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With digital cameras emerging as more effective tools for scientific research, there is 

increasing need for accurate and inexpensive ways to calibrate them. In particular, to date 

there has been no simple method to measure camera sensitivity as a function of 

wavelength. For example, narrow bandwidth monochromator beams are expensive and 

have calibration problems, while color chart method is unreliable owing to illumination 

dependence. This thesis presents a novel technique for spectral sensitivity calibration of a 

camera (or any black-and-white cameras or color sensors) using blackbody furnace 

operating at 650 – 1250 °C. Images recorded at 11 different temperatures are observed 

for red, green, and blue camera outputs. Using Planck’s Law to calculate the incident 

light intensities, the three color sensitivities as functions of wavelength are computed 

using MATLAB function that optimizes the spectral sensitivities until the blackbody 

measurements are closely matched. The results are in reasonable agreement with 

published sensitivities.  
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Chapter 1 INTRODUCTION 

1.1. Motivation for color calibration 

The importance of information conveyed by visual media cannot be exaggerated. With the 

digitization of photography, images have grown to assume the role of more powerful tools of 

research than ever before. The overall progress of imaging science can occur only with 

simultaneous advancement in the image capturing device fabrication efficiency, performance of 

the electronic components and the accuracy of image processing. While the first two improve 

with the technological progress in the respective fields, the science of image processing has been 

blooming on its own in different directions as efforts are being directed towards obtaining the 

required version of the digital data collected. While photography as an art focuses on the 

aesthetic aspects of the digital image obtained and its enhancement, the scientific application of 

the images often first require a ‘true’ version of the image that helps one to extract information 

about the physical stimulus that was photographed for instance, animal coloration (Pike, 2011). 

The latter, thus, aims to rectify all the inconsistencies, errors and imperfections that are 

introduced in the original image as it is preprocessed, recorded and processed inside the camera. 

In other words, we need to ‘undo’ all the effects to be able to determine the exact image that the 

camera ‘sees’. After having crossed the optical system, the very first limitation that the image 

encounters is the performance capacity of the CCD sensors in the camera. These sensors are 

active in a finite bandwidth of the light spectrum and respond to every wavelength of every color 

(as the filters allow only specific color radiation to pass through). Hence, it is extremely 

important to apply that correction to be able to predict the original spectral intensities. As this 

data does not depend solely on the CCD sensors and is not made available by the manufacturers 
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of these cameras (or any of the color devices), it is imperative to calibrate this characteristic 

property of every specific camera for perfect interpretation of the picture data it records. Several 

studies have been conducted to that effect but a more reliable and inexpensive method still 

remains to be discovered. This research attempts to achieve a new more reliable technique for 

this spectral sensitivity calibration with the use of blackbody radiation.  

 

1.2.  Working of a digital camera 

To understand the role of color-wise spectral sensitivity in a device, a good place to begin would 

be a brief overview of the entire process of digital photography. The figure above shows the 

inside of a digital camera and its various basic parts. The image captured by the lens of the 

camera is focused on its CCD sensors, after which it is processed and stored in a digital RAW 

file. This file can then be processed to produce either the original image (identical to the real 

                             

Figure 1-1 Inside a CCD digital camera 

(CircuitsFinder) 

             

 

 



3 

 

stimulus that formed the input) or can be enhanced for various visual effects. The flowchart 

below (Figure 1-2) explains the order of the various operations in the complete process.      

 

It can be summarized as follows: 

1.2.1.  Image Capture 

As soon as the ‘capture’ button is triggered, the camera opens at the appropriate aperture for a 

reasonable shutter time, decided by the control systems that feed back the output of the sensors 

to these controls, to allow enough photons to pass through the lens of the camera. The lens, or 

system of lenses, of the camera direct photons from the object (illuminant source) to focus on an 

 

             Figure 1-2: Flowchart summarizing working of a digital camera 

 

'Point and shoot' action by 
the user

Pre-processing for shutter 
speed and aperture control

Conversion of light to charge 
by CCD sensors

ADC action to convert charge to 
digital data

Internal processing for recreating 
the original picture by the 

camera to produce the RAW  file

Storage of the recorded images

Post processing by computer 
algorithms
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array of photosensitive semiconductor cells – either CCDs (Charge Coupled Device) or CMOS 

(Complementary Metal Oxide Semiconductors).  These respond to photons and generate a 

charge proportional to the intensity of the incident light. The light first passes through RGB 

filters, placed on each of the sensors, which are positioned next to each other in a definite 

pattern. Only one of the three colors can pass through each filter. The charges produced are 

conducted across the chip and converted to a value stored at the corner of the array. 

1.2.2. Transmission of charges by CCD sensors 

The Analog-to Digital Converter digitizes the values stored by the CCD and creates an array of 

digital values ready to be processed inside the camera itself (Hainuat, 2006). 

1.2.3. Internal Processing 

The array is still stored as raw values from the filter pattern. To get all three (R,G and B) values 

for each of the pixels, an algorithm processes the recorded single color values and reproduces the 

original color accurately through interpolation. 

1.2.4. Recording and storage 

 After the necessary primary processing the RAW file is recorded and stored on a card reader 

(Ref: Working of Digital Cameras - Basic circuit - CircuitsFinder-Free Electronic Circuit 

Diagram Design). 

This, however, merely generates an input for the computer or processor, which is then 

processed in different ways as convenient to the particular application that the image is being 

used for. All in all , convolving the actual image from the camera output  involves identification 

of all the added effects (brightness, gamma correction, geometric distortion, high and low pass 
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filters, edge enhancement ) , device and processing efficiencies, CCD sensor characteristics and 

their limitations, saturation limits, correction algorithms applied by default 

                                                                                                            

1.3. Literature review 

Of the filter-CCD characteristics, the single most important property that is essential to 

quantitative scientific measurements is the spectral sensitivity of these sensors. This function 

goes a long way in deciding the level of perfection to which reproduction of the true image is 

possible, i.e., it is a performance index of any color imaging system (Sharma & Trussell, 1997) . 

It directly affects the results of other colorimetric interpretations such as solving the color 

constancy problem i.e. determination of the exact spectral intensities and colors irrespective of 

the illuminant used to light up the subject (Finlayson & Funt, 1995, Foster, 1997). In    order to 

calculate the incident spectral intensities, the inherent spectral sensitivity function of the CCD 

device used to read the image, across its entire bandwidth needs to be known. 

 

Figure 1-3: CCD sensor used in Nikon D100                                          

(Nikon:Technology:Image Processing, 2003) 
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1.3.1. Basic Camera Response model 

The processing of color devices is generally done on the assumption that the response of the 

device is linear with respect to the intensity of the incident light. This assumption forms the basis 

for all the linear response models that have been developed to date, in order to estimate the 

spectral sensitivities. It has been found to be reasonably true from experiments conducted in 

earlier research (Vora P. , Farrell, Tiatz, & Brainard, 1997).  However, some papers also provide 

examples of how the model can be appropriately augmented to include a known non-linearity in 

the RGB response to intensity. For instance, the gamma effect (Korsgaard & Andersen, 1998) 

affects the linear nature of camera response function with respect to intensity from improved 

picture quality but needs to be corrected for spectral analysis.  These models use the following 

basic equation to generate a camera response model. The RGB response of the camera for the i
th

 

pixel is given by   

                       
  

  
          ……………..…………………………………………..(1.1)                

Where       the spectral sensitivity of the i
th

 sensor type is,      is the incident power density per 

unit time at wavelength λ, e is the exposure duration, and      is a normal random variable 

denoting noise. The wavelengths λh, λl are the threshold values beyond which the spectral 

response of the sensor is negligible (Vora P. , Farrell, Tiatz, & Brainard, 1997). Based on this 

equation, several methods have been used to determine the spectral sensitivity values from the 

RGB signal values. These methods can be broadly divided into two categories. Some methods 

use light from a single narrowband source (with the help of a monochromater) and the responses 

recorded thus are used to build a look up table.  
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1.3.2. Monochromator method 

The responses are measured at small finite equidistant intervals in the spectral space and for the 

space in between the measured responses, various interpolation methods are used to assign 

values to the wavelengths in the intervals (Sharma & Trussell, 1997, Vora P., Farrell, Tiatz, & 

Brainard, 1997,Lauziere, Gingras, & F., 1999). The more prominent ones are reviewed below.                                                                                                                                                           

1.3.2.1. Simple estimate 

A ‘simple’ estimate of the values was used for the estimation in some papers (Hubel, Sherman, 

& Farrell, 1994), (Vora P. , Farrell, Tiatz, & Brainard, 1997). This method uses sampled form of 

equation (1.1) given as 

                              

                        

                        

           
     

           

 ………………… ……..……….(1.2)    

 

Figure 1-4: Measurement of spectral intensities using monochromator 

(Lauziere, et al., 1999) 
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This equation is used to calculate the value of spectral response ci (λi) by measuring the total 

RGB response from a narrowband at equal intervals. Thus, the value of total signal itself 

becomes the value for sensitivity. The noise variation is ignored in this method and the following 

equation is used for calculation of spectral response at discrete wavelength values. 

                   
          

                  
……………………………………………………..…(1.3)                                        

Interpolation for the wavelengths is generally done through simple averaging. Though this 

method provides a good starting point, it has some flaws. The variability of noise may greatly 

alter the predicted values as most cameras have a non-zero variation about the mean noise level. 

Secondly, the narrowband illuminant still has a certain finite width (of wavelength) across which 

the incident signal may vary. Hence, the distribution across this width needs to be considered. 

1.3.2.2. Weiner Distribution 

 To eliminate these shortcomings, the Weiner estimation method was first used by W.K.Pratt 

(1978) for calculation of the response by weighting the spectral response distribution which was 

assumed to be a Gaussian distribution and noise was considered a vector, having a different 

value for every sensor. 

1.3.2.3. Pseudo Inverse method 

 This method makes use of the pseudoinverse (A.Albert, 1972) of the reflectance matrix of the 

testing samples. It suffers from the lack of a smoothness constraint to compensate for spikiness 

and unrealistic fluctuations from the broadband data. It is extremely sensitive to noise. It thus 

fails to give a good reliable estimate of the sensitivity at any particular point. (A.Albert, 1972) . 

Later, a method was proposed to reduce the rank of the matrix to only include the more 

prominent values that formed a non-singular matrix along with a separate matrix to represent  



9 

 

noise in a vector form. This method called the Rank-deficient Pseudo Inverse Method 

(C.Reinsch, 1971, I.T.Jolliffe, 1986) and has been used by several authors for their analyses 

(Vora P., Farrell, Tiatz, & Brainard, 1997, H.J.Trussell, 1996, Farrell & Wandell, 1993, Trussell 

& Sharma, 1993). 

While these methods are the most clear estimates of the sensitivity function, their accuracy 

completely depends on the camera (in general, device) efficiency, measurement efficiency. What 

make them even more impractical are the costs involved in using monochromators of such fine 

narrowband width. Even the state-of-the-art ones have a width of at least 8 nm. 

1.3.3. Color chart based analytical methods 

The disadvantages associated with the monochromator method have encouraged research in the 

second category of methods for characterization of the spectral sensitivities of a color device. 

These methods simply use linear regression or other numerical methods on the spectral responses 

broken from the total RGB response in an image coming from a source divided into sections of 

known reflectance or transmittance values such as the Macbeth Color Checker
TM

 chart. This 

chart is sectioned into squares of different colors which are surfaces of known reflective spectra 

(McCamy, Marcus, & Davidson, 1976). Thus, one single image can give values from known 

spectra. These, together with the basic assumption of linear response models (equation (i)) can be 

used to estimate the spectral sensitivities. Fig. 3 depicts such an experiment using MacBeth 

Color chart for calibration.  
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 Maloney & Wandell (1985) showed that the spectral response of a camera (or other color 

device) can be expressed as a finite-dimensional vector. This encouraged a completely new 

approach for calculation of the function numerically through linear regression, without use of 

any narrowband illumination requirement. The work of (Trussell & Sharma, 1993) suggests 

methods to smoothen the jagged sensitivities obtained by simple linear regression and imposed 

convexity constraint on the calculated function. Further, (Finlayson, Huble, & Hordley, 1998)  

obtained much better solutions by imposing constraints such as unimodality and positivity. They 

also represented the whole spectral sensitivity characterization empirical problem as a quadratic 

programming problem. The unimodality constraint, however, was implemented by making 

further estimations about the wavelength at which the peak sensitivity was observed from results 

of monochromator experiments. Aslam, Aslam and Finlayson (2002) further induced smoothness 

to the approximated function by use of half-sine basis function.  Another turning point occurred 

when Barnard and Funt (2002) used a weighted sum of the relative error and smoothness factor 

 

Figure 1-5: Experiment set-up for spectral calibration with a MacBeth Color 

chart (Hubel, Sherman, & Farrell, 1994) 
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for the quadratic objective function which gave rise to curves with an optimal smoothness and 

error combination. Both this paper and Dyas (2000) independently used Tikhonov regularization 

(Hansen, 1998) in order reduce the norm of the matrix and make the process of smoothening 

simpler. The latest work (Aslam & Hardeberg, 2006) in this area is an analysis that has made an 

attempt to remove the sharp peaks in the jagged curve makes use of a slightly different method. 

The authors have altered the measured response curve to make it smoother before the calculation 

for spectral sensitivity. The paper shows that the very same pseudoinverse matrix calculation 

together with TSVD (Truncated Singular Value Decomposition (Finlayson & Funt, 1995) can 

considerably improve result. 

1.4. Need for a better method 

Although there has been constant improvement over time in the algorithms that calculated 

spectral sensitivity function based on response to the MacBeth Colorchart, there are inherent 

flaws in the very use of color chart to provide reference values for the spectral responses against 

which the linear programming is performed. Firstly, although the reflectance values of the color 

patches are known, the surrounding illumination affects the amount of signal that the camera 

generates. The function calculated is applicable only to photographs taken in the same 

surrounding illumination. Not only does this limit the usability of the calibration chart but also 

makes it impossible to study photographs taken in outer space using the same function. Over the 

time, the nature and properties of the surface of the chart may change or depart from the values 

that the chart claims to have.  Finally, due to finite number of patches of known reflectance, there 

are limitations over the representation of the matrix of sensitivity function values in the equation. 

This was partly solved by converting the problem to a quadratic linear program by Finlayson, 

Huble, & Hordley, 1998. However, we need to devise method where we could easily increase or 
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decrease the rank of the reference array as the camera model would demand. Keeping these 

drawbacks in mind, a new method is proposed to use computations to calculate the sensitivity 

function for a camera or any color device. 

1.5. Use of blackbody radiation for calibration 

This method uses the fact that the intensity of the signal coming from a blackbody at a certain 

temperature and wavelength can be very accurately calculated from the Planck’s law. Now 

referring back to the equation (1.1), if we can measure the RGB values for a blackbody at a 

temperature on a particular camera, the only unknown is the sensitivity function for that 

particular body. We can now divide the bandwidth into an optimum number of points and 

compute the best corresponding array of sensitivities such that the total signal generated at a 

particular temperature by the blackbody is same as the measured value. All we need is a set of 

photographs spread over a convenient temperature range taken with the blackbody in absence of 

any other source of light. The details of this method will be explained in the following chapters. 

1.6. Objectives 

Thus motivated, the objectives of this study are to put forth a completely new method for camera 

spectral sensitivity calibration that would be universally applicable to all lighting condition, 

would be more reliable with respect to the reference signal values that it uses for the purpose of 

estimation and that would enable near perfect recovery of the actual object stimulus from the 

digital image obtained by a color capturing device. A statistical analysis for noise reduced 

sampling of data and performance characteristics of the optimization module on MATLAB has 

also been included to demonstrate its accuracy and sensitivity to different experimental and 

analytical factors. This project has been specially designed for calibration of a camera Nikon 
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D100 used by NASA in the SPICE ( Smoke Point In Co-flow Experiment) project to study 

temperature distribution in flames. 
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Chapter 2 EXPERIMENTAL METHODS 

The experimental section of this research was aimed at the measurement of camera response to 

the blackbody source at various temperatures to obtain a set of values with minimal noise that 

could be used as input to the optimization algorithm and was carried out together with 

Mr.Mehran Mohammed. 

2.1.Design 

The requirements of the mathematical model dictate the design of this experiment. To form an 

(experimentally) optimal array of signal values with the apparatus, the experiment was designed 

to capture images within a range of temperatures that is enough to exhibit the dependence of 

signal on the magnitude of absolute temperature. A wide range of shutter speeds was used to get 

strong signals for all three colors. The blackbody furnace pictures were taken on the way up the 

temperature scale and also on its way down to room temperature. This allowed a study of the 

hysteresis in the radiation from the original source as well as the camera so that the noise could 

be mitigated. Also, for the same settings, photographs were taken twice to average out the error 

in operation involved. This experiment was repeated twice again to examine the uniformity and 

reliability of the blackbody and camera both with respect to the values that the twain produce at 

various temperature-shutter speed combinations. 
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2.2. Set-up 

The apparatus consisted of a blackbody radiator, a digital camera, a table and mounting 

components along with a computer to perform the processing and computations.  

 

2.2.1. Blackbody furnace: 

Although a perfect blackbody is a hypothetical concept, isothermal cavities that behave as near-

perfect blackbodies with an emissivity of 1. In this experiment, the model ‘Oriel Instruments
TM 

Blackbody‘ with a 1 inch circular cavity opening that can operate between 50 
 
C-1200 

 
C. Other 

details have been listed in Appendix A. As emissivity is about 1 in the operating region we can 

justify our assumption of the cavity behaving as an ideal blackbody for all practical purposes. 

 

Figure 2-1: Set-up for the experiment 

Figure 2-2: Commercial blackbody furnace used 

Nikon D100 

Blackbody 
Clamps 
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2.2.2. Camera 

Any digital camera or electronic color image recording device could be calibrated with the 

method we propose. A Nikon D100 is chosen for our experiment as it’s the exact same model 

that is used for photography from a space station installed by NASA and thus can be used for this 

specific application. Properties of the camera may be found in detail in Appendix B. 

2.2.3. Surrounding lighting conditions and luminance 

All the light sources in the room were switched off and surfaces of high reflectance were kept 

away so that surroundings would not contribute to the image and the furnace was the sole 

illuminant. 

                    

              Figure 2-2: Commercial blackbody furnace used in the experiment 

                     (Figure will be replaced by an actual photo we took) 
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2.3. Procedure 

2.3.1. Focusing  

The blackbody and camera were aligned and mounted so that the reflective plane of the 

blackbody was at the focal point of the camera (with the extension ring). 

2.3.2. Mounting 

The blackbody was first screwed tightly on to metal bars over the table so we could have a fixed 

reference for the rest of the system. The camera was placed at different positions to check for the 

position that would yield sharpest   images of the inner cone of the cavity of the blackbody. The 

camera is then screwed on to a stand which was also screwed down to the working table through 

channels. C-Clamps were used to fasten every component to the working table.  

2.3.3. Temperature control 

The temperature of the blackbody is raised through the controller setpoint. The alarms control 

the heater and fan operation to bring the blackbody to a required temperature. 

2.3.4. Computer controlled capture 

Once a thermally steady state was attained at a temperature, photographs were taken with the 

help of software, Camera Control Pro, which allows complete control of the camera through a 

computer. The image then directly gets transferred to the computer controlling it.  Different 

shutter speeds were used for every temperature to ensure collection of relevant data that confirms 

linear characteristics of the camera and also creates a sample with strong signal from every color. 

The procedure was repeated with duplicate samples for every temperature and shutter speed. 

After having reached the highest temperature, the body was allowed to cool in the same number 
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of steps. The aperture was fixed throughout the experiment.   The temperature range for the 

experiment was 960K to 1460K. 

Table 1: Shutter times of response across the temperature range 

Temperature(K) 
Shutter time 

(seconds)                 
910 15 10 3 

        960 6 4 1 1/2 
       1010 10 6 4 1 1/2 1/10 

     1060 6 4 1 1/2 1/10 1/15 1/30 1/60 
   1110 4 1 1/4 1/10 1/15 1/60 1/250 1/500 
   1160 1 1/2 1/4 1/10 1/30 1/60 1/125 1/250 
   1210 1 1/2 1/4 1/10 1/15 1/30 1/60 1/125 1/250 

  1260 1/2 1/4 1/10 1/30 1/60 1/125 1/125 1/250 1/500 1/1000 
 1310 1 1/2 1/10 1/4 1/10 1/30 1/60 1/125 1/250 1/500 1/1000 

1360 1 1/4 1/10 1/60 1/125 1/500 1/1000 
    1410 1/4 1/10 1/30 1/60 1/125 1/250 1/500 1/1000 

   1460 1/4 1/10 1/30 1/60 1/125 1/250 1/500 1/1000       
 

 

Multiple samples were collected from every combination of temperature and shutter speed. 

These facilitated removal of experimental error by averaging out the inconsistencies as we will 

see in Chapter 4. 
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Chapter 3 ANALYTICAL METHODS 

The method proposed involves the characterization of spectral sensitivity of a digital camera or 

other light sensor using the blackbody experiments described in Chapter 2. This source was 

chosen on account of the fact that blackbody radiation for a particular wavelength and 

temperature is known with extremely good accuracy. Consequently, there is much more reliable 

data for the actual input signal (blackbody intensity) as also the output signal (RGB values from 

the camera image). It is thus possible to eliminate the need to account for surface characteristics 

and the subsequent inconsistencies (the use of a color chart and the flaws associated with that 

method). The development of the analytical procedure is reviewed in this chapter. 

3.1. Physics of blackbody surfaces 

An ideal blackbody can be defined as a surface with emissivity 1 i.e. a surface that absorbs the 

entire electromagnetic radiation incident on it (Gustav Kirchoff, 1860). Although perfect 

blackbodies are hypothetical, methods have been devised to construct isothermal cavities such 

that the emissivity to the small opening to this cavity is almost 1, after a series of internal 

reflections of electromagnetic rays in the main cavity. The blackbody radiator chosen for the 

experiment is one such artificial source. 
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3.2. Planck’s Law:  

Planck’s Law (1900) gives a unique distribution function that determines the intensity of thermal 

power emitted by a blackbody surface at a given temperature, at any wavelength range under 

thermal equilibrium. According to this law,  

  I (λ, T) =   
    

   
 

 
  

     

   ……………………………………………………………….…….(3.1) 

 Where   h->Planck’s constant (6.62606896 x 10
-34 

Js) 

c->  Speed of light in vacuum (299,792,458 m/s) 

k->  Boltzmann constant (1.3806504 x 10
-23 

J/K)  

λ->  Wavelength in nanometers (nm)  

T-> Surface temperature in degree Kelvin (K)  

 

 

                              

Figure 3-1: Intensity as a function of wavelength and temperature calculated using 

Planck’s law. 
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3.3. Expression for total signal of a color: 

Every device has a system to convert the incident source through sensors to an output image and 

this involves various factors which get multiplied to the actual intensity measured by the 

electronic sensors. The magnitude of this scaling effect is a characteristic of the particular device 

and its associated internal programming apart from the setting modified by the user. In the 

context of this thesis, the total product of these constants that appear during the conversion can 

be clubbed together into a constant, say c1. Note that the effect of almost all of these constants 

(except for noise sources and low pass filters) is to ‘scale’ up or down the original data and not to 

alter its relative distribution effects as the transformation is performed on the whole color plane 

and not a particular bandwidth.  The constant c1 is thus a dimensionless factor that modifies the 

amplitude of intensity across the entire bandwidth uniformly. That leaves the spectral sensitivity 

as the only non-random part of the whole transformation function. Let us call this function Si (λ). 

The subscript ‘i’ denotes the color plane with respect to which the sensitivity has been defined. 

This function here only accommodates for the variation in the sensor output based on the 

variation in incident spectrum. The sensors are also responsive to the change in intensity of the 

input. However, the response to intensity is either linear or determinate in nature for most of the 

cameras and color devices. This factor has been discussed at length in experimental section of 

this thesis. With the assumption of linearity in sensor response to intensity, we can consider the 

factor as a part of the group of constants c1.  

3.4. Mathematical model for camera response to blackbody radiation 

For the case of input from a blackbody source, the total camera response at a particular 

temperature depends on the spectral sensitivity function apart from the processing constant c1 

and intensity which can be estimated. Let GSi (T) denote the total grayscale level or output signal 
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value for a particular plane (Red, Green or Blue) with a subscript ‘i’ that stands for the color 

plane (from red, blue and green). From the above, it can be mathematically expressed as : 

GSi (T) = c1.      
 

 
           = 

    

  

 

 
 

 

 
  

     

        ……….….................................(3.2) 

As the camera sensors respond to wavelengths in a finite interval, the limits of the integral can be 

replaced as λh and λl, the higher and lower limit of the bandwidth of response, respectively. Thus, 

 GSi (T) =  
    

  

  

  
 

 

 
  

     

        …………………….………………………………..…..(3.3) 

As       is completely unknown, analytical solution to this problem becomes extremely difficult.  

The analytical intensity function derived from Planck’s equation is complicated to integrate. 

Also, as we can see in the expression above, what we have as known is the total value of the 

definite integral, not the exact analytical function that it obeys .These limitations rule out the 

possibility of solving this problem analytically through Laplace’s transforms or Homotopy 

analysis. 

3.5. Nonlinear programming problem  

In absence of analytical methods, a good alternative is nonlinear programming with use of 

numerical methods. We have already identified the mathematical problem statement. Nonlinear 

programming technique can obtain an optimum solution to the system of nonlinear equalities, 

inequalities and constraints that we have in this case. The next step is formulation of the problem 

for nonlinear programming. 
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3.5.1. Statement of the problem 

Eventually, the problem requires finding the optimal set of spectral sensitivity function values 

that yield a total signal equal to the measured value. The problem can thus be structured as 

follows: 

Optimization problem formulation: 

o Goal: Achieving sensitivity values that generate signal that fits with the measured values as 

closely as possible. 

o Variables: Array of sensitivity function values at regular intervals. This is essentially the array 

that we have set out to optimize. S [h]becomes our array of variable for ‘h’ divisions of the 

bandwidth. 

o Measured signal: Values obtained through actual experimentation. This is the reference array 

against which the optimization is performed.’ GS[n]’ is the reference array for ‘n’ readings 

obtained. 

o Calculated signal: Numerical integration over a finite wavelength rang , of the product of 

sensitivity  and intensity at a given wavelength and  temperature. Say ‘calc[n]’ is our calculated 

signal array.  

o Objective function: Absolute difference in the logarithms of calculated and measured values 

normalized over the corresponding measured values added to the difference between actual and 

calculated values forms an objective function the sensitivity to which is very high for a fitting 

optimization algorithm. This function is very similar to the quadratic programming with the error 

function as described by Finlayson (1998). However, absolute value allows the function to use 

the real magnitude instead of using the square of the value of error which gets reduced for 
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numbers between 0 and 1. The logarithms make use of the exponential nature of the signal 

function. 

3.5.2. Constraints on the algorithm 

 

o  Positivity: All the variable values are positive by the very fact that they represent a count of 

photons that successfully get converted to charge in the camera sensors.     

o Band limits: As the sensors of the digital camera have a finite bandwidth capacity within 

which they respond, we pick the most general range for all three planes (red, green and blue) as 

400-700 nanometers 

3.5.3. Demonstration of the path followed by the proposed algorithm 

 

The following figures demonstrate the procedure that the algorithm should follow. Figure 3-2 a. 

shows the sensitivity function as generated by the function that is then optimized by the search 

algorithm to generate best possible value (minimum, in this case) of objective function through 

the set of control points which govern the nature of function generated by the algorithm. The 

figure 3-2 b. shows the calculated signal with function in fig. 3-2 a. and its fit with respect to the 

actual signal for the same color measured in the experiment over the range of temperatures. 
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Figure 3-2 a. Plot of the sensitivity function generated by every trial set of variables 

calculated in the function that will be optimized by search algorithms. 

Figure 3-2 b. Plot of the measured signal and calculated signal vs Temperature 
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3.6. MATLAB Optimization Toolbox 

There is a powerful mathematical analysis tool at our disposal, MATLAB for carrying out this 

optimization algorithm. MATLAB provides the perfect numerical computation environment 

necessary to carry out iterations sequentially for a problem like ours. The ‘Optimization 

Toolbox’ is specifically designed to have search functions designed to solve linear and nonlinear 

programming problems by computing the best possible values to attain a particular goal. The 

‘fmincon’ algorithms in this toolbox are apt for numerical minimization problem that is to be 

solved. It finds the best value from a set constrained by the conditions of equalities, inequalities 

and bounds that the user can define. The following section describes in detail the algorithm that 

our code follows in the process of optimizing the solution set. 

 

 

 

 

Figure 3-3: MATLAB Optimization Toolbox screenshot 
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3.6.1. Algorithms 

 

The main program calls the function to be optimized and the MATLAB Optimization toolbox 

function that contains the search algorithm. The optimized function accepts the array of 

sensitivity values at n points of a particular color, e.g. optired [n]. The bandwidth is divided into 

n+1parts. Now, optired supplies sensitivity value for last element of wavelength array division. 

Between two end points the function is treated as a straight line that connects these end points 

and a complete array sred [500] is calculated. An array of intensity at every wavelength int [500] 

is calculated for every temperature from the temperature array T [12]. Trapezoidal integration 

allows us to evaluate the total signal calcred [12] for each of the 12 temperatures. We have the 

array expred [12] from the experiments conducted. The objective function is then calculated with 

the absolute value of difference between the logarithmic values of these two arrays and is 

 

 

Figure 3-4 Flowchart for the optimization function 
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returned by the function. ‘Active set’ algorithm is the actual search function generating program 

that computes a new value based on the change in objective function. 

 

                                             

                             

Figure 3-5: Flowchart for Active Set Algorithm 

(Knagpe, 2009) 
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3.6.2. Test on known sensitivity based ideal data 

 

This method was initially tested on data generated with reference values obtained from earlier 

publications and was found successful. The figure 3-5a.  below shows a reference set of data that 

was obtained from Seigernes,et al.(1994). On using Planck’s Law, the total RGB values of signal 

calculated as shown in figure 3-5 b.  

The optimization subroutine was then optimized to sharpen the accuracy further to obtain plots 

as shown in figures 3-6 – 3-8. These plots were results obtained on optimization of 99 points of 

each of the color’s sensitivity curve that gave excellent convergence, evenly distributed error, 

when plotted across the temperature range within which it was minimized. 

These results led to the inference that the method worked out well for all three curves with 

acceptable accuracy under ideal conditions with about 1% noise and confirmed its feasibility. 

The performance of the experiment was therefore justified as a creation of an actual prototype of 

the calibration system that was verified to have worked on an ideal set of data. 
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Figure 3-6a. Calibration curves as published by Calibration Lab at UNIS 

(Seigernes, et al.,1994) 

Figure 3-6b. RGB Signal obtained with sensitivities from fig. 3-6a 
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Figure 3-7. Optimization results for Red color 
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Figure 3-8. Optimization results for Green color 
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Figure 3-9. Optimization results for Blue color 
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Chapter 4 RESULTS AND DISCUSSION 

4.1. Analysis of experimental results 

The experimental data being the source of input to our analytical method, constitutes an   

important component of the calibration method and controls the level of accuracy reached. 

Following procedure was followed in selection of samples to be used for the MATLAB 

optimization program.  

  

4.1.1. Processing:  

The camera yields files in RAW format that need to be converted to a format recognized by the 

measurement and analysis software. In our case, the RAW files generated by the camera were 

processed to ‘.tiff’ format suitable for ‘Spotlight’. The second objective in using DCRAW was to 

take care of the inevitable alteration of digital data of the picture that happens before conversion 

to RAW format. The following Figure 4-1 demonstrates the effect of application of special 

algorithms to nullify the gamma effect and color transformation effect that are induced in the 

internal processing of a digital camera. 

Processing of 
RAW files

Measurement of 
signal using 
‘Spotlight’

Statistical 
analysis for 

noise reduction

Selection of a 
good statistical 

sample
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4.1.2. Signal measurement:  

Software called ‘Spotlight’ developed by NASA was chosen to obtain exact signal values at 

every pixel on every photograph.  Several samples were taken for the purpose of statistical 

analysis and noise reduction. The ‘Aoi (Area of interest)’ feature in Spotlight allows analysis 

of a desired fragment of the picture which can be placed at constant position in multiple 

photographs. This brings about uniformity in all our samples with respect to pixel are picked 

for analysis. The final images were analyzed with a thick Aoi of line profile with pixel 

dimensions (20 X 1040) from the whole image (3037 X 2024) as shown in Figure 4.2 .The 

average of all the values across this linear Aoi was used to represent signal from the blackbody 

at that particular temperature and shutter speed (for a single pixel). 

Figure 4.1c: Photograph 

processed with gamma 

correction and color 

transformation correction 

Figure 4.1b: Photograph 

processed with gamma 

correction but color 

transformation correction not 

applied 

  

Figure 4.1a: Photograph 

processed without correction 
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                                      Good 

 

4.1.3. Filtering for removal of bad data 

Data that was collected after obtaining the Aoi values for every picture had to be further 

filtered to select an ideal quality image at every temperature. All the pictures that collected a 

saturated signal for red were removed. Pictures with a very weak blue signal also had to be 

removed. 

4.1.4. Statistical Analysis 

The photographs, after conversion, were analyzed to keep the ones that would make good 

samples for the final set to be extracted. After choosing an appropriate shutter speed at which 

non-saturated clear images were obtained , the photographs were  processed to reduce noise. 

The multitude of samples obtained for the same settings gave us freedom to perform noise 

analysis and eventually dispose values with weak signal or high noise or both. Since, the code 

needs only about 11 points, noise reduction is crucial for better performance of the 

optimization algorithm. The following figures show the one sample (out of the four 

considered) for the final photographs selected for each of the eleven temperatures. 

                                

Figure 4.2:  Measurement Aoi sample size –screenshot from spotlight 

Thick line 

Aoi 
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Figure 4.3.c.:1060 K (6 s) 

Figure 4.3.b.:1010 K (10 s) Figure 4.3.a.:960 K (10 s) 
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 Figure 4.3.f.:1260 K (0.25 s) Figure 4.3.g.:1210 K (0.5 s) 

Figure 4.3.e.:1160 K (1s) Figure 4.3.d.:1110 K (1 s) 
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Figures 4.3 (a-k): Photographs of processed samples selected from the experiment

Figure 4.3.k.:1460 K (0.01666 s) Figure 4.3.j.:1410 K (0.0333 s) 

Figure 4.3.h.:1360 K (0.01666 s) Figure 4.3.i.:1310 K (0.1 s) 

 

1310 K (0.1 s) 
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4.1.4 Noise reduction in sampled data 

 Across the Aoi, we observe noise as well as trailing of the signal towards the boundary of the 

red cavity which is caused by interference with the black edges of the cavity. To filter out this 

error, the central region with a standard deviation of less than 200 rawcounts was selected to give 

a noise reduced average value for a pixel for the blackbody at that particular temperature.  

After examining the line profile, the noisy portions of a sample were removed from the pixels 

considered for estimation of the average value of signal intensity for a pixel. The standard 

deviation was kept around 1%. The scatter plot demonstrated the nature of noise and deviation in 

the samples. The best sample was selected from the bunch after evaluation of the standard 

deviation in each noise filtered. The Figure 4-4 shows the line profile plots of three colors for 

1260 K temperature and 0.5 seconds shutter speed. This plot helped selection of an 

approximately flat centered section that would best represent the signal value at that temperature. 

This figure shows for an instance for this 1 temperature. The rest of these 33 plots can be 

elaborately studied from the Appendix D. 
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Figure 4-4: Figures showing pixel intensities across a line profile and noise scatter in the multiple 

samples for 1210K   
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4.1.5. Final data after  noise reduction: 

 The above analysis helped choice of the least noise samples for every temperature. Such samples 

were taken together and values were calculated for signal per second of shutter speed for every 

temperature. The resultant function of GSi vs T was obtained for ever color plane ‘i’. The figure 

below illustrates this function. 

 

 

 

 

 

 

 

Figure 4-5: RGB signals for selected samples for 11 temperatures 

normalized over shutter speed 

 

nO 

Noise 
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4.2. Results on optimization 

The three arrays obtained as above formed inputs to the MATLAB Optimization algorithm 

which is the final phase of our calibration process to generate spectral sensitivity values for the 

three colors. The plots shown ahead give an estimation of the level of convergence reached with 

the actual experiment. 

4.2.1. Results for the three colors for basic settings 

The graphs obtained for different colors under different conditions have been shown. In every 

figure, the first graph shows the sensitivity function estimate while the second one shows the 

convergence of the solution in terms of its agreement with the experimentally calculated signal. 

Though the precision does change with the controlling parameters, in general, a very good 

agreement is observed in the experimentally measured and function generated values of total 

signal in the three planes. The errors (absolute and relative) were on the same scale and so was 

the objective function which proves the uniformity of the mathematical nature of the data 

collected. 
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Figure 4-7: Sensitivity function for green color with 30 points across the range 400-1100 

nanometers 

 

 

Figure 4-6: Sensitivity function for green color with 20 points across the range 400-1600 

nanometers 
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Figure 4-9: Sensitivity function for green color with 50 points optimized  across the range 

400-1000 nanometers 

 

Figure 4-8: Sensitivity function for blue color with 20 points optimized across the range 400-

1600 nanometers 
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Figure 4-10: Sensitivity function for blue color with 30 points optimized across the range 

400-1100 nanometers 
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Figure 4-12: Sensitivity function for red color with 20 points across the range 400-1600 

nanometers 

 

Figure 4-11: Sensitivity function for blue color with 50 points across the range 400-1000 

nanometers 
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Figure 4-14: Sensitivity function for red color with 100 points across the range 400-1600 

nanometers 

 

Figure 4-13: Sensitivity function for red color with 30 points across the range 400-1600 

nanometers 
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 We observe that more points help better definition of the sensitivity curve at the cost of its 

overall efficiency in reproduction of the original signal values. To sum it up, based on the 

number of points that are controlled by the algorithm, we get different results for each case and 

those can be referred to together in the plots below. 

4.2.2. Impact of various factors on optimization results  

The structure of the program allows for various parameters of the problem to control its 

performance. For the given arrays, curves for each color were calculated by optimizing different 

number of points across the whole wavelength. The range of response of the CCD sensors 

assumed also had a visible effect on the results. Definition of the objective function for the 

program was another key factor in the nature of results obtained. Program was tested on relative 

 

Figure 4-15: Sensitivity function for red color with 150 points across the range 400-1000 

nanometers 
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and absolute error respectively as well as on the sum of both .The results for such tests of every 

color have been summarized in the table below. 

Table 2: Results of parameter variation on RGB sensitivities 

Color 
Number of control 

points 
Absolute 
Error Relative Error 

Objective function 
Error R2 

Red 20 0.389 0.0143 0.4033 0.9996 
Red 30 0.3936 0.0147 0.4083 0.9995 

Red 50 0.3524 0.0131 0.3655 0.9996 

Red 100 0.3948 0.0147 0.4095 0.9995 

Green 20 0.9997 0.0378 0.0189 0.9997 
Green 30 0.4113 0.0162 0.4275 0.9995 
Green 50 0.3657 0.0147 0.3804 0.9995 

Green 100 0.385 0.0154 0.4005 0.9995 
Blue 20 4.40E-01 0.0181 0.4585 0.999 
Blue 30 0.4527 0.0186 0.4713 0.999 
Blue 50 0.9175 0.0384 0.9559 0.9944 
Blue 100 0.4792 0.0197 0.4989 0.973 

  

With the current set of variation in the Nedler-Mead algorithms available in the toolbox there is a 

fixed number of points beyond which the accuracy of function calculated goes on decreasing 

with increasing number of points. For the same parameters, optimization on the sum of absolute 

and relative error gave better results over those for absolute and relative error separately. Note 

that there is a lot of ambiguity in the implication of ‘accuracy’. Different researchers in imaging 

science have considered different error terms to determine accuracy. From Table 1, Figures 4-16 

and 4-17, we see that both relative and absolute error show the same trend but their magnitudes 

being different, their relative impact may vary with the mathematical nature of the function. In 

this case of blackbody furnace data that we measured, equal weightage to both the errors gave 

better results in terms of convergence. 
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Figure 4-17: Relative error variation according to test parameters 
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Figure 4-16: Absolute error variation according to test parameters 
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The dependence of number of points controlled by the program to optimize the function values is 

seen in the graphs below. The objective function reached goes on increasing and investigation 

needs to be done for the optimal number of points for each case. 

 

 

 

Figure 4-18 Red sensitivity curves for different number of control points 
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Figure 4-19 Green sensitivity curves for different number of control points 
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Next, tests were conducted to study the effect of the defined range on the results produced by the 

algorithm. The results as shown in Figure 4-21 clearly show a strong impact on the function nature 

with the proximity of range constraint to the actual constraint. The effect in terms of absolute and 

relative error as well as the objective function value can be seen in the Figure 4-22 that plots the 

variation in this function with range variation. 

 

 

 

Figure 4-20 Blue sensitivity curves for different number of control points 
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Figure 4-22: Spectral sensitivities for red color as defined on different ranges to see the 

impact of this constraint on the results 

 

 

Figure 4-21: Spectral sensitivities for red color as defined on different ranges to see 

the impact of this constraint on the results 
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4.2.3. Comparison with published Colorchart calibration results 

Earlier work with Macbeth color chart for Nikon D100 gives us a reference to compare our results 

with. On normalizing our results as also the values obtained from an internet source (Peterson & 

Heukelman, 2010) . 

The following set of plots show a comparative analysis between color chart and blackbody 

calibration method. 

 

 

 

 

 

Figure 4-23: Spectral sensitivities for the three colors as per the optimization function 

with 100 points defined on each 
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However, from Table 1 we see that the best objective function values were obtained for 20 points 

for each of the curves. The plots from the blackbody calibration method were then compared to 

the published values for each color to get an idea of the agreement of the two sets. 

 

 

Figure 4-24: Comparison of results from blackbody source to those obtained from  

MacBeth Colorchart (100 points) 

 

300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

Wavelength (nm)

A
rb

it
ra

ry
 u

n
it
s

 

 

Blue -Blackbody method

Blue-Colorchart method

Green -Blackbody method

Green-Colorchart method

Red -Blackbody method

Red-Colorchart method



58 

 

 

 

 

Figure 4-25: Plots for comparison of the spectral sensitivities for each of the colors 

computed with published color chart values. 
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Chapter 5 CONCLUSION AND FUTURE WORK 

From the optimization results and their error analysis, it can be inferred that the calculated signal 

values obtained from the estimated sensitivity functions agree well with the experimentally 

observed values for a blackbody furnace with the same conditions and reduced noise. About 100 

points can be successfully optimized to give a function (linear between every two of these 100 

points) value at every nanometer. The trend has been verified with previous calibration values 

published which used a color chart.  

The main advantage of this method lies in the fact that the values are defined for every nanometer 

and optimizes for the entire function through control of up to 100 points on the bandwidth for just 

11 readings of temperature. This eliminates the need to use Matrix reduction methods. There are 

no constraints on the number of temperatures in the range of the furnace that could be used for this 

method. The color chart methods suffer from a major disadvantage of the dependency on 

illumination as also the agreement of used chart with the CIE standards. This new technique is 

unaffected by such factors. The only experimental factor is the efficiency of the furnace being 

used. For applications like space and other subnormal illumination conditions, the validity of 

sensitivities calculated under D65 illumination is doubtful. 

Analytically, this new technique places minimal constraints on the optimization algorithm thus 

making the calculated values more reasonable mathematically. There are no bounds placed on the 

modality of the function thus increasing the degree of freedom for the program to choose from a 

set of feasible values. 
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On account of the immense progress in the field of mathematical optimization, the future holds a 

lot of promise for its applications such as the technique presented in this thesis. Thus, refinement 

in this particular calibration method is possible with more powerful algorithms for higher accuracy 

in optimization. Noise analysis shows that greater precision in the values obtained may naturally 

improve the quality of the results produced to some extent. Sophisticated state-of-the-art 

machinery may facilitate time-averaging of the noise to completely eliminate systematic error 

making it possible to obtain very high quality virtually noise free data. Although the sensitivity to 

noise is evidently not so much as it is in the case of matrix reduction methods, noise reduction can 

help estimate the real accuracy level achieved by particular numerical methods-search algorithm 

combination . 

In the event of the results obtained by testing on the parameters of the optimization problem, there 

is a high scope for improvement in the analytical portion of this technique by conducting a further 

detailed study on the exact impact of initial guess choice, wavelength range estimation, objective 

function definition and search algorithm efficiency. Thus, it can be seen that this calibration 

method opens up a whole new path in reproduction of digital images that asymptotically reaches 

the highest level of convergence possible. 

 

 

 

 

 

 

 



61 

 

 

Appendices 

Appendix A: Details of the blackbody furnace used. 

Model 67032                               Type Blackbodies 

Specifications  

Calibration ±0.2 °C ±1 digit 

Stability 
±0.02% of full scale per 24-hour 

period 

Resolution 1°C or 0.1 °C, selectable 

Warm-up Time (1.0 inch 

cavity models) 

35 minutes (ambient to 1050/1200 

°C) 

Warm-up Time (0.25 and 

0.4 inch cavity models) 
15 minutes (ambient to 1050 °C) 

Sensing Element 

Thermocouple, Type S (Plat/Plat 

10% Rhodium) special 0.01% 

tolerance 

Cavity Type Recessed 20° cone 

Cavity Emissivity 0.99 ±0.01% 

Calibration T/C 
Type S special 0.01% tolerance, 

matched to sensing T/C 

Housing Temperature (1 
<15 °C above ambient @ 1050 ° 
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inch cavity models) 
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Appendix B: Details of the camera used 

Resolution                                                       6.1 Megapixel  

Color Support                                                  Color Optical  

Sensor Type                                                     CCD 

 Total Pixels                                                     6,310,000  pixels  

 Effective Sensor Resolution                            6,100,000 pixels  

Optical Sensor Size                                          15.6 x 23.7mm 
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Appendix C: MATLAB Code 

%Optimized function  

 

function f=blueset(g) 
 
lower=400;%Lower limit of the bandwidth considered and defining point for the  

 

%range 

 
num= acalc;%Wavelength of the first point where thefunction is caluclated 
p=101;%Number of points optimized and used to set the rest of the sensitivity %function 

 
d=5;%Number of points in every division of the range 
pr=p-1;%Number of divisions of the range 

 
for j=1:1:p;%Loop for every setting wavelength values in every division 
 for i=1:1:d;%Loop for setting value for wavelength for each point in a division 
l(j,i)=num;%Value at first point defined from the range chosen 
num=num+1; %Incrementation for value to be set at the next point 
end %End of loop for same division points  
end %End of loop for all divisions 

 
%Catenation to create a continuous function of wavelengths 

 

rl=l(1,1:end);%Initial value of the catenated variable set as the first division 

 
for i=2:1:p; 
rl=horzcat(rl,l(i,1:end)); 
end 

% rl is now a continuous wavelength function  

%Slope for the first division (first point assumed to have 0 intensity) 

 
slope(1)=g(1)/(l(1,d)-l(1,1)); 

%Slope for all other divisions except last 
for k=2:1:pr 
slope(k)=(g(k)-g(k-1))/(l(k,d)-l((k-1),d));    
end 

%Slope for last division with last point assumed at 0 intensity 
slope(p)=-1*(g(pr)/(l(p,d)-l(pr,d))); 

 
%Setting the function for first division 

 

for j=1:1:d 
s(1,j)=slope(1).*(l(1,j)-acalc);    
end 

 

%Setting the function for all divisions     
 for i=2:1:p 
for h=1:1:d 
s(i,h)=(slope(i).*(l(i,h)-l(i-1,+d)))+s(i-1,d); 
end 
 end 
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%Concatenation to create a continuous function 
x=s(1,1:end); 
for i=2:1:p; 
x=horzcat(x,s(i,1:end)); 
end 

%Experimental values for the 11 temperatures 
rr=[410.150495  891.849505  1469.59571  2977.638614 5400.985149 9360.356436 16121.80198 23406.18812 

41170.69307 66441.5346 111290.495]; 
rr=1e7.*rr; 
T=[ 960    1010    1060    1110    1160    1210    1260    1310    1360    1410    1460]; 
arl=rl.*(10^-9);%Conversion of wavelength to metres 
lme5=arl.^-5; 
lre=arl.^-1; 
w=size(T); 
length=w(1,2);%Variable to store size of the temperature array 

 
load c1 %Constants from Planck’s Law stored elsewhere 
load c2 

%Calculation of total signal with estimated function 

 
for count=1:1:length 
t=(T(1,count)^-1); 
pow=c2.*t.*lre; 
den=(exp(pow))-1; 
rden=den.^-1; 
int=c1.*lme5.*rden; %Intensity calculated  
pr1=int.*x; 
ts(1,count)=trapz(rl,pr1);%Signal calculated with numerical integration of %Planck’s Law expression 
end 

 
subtraction= abs(log(rr)-log(ts))./log(rr)+abs(log(rr)-log(ts));%Term for %objective function 

 

%Objective function 

 
f=(sum(subtraction)); 

 

%Plotting functions 

 
%gg=l(1:pr,d); 
%  
% subplot(2,1,1); 
% plot(rl,x,gg,g,'o'); 
% xlabel('Wavelength(nm)') 
% ylabel('Sensitivity,S(rawcounts)') 
% legend('Analytical','Points optimized') 
% title('Sensitivity function as a function of wavelength') 
% subplot(2,1,2); 
% plot(T,rr,'--x',T,ts,'--o') 
% xlabel('Temperature(K)') 
% ylabel('Green Signal,GS(Rawcounts)') 
% title('Signal') 
% legend('Experimental','Analytical') 
% vv= num2str(f); 
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% text(1000,9^11,vv) 

 

MAIN FUNCTION TO CALL THE OPTIMIZATION TOOL 

s0=ones(1,40) 
options=optimset('Display','iter','MaxIter',10000,’MaxFunEvals'TolFun',1e-500,'TolX',1e-30) 

%Setting options for the optimization  

S=fminsearch(@blueset,s0, [],[],[],[],lb,ub,[] 
options) 
 
FMINSEARCH USED BY MATLAB  

function [x,fval,exitflag,output] = fminsearch(funfcn,x,options,varargin) 
%FMINSEARCH Multidimensional unconstrained nonlinear minimization (Nelder-Mead). 
%   X = FMINSEARCH(FUN,X0) starts at X0 and attempts to find a local minimizer  
%   X of the function FUN.  FUN is a function handle.  FUN accepts input X and  
%   returns a scalar function value F evaluated at X. X0 can be a scalar, vector  
%   or matrix. 
% 
%   X = FMINSEARCH(FUN,X0,OPTIONS)  minimizes with the default optimization 
%   parameters replaced by values in the structure OPTIONS, created 
%   with the OPTIMSET function.  See OPTIMSET for details.  FMINSEARCH uses 
%   these options: Display, TolX, TolFun, MaxFunEvals, MaxIter, FunValCheck, 
%   PlotFcns, and OutputFcn. 
% 
%   X = FMINSEARCH(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a 
%   structure with the function FUN in PROBLEM.objective, the start point 
%   in PROBLEM.x0, the options structure in PROBLEM.options, and solver 
%   name 'fminsearch' in PROBLEM.solver. The PROBLEM structure must have 
%   all the fields. 
% 
%   [X,FVAL]= FMINSEARCH(...) returns the value of the objective function, 
%   described in FUN, at X. 
% 
%   [X,FVAL,EXITFLAG] = FMINSEARCH(...) returns an EXITFLAG that describes  
%   the exit condition of FMINSEARCH. Possible values of EXITFLAG and the  
%   corresponding exit conditions are 
% 
%    1  Maximum coordinate difference between current best point and other 
%       points in simplex is less than or equal to TolX, and corresponding  
%       difference in function values is less than or equal to TolFun. 
%    0  Maximum number of function evaluations or iterations reached. 
%   -1  Algorithm terminated by the output function. 
% 
%   [X,FVAL,EXITFLAG,OUTPUT] = FMINSEARCH(...) returns a structure 
%   OUTPUT with the number of iterations taken in OUTPUT.iterations, the 
%   number of function evaluations in OUTPUT.funcCount, the algorithm name  
%   in OUTPUT.algorithm, and the exit message in OUTPUT.message. 
% 
%   Examples 
%     FUN can be specified using @: 
%        X = fminsearch(@sin,3) 
%     finds a minimum of the SIN function near 3. 
%     In this case, SIN is a function that returns a scalar function value 
%     SIN evaluated at X. 
% 
%     FUN can also be an anonymous function: 
%        X = fminsearch(@(x) norm(x),[1;2;3]) 
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%     returns a point near the minimizer [0;0;0]. 
% 
%   If FUN is parameterized, you can use anonymous functions to capture the  
%   problem-dependent parameters. Suppose you want to optimize the objective      
%   given in the function myfun, which is parameterized by its second argument c.  
%   Here myfun is an M-file function such as 
% 
%     function f = myfun(x,c) 
%     f = x(1)^2 + c*x(2)^2; 
% 
%   To optimize for a specific value of c, first assign the value to c. Then  
%   create a one-argument anonymous function that captures that value of c  
%   and calls myfun with two arguments. Finally, pass this anonymous function  
%   to FMINSEARCH: 
%     
%     c = 1.5; % define parameter first 
%     x = fminsearch(@(x) myfun(x,c),[0.3;1]) 
% 
%   FMINSEARCH uses the Nelder-Mead simplex (direct search) method. 
% 
%   See also OPTIMSET, FMINBND, FUNCTION_HANDLE. 
  
%   Reference: Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, 
%   Paul E. Wright, "Convergence Properties of the Nelder-Mead Simplex 
%   Method in Low Dimensions", SIAM Journal of Optimization, 9(1): 
%   p.112-147, 1998. 
  
%   Copyright 1984-2007 The MathWorks, Inc. 
%   $Revision: 1.21.4.16 $  $Date: 2008/10/31 06:19:57 $ 
  

  
defaultopt = struct('Display','notify','MaxIter','200*numberOfVariables',... 
    'MaxFunEvals','200*numberOfVariables','TolX',1e-4,'TolFun',1e-4, ... 
    'FunValCheck','off','OutputFcn',[],'PlotFcns',[]); 
  
% If just 'defaults' passed in, return the default options in X 
if nargin==1 && nargout <= 1 && isequal(funfcn,'defaults') 
    x = defaultopt; 
    return 
end 
  
if nargin<3, options = []; end 
  
% Detect problem structure input 
if nargin == 1 
    if isa(funfcn,'struct')  
        [funfcn,x,options] = separateOptimStruct(funfcn); 
    else % Single input and non-structure 
        error('MATLAB:fminsearch:InputArg','The input to FMINSEARCH should be either a structure with valid 

fields or consist of at least two arguments.'); 
    end 
end 
  
if nargin == 0 
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    error('MATLAB:fminsearch:NotEnoughInputs',... 
        'FMINSEARCH requires at least two input arguments'); 
end 
  

  
% Check for non-double inputs 
if ~isa(x,'double') 
  error('MATLAB:fminsearch:NonDoubleInput', ... 
         'FMINSEARCH only accepts inputs of data type double.') 
end 
  
n = numel(x); 
numberOfVariables = n; 
  
printtype = optimget(options,'Display',defaultopt,'fast'); 
tolx = optimget(options,'TolX',defaultopt,'fast'); 
tolf = optimget(options,'TolFun',defaultopt,'fast'); 
maxfun = optimget(options,'MaxFunEvals',defaultopt,'fast'); 
maxiter = optimget(options,'MaxIter',defaultopt,'fast'); 
funValCheck = strcmp(optimget(options,'FunValCheck',defaultopt,'fast'),'on'); 
  
% In case the defaults were gathered from calling: optimset('fminsearch'): 
if ischar(maxfun) 
    if isequal(lower(maxfun),'200*numberofvariables') 
        maxfun = 200*numberOfVariables; 
    else 
        error('MATLAB:fminsearch:OptMaxFunEvalsNotInteger',... 
            'Option ''MaxFunEvals'' must be an integer value if not the default.') 
    end 
end 
if ischar(maxiter) 
    if isequal(lower(maxiter),'200*numberofvariables') 
        maxiter = 200*numberOfVariables; 
    else 
        error('MATLAB:fminsearch:OptMaxIterNotInteger',... 
            'Option ''MaxIter'' must be an integer value if not the default.') 
    end 
end 
  
switch printtype 
    case {'notify','notify-detailed'} 
        prnt = 1; 
    case {'none','off'} 
        prnt = 0; 
    case {'iter','iter-detailed'} 
        prnt = 3; 
    case {'final','final-detailed'} 
        prnt = 2; 
    case 'simplex' 
        prnt = 4; 
    otherwise 
        prnt = 1; 
end 
% Handle the output 
outputfcn = optimget(options,'OutputFcn',defaultopt,'fast'); 
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if isempty(outputfcn) 
    haveoutputfcn = false; 
else 
    haveoutputfcn = true; 
    xOutputfcn = x; % Last x passed to outputfcn; has the input x's shape 
    % Parse OutputFcn which is needed to support cell array syntax for OutputFcn. 
    outputfcn = createCellArrayOfFunctions(outputfcn,'OutputFcn'); 
end 
  
% Handle the plot 
plotfcns = optimget(options,'PlotFcns',defaultopt,'fast'); 
if isempty(plotfcns) 
    haveplotfcn = false; 
else 
    haveplotfcn = true; 
    xOutputfcn = x; % Last x passed to plotfcns; has the input x's shape 
    % Parse PlotFcns which is needed to support cell array syntax for PlotFcns. 
    plotfcns = createCellArrayOfFunctions(plotfcns,'PlotFcns'); 
end 
  
header = ' Iteration   Func-count     min f(x)         Procedure'; 
  
% Convert to function handle as needed. 
funfcn = fcnchk(funfcn,length(varargin)); 
% Add a wrapper function to check for Inf/NaN/complex values 
if funValCheck 
    % Add a wrapper function, CHECKFUN, to check for NaN/complex values without 
    % having to change the calls that look like this: 
    % f = funfcn(x,varargin{:}); 
    % x is the first argument to CHECKFUN, then the user's function, 
    % then the elements of varargin. To accomplish this we need to add the  
    % user's function to the beginning of varargin, and change funfcn to be 
    % CHECKFUN. 
    varargin = {funfcn, varargin{:}}; 
    funfcn = @checkfun; 
end 
  
n = numel(x); 
  
% Initialize parameters 
rho = 1; chi = 2; psi = 0.5; sigma = 0.5; 
onesn = ones(1,n); 
two2np1 = 2:n+1; 
one2n = 1:n; 
  
% Set up a simplex near the initial guess. 
xin = x(:); % Force xin to be a column vector 
v = zeros(n,n+1); fv = zeros(1,n+1); 
v(:,1) = xin;    % Place input guess in the simplex! (credit L.Pfeffer at Stanford) 
x(:) = xin;    % Change x to the form expected by funfcn 
fv(:,1) = funfcn(x,varargin{:}); 
func_evals = 1; 
itercount = 0; 
how = ''; 
% Initial simplex setup continues later 
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% Initialize the output and plot functions. 
if haveoutputfcn || haveplotfcn 
    [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,v(:,1),xOutputfcn,'init',itercount, ... 
        func_evals, how, fv(:,1),varargin{:}); 
    if stop 
        [x,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues); 
        if  prnt > 0 
            disp(output.message) 
        end 
        return; 
    end 
end 
  
% Print out initial f(x) as 0th iteration 
if prnt == 3 
    disp(' ') 
    disp(header) 
    disp(sprintf(' %5.0f        %5.0f     %12.6g         %s', itercount, func_evals, fv(1), how)); 
elseif prnt == 4 
    clc 
    formatsave = get(0,{'format','formatspacing'}); 
    format compact 
    format short e 
    disp(' ') 
    disp(how) 
    v 
    fv 
    func_evals 
end 
% OutputFcn and PlotFcns call 
if haveoutputfcn || haveplotfcn 
    [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,v(:,1),xOutputfcn,'iter',itercount, ... 
        func_evals, how, fv(:,1),varargin{:}); 
    if stop  % Stop per user request. 
        [x,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues); 
        if  prnt > 0 
            disp(output.message) 
        end 
        return; 
    end 
end 
  
% Continue setting up the initial simplex. 
% Following improvement suggested by L.Pfeffer at Stanford 
usual_delta = 0.05;             % 5 percent deltas for non-zero terms 
zero_term_delta = 0.00025;      % Even smaller delta for zero elements of x 
for j = 1:n 
    y = xin; 
    if y(j) ~= 0 
        y(j) = (1 + usual_delta)*y(j); 
    else 
        y(j) = zero_term_delta; 
    end 
    v(:,j+1) = y; 
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    x(:) = y; f = funfcn(x,varargin{:}); 
    fv(1,j+1) = f; 
end 
  
% sort so v(1,:) has the lowest function value 
[fv,j] = sort(fv); 
v = v(:,j); 
  
how = 'initial simplex'; 
itercount = itercount + 1; 
func_evals = n+1; 
if prnt == 3 
    disp(sprintf(' %5.0f        %5.0f     %12.6g         %s', itercount, func_evals, fv(1), how)) 
elseif prnt == 4 
    disp(' ') 
    disp(how) 
    v 
    fv 
    func_evals 
end 
% OutputFcn and PlotFcns call 
if haveoutputfcn || haveplotfcn 
    [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,v(:,1),xOutputfcn,'iter',itercount, ... 
        func_evals, how, fv(:,1),varargin{:}); 
    if stop  % Stop per user request. 
        [x,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues); 
        if  prnt > 0 
            disp(output.message) 
        end 
        return; 
    end 
end 
exitflag = 1; 
  
% Main algorithm: iterate until  
% (a) the maximum coordinate difference between the current best point and the  
% other points in the simplex is less than or equal to TolX. Specifically, 
% until max(||v2-v1||,||v2-v1||,...,||v(n+1)-v1||) <= TolX, 
% where ||.|| is the infinity-norm, and v1 holds the  
% vertex with the current lowest value; AND 
% (b) the corresponding difference in function values is less than or equal 
% to TolFun. (Cannot use OR instead of AND.) 
% The iteration stops if the maximum number of iterations or function evaluations  
% are exceeded 
while func_evals < maxfun && itercount < maxiter 
    if max(abs(fv(1)-fv(two2np1))) <= max(tolf,10*eps(fv(1))) && ... 
            max(max(abs(v(:,two2np1)-v(:,onesn)))) <= max(tolx,10*eps(max(v(:,1)))) 
        break 
    end 
     
    % Compute the reflection point 
     
    % xbar = average of the n (NOT n+1) best points 
    xbar = sum(v(:,one2n), 2)/n; 
    xr = (1 + rho)*xbar - rho*v(:,end); 
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    x(:) = xr; fxr = funfcn(x,varargin{:}); 
    func_evals = func_evals+1; 
     
    if fxr < fv(:,1) 
        % Calculate the expansion point 
        xe = (1 + rho*chi)*xbar - rho*chi*v(:,end); 
        x(:) = xe; fxe = funfcn(x,varargin{:}); 
        func_evals = func_evals+1; 
        if fxe < fxr 
            v(:,end) = xe; 
            fv(:,end) = fxe; 
            how = 'expand'; 
        else 
            v(:,end) = xr; 
            fv(:,end) = fxr; 
            how = 'reflect'; 
        end 
    else % fv(:,1) <= fxr 
        if fxr < fv(:,n) 
            v(:,end) = xr; 
            fv(:,end) = fxr; 
            how = 'reflect'; 
        else % fxr >= fv(:,n) 
            % Perform contraction 
            if fxr < fv(:,end) 
                % Perform an outside contraction 
                xc = (1 + psi*rho)*xbar - psi*rho*v(:,end); 
                x(:) = xc; fxc = funfcn(x,varargin{:}); 
                func_evals = func_evals+1; 
                 
                if fxc <= fxr 
                    v(:,end) = xc; 
                    fv(:,end) = fxc; 
                    how = 'contract outside'; 
                else 
                    % perform a shrink 
                    how = 'shrink'; 
                end 
            else 
                % Perform an inside contraction 
                xcc = (1-psi)*xbar + psi*v(:,end); 
                x(:) = xcc; fxcc = funfcn(x,varargin{:}); 
                func_evals = func_evals+1; 
                 
                if fxcc < fv(:,end) 
                    v(:,end) = xcc; 
                    fv(:,end) = fxcc; 
                    how = 'contract inside'; 
                else 
                    % perform a shrink 
                    how = 'shrink'; 
                end 
            end 
            if strcmp(how,'shrink') 
                for j=two2np1 
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                    v(:,j)=v(:,1)+sigma*(v(:,j) - v(:,1)); 
                    x(:) = v(:,j); fv(:,j) = funfcn(x,varargin{:}); 
                end 
                func_evals = func_evals + n; 
            end 
        end 
    end 
    [fv,j] = sort(fv); 
    v = v(:,j); 
    itercount = itercount + 1; 
    if prnt == 3 
        disp(sprintf(' %5.0f        %5.0f     %12.6g         %s', itercount, func_evals, fv(1), how)) 
    elseif prnt == 4 
        disp(' ') 
        disp(how) 
        v 
        fv 
        func_evals 
    end 
    % OutputFcn and PlotFcns call 
    if haveoutputfcn || haveplotfcn 
        [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,v(:,1),xOutputfcn,'iter',itercount, 

... 
            func_evals, how, fv(:,1),varargin{:}); 
        if stop  % Stop per user request. 
            [x,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues); 
            if  prnt > 0 
                disp(output.message) 
            end 
            return; 
        end 
    end 
end   % while 
  
x(:) = v(:,1); 
fval = fv(:,1); 
  
if prnt == 4, 
    % reset format 
    set(0,{'format','formatspacing'},formatsave); 
end 
output.iterations = itercount; 
output.funcCount = func_evals; 
output.algorithm = 'Nelder-Mead simplex direct search'; 
  
% OutputFcn and PlotFcns call 
if haveoutputfcn || haveplotfcn 
    callOutputAndPlotFcns(outputfcn,plotfcns,x,xOutputfcn,'done',itercount, func_evals, how, fval, varargin{:}); 
end 
  
if func_evals >= maxfun 
    msg = sprintf(['Exiting: Maximum number of function evaluations has been exceeded\n' ... 
                   '         - increase MaxFunEvals option.\n' ... 
                   '         Current function value: %f \n'], fval); 
    if prnt > 0 
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        disp(' ') 
        disp(msg) 
    end 
    exitflag = 0; 
elseif itercount >= maxiter 
    msg = sprintf(['Exiting: Maximum number of iterations has been exceeded\n' ...  
                   '         - increase MaxIter option.\n' ... 
                   '         Current function value: %f \n'], fval); 
    if prnt > 0 
        disp(' ') 
        disp(msg) 
    end 
    exitflag = 0; 
else 
    msg = ... 
      sprintf(['Optimization terminated:\n', ... 
               ' the current x satisfies the termination criteria using OPTIONS.TolX of %e \n' ... 
               ' and F(X) satisfies the convergence criteria using OPTIONS.TolFun of %e \n'], ... 
               tolx, tolf); 
    if prnt > 1 
        disp(' ') 
        disp(msg) 
    end 
    exitflag = 1; 
end 
  
output.message = msg; 
  
%-------------------------------------------------------------------------- 
function [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,x,xOutputfcn,state,iter,... 
    numf,how,f,varargin) 
% CALLOUTPUTANDPLOTFCNS assigns values to the struct OptimValues and then calls the 
% outputfcn/plotfcns. 
% 
% state - can have the values 'init','iter', or 'done'. 
  
% For the 'done' state we do not check the value of 'stop' because the 
% optimization is already done. 
optimValues.iteration = iter; 
optimValues.funccount = numf; 
optimValues.fval = f; 
optimValues.procedure = how; 
  
xOutputfcn(:) = x;  % Set x to have user expected size 
stop = false; 
% Call output functions 
if ~isempty(outputfcn) 
    switch state 
        case {'iter','init'} 
            stop = callAllOptimOutputFcns(outputfcn,xOutputfcn,optimValues,state,varargin{:}) || stop; 
        case 'done' 
            callAllOptimOutputFcns(outputfcn,xOutputfcn,optimValues,state,varargin{:}); 
        otherwise 
            error('MATLAB:fminsearch:InvalidState', ... 
                'Unknown state in CALLOUTPUTANDPLOTFCNS.') 
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    end 
end 
% Call plot functions 
if ~isempty(plotfcns) 
    switch state 
        case {'iter','init'} 
            stop = callAllOptimPlotFcns(plotfcns,xOutputfcn,optimValues,state,varargin{:}) || stop; 
        case 'done' 
            callAllOptimPlotFcns(plotfcns,xOutputfcn,optimValues,state,varargin{:}); 
        otherwise 
            error('MATLAB:fminsearch:InvalidState', ... 
                'Unknown state in CALLOUTPUTANDPLOTFCNS.') 
    end 
end 
  
%-------------------------------------------------------------------------- 
function [x,FVAL,EXITFLAG,OUTPUT] = cleanUpInterrupt(xOutputfcn,optimValues) 
% CLEANUPINTERRUPT updates or sets all the output arguments of FMINBND when the optimization 
% is interrupted. 
  
x = xOutputfcn; 
FVAL = optimValues.fval; 
EXITFLAG = -1; 
OUTPUT.iterations = optimValues.iteration; 
OUTPUT.funcCount = optimValues.funccount; 
OUTPUT.algorithm = 'golden section search, parabolic interpolation'; 
OUTPUT.message = 'Optimization terminated prematurely by user.'; 
  
%-------------------------------------------------------------------------- 
function f = checkfun(x,userfcn,varargin) 
% CHECKFUN checks for complex or NaN results from userfcn. 
  
f = userfcn(x,varargin{:}); 
% Note: we do not check for Inf as FMINSEARCH handles it naturally. 
if isnan(f) 
    error('MATLAB:fminsearch:checkfun:NaNFval', ... 
        'User function ''%s'' returned NaN when evaluated;\n FMINSEARCH cannot continue.', ... 
        localChar(userfcn));   
elseif ~isreal(f) 
    error('MATLAB:fminsearch:checkfun:ComplexFval', ... 
        'User function ''%s'' returned a complex value when evaluated;\n FMINSEARCH cannot continue.', ... 
        localChar(userfcn));   
end 
  
%-------------------------------------------------------------------------- 
function strfcn = localChar(fcn) 
% Convert the fcn to a string for printing 
  
if ischar(fcn) 
    strfcn = fcn; 
elseif isa(fcn,'inline') 
    strfcn = char(fcn); 
elseif isa(fcn,'function_handle') 
    strfcn = func2str(fcn); 
else 
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    try 
        strfcn = char(fcn); 
    catch 
        strfcn = '(name not printable)'; 
    end 
end 
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APPENDIX D :STATISTICAL ANALYSIS FOR NOISE REDUCTION 

Figures showing pixel intensities across a line profile and noise scatter in the multiple samples 

for every temperature and particular shutter time selected for all the 11 temperatures 
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Figure 4-4: Figures showing pixel intensities across a line profile and noise scatter in the 

multiple samples for every temperature and particular shutter time selected  
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