kirchhoff (1999) and her colleagues (Kirchhoff et al., 2002) 

showed that articulatory information can improve noise robustness while addressing speech 

variability due to coarticulation in speech. To account for variability of speech in ASR 

systems, Stevens (1960) suggested incorporating speech production knowledge into the ASR 

architecture. Incorporating speech production knowledge into ASR architecture is 

challenging because unlike acoustic information, speech production information (such as 

vocal tract shapes, articulatory configurations, their trajectories over time, etc.) is not 

explicitly available in usual ASR situations. Hence, the first logical step to introduce speech 

production knowledge into ASR is to estimate or recover such information from the acoustic 

signal. Two broad classes of articulatory information have been explored widely in literature: 

direct articulatory (recorded) trajectories and hypothesized articulatory features that are 

somehow deciphered from the acoustic signal. Landmark based systems were the offspring of 

both speech production and perception models, which targets to characterize linguistically 

important events. The different feature systems and approaches that aim to address speech 

variability and noise-corruption in ASR systems are detailed in this section. 

 

 



 13 
 

2.1 Approaches that capture articulatory trajectories 

The most direct way to capture articulatory information from speech is by placing transducers 

on different speech articulators and recording their movements while speech is generated. 

Such flesh-point articulatory trajectories had been exhaustively studied in the literature. 

Figure 2.1 shows the pellet placements for X-Ray MicroBeam (XRMB) dataset (Westbury, 

1994). XRMB dataset contains recordings of articulator motions during speech production. 

The data is generated by tracking the motions of 2-3 mm diameter gold pellets glued to the 

tongue, jaw, lips, and soft palate. There are several other techniques to track articulatory 

events during speech, for example, Electromyography, Electropalatography (EPG), 

Electromagnetic Midsagittal Articulography (EMA) (Ryalls & Behrens, 2000) etc. Several 

studies have tried to estimate articulatory information from speech signal, a line of research 

commonly known as the ‘acoustic-to-articulatory’ inversion or simply speech inversion. 

Speech inversion or acoustic-to-articulatory inversion of speech has been widely researched 

in the last 35 years. One of the earliest and ubiquitously sited works in this area was by Atal 

et al. (1978), whose model used four articulatory parameters: length of the vocal tract, 

distance of the maximum constriction region from the glottis, cross sectional area at the 

maximum constriction region and the area of the mouth opening. At regular intervals they 

sampled the articulatory data to come up with 30,720 unique vocal tract configurations. For 

each configuration, they obtained the frequency, bandwidth and the amplitudes of the first 

five formants to define the corresponding acoustic space. Thus, given information in acoustic 

space, their approach would yield the corresponding vocal tract configuration. 

Following the approach laid out Atal et al. (1978), Rahim et al. (1991, 1993) used an 

articulatory synthesis model to generate a database of articulatory-acoustic vector pairs. The 

acoustic data consisted of 18 Fast-Fourier Transform (FFT) derived cepstral coefficients, 

whereas the articulatory data is comprised of 10 vocal tract areas and a nasalization 
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parameter. They trained Multi-Layered Perceptrons (MLP) to map from acoustic data to the 

vocal tract area functions. The articulatory-acoustic data pairs were obtained by random 

sampling over the manifold of reasonable vocal tract shapes within the articulatory parameter 

space of Mermelstein’s articulatory model (Mermelstein, 1973). However the limitation to 

their approach was inadequate sampling strategy, as random sampling may select those 

physiologically-plausible articulatory configurations that may not be so common in typical 

speech. To address this fact Ouni & Laprie (1999) sampled on articulatory space such that the 

inversion mapping is piece-wise linearized. Their sampling strategy was based upon the 

assumption that the articulatory space is contained within a single hypercube, sampling more 

aggressively in regions where the inversion mapping is complex and less elsewhere. Shirai & 

Kobayashi (1986) proposed an analysis-by-synthesis approach, which they termed as Model 

Matching. In this approach real speech is analyzed to generate articulatory information and 

then the output is processed by a speech synthesizer such that it has minimal distance from 

the actual speech signal in the spectral domain. However, this approach severely suffered 

from computational overhead that led Kobayashi et al. (1985) to propose a two-hidden layer 

feed-forward MLP architecture that uses the same data as used by Shirai & Kobayashi, 

(1986), to predict the articulatory parameters. The approach in (Kobayashi et al., 1985) was 

found to be 10 times faster than (Shirai & Kobayashi, 1986) and also offered better 

estimation accuracy. Regression techniques have been explored a number of times for speech 

inversion. Ladefoged et al. (1978) used linear regression to estimate the shape of the tongue 

in midsagittal plane, using the first three formant frequencies in constant vowel segments.   
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Figure 2.1 Pellet placement locations in XRMB dataset (Westbury, 1994) 

 

Use of neural networks for speech-inversion has become much popular since the ubiquitously 

cited work by Papcun et al. (1992). They used MLPs to perform speech inversion to obtain 

three articulatory motions (y-coordinates for the lower lip, tongue tip and tongue dorsum) for 

six English stop consonants in XRMB. They used data recorded from three male, native 

American English speakers, who uttered six non-sense words. The words had repeated [-Cə-] 

syllables, where ‘C’ belonged to one of the six English oral stop consonants /p,b,t,d,k,g/. The 

MLP topology was decided based upon trial-and-error and the optimization of the topology 

was based upon minimizing the training time and maximizing the estimation performance. 

The network was trained using standard backpropagation algorithm. An important 

observation noted in their study was, trajectories of articulators considered critical for the 

production of a given consonant demonstrated higher correlation coefficients than for those 

who were considered non-critical to the production of that consonant. This observation was 

termed as the ‘Critical articulator phenomenon’. It should be noted here that this phenomenon 

may be better observed in TVs as opposed to the pellet-location based articulatory data as the 

critical articulation can be better defined by TVs modeling vocal-tract constriction than pellet 

traces. Due to this phenomenon they observed that for a given consonant, the critical 

articulator dynamics were found to be much more constrained than that of the non-critical 

ones. This observation was further supported by Richmond (2001), who used Mixture 
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Density Networks (MDN) to obtain the articulator trajectories as conditional probability 

densities of the input acoustic parameters. He showed that the conditional probability density 

functions (pdf) of the critical articulators show very small variance as compared to the non-

critical articulator trajectories. He also used Artificial Neural Networks (ANNs) to perform 

articulator estimation task and showed that the MDNs tackle the non-uniqueness issue of 

speech inversion problem more appropriately than the ANNs. Non-uniqueness is a critical 

issue related to acoustic-to-articulatory inversion of speech, which happens due to the fact 

that different vocal tract configurations can yield similar acoustic realizations, a most trivial 

example would be the difference between bunched and retroflex /r/ (Espy-Wilson et al., 

1999, 2000). 

 

Figure 2.2 Trajectories (vertical movement) of critical and non-critical articulators. Three 

articulators: tongue dorsum, tongue tip and lower lip vertical trajectories are shown here for 

labial, coronal and velar sounds. Figure borrowed from Papcun et al. (1992) 

  

The approach taken by Papcun et al. (1992) was further investigated by Zachs & Thomas 

(1994), however they used a different dataset than Papcun et al. (1992) and estimated eight 
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articulatory channels, i.e., x and y coordinates for tongue tip, tongue body, tongue dorsum 

and lower lip. They used a new error function called “Correlation and Scaling Error” and 

showed a significant improvement in estimation accuracy using their error function as 

opposed to the default mean square error criteria in ANNs.  

In a different study, Hogden et al. (1996) used a vector quantization to build a 

codebook of articulatory-acoustic parameter pairs. However their dataset was highly 

constrained containing 90 vowel transitions for a Swedish male subject in the context of two 

voiced velar oral stops. They built a lookup table of articulatory configurations and used the 

lookup table along with the codebook to estimate articulator positions given acoustic 

information. They reported an overall average Root Mean Square Error (RMSE) of 

approximately 2mm. A similar codebook approach was pursued by Okadome et al. (2000) 

who used a large dataset recorded from three Japanese male speakers. They also augmented 

the codebook search process by making use of phonemic information of an utterance. The 

average RMSE reported by their algorithm was around 1.6mm when they used phonemic 

information to perform the search process.  

Efforts have also been made in implementing dynamic models for performing speech 

inversion. Dusan (2000) used Extended Kalman Filter (EKF) to perform speech inversion by 

imposing high-level phonological constraints on the articulatory estimation process. In his 

approach Dusan (2000) segmented the speech signal into phonological units, constructed the 

trajectories based on the recognized phonological units, and used Kalman smoothing to 

obtain the final. Dynamic model based approaches are typically found to work exceptionally 

well for vowel sounds, but have failed to show promise for consonantal sounds.  

Frankel & King (2001) built a speech recognition system that uses a combination of 

acoustic and articulatory features as input. They estimated the articulatory trajectories using a 

recurrent ANN with 200ms input context window and 2 hidden layers. In their work they 

have used both the articulatory data obtained from direct measurements as well as from 
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recurrent ANN estimation. They modeled the articulatory trajectories using linear dynamic 

models (LDM). These LDMs are segment specific, that is, each model describes the 

trajectory associated with each phone. Since the articulatory data used in their research lacked 

voicing information, they decided to use MFCC based feature set or exclusive features that 

captures zero crossing rate and voicing information (Frankel et al., 2000). Phone models were 

trained using the expectation maximization (EM) rule. Phone classification was performed 

segment wise where the probability of the observations given the model parameters for each 

phone model was calculated. The phone classification accuracies from using estimated 

articulatory data did not show any improvement over the baseline MFCC based ASR system. 

However, using articulatory data from direct measurements in conjunction with MFCCs 

showed a significant improvement (4% in [Frankel et al., 2000] and 9% in [Frankel & King 

2001]) over the baseline system. They also observed the ‘Critical articulator phenomenon’ in 

their work and claimed that the knowledge about the critical and non-critical articulators may 

be necessary for an ASR system that relies upon articulator data. They claimed that 

recovering all the articulatory information perfectly over all the time should not be the goal of 

the speech-inversion module necessary for an ASR system; instead focus should be made to 

accurately estimate the critical articulators responsible for each segment of speech.  

 

2.2 Phonetic features and their usage in ASR 

Phonetic features are a set of descriptive parameters used in order to account for the 

phonological differences between phonetic units (Laver, 1994; Clements & Hume, 1995) of a 

language. The features may be based on articulatory movements, acoustic events or 

perceptual effects (Clark & Yallop, 1995). Ladefoged (1975) proposed a feature system 

where voicing is described as a glottal activity and has five values: glottal stop, laryngialized, 

voice, murmur and voiceless. Similarly Lindau (1978) proposed a feature system where the 
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voicing or the glottal stricture is represented by different shapes of the glottis and are 

specified in terms of the values of glottal stop, creaky voice, voice, murmur and voiceless. A 

phonetic segment is defined as a discrete unit of speech that can be identified by a relatively 

constant phonetic feature(s). A given feature may be limited to a particular segment but may 

also be longer and are termed as the suprasegmental feature or may be shorter and are termed 

as the sub-segmental feature. Segments, usually phonological units of the language, such as 

vowels and consonants are of very short duration; typically a speech segment lasts 

approximately 30 to 300 msec. Utterances are built by linear sequence of such segments. 

Phonetic segments form a syllable, where syllables can also be defined in phonological terms. 

Different phonetic features have been proposed and different approaches introduced to obtain 

such phonetic features from speech signal. This section presents some of those approaches 

and presents their performance when applied to ASR. 

 

2.2.1 Features capturing articulator location  

The articulatory feature (AF) concept in literature parallels the “distinctive features” (DF) 

concept of phonological theory (Chomsky & Halle, 1968). Though there exists some strong 

similarity between the AFs and DFs, but there are some subtle differences too. DFs consist of 

both articulator-free and articulator-bound features (Stevens, 2002) defining phonological 

feature bundles that specify phonemic contrasts used in a language. On the contrary AFs 

define more physiologically motivated features based on speech production; hence they are 

fully articulator-bound features. Stevens (2002) proposed a lexical representation that is 

discrete in both how the words are represented as an ordered sequence of segments and how 

each of those segments is represented by a set of categories. Such discrete set of categories 

are motivated by acoustic studies of sounds produced from different manipulation of the 

vocal tract. For example, vowels typically are generated when the oral cavity is relatively 

open with glottal excitation. On the contrary consonants have a narrow constriction in the oral 
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regions, the results are that the vowels usually have greater intensity than consonants and the 

low and mid frequency regions for consonants have weaker energy than the vowels. Reduced 

spectrum amplitude a kin to consonants can also be observed in case of glides (/w/ and /j/), 

where constriction is not created in the oral cavity but similar effects are produced due to the 

rise of the tongue dorsum producing a narrowing between the tongue and the palate, in case 

of /j/ or by rounding of lips in /w/. Stevens (2002) proposed that consonantal segments can be 

further sub-classified into three articulator-free features: continuant, sonorant and strident. 

For vowel, glide and consonant regions, articulator-bound features can be used, such as lips, 

tongue blade, tongue body etc., which determines which articulator is active for generating 

the sound at that specific region. Kirchhoff (1999) points out that some DFs such as syllabic 

and consonantal have the purpose of categorizing certain classes of speech sound but have no 

correlation or relationship to the articulatory motions. On the contrary the AFs are strong 

correlates of the articulatory space but have no direct functional dependency on acoustic 

space. ASRs that use DFs or acoustic-phonetic features, try to define high-level units, such as 

phones, syllables or words based on predefined set of such features for the language of 

interest.  

Early attempts to exploit speech production knowledge in ASR systems were very 

limited in scope. From late 70s to early 90s of 20th century, most of the research efforts 

(Fujimura, 1986; Cole et al., 1986; De Mori et al., 1976; Lochschmidt, 1982) were focused 

on trying to decipher features from acoustic signal, which were largely acoustic-phonetic in 

nature. The CMU Hearsay-II system (Goldberg & Reddy, 1976) and the CSTR Alvey 

recognizer (Harrington, 1987) used acoustic-phonetic features. One of the earliest systems 

trying to incorporate AFs was proposed by Schmidbauer (1989), which was used to recognize 

speech in German language using 19 AFs that described the manner and place of articulation. 

The AFs were detected from preprocessed speech using a Bayesian classifier. The AF vectors 

were used as input to phonemic HMMs and an improvement of 4% was observed over the 
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baseline for a small database. It was also observed that the AF features were robust against 

speaker variability and showed lesser variance of recognition accuracy for different phonemic 

classes as compared to the standard HMM-MFCC baseline. Self Organizing Neural Network 

(SONN) was used by Daalsgard (1992) and Steingrimsson et al. (1995) to detect acoustic-

phonetic features for Danish and British English speech. The SONN output was used by a 

multivariate Gaussian mixture phone models for automatic label alignments. In a different 

study, Eide et al. (1993) used 14 acoustic-phonetic features for phonetic broad class 

classification and keyword spotting in American English speech. The features used in his 

research had both phonetic representation and articulatory interpretation. Using their feature 

set, they reported a classification accuracy of 70% for phoneme classification on TIMIT 

database. They showed significant improvement in performance when the baseline MFCC 

based system was combined with their feature set.  

One of the earliest efforts to create a speech-production model inspired ASR system 

was by Deng (1992), where HMM states generated trended-sequence of observations, where 

the observations were piece-wise smooth/continuous. Deng et al. (1991, 1994[a, b]) and Erler 

& Deng (1993) performed an exhaustive study on articulatory feature based system, where 

they used 18 multi-valued features to describe place of articulation, vertical and horizontal 

tongue body movement and voice information. In their system they modeled the speech 

signal as rule-based combination of articulatory features where the features at transitional 

regions were allowed to assume any intermediate target value between the preceding and 

succeeding articulatory target values. They modeled each individual articulatory vector as 

HMM states and trained a single ergodic HMM, whose transition and emissions were trained 

using all possible vectors. They reported an average improvement of 26% over the 

conventional phone based HMM architecture for speaker independent classification task. 

Phone recognition for TIMIT dataset showed a relative improvement of at least 9% over the 

baseline system. For speaker-independent word recognition using a medium sized corpus, 
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they reported a relative improvement of 2.5% over single-component Gaussian mixture 

phone recognizer.  

A phonetic-feature classification architecture was presented by Windheuser et al. 

(1994), where 18 features were detected using a time-delay neural network. The outputs were 

used to obtain phoneme probabilities for ALPH English spelling database. Hybrid 

ANN/HMM architecture was proposed by Elenius et al. (1991, 1992) for phoneme 

recognition; where they compared spectral representations against articulatory features. For 

speaker independent phoneme recognition they reported that the articulatory feature based 

classifier performed better than the spectral feature based classifier; however for speaker 

dependent task the opposite was true. 

King & Taylor (2000) used ANNs to recognize and generate articulatory features for 

the TIMIT database. They explored three different feature systems: binary features proposed 

by Chomsky & Halle (1968) based on Sound Pattern of English (SPE), traditional phonetic 

features defining manner and place categories, and features proposed by Harris (1994) that 

are based on Government Phonology (GP). The recognition rate of the three feature systems 

showed similar performance. In a different study Kirchhoff et al. (1999, 2002) used a set of 

heuristically defined AFs to enhance the performance of phone based systems. She showed 

that incorporating articulatory information in an ASR system helps to improve its robustness. 

The AFs used in her work, describes speech signal in terms of articulatory categories based 

on speech production models. The proposed AFs do not provide detailed numerical 

description of articulatory movements within the vocal tract during speech production; 

instead they represent abstract classes characterizing the most critical aspects of articulation 

in a highly quantized and canonical form (Kirchhoff, 1999). These AFs provide a 

representation level intermediate between the signal and the lexical units, for example: 

voiced/unvoiced, place and manner of articulation, lip-rounding etc. Acoustic signal was 

parameterized to acoustic features and a single hidden-layer MLP was used to derive the AFs 
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given the acoustic features. She argued that the proposed AFs by itself or in combination with 

acoustic features will lead to increased recognition robustness against background noise. It 

was also demonstrated by Kirchhoff (1999) that the effectiveness of noise robustness of such 

a system increases with a decrease in the Signal-to-Noise ratio (SNR), which would be highly 

desirous from a robust ASR system. Her approach using articulatory AFs has shown success 

when used in conjunction with MFCCs in noisy conditions (Kirchhoff, 1999), based on this 

she inferred that AF and MFCC representation may be yielding partially complementary 

information and hence neither of them alone are providing better recognition accuracies than 

when both of them are used together.  

ANNs have been extensively used in AF recognition from the speech signal. Wester 

et al. (2001) and Chang et al. (2005) proposed separate place classifiers for each manner 

class. Omar & Hasegawa-Johnson (2002) used a maximal mutual information approach to 

obtain a subset of acoustic features for the purpose of AF recognition. HMMs have also been 

researched widely for AF recognition. Metze & Waibel (2002) proposed context-dependent 

HMM phone models to generate an initial AF set, which were later replaced by a set of 

feature detectors that uses a likelihood combination at the phone or state level. In their 

research they showed a WER reduction from 13.4% to 11.6% on a Broadcast news database 

with a 40k dictionary. They also showed a reduction in WER from 23.5% to 21.9% for the 

Verbmobil task, which contains spontaneous speech.  

Dynamic Bayesian Networks (DBN) has also been explored for the purpose of AF 

recognition. The major advantage of DBN is its capability to model explicitly the inter-

dependencies between the AFs. Also a single DBN can perform both the task of AF 

recognition and word recognition, which further strengthens the claim for applicability of 

DBNs in AF based ASR system. One of the earlier works using DBN for the task of AF 

recognition was performed by Frankel et al. (2004). It was observed that modeling inter-

feature dependencies improved the AF recognition accuracy. In their work, they created 
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phone-derived AFs and set that as the standard, by modeling inter-feature dependencies; they 

observed an improvement in overall frame-wise percentage feature classification from 80.8% 

to 81.5% and also noted a significant improvement in overall frame wise features 

simultaneously correct together from 47.2% to 57.8%. However tying AF features to phone 

level information overlooks the temporal asynchrony between the AFs. To address this issue 

an embedded training scheme was proposed by Wester et al. (2004), which was able to learn 

a set of asynchronous feature changes from data. Their system showed a slight increase in 

accuracy for a subset of the OGI number corpus (Cole et al., 1995) over a similar model 

trained on phone-derived labels. Frankel & King (2005) proposed a hybrid ANN/DBN 

architecture, where the Gaussian Mixture Model (GMM) observations used by the DBNs are 

replaced by ANN posteriors. This hybrid ANN/DBN architecture combined the 

discriminative training power of ANN and the inter-feature dependency modeling capability 

of the DBN. The feature recognition accuracy reported in their paper for the OGI Number 

corpus was reported as 87.8%. 

Livescu et al. (2007a) presented a database of spontaneous speech which was 

manually labeled at the articulatory feature level. They considered a small subset of the 

Switchboard corpus and transcribed it for eight tiers of AFs. For transcription they began with 

phone alignments and used hybrid phone feature labeling to manually replace a canonical 

phone region with AFs. For the regions that were devoid of canonical phone information, 

they manually specified AFs based on information from Wavesurfer (2006). The resulting 

data consisted of 78 utterances drawn from SVitchboard (King et al., 2005) which is a subset 

of the Switchboard corpus. Their work also shows inter-transcriber agreement and the degree 

to which they used the articulatory feature tiers. One of the most important attributes of this 

database was that it allowed some inter-AF overlapping, which was not used in any of the AF 

based systems or databases proposed before. In a different study, Cetin et al. (2007) proposed 

a tandem model of MLP and HMM as an ASR system. The MLPs were used for AF 
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classification and the HMM outputs used a factored observation model. Their proposed 

tandem model using AFs was found to be as effective as the phone-based model. Also, the 

factored observation model used in their research was found to outperform the feature 

concatenation approach, which indicated that the acoustic features and tandem features yield 

better results when considered independently rather than jointly. At the 2006 Johns Hopkins 

University Workshop, Livescu et al. (2007b) investigated the use of AFs for the observation 

and pronunciation models for ASR systems. They used the AF classifier outputs in two 

different ways (1) as observations in a hybrid HMM/ANN model and (2) as a part of the 

observation in a tandem approach. In this work they used both audio and visual cues for 

speech recognition and the models were implemented as DBNs. They used SVitchboard 

(King et al., 2005) and the CUAVE audio-visual digits corpus to analyze their approach. 

They observed that the best ASR performance came from the tandem approach, where as the 

hybrid models though couldn’t offer the best accuracy but required a very little training data. 

They predicted that hybrid model based approaches may hold promises for multi-lingual 

systems. Hasegawa-Johnson et al. (2007) exploited the asynchrony between phonemes and 

visemes to realize a DBN based speech recognition system. They noted that the apparent 

asynchrony between acoustic and visual modalities can be effectively modeled as the 

asynchrony between articulatory gestures corresponding to lips, tongue and glottis/velum. 

Their results show that combining visual cues with acoustic information can help reduce the 

WER at low SNR and the WER is found to further reduce if the asynchronies amongst 

gestures are exploited.  

To address the issue of coarticulation modeling in speech recognition systems, Sun & 

Deng (1998) proposed an overlapping feature-based phonological model, which provides 

long-term contextual dependency. Influenced by the concept of gestural phonology 

(Browman & Goldstein, 1989, 1992) and autosegmental phonology (Goldsmith, 1990) they 

aimed to perform pronunciation or lexical modeling. Their framework is based on sub-
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phonemic, overlapping articulatory features where the rules governing the overlapping 

patterns are described by finite state automata. In such a framework, each state in the 

automaton corresponds to a bundle of features with specified relative timing information 

(Deng, 1997). They reported a word correct rate of 70.9% and word accuracy rate of 69.1% 

using bigram language model for the TIMIT dataset. They also proposed (Sun et al., 2000 [a, 

b]) a data-driven approach to derive articulatory-feature based HMMs for ASR systems. They 

used University of Wisconsin’s X-ray Microbeam database (Westbury, 1994) and created 

regression tree models for constructing HMMs. In their feature-based phonological model, 

patterns of overlapping features are converted to an HMM state transition network, where 

each state encodes a bundle of overlapping features and represents a unique articulatory 

configuration responsible for producing a particular speech acoustics. In their model 

asynchrony between the features are preserved. When adjacent features overlap with each 

other asynchronously in time, they generate new states which either symbolizes a transitional 

stage between two subsequent segments or an allophonic alteration due to contextual 

influence. They claimed that as their feature has long-time contextual dependency modeled 

appropriately in terms of bundle of overlapping features, hence should show improvements in 

ASR results over the phone-based models, as di- or tri-phone based models only incorporate 

short term or immediate phonemic contextual dependence. Their data-driven overlapping 

feature based system (Sun & Deng, 2002) showed an improvement in ASR performance for 

the TIMIT dataset, where they reported a phone correct rate of 74.7% and phone recognition 

accuracy of 72.95 as opposed to 73.99% and 70.86% from the conventional tri-phone system.  

 

2.2.2 Landmark based feature detection 

The Landmark based ASR models are inspired by the human speech production and 

perception mechanism. Landmark based ASR systems proposed by Stevens (2000b, 2002) 

use a feature based representation of the acoustic waveform and such a system helps to 
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hypothesize locations of landmarks. The landmarks are identified as points in the speech 

signal corresponding to important events such as consonantal closures and release bursts. 

Some landmarks in an essence indicate articulator free features, such as continuants and 

sonorants. Based on the detected landmarks, various acoustic-phonetic cues, such as formant 

frequencies, hilbert envelop, duration of frication, spectral amplitudes, etc, are extracted 

around the landmark regions which are used to determine articulator-bound distinctive 

features, such as place of articulation, nasality etc. The hypothesized features are then 

compared against the feature based lexical entries corresponding to a word or a phone.  

Several different implementations of landmark based systems exist but none of them 

has realized a full blown ASR system. Most of the research proposed in this field deals with 

some aspect of the landmark theory that is detecting the landmark regions, obtaining broad 

class information etc. Vowel landmarks were detected by Howitt (1999) using simple MLPs. 

Choi (1999) proposed a way to detect consonant voicing using knowledge based cues at 

manually-labeled landmarks. A landmark based ASR system has been proposed in Johns 

Hopkins summer workshop of 2004 (Hasegawa-Johnson et al., 2005), which built three 

prototype ASR systems based on Support Vector Machines (SVM), Dynamic Bayesian 

Networks (DBN) and maximum entropy classification. They created a more feature-based 

representation of words as opposed to a phonetic one and compared their proposed models 

against the current state-of-the-art ASR model for conversational telephonic speech. 

Unfortunately, none of them were able to surpass the latter in terms of performance. They 

used an SVM based approach to detect both landmarks and the presence or absence of 

distinctive features. However they noted that their SVM based approach performed binary 

phone detection and classification with a very low error rate. They observed that a DBN 

based pronunciation model coupled with a SVM phonetic classifier was able to correctly 

label the underlying articulatory changes in the regions of pronunciation variation. They also 

noted that in their architecture it was possible to use a rescoring strategy that successfully 
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chose salient landmark differences for alternate recognizer hypothesized words and 

performed landmark detection to obtain a better hypothesis.  

Use of landmarks does not imply explicit use of speech production knowledge, but 

mostly reflects a hybridization between phone-based and articulatory feature based approach. 

The MIT-SUMMIT speech recognition system by Glass (2003) formalizes some of the 

landmark-based concepts proposed by Stevens (2002) in a probabilistic framework. In the 

SUMMIT system, potential phone boundary landmarks were located first and those were 

used by the phone-based dictionary to represent words. Different landmark detection 

algorithms (Chang & Glass, 1997; Glass, 1988] and acoustic cues (Halberstadt & Glass, 

1998; Muzumdar, 1996] have been implemented in the SUMMIT system. SUMMIT operates 

either in the boundary based mode, where the phonetic boundary landmarks are explicitly 

modeled; or in a segment based mode, where the regions between the landmarks are modeled. 

Tang et al. (2003) proposed a two-stage feature based approach where they have used 

SUMMIT in a combined phone-feature setup for word recognition.  

One of the first landmark systems that used SVMs for landmark detection was 

proposed by Juneja (2004) and Juneja & Espy-Wilson (2003 [a, b], 2008), where SVM 

discriminant scores were converted to likelihood estimates and a modified Viterbi scoring 

was done using a phonetic base-form dictionary, which was mapped to distinctive features. 

They named their system as the event-based system or the EBS. In their system, they 

hypothesized the speech recognition problem as a maximization of the joint posterior 

probabilities of a set of phonetic features and the corresponding acoustic landmarks (Juneja, 

2004). SVM based binary classifiers recognizing manner features like syllabic, sonorant and 

continuant were used which performed the probabilistic detection of speech landmarks. The 

landmarks (Juneja, 2004) included stop bursts, vowel onsets, syllabic peaks, syllabic dips, 

fricative onsets and offsets, and sonorant consonant onsets and offsets. The SVM classifiers 

used knowledge based acoustic parameters (APs) which were acoustic-phonetic feature 
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correlates. Their framework exploited two properties of the knowledge-based acoustic-

phonetic feature cues: (1) sufficiency of the acoustic cues for a phonetic feature and (2) 

context-invariance of the acoustic-phonetic cues. They claimed that the probabilistic 

framework of their system makes it suitable for a practical recognition task and also enables 

the system to be compatible with a probabilistic language and pronunciation model. Their 

results claimed that their proposed system (Juneja, 2004; Juneja & Espy-Wilson, 2008) 

offered performance comparable to HMM-based systems for landmark detection as well as 

isolated word recognition. 

 

2.3 Vocal Tract Resonances and Deep Architectures 

Apart from features capturing articulatory motions, other sources of information such as 

vocal tract shapes and vocal tract resonances (VTR) has been used to capture the dynamics of 

natural speech. Deng et al. (1997) and Deng (1998) proposed a statistical paradigm for 

speech recognition where phonetic and phonological models are integrated with a stochastic 

model of speech incorporating the knowledge of speech production. In such an architecture 

the continuous and dynamic phonetic information of speech production (in the form of vocal 

tract constrictions and VTRs) is interfaced with a discrete feature based phonological process. 

It is claimed (Deng, 1998) that such integration helps to globally optimize the model 

parameters that accurately characterize the symbolic, dynamic and static components in 

speech production and also contribute in separating out the sources of speech variability at 

the acoustic level. Their work (Deng et al., 1997) shows that synergizing speech production 

models with a probabilistic analysis-by-synthesis strategy may result in automatic speech 

recognition performance comparable to the human performance. Deng & Ma (2000) and Ma 

& Deng (2000) proposed a statistical hidden dynamic model to account for phonetic 

reduction in conversational speech, where the model represents the partially hidden VTRs 
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and is defined as a constrained and simplified non-linear dynamical system. Their algorithm 

computes the likelihood of an observation utterance while optimizing the VTR dynamics that 

account for long term context-dependent or coarticulatory effects in spontaneous speech. In 

their work the hidden VTR dynamics are used as an intermediate representation for 

performing speech recognition, where much fewer model parameters had to be estimated as 

compared to tri-phone based HMM baseline recognizers. Using the Switchboard dataset they 

have shown reduction (Deng & Ma, 2000; Ma & Deng, 2000) in word error rates when 

compared with baseline HMM models. Togneri & Deng (2003) used the hidden-dynamic 

model to represent speech dynamics and explored EKF to perform joint parameter and state 

estimation of the model. Deng et al. (2004) proposed an efficient VTR tracking framework 

using adaptive Kalman filtering, and experiments on the Switchboard corpus demonstrated 

that their architecture accurately tracks VTRs for natural, fluent speech. In a recent study, 

Deng et al. (2006) showed that a structured hidden-trajectory speech model exploiting the 

dynamic structure in the VTR space can characterize the long-term contextual influence 

among phonetic units. The proposed hidden-trajectory model (Deng et al., 2006) showed 

improvement in phonetic recognition performance on the TIMIT database for the four broad 

phone classes (sonorants, stops, fricatives and closures) when compared with the HMM 

baseline. 

Deep Learning architectures (He & Deng, 2008) were introduced in ASR paradigm to 

address the limited capability of the HMM-based acoustic models for accounting variability 

in natural speech. The main drawback of HMM architectures are their first order Markov 

chain assumption and the conditional independence assumption. Deep Learning architectures 

have the capability to model streams of mutually interacting knowledge sources by 

representing them in multiple representation layers. A recent study by Mohamed et al. (2009) 

has proposed a Deep Belief Network (Hinton et al., 2006) based acoustic model that can 

account for variability in speech stemming from the speech production process. A Deep 
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Belief Network is a probabilistic generative model consisting of multiple layers of stochastic 

latent variables (Mohamed et al., 2009). Restricted Boltzmann machines (RBMs), owing to 

their efficient training procedure are used as the building block for Deep Belief Networks. 

Mohamed et al. (2009) performed a phone recognition task to the TIMIT corpus using 

MFCCs with delta (velocity) and delta-delta (acceleration) as the acoustic features and 

reported a phone error rate of 23%, compared to 25.6% obtained from Bayesian triphone 

HMM model reported by Ming & Smith (1998). They have also shown that their system 

offers the least phone error rate compared to some previously reported results. Another recent 

study by Schrauwen et al. (2009) proposed using a Temporal Reservoir Machines (TRM) 

which is a generative model based on directed graphs of RBMs. Their model uses a recurrent 

ANN to perform temporal integration of the input which is then fed to an RBM at each time 

step. They used the TRM to perform word recognition experiments on the TI46 dataset 

(subset of TIDIGITS corpus) and have used the Lyon passive ear model to parameterize the 

speech signal into 39 frequency bands. The least WER reported in their paper is 7%. 

 

2.4 Noise Robust Approaches to Speech Recognition 

Several approaches have been proposed to incorporate noise robustness into ASR systems, 

which can be broadly grouped into three categories: (1) the frontend based approach, (2) the 

backend based approach and (3) the missing feature theory.  

Frontend based approaches usually aim to generate relatively contamination-free 

information for the backend classifier or model. Such approaches can be grouped into two 

sub-categories. First, the noisy speech signal is enhanced by reducing the noise contamination 

(e.g., spectral subtraction [Lockwood & Boudy, 1991], computational auditory scene analysis 

[Srinivasan & Wang, 2007], modified phase opponency model (MPO [Deshmukh et al., 

2007]), speech enhancement with auditory modeling using the ETSI system [Flynn & Jones, 
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2008], etc.), the enhanced signal is then parameterized and fed to the ASR system. Second, 

features effective for noise robustness are used to parameterize the speech signal before being 

fed to the ASR system (e.g., RASTAPLP [Hermansky & Morgan, 1994], Mean subtraction, 

Variance normalization and ARMA filtering (MVA) post-processing of cepstral features 

[Chen & Bilmes, 2007], cross-correlation features [Sullivan, 1996], variable frame rate 

analysis [You et al., 2004], peak isolation [Strope & Alwan, 1997] and more recently the 

ETSI basic [2003] and the ETSI advanced [2007] frontends, etc.).  

The backend based approach incorporates noise robustness into the backend of the 

ASR system, where the backend is typically a statistical model (usually a Hidden Markov 

Model (HMM)) for modeling different speech segments. The goal of the backend based 

systems is to reduce the mismatch between the training and the testing data. One such 

approach is to train the backend models using data that contain different types of noise at 

different levels (Kingsbury et al., 2002). However a shortfall to such a system is the necessity 

of knowledge of all possible noise type at all possible contamination levels, which renders the 

training data immensely huge if not unrealizable. An alternative is to adapt the backend to the 

background noise. For instance, Parallel Model Combination (PMC [Gales & Young, 1996]) 

uses the noise characteristic and the relation between the clean and noisy speech signals to 

adapt the Gaussian mixture means and covariances of clean acoustic HMMs toward the true 

distributions of the noisy speech features. Usually such transformation is fairly accurate but 

computationally expensive because the model parameters need to be updated constantly for 

non-stationary noise. Maximum Likelihood Linear Regression (MLLR [Leggetter & 

Woodland, 1995]) performs model adaptation by rotating and shifting the Gaussian mixture 

means of clean HMMs using linear regression without using any prior knowledge of the 

background noise. Piecewise-Linear Transformation (PLT) was proposed by Zhang & Furui 

(2004) for a modified version of MLLR where different noise types are clustered based on 

their spectral characteristics and separate acoustic models are trained for each cluster at 
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different Signal-to-Noise Ratios (SNR). During recognition, the best matched HMM is 

selected and adapted by MLLR.  

The third approach is the missing feature theory (Cooke et al., 2001; Barker et al., 

2000), which assumes that for noisy speech some spectro-temporal regions are usually so 

noisy that they can be treated as missing or unreliable. The missing feature approach tries to 

compute a time-frequency reliability mask to differentiate reliable regions from the unreliable 

ones where the mask can be binary (Cooke et al., 2001) or real valued (Barker et al., 2000). 

Once the mask is computed, the unreliable components are dealt with by two different 

approaches: (a) data imputation (Cooke et al., 2001) where the unreliable components are re-

estimated based on the reliable components and (b) marginalization (Cooke et al., 2001) 

where only the reliable components are used by the backend for recognition. Bounded 

Marginalization (BM) was proposed in (Josifovski et al., 1999) which generally outperforms 

“plain” marginalization. BM uses the knowledge that the unreliable data is bounded and the 

knowledge of such bounds is used to constrain the upper and lower bounds of the integral 

used for obtaining the likelihood of the incomplete data vector. 

Use of articulatory information has also been found to improve noise robustness in 

ASR systems, though their actual use was motivated to account coarticulatory variation. 

Kirchhoff (1999) was the first to show that such information can help to improve noise-

robustness of ASR systems as well. She showed that AFs in combination with MFCCs 

provided increased recognition robustness against the background noise (pink noise at four 

different SNRs). She concluded that the AFs and MFCCs may be yielding partially 

complementary information since neither alone provided better recognition accuracy than 

when both used together. In a different study, Richardson et al. (2003) proposed the Hidden 

Articulatory Markov Model (HAMM) that models the characteristics and constraints 

analogous to the human articulatory system. The HAMM is essentially an HMM where each 

state represents an articulatory configuration for each di-phone context, allowing asynchrony 
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amongst the articulatory features. They reported that their articulatory ASR system 

demonstrated robustness to noise and stated that the articulatory information may have 

assisted the ASR system to be more attuned to speech-like information. 

 

2.5 Speech Gestures as sub-word units 

Variations in speech can be better modeled by using articulatory gestures that refer to 

spatiotemporal behavior of discrete constricting actions in the vocal tract (Browman & 

Goldstein, 1989, 1992). Articulatory phonology (Browman & Goldstein, 1989) views an 

utterance as a constellation of speech articulatory gestures, where the gestures may 

temporally overlap with one another and may get spatially reduced. Gestures are constriction 

(constriction-forming and releasing) action units produced by distinct constricting organs 

(lips, tongue tip, tongue body, velum and glottis) along the vocal tract. 

Current ASR systems largely rely upon the contrastive features between the phonetic 

units to recognize one unit from another. Manuel & Krakow (1984) showed that the 

proximity of contrastive phonetic units affects coarticulation. Manuel (1990) examined 

vowel-to-vowel coarticulation across different languages and showed that it differs depending 

on how the languages divide the vowel space into contrastive units. It was observed that 

anticipatory coarticulation (when articulatory requirements of one phone are anticipated 

during the production of a preceding phone(s)) may produce contextually induced variability 

in the signal associated with the preceding phone(s). For example in a vowel-nasal sequence 

as in “pan”, the velum typically begins (and may complete) its lowering movement 

associated with the nasal /n/, while the vocal tract is still open for the vowel /ae/ and well 

before the oral occlusion for the /n/ is achieved. These observations suggest that 

coarticulation results in spilling-over its effect to the neighboring phones. It is also observed 

(Manuel, 1990) that coarticulation affects the very primitives of contrast between phones; 
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hence an ASR system using mono-phone acoustic model may be expected to suffer adversely 

due to coarticulatory effects. To overcome the limitations of mono-phone acoustic models, 

bi-phone or tri-phone acoustic models have been proposed that considers a set of two or three 

neighboring phones to construct the acoustic model. However these di-phone or tri-phone-

based ASR systems limit the contextual influence to only immediately close neighbors and 

require a significantly large training data to combinatorially generate all possible di-phone or 

tri-phone units. Such di-phone or tri-phone based models often suffer from data sparsity 

owing to the imbalance of available data for creating all possible di-phone or tri-phone 

models.  

It has been observed that speakers generally limit coarticulation in a way that it does 

not destroy the distinctive attributes of gestures (Martinet, 1957, Manuel & Karkow, 1984; 

Manuel, 1990). These output constraints are found to be functionally dependent upon 

language-particular systems of phonetic contrast. It was also observed that the degree of 

anticipatory coarticulation (Manuel, 1990) varies from language to language and also by the 

proximity of contrastive phonetic units. In a study on coarticulatory stability in American 

English /r/, Boyce & Espy-Wilson (1997) observed the interaction between /r/ and 

surrounding segments and stated that the phonological and coarticulatory interaction between 

/r/ and its surrounding phones can be described as ‘trajectory overlap’ and ‘sliding’ of /r/ 

related characteristics to the neighboring regions which accounts for the articulatory plan for 

/r/. 

Coarticulation is a property of action that can only occur when discrete actions are 

sequenced (Fowler, 2003), it has been described in a variety of ways: such as spreading of 

features from one segment to another or as assimilation. For example in case of ‘strewn’, the 

coarticulatory effects of /u/ can cause some degree of anticipatory rounding throughout the 

/str/ sequence. This shows that coarticulatory effects can reach beyond adjacent phonemes 

and hence such effects are not covered by traditional tri-phone inventories.  Fowler (2003) 
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states that coarticulation can be tracked more transparently when articulatory activity is 

tracked, in such a case coarticulation is a temporal overlap of articulatory activity for 

neighboring consonants and vowels. In such an overlapping model, overlap can occur both in 

anticipatory (right-to-left) and carryover (left-to-right) direction. This phenomenon can be 

modeled by gestural overlap and is typically identified as coproduction. The span of such 

overlap can be segmentally extensive (Ohman, 1966; Recasens, 1984; Fowler & Brancazio, 

2000) but may not be more than 250ms (Fowler & Saltzman, 1993). A consonantal duration 

can often be less than 100ms, which suggests that in consonantal context, coarticulatory 

effects can theoretically spill-over to more than a tri-phone context.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 37 
 

Chapter 3: Tools and Databases 

In this study, speech variability is dealt with by modeling the speech signal as a bundle of 

overlapping articulatory gestures, where the degree and extent of overlap between the 

gestures are determined by those of coarticulatory effects. Speech gestures can be defined as 

constricting actions for distinct organs/constrictors along the vocal tract. The organs/ 

constrictors are the lips, tongue tip, tongue body, velum and the glottis. Each gesture is 

dynamically coordinated with a set of appropriate articulators. A word can be defined as a 

constellation of distinct gestures (gestural scores). For a given word’s gestural score, the 

TAsk Dynamics Application model (TADA) developed at Haskins laboratories (Nam et al., 

2004) computes the inter-articulatory coordination and outputs the time functions of the vocal 

tract variables or TVs (both degree and location variables of the constrictors) and model 

articulator variables.  

This dissertation aims to model coarticulation in terms of speech articulatory 

gestures. Unfortunately the spontaneous speech databases available for ASR do not come 

with any gestural specification; hence to obtain a proof of concept for our approach, TADA 

was used to generate a set of databases that contain synthetic speech along with their 

articulatory information in the form of articulatory gestures, TVs and pellet trajectories. 

These synthetic databases were used to perform a set of initial studies to ascertain whether 

articulatory gestures can be effectively recognized from the speech signal and the recognized 

gestures can further be a set of viable units for ASR. Finally, to confirm our observations 

made from our initial studies with synthetic speech, we performed similar experiments on 

natural speech, which requires a natural speech corpus with gestural and TV annotation. In 

order to annotate gestural scores and TVs for natural speech, we developed an iterative 

landmark-based time-warping procedure to time-warp synthetic speech onto a given natural 
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speech. This technique is presented in section 5. The following subsection presents detail 

about the TADA model and the speech databases used in this dissertation. 

 

3.1 The TAsk Dynamic and Applications Model 

The TAsk Dynamic and Applications (TADA) model (Nam et al., 2004) is Haskins 

laboratories articulatory speech production model that includes a task dynamic model and a 

vocal tract model. The task-dynamic model of speech production (Saltzman & Munhall, 

1989; Nam et al., 2004) employs a constellation of gestures with dynamically specified 

parameters (gestural scores), as a model input for an utterance. The model computes task-

dynamic speech coordination among the articulators, which are structurally coordinated with 

the gestures along with the time functions of the physical trajectories for each vocal tract 

variable. The time functions of model articulators are input to the vocal tract model which 

computes the area function and the corresponding formants. Given English text or 

ARPABET, TADA generates input in the form of formants and TV time functions. The 

formants and pitch information were used by HLsyn™ (a parametric quasi-articulator 

synthesizer developed by Sensimetrics Inc., [Hanson & Stevens, 2002]) to produce a 

synthetic waveform. Figure 3.1 shows the flow-diagram of the TADA model and Figure 3.2 

demonstrates how articulatory information (i.e., articulatory gestures, tract variables and 

pellet trajectories) is obtained from TADA.  
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Figure 3.1 Flow of information in TADA 

 

Figure 3.2 Synthetic speech and articulatory information generation using TADA and HLSyn 

 

In the task dynamic model, gestures are defined with eight vocal tract constriction variables 

as shown in Table 3.1. The vocal tract time functions or TVs are time-varying physical 

realizations of gestural constellations at the distinct vocal tract sites for a given utterance. 

Figure 3.3 shows the gestural activations and TVs for the utterance “miss you” obtained from 

TADA. The larger square blocks in Figure 3.3 correspond to the gestural specifications for 

/m/, /i/, /s/, /y/ and /u/ in the utterance “miss you”. It can be seen in Figure 3.3 that the 

‘narrow-palatal’ and the ‘narrow-velic’ TBCD gestures for the /y/ and /u/, respectively, 
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overlap with one another from 0.1125s to 0.15s. In this region, the two gestures temporally 

overlap with each other in the same TV. This overlap results in blending of their dynamic 

parameters. The degree of blending between the gestures is defined by a blending parameter. 

When a gesture is active in each TV, it is distinctively specified by such dynamic parameters 

as constriction target, stiffness and damping. The gestures are allowed to temporally overlap 

with one another within and across TVs. Note that even when a TV does not have an active 

gesture, the resulting TV time function can be varied passively by another TV sharing the 

same articulator. For example, TTCD with no active gesture can also change (such changes 

are usually termed as passive movements of a TV) when there is an active gesture in TBCD 

because the tongue body and the tongue tip are coupled with one another. Figure 3.3 shows 

that even though TTCD does not have an active gesture from 0.125s to 0.25s, the 

corresponding TV moves passively since TBCD has an active gesture during that span.   

TVs are defined by a set of uncoupled, linear, second order differential equations, 

shown in equation (1) (Saltzman & Munhall, 1989) 

         
0

( ) 0Mz Bz K z z+ + − =�� �       (1) 

where M, B and K are the task dynamic parameters of mass, damping coefficient and stiffness 

of each TV, and z and z0 specify the target position of that TV. In the Task Dynamic model, a 

gesture is defined by the following parameters: (1) gestural activation, (2) the mass 

parameter, which is assumed to be uniformly equal to 1 in all gestures, (3) the stiffness 

parameter, which represents the elasticity of the gesture and is proportional to gestural 

“speed” (Byrd & Saltzman, 2003), (4) the damping parameter, which is typically set to 

“critical” in the gestural model (Byrd & Saltzman, 2003) to signify that there is no oscillatory 

overshoot or undershoot of the TVs when the gesture moves closer to its target, this 

parameter gives the TV its inherent smoothness, (5) the target parameter, which defines the 

constriction location or degree for that particular TV on which that gesture is defined and (6) 
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the blending parameter which defines how two overlapping gestures corresponding to the 

same TV should be combined with one another. Out of these six gestural parameters, the 

mass and the damping parameters remain constant (i.e., use a default value by definition of 

the task dynamic model). The gestural activation and the stiffness parameters can be related 

to some extent. 

 

Table 3.1 Constriction organ, vocal tract variables and involved model articulators 

Constriction organ Vocal tract variables Articulators 

Lip Lip Aperture (LA) Upper lip, lower lip, 

jaw Lip Protrusion (LP) 

Tongue Tip 

 

Tongue tip constriction degree (TTCD) Tongue body, tip, jaw 

 Tongue tip constriction location (TTCL) 

Tongue Body Tongue body constriction degree (TBCD) Tongue body, jaw 

Tongue body constriction location (TBCL) 

Velum Velum (VEL) Velum 

Glottis Glottis (GLO) Glottis 

 

 
A gesture with a lower stiffness (e.g., a vowel) will have a longer activation interval. 

Similarly, gestures with a higher stiffness will have a shorter duration. The target parameter 

of a gesture is reflected by that gesture’s corresponding TV dynamics, i.e., the target value 

that the TV tries to attain.  
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Figure 3.3 Gestural activations, TVs and approximate phone boundaries for the utterance 

“miss you”. The active gesture regions are marked by rectangular solid (colored) blocks. The 

smooth curves represent the corresponding tract variables (TVs) 

 

3.2 Synthetic database obtained from TADA and HLSyn 

Three separate synthetic datasets were generated for this study. They are named as XRMB-

SYN1, XRMB-SYN2 and AUR-SYN. All three databases were used for performing the 

initial studies reported in section 4, and they consist of TV trajectories, gestural scores, 

simulated pellet trajectory information (sampled at 5ms or 200Hz) and corresponding 

acoustic signals. Note that there are eight TV trajectories, one for each vocal tract variable 

shown in Table 3.1, and fourteen simulated pellet trajectories consisting of x and y co-

ordinates for flesh-point locations T1, T2, T3, T4, UL, LL and Jaw which are shown in 

Figure 2.1. XRMB-SYN1 and XRMB-SYN2 contain isolated words taken from the XRMB 
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(Westbury, 1994), where XRMB-SYN1 is a subset of XRMB-SYN2. XRMB-SYN1 contains 

363 while XRMB-SYN2 consists of 420 words. For both XRMB-SYN1 and XRMB-SYN2, 

75% of the data were used as training samples, 10% as the validation set and the remaining 

15% as the test set.  

The third synthetic dataset AUR-SYN, was created to evaluate the noise robustness 

of the TV estimation process. This dataset is based on 960 utterances borrowed from the 

training corpus of the Aurora-2 (Pearce & Hirsch, 2000; Hirsch & Pearce, 2000). Although 

the training corpus (clean condition) of Aurora-2 has more than 8000 files, only 960 files 

were randomly chosen from them to build the AUR-SYN corpus. For these 960 files, the 

utterance, speaker’s gender and their mean pitch (per file basis) were noted. The utterances 

were used by TADA to generate the TVs, gestural scores and the other necessary parameters 

required by HLsyn™. The parameters from TADA along with the mean pitch and gender 

information1 were fed to HLsyn™ that generated the synthetic acoustic waveforms. The 

sampling rate of the TVs and gestural scores are the same as before. Seventy percent of the 

files from the AUR-SYN corpus were randomly selected as the training set and the rest were 

used as the test set. The test files were further corrupted with subway and car noise at seven 

different SNR levels similar to the Aurora-2 corpus. 

 

3.3 The X-ray Microbeam database 

The University of Wisconsin's X-Ray MicroBeam (XRMB) Speech Production database 

(Westbury, 1994) used in this study contains naturally spoken utterances both as isolated 

sentences and short paragraphs. The speech data were recorded from 47 different American 

English speakers (22 females and 25 males), where each speaker completed 56 tasks, each of 

which can be either read speech containing a series of digits, TIMIT sentences, or even as 

                                                 
1 HLsyn in its default configuration doesn’t require the knowledge of pitch and gender information; 
however for AUR-SYN these parameters were fed to HLsyn to create an acoustic waveform more 
similar to the waveforms in Aurora-2, from which the utterances were borrowed. 
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large as reading of an entire paragraph from a book. The sampling rate for the acoustic 

signals is 21.74 kHz. The data comes in three forms: text data consisting of the orthographic 

transcripts of the spoken utterances, digitized waveforms of the recorded speech and 

simultaneous X-ray trajectory data of articulator movements obtained from transducers 

(pellets) placed on the articulators as shown in Figure 2.1. The trajectory data were recorded 

for the individual articulators Upper Lip, Lower Lip, Tongue Tip, Tongue Blade, Tongue 

Dorsum, Tongue Root, Lower Front Tooth (Mandible Incisor) and Lower Back Tooth 

(Mandible Molar).  

 

 

3.4 The Aurora-2 database 

The Aurora-2 dataset (Pearce & Hirsch, 2000; Hirsch & Pearce, 2000) was created from the 

TIdigits database, which consists of connected digits spoken by American English speakers. 

The speech signal was sampled at 8 kHz and they are in binary raw format. There are three 

sections in this database, test set A, B and C; where sets A and B each have four subparts 

representing four different real-world noises (section A: subway, babble, car and exhibition; 

section B: restaurant, street, airport and train-station). Hence, altogether they have eight 

different noise types. Section C contains two subsections representing two noise types, one 

each from section A and B, but involving a different channel. As channel effects are not 

considered in this work, test-set C was ignored. Training in clean and the testing in a noisy 

condition is used in all the experiments reported in this thesis. A subset of 200 files selected 

randomly from each noise type at each SNR (having 1001 utterances) of the test set of 

Aurora-2 was selected as the development set and is termed as the “dev-set”. Note that, since 

the dev-set contain utterances borrowed from the test set, hence when the dev-set was used 

for estimating parameters of an architecture, the corresponding 200 utterances in the test set 

were ‘not used’ to test the architecture. Hence only the remaining 801 utterances were used. 
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Chapter 4: Initial study: Incorporating articulatory information 

for robust-ASR 

Since Stevens (1960) pointed out that the anatomical or neuro-physiological representation of 

speech would more closely simulate the process of human speech perception in ASRs, 

various researchers have ventured into different approaches to create speech production and 

perception based ASR systems. One of the recent breakthroughs in realizing a speech 

production based ASR system (Livescu et al., 2007b) proposed the use of articulatory 

features (AFs) for observation and pronunciation models. Kirchhoff (1999) and Kirchhoff et 

al. (2002) in a different study have demonstrated that AFs can also improve noise robustness 

of ASR systems. An overlapping articulatory feature database used by Sun et. al (2000b) to 

perform speech recognition showed an increase in recognition accuracy for the TIMIT 

database with respect to a baseline tri-phone HMM system.  

This dissertation proposes to use speech articulatory gestures to model speech 

production. The AFs can be derived from phone labels and hence are synchronous with 

acoustic landmarks; whereas articulatory gestures are more intricately tied to the articulators. 

As a consequence, they are typically asynchronous with acoustic landmarks. Gestures also 

have been studied as the sub-word level entity for ASR tasks. However, due to the paucity of 

gestural specifications for a spontaneous speech corpus, such efforts have been very limited 

in scope. One of the initial efforts to incorporate TVs to generate gestural scores (described 

later in this section) was proposed by Zhuang et al. (2008). They proposed an instantaneous 

gestural pattern vector (GPV) and a statistical method to predict the GPVs from the TVs. The 

GPV encodes instantaneous information across all the tract variables given a gestural score, 

such as the constriction target and stiffness associated with gestural activation for each tract 

variable at that particular time. 
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Speech variability due to coarticulation may be addressed by articulatory phonology, 

which hypothesizes that human speech can be decomposed into a constellation of articulatory 

gestures. The advantage of articulatory phonology lies in the fact that it simultaneously 

captures both cognitive/discrete and physical/continuous characteristics of speech by posing 

constriction actions as the basic units. Since gestures are action units, they are intrinsically 

allowed to overlap with one another in time, as shown in Figure 4.1 (a) and (b). In this 

framework, coarticulatory variations are accounted for by gestural overlap in time and 

reduction in space. On the contrary, segmental or phonemic units occupy pre-allocated time 

slots so that they cannot fully account for such speech variations. Gestures on the other hand, 

can be modulated in their output, i.e. TVs, as a function of concurrent gestures or prosodic 

context while maintaining their intrinsic invariance. The phone-based model and the gesture 

based models are two different approaches to represent words in the lexicon. Their difference 

can be compared to “static” units versus “dynamic” units (Sun & Deng, 2002) or a 

concatenative approach versus a time-overlapping approach to represent the fundamental 

building blocks of speech utterances. Figure 4.1 shows why we believe that gesture-based 

ASR is more invariant against speech variability than ASR based on phones, di-phones or tri-

phones. A comparison of the gestures in parts (a) and (b) show that the timing and degree of 

overlap in the gestures are very different for the carefully articulated “miss you” and the more 

casual production of “miss you”. In part (a), the tongue tip (alveolar) constriction of the /t/ 

and the tongue blade (palatal) constriction for /y/ do not overlap. However, in part (b), these 

gestures overlap with one another considerably. As a result, the properties of the fricative 

change greatly. The word-final /s/ in part (a) has most of its energy above 4000 Hz as 

expected for an alveolar fricative. However, the fricative shown in part (b) has considerable 

energy starting as low as 2000 Hz. Its physical properties are more akin to a /sh/ than to a 

/s/. While the timing and degree of overlap between gestures vary due to changes in speech 

style and speech rate, the overall gestural pattern remains the same (i.e., the articulatory 
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gestures and their sequencing in time), which highlights the invariance property of the speech 

gestures. Another advantage of the articulatory gesture based model would be its economical 

lexical representation (Tepperman et al., 2009). Only 380 distinct GPVs were observed by 

Zhuang et al. (2008) for the database they used as compared to the thousands of tri-phone 

based models needed for a similar task. With 48 phonemes, there can be a possible set of 

48*47*46 = 103776 tri-phones. However all tri-phone combinations are not valid. Usually, 

an exemplary database consists of 9580 tri-phones (Huang et al., 2002). Use of articulatory 

gestures as sub-word units would enable an ASR system to account for speech variations as 

natural outcomes of simple modulations of gestural patterns, maintaining the unit’s 

invariance and lexical distinctiveness. Figure 4.1 shows gestures as action units and how the 

degree of temporal overlap is easily expressed. 

Usually coarticulation is defined as the assimilation of the place of articulation of one 

speech sound to that of an adjacent speech sound, or influence of one phone upon another 

during speech production. Often such an influence causes change in the distinctiveness of the 

phones which introduces variability in speech. Due to coarticulatory effects in fast speech, the 

articulators often fail to reach their place of articulation properly which leads to deviations in 

their acoustic signal from well articulated speech. In such cases, even if the articulator(s) fail 

to reach their respective target due to undershoot, still an effort for reaching the target should 

be visible in the articulatory gesture domain. In Figure 1.6, it can be seen that in a fast spoken 

‘perfect memory’ utterance, the /t/ constriction fails to achieve its canonical target, and as a 

consequence failing to generate a proper /t/ burst in the acoustic output. However, in the 

articulatory regime, an effort toward an alveolar constriction is observed. This result shows 

that, due to coarticulation, gestures may be stretched or squeezed in time, but they should 

always be there no matter how adverse the coarticulation is; which is a direct consequence of 

the “invariance property of articulatory gestures”. Hence, in phonetics, coarticulation is 

usually modeled as a transition from one gesture to another.  
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Figure 4.1 Gestural scores and spectrograms for the word (a) “miss.  you” and (b) “missyou”. 

Note how the tongue-tip gesture for /s/ in ‘miss’ and tongue-body gesture /Y/ in ‘you’, 

overlap in time due to increase in speech rate (marked by the dotted circle) and 

correspondingly the frication energy extends till 2000Hz (with some visible formant 

structures) which makes the /s/ sound more as /sh/. However due to the relative invariance 

property of the gestures, the overall number of active gestures remain the same 

 

The information flow in the task dynamic model depicted in Figure 3.1 and 3.2 

shows that the TVs are obtained from the knowledge of the gestural scores in the forward 

model of TADA (using HLsyn); where the speech signal is synthesized from the knowledge 

of the articulator configurations. Given a speech signal, the requirement to obtain gestural 

scores would necessitate traversing in the opposite direction of Figure 3.1. In such case it will 

be reasonable to assume that the first step would be to estimate the TVs from the input 

speech. Finally the estimated TVs along with the acoustic waveform can be used together to 

estimate the gestural scores. As an initial attempt to recover gestural scores from TVs, 

Zhuang et al. (2008) proposed the GPV by sampling uniformly the gestural scores and its 
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associated parameters in time. They used a statistical method to predict the GPVs from the 

TVs and obtained a prediction accuracy of 84.5% for the GPVs that have a higher frequency 

of occurrence. The potential advantages of estimating TVs in an intermediate stage prior to 

gesture recognition are twofold. First, gestures are tied to TVs in the sense that the gestural 

activations and their associated sets of dynamic parameters shape and control the dynamics of 

the TVs. Second, acoustic signals are continuous with higher bandwidth whereas speech 

gestures are discrete and quasi-stationary by definition having a much smaller bandwidth. 

Hence, it may be difficult and inaccurate to create a direct mapping between a high-

bandwidth continuous regime and a locally stationary and discrete regime. On the other hand, 

TVs are continuous like the acoustic signal, but smoothly varying with low bandwidth like 

the gestural activation trajectories, and thus may be coupled well with both gestures and the 

acoustic signal. In other words, estimating TVs as an intermediate source of information prior 

to gesture recognition/recovery may provide an appropriate cross-representational bridge 

between the continuous and high bandwidth acoustic regime and the discrete articulatory 

gesture regime (i.e., gestural score). These facts suggest the necessity to perform estimation 

of TVs from the acoustic waveform prior to gesture recognition. Estimation of TVs from the 

acoustic waveform is essentially a ‘speech-inversion’ problem, which is known to be an ill-

posed inverse problem as such an inversion from the acoustic space to the articulatory space 

is not only non-linear but also non-unique. The following section introduces the basic ideas of 

a speech-inversion problem and presents the different machine learning strategies used in this 

research to perform such an inverse task. 

4.1 Estimating TVs from the Speech signal 

The problem of estimating TVs from the acoustic parameters derived from the speech signal 

can be posed as a non-linear function estimation problem, where the TVs are represented as a 

non-linear function of the acoustic parameters. This nonlinear mapping between the acoustic 
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parameters (derived from the acoustic waveform) and the TVs can be identified as an inverse 

problem. We can also think of this inversion as a time-series prediction problem. Speech 

inversion has been a field of active research in the last 40 years. The difference between the 

speech inversion task addressed in this proposal and the others discussed in the literature lies 

in the type of articulatory information used. The articulatory information used in previous 

studies were usually obtained from electromagnetic mid-sagittal articulography (EMMA) or 

electromagnetic articulography (EMA) (Ryalls & Behrens, 2000) data and were represented 

in terms of the cartesian coordinate displacements of pellets (transducers) placed on the 

articulators. Such pellet data is also known as flesh-point trajectories as they represent 

articulator flesh-point positional information in time. In this dissertation we will use pellet 

trajectory/data and flesh-point trajectory/data interchangeably. In contrast to pellet data, we 

focus on the TVs. The benefits of using TVs as opposed to the x and y coordinates of 

transducers are three fold. Firstly, as McGowan (1994) pointed out, the TVs specify the 

salient features of the vocal tract area functions more directly than the articulators. Secondly, 

as the TVs are relative measures as opposed to the absolute flesh point measures, they can 

effectively reduce the non-uniqueness problem in speech inversion. There may be one 

articulatory specification in terms of constriction degree and location specified by the TVs 

which can have many different sets of articulatory location (in the Cartesian coordinate 

space) that represent the same vocal tract constriction (McGowan, 1994). Finally, the TVs are 

generated by TADA (in its forward model) from gestural scores to synthesize speech thus, in 

the reverse model that generates gestural scores from the acoustic waveform it can be 

assumed that a priori knowledge about the TVs might help in obtaining the gestural scores, 

given the acoustic waveform. This link between the TVs and gestural scores is the reason 

why speech inversion using TVs is more appropriate for a gesture-based ASR architecture.  

The study reported in this section aims to perform a detailed study of the inverse 

mapping between the acoustic waveform and TVs and finally estimate the gestural scores by 
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using the synthetic data obtained from TADA. The key advantages of using this synthetic 

data are: (a) it is completely free from measurement noise and (b) we have absolute 

knowledge about its groundtruth TVs and gestural scores. We pose the design of the inverse 

model as a non-linear non-unique ill-posed regression problem. In the following sub-section, 

we briefly introduce the concept of speech inversion. Later, we will introduce the different 

machine learning techniques that we have explored along with a comparison of the speech 

inversion performance from using the TVs as opposed to the conventionally used pellet 

trajectories. 

 

4.1.1 What is acoustic to articulatory speech inversion? 

The configuration of the human vocal tract determines what speech sound is produced. This 

mechanism can be represented by a function f 

    :f x y→        (2) 

where y represents the speech signal, x represents the position of the articulators and f is the 

function that defines the mapping from the articulatory space to the acoustic space. Thus, 

given a vector �� which is a specific articulatory configuration, we can obtain a specific 

speech output �� when we know f. In most practical cases, we have the speech signal available 

to us with little or no articulatory data except what we can infer from the speech signal. 

Hence if we can define a function, g, such that 

     :g y x→       (3) 

then the articulatory configuration �� can be obtained from the speech sample �� using the 

function g. It can be observed that the function g is in fact the inverse of function f. Hence 

equation (3) represents the task of acoustic-to-articulatory speech inversion, i.e., given a 

speech signal we seek to obtain the articulatory configuration that created that speech signal. 

Figure 4.2 shows the vocal tract configuration for the phone ‘/y/’ in ‘miss-you’.  
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(a)                                                                 (b) 

Figure 4.2 (a) Vocal tract configuration (with the TVs specified) for the phone ‘/Y/’ in ‘miss 

you’, (b) the corresponding time domain signal and the spectrogram 

 

Figure 4.3 shows the human speech production mechanism and symbolically represents the 

speech inversion procedure. There can be many applications of acoustic-to-articulatory 

inversion, such as speech synthesis, speech coding, speech therapy, language acquisition, 

speech visualization, etc. Speech therapy deals with either speech training for subjects having 

difficulty in producing certain speech sounds or realizing a lip reading supplement to aid 

subjects with a hearing impairment. Finally, the most important application of speech 

inversion is in the area of robust speech recognition which has been researched actively in the 

last few years. Articulatory information provides information about the location, dynamics 

and constriction of the articulators, which can help in obtaining information such as vowel 

lengthening (Byrd, 2000) and prosodic stress (Cho, 2005). Such information can be exploited 

in an ASR system to improve its robustness against speech variability (King et al., 2007; 

Frankel & King, 2001). 
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Figure 4.3 Speech Production: the forward path where speech signal is generated due to 

articulator movements. Speech Inversion: estimation of articulator configurations from the 

speech signal, commonly known as the “acoustic-to-articulatory inversion” 

 

4.1.2 Realization of the inverse model 

The challenge in the realization of the inverse model lies in the fact that the mapping from the 

speech signal to the TVs can be non-unique. This property renders the estimation of the non-

linear function g in equation 3 as an ill-posed problem. Evidence from theoretical analysis, 

measurements from human articulatory data and also experimental analysis has indicated the 

existence of non-uniqueness in the functional relationship between speech and the 

articulatory data. The many possible articulatory configurations corresponding to a speech 

segment is often identified as the ‘fibers’ in articulatory space (Neiberg et al., 2008). This 

non-uniqueness in the inverse mapping from speech to the articulators arises when two or 

more different articulatory configurations are capable of producing the same (or very similar) 

sound(s). Hence given an acoustic waveform, which can be created from C different 

articulatory configurations, it becomes extremely difficult (if not impossible) to predict which 

of these C possible candidates generated the given speech.  

Most efforts in speech inversion have focused on addressing the issue of non-

uniqueness. In a study of non-uniqueness in speech-inversion, Neiberg et al. (2008) fitted 

data from acoustic and articulatory spaces to Gaussian mixture models (GMM) and studied 
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the kurtosis and the Bhattacharya distance between the distributions to analyze the deviation 

of the modeled distributions from Gaussianity and the non-uniqueness related to articulatory 

configurations. They observed that stop consonants and alveolar fricatives are generally not 

only non-linear, but also non-unique; whereas dental fricatives are found to be highly non-

linear but fairly unique. In their research, they found that the best possible piecewise linear 

prediction mapping cannot improve the mapping accuracy beyond a certain point. They also 

observed that incorporating dynamic information improved the performance, but did not 

completely disambiguate the one-to-many mapping paradox. A related and more recent study 

by Ananthakrishnan et al. (2009) modeled the probability distribution of the articulatory 

space conditioned on the acoustic space using GMMs and quantified the degree of non-

uniqueness as the amount of spreading of the peaks in the conditional probability distribution. 

They showed that the non-uniqueness is higher for stop consonants, fricatives and nasals as 

compared to vowels, liquids and diphthongs. 

Richmond, in his thesis (2001) visually demonstrated the non-uniqueness using 

articulatory probabilitygrams (a sample probabilitygram is shown in Figures 4.4 and 4.5). He 

trained a set of mixture density networks (MDNs), one each for each pellet trajectory. MDNs 

are essentially Multi-Layered Perceptrons (MLPs) that predict GMM parameters that provide 

the conditional pdfs of the pellet trajectories conditioned on the acoustic space. Richmond 

trained MDNs that predicted the parameters of 2 Gussian mixtures and witnessed a 

phenomenon similar to the ‘critical articulator’ phenomenon noted by Papcun et al. (1992). 

He also observed multi-modality in the inverse mapping, which he noted as the indication of 

non-uniqueness in the inverse mapping. Figures 4.4 and 4.5 shows an MDN probabilitygram 

borrowed from Richmond’s thesis (2001), which shows the tongue-tip y-axis trajectory and 

the lip aperture y-axis trajectory from the actual MOCHA data and also the corresponding pdf 

obtained from the MDN. It clearly shows that for consonants such as /s/, /sh/, /t/, where the 

tongue tip plays a critical role in pronunciation, the tt_y (Tongue Tip y-coordinate) channel 
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shows less variance and hence is darker in the probabilitygram. On the other hand, the same 

channel for other consonants shows more variability as it is not critical for the production of 

those sounds.  

 

Figure 4.4 Overlaying plot of the Mixture Density Network (MDN) output (probabilitygram) 

and the measured articulatory trajectory (continuous line) for tt_y channel for the utterance 

“Only the most accomplished artists obtain popularity” from the MOCHA dataset (Wrench, 

1999). Plot borrowed with permission from Richmond (2001) 

 

 

Figure 4.5 Overlaying plot of the Mixture Density Network (MDN) output (probabilitygram) 

and the measured articulatory trajectory (continuous line) for li_y (Lip incisor y-coordinate) 

for the utterance “Only the most accomplished artists obtain popularity” from the MOCHA 

dataset (Wrench, 1999). Plot borrowed with permission from Richmond (2001) 

 

Non-uniqueness has also been studied by Dusan (2000). In most of the work related to 

studying non-uniqueness of the speech-inverse mapping, it was observed that a static solution 
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(that is an instantaneous mapping for speech inversion) suffers largely from the non-

uniqueness issue (Dusan, 2000). Incorporating dynamic information (Dusan, 2000, 2001; 

Richmond, 2001) about the acoustic data may help to disambiguate points of instantaneous 

one-to-many mappings, but would increase the difficulty of the non-linear mapping problem. 

Our initial results using feed-forward artificial neural networks (FF-ANNs) with a single 

hidden layer and 100 neurons show a significant improvement in the correlation score2 

between the actual and the reconstructed TVs from 0.853 to 0.958 for the Glottal TV (GLO) 

and 0.754 to 0.95 for the Velic TV (VEL). The instantaneous mel-frequency ceptral 

coefficients (MFCCs) were used as opposed to using the same with a contextualized window 

of 170ms. Table 4.1 compares the Pearson product moment correlation (PPMC) between the 

actual and reconstructed TVs obtained from using MFCCs with and without contextual 

information. PPMC indicates the strength of a linear relationship between the estimated and 

the actual trajectories and is defined as – 
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∑ ∑ ∑

∑ ∑ ∑ ∑

                  (4) 

where, τ and �̂ represents the actual and estimated TV vector and N represents their length.  

To exploit the benefit of dynamic information, Toutios & Margaritis (2005a-b), 

Richmond (2001), Papcun et al.(1992) and many others constructed an input feature vector 

spanning a large number of acoustic frames, hence incorporating contextual information into 

the non-linear function optimization problem. Our approach to the speech inversion problem 

is similar to theirs in the sense that we explore popular non-linear function approximation 

techniques using dynamic information (i.e., contextual information) in the acoustic space and 

we term this model as the direct inverse model.  

                                                 
2 From now on ‘correlation’ refers to the Pearson Product Moment correlation (PPMC) between the 
actual function and the estimated function. 
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Table 4.1. Correlation of the TVs obtained from instantaneous mapping versus mapping 

using contextual information in the acoustic space, using an ANN with a single hidden layer 

with 100 neurons 

TV MFCC w/o context 

(instantaneous mapping) 

MFCC with a context of  170ms 

GLO 0.8534 0.9577 

VEL 0.7536 0.9504 

LA 0.6477 0.8483 

LP 0.5636 0.7387 

TBCL 0.8365 0.9418 

TBCD 0.7252 0.8994 

TTCL 0.7710 0.9119 

TTCD 0.7045 0.8858 

 

Several machine learning techniques have been implemented in the literature for the 

task of speech inversion. Toutios & Margaritis (2005a-b) used Support Vector Regression 

(SVR) to estimate EMA trajectories for the MOCHA database and their results were found to 

be quite similar to that of the ANN based approached presented by Richmond (2001). ANN is 

widely known for its versatility in nonlinear regression problems. However, they fall short in 

ill-posed regression problems where the ill-posedness is due to a one-to-many mapping. To 

address the one-to-many mapping scenarios, Jordan & Rumelhart (1992) proposed the 

supervised learning with distal teacher or distal supervised learning (DSL) and Bishop (1994) 

proposed Mixture density networks. Based on MDN, Richmond (2007) proposed the 

Trajectory Mixture Density Network (TMDN) model for speech-inversion. While SVR and 

ANN based approaches fall in the category of direct inverse models, the DSL and the TMDN 
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approaches can be identified as indirect inverse models. This section introduces the various 

machine learning techniques that we explored in our initial speech inversion experiments 

using the synthetic data specified in section 3. 

 

4.1.2.1 Hierarchical Support Vector Regression 

The Support Vector Regression (Smola & Scholkhopf, 2004) is an adaptation of Vapnik’s 

Support Vector Classification algorithm (Vapnik, 1998) to the regression case. Given a set of 

N training vectors xi and a target vector t such that  
i

t ∈� , the SVR algorithm seeks to find an 

optimal estimate (in terms of Structural Risk Minimization) for the function t = g(x), which 

has at most ε deviation from the actually obtained targets ti for all the training data and at the 

same time is as flat as possible. The ε-SVR algorithm defines that estimate as  

    ( )*

1

( ) ( , )
N

i i i

i

g x k x xα α β
=

= − +∑    (5) 

where k( , ) is the kernel used, β is the bias terms and αi, αi* are the coefficients obtained from 

the solution of the quadratic problem  
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The constant C is the trade-off between the flatness of g and the amount up to which 

deviations larger than ε are tolerated in the solution. C > 0 and ε ≥ 0 are parameters that are 

user-defined. C can be as high as infinity, while usual values for ε are 0.1 or 0.01. The kernel 

function k( , ) is used to transform the data into a high dimensional space to induce non-

linearity in the estimate function. SVR performs non-linear regression by projecting the data 
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into a high dimensional space via k( , ) and then performs linear regression in that space. We 

have used Radial Basis Function (RBF) kernel with user-defined γ parameter 

    
2

( , ) exp( )k x y x tγ= − −     (7) 

 

4.1.2.2 Feedforward Artificial Neural Networks (FF-ANN) 

Since Papcun et al. (1992) used MLPs (layered ANNs using perceptron rule) to estimate 

articulatory trajectories for six English stop consonants, the potential of ANNs for the speech 

inversion task has been enthusiastically investigated. Zachs & Thomas (1994) and Richmond 

(2001) have studied the potential of ANNs for performing speech inversion. Once trained, 

ANNs require relatively low computational resources compared to other methods both in 

terms of memory requirements and execution speed (Mitra et al., 2009a, 2010a; Richmond, 

2001). ANN has the advantage that it can have M inputs and N outputs; hence a complex 

mapping of M vectors into N different functions can be achieved. In such an architecture, the 

same hidden layers are shared by all the outputs (shown in Figure 4.6), which endows the 

ANNs with the implicit capability to exploit any cross-correlation that the outputs may have 

amongst themselves (Mitra et al., 2009a, 2010a). Note that the articulatory trajectories are 

often correlated with one another, for example the tongue tip and the tongue body are 

mechanically coupled with one another; hence any movement in the tongue body will also 

result in a movement in the tongue tip and vice-versa. ANNs can exploit such correlations 

due to the reason stated above. The FF-ANNs were trained with backpropagation using 

scaled conjugate gradient (SCG) algorithm (Moller, 1993).  

 
 

Figure 4.6 Architecture of the ANN based direct inverse model  
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4.1.2.3 Autoregressive Artificial Neural Networks (AR-ANN) 

The estimated articulatory trajectories from SVR and FF-ANN based direct inverse models 

were found to be corrupted by estimation noise. Human articulator movements are 

predominantly low pass in nature (Hogden et al., 1998) and the articulatory trajectories 

usually have a smoother path, defined by one that does not have any Fourier components over 

the cut-off frequency of 15 Hz. Nonlinear AR-ANN shown in Figure 4.7, has a feedback loop 

connecting the output layer with the input, which helps to ensure smoother trajectories for the 

articulatory motions. The output of AR-ANN can represented as – 

   ˆ ˆ ˆ ˆ( ) ( ( 1), ( 2),..., ( ), ( ))y t g y t y t y t d u t= − − −    (8) 

 
 

Figure 4.7 Architecture of the AR-ANN based direct inverse model  
 

The AR-ANN has its own disadvantages: (i) the architecture has to be trained with dynamic-

backpropagation or backpropagation in time, which is computationally very expensive, (ii) a 

single architecture cannot be trained easily for all the articulatory trajectories3; hence 

individual AR-ANNs have to be trained for each articulatory trajectory. 

  Both FF-ANN and AR-ANN are trained based on minimization of the sum-of-

squares error approach. Given a set of training and target data set [x, t] and a set of neurons 

with weights and biases defined by w and b respectively, the sum-of-squares error is defined 

by 
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3 This may be because the dynamics of the different trajectories are different in nature and may not 
correlate so strongly with one another.  
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where ( ), ,i

k
g x w b defines the network output, where the network is defined by weights w and 

biases b. Considering a dataset of infinite size, i.e., N→∞, (9) can be written as 
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2

1 1

1
( , ) lim , ,

2

N c

i i

SE k k
N

i k

E w b g x w b t
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The minimization of the error function ESE with respect to gk(x,w,b) gives the following [3] 
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∂
                (12) 

Using (12) it can be shown that 

          ( ) [ ]* *, , |
k k

g x w b t x= Ε                (13) 

where E[A|B] is the conditional expectation of A conditioned on B, w* and b* are the weights 

and biases of the network after training. Hence (13) shows that networks that are optimized 

based on sum-of-squares approach generate average of the target data points conditioned on 

the input. Hence Direct inverse models obtained from supervised learning algorithms resolve 

one-to-M (where M > 1) inconsistencies by averaging (Bishop, 1994; Jordan & Rumelhart, 

1992) across all the M candidates. If the set of M possible candidates form a non-convex set, 

then the average of the M candidates does not necessarily belong to that set, hence the 

solution obtained is not necessarily the correct inverse solution.  

 

4.1.2.4 Distal Supervised Learning (DSL) 

To address the issues with conventional supervised learning architectures for one-to-many 

mapping cases, Jordan & Rumelhart (1992), proposed Supervised Learning with a Distal 

Teacher or DSL. In the DSL paradigm there are two models placed in cascade with one 

another: (1) the forward model (which generates acoustic features given the articulatory 

trajectories, hence M-to-1 mapping) and (2) inverse model (which generates the articulatory 
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trajectories from acoustic features, hence 1-to-M mapping). Given a set of [xb, yb] pairs, DSL 

first learns the forward model, which is unique but not necessarily perfect. DSL learns the 

inverse model by placing it in cascade with the forward model as shown in Figure 4.8.  

 
 

Figure 4.8 The Distal Supervised Learning approach for obtaining acoustic to TV mapping 
 

The DSL architecture can be interpreted as an ‘analysis-by-synthesis’ approach, where the 

forward model is the synthesis stage and the inverse model is the analysis stage. In the DSL 

approach, the inverse model is trained (its weights and biases updated) using the error that is 

back-propagated through the forward model whose previously learned weights and biases are 

kept constant.  

Considering a forward mapping between an input vector x and an output vector y, 

using a vector of network weights and biases, w and b, the relationship can be expressed as – 

     ˆ ( , , )t g x w b=               (14) 

Learning the forward model is based on the following cost function  
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where t is the desired target for a given input. For the inverse model, Jordan & Rumelhart 

(1992) defined two different approaches, a local optimization approach and an optimization 
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along the trajectory approach. The local optimization approach necessitates using an online 

learning rule, whereas the optimization along trajectory requires recurrency in the network 

(hence, error minimization using backpropagation in time), both of which significantly 

increase the training time and memory requirements. In this work we propose a global 

optimization approach, which uses the tools of DSL as proposed in (Jordan & Rumelhart, 

1992), but instead uses batch training in the feedforward network. The cost function that the 

DSL tries to minimize is represented as 

    * *

1

1
( ) ( )

2

N
T

k k k k

k

J t t t t
N =

 = − − ∑             (16) 

where N is the total number of training samples, tk is the target vector for the k
th training 

sample, and t
*

k is the actual target output from the network. The weight update rule is as 

follows 

          [ 1] [ ]
w n

w n w n Jη+ = − ∇              (17) 

where η is the learning rate, w[n] represents the weights of the network at time index n. The 

gradient can be obtained from (16) using the chain rule,     
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where t*
k,n is the estimated target vector for the kth training sample at the nth time instant. 

 

4.1.2.5 Trajectory Mixture Density Networks (TMDN) 

Mixture density networks (MDNs [Bishop, 1994]) combine the conventional feedforward 

ANNs with a mixture model. In MDN architectures the ANN maps from the input vector x to 

the parameters of a mixture model (shown in Figure 4.9) to generate a conditional pdf of the 

target t conditioned on the input x. Typically a Gaussian mixture models (GMM) is used in 

the MDN setup because of their simplicity and the fact that a GMM with appropriate 

parameters can approximate any density function. A Gaussian kernel is represented as 
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where x and t are the input and the target vector, µi(x) is the center of the ith kernel and σi(x) is 

the spherical covariance (this assumption can be relaxed by considering either a diagonal or a 

full covariance) for each Gaussian kernel and c is the input dimension. In this setup, the 

probability density of the target data conditioned on the input using a GMM with m mixtures 

can be represented as  
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p t x x k t xα
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=∑              (20) 

where αi(x) is the prior probability and ki(t|x) is the conditional probability density given the 

i
th kernel. To satisfy the following conditions for the prior probabilities 
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The following ‘softmax’ function is used to define αi(x) (Bishop, 1994) 
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where zi
α is the ANN output corresponding to the prior probability for the ith mixture of the 

GMM component. The variances and means of the GMM model are related to the ANN 

outputs as follows 

          exp( )j j jk jkz and z
σ µσ µ= =               (23) 

where zi
σ and zi

µ are the ANN outputs corresponding to the variance and the mean of the jth 

mixture. The MDN is trained by minimizing the following cost function 
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As seen in Figure 4.9, the ANN part of MDN generates the GMM parameters which are used 

to estimate the cost function EMDN. The cost function EMDN is minimized with respect to the 

ANN weights and biases. 

  
Figure 4.9 The MDN architecture 

 

The derivative of the cost function is evaluated separately with respect to the priors, means 

and variances of the mixture model that are back-propagated through the network to yield the 

derivative of the cost function with respect to the network weights and biases, more details 

available at (Bishop, 1994). The standard MDN architecture provides the conditional 

probability density of the targets conditioned on the input. To estimate the articulatory 

trajectories from the conditional probability densities, a maximum likelihood parameter 

generation (MLPG) algorithm was proposed by Tokuda et al. (2000). The MLPG algorithm 

was used with MDN architecture by Richmond (2007) and the resulting architecture was 

named as the trajectory MDN or (TMDN). In TMDN architecture, the target vector is 

augmented with dynamic information to yield a vector sequence O as shown below. 
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In our work the dynamic target vectors are calculated as  
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where (T+1) is the total duration of the window and the window is defined as 
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where ωham(τ) is a hamming window. The vector O can be related to the target vector by the 

following relation, where the details about the transformation matrix W can be found from 

Tokuda et al. (2000) and Toda et al. (2007). 
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In TMDN architectures the augmented feature vector O is used to train the MDN models, 

where O is derived from the target vector T using the transformation matrix W. The MDN in 

such a case gives the following conditional density P(on | xn). For the simplest case, where the 

GMM in the MDN has a single mixture, the target trajectory is generated by maximizing P(O 

| λ) or P(WT | λ) with respect to T as shown in (29), where λ is the mixture sequence. 
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A set of linear equations are generated (detailed derivation given in Tokuda et al. [2000]) 

from (29), as 

         1 1
W WT W M

Τ − Τ − ΤΣ = Σ                             (30) 

where 

     

1 1 1 1 1

1 2

1 2

, ,... ,...

, ,... ,...

n N

n N

diag

M

λ λ λ λ

λ λ λ λ
µ µ µ µ

− − − − −

Τ
Τ Τ Τ Τ

 Σ = Σ Σ Σ Σ
 

 =
 

                           (31) 



 67 
 

1λ
µ  and 1

1λ
−Σ  are the 3x1 mean vector and the 3x3 diagonal covariance matrix (for a single 

mix GMM). Solving (30) for T gives the required maximum likelihood trajectory. For MDNs 

with multiple mixtures, the approximation with suboptimal mixture sequence technique 

discussed by Toda et al. (2007) is used. 

 

4.1.2.6 Kalman smoothing 

The estimated articulatory trajectories were found to be corrupted with estimation noise from 

all except the AR-ANN model. It was observed that smoothing the estimated articulatory 

trajectories improved estimation quality and the correlation and reduced the root mean square 

error (RMSE). This is a direct consequence of the observation made by Hogden et al. (1998), 

which claimed that articulatory motions are predominantly low pass in nature with a cut-off 

frequency of 15 Hz. This led us to introduce a Kalman smoother based post-processor in the 

architectures discussed above. Since articulatory trajectories are physical quantities, they can 

be approximately modeled as the output of a dynamic system. For the proposed architecture, 

we selected the following state-space representation 
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with the following model parameters 
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where Γ is the time difference (in ms) between two consecutive measurements, yn=[yn
p  yn

v]T 

is the state vector and contains the position and velocity of the articulatory trajectories at time 

instant n. tn is the estimated articulatory trajectory which is considered as noisy observation of 

the first element of the state yn. The variables wn and vn are process and measurement noise, 
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which have zero mean, known covariance Q and R, and are considered to be Gaussian. The 

goal is to find the smoothed estimate of the state yn | N given the observation sequence T = {t1, 

t2, t3…,tN}, that is: 

    | 1 2[ | , ..., ]n N n Ny E y t t t=              (34) 

Although F and H are known parameters of the state space representation, the unknown 

parameter set Θ = {Q, R, ŷ0, Σ0} should be learned from the training set. After learning the 

unknown parameter set, Θ = {Q, R, ŷ0, Σ0} the smoothed state yn | N is estimated by the 

Kalman Smoother.  

 

 

 

4.1.3 Speech Inversion Experiments and Results 

We begin our speech-inversion experiments by comparing the performance of TV estimation 

with pellet trajectory estimation and will show that the TVs can be estimated more accurately 

than the pellet trajectories. Next, we perform a detailed analysis of TV estimation using the 

different machine learning approaches specified in section 4.1.2.  

In the experiments presented in this section XRMB-SYN2 was used as the data. The 

speech signal was parameterized as acoustic parameters (APs) and mel-frequency cepstral 

coefficients (MFCC). APs (Juneja, 2004; Chen & Alwan, 2000; Seteven et al., 1999] are 

knowledge based acoustic-phonetic feature sets that provide phonetic information, such as 

formant values, pitch information, mean Hilbert envelope, energy onsets and offsets, and 

periodic and aperiodic energy in different subbands (Deshmukh et al., 2005). A complete list 

of the APs is provided in Appendix A. The APs were measured using a 10ms window with a 

frame rate of 5ms. For the APs, the feature dimension was much higher compared to the 

MFCCs; 40 different APs were selected, where the selection was primarily knowledge based, 

supported by analyzing the correlation information of the APs with the respective TVs. For 

the MFCCs, 13 cepstral coefficients were extracted. Each of these acoustic features was 
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measured at a frame rate of 5ms (time-synchronized with the TVs) with window duration of 

10ms. The acoustic features and the target articulatory information (the TVs and the 

simulated pellet trajectories) were z-normalized and then scaled such that their dynamic range 

was confined within [-0.95, +0.95], except for SVR where the dynamic range is scaled 

between [-1, +1]. In order to incorporate dynamic information into the acoustic space, the 

input features were contextualized in all the experiments reported in this section. The feature 

contextualization is defined by the context-window parameter Ĉ, where the current frame 

(with feature dimension d) is concatenated with Ĉ frames from before and after the current 

frame (with a frame shift of 2 or time shift of 10ms), generating a concatenated feature vector 

of size (2Ĉ +1)d. From our empirical studies (Mitra et al., 2009b), we have identified that the 

optimal context parameter Ĉ for the MFCCs is 8 (context duration of 170ms) and for the APs 

is 9 (context duration of 190ms). These values will be used in the experiments presented here. 

The shape and dynamics of the estimated articulatory trajectories were compared 

with the actual ones using three quantitative measures: the root mean-squared (rms) error 

(RMSE), mean normalized rms error (Katsamanis et al., 2009) and the Pearson product-

moment correlation (PPMC) coefficient. The RMSE gives the overall difference between the 

actual and the estimated articulatory trajectories and is defined as 

     1
ˆ ˆ( ) ( )TRMSE

N
τ τ τ τ= − −                (35) 

where �̂ represents the estimated TV vector and � represents the actual TV vector having N 

data points. The RMSE provides a performance measure in the same units as the measured 

articulatory trajectories. PPMC has been defined before in equation (4). Some of the TVs 

have a different measuring unit (e.g., TBCL and TTCL are measured in degrees) from the 

pellet trajectories (all pellet trajectories are measured in mm). Thus, to better summarize the 

inversion performance for all articulatory trajectories, we use the non-dimensional mean 
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normalized RMSE, RMSEnrm (Katsamanis et al., 2009) and its average, RMSEnrm_avg defined 

by 

    _
i

nrm i

i

RMSE
RMSE

σ
=                             (37)

           _ _
1

1 T

nrm avg nrm i

i

RMSE RMSE
T =

= ∑                       (38) 

where T is the number of articulatory trajectories considered (8 for TVs and 14 for pellet 

trajectories).  

 

4.1.3.1 Comparing TV and pellet trajectory estimates 

TMDN has been used by Richmond (2007) to estimate articulatory pellet trajectories for the 

multichannel articulatory MOCHA dataset (Wrench, 1999). Results reported by Richmond 

(2007) indicate that TMDN offers much better accuracy over ANN for pellet trajectory 

estimation. Using a similar approach as Richmond (2007), we trained individual MDN 

models for each articulatory trajectory, where the articulatory trajectories were augmented 

with static, delta and delta-delta features as shown in (25). The MDN was built such that it 

generated the parameters of a GMM model with diagonal covariance matrix; yielding the 

parameters for a 3-dimensional Gaussian mixture (one dimension for each feature stream of 

static, delta and delta-delta features). The models were trained with 1 to 4 mixture 

components, but increasing the number of mixtures did not show any appreciable 

improvement of the results in our case; hence we will be presenting the results from the 

single mixture MDN only. The MDNs were built with a single hidden layer architecture, 

where the number of neurons in the hidden layer was optimized using the validation set. 

Table 4.2 shows the optimal number of neurons in MDN for each articulatory trajectory for 

each acoustic feature type. The networks were trained with the SCG algorithm using a 

maximum of 4000 training iterations. After the MDNs were trained, the MLPG algorithm 
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was run ad-hoc on the resulting sequence of MDN generated pdfs for the validation set. The 

RMSE between the estimated and the groundtruth articulatory trajectory was used as the 

validation error.  

The mean of the static features generated by the MDN should be equivalent to the 

output of a single hidden layer ANN (Richmond, 2007) having linear activation functions, as 

noted from (13); these outputs are considered as single-hidden layer ANN outputs. The 

TMDN as well as the ANN outputs for each articulatory trajectory were processed with a 

Kalman smoother and the results are shown in Table 4.2. The Kalman smoother was found to 

improve the PPMC on an average by 3% for both TVs and pellets.  

 
Table 4.2 Optimal number of neurons for each articulatory trajectory for 1-mix MDN 

TVs MFCC AP Pellets MFCC AP 

GLO 60 45 ULx 15 45 

VEL 90 60 ULy 90 90 

LA 60 45 LLx 60 90 

LP 15 45 LLy 105 30 

TBCL 105 30 JAWx 90 75 

TBCD 45 15 JAWy 15 105 

TTCL 60 60 TTx 105 15 

TTCD 60 30 TTy 75 60 

   TDx 30 15 

   TDy 45 30 

 

 

In addition, 3-hidden layer FF-ANN architectures with tan-sigmoid activation were 

implemented for both the TVs and pellet trajectories. The FF-ANN architectures had as many 
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output nodes as there are articulatory trajectories (eight trajectories for TVs and 14 

trajectories for pellet data). Single 3-hidden layer FF-ANN architecture was realized for each 

articulatory information type (i.e., TVs and Pellet trajectories) and for each feature type 

(MFCC or AP). The number of neurons in each hidden layer was optimized by analyzing the 

RMSE from the validation set. During the optimization stage we observed that the 

performance of the articulatory trajectory estimation improved as the number of hidden layers 

was increased. It may be the case that additional hidden layers incorporate additional non-

linear activation functions into the system, which may have increased the potential of the 

architecture to cope with the high non-linearity inherent in the speech-inversion process. 

However the number of hidden layers was confined to three because (a) the error surface 

becomes more complex (with many spurious minima) as the number of hidden layers are 

increased, thereby increasing the probability that the optimization process finds a local 

minimum and (b) increasing the number of hidden layers increases the training time as well 

as the network complexity. The optimal ANN architectures for the MFCCs and APs were 

found to be 150-100-150 and 250-300-2504, where the numbers represent the number of 

neurons in each of the three hidden layers. The 3-hidden layer FF-ANNs were trained with a 

training epoch of 5000 and the estimated trajectories were processed with a Kalman 

smoother. Post processing with Kalman smoothing decreased the RMSE on an average by 

9%. 

Table 4.3 shows the RMSEnrm_avg and PPMC of all the TVs and Pellet trajectories 

from the 3 approaches discussed above. Note that lower RMSE and higher PPMC indicate 

better performance of the estimation. Table 4.3 shows that overall, the 3-hidden layer FF-

ANN offered both lower RMSE and higher PPMC in both TV and pellet estimation tasks 

compared to the TMDN and 1-hidden layer ANN. Some of the TVs involve articulator 

                                                 
4 The optimal number of neurons in the hidden layers was found to be very similar for TV and pellet 
estimation for a given acoustic feature; hence we have used the same configuration for both the types 
of speech inversion task. 
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movements that should be observed in particular pellet trajectories, whereas the others are not 

comparable to the pellet data at all. For example, the TV GLO represents the vibration of the 

vocal folds thereby distinguishing voiced regions from unvoiced ones. There is no such 

information present in the pellet trajectories as it is almost impossible to insert pellet 

transducers on the vocal chords. The TV-pellet sets that are closely related to one another are 

as follows – {LP: ULx, LLx}; {LA: ULy, LLy}, {TTCL, TTCD: TTx, TTy} and {TBCL, 

TBCD: TDx, TDy}. Table 4.4 lists the obtained PPMC for the related TV and pellet 

trajectory estimates from the 3-hidden layer FF-ANN when MFCCs are used as the acoustic 

features. 

There are several important observations from Table 4.3: (a) overall the TV estimates 

offered better PPMC coefficients and mean normalized rms error (RMSEnrm_avg) than the 

pellet trajectories, (b) TMDN always showed improvement over the 1-hidden layer ANN 

model having the same number of neurons with linear activation function and (c) the 3-

hidden layer FF-ANN with non-linear activation showed overall the best performance. 

 

Table 4.3 Performance comparison between TV and pellet trajectory estimation 

 TVs Pellets trajectories 

MFCC AP MFCC AP 

RMSEnrm_avgPPMCavg RMSEnrm_avgPPMCavg RMSEnrm_avgPPMCavg RMSEnrm_avgPPMCavg 

1-
hi

dd
en

 
A

N
N

 

0.462 0.881 0.465 0.886 0.507 0.838 0.507 0.849 

T
M

D
N

 

0.443 0.891 0.456 0.891 0.493 0.846 0.499 0.854 

3-
hi

dd
en

 
F

F
-A

N
N

 

0.313 0.948 0.317 0.944 0.410 0.889 0.407 0.898 
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Table 4.4 Comparison of PPMC between relevant articulatory pellets and TVs for 3-hidden 

layer ANN using MFCC 

TVs PPMC Pellets PPMC 

LP 0.927 LLx 0.788 

ULx 0.918 

LA 0.894 LLy 0.889 

ULy 0.738 

TTCL 0.951 TTy 0.945 

TTCD 0.949 TTx 0.929 

TBCL 0.968 TDy 0.974 

TBCD 0.962 TDx 0.969 

Avg 0.942 Avg 0.894 

 

 

Observations from Table 4.3 are further confirmed in Table 4.4, which shows that for the 

best performing architecture, that is the 3-hidden layer ANN, the estimated TVs overall 

offered higher PPMC coefficient as compared to the relevant pellet trajectory estimates. It 

should be pointed out here that the average PPMC for the 3-hidden layer FF-ANN shown in 

Tables 4.3 and 4.4 are not the same, as Table 4.3 shows the average across all the TVs / 

pellets and Table 4.4 shows the average across only the relevant set of TVs/pellets as 

specified above. The results are indicative of the fact that the TVs can be estimated more 

accurately from the speech signal than the pellet trajectories. Two reasons may explain this 

difference. Firstly, according to McGowan (1994), the TVs specify acoustically salient 

features of the vocal tract area functions more directly than the pellet information. Secondly, 

the TVs (i.e. the constriction location and degree) are intrinsically relative measures, whereas 

the pellet trajectories provide arbitrary flesh-point location information in the 2D Cartesian 
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coordinate system and are required to go through normalization (Richmond, 2001). Since the 

normalization process is sensitive to the nature of data, the relative nature of the information 

is not effectively captured. It should be noted, however, that such pellet-trajectory-associated 

problems were not overly severe in our experiment because, unlike the case of natural speech, 

there were no distortion in the data (as the data was synthetically generated using TADA) 

introduced by intra- and inter-speaker variability. Finally, note that the better performance of 

TVs does not seem to hold for the tongue body TVs. This can be possibly attributed to the 

different roles played by the tongue body in speech. The tongue body TVs are controlled 

primarily for vowels which do not usually involve very narrow constrictions in the vocal tract 

(although velar consonants (e.g. /k/ and /g/) do employ it). It can thus be said that TVs are 

superior for representing articulations with narrow constrictions (consonants), since such 

constrictions will have a disproportionate influence on the acoustics (Stevens, 2000a). For 

example, the TB constriction for a coproduced vowel will produce little modulation of the 

acoustics of stop closure or fricative noise, while a consonantal constriction will have a very 

large influence, determining if there is silence or turbulence. Also note that our main goal in 

retrieving articulatory trajectory information is to incorporate them for the purpose of 

articulatory gesture estimation. Since articulatory gestures are action units that inherently 

define constriction location and degree along the vocal tract, it can be surmised that the TVs 

would be more appropriate intermediate entities between acoustic observations and 

articulatory gestures rather than the flesh-point pellet trajectories. Thus, even if the pellet-

trajectories are recovered more accurately than the TVs (which are not found to be the case 

here) they could not be expected to perform as well as the TVs in the estimation of 

articulatory gestures. 
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4.1.3.2 TV Estimation 

In this section, we will provide a more detailed analysis of the TV estimation processes. 

Apart from the machine learning approaches explored in the last section, we will examine 

SVR, AR-ANN and finally DSL for TV estimation and then compare their performance with 

that of the MDN and FF-ANN architectures presented in the last section.  

 

Hierarchical SVR 

The task of speech inversion can be viewed as a non-linear regression problem, which can be 

performed using a hierarchical SVR framework (Mitra et al., 2009a). In the SVR framework, 

speech is parameterized as MFCCs and APs and then contextualize as stated in section 4.1.3. 

Please note that for only the experiments involving hierarchical SVRs, the synthetic dataset 

XRMB-SYN1 was used. Separate SVR models with RBF kernel were trained for each TV, 

where the set of APs5 for each model was selected based upon their relevance. We observed 

that certain TVs (TTCL, TBCL, TTCD and TBCD) are known to be functionally dependent 

upon other TVs, while the remaining TVs (GLO, VEL, LA and LP) are relatively 

independent and can be obtained directly from the acoustic features. This dependency is used 

to create the hierarchical architecture shown in Figure 4.10. From the results of the validation 

set the optimal value of C in equation (7) was found to be 1.5 and γ in equation (8) was set 

equal to 1/d based on results reported by Toutios & Margaritis (2005a) and Weston et al. 

(2003), where d = dimension of the input feature set.  

                                                 
5 The number of pertinent APs for each TV is shown in (Mitra et al., 2009) and the full list of those 
APs are given in Appendix A 
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Figure 4.10 The hierarchical ε-SVR architecture for generating the TVs 

 

AR-ANN 

The estimated TVs from TMDN, FF-ANN and SVRs were found to be fairly noisy, which 

necessitated the use of Kalman smoother post-processing. As articulatory movements are 

inherently low pass in nature, maintaining smoother trajectories is a desired outcome in the 

speech inversion task. Using autoregressive architecture can be suitable for such an 

application, as the feedback loop may help to retain the smoothness of the estimated 

trajectories. Individual AR-ANN models were trained separately for each of the TVs.  A 2-

hidden layer AR-ANN model with tan-sigmoid activation, SCG training (using 5000 training 

epochs) with dynamic backpropagation was used. The number of neurons in each hidden 

layer was optimized and for all the models the number of neurons within each hidden layer 

was confined within 25 to 200. A unit delay6 was used in each of the AR-ANN architectures. 

The TV estimates from the AR-ANNs were found to be fairly smooth, hence were not post 

processed with the Kalman smoother.  

 

 

                                                 
6Multiple delays were also tested, but were not found to yield appreciable improvement in 
performance. 

Acoustic 
features Speech 

ε-SVR GLO 

ε-SVR VEL 

ε-SVR LP 

ε-SVR LA 

ε-SVR TBCL 

ε-SVR TTCD ε-SVR TTCL 

ε-SVR TBCD 
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DSL architecture 

A single DSL architecture was trained for all the eight TV trajectories for each acoustic 

feature set of MFCCs and APs. The forward models were created using single hidden-layer 

FF-ANN and trained using the SCG algorithm. The number of neurons in the hidden layer 

was optimized using the rms error over the validation set. The inverse models were built 

using a 3-hidden-layer network and the number of neurons in each layer was optimized using 

the rms error on the validation set. The DSL models were trained using a gradient descent 

learning algorithm (with a variable learning rate), momentum learning rule (momentum = 

0.9) and mean squared predicted performance error (Jordan & Rumelhart, 1992) with 

regularization as the optimization criteria (regularization parameter = 0.4). The number of 

neurons in the forward model was 350 and 400 and in the inverse model were 150-100-150 

and 250-300-250 for the MFCCs and APs respectively. 

 

Comparison of TV estimation architectures and their performance 

The TV estimation results from TMDN, 3-hidden layer FF-ANN, SVR, AR-ANN and DSL 

are shown in Figures 4.11 - 4.13 for both APs and MFCCs. It can be observed from the plots 

that the 3-hidden layer FF-ANN architecture overall offered superior performance over the 

other approaches, closely followed by the DSL technique. For LA, DSL always performed 

better than the 3-hidden layer FF-ANN. The worst performance was observed from the SVR 

and the AR-ANN architectures. The feedback loop in the AR-ANN architecture helps to 

maintain the inherent smoothness of the articulatory trajectories but at the same time can be a 

source of progressive error introduction. If the AR-ANN model makes a significant error at 

any time instant, that error gets fed back to the system, resulting in progressive error in 

subsequent estimates. The TMDN results though were not as good as the 3-hidden layer FF-

ANN, but were much better most of the time than the SVR and AR-ANN architectures.  
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Figure 4.11 PPMC for TV estimation from different architectures using MFCCs 

 
Figure 4.12 PPMC for TV estimation from different architectures using APs 

 
Figure 4.13 Normalized RMSE for TV estimation from different architectures using MFCCs 
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Figure 4.14 Normalized RMSE for TV estimation from different architectures using APs 

 

Tables 4.5-4.8 presents the PPMC and RMSE obtained from the different machine learning 

architectures for TV estimation using acoustic features MFCCs and APs. As noted from 

Tables 4.7 and 4.8, different TVs have different measuring units and dynamic ranges; hence 

accordingly the RMSE needs to be interpreted. For example GLO and VEL have a very small 

dynamic range compared to others and hence very small RMSE. On the contrary, TBCL and 

TTCL are measured in degrees and have a larger dynamic range compared to others, hence 

their RMSE is in degrees and their values are larger than others.  

 Tables 4.5-4.8 show that the APs most of the time offered better accuracy for GLO 

and VEL, whereas for the other TVs, the MFCCs provided better results. The APs have 

specific parameters for detecting voicing (e.g., periodic and aperiodic energies at different 

subbands) and nasalization (Ratio of the energy in BW [0 to 320Hz] and energy in BW [320 

to half the sampling rate] measured in dB, [Pruthi, 2007]).  Thus, GLO and VEL are better 

captured using the APs.  
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Table 4.5 PPMC from the different TV-estimation architectures using MFCC as the acoustic 

feature 

 SVR FF-ANN AR-ANN DSL MDN 

GLO 0.943 0.965 0.985 0.980 0.819 

VEL 0.933 0.966 0.896 0.967 0.948 

LA 0.722 0.894 0.847 0.917 0.866 

LP 0.743 0.927 0.518 0.788 0.748 

TBCL 0.872 0.968 0.930 0.964 0.949 

TBCD 0.872 0.962 0.932 0.948 0.917 

TTCL 0.851 0.951 0.912 0.949 0.942 

TTCD 0.898 0.949 0.905 0.930 0.939 

 

 

Table 4.6 PPMC from the different TV-estimation architectures using AP as the acoustic 

feature 

 SVR FF-ANN AR-ANN DSL MDN 

GLO 0.953 0.986 0.993 0.976 0.928 

VEL 0.957 0.972 0.730 0.972 0.905 

LA 0.755 0.889 0.812 0.904 0.852 

LP 0.757 0.903 0.687 0.837 0.765 

TBCL 0.844 0.970 0.899 0.960 0.940 

TBCD 0.867 0.962 0.938 0.921 0.924 

TTCL 0.845 0.929 0.832 0.926 0.901 

TTCD 0.888 0.938 0.880 0.905 0.913 
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Table 4.7 RMSE from the different TV-estimation architectures using MFCC as the acoustic 

feature 

 SVR FF-ANN AR-ANN DSL MDN 

GLO 0.043 0.031 0.020 0.026 0.069 

VEL 0.027 0.017 0.032 0.021 0.021 

LA 2.334 1.596 1.928 1.426 1.795 

LP 0.538 0.366 0.913 0.509 0.696 

TBCL 11.322 6.946 10.383 7.400 8.734 

TBCD 1.591 1.013 1.358 1.206 1.488 

TTCL 7.707 4.896 6.682 5.153 5.338 

TTCD 3.277 2.337 3.197 2.667 2.534 

 

 

Table 4.8 RMSE from the different TV-estimation architectures using AP as the acoustic 

feature 

 SVR FF-ANN AR-ANN DSL MDN 

GLO 0.037 0.019 0.013 0.028 0.045 

VEL 0.022 0.016 0.052 0.019 0.029 

LA 2.142 1.627 2.192 1.524 1.872 

LP 0.524 0.420 0.866 0.444 0.702 

TBCL 13.699 6.724 12.405 7.813 9.502 

TBCD 1.768 1.015 1.287 1.475 1.410 

TTCL 8.081 5.946 9.210 6.173 6.912 

TTCD 3.324 2.568 3.560 3.080 3.010 
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The different architectures described above targeted different aspects of the speech 

inversion process. For example, AR-ANN targeted the inherent smoothness (low-frequency 

nature) of the TVs and the DSL and TMDN architecture were designed to explicitly address 

the non-uniqueness involved in speech inversion. The 3-hidden layer FF-ANN targeted the 

non-linearity of the speech inversion task. The better performance of the 3-hidden layer FF-

ANN suggests that non-linearity may be the most critical aspect of TV estimation from the 

speech signal. The non-linearity in the FF-ANNs is imparted by the tan-sigmoid activations 

used in the hidden layers. We observed that increasing the number of hidden layers in the FF-

ANN architecture resulted in an increase in the PPMC and a simultaneous decrease in the 

RMSE, as shown in Table 4.9, where the FF-ANN had eight output nodes (one for each TV). 

From Table 4.9 it can be seen that increasing the number of hidden layers increased the 

PPMC consistently for all but LP. 

 

Table 4.9. PPMC for FF-ANNs with different number of hidden layers for MFCC 

 GLO VEL LA LP TBCL TBCD TTCL TTCD 

1-hidden layer 0.942 0.951 0.872 0.928 0.956 0.946 0.929 0.928 

2-hidden layer 0.960 0.961 0.885 0.925 0.967 0.960 0.940 0.939 

3-hidden layer 0.965 0.966 0.894 0.927 0.968 0.962 0.951 0.949 

 

 

From these observations, we re-iterate Qin et al.’s (2007) claim that non-uniqueness may not 

be a critical problem for speech inversion although their work was focused on pellet-

trajectory based speech inversion. McGowan (1994) stated that the non-uniqueness in the 

acoustic-articulatory mapping may be reduced for the TVs compared to the pellet trajectories 

as there can be one articulatory specification (in terms of constriction degree and location) in 

TV-space which can have many different sets of articulatory location (in Cartesian 
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coordinates) in Pellet-trajectory space, that represent the same vocal tract constriction. Hence 

for TVs we can expect a further (if at all any) reduction in non-uniqueness for the speech 

inversion task. It is well known that speech to articulatory inversion is a primarily non-linear 

problem (Richmond, 2001) and this fact could be the driving force behind the success of the 

3-hidden layer FF-ANN. The DSL approach uses a similar architecture as the 3-hidden layer 

FF-ANN, but its inability to match the performance of the latter can be due to the inaccuracy 

in the forward model. As pointed out before, the DSL topology is more like an analysis-by-

synthesis architecture, where the performance of the synthesis part entirely depends upon the 

accuracy of the forward model. To ensure a highly accurate forward model, exhaustive data is 

typically required to ensure the forward model has examples of all possible pairs of 

articulatory data and acoustic observation. However in a real-world scenario such exhaustive 

data may not be always practical rendering the inaccuracy of the forward model. An example 

of the predicted trajectories from the 3-hidden layer FF-ANN for five different TVs (VEL, 

LA, TBCL, TBCD, TTCL and TTCD) is shown in Figure 4.15 for the synthetic utterance ‘a 

ground’. It can be seen that the raw trajectories from the FF-ANN architecture are much 

noisier and the Kalman-smoothing helped to reduce that noise effectively. 
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Figure 4.15 Actual and estimated TVs from ANN and ANN+Kalman using MFCC as the 

acoustic feature 

 

4.1.4 Speech Inversion: Observations 

In this section we observed using a TADA generated synthetic dataset that TV estimation can 

be done with overall better accuracy than estimation of articulatory pellet trajectories. This 

result suggests that the TVs may be a better candidate than the pellet trajectories, for 

articulatory feature based ASR systems. Analysis of different approaches to TV estimation 

suggests that for the synthetic dataset we used, non-linearity is the governing factor rather 

than non-uniqueness. We draw this conclusion since the 3-hidden layer FF-ANN architecture, 

which models well the nonlinearity inherent in speech inversion, offered much better 

accuracy over the other competing approaches. The 3-hidden layer FF-ANN is simpler to 
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construct and even simpler to execute when trained, hence it would be an ideal candidate for 

TV estimation in a typical ASR architecture or a gesture based ASR system envisioned in this 

dissertation.  

 

4.2 Recognizing Articulatory Gestures from the Speech signal 

This section describes a speech articulatory gesture recognizer that recognizes articulatory 

gestures from the speech signal. Recollect that the speech gestures are constriction actions 

produced by distinct constricting organs of the vocal tract. Once a given gesture is activated, 

it generates the TVs that represent the degree and/or location of constriction of the associated 

constricting organs according to its set of corresponding dynamic parameters (target position, 

stiffness etc.). Recognizing gestures for a given utterance involves recovering gestural 

activations and their dynamic parameters. Due to the lack of any natural speech database 

containing such gestural information our initial experiments were performed on a synthetic 

speech dataset XRMB-SYN2 presented in section 3. For gesture recognition we proposed a 

cascaded neural network architecture for recognizing articulatory gestures from speech, 

where gestural activations are recognized in the first stage using an auto-regressive neural 

network, and the dynamic parameters associated with the activated gestures are recognized in 

the second stage using a feed-forward neural network.  

4.2.1 Why Gesture recognition? 

Note that in a typical ASR situation the only available observation is the acoustic speech 

signal and neither the articulatory gestures nor the TVs are readily available, hence they have 

to be estimated from the speech signal. Several studies have tried to obtain/annotate gestural 

information from the acoustic speech signal. Sun & Deng (2002) proposed an automatic 

annotation model of gestural scores, where the model itself was trained with manually 
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annotated gestural scores. They showed improvement in ASR performance by using their 

overlapping feature-based phonological model defined by general articulatory dynamics. 

Gestural activation recovery (where the gestural activations represent the time interval when 

a gesture is active) from the acoustic signal has been performed by Jung et al. (1996) using a 

temporal decomposition (TD) method (Atal, 1983) on multi-channel articulatory trajectories. 

TD (Atal, 1983) models a set of speech parameters for an utterance by a sequence of 

overlapping target functions and their corresponding target vectors. Jung et al. (1996) used 

TD to construct a set of target functions from data-derived basis functions. The resultant 

target functions and weights for each basis function were used to derive the gestural score, 

which were applied to various CVC syllables embedded in frame sentences. However, their 

task was restricted to the recovery of only gestural activations and did not consider gestural 

dynamic parameters. The dynamic parameters of active gestures such as the stiffness and 

target are crucial to distinguish utterances in a gesture-based lexicon (Browman & Goldstein, 

1992). The stiffness helps to distinguish consonants from vowels: the motion for consonants, 

which is parameterized as a gesture with higher stiffness, is faster than that of vowels. The 

targets provide spatial information about the location and degree of a constriction. For 

example, in case of /s/ as in ‘miss’ (shown in Figure 3.3), the tongue-tip gesture will have a 

critical constriction degree at the alveolar ridge, with an 'alveolar' TTCL target and TTCD 

target near 0 mm. Hence, estimating only gestural activations is not sufficient for lexical 

access. To address this problem, Zhuang et al. (2009) proposed the GPVs that are 

instantaneous single time slice realizations of gestural activations and their corresponding 

dynamic parameters, as recognition units. They proposed a tandem ANN-GMM model that 

predicts the GPVs from a priori knowledge of TVs and reported that the GPVs were correctly 

recognized 80% of the time and word recognition rate was 85% (Zhuang et al., 2009) using 

the estimated GPVs for a dictionary of 139 words. However, the drawback of performing 

GPV recognition is that the number of possible GPVs for a speech database with a large 
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dictionary size can potentially be huge, necessitating a large number of GPV models to be 

learned and evaluated. Moreover, not all GPVs occur with similar frequencies, introducing 

data sparsity issues similar to those encountered with tri-phone models. In addition, the GPV 

recognizer in Zhuang et al., (2009) assumed a priori knowledge of the TVs without 

estimating them from the speech signal, which may not be practical for a typical ASR system. 

In a different study Tepperman et al. (2009) used an HMM-based iterative bootstrapping 

method to estimate gestural scores but their approach was limited to a small dataset.  

In this section, we propose a new model that recognizes gestures directly from 

acoustic speech signals and aims to provide a proof of concept that, gestures indeed can be 

obtained from speech (for which we used a synthetic speech corpus) with a quantified degree 

of accuracy. Contrary to Zhuang, et al. (2009), gesture recognition is not performed as a 

frame-wise instantaneous GPV recognition; instead the task is broken into two 

subcomponents as two stages of a cascaded architecture: (a) recognizing gestural activation 

intervals in the first stage and (b) estimating the dynamic parameters for the active gesture 

intervals in the second stage. Separate gesture-recognition models were built for each tract 

variable (e.g., LA, TBCL, GLO, etc). We further examine whether TVs estimated from the 

acoustic signal can improve gesture recognition when combined with acoustic information. 

Please recollect here from section 4.0 that the potential advantages of estimating TVs in an 

intermediate stage before gesture recognition are twofold. First, gestures are tied to TVs in 

the sense that the gestural activations and their associated sets of dynamic parameters shape 

and control the dynamics of the TVs. Second, acoustic signals are continuous with higher 

bandwidth whereas speech gestures are discrete and quasi-stationary by definition having 

much smaller bandwidth. Hence, it may be difficult and inaccurate to create a direct mapping 

between a high-bandwidth continuous regime and a locally stationary and discrete regime. On 

the other hand, TVs are continuous like the acoustic signal, but smoothly varying with low 

bandwidth like the gestural activation trajectories, and thus may be coupled well with both 
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gestures and acoustic signal7. In other words, estimating TVs as an intermediate source of 

information prior to gesture recognition/recovery may provide an appropriate cross-

representational bridge between the continuous and high bandwidth acoustic regime and the 

discrete articulatory gesture regime (i.e., gestural score).  

The goal of the study presented in this section is to develop a methodology, grounded 

in articulatory phonology, to recognize speech gestures, in the acoustic waveform. The 

recognized gestural information can be utilized as potential sub-word units in a full-blown 

ASR (which is the goal of this dissertation). It is therefore important to explore optimal ways 

of recognizing gestures and have quantitative knowledge about how accurately they can be 

recognized, which is addressed in this section. This study is important for several reasons. 

First, although gestures might be used as hidden variables in a full-blown system, finding an 

optimal way of recognizing them explicitly is crucial to the design and implementation of the 

entire recognition system. Second, gesture recognition results from synthetic data can be used 

as a baseline to evaluate those obtained for natural speech in the future.  

 

4.2.2 The Gesture Recognizer 

Recognizing gestures entail obtaining gestural scores (i.e., gestural activation intervals, 

targets, and stiffnesses) from an acoustic signal parameterized with MFCCs, APs and/or TV 

information. We pursued four approaches to gesture recognition from speech that differed 

with respect to the types of inputs used as shown by Figure 4.16(a-d). Approach-1 used the 

acoustic features only (i.e., the MFCCs or the APs); approach-2 used only the TVs estimated 

from acoustic features; approaches 3 and 4 both use TVs along with acoustic features, with 

the former using estimated and the latter using groundtruth TVs. Note here that the 3-hidden 

layer FF-ANN based TV-estimator presented in the last section has been used for estimating 
                                                 
7As evidenced by our prior research (Mitra et al., 2009, 2010), TVs can be estimated satisfactorily 
from the speech signal, indicating that TVs may be coupled well with the corresponding acoustic 
waveform. 
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the TVs for the gesture recognition task. The acoustic parameterization was matched for the 

TV-estimator and the gesture recognizers, i.e., the MFCC-based gesture recognizer used the 

MFCC based TV-estimator and likewise for the APs. 

For all of the above four approaches we adopted a 2-stage cascade model of ANNs 

(shown in Figure 4.17), where gestural activation (onset and offset) information is obtained in 

the first stage using a non-linear autoregressive (AR) ANN, and gestural parameter estimation 

(target and stiffness parameters) is performed in the second stage using an FF-ANN. Note 

that a separate cascaded gesture-recognition model was trained for each tract variable (e.g., 

LA, TTCD, etc) using all of the four input combinations (shown in Figure 4.16). Altogether 4 

cascade models were trained for each tract variable, except for GLO and VEL8. 

 

Figure 4.16 The Four approaches for Gesture recognition 

                                                 
8 We observed that using only acoustic features GLO and VEL can be recognized with an accuracy of 
around 99%, hence for them only approach-1 in Figure 4.16 was implemented. 
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Figure 4.17 The 2-stage cascaded ANN architecture for gesture recognition 

 

Gestural activation is discrete and quasi-stationary in nature. That is, gestural 

activation at any instant of time i can have only one of two discrete states: {0,1}iS ∈ , with Si 

= 1 when active, and Si = 0 when inactive. Once a gesture is active or inactive it maintains 

that state for a given interval of time (at least 50ms to at most 300ms), which implies that 

instantaneous switching between the two states does not occur and the gesture can be 

considered quasi-stationary. We model this quasi-stationarity by incorporating memory into 

the gestural activation detection process, using a recurrent feedback loop characteristic of 

AR-ANN (Demuth et al., 2008). Memory is used to remember the sequence of prior 

activation states (St-1, St-2, … St-∆) and that information along with the current acoustic 

observation u(t) is used to predict the activation state St for the tth time instant. As shown by 

equation (39) 

    
1 2( , ,.. , ( ))

t AR ANN t t t
S f S S S u t

− − − −∆
=                (39) 

where fAR-ANN  represents the nonlinear AR-ANN network. Note that the autoregressive 

memory serves to effectively prevent instantaneous switching between activation states. 

The second stage of the gesture recognition model uses an FF-ANN to predict 

gestural dynamic parameters: constriction targets and gestural stiffnesses (Saltzman & 

Munhall, 1989; Browman & Goldstein, 1992) during the active gestural intervals. Obtaining 

gestural dynamic parameters is essentially a function estimation problem where the 

parameters target and stiffness can theoretically have any real value and FF-ANNs can be 
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trained to approximate any function (with a finite number of discontinuities) (Demuth et al., 

2008; Lapedes & Farber, 1988). We considered 10 different tract variables for the gesture-

recognition model: LP, LA, TTCL, TTCD, TBCLC, TBCLV, TBCDC, TBCDV, VEL and 

GLO. Note that, since tongue body gestures are shared by velar consonants and vowels with 

distinct timescales (fast for consonants and slow for vowels), the original TBCL and TBCD 

tract variables used in TADA were partitioned into consonant (TBCLC and TBCDC) and 

vowel (TBCLV and TBCDV) sub-tract variables. The acoustic features (MFCCs or APs) 

used as the input to the cascaded ANN were temporally contextualized in a similar manner as 

was done for TV estimation (described in section 4.1.3) and the optimal context windows for 

each stage were found to vary for different tract variables. 

Note that both GLO and VEL gestures are specified separately using a much simpler 

procedure than is used for the other tract variables. These tract variables (GLO and VEL) are 

independent unlike other tract variables interacting with one another due to their articulatory 

dependency. Similarly, all gestures for both GLO and VEL are assumed to have only one 

target and stiffness value, unlike gestures in the other tract variables. We observed that using 

approach-1 (i.e. using just the acoustic features as inputs) for GLO and VEL provided a 

recognition accuracy of nearly 99%; hence we have not explored the other three approaches 

for these two tract variables. 

 

4.2.3 Gesture Recognition Experiments and Results 

In this section we present and compare the performances of the different types of gesture-

recognizers outlined in Figure 4.16 using the XRMB-SYN2 database. The four different sets 

of gesture-recognition models were constructed for each of the 8 gestures (LP, LA, TTCL, 

TTCD, TBCLC, TBCLV, TBCDC and TBCDV). Please recollect that for the GLO and VEL 

gestures, only approach-1 was constructed. The network configurations (i.e., input contextual 
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information, number of neurons and the delay chain in the feedback path of the AR-ANN) 

were optimized separately for each TV's set of models for the first stage (i.e. the AR-ANN) 

and the second stage (i.e. the FF-ANN) in the cascaded architecture using the development 

set of XRMB-SYN2. The networks in both the stages contained a single hidden layer with 

tan-sigmoid activation functions, and were trained using the SCG algorithm with a training 

epoch of 2500 iterations. The performance of the gesture recognizers was evaluated by first 

quantizing the gestural parameters obtained from the second stage based on a quantization 

code9 constructed from the training set, and then computing a frame-wise gesture recognition 

accuracy score using equation (40) 

    Re . . 100
N S

c Acc
N

−
= ×                              (40) 

where N is the total number of frames in all the utterances and S is the number of frames 

having at least one of the three gestural parameters (activation, target and stiffness) wrongly 

recognized. Figure 4.18 presents the overall gesture recognition accuracy (averaged across 

the 8 different gestures ignoring GLO and VEL) obtained from the four approaches using 

MFCCs and APs as the acoustic feature.  

                                                 
9 The number of quantization levels used to perform quantization of the gestures GLO, VEL, LA, LP, 
TTCL, TTCD, TBCLV, TBCDV, TBCLC and TBCDC are 6, 4, 8, 10, 14, 16, 10, 10, 4 and 4 
respectively 
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Figure 4.18 Average gesture recognition accuracy (%) obtained from the four approaches (1 

to 4) using AP and MFCC as acoustic feature. 

 

Figure 4.18 presents the following interesting observation:  

(1) Approach-4 offers the best recognition accuracy for both MFCC and AP. This is expected 

as approach-4 uses the groundtruth or actual TVs. However, since we cannot assume a priori 

knowledge of the actual TVs, approach-4 cannot be feasibly applied for ASR of actual speech 

utterances. Nevertheless, approach-4 provides the theoretical accuracy ceiling that would be 

expected if we could have an absolutely accurate TV-estimator in approach-3. 

(2) For approach-4, using APs as the acoustic feature gives higher recognition accuracy than 

using MFCCs, which may indicate that APs provide a better acoustic parameterization than 

MFCCs for gesture recognition. 

(3) Approach-1 uses only the acoustic features, i.e., APs or MFCCs for gesture recognition, 

and as observed from Figure 4.18, APs show overall higher recognition accuracy than the 

MFCCs, confirming the statement made in (2). 
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(4) Approach-2 uses only the estimated TVs and as observed in Figure 4.18, MFCCs offer 

better recognition accuracy than APs. The reason for this result lies in Table 4.5-4.8, which 

shows that TV estimation using the MFCCs is better than TV estimation using the APs for 

five TVs (LA, LP, TBCD, TTCL and TTCD) out of the eight. Hence overall the MFCC based 

TV estimates are relatively more accurate than the APs, resulting in the MFCC based model 

in approach-2 to show superior performance than the AP based one. 

(5) For approach-3, the AP and the MFCC based system gave almost similar recognition 

accuracies. While the MFCC based TV-estimator is more accurate, the APs offer better 

acoustic parameterization and these two counter-balances each other to show similar 

performance in approach-3.  

(6) Approach 1, 2 and 3 are more realistic gesture-recognition architectures for ASR 

application, as only the acoustic features are considered as the observable and TVs in 

approach 2 and 3 are estimated from acoustic features. Amongst these 3 approaches, 

approach-3 offered the best recognition accuracy indicating that estimating TVs for gesture 

recognition is indeed beneficial, as we have speculated. Approach-3 is analogous to the use of 

tandem features used in ASR (Frankel et al., 2008) where an ANN is used to perform a non-

linear transform of the acoustic parameters to yield the estimated TVs, which in turn helps to 

improve the recognition of gestural scores when used in conjunction to the acoustic 

parameters. Note that the improvement caused by TVs cannot be just due to the increased 

number of input parameters. If that was the case, then APs would be far superior to MFCCs 

in approach-1.  

Given these observations, we can state that the cascaded neural network gesture 

recognizer using acoustic features and estimated TVs as input will recognize gestures 

relatively more accurately than when only acoustic features or estimated TVs are used as the 

input. Figure 4.19 presents the recognition accuracies obtained for all gestural types, where 

approach-1 is only used for GLO and VEL and approach-3 is used for all of the remaining 
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gestures. The figure shows that using approach-1 the GLO and VEL gestures were 

recognized quite well (accuracy > 98%). This observation is encouraging as it indicates that it 

may indeed be relatively simple to estimate parameters for these gestures from synthetic 

speech. APs offered better recognition accuracy for the GLO, VEL, TBCL-V, TBCD-V and 

TBCD-C gestures; this was expected as the APs have specific features for capturing voicing 

(the periodic and aperiodic information using the approach specified in (Deshmukh et al., 

2005)) and nasalization (using AP’s proposed in [Pruthi, 2007]) information, whereas the 

MFCCs have none. However, since some AP’s rely on formant information and since 

formant tracking using noisy speech becomes increasingly difficult and unreliable with 

decreasing SNR, the AP based gesture recognition models will not likely be a reliable choice 

for recognizing gestures from noisy speech.  

 

Figure 4.19 Gesture recognition accuracy (%) obtained for the individual gesture types using 

the cascaded ANN architecture, where the inputs for GLO and VEL were acoustic features 

only (i.e., AP or MFCC) while for the remainder, the input was defined by the concatenation 

of estimated TVs and acoustic features  
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Table 4.10 presents the optimal configuration for the 2-stage cascaded gesture 

recognition model for each gestural type. Note that in the two stages of the cascaded model, 

different optimal context window lengths were found for gestural activation and parameter 

detection. The ∆ in Table 4.10 represents the order of the delay chain in the feedback path of 

the AR-ANN architecture used for gestural activation detection. 

  

Table 4.10 Optimal configuration for gesture recognition (activation and parameter) using 

Approach-1 for GLO and VEL and Approach-3 for the rest 

 AP MFCC 

 Activation  

detection 

Parameter 

estimation  

Activation 

 detection 

Parameter 

estimation 

Gesture ∆ Context (ms) Context (ms) ∆ Context (ms) Context (ms) 

GLO 4 170 210 5 190 210 

VEL 4 150 210 4 130 210 

LA 3 90 210 10 90 210 

LP 4 90 290 9 90 290 

TTCL 4 90 210 4 90 210 

TTCD 7 190 210 4 190 230 

TBCLV 4 130 290 4 170 290 

TBCDV 9 150 290 7 190 290 

TBCLC 4 150 210 10 190 210 

TBCDC 4 150 210 4 170 210 

 

Note that for a given gesture, the optimal input feature context window for activation 

detection (i.e., for AR-ANN) is smaller compared to that used for gestural parameter 
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estimation (i.e., for FF-ANN). This might be because the recognizer could not effectively 

recognize a gesture's specified target until the corresponding TV reaches its target (requiring 

a larger window of observation) whereas activation can be recognized by simply detecting a 

constricting motion on a TV (requiring a smaller observation window). Also the acoustic 

feature context windows for gesture-recognition are different than those used for TV 

estimation, where the optimal context window using MFCCs and APs was found to be 170 

ms and 190 ms respectively. Hence three following factors may have contributed to the 

superior performance of approach-3 relative to approaches 1 and 2 (as observed in Figure 

4.18): 

(1) Approach-3 has the benefit of using three context windows (one each for TV estimation, 

activation detection and parameter estimation), and the concomitant power of the multi-

resolution analysis they provide. 

(2) Approach-3 uses two streams of input information: (a) acoustic features and (b) estimated 

TVs, whereas approach 1 & 2 uses only one of those two. 

(3) Finally, as stated earlier (section 1), acoustic signals have higher bandwidth whereas 

speech gestures are discrete units which are quasi-stationary by definition, having bandwidth 

close to zero. Hence trying to create a direct mapping between them will be prone to errors, 

for which approach-1 may not have been as successful as approach-3. TVs are smoothly 

varying trajectories (with bandwidth lower than the acoustic waveform but higher than 

gestures) that are not only coupled strongly with gestures but are also coupled well with the 

acoustic signal, hence using them as an intermediate information turns out to be a better 

strategy. 

 

4.2.4 Gesture Recognition: Observations 

In this section we presented a cascaded neural network architecture for recognizing gestures 

from the acoustic waveform and evaluated different input conditions to obtain the best 
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implementation. We have tested gestural recognition using four different sets of input 

information: (1) acoustic signals, (2) estimated TVs, (3) acoustic signals and estimated TVs 

and finally (4) acoustic signals and groundtruth TVs. While the first three approaches are 

more realistic in terms of ASR, the last one assumes prior TV knowledge. We explored the 

fourth approach to provide information regarding the maximum recognition accuracy that can 

be achieved given the TV estimator is accurate. Amongst the first three approaches, the third 

approach offered the best recognition accuracy, offering at least 4% improvement in 

performance than either of the first two approaches. Thus, we claim that incorporating 

estimated TVs as tandem-features can ensure higher accuracy for gesture recognition.  

 

4.3 ASR experiments using TVs and gestures 

Prior studies have shown that articulatory information, if extracted properly from the speech 

signal, can improve the performance of automatic speech recognition systems. We have 

shown in the last sections that articulatory information in the form of TVs and articulatory 

gestures can be obtained from the acoustic speech signal. The study presented in this section 

uses estimated articulatory information in the form of TVs and gestural scores in conjunction 

with traditional acoustic features and performs word recognition tasks for both noisy and 

clean speech. In this section we will show that incorporating articulatory information can 

significantly improve word recognition rates when used in conjunction with the traditional 

acoustic features. 

 

4.3.1 Articulatory information for noise-robust ASR 

Incorporating speech production knowledge into ASR systems was primarily motivated to 

account for coarticulatory variation. Kirchhoff (1999) was the first to show that such 

information can help to improve noise-robustness of ASR systems as well. She (1999) and 
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her colleagues (2002) used a set of heuristically defined AFs, which they identified as 

pseudo-articulatory features. Their AFs represent the speech signal in terms of abstract 

articulatory classes such as: voiced/unvoiced, place and manner of articulation, lip-rounding, 

etc. However their AFs do not provide detailed numerical description of articulatory 

movements within the vocal tract during speech production. They showed that their AFs in 

combination with MFCCs provided increased recognition robustness against the background 

noise, where they used pink noise at four different SNRs. They concluded that the AFs and 

MFCCs may be yielding partially complementary information since neither alone provided 

better recognition accuracy than when both used together. In a different study, Richardson et 

al. (2003) proposed the Hidden Articulatory Markov Model (HAMM) that models the 

characteristics and constraints analogous to the human articulatory system. The HAMM is 

essentially an HMM where each state represents an articulatory configuration for each di-

phone context, allowing asynchrony amongst the articulatory features. They reported that 

their articulatory ASR system demonstrated robustness to noise and stated that the 

articulatory information may have assisted the ASR system to be more attuned to speech-like 

information. 

In this section we demonstrate that articulatory information in the form of TVs 

estimated from the speech signal can improve the noise robustness of a word recognizer using 

natural speech when used in conjunction with the acoustic features. In section 4.1 we have 

shown that the TVs can be estimated more accurately compared to the pellet trajectories and 

we demonstrated that estimation of the TVs from speech is predominantly a non-linear 

process. In this section we will re-train the 3-hidden layer FF-ANN TV-estimator and the 

gesture-recognizer models presented in section 4.1 and 4.2, using the AUR-SYN data. The 

trained models will finally be deployed on the natural utterances of Aurora-2 database, to 

estimate and recognize their corresponding TVs and gestural scores. The models were 

retrained using AUR-SYN as the acoustics in AUR-SYN is phonetically similar to the 
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Aurora-2 acoustics that we will be using for the ASR experiments. Please note here that 

MFCCs are used as the acoustic parameterization for these set of experiments and not the 

APs, as some AP’s rely on formant information and formant tracking for noisy speech can 

potentially become difficult and unreliable with a decrease in SNR. Since the Aurora-2 

database contains noise contaminated speech utterances, the APs may not be a reliable 

parameterization for the noisy speech utterances, especially for those having very low SNRs.  

 
Our work presented in this section is unique in the following ways:  

(a) Unlike the results reported by Frankel et al. (2000, 2001) we do not use flesh-point 

measurements (pellet trajectories) of the different articulators. Instead, we are using the vocal 

tract constriction trajectories or TVs, which are less-variant than the pellet trajectories 

(McGowan, 1994; Mitra et al., 2010a). None of the work available in the literature evaluated 

the articulatory information (in the form of TVs) estimated from the speech signal under 

noisy conditions. In the present study, we show that TVs can be estimated more robustly from 

noise-corrupted speech compared to pellet trajectories and also that the estimated TVs do a 

better job than pellet trajectories when applied to word recognition tasks under noisy 

conditions.  

(b) The work presented by Frankel et al. (2000, 2001) used LDM at different phone contexts 

to model the articulatory dynamics for clean speech, whereas we are using the TV estimates 

(without any phone context) directly into an HMM based word recognizer for the recognition 

task. 

(c) Kirchhoff et al.’s work (1999, 2002) though uses articulatory information for noise robust 

speech recognition; their AFs do not capture the dynamic information about articulation but 

describe only the critical aspects of articulation. They are mostly hypothesized or abstract 

discrete features derived from acoustic landmarks or events and are not directly obtained 
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from actual articulatory events. On the contrary, TVs provide actual articulatory dynamics in 

the form of location and degree of vocal tract constrictions in the production system.  

(d) Kirchhoff et al.’s work dealt with only pink noise at four SNR levels (30dB, 20dB, 10dB 

and 0dB), whereas we report our results on eight different real-world noise types (subway, 

car, babble, exhibition, train-station, street, airport and restaurant) at six different SNRs 

(20dB, 15dB, 10dB, 5dB, 0dB and -5dB). Richardson et al. (2003) used hypothetical AFs 

obtained from a diphone context. Their noise robustness experiment was very limited in 

scope, and used stationary white Gaussian noise at 15dB SNR only. 

(e) In our study, articulatory information is used across different acoustic feature sets and 

front-end processing methods to verify whether the benefits observed in using such 

articulatory information are specific to particular features or are consistent across features.  

We justify the selection of TVs as opposed to the pellet trajectories by performing ASR 

experiments (both in noisy and clean conditions) using the TVs and the pellet-trajectories and 

comparing the noise-robustness witnessed in the ASR results from the two. 

(f) Finally, we use the recognized gestures for performing word recognition experiments 

using both clean and noisy utterances and report the results in this section. Note that the only 

prior use of gestures for ASR was reported by Zhuang et al. (2009). However, in that study 

the ASR task was performed on a synthetic corpus identical to XRMB-SYN1. The study 

reported by Sun & Deng (2002) presents ASR results obtained from an overlapping 

articulatory feature based phonological model akin to the articulatory gestures, however their 

experiments were not performed under noisy conditions. Hence the experiments presented in 

this section for the first time explicitly  uses articulatory gestures for performing word 

recognition task on both clean and noisy utterances. 
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4.3.2 ASR experiments and results using TVs and Gestures 

We aim to test the possibility of using the estimated TVs and gestures as possible inputs to 

the word recognition task on Aurora-2 (Pearce & Hirsch, 2000) and examine whether they 

can improve the recognition accuracies in noise. The details of the experiments are described 

in the following subsections. In section 4.3.2.1, we first present the TV estimation results for 

the synthetic speech data for clean and noisy conditions. In section 4.3.2.2, we then apply the 

synthetic-speech-trained TV-estimator on the natural utterances of Aurora-2 to estimate their 

corresponding TVs. In section 4.3.2.3, we perform word recognition experiments using the 

estimated TVs and Gestures as inputs, and compare their performances when combined with 

traditional acoustic features (MFCCs and RASTAPLP) or other front-end processing 

methods. 

 

4.3.2.1 TV Estimation in clean and noisy condition for AUR-SYN (synthetic speech) 

 The performance of the FF-ANN based TV-estimator is evaluated using the quantitative 

measures: PPMC and RMSE, shown in equations (4) and (35). The FF-ANN TV-estimator 

used in the experiments presented in this section was trained with the training set of AUR-

SYN and the results are obtained using the test-set. Table 4.11 presents RMSE and PPMC of 

the estimated TVs for the clean set of AUR-SYN with and without using the Kalman 

smoothing. Table 4.11 shows that using the Kalman smoother helped to reduce RMSE and 

increase PPMC for the clean test set.  

Figures 4.20 and 4.21 show RMSE and PPMC plots, respectively, of the estimated 

TVs at different SNRs from the test set of AUR-SYN corrupted with subway noise. As SNR 

decreases, the RMSE of the estimated TVs increases and their PPMC decreases, this indicates 

that the estimation deteriorates with decrease in SNR. Using Kalman smoothing results in 
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lower RMSE and higher PPMC at a given SNR. The car noise part of the AUR-SYN test-set 

shows a similar pattern. 

 

Table 4.11 RMSE and PPMC for the clean speech from AUR-SYN 

 

 

  No-smoothing Kalman smoothed 

RMSE PPMC RMSE PPMC 

GLO 0.0196 0.9873 0.0191 0.9880 

VEL 0.0112 0.9874 0.0101 0.9900 

LA 1.0199 0.9654 0.9054 0.9734 

LP 0.2257 0.9795 0.1986 0.9841 

TBCL 2.2488 0.9966 2.0097 0.9973 

TBCD 0.4283 0.9882 0.3841 0.9907 

TTCL 2.9758 0.9806 2.8108 0.9830 

TTCD 1.2362 0.9893 1.1722 0.9905 
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Figure 4.20 RMSE of estimated TVs for AUR-SYN (synthetic speech) at different SNRs for 

subway noise 

 
Figure 4.21 PPMC of estimated TVs for AUR-SYN (synthetic speech) at different SNRs for 

subway noise 
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4.3.2.2 TV Estimation in clean and noisy condition for Aurora-2 (natural speech) 

The FF-ANN TV-estimator presented in the last section (which was trained with the clean 

synthetic speech from AUR-SYN) was used to estimate TVs for the natural speech of the 

Auroa-2 database. The raw estimated TVs were then Kalman-smoothed. Since there is no 

known groundtruth TVs in Aurora-2, RMSE and PPMC cannot be computed directly. Instead 

we compared the unsmoothed or Kalman-smoothed estimated TVs from different noise types 

and levels to the corresponding unsmoothed or Kalman-smoothed estimated TVs from clean 

utterances, to obtain the relative RMSE and PPMC measures. Figures 4.22 and 4.23 show 

that the relative RMSE increases and the PPMC decreases as SNR decreases for the subway 

noise section of Aurora-2, and Kalman smoothing helps to improve the relative RMSE and 

the PMMC. Note that the TV estimates for the natural utterances showed a relatively lower 

PPMC compared to those of the synthetic utterance (see Figures 4.20 and 4.21). This may be 

due to the mismatch between the training data (synthetic data of AUR-SYN) and testing data 

(natural utterances of Aurora-2).  

Figures 4.24 and 4.25 show how the estimated TVs from natural speech look 

compared to those for the synthetic speech. Figure 4.24 shows the groundtruth TVs (GLO, 

LA, TBCL, TTCL and TTCD) and the corresponding estimated TVs for the synthetic 

utterance ‘two five’ from AUR-SYN for clean condition, 15dB and 10dB SNR subway noise 

contaminated speech. Figure 4.25 shows the same set of TVs estimated from the natural 

utterance ‘two five’ from Aurora-2 for clean condition, 15dB and 10dB SNR. Note that, since 

we do not know the groundtruth TVs for this natural utterance, it cannot be shown in the plot.  
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Figure 4.22 RMSE (relative to clean condition) of estimated TVs for Auora-2 (natural 

speech) at different SNRs for subway noise 

 
Figure 4.23 PPMC (relative to clean condition) of estimated TVs for Auora-2 (natural 

speech) at different SNRs for subway noise 
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Figure 4.24 The spectrogram of synthetic utterance ‘two five’, along with the ground truth 

and estimated (at clean condition, 15dB and 10dB subway noise) TVs for GLO, LA, TBCL, 

TTCL and TTCD 

 
Figure 4.25 The spectrogram of natural utterance ‘two five’, along with the estimated (at 

clean condition, 15dB and 10dB subway noise) TVs for GLO, LA, TBCL, TTCL and TTCD 
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Comparing Figure 4.24 and 4.25 we observe that the estimated TVs for both the natural and 

synthetic speech show much similarity in their dynamics at clean condition; with noise 

addition the dynamic characteristics of the trajectories deviate from those in the clean 

condition. 

In section 4.1.3.1 and (Mitra et al., 2010a), we showed that TVs can be estimated 

relatively more accurately than flesh-point pellet trajectories for clean synthetic speech. To 

further validate the TV’s relative estimation superiority over pellet trajectories for noisy 

speech, we trained a 3-hidden layer FF-ANN pellet-estimation model using TADA-simulated 

pellet trajectories from the AUR-SYN data. Seven pellet positions were considered: Upper 

Lip, Lower Lip, Jaw, and four locations on the Tongue; since each position was defined by its 

x- and y- coordinates, this gave rise to a 14 dimensional data trajectory which we named as 

Art-14. The pellet trajectory estimation model was deployed on the test set of the Aurora-2 

data and the estimated pellet trajectories were smoothed using a Kalman filter. Fig. 4.26 

shows the average relative PPMC across all the components of the Kalman-smoothed TV and 

pellet trajectory estimates for the subway noise section of Aurora-2.  

 

Figure 4.26 Average PPMC (relative to clean condition) of the estimated TVs and pellet 

trajectories (after Kalman smoothing) for Auora-2 (natural speech) at different SNRs for 

subway noise 
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It can be observed from Fig. 4.26 that the TV estimates offer a higher average relative PPMC 

at all noise levels compared to the pellet-trajectory estimates, indicating the relative noise-

robustness of the TVs. 

 

4.3.2.3 Noise robustness in word recognition using estimated TVs 

In this section, we present the ASR experiments using the estimated TVs as inputs, to 

examine if they can improve the ASR noise-robustness. We employed the HTK-based speech 

recognizer distributed with the Aurora-2 (Hirsch & Pearce, 2000; Pearce & Hirsch, 2000), 

which uses eleven whole word HMMs with three mixture components per state and two 

pause models for ‘sil’ and ‘sp’ with six mixture components per state. The ASR experiment 

was based on training in clean condition and testing on multi-SNR noisy data. The following 

subsections report ASR results obtained from using the estimated TVs in different input 

conditions. 

 

Use of TVs and their contextual information in ASR 

We first examined if variants of TVs, or their ∆s4 can improve ASR performance, and tested 

four different feature vectors10 as ASR inputs: (a) TVs (b) TVs and their velocity coefficients 

(TV+∆)11, (c) TVs and their velocity and acceleration coefficients (TV+∆+∆2) and (d) TVs 

and their velocity, acceleration and jerk coefficients (TV+∆+∆2+∆3). Figure 4.27 shows their 

word recognition accuracies along with a baseline defined by using the MFCC feature 

vector12.  

                                                 
10 The dimension of TV and each of its ∆s is 8. 
11 ∆, ∆2 and ∆3 represent the first, second, and third derivatives, respectively. 
12 The dimension of MFCC feature vector is 39: 12 MFCC + energy, 13 ∆ and 13 ∆2. 
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Figure 4.27 Average word recognition accuracy (averaged across all the noise types) for the 

baseline and TVs with different ∆s 

 

The recognition accuracy from using TVs and/or their ∆s in the clean condition is much 

below the baseline recognition rate, which indicates that TVs and their ∆s by themselves may 

not be sufficient for word recognition. However at 0dB and -5dB, TVs and their ∆s offered 

better accuracy over MFCCs (significance was confirmed at the 1% level13, using the 

significance-testing procedure described by Gillick & Cox (1989). Our observation for the 

clean condition is consistent with Frankel et al.’s observation (2000, 2001) that using 

estimated articulatory information by itself resulted in much lower recognition accuracy as 

compared to acoustic features. We also observed that TVs' contextual information (their ∆s) 

in conjunction with TVs did not show better accuracies than TVs alone (at the 5% 

significance level13). This may be because the TV-estimator already uses a large 

contextualized (context window of 170ms) acoustic observation (as specified in section 4.1.3) 

as the input; hence, the estimated TVs by themselves should contain sufficient contextual 

information and further contextualization may be redundant.  

                                                 
13 The detailed significance test results are shown in Appendix B. 
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TVs in conjunction with the MFCCs 

Frankel et al. (2000, 2001) noticed a significant improvement in recognition accuracy when 

the estimated articulatory data was used in conjunction with the cepstral features, which we 

also have observed (Mitra et al., 2009c). We used the MFCCs along with the estimated TVs 

for the ASR experiments. Here we considered three different models by varying the number 

of word (digit) mixture components per state from 2 to 4, identified as “Model-2mix”, 

“Model-3mix” and “Model-4mix”, where “Model-3mix” is the baseline model distributed 

with Aurora-2. Figure 4.28 compares the recognition accuracy14 of MFCC+TV from the 

different word models to the baseline accuracy using MFCC only. Adding TVs to MFCCs 

resulted in significant improvement in the word recognition accuracy compared to the 

baseline system using MFCCs only. The improvement is observed at all noise levels for all 

noise types. Note the baseline here is the result from the Model-3mix15, which showed the 

best performance amongst the models using MFCC+TV as shown in Figure 4.28. Also in 

Figure 4.28 we show the performance of the 14 flesh-point pellet trajectories (Art-14) when 

used in addition to the MFCCs, where the back-end uses 3-mixture components per state. 

Figure 4.28 clearly shows the superiority of TVs over Art-14 for improving the noise-

robustness of a word-recognizer. Although Art-14 is found to improve the noise robustness 

over the MFCC baseline, it fails to perform as well as the TVs. 

 

                                                 
14 The recognition accuracy here is averaged across all the noise types. 
15 We used this model for the rest of this dissertation. 
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Figure 4.28 Average word recognition accuracy (averaged across all the noise types) for the 

baseline, MFCC+TV using the three different number of Gaussian mixture components per 

state, and MFCC+Art14 using a 3 Gaussian mixture component per state model 

 

 

Speech enhancement 

This section examines how speech enhancement will interact with the use of TV estimates 

and MFCCs. We used the preprocessor based MPO-APP16 speech-enhancement architecture 

described in (Mitra et al., 2009d) to enhance the noisy speech signal from Aurora-2. Four 

different combinations of MFCC and TV estimates were obtained depending upon whether or 

not their input speech was enhanced17. Figure 4.29 presents the average word recognition 

accuracies obtained from these four different feature sets. Similar to the results in the last 

section, we notice that articulatory information (in the form of TVs) can increase the noise 

robustness of a word recognition system when used with the baseline-MFCC features. 

Indeed, TV estimates from enhanced speech exhibited poorer performance than TVs 

from noisy speech. This can be due to the fact that the MPO-APP based speech enhancer 

                                                 
16 MPO: Modified Phase Opponency and APP: Aperiodic-Periodic and Pitch detector. The MPO-APP 
(Deshmukh et al., 2007) speech enhancement architecture was motivated by perceptual experiments. 
17The MFCCMPO-APP and the TVMPO-APP are the MFCCs and TVs that were obtained after performing 
MPO-APP enhancement of the speech signal. 
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(Deshmukh et al., 2007) models speech as a constellation of narrow-band regions, retaining 

only the harmonic regions while attenuating the rest. The voiceless consonants (which are 

typically wideband regions) are most likely to be attenuated as a result of MPO-APP 

enhancement of speech. Given the attenuation of unvoiced regions in the enhanced speech, 

the TV-estimator may have difficulty in detecting the TVs properly at unvoiced consonant 

regions.  

In Figure 4.29, the best accuracy is found in MFCC+TV from clean condition to 

15dB, and MFCCMPO-APP+TV from 10dB to -5dB. Such a system can be realized by using the 

preprocessor-based MPO-APP architecture prior to generating the baseline MFCC features 

only for SNRs lower than 15dB, which is named as  [(MFCC+TV) SNR≥15dB + (MFCCMPO-

APP+TV)SNR<15dB] feature set (Mitra et al., to appear). Note the preprocessor-based MPO-APP 

(Mitra et al., 2009d)  has an inbuilt SNR-estimator in its preprocessing module which has 

been used to perform speech enhancement only if the detected SNR is < 15dB. Figure 4.30 

compares [(MFCC+TV) SNR≥15dB + (MFCCMPO-APP+TV)SNR<15dB] with recognition rates from 

other referential methods that does not use TVs: MFCCMPO-APP (MFCCs after MPO-APP 

enhancement of speech) and MFCCLMMSE (MFCCs after the Log-spectral amplitude 

Minimum Mean Square Estimator (LMMSE) based speech enhancer (Ephraim & Malah, 

1985). The use of articulatory information (in the form of the eight TVs) in addition to 

MFCCs resulted in superior performance as compared to using speech enhancement alone 

(MFCCMPO-APP and MFCCLMMSE). This shows the strong potential of the articulatory features 

for improving ASR noise robustness. 
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Figure 4.29 Average word recognition accuracy (averaged across all the noise types) for the 

four different combinations of MFCCs and TVs 

 
Figure 4.30 Average word recognition accuracy (averaged across all the noise types) for the 

(a) baseline (MFCC), (b) system using {[MFCC+TV]SNR≥15dB + [MFCCMPO-APP+TV]SNR<15dB},  

system using the (c) preprocessor based MPO-APP and (d) LMMSE based speech 

enhancement prior to computing the MFCC features (MFCC) (Mitra et al., to appear) 
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Use of TVs with different front-end processing and feature sets for ASR 

Previously we observed that TVs in word recognition task help to increase the accuracy when 

they are used in conjunction with the MFCCs. This section examines whether the advantage 

of using TVs holds for other feature sets (RASTAPLP) and front-end processing (MVA and 

ESTI). 

 RelAtive SpecTrA (RASTA) (Hermansky & Morgan, 1994) is a technique that 

performs low-pass filtering in the log-spectral domain to remove the slowly varying 

environmental variations and fast varying artifacts. We employed RASTAPLPs as an 

acoustic feature set instead of MFCCs for the Aurora-2 word recognition task. Similar to our 

previous observation, we noticed that use of TVs in addition to RASTAPLP exhibited a better 

accuracy than either TVs or RASTAPLPs alone.  

 Mean subtraction, Variance normalization and ARMA filtering (MVA) post-

processing has been proposed by Chen & Bilmes (2007), which have shown significant error 

rate reduction for the Aurora-2 noisy word recognition task, when directly applied in the 

feature domain. We applied MVA to both MFCC and RASTAPLP and used them along with 

TVs as inputs for the word recognition task. 

 The ETSI front-ends have been proposed for the Distributed Speech Recognition 

(DSR). We have considered two versions of the ETSI front-end, the ETSI basic (ETSI ES 

201 108 Ver. 1.1.3, 2003) and the ETSI advanced (ETSI ES 202 050 Ver. 1.1.5, 2007). Both 

the basic and the advanced front-ends use MFCCs, where the speech is sampled at 8 kHz, 

analyzed in blocks of 200 samples with an overlap of 60% and uses a Hamming window for 

computing the FFT. 

 Figure 4.31 compares the overall recognition accuracies from six different front-ends: 

(1) MFCC, (2) RASTAPLP, (3) MFCC through MVA (MVA-MFCC), (4) RASTAPLP 

through MVA (MVA-RASTAPLP), (5) ETSI-basic and (6) ETSI-advanced. All these 

conditions are further separated into cases with and without TVs. The positive effect of using 
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TVs was consistently observed in most of the noisy scenarios of MFCC, RASTAPLP, MVA-

RASTAPLP and ETSI-basic but not in MVA-MFCC and ESTI-advanced. Note, that the TV-

estimator being trained with synthetic speech does not generate highly accurate TV estimates 

when deployed on natural speech. The ETSI-advanced and the MVA-MFCC front-ends show 

substantial noise robustness by themselves; hence the inaccuracy in the TV estimates factors 

in more and hence fails to show any further improvement in their performance. 

 

Figure 4.31 Overall word recognition accuracy (averaged across all noise types and levels) 

for the different feature sets and front-ends with and without TVs 

 

Use of recognized gestures along with the TVs for ASR 

In this experiment we used the estimated TVs and recognized gestures along with the 

acoustic features to perform word recognition on the Aurora-2 corpus. Note that the gesture-

recognizer models were retrained using the AUR-SYN database and were then used to 

recognize the gestural scores for the natural utterances of Aurora-2. As before, training was 

performed on clean data and testing with noisy utterances. The recognized gestural scores 

were converted to gestural pattern vectors or GPVs (Zhuang et al., 2009) for use as input to 

the word recognizer. The acoustic signal in the Aurora-2 was parameterized to feature 
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coefficients (MFCC or RASTAPLP [Hermansky & Morgan, 1994]), using a 25 ms window 

and a 10ms frame-advance. Since the GPVs had originally been sampled at 5 ms, they had to 

be resampled for seamless concatenation with the acoustic features. We explored different 

combinations of GPVs, TVs and acoustic features (MFCC or RASTAPLP), and also each of 

them singly as possible inputs to the word recognition system. The number of Gaussian 

mixtures in the HMM whole word states was optimized for each input feature set using the 

dev-set18 of Aurora-2 as the development set. It was observed that for the case when input 

features were concatenations of acoustic features with the TVs and GPVs (i.e., 

MFCC+TV+GPV and RASTAPLP+TV+GPV) the optimal number was 5 for word mixes, 

and 8 for ‘silence/speech-pause’ mixes. For all other input scenarios, the optimal number was 

3 for word mixes and 6 for ‘silence/speech-pause’ mixes.  

Table 4.12 presents word recognition accuracies obtained using MFCC and 

RASTAPLP with and without TVs and GPVs as inputs to the word recognizer. The last two 

rows show the recognition accuracy when only TVs or GPVs were used as the input to the 

word recognizer. The estimated TVs and GPVs are found to help improve the noise 

robustness of the word recognition system when used in conjunction with the acoustic 

features. However, the estimated TVs and GPVs by themselves were not sufficient for word 

recognition, which indicate that the acoustic features (MFCC/RASTAPLP) and the 

articulatory information (TVs & GPVs) are providing complementary information; hence 

neither of them alone offers results as good when used together. Note also that recognition 

accuracies of the GPVs were better than that of TVs, implying that the GPVs are better sub-

word level representations than TVs. The main factor behind the GPVs' failure to perform as 

well as the acoustic features for the clean condition is most likely the inaccuracy of the 

gesture-recognizers and TV estimator. These models were trained with only 960 synthetic 
                                                 
18 Note that, since the dev-set was used here to optimize the number of states per word, hence 
the corresponding 200 utterances from the test set were not used to evaluate the performance 
of the word-recognizer. 
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utterances (AUR-SYN) which is roughly only 11% of the entire Aurora-2 training set 

(consisting of 8440 utterances). Moreover as the models were trained on synthetic speech and 

executed on natural speech, the recognized gestures and the estimated TVs both suffer from 

acoustic mismatch. However Table 4.12 is encouraging in the sense that even with such 

inherent inaccuracies, the estimated TVs and the GPVs, when used with the acoustic features, 

provided improvement in word recognition performance. Figure 4.32 presents the overall 

word recognition accuracy (averaged across all noise types at all SNRs) when the acoustic 

features (MFCC & RASTAPLP) are used with and without TVs and the GPVs. Figure 4.33 

shows the word recognition accuracy (averaged across all noise types) for 6 different SNRs 

using MFCCs and RASTAPLPs as the acoustic features with and without the estimated TVs 

and GPVs. We have added here the word recognition accuracy obtained from using 

generalized spectral subtraction (GSS) speech enhancement (Virag, 1999), which shows 

better accuracy over only the MFCCs. Using the estimated TVs and GPVs with the acoustic 

features (without any speech enhancement) is found to result in higher recognition accuracy 

than that obtained from using GSS speech enhancement, indicating that the use of articulatory 

information provided overall better noise-robustness than a traditional speech enhancement 

architecture. 
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Table 4.12 Overall Word Recognition accuracy 

 Clean 0-20dB -5dB          

MFCC 99.00       51.04 6.35 

MFCC+TV 98.82 70.37 10.82 

MFCC+TV+GPV 98.56 73.49 16.36 

RASTAPLP 99.01 63.03 10.21 

 RASTAPLP+TV 98.96 68.21 12.56 

RASTAPLP+TV+GPV 98.66 75.47 19.88 

TV 72.47 42.07 10.06 

GPV 82.80 47.50 9.48 

 

 

Figure 4.32 Overall word recognition accuracy using MFCC and RASTAPLP with and 

without the estimated TVs and gestures 
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Figure 4.33 Word recognition accuracy (averaged across all noise types) at various SNR in 

using (a) the baseline MFCC (b) MFCC+TV+GPV, (c) RASTAPLP (b) 

RASTAPLP+TV+GPV and (d) MFCCs after GSS based speech enhancement of the noisy 

speech 

 

4.3.3 ASR experiments: Observations 

This section investigated the possibility of using TVs and gestures as possible inputs to a 

speech recognition system in noisy conditions. At the beginning we evaluated how accurately 

articulatory information (in the form of TVs) can be estimated from noisy speech at different 

SNRs using a feedforward neural network. The groundtruth TVs and gestural scores at 

present are only available for a synthetic dataset; hence both the TV-estimator and the gesture 

recognizer were trained with the synthetic data only. Using the synthetic data trained TV-

estimator we evaluated the feasibility to estimate TVs for a natural speech dataset (Aurora-2), 

consisting of digits. We observed that the TV-estimator can perform reasonably well for 

natural speech. Secondly, we showed that the estimated TVs and the recognized gestural 

scores (in the form of GPVs) in conjunction to the baseline MFCC or RASTAPLP features 
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can improve recognition rates appreciably for noisy speech. Such improvements in 

recognition accuracy, obtained by incorporating articulatory information in the form of TVs 

and GPVs, indicate that the acoustic features (MFCCs and RASTAPLPs) and the articulatory 

information (TVs & gestures) are providing partially complementary information about 

speech. Consequently, neither of them alone can provide accuracy as good as when both are 

used together, which is in line with the observation made by Kirchhoff (1999, 2002). 

It is important to note that the TV-estimator and gesture recognizers presented in this 

section were not highly accurate, as they were trained with a significantly small number of 

data (960 utterances) than that available in the Aurora-2 training database (8440 training 

utterances). Also there exists a strong acoustic mismatch between the training (clean synthetic 

speech data) and testing (clean and noisy natural speech data) utterances for both the TV-

estimator and the gesture recognizer models. Despite these differences, we were able to 

observe improvement in word recognition accuracies in the noisy cases of the Aurora-2 

dataset for acoustic features: MFCCs, RASTAPLPs, which is encouraging. These 

observations indicate that with better models trained with a larger number of natural speech 

utterances, further improvement in the word recognition accuracies may be achieved. In order 

to train such models we require a natural speech database containing utterances with 

annotated TVs and gestural scores. Unfortunately no such database exists at present. Hence 

our logical next step was to create such a database on our own and generalize the results 

presented in this section, which were based primarily on synthetic speech data, to natural 

speech utterances. In the following section we present an automated approach to annotate a 

natural speech database with gestural scores and TVs. 
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Chapter 5:  Annotation of Gestural scores and TVs for natural 

speech 

Annotating a large natural speech database with gestural score specifications would not only 

benefit research in speech technology but also in various speech-related fields such as 

phonological theories, phonetic sciences, speech pathology, etc. Several efforts have been 

made to obtain gestural information from the speech signal. Atal (1983) proposed a temporal 

decomposition method for estimating gestural activation from the acoustic signal. Jung et al. 

(1996) also used the temporal decomposition method to retrieve gestural parameters such as 

constriction targets, assuming prior knowledge of articulator records. Sun et al. (2000) 

presented a semi-automatic annotation model of gestural scores that required manual gestural 

annotation to train the model. However, such an approach can potentially suffer from 

annotation errors due to incongruities among different annotators. Zhuang et al. (2008) and 

Mitra et al. (2010) showed that gestural activation intervals and dynamic parameters such as 

target and stiffness could be estimated from TVs using a TADA-generated synthetic database. 

Tepperman et al. (2009) used an HMM-based iterative bootstrapping method to estimate 

gestural scores but their approach was limited to a small dataset. Despite all these efforts, the 

fact remains that no natural speech database exists at present that contains gestural 

information.  

Manually generating gestural annotations for natural speech is a difficult task. 

Compared to phone annotations, gestural onsets and offsets are not always aligned with 

acoustic landmarks. Further, articulatory gestures are constricting actions that are defined 

over finite time intervals and that do not unfold over time in a simple beads-on-a-string 

pattern; rather, they exhibit a great deal of spacio-temporal overlap, or coarticulation, with 

one another. While the ability of the gestural framework to naturally handle coarticulation is 

one of its major theoretical strengths, the task of identifying gestural onsets and offsets from 
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the speech signal is an extremely difficult thing to do, using strictly hands-on manual 

annotation methods. Consequently, we were led to develop an automated procedure to 

perform gestural annotation for natural speech. 

In this section, we described an iterative analysis-by-synthesis (ABS) landmark-

based time-warping architecture (that we developed in collaboration with Haskins 

Laboratories [Nam et al., 2010]) that can be used to generate gestural score and TV 

annotations from natural speech acoustic databases for which phone and word boundaries 

were provided in advance (e.g. Buckeye, TIMIT, Switchboard, etc.). We chose to begin the 

development of the ABS model using the XRMB database (Westbury, 1994) as it includes 

the time functions of flesh-point pellets tracked during speech production as well as the 

corresponding acoustics, which would allow us to cross-validate the articulatory information 

generated by our approach when applied to acoustics-only databases. The XRMB database 

includes speech utterances recorded from 47 different American English speakers (25 females 

and 22 males). Each speaker produced at most 56 types of speech reading tasks, e.g., reading 

a series of digits, sentences from the TIMIT corpus, or even an entire paragraph from a book. 

The sampling rate for the acoustic signals is 21.74 kHz. For our study, XRMB utterances 

were phone-delimited by using the Penn Phonetics Lab Forced Aligner (Yuan & Liberman, 

2008). 

 

5.1 Architecture for Gestural annotation 

Given the phone transcript of a natural speech utterance, Starget, from the XRMB database, 

TADA+HLsyn first generates a prototype-gestural score, Gproto, TV trajectories, and 

synthetic speech signal, Sproto. The phone content of Sproto and Starget will be identical because 

the pronunciation model of Starget is used as an input to TADA+HLsyn to create Sproto. Since 

Sproto is generated based on the model-driven intergestural timing, it substantially differs from 
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Starget both in rate of speech and individual phone durations. Our ABS procedure uses the 

mismatch between Starget and Sproto to iteratively adapt the gestural score, Gproto, for Sproto in 

order to make Sproto ≈ Starget. For Sproto, the phone boundaries are approximated based on its 

underlying gestural on/offset times. The landmarks, or phone boundaries for Sproto are 

compared to those for Starget to measure how different they are in time, i.e. the time-warping 

scale, Wi=1, from which the 1st iteration begins. The time warping scale, W1 is then applied to 

Gproto, generating G1, which is the time-warped gestural score, and its corresponding acoustic 

output, S1, is similar to the target natural speech, Starget in terms of pronunciation and 

individual phone durations. However due to possible errors in estimating phone boundaries 

from Sproto, the time warping might not be optimal. Thus, the phone boundaries for Sproto are 

piecewise modulated in steps of 10ms (to a maximum of ± 20 ms) to find an optimal warping 

scale. New time-warping scales Wi=2,3,4... are obtained from each piecewise modulation and 

applied to Gi=1,2,3..., generating Gi=2,3,4... and the corresponding speech output, Si=2,3,4.... The 

output signals, Si=2,3,4... are then compared to the natural speech signal, Starget to compute the 

distance measure, D(Starget, Si) at each iteration step i. This procedure (piecewise phone 

boundary modulation and distance measure) is performed iteratively until D(Starget, Si) is 

minimized.  

 Obtaining the Wi
 at each iteration step i is the analysis part and applying Wi to Gi and 

consequently synthesizing Si is the synthesis part in our ABS architecture. At each step i the 

warping function Wi is obtained by ensuring that the phonetic landmarks (phone onsets-

offsets) are similar for S,i compared to Starget. Note that at each iteration a number of possible 

wi can exist (based on different slope constraints on the warping function [Sakoe & Chiba, 

1978]), but the one, Wi, which offers the minimum distance as shown in equation (41) is 

selected:  
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arg 1arg min ( , [ ])i t et i iW D S w S −
 =                (41)

 

Hence, Wi (the optimal warping scale at the end of the ith iteration) helps to make Si more 

similar to Starget compared to Si-1 and the degree of similarity is reflected by the distance 

measure D. Now, if Gproto is the gestural score that was used to generate the initial TADA-

synthesized speech signal, Sproto, the ABS procedure iteratively creates a series of Wi=1...j and 

corresponding gestural scores, Gi=1…j at each step i, which successively minimizes D(Starget, 

Sproto). The procedure is halted after a given number of steps, N or earlier, when the value of 

D(Starget, Sproto) ceases to drop any further. If we assume that the procedure continues till j 

number of steps (j ≤ N), then an overall warping function can be defined as - 

     Wopt = Wj[Wj-1 [Wj-2 …[Wi… [W1]…]…]]              (42) 

where Wopt is the nonlinear warping function that defines the optimal gestural score, Ĝopt, i.e., 

the gestural score that generates the best synthetic estimate, which is defined as -  

        ( ) ( )arg
ˆ

OPT t et OPT proto OPT protoG S W G S W G   = =                  (43) 

The overall architecture of this ABS procedure is shown in Figure 5.1, where the time 

warping block represents a time-warping procedure different from those typically used in 

traditional dynamic time warping (DTW) algorithms (Rabiner et al., 1991). We will show in 

the next section that our iterative ABS warping approach helps to reduce the distance 

measure D(Starget, Sproto) more effectively than the traditional DTW algorithms. 

 Figure 5.2 compares the XRMB (top panel), prototype TADA (middle panel), and 

time-warped TADA (bottom panel) utterances for the word “seven” from task003 of XRMB 

speaker 11, in which each panel shows the corresponding waveform and spectrogram. Figure 

5.2 (middle and bottom panels) also displays the gestural scores for the prototype and time-

warped TADA utterances (with lips, tongue tip [TT], and tongue body [TB] gestures as gray 

blocks overlaid on the spectrogram), showing how gestural timing is modulated by the 
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proposed time-warping procedure. Time warping is performed on a word-by-word basis. The 

obtained word-level gestural scores are seamlessly concatenated to yield the utterance-level 

gestural score such that the final phone's offset of one utterance is aligned to the initial 

phone's onset of the following utterance, which can involve gestural overlap. TADA is 

executed on the utterance-level gestural scores to generate the corresponding TVs. 

 

Figure 5.1 Block diagram of the overall iterative ABS warping architecture for gesture 

specification 

 

 

 
Figure 5.2 Waveform and spectrogram of XRMB, prototype TADA, and time-warped 

TADA speech for 'seven' (borrowed from Nam et al. [2010]) 

prototype- 

TADA 

XRMB 

time-warped  

TADA 
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Note that the above approach is independent of any articulatory information from XRMB. 

Based on word and phone transcriptions, the architecture generates gestural scores and TV 

trajectories using the default speaker characteristics predefined in TADA. This is ideal for 

speech recognition as almost all speaker-specific attributes are normalized out of the gestural 

scores generated by the ABS procedure.  

5.2 Analysis of the annotated gestures 

We have implemented the proposed landmark-based ABS time-warping architecture for 

gestural score annotation across all the 56 tasks from 47 speakers of the XRMB database 

(however, some speakers performed only a subset of the 56 tasks). Figure 5.3 shows the 

annotated gestures and TVs for a snippet taken from task003 of speaker # 11. The top two 

panels in Figure 5.3 show the waveform and spectrogram of the utterance “eight four nine 

five”; the lower eight panels show each gesture's activation time functions (as rectangular 

blocks) and their corresponding TV trajectories (smooth curves), obtained from our proposed 

annotation method.  

 We performed two tasks to evaluate our methodology. First, we compared the 

proposed time-warping strategy with respect to the standard DTW (Sakoe & Chiba, 1978) 

method. To compare the effectiveness of those two warping approaches, we used an acoustic 

distance measure between the XRMB natural speech, Starget and the TADA speech (i) after 

DTW only vs. (ii) our iterative landmark-based ABS time-warping method. We used three 

distance metrics (a) Log-Spectral Distance (DLSD) as defined in (44), (b) Log-Spectral 

Distance using the Linear Prediction spectra (DLSD-LP) and the (c) Itakura Distance (DITD). 

DLSD is defined as 

      

2

10

1 ( )
10log

ˆ2 ( )
LSD

S
D d

S

π

π

ω
ω

π ω−

 
=  

 
∫                 (44) 

where S(ω) and Ŝ(ω) are the spectra of the two signals to be compared. For DLSD-LP the spectra 
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S(ω) and Ŝ(ω) are replaced with their respective LP spectra that were evaluated using a 25ms 

window with 15ms overlap. DITD is defined as 

  

             

1 ( ) 1 ( )
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ˆ ˆ2 2( ) ( )

0

N N

ITD

N N
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ω ω
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      
= −      

         

≤ ≤

∑ ∑
 (45) 

 

Twelve different tasks (available from all speakers) were selected randomly from the XRMB 

database to obtain the distance measure between the natural and synthetic speech. Table 5.1 

presents the average distances obtained from using DTW and our proposed iterative time-

warping approach. 

Table 5.1 Distance measures between the warped signal and the XRMB signal from using (i) 

DTW and (ii) proposed landmark-based iterative ABS time-warping strategy 

 DLSD DLSD-LP DITD 

DTW 3.112 2.797 4.213 

Iterative warping 2.281 2.003 3.834 

 

 

 
 

Figure 5.3 Annotated gestures (gestural scores) and TVs for a snippet from an 

utterance from task003 in XRMB 
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Secondly, we evaluated how similar the TV trajectories generated from our proposed 

approach are compared to those derived from the recorded flesh-point measurements 

available in the XRMB database. We describe below how the TVs are estimated from the 

pellet information. LA can be readily estimated as a vertical distance between upper (ULy) 

and lower lip (LLy) pellets in XRMB, as shown by (46)  

      LA = ULy ~ LLy                         (46) 

The tongue-associated TVs (TBCL, TBCD, TTCL, TTCD) however involve more complex 

procedures to be estimated from pellets. They are measures based on a polar coordinate with 

reference to its origin (F in Figure 1.4). For the polar coordinate, we translated the XRMB 

coordinate system19 so that the origin is moved -32 mm on the x-axis and -22 mm on the y-

axis. TTCL is an angular measure of T1 with respect to the coordinate origin, F, and TTCD is 

the minimal distance from T1 to the palate trace. For TBCL and TBCD, a circle was 

estimated for the tongue body such that it passes through T3 and T4 with a fixed radius20. 

TBCL was estimated as an angle of a line connecting the tongue body circle's center (C in 

Figure 1.4) and the coordinate origin. To measure TBCD, it is necessary to recover the 

missing information between the palate trace and the pharyngeal wall. The palate trace was 

extended backward by obtaining the convex hull of the tongue pellet data cloud and the 

remaining gap to the pharyngeal wall was linearly interpolated. TBCD was estimated as the 

shortest distance from the tongue body circle to the hard structure. Note that GLO and VEL 

were excluded from the evaluation because XRMB does not contain any corresponding flesh-

point data. 

 Once the TV trajectories are derived from the recorded flesh-point data of XRMB, 

their correlation with the TVs generated from the annotated gestures are computed. For 

obtaining the correlation measure, we have used the PPMC score (defined in (4)) between the 

                                                 
19 The XRMB coordinate system is defined at the tip of the maxillary incisors on the x-axis as the 
maxillary occlusal plane. 
20 We used a tongue body circle of 20 mm radius, which is for a default speaker in TADA. 
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annotated and the XRMB derived TV trajectories. The correlation analysis was limited to 

consonants because they exhibit more critical constriction than vowels in the vocal tract. 

Each phone is associated with a set of gestures, which are activated at the corresponding TVs. 

The correlation measure was performed during the activation interval of each phone's primary 

gesture(s) (e.g. tongue tip gesture for /t/ and /s/, lip gesture for /p/, /f/). Table 5.2 shows the 

correlations obtained between the annotated TVs and those derived from XRMB flesh-point 

data. It can be seen in Table 5.2, that the correlation scores are encouraging despite the errors 

and differences we can expect from (a) the gestural score and TV annotation procedure, (b) 

speaker differences21, (c) lack of prosodic information22 and finally (d) inaccuracies in the 

phone labeling of the forced aligner. 

 

Table 5.2 Correlation23 between the annotated TVs and the TVs derived from the measured 

flesh-point information of XRMB database 

TVs Correlation (r) 

LA 0.715 

TTCL 0.291 

TTCD 0.596 

TBCL 0.510 

TBCD 0.579 

Avg 0.538 

 

The next task we performed is to evaluate how effective the obtained gestures are for speech 

recognition. We selected 1692 utterances from the XRMB dataset for training and 801 

utterances for testing. The training set consisted of speaker 11 to 46 whereas the testing set 

consisted of speakers 48 to 63 (speaker 17, 22, 23 38, 47 and 50 did not exist in the XRMB 

                                                 
21 The annotated XRMB gestural scores and TVs do not correspond to the actual speakers in the actual 
XRMB database but represent the default speaker model used in TADA. 
22 Prosodic information from the XRMB database has not been used during the annotation process. 
23 Note that LP is not included in the correlation result as LP is not used as the primary articulation 
distinguishing consonantal gestures 
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database that we used in our experiment). Table 5.3 gives detailed information about the 

training and the testing sets. For the word recognition experiments, we converted the 

sequence of overlapping gestures into an instantaneous “gestural pattern vector” (GPV) as 

proposed by Zhuang et al. (2009) as schematized in Figure 5.4.  

 From the XRMB training set we observed that altogether 1580 unique GPVs are 

possible, which indicates that theoretically 1580×1579 ≈ 2x106 unique GPV bigram 

sequences are possible. However from the training set we observed that only 5876 unique 

GPV bigram sequences are observed in our dataset. Hence for the training and test set we 

created a 5876-dimensional GPV-bigram histogram for each word. Given a word, only a few 

GPV bigrams will be observed; hence the word dependent GPV-bigram histogram will be a 

predominantly sparse vector. To address that we interpolated the word-dependent GPV 

bigrams with the word-independent GPV bigrams (similar to [Zhuang et al., 2009]) using a 

ratio 5000:1 and observed this ratio be optimal24 in terms of the word error rates (WER). 

 
Figure 5.4 Gestural score for the word “span”. Constriction organs are denoted on the left and 

the gray boxes at the center represent corresponding gestural activation intervals. A GPV is 

sliced at a given time point of the gestural score 

 

 To compare the performance of the gesture-based word recognizer with that of a 

phone-based one, we created phone bigram histograms for each word. We observed that 
                                                 
24 The optimal ratio was obtained by using 90% of the training data to create word models and using 
the remaining 10% to obtain the word error rates. The ratio that generated the best WER was 
considered as optimal. 
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XRMB database contains 64 phones and 464 possible bigram sequences; hence each word in 

the training and test set was represented using a 464-dimensional phone-bigram histogram. 

The 464-dimensional phone bigram histogram can be expected to be sparse; however the 

sparsity should be less compared to the 5876-dimensional GPV bigram histogram. Like 

before we interpolated the word-dependent phone bigrams with the word-independent phone 

bigrams and observed (from using 10% of our training data as development set)25 that the 

interpolation does not help in this case. Hence we did not perform any interpolation of the 

word-dependent phone bigrams. 

 We realized two different versions of the word recognizer using (1) Kullback-Leibler 

divergence (KLD) and (2) a three hidden layer neural network (ANN). For the KLD based 

approach, word level probability mass function (pmfword_train, for word word_train, where 

word_train = 1:468, refer to Table 5.3) was created. For each word in the test set, the KLD 

between the pmfs, pmfword_train and pmfword_test was evaluated. The word model word_train that 

gave the least KLD was identified as the recognized word for word_test. KLD is defined as 

          

_ ,
_ _ _ ,

_ ,

|| log word test i

word test word train word test i

i N word train i

pmf
KLD pmf pmf pmf

pmf∈

 
  =   

  
∑         (47) 

as N → ∞ a link between the likelihood ratio (L) and KLD can be established (Cover & 

Thomas, 1991) as 

    _ _ 2|| log ( )word test word trainKLD pmf pmf L  = −                (48) 

which indicates that if pmfword_train and pmfword_test are identical, then L = 1 and DKL = 0. Hence 

word recognition using KLD can be formulated as 

   _ _
_

arg min ||word test word train
word train

Word KLD pmf pmf =                 (49) 

                                                 
25 The optimal ratio was obtained by using 90% of the training data to create word models and using 
the remaining 10% to obtain the word error rates. The ratio that generated the best WER was 
considered as optimal. 
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Table 5.3 Details of the train & test data of XRMB 

 Train Test 

Number of utterances 1692 801 

Number of speakers 32 15 

Total number of words 49672 23576 

Number of unique words 468 388 

 

For the 3-hidden layer NN approach, we used a simple feedforward network with tan-sigmoid 

activation function, having 400-600-400 neurons in the three hidden layers, trained with 

scaled-conjugate gradient. The WER obtained from the KLD and ANN based recognizers are 

shown in Table 5.4, where GPV-bigram histogram provides lower WER than phone-bigram 

histogram. Note that neither the phones nor the gestures are recognized or estimated from the 

speech signal; we have used the annotated information in both the cases. Hence the difference 

in their recognition accuracy reflects the strength of one representation over the other. Thus 

the results here indicate that GPV-bigrams provide more discreteness than the corresponding 

phone-bigrams, which was confirmed by examining the recognition error patterns. It is shown 

that phone representation suffered from pronunciation variability (for example it got confused 

with the 4 different pronunciations of ‘when’ [W-EH1-N, HH-W-EH1-N, HH-W-IH1-N, W-

IH1-N] and wrongly recognized it as ‘an’ [AE1-N]), which was not observed for the GPV-

bigrams. 

 Once we have realized a corpus with transcribed gestures we can obtain gestural score 

automatically (Mitra et al., 2010b) from a given speech in way that preserves lexical 

information more robustly than does a derived phone string from the audio. 

Table 5.4 WER (%) obtained for XRMB 

 KLD NN 

GPV-bigram 2.48 8.31 

Phone-bigram 6.48 9.36 
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5.3 Gestural annotation: Observations 

In this section we presented a landmark based iterative ABS time-warping architecture that 

can annotate speech articulatory gestures potentially for any speech database containing word 

and phone transcriptions and their time alignment. The strength of this approach is that the 

articulatory information it generates is speaker independent, hence ideal for ASR 

applications. Word recognition experiments indicate that the gestures are a suitable unit-

representation for speech recognition and can offer WER as low as 2.48% for a multi-speaker 

word recognition task. Given that we can now annotate gestural scores for natural speech, the 

next logical step is to realize a speech recognition architecture using such annotated natural 

speech database as the training corpus. 
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Chapter 6:  Building a Gesture-based ASR using natural speech 

In chapter 4 we showed that use of articulatory information in the form of TVs and gestures 

can potentially improve the performance of ASR systems under noisy conditions. Note that in 

those experiments the articulatory information was not provided as an additional modality, 

but estimated from the speech signal using models that were trained with synthetic speech. In 

chapter 5 we presented an approach that can be deployed on the utterances of any natural 

speech database to obtain its corresponding gestural score and TV annotation. Thus, chapter 5 

paves the way to realize natural speech trained models for estimating articulatory information 

from speech. In this chapter, we present the hidden Gesture-based Dynamic Bayesian 

Network (G-DBN) framework as the final implementation of our gesture-based ASR for 

natural speech. In the system, we treat the articulatory gestures as hidden variables in which 

case no explicit recognition of the gestures is required. We obtained the gestural annotation 

for Aurora-2 clean training corpus using the methodology outlined in chapter 5. We have 

demonstrated in chapter 4 using the TADA synthetic speech that (1) the use of TVs in 

addition to the acoustic features helps to improve the noise-robustness of an ASR system and 

(2) the knowledge of the TVs help to improve the recognition rate of the articulatory gestures. 

In this chapter, we present a natural speech trained TV estimator to revalidate our claim made 

with synthetic speech in chapter 4 that TVs are superior to pellets as articulatory information, 

describe our gesture-based ASR (G-DBN) and discuss the results. 

6.1 Speech Inversion: TVs versus Pellet trajectories 

In this section, we aim to (a) present a TV estimation model trained with natural speech, (b) 

compare the estimation accuracies between TVs and pellet trajectories and (c) compare the 

TVs and pellet data according to (i) a statistical non-uniqueness measure of articulatory-

acoustic mappings, and (ii) their relative performance in ASR experiments. 
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6.1.1 Experiments 

The speech inversion models presented in this section were trained with the natural utterances 

of the XRMB database, which were annotated with gestural scores and TV trajectories using 

the procedure specified in chapter 5. The annotated data contains eight TV trajectories that 

define the location and degree of different constrictions in the vocal tract (see Table 1.1), 

where each TV trajectory is sampled at 200Hz. The XRMB data contains pellet trajectory 

(PT) data (sampled at 145.65Hz) recorded along with the speech waveforms (sampled at 

21.74 kHz). The pellets were placed on the upper lip (ULx & ULy), lower lip (LLx & LLy), 

tongue tip (T1x & T1y), mid-tongue (T2x, T2y, T3x & T3y) and tongue dorsum (T4x & T4y), 

where the subscripts x, y represent the horizontal and vertical coordinates of each pellet, 

resulting in 12 channels of flesh-point data. 

Our work presented in this section uses the acoustic data, TVs and PTs for the 56 

tasks performed by male speaker 12 from the XRMB database: 76.8% of the data was used 

for training, 10.7% for validation and the rest for testing. The PTs were upsampled to 200Hz 

to synchronize with the sampling rate of the TVs. The acoustic signals were downsampled to 

16KHz and 8KHz26 and parameterized as (a) MFCCs, (b) LPCC and (c) PLPCC. For each 

parameterization, 20 coefficients for 16KHz data and 13 coefficients for 8KHz data were 

selected that were analyzed at a frame rate of 5ms with analysis window duration of 10ms. 

The acoustic features and the articulatory data (PT and TV) were z-normalized. The resulting 

acoustic coefficients were scaled such that their dynamic range was confined within [-0.95, 

+0.95]. To incorporate dynamic information the acoustic features were temporally 

contextualized in all the experiments reported here. Specifically the acoustic coefficients 

were obtained from each of the nine 10ms-windows (middle window centered at the current 

time with preceding and following windows separated by 20ms intervals), thereby covering 

                                                 
26 Sampling rate of 16KHz and 8KHz are used here as the commonly used ASR databases usually 
contain utterances sampled at these frequencies.  
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170ms of speech. This acoustic information was concatenated into a contextualized acoustic 

feature vector with a dimensionality of 180 (= 9×20) for 16KHz data and 117 (= 9×13) for 

8KHz data.  

 The speech inversion models were trained as separate FF-ANNs one for each 

acoustic feature (MFCC, LPCC or PLPCC) and articulatory information (PTs or TVs) and 

sampling rate (16KHz or 8KHz) set, resulting in twelve individual models. The dimension of 

the output vectors were eight for the TVs and twelve for the PTs. All FF-ANNs were trained 

with backpropagation using a scaled conjugate gradient algorithm. The raw estimated 

trajectories from the FF-ANNs were smoothed using a Kalman smoother. The 3 hidden layer 

FF-ANNs with tan-sigmoid activation functions were implemented for each of the twelve 

inversion models. The optimal number of nodes in each hidden layer was obtained by 

maximizing the PPMC between the actual (groundtruth) and the estimated articulatory 

trajectories for the development set. Note that the groundtruth PTs were simply taken from 

the XRMB corpus whereas the groundtruth TVs were generated from the annotation process. 

We refrained from adding any additional hidden layer beyond the three because with increase 

in the number of hidden layers: (a) the error surface became more complex with a large 

number of spurious minima; (b) the training time as well as the network complexity 

increased; and (c) no appreciable improvement was observed. The ANNs were trained with a 

training epoch of 4000. 

 Table 6.1 presents the overall PPMC obtained by comparing the groundtruth and the 

estimated articulatory data averaged across all 12 channels for PT data and across 6 channels 

for TV data (note: GLO and VEL TVs are excluded for the comparison because there are no 

counterparts in the pellet data), which were obtained using each of the different acoustic 

parameterizations at each sampling rate. Overall the PPMC values for the estimated TVs 

were higher than that for the estimated PTs, indicating that TVs were estimated more 

accurately by the FF-ANNs. The PPMC of the TV estimates obtained from the three different 
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acoustic parameterizations were quite similar to each other, indicating that accuracy of the 

TV estimation was somewhat independent of the particular set of acoustic parameters 

considered; such close similarity, however, was not as evident for the PTs. Table 6.2 

compares the obtained PPMC values between individual TV and pellet estimates for 16KHz 

data. Taken together, the results in Tables 6.1 and 6.2 indicate that TVs can be estimated 

more accurately than PTs from the speech signal. Figure 6.1 shows the actual and estimated 

TVs (LA, LP, TBCD & TTCD) for utterance the “across the street” obtained from the 3-

hidden layer FF-ANN TV-estimator using 8KHz speech data with MFCC as the signal 

parameterization. 

 

Table 6.1 PPMC averaged across all trajectories for TV and Pellet data using different 

acoustic parameterization of 8KHz and 16KHz speech. The numbers in the parentheses 

denote the number of neurons used in each of the 3 hidden layers 

 MFCC PLPCC LPCC 

16
K

H
z 

TV trajectory 0.828 

(250-150-225) 

0.825 

(175-100-125) 

0.827 

(150-100-225) 

Pellet trajectory 0.780 

(250-125-75) 

0.774 

(200-75-150) 

0.734 

(150-125-225) 

8K
H

z 

TV trajectory 0.832 

(225-150-225) 

0.821 

(250-175-125) 

0.820 

(200-75-175) 

Pellet trajectory 0.778 

(250-150-200) 

0.767 

(275-150-150) 

0.762 

(175-75-200) 
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Table 6.2 Comparison of PPMC between relevant articulatory pellet and TV data using 

MFCC as the acoustic parameterization 

TVs PPMC Pellets PPMC 

LP 0.852 LLx 0.822 

ULx 0.773 

LA 0.786 LLy 0.844 

ULy 0.676 

TTCL 0.814 T1y 0.903 

T1x 0.887 

TTCD 0.794 T2y 0.918 

T2x 0.883 

TBCL 0.838 T3y 0.775 

T3x 0.491 

TBCD 0.831 T4y 0.706 

T4x 0.422 

Avg 0.819 Avg 0.758 
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Figure 6.1 Plot of the actual and estimated TVs (LA, LP, TBCD & TTCD) for natural 

utterance “across the street” taken from the XRMB database 

 

As stated earlier, since TVs are relative measure, they can be expected to suffer less 

from non-uniqueness than PTs (McGowan, 1994), which may be the reason why the TVs are 

estimated more accurately than the PTs. To analyze and quantify non-uniqueness in the 

speech inversion models using TVs and PTs, we performed a statistical analysis motivated by 

the work performed by Ananthakrishnan et al. (2009). In this analysis, the conditional 

probability function of the inversion, p(a|s) is first estimated, where a is the articulatory 

configuration and s is the acoustic vector at any given time instant. We used a Mixture 

Density Network (MDN) (instead of the Gaussian Mixture Model (GMM) used by 

Ananthakrishnan et al. (2009)) to estimate p(a|s) from acoustic and articulatory data in each 

phone context (see section 4.1.2.5 for a brief overview on MDN).   

According to Ananthakrishnan et al. (2009), non-uniqueness in speech inversion 

exists when the conditional probability function p(a|s) exhibits more than one probable 
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articulatory configuration for a given acoustic observation. In such a case, the degree of non-

uniqueness in the inverse mapping can be quantified using the deviations of the peaks of the 

conditional probability function p(a|s) from the mean peak location. We have used the unit-

less measure proposed in (Ananthakrishnan et al., 2009), the Normalized Non-Uniqueness 

(NNUt) measure defined as 

1

1

|

|1

( ) ( ) ( )

( | )

( | )

Q
T

t q q t t q t

q

a s q t

q Q

a s q tq

NNU P M M

p a M s
P

p a M s

µ µ−

=

=

= − Σ −

=
=

=

∑

∑

              (50) 

where Q is the number of local maxima (or the peaks) at locations Mq (1≤ q ≤Q), Pq is the 

normalized probability, µt is the mean location of the peaks and Σt is the variance of the 

conditional probability function. Since NNU provides a measure of the spread of the local 

peaks in the conditional pdf, p(a|s), a higher NNU indicates a higher degree of non-

uniqueness in the mapping. 

Since (Ananthakrishnan et al., 2009; Neiberg et al., 2008; Qin et al., 2007) showed 

that non-uniqueness is commonly observed for consonants, we have selected six consonants 

(/r/, /l/, /p/, /k/, /g/ and /t/) that these studies have shown to be mostly affected by non-

uniqueness. A single MDN with 100 hidden layers and 16 mixture components with spherical 

Gaussian mixtures was trained for 2500 iterations for each articulatory channel in each phone 

context, where the acoustic observations were parameterized as contextualized MFCCs. We 

computed the Normalized Non-uniqueness (NNU) measure for the data in the testing set. As 

shown in Figure 6.2, the NNU score of TVs is almost always lower than that of the PTs, 

indicating that the inverse mapping between acoustics and TVs is less non-unique compared 

to that between acoustics and PTs. Please note here that the result shown in Figure 6.2 is for 

16KHz data. We have also obtained the NNU scores for 8KHz data, where the overall NNU 
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scores are found to be slightly higher than those for 16KHz data, indicating that lowering the 

sampling rate increases non-uniqueness in the inverse mapping. 

 
Figure 6.2 Graph comparing the Normalized Non-uniqueness measure (NNU) for speaker 12 

in XRMB database across 6 different phonemes (/r/, /l/, /p/, /k/, /g/ & /t/) for Lips, Tongue-

Tip (TT) and Tongue-Body (TB) pellet-trajectories and TVs 

 

Finally, we evaluated the relative utility of TVs and PTs in a simple word recognition task 

using the Aurora-2 corpus. This recognizer incorporates a hidden Markov model (HMM) 

backend that uses eleven whole word HMMs, each with 16 states (in addition to 2 dummy 

states) with each state having three Gaussian mixture components. Two pause models, one 

for silence (‘sil’) and another for speech-pause (‘sp’) were used; the ‘sil’ model has three 

states and each having six mixtures, while the ‘sp’ model has only a single state with three 

mixtures. Training in the clean condition and testing in the noisy scenario is used for this 

experiment. The HMMs were trained with three different observation sets (a) MFCCs, (b) 

MFCCs + estimated TVs, (c) MFCCs + estimated PTs. Note that the sampling rate for the 

Aurora-2 database is 8KHz; hence, the 8KHz version of the TV estimator and the PT 

estimator had to be used. 
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Figure 6.3 compares the word recognition accuracy obtained from the word 

recognition experiments using the Aurora-2 database, where the accuracies at a given SNR 

are averaged across all the noise types. Adding the estimated TVs or the PTs to the MFCCs 

improved the word recognition accuracy compared to the system using MFCCs only. 

However, the improvement is higher for TVs compared to the PTs, which further highlights 

the strength of TVs. 

 

Figure 6.3 Average word recognition accuracy (averaged across all the noise types) for 

MFCC only, MFCC+TV and MFCC+PT 

 

6.1.2 Observations 

In the previous section we have demonstrated that TVs can be estimated more accurately than 

pellet-trajectories (PTs) using three different speech parameterizations. While the TV-based 

inverse model was relatively independent of the differences in speech parameterization, the 

pellet-based model was not. Further, using a model-based statistical paradigm, we found that 

non-uniqueness in the TV-based inverse model was comparatively lower than the pellet-

based model for six consonants. Finally, in a word recognition experiment we observed that 

TVs perform better than PTs when used along with MFCCs, indicating that estimated TVs 

are better than the PTs in terms of improving the robustness of word recognition system.  
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6.2 Gesture-based Dynamic Bayesian Network for word recognition 

In section 4 we presented different models for estimating articulatory gestures and vocal tract 

variable (TV) trajectories from synthetic speech. We showed that when deployed on natural 

speech, the TVs and the gestures generated by such models helped to improve the noise 

robustness of a HMM based speech recognition system. Note that such architecture requires 

explicit recognition of the gestures. In this section, we propose a Gesture based Dynamic 

Bayesian Network (G-DBN) architecture that uses the gestural activations as hidden random 

variables, eliminating the necessity for explicit gesture recognition. In G-DBN the gestural 

activation random variables are treated as observed during the training27 but as hidden during 

the testing. The proposed G-DBN uses MFCCs and estimated TVs as observations, where the 

estimated TVs are obtained from the FF-ANN based TV-estimator presented in section 6.1. 

Using the proposed architecture we performed a word recognition task for the noisy 

utterances of Aurora-2 and present the results in this section. 

 

6.2.1 The G-DBN architecture 

In section 4.2.3 we showed that articulatory gestures can be recognized with a higher 

accuracy if the knowledge of the TV trajectory is used in addition to the acoustic parameters 

(MFCCs) as opposed to using either the acoustic parameters or TVs alone. In a typical ASR 

setup, the only available observable is the acoustic signal, which is parameterized as acoustic 

features. Thus the TV-estimator presented in section 6.1 can be used to estimate the TVs from 

the acoustic parameters. We noted that a 4-hidden layer FF-ANN based TV-estimator with 

MFCC as acoustic feature gives a slight improvement in performance over the 3-hidden layer 

architecture used in section 6.1. Also note that the TV-estimator is trained with 8KHz data 

because Aurora-2 contains utterances sampled at 8KHz sampling rate. The ANN was trained 

                                                 
27 The training corpus must contain annotated gestural activation functions. 
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using the same way as mentioned in section 6.1. The optimal number of neurons in each of 

hidden layer of the ANN was found to be 225, 150, 225 and 25. The raw ANN outputs were 

processed with a Kalman smoother to retain the intrinsic smoothness characteristic of the 

TVs. Table 6.3 presents the PPMC and RMSE between the actual (groundtruth) and the 

estimated TVs obtained from the 4-hidden layer FF-ANN after Kalman smoothing. Note that 

the average PPMC in Table 6.3 is slightly better than that shown for the MFCCs in Table 6.1. 

Also the average RMSE is not shown in Table 6.3 as RMSE for each TV has a different unit 

of measure and hence taking their average may not be meaningful. The input to the FF-ANN 

was contextualized MFCC coefficients (contextualized in the same way as performed in 

section 6.1) and the outputs were the eight TVs. The ANN outputs were used as an 

observation set by the DBN. 

 

 

Table 6.3 RMSE and PPMC of the estimated TVs obtained from the 4-hidden layer FF-ANN 

 RMSE PPMC 

GLO 0.080 0.853 

VEL 0.036 0.854 

LA 1.871 0.801 

LP 0.593 0.834 

TBCL 12.891 0.860 

TBCD 2.070 0.851 

TTCL 8.756 0.807 

TTCD 4.448 0.801 

Avg  0.833 
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A DBN (Ghahramani, 1998) is essentially a Bayesian Network (BN) that contains 

temporal dependency. A BN is a form of graphical model where a set of random variables 

(RVs) and their inter-dependencies are modeled using nodes and edges of a directed acyclic 

graph (DAG). The nodes represent the RVs and the edges represent their functional 

dependency. BNs help to exploit the conditional independence properties between a set of 

RVs, where dependence is reflected by a connecting edge between a pair of RVs and 

independence is reflected by its absence. For N RVs, X1, X2, … Xn, the joint distribution is 

given by 

     ( )1 2 1 2 1 3 1 2 1, ,.... ( ) ( | ) ( | )..... ( | ... )N N Np x x x p x p x x p x x x p x x x=              (51) 

Given the knowledge of conditional independence, a BN simplifies equation (51) into 

               ( )1 2
1

, ,.... ( | )
N

N i i
i

p x x x p x xπ
=

= ∏                 (52) 

where 
i

Xπ are the conditional parents of iX .  

Figure 6.4 shows a DBN with three discrete hidden RVs and two continuous 

observable RVs. The ‘prologue’ and the ‘epilogue’ in Figure 6.4 represent the initial and the 

final frames and the ‘center’ represents the intermediate frames, which are unrolled in time to 

match the duration of a specific utterance (more details about them can be obtained from 

Bilmes [2002]). Unlike HMMs, DBNs offer the flexibility to realize multiple hidden state 

variables at a time, which makes DBNs appropriate for realizing the gestural framework that 

involves multiple variables (gestures in our case, e.g. LA, TBCD, TTCD, etc). Hence, DBNs 

can explicitly model the interdependencies amongst the gestures and simultaneously perform 

gesture recognition and word recognition, eliminating the necessity of performing explicit 

gesture recognition as a prior separate step. In this work we have used the GMTK (Bilmes, 

2002) to implement our DBN models, in which conditional probability tables (CPTs) are used 

to describe the probability distributions of the discrete RVs given their parents, and Gaussian 
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mixture models (GMMs) are used to define the probability distributions of the continuous 

RVs. 

 

Figure 6.4 A sample DBN showing dependencies between discrete RVs (W, S, T) and 

continuous observations (O1 & O2). Round/square nodes represent continuous/discrete RV 

and shaded/unshaded nodes represent observed/hidden RVs 

 

In a typical HMM based ASR setup, word recognition is performed using Maximum 

a Posteriori probability 

arg max ( | )

( ) ( | )
arg max

( )

arg max ( ) ( | )

i i

i i

i

i i i

w P w o

P w P o w

P o

P w P o w

=

=

≈

                   (53) 

where o is the observation variable and P(wi) is the language model, which can be ignored for 

an isolated word recognition problem where all the words w are equally probable. Hence we 

can only focus on P(o|wi) which can be simplified further as 

       

1 1 1 1
2

( | ) ( , | )

( | ) ( | , )

( | ) ( | , ) ( | , ) ( | , )

q

q

n

i i i i

q i

P o w P q o w

P q w P o q w

P q w P o q w P q q w P o q w
−

=

=

=

≈

∑

∑

∑ ∏

       (54) 

where q is the hidden state in the model. Thus in this setup the likelihood of the acoustic 

observation given the model is calculated in terms of the emission probabilities P(oi|qi) and 
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the transition probabilities P(qi|qi-1). Use of articulatory information introduces another RV, a 

and then (54) can be reformulated as 

          
1 1 1 1

1 1
2

( | ) ( | ) ( | , , )

( | , ) ( | , ) ( | , , )

q

n

i i i i i i i i

i

P o w P q w P o q a w

P q q w P a a q P o q a w
− −

=

≈ ×∑

∏
             (55) 

A DBN can realize the causal relationship between the articulators and the acoustic 

observations P(o|q,a,w) and also model the dependency of the articulators on the current 

phonetic state and previous articulators P(ai|ai-1,qi). Based on this formulation, the G-DBN 

shown in Figure 6.5 can be constructed, where the discrete hidden RVs, W, P, T and S 

represent the word, word-position, word-transition and word-state. The continuous observed 

RV, O1 is the acoustic observation in the form of MFCCs, and O2 is the articulatory 

observation in the form of the estimated TVs. The partially shaded discrete RVs, A1, …AN 

represent the discrete hidden gestures. They are partially shaded as they are observed at the 

training stage and then made hidden during the testing stage. The overall hybrid ANN-DBN 

architecture is shown in Figure 6.6. 

 

Figure 6.5 The G-DBN graphical model 
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Figure 6.6 The hybrid ANN-DBN architecture 

 

In the hybrid ANN-DBN architecture, there are two sets of observation fed to the DBN, (1) 

O1: the 39 dimensional MFCCs (13 cepstral coefficients along with their ∆ and ∆2), (2) O2: 

the estimated TVs obtained from the FF-ANN based TV-estimator.  

 

6.2.2 Word Recognition Experiments 

We implemented 3 different versions of the DBN, in the first version we used just the 39 

dimensional MFCCs as the acoustic observation and no articulatory gesture RV was used. 

We name this model as the DBN-MFCC-baseline system. In this setup the word models 

consisted of 18 states (16 states per word and 2 dummy states). There were 11 whole word 

models (zero to nine and oh) and 2 models for ‘sil’ and ‘sp’, with 3 and 1 state(s) 

respectively. The maximum number of Gaussian mixtures allowed per state was four with 

vanishing of mixture-coefficients allowed for weak mixtures. The second version is identical 

to the first version, except that there was an additional observation RV corresponding to the 

estimated TVs. We name this model as the DBN-MFCC-TV system. Finally the third version 

was the G-DBN architecture (shown in Figure 6.5, with MFCC and the estimated TVs as two 

sets of observation) where we used 6 articulatory gestures as hidden RV, so N in Figure 6.5 

was 6. Note that the articulatory gesture RVs modeled only the gestural activations, i.e., they 

were only binary RVs reflecting whether the gesture is active or not and do not have any 

target information (i.e., degree and location of the constriction information). This was done 

deliberately to keep the system tractable, otherwise the multi-dimensional conditional CPT 
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linking the word state RVs and the gesture state RVs became extremely large making the 

DBN overly complex. Hence our current implementation of G-DBN uses 6 gesture RVs: 

GLO, VEL, LA, LP, TT and TB. Since the gestural activations for TTCL and TTCD are 

identical they were replaced by a single RV, TT (tongue tip) and the same is true for TBCL 

and TBCD, which were replaced by TB (tongue body). Since the TVs were used as a set of 

observation and the TVs by themselves contain coarse target specific information about the 

gestures, it can be expected that the system has gestural target information to some extent. 

The word models in the G-DBN architecture uses lesser number of states per word28 (eight 

with two additional dummy states) compared to that (16 states per word and 2 dummy states) 

of the DBN-MFCC-baseline and DBN-MFCC-TV systems. The number of states for ‘sil’ and 

‘sp’ were kept the same as before. In this setup the discrete gesture RVs are treated as 

observable during the training session and then converted to a hidden RV during the testing. 

Figure 6.7 shows the overall word recognition accuracy obtained from the three DBN 

versions implemented. 

 

Figure 6.7 Overall word recognition accuracy obtained from the three DBN versions 

                                                 
28 This reduction was done to reduce the DBN complexity 
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Figure 6.7 show that the G-

having a lower number of states per word model. Use of estimated 

MFCCs offered higher recognition accuracy than the MFCC

our previous observation (Mitra 

SNR 0dB to 20dB) with so

the HMM based systems 

state/word model.  

  

Figure 6.8 Averaged Recognition accuracies (0 to 20dB) obtained from using

architectures presented in this 

system (Mitra et al., 2010b)
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-DBN provided the best overall word recognition accuracy despite 

lower number of states per word model. Use of estimated TVs in addition to the 

MFCCs offered higher recognition accuracy than the MFCC-baseline which is in line with 

(Mitra et al., to appear). In Figure 6.8 we compare our 

some of the previously obtained HMM-based results.

the HMM based systems use a 16 state/word model, whereas the G-DBN uses a

Averaged Recognition accuracies (0 to 20dB) obtained from using

architectures presented in this section, our prior HMM based articulatory gestures based 

, 2010b) and some state-of-the-art word recognition systems that has been 

reported so far 
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we compare our results (for 

sults. Note that all 

DBN uses an 8-

Averaged Recognition accuracies (0 to 20dB) obtained from using the G-DBN 
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s that has been 
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For a fair comparison, we created an 8 state/word model for the ETSI-advanced29 and the 

ETSI-advanced with the G-DBN back-end. The recognition results obtained are compared to 

that of the G-DBN in Table 6.4. 

 

Table 6.4 Word recognition accuracy at clean, 0-20dB and -5dB for the whole Aurora-2 

database, using G-DBN30, ETSI-advanced front-end and ETSI-advanced front-end with G-

DBN. The numbers in bold denote the highest recognition accuracies obtained at that SNR 

range. 

Clean 0-20dB -5dB 

G-DBN 98.52 78.77 17.42 

ETSI-advanced 98.14 82.01 23.71 

ETSI-advanced+G-DBN 98.62 81.48 23.89 

 

Table 6.4 shows that both the G-DBNs showed better word recognition accuracies than the 

ETSI-advanced front-end at clean. Also when the ETSI-advanced frontend is used with the 

G-DBN back-end, it offered higher word recognition accuracy at -5dB than only the ETSI-

advanced front-end.  

 To compare the performance of the G-DBN system (which uses whole word models) 

with a phone-based model, we built a DBN (using MFCC as acoustic features) where the 

total number of phones was 60 and the maximum number of phones per word was 30. We 

performed a word recognition experiment, which compares the mono-phone based DBN to 

the G-DBN for a clean test set in Aurora-2 and the results are shown in Table 6.5 

 

                                                 
29 In this case we used a DBN back end, without any hidden gesture variables. Hence essentially the 
backend is an HMM system. 
30 In case of G-DBN only, the acoustic feature consists of MFCC coefficients with their ∆s and ∆2s. 
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Table 6.5 Word recognition accuracy at clean condition: G-DBN versus mono-phone DBN 

Mono-phone DBN 98.31 

G-DBN 98.93 

 

Table 6.5 shows that the G-DBN architecture provides improved recognition accuracy at 

clean condition than the mono-phone based model, indicating that gestural representation 

potentially can improve word recognition rates over the mono-phone based representation. 

 

 

6.2.3 Discussion 

In this section we proposed and presented an articulatory gesture based DBN architecture that 

uses acoustic observations in the form of MFCC and estimated TV trajectories as input. 

Using an eight state per word model we have shown that the G-DBN architecture can 

significantly improve the word recognition accuracy over the DBN architectures using 

MFCCs only or MFCCs along with TVs as input. Our results also show that the proposed G-

DBN significantly improves the performance over a gesture based HMM architecture we 

previously proposed in (Mitra et al., 2010b), indicating the capability of DBNs to properly 

model parallel streams of information (in our case the gestures). Note that the current system 

has several limitations as follows. First, the TV estimator is trained with only a single 

speaker, and a multi-speaker trained TV estimator can potentially increase the TV estimates 

for the Aurora-2 database, which in turn can further increase the word recognition accuracy. 

Second, we only modeled the gestural activations as hidden binary RVs. Future research 

should include gestural target information as well. Finally, we have seen (Mitra et al., 2010b) 

that contextualized acoustic observation can potentially increase the performance of gesture 

recognition. However, in our current implementation the acoustic observation had no 

contextual information. Contextual information should be pursued in future research. 
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Chapter 7:  Summary and future work 
 

7.1 Summary 

This dissertation presents an alternative approach to automatic speech recognition, 

where articulatory gestures are used as speech sub-units instead of phones. The new 

architecture not only introduces robustness against variability in speech due to 

contextual variation but also against ambient noise contamination. In order to use 

articulatory gestures as sub-word speech units, these gestures need to be extracted / 

recognized from the speech signal, so the first logical step is to see if appropriate 

models can be build that can generate / recognize the corresponding gestures from a 

given speech input. However to build / train such models we require a database 

containing speech utterances and their corresponding groundtruth gestural scores, but 

unfortunately no such natural speech database existed during the time we begin our 

experiments. Hence, we had to use synthetic speech data that contain acoustic 

waveforms and their corresponding gestural scores and TV trajectories. In chapter 3 

we introduced Haskins Laboratories TAsk Dynamics Application (TADA) model, 

which given a word or its arpabet, generates synthetic speech acoustics, its 

corresponding gestural scores and TV trajectories. In that chapter we also specified 

the synthetic databases that we created for the initial studies performed in this 

research.  

 Chapter 4 presented a set of initial studies performed on the synthetic 

databases presented in chapter 3. In the initial study we presented different machine 

learning strategies to recover TVs from a speech signal. We observed that using 

contextual information in the acoustic space helps to better estimate the TV than 
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without using any contextual information. We showed that TVs can be estimated with 

an overall better accuracy than articulatory pellet trajectories, from the speech signal. 

Our study used different machine learning approaches for TV estimation, and the 

approach (3-hidden layer FF-ANN architecture) that modeled the non-linearity well 

was found to offer the overall best result; which may indicate that the non-linearity 

may be the critical factor rather than non-uniqueness for speech inversion using TVs. 

Also we observed that the raw TV estimates from the TV estimators were almost 

always corrupted with an estimation noise, hence we used a Kalman smoother post-

processor to smooth the raw TV-estimates, which helped to improve the overall TV 

estimation performance. For gesture recognition, we proposed a cascaded neural 

network architecture that generates the gestural scores as the output. We observed 

that when acoustic parameters (derived from the acoustic signals) are used with the 

estimated TVs as input, the architecture offers greater recognition accuracy over that 

using the acoustic parameters or the TVs alone. Which indicates that the use of 

estimated TVs as tandem-features with acoustic parameters ensure higher accuracy 

for gesture recognition. Finally, we investigated the possibility of using the estimated 

TVs and recognized gestural scores as a possible input to a word recognizer both at 

clean and noisy conditions. The word recognition results indicate that using 

articulatory information in the form of TVs and gestural scores (represented as GPVs) 

in addition to acoustic features can improve the recognition rates appreciably for 

noisy speech. Clearly showing that use of articulatory information can potentially 

improve noise robustness of ASR systems. Note that all of our initial exploration used 

models trained with synthetic speech corpus, which might have limited the capability 
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of these models in predicting the TVs and gestural scores when deployed on natural 

speech. To account this, we wanted to create a natural speech corpus containing TVs 

and gestural score specifications, so that such information could be used to train the 

TV-estimator and gestural score recognizer models. 

 In Chapter 5 we presented a landmark based iterative analysis-by-synthesis 

time-warping architecture that can annotate speech articulatory gestures and TV 

trajectories, potentially to any speech database containing word and phone 

transcriptions and their time alignment. This approach generates speaker independent 

articulatory information making them ideal for ASR applications. Using that 

architecture we annotated the TVs and gestural scores for the whole of XRMB 

database. Since XRMB contain recorded articulatory pellet trajectories and some of 

whom can be used to coarsely predict the TV trajectories, we performed a comparison 

between the annotated TVs and the TVs deciphered from the flesh-point data and 

show that the two correlate well. This indicated that the annotation procedure is 

indeed generating meaningful articulatory information. In a different study we used 

the annotated gestural scores from a part of the XRMB database to train gestural-

score bigram word models which were used to perform word recognition on the 

remainder of the database. An error rate as low as 2.5% was obtained, demonstrating 

that the gestural scores are indeed a viable representation for speech recognition 

tasks. 

 In chapter 6, we re-evaluated our observations made in the initial study with 

natural speech data. In the first experiment we observed that TVs can be estimated 

more accurately than PTs which confirms our observation with synthetic speech 
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presented in chapter 4. We also observed that the MFCCs are a better acoustic 

parameterization for TV-based speech inversion task. Here we also performed a 

model-based statistical non-uniqueness analysis of the TV-based and pellet-based 

inverse model and quantitatively demonstrated that the former has comparatively 

lower non-uniqueness than the latter for six consonants. Using a word recognition 

experiment we showed that the TVs perform better than pellets when used along with 

MFCCs; indicating that the TVs are a better representation for ASR. In the final 

experiment in chapter 6, we presented a DBN architecture that performs word 

recognition using articulatory gestures as a hidden random variable, eliminating the 

necessity for explicit gesture recognition as performed in chapter 4. The proposed 

articulatory gesture based DBN architecture uses acoustic observations in the form of 

MFCC and estimated TV trajectories as input. The proposed hidden gesture based 

DBN architecture showed significant improvement in word recognition accuracies 

over the DBN architectures using MFCCs only or MFCCs along with the TVs as 

input.  

 

7.2 Future Direction 

There are several directions that the research presented in this dissertation could be 

pursued in the future: 

(1) Large Vocabulary Continuous Speech Recognition (LVSCR): As this 

dissertation for the first time realized a full-blown running speech 

recognition system that uses articulatory gestures as hidden variables, we 

have tried to keep the recognition experiments simple to confirm the fact 
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that articulatory gestures indeed offers promise for speech recognition. 

Future research should extend the experiments reported in this dissertation 

to medium and large vocabulary continuous speech recognition tasks and, 

in such cases, the strength of the articulatory gestures to model 

coarticulation well, should be more apparent. To be able to train acoustic 

models for large vocabulary, we need to annotate the training data with 

TVs and gestural scores, which is certainly doable given the training 

data’s word and phone transcripts with their time alignment information. 

(2) Speaker Recognition: The gestural score annotation procedure laid out in 

this dissertation to decipher the gestural scores and TV trajectories of a 

natural speech utterance is based on a canonical gestural model in TADA. 

Hence such information can be expected to be relatively speaker 

independent and suitable for primarily speech recognition tasks. The 

gestural annotation procedure can be modified in a way that it can learn 

speaker specific attributes such as (a) structural differences (due to vocal 

tract length, gender etc.) and (b) stylistic differences (due to speech 

dynamics, intergestural timing differences, prosody, speaker idiosyncrasy, 

etc.). Hence creating a set of parameters that are speaker specific in nature 

can be used as input cues in a speaker identification (SID) task. 

(3) Speech Enhancement: The idea of estimating the TVs from the acoustic 

signal can also find its application in speech enhancement (noise 

suppression) applications. Usually in a speech enhancement application 

the voiced regions are extracted and retained very well due to their 
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inherent periodic structure which helps them to be identified relatively 

easily from the background aperiodic noise. However unvoiced 

consonantal regions being aperiodic regions get blended well with the 

background aperiodic noise, making them increasingly difficult to detect 

and extract. The estimated TV information can be used to robustly 

separate consonant speech sounds from the background noise. Remember 

that TVs specify the location and degree of constriction at different 

constriction sites in the human vocal tract. If the consonant regions can be 

recognized from the estimated TVs and their place and manner of 

articulation identified, then such consonantal information can be pulled 

out of the background noise robustly.  

(4) Assistive Devices: The articulatory information presented in this 

dissertation can have its application in different assistive devices.  

a. Visual Speech: the TV and the gestural score information obtained 

from the acoustic signal can be used to create a 3-dimensional 

dynamic vocal tract model. Such a 3-D model can be used to 

develop a talking head with the help of computer graphics. Such 

talking head may find its application in creating visual speech for 

the hearing impaired, visual aids for subjects suffering from speech 

disfluencies etc.  

b. Second Language acquisition: Often certain sounds (e.g., the 

liquids /r/ and /l/ in english) are difficult to produce in a given 

language. Subjects speaking a non-native language may fail to 
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properly reach the target articulation or may use a wrong 

articulation pattern that results in failure to produce such sounds 

properly. Given that the TVs can be estimated form the subjects 

speech signal, the subjects’ articulatory dynamics can be studied 

and compared with that of its canonical pronunciation to obtain 

information regarding what the subject is doing wrong in terms of 

the articulation and how he/she can correct it. 

(5) Multi-language ASR: Speech Gestures, being the action units responsible 

for articulatory motions can potentially be language-independent 

recognition units, unlike phonemes; hence should allow for portability of 

ASR systems from one language to another. Such a task if achieved would 

indicate the economy and versatility of using gestures as subword units as 

opposed to the conventional phones. Future experiments need to be 

performed to see how a gesture-based ASR architecture trained on speech 

from one language can be ported to another language and hence perform 

cross-lingual speech recognition tasks across languages such as English, 

Spanish, French etc. 
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Appendices 
 

Appendix A:  List of APs 

Table A-A.1 List of APs 

  APs Description 

1 E0_lessF3_SF 

Ratio of the Energy in BW [0 - F3_avg-1000] Hz to Energy in 

BW [F3_avg-1000 - Fs/2]  

(BW: bandwidth; F3 = 3rd formant frequency; Fs = sampling 

rate) 

2 k_1 The first Reflection coefficient 

3 E200_3000 

Energy in BW [200Hz - F3_avg Hz], previously was E[0,F3-

1000], the -1000 was dropped later  

(E: Energy) 

4 E3000_6000 Energy in BW [F3_avg - Fs/2] Hz 

5 E_total Total Energy 

6 voice_bars 

ratio of the (Peak Energy in 0-400Hz) w.r.t (Peak Energy in 

1000-fs/2 ) measured in dB 

7 paf Energy in in the band (F3_avg-187)Hz to 781Hz 

8 Av_maxA23 

Amplitude of the low frequency peak of the vowel spectrum - 

Amplitude of the max frequency in F2 - F3 range 

(F2 = 2nd formant frequency) 

9 Av_Ahi 

Amplitude of the low frequency peak of the vowel spectrum - 

Amplitude of the max frequency peak at the burst spectrum 

10 F0_out pitch profile 

11 AhiArray Amplitude of the high frequency peak at the burst spectrum   
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  APs Description 

12 AvLocArray Location of Av in Hertz  [Juneja (2004)] 

13 dip640 Juneja (2004) 

14 dip2000 Juneja (2004) 

15 peak640 Juneja (2004) 

16 E640_2800_raw Energy in BW [640Hz - 2800Hz] not normalized 

17 E2000_3000_raw Energy in BW [2000Hz - 3000Hz] not normalized 

18 zcr_vals_sm zero crossing rate 

19 hifreq_zcr_vals_sm 

high frequency zero crossing, to capture zc overriding on 

signal envelope (zcr for hi-pass filtered signal, where the high 

pass cutoff frequency is F3_avg+1000 Hz) 

(zcr: zero crossing rate) 

20 FB1_B0 Formant 1 - Formant 0 in Bark scale 

21 FB2_B1 Formant 2 - Formant 1 in Bark scale 

22 FB3_B2 Formant 3 - Formant 2 in Bark scale 

23 F1_out Formant 1 profile 

24 F2_out Formant 2 profile 

25 F3_out Formant 3 profile 

26 E5000_6250_0_3000 

Ratio of the Energy in BW [5000Hz - 6250Hz] and Energy in 

BW [0Hz to 3000Hz] in dB 

27 E0_320_5360 

Ratio of the energy in BW [0 to 320Hz] and energy in BW 

[320 to 5360Hz] measured in dB 

28 mean_hilbert_env Mean of Hilbert Envelop estimated for each frame 

29 std_hilbert_env 

standard deviation of Hilbert Envelop estimated for each 

frame 
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  APs Description 

30 per_0_1800 

Periodic energy from APP detector for BW 0-1800Hz 

(Aperiodic Periodic and Pitch detector [Deshmukh et al., 

2005]) 

31 per_1800_2600 Periodic energy from APP detector for BW 1800-2600Hz 

32 per_2600_3500 Periodic energy from APP detector for BW 2600-3500Hz 

33 per_3500_Fs2 Periodic energy from APP detector for BW 3500-Fs/2Hz 

34 PER_0_500 Periodic energy from APP detector for BW 0-500Hz 

35 aper_0_1800 APeriodic energy from APP detector for BW 0-1800Hz 

36 aper_1800_2600 APeriodic energy from APP detector for BW 1800-2600Hz 

37 aper_2600_3500 APeriodic energy from APP detector for BW 2600-3500Hz 

38 aper_3500_Fs2 APeriodic energy from APP detector for BW 3500-Fs/2Hz 

39 aper_1000_Fs2 APeriodic energy from APP detector for BW 1000-Fs/2Hz 

40 Per_smmry Periodic energy summary 
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Appendix B: Significance Tests 

The significance test (using the approach specified by Gillick & Cox [1989]) results showing 

that the TVs (estimated using synthetically trained TV estimator) and their ∆s offered better 

word recognition accuracy over MFCCs at 0dB and -5dB SNR (as stated in section 4.3.2.3) 

is presented in Table A-B.1 

 

Table A-B.1 Significance Tests for TV-MFCC, (TV+∆)-MFCC, (TV+∆+∆2)-MFCC, 

(TV+∆+∆2+∆3)-MFCC pairs for 0dB and -5dB SNR 

 TV-MFCC (TV+∆)-MFCC (TV+∆+∆2)-MFCC (TV+∆+∆2+∆3)-MFCC 

0dB 1.60E-10 1.65E-08 3.60E-07 2.3E-03 

-5dB 4.49E-08 5.63E-08 2.07E-08 6.32E-04 

 

We also performed the significance test to show that the contextualized TVs (i.e., TVs with 

their ∆s) did not show better accuracies than TVs alone (as specified in section 4.3.2.3) and 

the result is given in Table A-B.2 

 

Table A-B.2 Significance Tests for TV-(TV+∆), TV-(TV+∆+∆2), TV-(TV+∆+∆2+∆3) across 

all noise type and noise-levels in Aurora-2 

TV-(TV+∆) TV-(TV+∆+∆2) TV-(TV+∆+∆2+∆3) 

4.67E-2 4.89E-04 1.93E-11 
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