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Adaptive behavior requires that organisms choose wisely to gain rewards and 

avoid punishment. Reinforcement learning refers to the behavioral process of 

learning about the value of choices, based on previous choice outcomes.  From an 

algorithmic point of view, rewards and punishments exist on opposite sides of a 

single value axis.  However, simple distinctions between rewards and punishments 

and their theoretical expression on a single value axis hide considerable 

psychological complexities that underlie appetitive and aversive reinforcement 

learning.  A broad set of neural circuits, including the amygdala and frontal-striatal 

systems, have been implicated in mediating learning from gains and losses.  The 

ventral striatum (VS) and amygdala have been implicated in several aspects of this 



  

process.  To examine the role of the VS and amygdala in learning from gains and 

losses, we compared the performance of macaque monkeys with VS lesions, with 

amygdala lesions, and un-operated controls on a series of reinforcement learning 

tasks.  In these tasks monkeys gained or lost tokens, which were periodically 

cashed out for juice, as outcomes for choices.  We found that monkeys with VS 

lesions had a deficit in learning to choose between cues that differed in reward 

magnitude.  Monkeys with VS lesions performed as well as controls when choices 

involved a potential loss.  In contrast, we found that monkeys with amygdala 

lesions performed as well as controls across all conditions.  Further analysis 

revealed that the deficits we found in monkeys with VS lesions resulted from a 

reduction in motivation, rather than the monkeys’ inability to learn the stimulus-

outcome contingency. 
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Chapter 1: Introduction  

1.1 Reinforcement learning  

Reinforcement learning (RL) is the behavioral process of learning to 

associate rewards and or punishments with actions or stimuli in particular states.  

States are comprised of a number of internal and external variables.  Internal 

variables refer to things like drives; at its most reduced form, these variables stem 

from evolutionary important events for survival and reproduction (food, water, 

sex).  This is in contrast to external variables, which are mainly comprised of a 

number of important elements in an organism’s current environment.  Both internal 

and external variables affect behavior, but the former does not have to be learned, 

while the latter can only be learned.  That is to say, animals do not have to learn to 

be hungry, but animals do have to learn which environments provide food to be 

able to eat.            

One of the most successful RL theories, and the one much of this 

introduction will focus on, is the temporal-difference reinforcement learning theory 

(TD). This theory suggests that phasic dopamine activity codes a reward prediction 

error (RPE), which is then used by striatal circuits to learn actions that maximize 

reward and minimize punishment (1, 2).  RPEs act as the update rule for many RL 

models, and work in the following ways.  When rewards and or punishments are 
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perfectly predicted the RPE is zero and no learning occurs.  When outcomes are 

better than predicted/expected, the RPE is positive, and when outcomes are worse 

than predicted/expected, the RPE is negative.  Thus, RPEs are defined as the 

difference between the value of the outcome/consequence (reinforcement or 

punishment) that is received, and the value of the outcome/consequence that is 

expected.  It should be noted that the term outcome/consequence was used 

intentionally.  The term reward (in lieu of outcome/consequence) is used almost 

exclusively in the literature -- its even the first word in the update term ‘reward 

prediction error’ -- but despite this fact most RL theories assume that this update 

rule is also true for aversive/punishing events (despite much less evidence).   

1.1.1 RL models  

Much of the support for this RPE theory comes from the formulation of RL 

models, specifically the Rescorla-Wagner (RW) algorithm (3).  This learning 

algorithm was originally used to account for associative strength between a cue 

and reward.  The term associative is important in this context because it describes a 

particular type of conditioning (Pavlovian/classical).  It will become evident why 

this distinction is important.  None the less, this algorithm was adopted and 

extended with a time component.  This spawned temporal-difference (TD) RL 

algorithms, which compute prediction errors as the difference between the true 
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value of the reward, and the current state value of the reward.  Thus, an update 

equation for a two-armed bandit choice task can be written as:  

(1) 𝑣𝑣𝑖𝑖(𝑘𝑘 + 1) =  𝑣𝑣𝑖𝑖(𝑘𝑘) +  𝑝𝑝�𝑅𝑅 −  𝑣𝑣𝑖𝑖(𝑘𝑘)� 

The variable 𝑣𝑣𝑖𝑖  is the value estimate for option 𝑖𝑖, 𝑅𝑅 is the reward feedback for the 

current choice for trial 𝑘𝑘, and 𝑝𝑝 is the learning rate parameter.  This is only one 

way to write the update equation for this example task.  For example, one could 

assume that there are two learning rates, one for each type of feedback.  The TD 

model easily adapts to this idea by adding another learning rate parameter.    

(2) 𝑣𝑣𝑖𝑖(𝑘𝑘 + 1) =  𝑣𝑣𝑖𝑖(𝑘𝑘) +  𝑝𝑝𝑓𝑓�𝑅𝑅 −  𝑣𝑣𝑖𝑖(𝑘𝑘)�     

In this case the only change to the equation above is addition of 𝑓𝑓, which indexes a 

separate learning rate for whether the current choice was rewarded (𝑅𝑅 = 1) or not 

(𝑅𝑅 = 0).  In either case the larger 𝑝𝑝 is, the faster values are updated.  Regardless of 

the update equation, in choice tasks, values are converted into choice probabilities.  

This is done through a logistic function, which generates probabilities of choosing 

each option. 

(3)  𝑑𝑑1(𝑘𝑘) = (1 +  𝑒𝑒𝛽𝛽�𝑣𝑣2(𝑘𝑘)−𝑣𝑣1(𝑘𝑘)�)−1,𝑑𝑑2(𝑘𝑘) = 1 −  𝑑𝑑1(𝑘𝑘) 

The 𝛽𝛽 parameter is the inverse temperature, which controls choice consistency.  

Specifically, higher values for this parameter indicate that the higher valued 

stimulus or action was chosen more often. 
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1.1.2 History of RL & dopamine  

When it was discovered that dopamine is correlated with RPEs, this 

monopolized what the field believed dopamine’s function to be.  This monopolized 

view of dopamine’s function led to a logical leap -- if dopamine is the ‘value’ 

neurotransmitter, then brain areas that receive large dopamine projections are well 

suited to compute the necessary computations needed for learning.  Subsequent 

research provided evidence for this view.  Specifically, it was found that midbrain 

dopamine neurons that project to the striatum, and provide reward prediction error 

(RPE) signals, increase their firing rates when rewards are unexpectedly delivered 

and decrease their firing rate when rewards are unexpectedly omitted (2, 5).  In 

addition to these recording studies, fMRI studies have shown that the bold signal in 

the striatum correlate with RPEs (6, 7).  These results led to the conclusion that the 

striatum underlines learning to select rewarding options.  

The RPE theory extends to learning to minimize or avoid aversive events, 

which has led the field to assuming the striatum underlies this process as well.  The 

major evidence for this being true comes from the finding that aversive outcomes 

cause midbrain dopamine neurons to pause their firing (8, 9).  There is 

substantially less evidence for the aversive side of RL.  However, it is crucial to 
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understanding the full spectrum of RL.  So we will explore this in greater detail 

when appropriate. 

Although this theory of dopamine has provided insight into some learning 

data, there are caveats to these results that are often overlooked.  First, the type of 

learning the striatum is thought to underlie more closely resembles operant 

conditioning, and much of the evidence cited above comes from appetite Pavlovian 

conditioning (the importance of this distinction will become clear).  Furthermore, 

when the striatum has been lesioned, operant conditioning has been impaired in 

some tasks (10, 11), but not others (12-14).  Furthermore, often when these studies 

have found deficits, these deficits were the result of changes in the choice 

consistency parameter 𝛽𝛽, and not due to the learning rate parameter 𝑝𝑝.  The choice 

consistency parameter is thought to be more of a function of motivation and not 

learning ability, thus even in these cases when deficits were found, the deficits 

were not consistent with the RPE theory.  

The second caveat deals with the method used for most of the evidence 

above.  Most of the evidence listed above comes from dopamine correlates in very 

similar tasks, in which there is no or relatively weak behavior.  This is problematic 

because without behavior all we can say is that dopamine is correlated with 

parameters in the task.  The purpose of learning is to acquire adaptive behaviors in 

new environments, so without behavioral changes, it is difficult to know what 
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dopamine is correlated with.  This point is exacerbated by the fact that the more 

causal literature, like the results of the lesion studies listed above, are inconsistent 

with the RPE theory.  A second point to this caveat is that certain studies have 

found dopamine responses to fully predicted rewards (15, 16).  This is problematic 

for the RPE hypothesis because if rewards are fully predicted, there is no error and 

the RPE should be zero. 

This level of inconsistency in the literature presents problems for current RL 

theories.  We can further complicate the conclusions drawn from the RL literature 

by including results that have implicated other brain areas.  For example single 

neuron studies in macaques have shown that the dorsolateral prefrontal cortex, as 

well as the anterior cingulate cortex, encode both losses and gains in a competitive 

game in which conditioned reinforcers could be gained and lost (17).  In other 

work, the medial orbitofrontal cortex was found to encode gains and avoidance of 

losses, both of which have positive value (18).  This study also found that 

appetitive RPEs in reward trials (i.e. increases with unexpected rewards) correlated 

with the extent of activation in the ventral striatum (VS), whereas RPEs in aversive 

trials (i.e. increases with unexpected punishments) correlated with activation in the 

insula, consistent with other work (19).  These inconsistences have led to the idea 

that the brain is a redundant system, in which multiple brain areas are coding the 

same variables in a parallel fashion.  I do not completely reject this notion -- this is 
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certainly possible -- but the proper work has not been done to make such a 

conclusion.   

This is not unique to the striatum, many other brain areas follow this trend.  

For example, the amygdala is thought to underlie the formation of Pavlovian 

associations.  However, animals with lesions to the amygdala can still learn to 

approach a food cup to obtain food during the presentation of a CS+ (20, 21).  

There are also results for the amygdala that mirror the results of the striatum 

mentioned above.  Some instrumental conditioning tasks find deficits in animals 

with amygdala lesions (10, 22, 23), while other similar studies find no deficits in 

animals with amygdala lesions (24, 25).  Again, the idea of parallel processing 

does not seem to fit in these cases.  I submit that there is a more plausible reason 

for these conflicting results, and it has to do with differences in the tasks that find 

deficits versus the ones that do not.  Simply put, certain brain areas are important 

for certain components that make up tasks, thus there are deficits when said task 

has those components, and no deficits when a task does not have those 

components.  For example despite the fact that the VS is thought to underlie 

learned values, when the magnitude of rewards were tested against the timing of 

rewards, it was found that the VS was important for the timing and not the 

magnitude (26).  As I will show throughout this chapter several factors contribute 

to the value of rewards (timing being one such factor), thus if these factors are not 
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controlled for it is easy to misattribute effects.  Developing tasks with better 

behavioral control allows us to define more explicit hypotheses and draw stronger 

conclusions.  The present review of the literature is concerned with understanding 

the process of RL.   

 

1.2 Behavior   

1.2.1 Learning   

As we stated earlier, one of the most successful RL theories is the temporal-

difference reinforcement learning theory (TD), which suggests that midbrain 

dopamine codes the temporal difference error from RL (27), which is then used to 

learn actions that maximize reward and minimize punishment (1, 2).  In essence 

RL theories assume behaving organisms are optimal agents in the computer 

science/optimal control sense.  To understand and make proper conclusions about 

the RL literature, we need to understand and clarify what it means to learn, and the 

behavioral components that make up the RL process.  From a behavioral 

perspective there are a couple of things that are problematic for this theory.  First, 

what does it mean to learn something, and how do we measure learning?  Is it the 

case that once an organism learns something their behavior always displays it (ie 

they are optimal agents)?  The answer is a resounding NO!  There is considerable 
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evidence that organisms do not simply behave based on what they know, but 

instead behave based on internal and external motivational processes.  It will 

become clear throughout this section that the distinction between learning and 

conditioning is an important one.  Behavior is often controlled by the latter (28, 

29).  In essence theories of optimality do not properly account for motivation.  

Formally there are at least two components to learning: acquisition of the 

stimulus/behavior-consequence relationship, and the maintenance of that 

relationship.  In traditional learning theories the former is concerned with learning 

(there is a cap on how fast an organism can learn an association), while the latter 

has been assigned to motivation.  Specifically, once an association is learned an 

organism can exploit it as much or as little as it wants depending on its 

motivational level.  It is not trivial to dissociate these two components, and it will 

become clear later, that without dissociating these one can attribute behavioral 

results to the wrong process.  In most cases an experimenter must judge learning 

from the behavior of the organism, which can be a mix of motivation and learning 

processes.  However, this behavior is not fixed.  Many things can alter this 

behavior, such as reward rate, reward schedule, and reward magnitude (30).  The 

fact that environmental contingencies have such a profound and stable effect (even 

across species) on behavior suggests, at the very least, that behavior is not simply a 

display of what one knows.  This means that an experimenter needs to design the 
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proper experiments to get at their question (ie most studies suggest they are 

studying learning, but they are not studying learning in isolation).  To know what 

aspect of behavior one is studying, one needs to systemically manipulate 

environmental contingences.  This is a prerequisite before one can make any 

conclusions about the behavior they are viewing (as we will show throughout this 

review this is one of the main reasons for the large discrepancy in results in the RL 

literature).  For these reasons, behaviorists have long thought the term learning is 

misleading (28, 31, 32).  This is easy to imagine when one considers the work that 

has shown that increases in associative strength on early trials do not translate into 

performance (33).  This often leads to an abrupt onset of conditioned responding 

(34), starting much higher than trial and error learning would predict.  All one truly 

knows is that under ‘these’ environmental contingencies, this is the performance 

that was witnessed.  Instead of learning, behaviorists used terms like stamping in, 

performance, and conditioning.  The former term speaks to ability, while the latter 

terms makes no such assumption.  For example consider pigeon autoshaping data 

from (35).  In this study they showed a well-known behavioral phenomena, 

increasing the inter-trial interval (ITI) speeds acquisition and promotes higher 

levels of conditioned responding.  Is this result because of learning or motivation?  

To better understand the importance of this distinction, we first must explore the 

two major types of conditioning that make up most of the literature on learning.  
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1.2.2 Consequences  

Before we explore the two types of conditioning, we must first 

define/explain a few aspects of behavior.  By definition a reinforcer is any event 

that strengthens behavior, while a punisher is any event that weakens behavior.  

The positive and negative terms used before the words reinforcement and 

punishment just indicate if something was added (positive), or if something was 

removed (negative).  Thus, a positive reinforcer is when something is added that 

increases the probability of some behavior, we often calls these things rewards.  

While a negative reinforcer involves the removal of an aversive event, the removal 

of this aversive event is reinforcing, as it strengthens the behavior that lead to this 

removal.  For example, bringing an umbrella when there is a good chance of rain.  

In the past one has been reinforced by staying dry when it rains by bringing an 

umbrella, thus the future behavior of bringing an umbrella when rain is call for has 

been reinforced.  Punishers are just the opposite.  A positive punisher involves the 

addition of something, every time a dog barks, the dog gets shocked by their collar. 

In this procedure barking will soon be reduced.  A negative punisher involves the 

removal of something someone finds reinforcing, the prison system is based on this 

one.  When one breaks certain laws their freedom is taken away, in this case we 

assume freedom to be reinforcing.   
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There are two important concepts about these definitions that is crucial to 

understanding behavior.  For the sake of simplicity I will just discuss these 

concepts for the reinforcers side, but the opposite appears to be true for the 

punishment side.  The first concept is that these terms are discussed in relation to 

behavior.  If a reinforcer does not increase the probability of the desired behavior it 

is not a reinforcer (by definition).  It is easy to imagine why this is the case, the 

same rewards and their corresponding magnitudes are not universally reinforcing.  

In essence, all organisms do not find the same things reinforcing.  Even in the same 

organism the value of rewards change based on their internal and environmental 

state.  The former is associated with variables such as deprivation and satiation, 

these variables are well understood and typically controlled for in an appropriate 

manner.  The latter, however, is more often overlooked, so in this section we are 

mainly concerned with how the environment affects reinforcement value.  The 

effort side of how the task environments affect the value of rewards is well 

understood and has been extensively studied in delayed discounting and 

progressive fixed ratio lever pressing studies.  These studies show that delay to 

rewards and the effort required change the value of the reward (we will explore 

this literature in more detail in the dopamine and effort section).  But this is not 

exactly true because the reward has the same value in these cases, instead these 

rewards are just less reinforcing with time delays and increased effort cost.  This 
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difference in definitions might seem trivial, but this difference is critical when 

discussing behavior because as we have just seen they mean different things (the 

same reward can have different reinforcing value depending on the contingency).   

To make this concrete let’s consider one more behavioral finding that is 

often overlooked in the RL literature due to task design.  This finding has been 

called behavioral contrast and it describes a process that refers to the finding that 

rate of responding during a constant schedule of a multiple schedule task, may vary 

inversely with the reinforcement rate of the other schedule (36-38).  For example, 

imagine a task with two different block types, A and B.    To start suppose the 

reward rate for both block types is the same A (VI 1-min) and B (VI 1-min).  After 

some training on these schedules and steady state behavior is reached.  Following 

this, if one schedule is then changed, A (VI 1-min) and B (VI 3-min).  It is normal 

to find increased responding in the A block type.  This has implications about how 

motivation is related to performance, specifically the performance seen in one task 

is not necessarily the best the organism can do, it is simply the rate of behavior the 

organism is motivated to perform under current environmental conditions.  The 

increased responding seen in A blocks is thought to be due to an increase in 

motivation for A blocks.  This finding also speaks to another fact that it is easy to 

overlook, animals seem to be sensitive to the reward rate of the whole task 
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environment, and not just the block they are in.  Similar to this finding, punishment 

has been found to facilitate responding to unpunished behavior (39, 40).      

The second concept is what skinner called probability of response (28).  The 

idea is that no behavior exist only in two states, one in which it always occurs, or 

one in which it never occurs.  Instead behavior lives on a continuum of probability, 

this concept is essential to understanding behavior and the consequences that 

maintain behavior.  Notice that the definitions for reinforcement and punishment 

are stated in this this view, they increase or decrease the probability of a response.  

We cannot readily predict when an organism will eat because there are many other 

factors that affect this behavior.  Factors such as, how hungry the organism is, how 

costly it is for the organism to get food at the present time, how reinforcing the 

food is to the organism, and even more practically if an organism is busy doing 

something else.  Instead all we can predict is that the probability that an organism 

will eat continues to increases from the time of their last meal to their next meal.    

1.2.3 Conditioning  

The two forms of conditioning that make up the much of the RL literature 

are Pavlovian conditioning and operant conditioning.  RL theories were inspired by 

these behavioral forms of conditioning, but based on some of the conclusions 

drawn in the RL literature, it is clear that important concepts from the behavioral 
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literature have been lost in translation.  Thus, the second problem in the TDRL 

theory has to do with the type of conditioning being investigated.  Behaviorist have 

long classified these two forms of conditioning as distinct processes (41).  This 

distinction is not as clear in the RL literature (beyond their definitions).  In fact the 

definition and design of RL theory is most closely related to rules applying to 

instrumental conditioning (41), however most of the evidence supporting TDRL 

(RPEs) come from classical conditioning experiments (41, 42).   When we discuss 

the overlap of these two learning systems it will become clear why this distinction 

is important.   

In classical conditioning a previously neutral stimulus becomes a 

conditioned stimulus (CS) after being repeatedly paired with some biologically 

relevant unconditioned stimulus (US), such as food.  After repeated pairings, 

organisms began to respond to the CS as if it was the US.  In the famous Pavlovain 

experiment, Pavlov found that repeatedly pairing a bell, which was originally a 

neutral stimulus, with food (the US which dogs salivate in response to), lead dogs 

to salivate to the sound of the bell (43).  In essence the bell began to predict the 

availability of food, thus the natural reflex of salivation that occurred at the sight of 

food now occurred when the bell was rang, which means at some level the dogs 

learned that the bell predicts food.  This type of conditioning is just a predictive 

relationship, that is to say, the outcome (whether or not the animal gets food) is not 
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contingent on the animal’s behavior.  This feature of Pavlovian conditioning, 

which is often neglected in the RL literature, has to do with the topography of the 

response -- sometimes referred to as AutoShaping or sign tracking (37).  

Historically, the response that occurs as a result of classical conditioning (in this 

case salivation) is involuntary, dogs do not choose to salivate at the sight of food.  

This is something that occurs naturally.  Thus, UR’s have often been thought of as 

reflexes, autonomic, or preparatory behavior mainly concerned with the internal 

physiology of an organism (28).  It is of great advantage for organisms to start to 

salivate before the food is in its mouth, but the animal does not voluntarily control 

this salivation.  In fact some research has shown that there are two main classes of 

CRs (44).  The idea is that the same conditioning process underlie the generation of 

preparatory and consummatory CRs (45).  Preparatory CRs and thought to 

represent motivational emotive properties of the US, while consummatory CRs are 

thought to represent the sensory properties of the US.  Preparatory responses in this 

model are not specific to the US, but to the activation of the motivational system.  

In the example above about food, the preparatory CR would be approach to food, 

while the consummatory CR would be to salivate as the organism gets closer to the 

food.      

    
Sex is another and perhaps more powerful example of how this preparatory 

behavior is a great advantage for an animal’s evolutionary fitness.  For example, if 
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the precursor behaviors that lead to sex do not lead to arousal, the act of having sex 

(and thus reproducing) becomes more difficult.  These precursor behaviors are 

likely learned, but there are some that seem to be innate.  Research has shown that 

even though males are consciously unaware of when women around them are 

ovulating, their internal system is aware from olfactory cues (46).  Furthermore, it 

has been shown that men rate ovulating women as being more attractive, when 

compared to their non-ovulating counterparts (47, 48).  It also been found that 

testosterone levels are raised in men around ovulating women (49), and this 

chemical change leads to men performing different behaviors.  Similar results have 

been found in women, it has been shown the type of men that women are attracted 

to changes when they are ovulating versus when they are not (50).  The important 

thing about these chemical changes is that males and females are consciously 

unaware of them, and these chemical changes can alter behavioral.  This seems to 

be the hallmark of the Pavlovian conditioning system. 

In contrast to classical conditioning, in operant conditioning, an animal’s 

behavior is acquired and maintained by the consequences (reinforcement and 

punishment) that follow said behavior.  Thus, in operant conditioning the 

consequences are contingent on the animal’s behavior.  These two forms of 

conditioning are separate processes, in operant conditioning a reinforcer makes a 

response more frequent, while in classical conditioning a reinforcer increases the 
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magnitude of the response and shortens the time elapsed between stimulus and 

response (28).  Historically, operant conditioning is considered voluntary behavior 

-- the animal is aware of the behavior and this behavior is effortful (28, 30, 37).  

There are more differences between these forms of conditioning, and we will touch 

on them as they become appropriate to gain an understanding of the RL literature.  

For now, I want to emphasize the contrast between voluntary and involuntary -- the 

former being effortful, while the latter does not require effort.  As we will soon 

show (in the dopamine and effort section), this effort component is quite important. 

1.2.4 Pavlovian-instrumental transfer (PIT)  

We can further complicate this distinction by admitting that these two types 

of conditioning complement one another.  Skinner believed that “Since the 

environment changes from generation to generation, particularly the external rather 

that the internal, appropriate reflex responses cannot always develop as inherited 

mechanisms.  Since nature cannot foresee, so to speak, that an object with a 

particular appearance will be edible, the evolutionary process can only provide a 

mechanism by which the individual will acquire responses to particular features of 

a given environment after they have been encountered.  Where inherited behavior 

leaves off, the inherited modifiability of the process of conditioning takes over.” 

(Skinner, 1953).  Specifically, Pavlovian associations add motivational value to 
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operant contingencies (51).  This process is called Pavlovian-instrumental transfer 

(PIT).  This can be shown in experiments where a CS (say a light) is paired with an 

appetitive outcome.  Animals who are trained to press a lever for the same 

appetitive outcome paired with the CS, respond more to the lever in the presence of 

the CS (51, 52).  This is an important concept because numerous lines of evidence 

suggest it is this Pavlovian boost that the RL literature is most often seeing with 

their dopamine recordings.   

Evidence suggest that this form of PIT is mediated partially by the 

amygdala, and partially by the nucleus accumbens.  In one study rats were trained 

to associate a light-noise compound stimulus with water.  Following this half of the 

rats received excitotoxic lesions of the basolateral amygdala.  Next both groups 

received intra-accumbens amphetamine infusions of d-amphetamine and began the 

test phase.  In the test phase two novel levers were available.  Neither lever 

produced water, but one did produce the conditioned reinforcer of the light-noise 

compound.  The authors found that the amphetamine infusions increased 

responding on the lever that produced the conditioned reinforcer, and no change in 

responding on the lever that had no consequence for both the sham-controls and 

lesion animals (53).  Thus, the lesion animals responded like the control animals 

(intra-accumbens amphetamine infusions of d-amphetamine produced amplified 

responding).   
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This result should be viewed in contrast to a study by De Borthgrave et al. 

(13).  In this study experimenters examined the effects of cytotoxic lesions of the 

nucleus accumbens in rats across two instrumental conditioning experiments.  

When experimenters compared rats with lesions of the nucleus accumbens to 

sham-controls, they found that instrumental responding of lever pressing and chain 

pulling for food reinforcers was mildly suppressed in the lesion animals.  However, 

this reduction in responding was not due to lesion animals having trouble learning 

the instrumental contingency, but instead due to a reduction in motivation.  In a 

second experiment, d-amphetamine was administered into both the sham-controls 

and lesion rats, the authors found that the normally increased responding found 

when d-amphetamine is administered was significantly reduced in lesion animals.  

These results suggest that the nucleus accumbens’ role in instrumental 

conditioning is to provide excitatory motivational effects of appetitively 

conditioned Pavlovian signals, instead of holding the value that is attached to 

instrumental outcomes.  The fact that infusions of d-amphetamine to the 

accumbens made rats with amygdala lesions respond like controls, but not rats with 

nucleus accumbens lesions provide further support to the hypothesis that the 

nucleus accumbens plays this excitatory motivational role. 

This overlap can make it difficult to distinguish what conditioning system is 

in control of a specific behavior.  Recall the contrast of voluntary versus 
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involuntary as being one of the hallmark signs to distinguish Pavlovian from 

operant conditioning, but this voluntary versus involuntary behavior is not always 

apparent.  In most cases the only way one can tell is by testing the target behavior.  

For example the behavior of approach.  On the surface it is hard to think of 

approach behavior as involuntary, the key to understanding this is in the fact that 

organisms do not seem to have to learn this behavior.  It seems to be as automatic 

as the huger example given at the start of this chapter (one does not have to learn to 

be hungry).  Consider the (54) study, in which chicks were trained to expect food 

from a specific food cup.  He then constructed an arrangement where if the chicks 

approached the food cup, the food cup retracted at twice the chicks approach 

speed.  If chicks ran away from the food cup, the food cup approached them at 

twice their speed.  Thus, the chicks had to learn to run away from the food cup to 

get the reward.  This is an abnormal behavior because most organisms seem to 

inherently approach rewards.  So if the chicks could learn to run away from the 

food tray, this would mean the chicks are sensitive to the consequences of the 

contingency, which would suggest that this behavior is under operant control.  

However, if chicks continue to approach the food cup despite the consequence of 

the contingency, it suggest that this behavior is under Pavlovian control.  In this 

case the chicks have just learned an association between the food cup and rewards, 
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but not how their behavior affects the outcome (consequences).  This is exactly 

what (54) found, chicks continued to chase the food away.   

This result was not surprising, approach behavior has long been considered 

to be a “investigatory reflex” (32, 43), but it was important to show what Pavlovian 

responding looked like without the operant aspect.  Just as Pavlovian associations 

affect operant contingencies (PIT), the consequences (in this case food from tray) 

can affect Pavlovian behavior.  This is easy to imagine, the more an organism 

approaches the food tray and gets food, the more times this approach behavior is 

reinforced.  One way to investigate this is to use omission schedules, in omission 

schedules the CS is followed by the US except when the organism produces the 

CR.  So in our example the US of food always follows the CS except when the 

animal produces the CR of approaching the food tray during the CS.  This ensures 

that the CR is not being reinforced.  These studies have revealed that approach 

behavior is almost entirely Pavlovian and based on the reinforcement rate of the 

CS-US relationship (55, 56).    

1.3 Dopamine 

Now that we have some behavioral context, we are better equipped to review 

the RL literature.  As we stated earlier, when it was discovered that dopamine is 

sometimes correlated with RPEs, this completely monopolized what the field 
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believed dopamine’s function to be.  This is the case despite two important facts.  

First, different types of tasks seem to engage the dopamine system in different 

ways.  Specifically, many studies have found that dopamine is not always 

correlated with the learning signal described above, but instead correlated with 

other features of the task (i.e. the task matters).  For example, dopamine has been 

found to encode action values, without changes to reward value (57).  In another 

study dopamine was found to encode the identity of the reward in a prediction 

error fashion (58).  And yet another study found that RPEs did not track learning -- 

RPEs instead tracked when actions should be taken (59).  This is an important 

point, because it is not the stance of this thesis that dopamine does not (at the very 

least) encode RPEs, when learning is necessary.  The question really becomes, 

what is this information used for?  Do RPEs provide the learning signal, or is this 

information used to determine where and how much effort an animal should put 

forth in a particular environment?  Or both? 

Before the discovery that dopamine is sometimes correlated with RPEs, 

dopamine was thought to be important for motivation, specifically this aspect of 

motivation referred to as vigor.  Vigor is defined as the propensity to work harder, 

longer, and faster.  Specifically, the vigor theory suggests that perceived 

opportunity cost determines how and how much effort should be distributed based 

on a cost/benefit analysis of the environment (60-63).  This is a compelling theory 
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for dopamine’s function because it provides a unifying function for dopamine that 

explains much of the seemingly contradictory literature that is produced under the 

scope of the RPE theory.  For example in T-maze studies, dopamine signals have 

been found to ramp up as the animal gets closer to completing the maze, and thus 

the reward (64).  This result provides problems for the RPE theory, but fits well for 

the opportunity cost/vigor theory.  From an opportunity cost point of view as the 

rat gets closer to completing the maze, it becomes more valuable for the rat to 

complete the maze and receive its reward.   

The idea of vigor is more closely linked to motivation than learning.  This 

distinction should seem familiar from the section on learning, in which learning is 

linked to acquisition, while motivation is linked to performance.  The difference 

between motivation and learning is not always apparent, because both motivation 

and learning have value signals.  However, these forms of value differ.  There are 

many factors that affect reinforcement value (65).  Most often these factors are 

thought to affect an animal’s motivation and strength of engagement in tasks.  

Factors, such as level of deprivation, amount of effort required to receive 

reinforcement, magnitude of reinforcement, richness of the reward environment, 

and schedule of reinforcement (to name a few).  Consider how much work a poor 

person might do for 10 dollars, in contrast to that same person if they were rich.  

While, the latter is more fixed (10 dollars is 10 dollars) and concerned with simply 
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linking a stimulus or behavior to a particular consequence.  Admittedly, the former 

can affect the latter to a point (think about how paying attention and how the 

amount of effort put forth can affect the amount of rewards one receives), thus the 

question becomes; using the literature can we divorce these two features? 

This is a unique problem for operant conditioning, in particular operant 

learning paradigms, because the variable (reinforcement) that is thought to 

influence responding, depends on responding.  Since in these paradigms 

reinforcement is contingent on response, the reinforcement rate is dependent on the 

response rate.  There are ways to disentangle this reciprocal relationship, especially 

when designing the experiment, but they are seldom done in the RL literature.  

There are hints in the literature, but the evidence comes from a range of different 

experimental approaches, so we have to establish operational definitions to make 

proper conclusions.  The RPE theory of dopamine implicitly implies that 

increasing/decreasing dopamine should increase/decrease the RPE signal and result 

in faster/slower learning rates.  This theory predicts that manipulations to 

dopamine should affect the acquisition rate of learning, but not the maintenance 

phase of learning.  In essence this theory suggests that increased dopamine should 

make one learn faster.  This is a different statement than saying increased 

dopamine makes one more motivated to learn.  As we stated earlier, separating 

these two phases is not trivial, because motivational variables affect both phases.   



 

 

26 
 

 

1.3.1 Dopamine & effort  

One way to divorce motivational value from a learning signal is to remove 

learning from the task.  The studies of the effects of dopamine on effort fulfill this 

requirement.  The research on effort is usually conducted using two types of tasks.  

The first, measures performance on a progressive fixed ratio lever pressing task.  In 

these tasks the number of lever presses required to receive a reward is increased 

over time.  Consistently studies have found that dopamine depletion from the 

nucleus accumbens leads to deficits on higher fixed ratio requirements (66-69).  

There are two important facts about these studies.  First, there were no deficits on 

an FR1 schedule, but as the schedules increased (FR4, FR16, FR64), so did the 

deficits.  Second, these studies showed that the dopamine depletion did not affect 

primary food reinforcement.  For free or low effort cost, the animals with 

dopamine depletion would consume as much as their control counterparts.  Taken 

together these results suggest that food was still reinforcing to these animals, just 

not as reinforcing at the higher work requirements.   

 The second way research on effort is typically done is with the T-maze task.  

In T-maze tasks animals are given a choice between a small reward in one arm and 

a large reward in the other arm.  The arm with the large reward has a barrier, the 

reward can only be obtained by climbing the barrier (a measure of effort).  Both 
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lesions to the nucleus accumbens and the administration of haloperidol (antagonist 

of dopamine receptors) consistently lead to rats choosing the low effort/low reward 

arm more often than their control counterparts (70-72).  Similar to T-maze tasks, 

delayed discounting tasks, in which animals are offered the choice between a small 

immediate reward or a larger delayed reward (where it is assumed that waiting 

longer for a reward is more effortful), lead to similar results.  Animals given 

haloperidol or who have received lesions to the accumbens, choose the small 

immediate reward more often than their control counterparts (72-74).        

 There is also evidence that microinjections of d-amphetamine into the 

nucleus accumbens produces increased lever responding (75).  In this study rats 

were trained to associate a light (conditioned reinforcer) with water.  After the 

initial training water was no longer presented with the light.  Rats were then 

presented with two novel levers, one of which produced the light.  Rats that 

received microinjections of d-amphetamine into the nucleus accumbens were 

found to have selective, dose dependent, increases in responding to the lever that 

produced the light.  In similar studies, d-amphetamine injections into the nucleus 

accumbens has also been found to enhance sexual arousal in male rats (76).   

In another series of studies where rats were trained to lever press for food 

pellets and sucrose, it was found that rats with excitotoxic lesions to the nucleus 

accumbens did display impairment in lever press performance when compared to 
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sham-controls.  However, these deficits were not due to lesion animals having 

problems learning the action-outcome contingency, but instead due to the lesioned 

rats not being as motivated as the sham-controls, and this decrease in motivation is 

what lead to the lever pressing deficits (12, 13).   

Furthermore, injections of d-amphetamine into nucleus accumbens has been 

shown to invigorate a range of behaviors (77).  The term invigorate is important, 

because no matter the behavior or task, animals perform the behaviors with more 

vigor.  Specifically, animals perform these behaviors faster, this point, along with 

the data on effort, has led some to believe that dopamine provides general 

energizing/motivational effects.  Some have described this effect as a 

gain/incentive amplification of learned responses (78, 79).  This would mean the 

effects we see in regard to dopamine, are of motivational value and not learning.  

And indeed there have been models proposed by (41, 77) on how this would work.  

However, there is no learning in these effort studies, so next I will review some of 

the learning literature before we consider any models.  

1.3.2 Dopamine & learning  

Most of the RL literature does not study learning.  Furthermore, it is not so 

clear that the small portion of studies that claim to study learning are studying 

learning.  We will discuss some of these caveats later in this section.  For now we 
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consider some of the learning research that the field believes support the RPE 

theory.   

 In a task where humans could earn or lose money, Pessiglione et al found 

that subject given L-dopa (which is a metabolic precursor of dopamine) earned 

more money in an instrumental conditioning two-armed bandit task, when 

compared to subjects given haloperidol (which is an antagonist of dopamine 

receptors) (19).  This drug effect only occurred in the appetitive condition.  The 

groups did not differ in the loss condition.  The authors combined their drug 

approach with functional imaging and found that the bold response in the VS was 

enhanced in subjects given L-dopa, when compared to subjects given haloperidol.  

Another study looked at the effects of sulpiride (D2 antagonist) on learning from 

gains and losses (80).  When compared to a placebo group, the authors found that 

the drug group had reduced performance when choosing rewarding options.  

Consistent with (19) this difference in performance between the groups was limited 

to the appetitive condition, the drug group showed no performance deficits when 

learning to avoid losses.  Importantly the RL model that the authors fit indicated 

that this reduced performance was not due to the learning rate (acquisition), but 

due to choice consistency (maintenance), which is also consistent with (19).   

 In a study with non-human primates (within monkey) comparing the effects 

of L-dopa, haloperidol, and saline on a two-armed bandit reversal learning task, it 
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was found that L-dopa and haloperidol led to increased performance, when 

compared to saline (81).  Importantly, this increase in performance due to both 

drugs was a result of the choice consistency/maintenance phase and not the 

learning/acquisition phase.  None the less the fact that haloperidol lead to increased 

performance is difficult to reconcile with our current framework.  In a more recent 

study some evidence was presented that helps explain the haloperidol effect found 

in the previous study.  In a 5-choice serial reaction time task (which is a well-

validated measure of attention and impulsivity), rats were given the choice 

between an easy or hard discrimination (82).  Successful hard trials were 

reinforced with double the reward (sugar pellets).  Consistent with work in 

humans, researchers found individual variations in the rat’s willingness to work.  

The term ‘workers’, refers to rats who naturally chose the hard trials significantly 

more than other rats, called ‘slackers’.  This study found that when workers were 

given d-amphetamine sulfate, they tended to slack off.  In contrast, when slackers 

were given amphetamine, they tended to work harder (83).  This is a very 

interesting finding, and we will explore this more below. 

1.3.3 Dopamine’s role?  

Taken together these results presented on effort and learning seem to clearly 

point to dopamine having a motivational function versus providing the learning 
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signal.  So then how has the RPE theory persisted despite this somewhat 

counterintuitive evidence?  In all the cases above (in effort and learning sections) 

dopamine was altered in some artificial way, and in the cases when dopamine was 

increased, it was the tonic (slow) level of dopamine that was increased.  The fact 

that the RPE theory states that phasic (fast) dopamine is what drives learning 

seems to provide enough of a difference (for some people in the field) to allow this 

theory to stay in place and remain unaltered.  Regardless of whether one finds this 

reasoning good enough, the research above presents major problems for RPE 

theories.   

First, the effort data explicitly shows that motivational value can be altered, 

without affecting learning.  This effect is further supported by the learning data.  

When RL models were fit to the learning data above it was found that the results 

on learning were due to the choice consistency parameter 𝛽𝛽, and not due to the 

learning rate 𝑝𝑝.  As we stated earlier, the choice consistency parameter is thought 

to be more of a function of motivation and not learning ability.  However, it is true, 

that it is unclear how well the models separate these two parameters, so this part of 

the evidence is not clear.  What is perhaps more problematic is that in these 

learning studies, 1) only the appetitive side was affected, 2) L-dopa did not help 

participants learn better, and 3) sulpiride did not make participants learn worse 

from aversive outcomes.  Thus, the second problem for RPE theories, is the 
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inconsistent/lack of effect on the aversive side of learning.  The third problem has 

to do with the ramping effects of dopamine seen during T-maze tasks.  This is not 

unique to T-maze tasks.  Similar results were found in a task where rats lever 

pressed for cocaine.  Nucleus accumbens dopamine rapidly ramps as the rats gets 

closer to pressing the lever for access to cocaine (84).   

1.3.4 Dopamine theory   

It is unclear if we should consider tonic and phasic dopamine as distinct 

processes that have different functions.  The different dynamics of dopamine are 

not well understood.  However, there are some theories that coincide with 

behavioral data that suggest a role for both.  One such theory was presented by 

(77).  The cornerstone of this theory starts with agreeing that tonic dopamine levels 

are a measure of an animal’s current motivational profile.  This idea is appealing 

for several reasons.  Perhaps the biggest reason is, this provides a mechanism for 

which an animal’s internal state can differentially select how it should behave.  For 

example, a food deprived animal will likely have higher levels of tonic dopamine 

in a food learning task, when compared to a sated counterpart.  Most animal 

researchers have experienced this in one form or another.  The animal performing a 

task at the beginning of a session seldom behaves the same at the end of the 

session.  This is also consistent with the effort and learning literature stated above.  



 

 

33 
 

However, this is only part of the equation for adaptive behavior.  Animals still 

needs to read their environment and decide based on their needs how much energy 

and effort to expend.  To do this, animals must have a way to track the reward rate 

of their current environment, this is where RPEs are important.  RPEs provide an 

estimate of reward rate for the current environment.  Holding tonic levels of 

dopamine constant, in rich reward environments, animals should expend more 

energy.  This is in contrast to lean reward environments, where animals should 

expend less energy.  Importantly, this phasic dopamine RPE signal affects tonic 

levels of dopamine, raising it in rich reward environments, and lowering it in lean 

reward environments (this sounds like the cost benefit function described above).  

And there is evidence that this is the signal dopamine is conveying.  Consider the 

study from (62).  In this study the authors measured dopamine release in the 

nucleus accumbens across multiple time scales using voltammetry.  They found 

that minute-by-minute dopamine co-varied with reward rate and vigor, and this 

change in dopamine immediately altered willingness to work.       

This framework is appealing because not only is there evidence supporting 

dopamine in this role -- this is how animals behave.  It is well known that response 

rates are higher in rich reward environments, when rewards have higher values and 

lower work or time requirements , and response rates are lower in lean reward 

environments where rewards have larger work, or time requirements (85).  It has 
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been found that the optimal solution in standard operant reinforcement schedules 

that have rich reward environments is to respond faster for all possible actions.  

That is to say that optimal latency of all actions is inversely proportional to the 

average reward rate (77).  The idea is that in rich reward environments, animals 

should act more quickly regardless of the chosen behavior because rich reward 

environments have higher opportunity cost.  Reward are readily available, so even 

if the animal chooses to do a behavior that is not rewarded, like grooming, they 

should do it quickly, so they can return to the behaviors that readily produce 

rewards.  

1.3.5 Optogenetic activation of VTA dopamine 

This provides a framework that helps explain several behavioral findings.  

Findings such as the speed accuracy trade off and explore/exploit trade off (to 

name a few), but most importantly it accounts for the “stronger” RPE evidence.  

The stronger evidence typically optogenetic activation and inactivation in two 

types of tasks.  The tasks are either conditioned place preference and conditioned 

place aversion, or Pavlovian approach tasks.  We will discuss the latter.  The (86) 

study is a result that is considered to be strong evidence for the RPE theory.  It is 

not clear why this is the case because the results they get are consistent with the 

vigor theory and exactly what the research on effort and PIT suggest.  In this 
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experiment they found that optogenetic activation of VTA dopamine neurons given 

with reward caused cue-elicited reward seeking behavior in an associative blocking 

and extinction paradigm (will just discuss the former).  In blocking paradigms the 

association between a cue and reward is prevented (blocked) if another cue 

presented at the same time already predicts the reward.  In the first training phase 

both groups of rats were trained to respond to an auditory cue (A) for sucrose.  In 

the next training phase, the compound training phase, both groups of rats were 

trained to a compound auditory (A) and visual cue (L), and the identical reward, 

sucrose was delivered.  For the blocking group the same auditory cue that was used 

in the first training phase (A) was used in the compound phase.  For the control 

group a different auditory cue (A’) was used in the compound phase.  The only 

difference between the groups was the predictability of sucrose.  Since the 

blocking group had the same auditory cue in the compound phase (previously 

trained), they should expect sucrose, while the control group should be surprised 

by sucrose.  The idea is that since the blocking group had already been trained with 

the auditory cue, they would not learn that the visual cue predicts reward.  The 

opposite is true for the control group, since their auditory cue was changed to a 

novel cue, they would learn that the visual cue predicts reward.  This is indeed 

what they find, conditioned responding to the visual cue was reduced in the 
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blocking group as compared with the control group.  This supports the RPE idea 

because learning should only occur when rewards are unpredicted.   

Following this in a new set of rats they had three groups and trained them all 

using the procedure described above for the blocking group.  One group received 

optogenetic activation of VTA dopamine neurons at the time of the reward 

delivery during compound training trials, and the other two groups were control 

groups.  The idea is that the group that received this activation should learn about 

the light because the extra stimulation from the optogenetic activation will drive an 

RPE.  And they found that this group responded more strongly to the visual cue on 

the first test trial when compared to both control groups (they approach the food 

cup more).  Two things to note about this experiment.  One, this task was not a 

traditional Pavlovian approach task because in this version the US delivery was 

contingent on the rats being in the reward port (without additional information and 

test it is unclear if and how this might affect behavior in this task).  Two, the effect 

they found on the first trial was dramatically reduced by the third trial. 

On the surface this effect seems to provide good evidence for the RPE 

theory, but let’s consider all the things we have discussed thus far and see if we can 

understand what is occurring here.  To do this we first have to consider another 

sensory conditioning paradigm (87).  In this study two separate pairs of cues are 

paired with one another without the delivery of reward.  So for group one, A + B, 
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and for group two, C + D.  After this preconditioning phase if B is paired with 

rewards and D paired with nothing, and then look at dopamine responses to A and 

C.  What you find is that there are higher dopamine responses to A compared to C, 

signifying that A does in fact have some value.  This effect that the authors found, 

is a kin to a well-known effect in the associative learning literature, this effect is 

known as retrospective revaluation (88, 89).  This effect describes a phenomenon 

that was first discovered in an overshadowing experiment (88).  Overshadowing 

refers to the finding that conditioned responding is reduced if the CS is reinforced 

in compound compared to if it were reinforced alone.  If A + L is trained as a 

compound stimulus and reinforced as such, conditioned responding to L 

(overshadowed cue in this case) is suppressed when compared to conditioned 

responding to A.  However, if A is presented alone without the US (extinction), 

responding to L increases.  The value of L is increased due the value of A being 

decreased.  This is important because since this was discovered it has provided 

problems for the RW model.  Recall that the TD model is an extension of this 

learning theory, thus it cannot explain this phenomenon.  In the (87) experiment A 

was never paired with rewards, thus dopamine is not able to go back in time to 

make this association with A and B.  This invalidates the assumption that a 

prediction error is needed for learning, which is the assumption that (86) and the 

RPE theory is based on.  The rationale for this in the RL literature has been that 
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this is a different type of learning -- this is the result of model-based RL, and not 

the trial and error leaning encompassed by model-free learning.  Importantly, 

dopamine is thought to be responsible for the latter and not the former.   

Let’s assume the effect presented in (87) is not convincing, because this 

experiment did not use blocking.  Let’s consider another study (90).  In this study 

authors merged the methods of the previous two papers.  They used the same 

sensory preconditioning procedure described above but added blocking and 

optogenetic activation of VTA dopamine neurons.  On the first day of training two 

groups of rats were conditioned to pair two novel cues, A and X (sensory 

preconditioning).  Following this initial pairing rats were trained to pair AC and 

AD with X (blocking component).  In addition to the pairing of these cues, rats 

were also conditioned on the same procedure to associate a compound stimulus EF 

with X (compound stimulus control conditioning group).  The idea is that C and D 

should be blocked because A already predicts X.  E was not presented without F, 

so F should not be blocked.  So far this procedure is similar to (86), only differing 

in two ways.  First, X has not been paired with primary reinforcement (US) yet.  

Second, when A was presented with C (AC) one group (ChR2) of rats received 

optogenetic activation of VTA dopamine neurons when X was presented following 

AC.  The second group (eYFP) of rats were the activation control group.  The 

authors found no differences in food cup approach behavior between the two 
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groups for any of the cues (AC, AD, EF, A, or X).  In fact, across all rats there was 

minimum approach behavior across all the cues. 

Following the blocking procedure and test phase, rats were separately 

conditioned to pair X with sucrose pellets.  Consistent with conditioning using 

primary reinforcement, after this procedure both groups of rats approach the food 

cup more in the presence of X.  Importantly, both groups responded at similar rates 

to X.  Next, the authors tested to see how rats would respond to the cues C, D, and 

F.  The authors found that both groups learned that F predicts X.  In addition, the 

authors found differences across the groups in approach behavior to C.  

Specifically ChR2 rats responded more to C when compared to eYFP rats.  In 

addition ChR2 rats responded more to C when compared to D.  So the activation of 

VTA dopamine during the preconditioning phase reversed the normally seen 

blocking effect that was present with D.  Interestingly, the “value” that C gains in 

ChR2 rats is related to the primary reinforcer (sucrose pellets) that was paired with 

X.  The authors tested this by using a devaluation procedure.  After devaluing the 

sucrose pellets by pairing it with lithium chloride injections, which makes the rats 

sick, the rats approach behavior to the food cup is reduced.  This is an important 

finding because along with the sensory preconditioning effect, which should not be 

able to happen if we subscribe to the RPE theory, it shows that animals are able to 



 

 

40 
 

do some sort of backpropagation linking C to the primary reinforcer that X would 

later come to predict.   

The results from (90) were replicated and extended in (91).  In this study the 

authors show that we should be careful about the assumptions we make in regards 

to the type of values the cues in the above study have.  Sticking with the cues from 

(90), X and C, even though it was found that C elicits approach behavior and is 

sensitive to the devaluation of the sucrose, the authors in the follow up study found 

that C does not have value (not cached value anyway).  In essence, the value that C 

and X have differ.  X (the cue that was paired with primary reinforcement) has this 

cached-value and act as a conditioned reinforcer, while C has just picked up this 

valueless association that is predicting a specific outcome.  One way to asses if a 

cue has predictive value is to see if animals will work to produce it.  The authors 

found that rats will lever press to gain access to X, but they will not lever press to 

gain access to C.  The authors also show that optogenetic activation VTA 

dopamine neurons facilitated cue learning without endowing cues with value.  The 

authors concluded artificial induction of dopamine transient seem to supports 

valueless associative learning, rather than cached-value learning.  This result 

provides additional support for the role of dopamine in attention and motivation 

and not learning value.   
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These four optogenetic studies taken together along with some of the other 

literature presented suggest a very different conclusion than the one drawn from 

(86), and thus the dopamine RPE theory of learning as a whole.  As we stated 

earlier, sensory preconditioning and retrospective revaluation provide problems for 

the RPE theory of learning.  In addition to this it appears that the RL literature is 

working off a false conclusion about what occurs in blocking experiments.  In 

blocking experiments, it is not the case that the blocked group does not respond to 

the blocked cue, the responding is just suppressed when compared to the 

unblocked cue.  Which suggests that the blocked group did in fact learn something.  

Furthermore, the optogenetic activation of dopamine does not just ‘unblock’. 

Responding is heightened when compared to unblocked controls.  There is a boost 

in responding, which speaks to something other than learning.  Which is consistent 

with modern views on blocking.  In blocking experiments, it has long been known 

that the second cue is not actually blocked, instead the suppression of responding is 

due to a group of phenomena call cue-interactions.  Whenever a compound cue is 

presented, the value of one cue depends on the value of the other cue, a phenomena 

called relative validity effect (3).  The hallmark experiment was done by (92) and 

showed that if a compound stimulus CD is followed by the US, the value is split 

between the cues.  If you present another compound stimulus DE, but the US does 

not follow this compound stimulus, responses to D is much more suppressed than 
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if both compounds were reinforced 50% of the time.  In essence in CD trials, D 

competes with the always reinforced C, which leads to D being less valued.  This 

also explains the retrospective revaluation phenomena.  Recall that the RW 

algorithm has no mechanism that can explain either of these findings.  

The Pearce-Hall (PH) algorithm was developed as an extension of the RW 

model that could account for changes in learning rates under different conditions 

due to changes in attention (93).  This model was developed to account from data 

coming from unblocking experiments.  The PH model has an extra parameter for 

the associability of the CS, this new parameter is modifiable with experience.  

Recall, that the RW model predicts that learning about B in an AB blocking 

experiment is prevented because A already predicts the US.  We have already 

suggested that B is not in fact blocked, but let’s consider one more example to 

solidify this point.  In the AB blocking experiment, what happens if one was to 

lower the magnitude of the US from conditioning trials with just A (higher 

magnitude) to conditioning trials with AB (lower magnitude).  For the blocking 

theory to hold, what the RW model suggest should happen in this case is that there 

should be a negative prediction error, which should lead to lower associative 

strength.  Instead what you find is that B gains strength.  The surprise in the 

different magnitude of the US lead animals to associate it with the other cue (B).  

This is what the associability parameter in the PH model accounts for, the model 
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assumes that individual prediction errors influence the CS associability, while the 

aggregate prediction error influence the degree of learning that is available to all 

present CSs (34).   

1.4 Studying learning systems 

1.4.1 Response rates  

Regardless of the theory or model, we should be hesitant about the 

assumptions we make about rates approach behavior and value.  As (90, 91) have 

shown one can get increased approach behavior, without having changes in cue 

value, measure by if an animal will work (lever press) to produce a cue.  This 

finding illustrates two points.  One, the topography of the behavior matters.  In 

general approach behavior (especially in early trials) is thought to be a Pavlovian 

behavior, while lever pressing is thought to be an operant behavior.  Two, this 

suggest we should have multiple measurements of value before any substantial 

conclusions can be drawn.       

Behavior momentum theory suggest that response rates is not a good 

measure of associative strength (94, 95), this theory suggest that resistance to 

change is a better measure of associative strength.  This theory has been supported 

by work that has shown that increases in associative strength on early trials do not 

translate into performance (33). Furthermore, examination of individual learning 
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curves often have a more abrupt onset of conditioned responding (34).  (96) Have 

shown that these abrupt changes in acquisition are often missed when data is 

averaged across subjects.  Consider the results from (56), which used the omission 

procedure described above to show conditioned magazine approach behavior for 

the US of food reinforced at different rates (100%, 50%, 25%, 12.5%, pre-CS).  In 

this procedure each session contained 64 trials, 16 trials of each of the four CSs 

were presented randomly and approach behavior was recorded.  Despite how often 

the CS was reinforced, before steady state behavior was achieved, responding was 

similarly high in early sessions.  This is potentially the result of the threshold 

requirement (perhaps this is the threshold to activate preparatory system) that lead 

to the more abrupt onset of conditioned responding mentioned above.  I point this 

out because often in the optogenetic studies, there is not very much behavior, they 

only track responding for a couple of trials, and there has been constant debate as 

to what these early trials signify (33, 34). 

    
 

Furthermore it has been shown that the behavioral requirements of the 

organism under study is crucial for any assessment of learning.  Much like the 

previous distinction between approach behavior and lever pressing behavior, it is 

important to know if the consequences are Pavlovian (does not matter what the 

organism does, consequences are delivered regardless), or operant (the organism 
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must perform a particular action to receive consequences).  Consider the results 

from (97), where they show different rates of approach response behavior for a 

stimulus-contingent group compared to a stimulus-response-contingent group.  In 

this study for the stimulus-contingent group, rewards were delivered at the end of 

CS regardless of behavior (true Pavlovian).  For the stimulus-response-contingent 

group, rewards were only delivered if the rats made at least one approach response 

during the CS (operant).  Following this testing procedure (first 36 sessions) both 

groups were tested on an omission schedule (last 24 sessions), in which rewards 

were only delivered if no approach response was made during the CS.  Approach 

behavior was recorded for four separate time bins: (a) the inter-trial interval (ITI), 

(b) the 20 sec pre-CS period, (c) the 8 sec CS period, and (d) the 20 sec post-CS 

period.  In general responding was higher for the stimulus-response-contingent 

group across all time bins except the post-CS period.  For our purposes the time 

bin to pay attention to is (c) the 8 sec CS period, the responding difference was the 

highest during this time.  This was driven by heightened responses during the first 

36 session and slower extinction in the last 24 sessions for the stimulus-response-

contingent group.  We will come back to this point below, but for now it is clear 

that the behavior requirement contingency affects responding behavior.  The 

difference between the groups in the last 24 sessions (omission/extinction) is what 

behavior momentum theory suggest is a better measure of associative strength 
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(resistance to change).  Notice that the stimulus-contingent group responds at a 

steady rate across the sessions, until the omission sessions, in which responding 

stops.  This is in contrast to the stimulus-response-contingent group whose 

behavior never reached the low levels of the stimulus-contingent group.              

 

1.4.2 Lesions & learning  

The number of different methods used to study RL, even without accounting 

for task differences, makes it difficult to make any clear conclusions.  A better 

method is to perhaps break the literature down in a way, where at least conclusions 

about certain methods can be drawn.  This thesis is primarily concerned with 

understanding what lesions can tell us about the function and role the ventral 

striatum (VS) and amygdala in RL.  In this section we will review some of the 

literature on learning and see if the proposed model can help explain some of the 

seemingly conflicting results.  

In one study three groups of non-human primates were compared on a two-

armed bandit visual discrimination reversal learning task.  One group received 

excitotoxic VS lesions, another group received excitotoxic amygdala lesions, and 

the final group consisted of un-operated controls.  These groups were compared 

across 4 reward schedules (100%/0%, 80%/20%, 70%/30%, 60%/40%), it was 

found that monkeys with VS lesions only had learning deficits in the stochastic 
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schedules (10).  It was also found that monkeys with VS lesions made choices 

much faster (reaction time) than controls, and monkeys with VS lesions were 

displaying a speed-accuracy trade off, which accounted for errors in deterministic 

learning.  In this same study, it was found that monkey with amygdala lesions had 

learning deficits across all schedules.  This led the authors to conclude that the VS 

is important for stochastic RL, while the amygdala is important for both 

deterministic and stochastic RL.   

In a follow up study monkeys with VS (excitotoxic) lesions (importantly 

these were the same VS monkeys from above) were compared to un-operated 

controls on a two-armed bandit reversal learning task (11).  In this task monkeys 

were compared across 3 reward schedules (80%/20%, 70%/30%, 60%/40%), in 

randomly interleaved blocks where for one block type (object learning) the 

stimulus (regardless of location) was the rewarded feature, and another block type 

(action learning) in which the location (regardless of the stimulus) was the 

rewarded feature, it was found that monkeys with VS lesions only had deficits in 

the object learning blocks.  This led the authors to conclude that the VS is only 

important for stimulus based RL.  Importantly, in this second study the ability to 

learn to select the more rewarding visual stimulus was almost non-existent.  This is 

interesting because in the first study the VS monkeys discriminated visual stimuli 

well, just not as well as control monkeys on stochastic schedules.  In the context of 
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motivation (what one is motivated to do) versus ability (what one can do), this 

finding needs to be considered more carefully.  But let’s explore more results 

before we jump to any conclusions.   

In another study monkeys with lesions to the VS were compared to un-

operated controls on a task in which monkeys had to learn (deterministic) stimulus 

reward outcomes for 60 pairs of objects.  Monkey only received one trial per day 

with each pair of objects.  This study found that monkeys with VS (excitotoxic) 

lesions had no learning deficits when compared to un-operated controls (14).  

Similar results were found for monkeys with amygdala lesions.  In a task where 

monkeys had to learn which cue predicted reward (food) in 40 novel visual cue 

pairs, it was found that monkeys with amygdala excitotoxic lesions had no learning 

deficits when compared to un-operated controls (98).  One thing to note about 

these tasks is that the learning environment was deterministic (100, 0) -- one 

object/one cue was always rewarded and the other was never rewarded.  The other 

difference to note is that in the first study animals only had one trial with each cue 

pair per a day, while in the second study, animals were given at least 4 trials to 

learn the correct cue.   

This is a small subset of experiments, but this was done intentionally 

because it minimizes some external variables that likely affect results.  These 

variables include who did the lesions, the method of the lesion, the monkeys used 
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(NIH has their own colony), and the staff who trained the monkeys (to name a 

few).  Most of these variables are not typically worth trying to track, but when the 

literature is inconsistent it is advantageous to minimize as many variables as 

possible.  The studies mentioned above were all done by the same two groups, 

albeit over different time frames and with different staff who trained the monkeys.  

It still presents a unique situation.  Finding inconsistent results in this type of 

analysis speaks directly to the point made at the beginning of this introduction -- 

failing to understand what the task environments predicts, leads to false or 

overstated conclusions.  In addition, this set of results is descriptive of the overall 

literature involving these two structures. 

If a structure is responsible for a function, removal of that structure should 

eliminate or diminish an animal’s ability to perform that function.  As we said at 

the onset of this chapter, this is not exactly true, because other structures could 

pick up the slack when one structure loses a function.  However, to find effects in 

some tasks, and not others, points to a more direct answer.  For example the same 

VS animals were used in (10) and (11) but the deficits seen in the ‘stochastic’ 

stimulus based RL with the same reward schedules are larger in the latter study 

compared to the former.  So, can monkeys with VS lesions learn ‘stochastic’ 

stimulus based RL, or not?  Recall the concept of behavior contrast discussed 

above, this seems like another logical possibility.  The learning results stated above 
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for the amygdala are hard to reconcile with one another and the standard RPE 

theory.  However, these results make complete sense if dopamine signals 

motivation.  We know from the behavior field that several things affect an animal’s 

motivation and thus their behavior.  What we established with the dopamine and 

effort section of this chapter, is that dopamine affects motivation and thus effort.  

These structures may play highly specific roles in RL but because of task design. It 

is always hard to detect.   

Let’s use the VS data mentioned above as an example, the conclusion from 

the data mentioned above is that the VS is important for stochastic but not 

deterministic learning (the authors of these papers concluded this).  The problem 

with this conclusion is the experiments run did not actually test this.  The RL 

literature as a whole has a curious way of testing stochastic learning, and it is 

unclear if the field is aware of this fact.  All of the learning studies mentioned in 

this chapter (seems to be indicative of the literature as a whole) use a similar the 

type of reward structure.  They all use stochastic concurrent reward schedules, 

schedules like (80/20,70/30, & 60/40).  This is different than a purely stochastic 

schedule, which would look like (80/0, 70/0, & 60/0).  This is even true in the two 

human drug studies mentioned above (19, 80).  The former study used an 80/20 

schedule, while the latter used a 75/25 schedule.  However, there are better reasons 

to be skeptical about the conclusions these types of schedules produce.  These two 
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types of reinforcement schedules lead to different types of behavior, and thus the 

conclusions that can be drawn from each are different.  Deficits in the latter 

schedules are more indicative of learning or ability when compared to the former 

schedules.  While deficits in the former schedules are more indicative of 

motivation, when compared to the latter schedules.  While, both effects are 

informative and important, it is essential to know what is driving these effects to 

make proper conclusions.  This is something behaviorist have long been aware of, 

but it something that gets lost in the RL optimality theory.  Let’s explore why this 

might be the case.   

Often time conclusions drawn from RL optimality theory assumes that 

animals are trying to exclusively pick the best option in these concurrent reward 

schedules.  This is interesting because behavioral choice theory states and shows 

this is not how animals behave.  There is considerable evidence for theories like 

the matching law (31, 99, 100), which simply states that in concurrent reward 

environments, animals respond to cues approximately at the rates that they are 

reinforced.  Ironically one of the environmental predictors for undermatching, in 

which animals respond to the less rewarded cue more than they should, is a rich 

reward environment (99).  The conclusions drawn from studies that show 

undermatching are usually indicative of an organism simply being less sensitive to 

the reward environment.  Most tasks looking at the matching law are choice and 
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not learning tasks, but even in learning tasks, at some point it becomes a choice 

task.  We have already established that the optimal solution in standard operant 

reinforcement schedules that have rich reward environments is to respond faster for 

all possible actions.  This RL optimality theory assumes that as the probability of 

reward for the two options get closer to one another it makes learning more 

difficult, so a 60/40 reward schedules is much harder to learn than an 80/20 

schedule.  Although this is one theory, it is unlikely when actual behavioral data is 

considered.  The flipside of this idea theory is that as the reward probabilities get 

closer, the task gets easier, because no matter what I do/choose, my reward rate 

will be pretty constant (ie the reward probability being closer together, my 

incentive value goes down and signals that I do not need to have to try as hard).  In 

essence as the reward schedules get closer to one another, all that has been done is 

to make responding in general more valuable by making rewards easier to get (less 

effort is required to get rewards).  Ironically, a rich reward environment is often 

defined as an environment where it does not matter what the animal does -- 

rewards are everywhere and the effort cost for them is low.  This view is consistent 

with the cost benefit analysis for dopamine described above.  If this is the case, the 

learning literature stated above is consistent with the literature on effort and the 

vigor theory stated above.  This is how the very same animals can sometimes show 
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remarkably different levels of deficits across tasks.  The task change is likely 

manipulating motivation and not ability. 

1.4.3 Two-Process learning theories  

In one form or another it has long been thought that conditioning (sometimes 

referred to as learning) is under the control of two major systems.  Behaviorist 

have called it The Two-process learning theory (101).  Psychologist have referred 

to these two systems as a fast and slow system (102).  Neuroscientist have referred 

to these two systems as an actor and critic (103).  On the surface these theories 

seem quite different, but overall they are actually quite similar.  In the following 

section we will focus on The Two-process learning theory, but in the correct lens 

the things discussed below apply to these other theories.  The basic principle 

behind these two learning systems is that a discriminative stimulus acquires both 

incentive-motivational and discriminative-response properties.            

In the conditioning section above we discussed how Pavlovian associations 

can affect operant behavior in things like PIT.  However, this connection goes 

much deeper.  Recall that Pavlovian conditioning is concerned with making 

associations for two classes of CRs, preparatory and consummatory.  This means 

that in any operant procedure it would be advantageous to have these Pavlovian 

influences.  This is exactly what the two-process learning theory suggest.  This 
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theory suggest that an organism’s preference for goals and objects is a combination 

of incentive and the reinforcement value of the discriminative-responses (36, 92, 

104).  Incentive value is thought to come from Pavlovian associations, while the 

reinforcement value of discriminative-responses comes from the interaction 

(actions required) of the operant contingency.  We started this chapter by stating 

that an organism does not need to learn to get hungry (incentive value), but an 

organism does need to learn what behaviors best lead to acquiring food (the best 

reinforcement value).  The response-dependent reinforcement value is determined 

by the factors listed above.  Factors like effort, magnitude of reinforcement, 

richness of the reward, delay to reinforcement, and the resulting incentive 

motivation (36, 65).  As with Pavlovian conditioning the incentive value is also 

affected by many of these factors.  This value is just comprised of more factors 

(internal ones), and as I will show below stored as a separate form of value.  This 

form of value compliments the response-dependent reinforcement value and is 

used to energize different classes of behaviors in particular environments (36, 60).   

It has long been thought that responding in Pavlovian conditioning is a 

product of motivational state, sometimes called incentive value (105).  Consider 

the (106) study in which Pavlovian approach behavior was shown to be directly 

affected by the basic motivational state of rats.  They exposed food deprived rats to 

a CS that predicted peanut oil (fat US), and a CS that predicted sucrose 
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(carbohydrate US).  Following this one group of rats were placed in a lipoprivic 

state (fat deprived), and another group of rats were placed in a glucoprivic state 

(sugar deprived).  Rats in the glucoprivic state responded more to the CS that 

predicted sucrose compared to the CS that predicted peanut oil, and the opposite 

trend was found for rats in the lipoprivic state.  Importantly, this experiments 

showed a link between the internal needs (these internal needs are likely not 

consciously known) of the organism and their current environment.  This is 

important because these incentive values differ from the discriminative-response 

values.  This can been seen is devaluation experiments.  When a US is separately 

devalued in Pavlovian tasks, animals reject the US (they do not value it anymore) 

and their reaction changes to the CS (51, 107).  This turns out not to be the case for 

discriminative-response value.  In operant task, independently devaluing the US 

does not change the value of the US until the animal receives the devalued US as a 

part of the response contingency (51, 108).  That is to say, animals will still work 

for the US until their actions lead to the devalued US.  This provides strong 

evidence that these forms of value are stored differently and there is evidence for 

the forms of value being stored in distinct circuitry (51).  Furthermore these forms 

of value (at least in early conditioning) are responsible for different classes of 

behavior, they follow the distinction between Pavlovian and operant behaviors 

discussed above (36, 51). 
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The important concept about this incentive system is it follows the rules of 

Pavlovian conditioning, thus it is thought not to be consciously controlled and 

often tied to emotional motivation (36, 51, 101).  This incentive value can make 

behavior more probable by internal chemical changes.  Recall the sex example 

given at the beginning of this chapter.  I discussed research that shows that even 

though males are consciously unaware of when women around them are ovulating 

their testosterone levels are raised, this chemical change makes a certain operant 

class of behavior more probable (28).  The operant class in this case is made up of 

all the behaviors in the organism’s repertoire that has led to sex, with the strength 

(reinforcement value) of these behaviors being largely determined by the 

organism’s history of reinforcement (28, 36).  In this example the increase in 

testosterone is the incentive value that make behaviors that have previously lead to 

sex more probable. 

  This incentive (Pavlovian) value system associates appetitive and aversive 

events with environments, the smells, the visual stimuli, and time of day.  It is this 

system that is more susceptible to being hijacked and can drive desirable and 

undesirable behavior.  In fact this is one of the ways drug addiction, drug relapse 

(51), and drug overdoses are thought to happen (36).  It is a well-known strategy 

for recovering drug addicts to stay away from environments where they have 

previously used drugs.  The thought is that the sight and smell of the environment 
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has been associated with drug use (It is has become a CS), this association elicits 

chemical CRs with previous drug use (109).  In the cause of drug use, one way this 

works is through a negative reinforcement contingency, the CR (internal 

preparation to deal with the drug) is aversive without drug use, thus the addict 

relapses to escape this aversive feeling.  The CR in this case is thought to be 

protective, this preparatory behavior has been linked to drug tolerance (110).  In 

fact, recall that Pavlovian conditioning is mainly concerned with the internal 

physiology (maintaining homeostasis) of an organism (28).  Furthermore, drug 

relapse is associated with heightened drug-cue response in the same brain regions 

most often associated with RL (111).  Feeding behavior is another example of how 

this incentive value system can promote a particular class of behaviors.  Much like 

the drug example, whenever an organism eats (the US), there are internal chemical 

responses, and these internal responses are associated with the external 

environment to the point where the environment becomes a CS for the CR of 

eating.  Indeed there is a considerable amount of research showing that a major 

part of learned overeating is due to Pavlovian conditioning (112).  Consider how 

the smell of one’s favorite baked good might increase the probability of eating, 

even though that before this smell one was not hungry or even thinking of this 

baked good.  
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1.4.4 Linking dopamine & learning  

Now that we have linked this incentive value to Pavlovian conditioning, 

recall that this system is thought to have two major systems, the appetitive and 

aversive system.  When the literature is examined in this light It becomes clear that 

it this appetitive incentive value that dopamine codes.  Importantly, this Pavlovian 

incentive value is what I have referred to as motivation throughout this chapter.  

This incentive value is motivational because its value is based off elements outside 

of the learning contingency.  At the beginning of this chapter I stated one of the 

problems with the current dopamine RPE theory is, “the type of learning the VS is 

thought to underlie more closely resembles operant conditioning, and much of the 

evidence cited above comes from appetite Pavlovian conditioning”.  

Understanding this Two-process learning theory makes it is easy to see how this 

happened, despite the considerable evidence showing that the striatum is not 

needed to learn operant contingencies.  The discriminative-response and incentive-

motivational properties co-vary in most experiments, making the contributions of 

each process difficult to appreciate (36).  It’s only when they are teased apart does 

this role for dopamine become clear.  Dopamine serving this function unties and 

explains the conflicting RL literature.  Let consider some of the results we have 

discussed above in the light of this theory and see if the role I suggested for 

dopamine above holds.    
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We have shown that optogenetic activation VTA dopamine neurons can 

increase approach behavior to cues (90) and facilitate configural cue learning 

without endowing cues with value (91).  This result of association versus value on 

its own explains results that up until now, the dopamine RPE learning theory could 

not answer.  In a task where rats were conditioned to expect one flavor of milk, 

dopamine recording revealed prediction errors to an unexpected different flavor of 

milk (113).  Importantly, rats had no preferences for either flavor of milk, so the 

prediction error was to the identity of the milk.  Recall in the dopamine section I 

stated that it is not my position that dopamine does not encode RPEs, the question 

becomes, what is this information used for?  Making association is most certainly a 

form of learning, and it would require RPEs to better predict associations.  This 

association theory also explains why dopamine has been found to respond to novel 

cues.  The problem is this associative learning seems to be for estimates for the 

incentive-motivational value system, thus not the form of learning dopamine is 

said to underlie.  This is the type of value I discussed in the dopamine section, the 

type of value associated with the vigor theory.  In which case this type of 

motivational value is more important for the level of effort an organism will want 

to put forth in its current environment.        

The view of dopamine explains the effort literature reviewed above, the fact 

that lesions to nucleus accumbens negatively affect effort (dopamine depletion = 
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less motivation = less effort).  This view of dopamine explains the decrease in 

performance effects that haloperidol had in learning tasks.  We also showed that 

this haloperidol effect extended toward effort tasks, animals given haloperidol 

chose the low effort/low reward arm more often than their control counterparts.  

This view of dopamine explains the increase performance effects that L-dopa had 

in learning tasks.  This effect was consisted with the increased effort results from 

rats who received microinjections of d-amphetamine into the nucleus accumbens 

(increased dopamine = more motivation = more effort).   

This theory also provides a frame work to understand the lesion results 

discussed above. I started this introduction by stating that task design is likely the 

reason for the conflicting results in the RL literature.  This theory makes it easy to 

understand how this could be the case.  The research on PIT suggests that this 

incentive value works more in a boost (more effort) fashion and can increase 

performance in operant tasks.  Consistent with what I put forth in this section, I 

showed that this effect of PIT is at least partially mediated by the nucleus 

accumbens.  This role of dopamine also provides a possible explanation for the 

conflicting results in that section and provides a way to investigate.    
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1.5 Proposal  

1.5.1 Studying learning & our approach   

A note of contention, most of the RL literature is composed of rich reward 

environments.  This is not done for some systematic reason.  It is instead done for a 

more practical reason.  RL experimentalists realized what behaviorists have known 

-- rich reward environments keep animals motivated, and motivated animals do 

more trials.  This approach has biased our understanding of RL.  This bias is 

exacerbated in neurophysiology recording data, where more trials are always 

desired.  A better approach to studying learning is to follow in the footsteps of 

Skinner (29).  To understand and separate the environmental effects of learning 

tasks, we must run a series of tasks, where each task varies by just one parameter.  

This is how we can separate the motivational effects of the environment from 

learning ability, thus, make strong statements about learning. 

This is the route this thesis will take.  We will compare three groups of 

monkeys across of series of tasks, to make stronger statements about the 

contributions that the VS and amygdala make to RL.  The three groups consist of 

monkeys with VS lesions, monkeys with amygdala lesions, and un-operated 

controls.  The specific goal of this project is to use a series of tasks to evaluate and 

gain a better understanding of the role that these structures (VS & amygdala) play 
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in RL.  As can be seen from above there is a lot of literature examining and 

identifying neural systems underlying RL.  However, this literature is not wholly 

consistent and a number of different neural systems have been identified as being 

crucial for some component of RL.          

This diversity of information can result from one of three reasons: 

1. Difference in learning environments (tasks).  Specifically, most of the 

literature supporting the current view of RL has used strictly appetitive 

environments.  Behaviorists have shown that in many ways environment is 

one of, if not the most important attribute when it comes to predicting 

behavior.  Consider a learning environment where the worst thing that can 

happen is the animal does not get rewarded, in contrast to an environment 

where if an animal does not pick the rewarded option, they lose a reward -- it 

is not difficult to see that the value of the reward in the latter environment is 

more than it is in the former.  Finding a learning deficit in the former and not 

the latter leads to different conclusions than if data just exists for the former.  

These environments taken together change the conclusion from a learning 

deficit to a motivation deficit. 

2. Definitions!  Learning systems and their anatomical substrates can be 

dissociated in various ways.  For example, learning is often studied using 

Pavlovian or instrumental paradigms (114).  Formation of Pavlovian CS-US 
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associations is mediated, to some extent, by the amygdala (51, 79).  

Formation of instrumental associations, on the other hand, is thought to be 

mediated by frontal-striatal systems (115).  Although there is considerable 

interaction between these behavioral processes in tasks like Pavlovian 

Instrumental Transfer (116) and conditioned reinforcement (117) it is 

important to realize that behaviorists separated these two types of 

conditioning because they result in different conditioning (learning) profiles 

which in turn leads to different behaviors.  The fact that these two forms of 

conditioning can be separated behaviorally likely means these are separate 

processes that are likely mediated by different brain structures.    

3. A number of the results that led to the strong belief of the current theory of 

RL come from physiology experiments.  This is important to note because in 

these complex learning tasks it is possible that one could be mistaking a 

factor that correlates with value but is not in fact value (for example 

motivation).  This is not a new idea and there has been some work explicitly 

examining this (118).  In addition, just because one finds a correlate from 

some process does not mean that correlate is necessarily responsible for the 

identified process.    
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However, despite the diversity/conflicting literature, two areas that are often 

associated with being important for RL are the VS and the amygdala.  Testing 

monkeys with lesions to these areas on a series of tasks can shed more light on the 

exact role each of these areas contributes to RL.  Using monkeys with lesions helps 

control for point 3 listed above because if one of the identified areas is responsible 

for some component of RL, removing said area should result in learning deficits.  

It is possible that once one of these areas is lesioned a different area can take over 

its role, however if we find deficits in one task and not the other it is more likely 

that the area is contributing to one aspect of RL (likely the difference between the 

two tasks).  Testing the same monkeys on a series of tasks that emphasize different 

components of RL helps control for point 1 and point 2.  In addition, testing these 

monkeys on a number of tasks can help narrow down the role each of these areas 

contributes to RL.   
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Chapter 2: Effects Amygdala Lesions on Object-Based 
versus Action-Based Learning in Macaques 
 

 

2.1 Introduction  

Learning to execute actions or select objects that lead to rewards is critical 

for survival.  While formal models of reinforcement learning (RL) do not 

distinguish between these (4) there is considerable evidence to support the view 

that separate neural circuits mediate learning about the value of actions versus 

objects. Starting in the visual system, there is a distinction between spatial vision 

and object vision, that has been referred to as the dorsal (spatial) and ventral 

(object) visual streams hypothesis (119).  A related view suggests that the 

distinction between the two systems involves processing information for action 

versus perception (120). The anatomical separation between these systems 

continues into prefrontal cortex (121, 122) and also through the frontal-basal 

ganglia-thalamo-cortical loops (123, 124).  There is also interaction between these 

circuits (125), especially when object information is required to select spatially 

directed actions (126).  But to some extent these processing streams are segregated.  

The anatomy, therefore, suggests that learning to associate rewards with actions 
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may rely more on dorsal circuitry, and learning to associate rewards with objects 

may rely more on ventral circuitry (127). 

RL has often been linked to the ventral striatum (VS).  This suggests that the 

VS underlies both learning to associate rewards with actions and stimuli.  There is 

considerable evidence for the role of the VS in object based RL (7, 10), 

particularly when it comes to learning to choose between two positive outcomes 

that vary in magnitude (128).  There has been less evidence for the role of the VS 

in action selection.  When action and object learning have been studied in the same 

experiment, monkeys with lesions to the VS had deficits in object but not action 

based RL (11).  Other work has shown that the dorsal striatum (DS) plays a role in 

learning to associate actions (129-131) and action sequences (132, 133) with 

rewards.  This suggests that different neural circuits underlie these two different 

types of learning, at least in the striatum. 

The amygdala has also been shown to play an important role in visual object 

based RL (10, 23, 51, 134-136) and other forms of reward learning (137, 138).  

Studies in monkeys have shown that lesions of the amygdala lead to learning 

deficits in a probabilistic reversal learning task (10) and a reward magnitude 

learning task (23).  And, amygdala lesions lead to a decrease in the information 

about stimuli associated with rewards, relative to pre-lesion recordings, in the 

orbital prefrontal cortex (23, 139).  Therefore, there is considerable evidence that 
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supports a role for the amygdala in learning to associate objects with rewards.  

Furthermore, the amygdala has strong anatomical connections with the ventral 

visual pathway, and less pronounced connections with dorsal pathway structures 

(127, 140, 141).  Although the amygdala contributes to object reward learning, and 

has strong links to the ventral visual pathway, it also has links to the dorsal 

pathway. For example, single neurons in the amygdala code the locations of 

chosen objects independent of reward expectation (142, 143).  In addition, the 

amygdala projects to cingulate motor areas (144), which provides a potential route 

for the amygdala to influence action learning.   Whether the amygdala makes a 

causal contribution to learning to choose rewarded locations, however, has not 

been directly examined.   

To determine the amygdala’s role in action- versus object-based RL, we 

tested four monkeys with excitotoxic lesions of the amygdala on a two-arm bandit 

reversal learning task used previously to examine learning following VS lesions 

(11).  This task involved two different types of learning, carried out in blocks of 

trials.  In one block type the monkeys had to learn to pick the location (action 

based) that yielded the most rewards, and in the other block type monkeys had to 

learn to choose the stimuli (object based) that led to the most rewards.  We found 

that the amygdala plays a role in both action- and object-based RL. 
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2.2 Methods 

2.2.1 Subjects  

The subjects included 10 male rhesus macaques with weights ranging from 

6-11 kg.  Four of the male monkeys received bilateral excitotoxic lesions of the 

amygdala.  The remaining six monkeys served as unoperated controls.  Four out of 

the six unoperated control monkeys were the same monkeys used in a previous 

study (10).  Five out of the six unoperated control monkeys were the same 

monkeys from an additional study (11).  All remaining monkeys were not 

previously used in the studies mentioned above.  In particular none of the 

amygdala lesion monkeys (n = 4) were previously used in the studies mentioned 

above.  For the duration of the study, monkeys were placed on water control.  On 

testing days monkeys earned their fluid from their performance on the task.  

Experimental procedures for all aspects of the study were performed in accordance 

with the Guide for the Care and Use of Laboratory Animals and were approved by 

the National Institute of Mental Health Animal Care and Use Committee. 

2.2.2 Surgery  

Four monkeys received two separate stereotaxic surgeries, one for each 

hemisphere, which targeted the amygdala using the excitotoxin ibotenic acid (for 
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details, see (10).  Injection sites were determined based on structural magnetic 

resonance (MR) scans obtained from each monkey prior to surgery. After both 

lesion surgeries had been completed, each monkey received a cranial implant of a 

titanium head post to facilitate head restraint.  Unoperated controls received the 

same cranial implant.  Behavioral testing for all monkeys began after they had 

recovered from the implant surgery. 

2.2.3 Lesion assessment 

Lesion volume estimates were taken by first transforming each subject’s T2-

weighted scan acquired one week post-operatively to the standard NMT (NIMH 

macaque template; (145)) using AFNI’s 3dAllineate function (146).  We then 

applied thresholding to identify the area of hyperintensity on the transformed T2- 

weighted object to isolate a binary mask that corresponded to the area of damage.  

The masks were visually inspected and manually edited to ensure that they fully 

captured the areas of hyperintensity on the T2-weighted object.  A lesion overlap 

map was created by summing the binary masks for each hemisphere and displaying 

the output on the NMT (Fig. 1C).   

As intended, all operated monkeys sustained extensive damage to the 

amygdala, bilaterally; the estimated percent damage ranged from 86 to 95% (Table 

S1, Fig 1C).  Surrounding structures, mainly the entorhinal cortex, sustained 
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inadvertent damage that varied widely in extent (Table S1).  Based on prior work, 

the percent damage to entorhinal cortex as estimated from the T2-weighted scans is 

almost certainly an overestimate (147).   

 

2.2.4 Task & apparatus  

We tested rhesus macaques (Macaca mulatta) on a probabilistic two-arm 

bandit reversal learning task.  During the experiment animals were seated in a 

primate chair facing a computer screen.  Eye movements were used as behavioral 

readouts.  In each trial, monkeys first acquired central fixation (Fig 1A, B).  After a 

fixation hold period of 500 ms, we presented two objects, left and right of fixation.  

Monkeys made saccades to one of the two objects to indicate their choice.  After 

holding their choice for 500 ms, a reward was stochastically delivered according to 

one of three reward schedules: 80%/20%, 70%/30%, 60%/40%.  In an 80%/20% 

reward schedule one of the choices led to a reward 80% of the time and the other 

choice led to a reward 20% of the time.  The reward schedule and stimuli were 

used for a total of 80 trials, which constituted one training block. At the beginning 

of each block, two novel objects were introduced and the block was randomly 

assigned a reward schedule; this assignment remained constant throughout the 

entire block.  In addition, on each trial the location of 'best' object, left or right of 

fixation, was randomized.   
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There were two different block types: What and Where.  In ‘what’ blocks, 

the higher-probability option was one of the two objects independent of which side 

it was presented on.  In ‘where’ blocks, the higher-probability option was one of 

the two saccade directions independent of the object that was selected.  There was 

no cue to indicate block type; monkeys determined block type by making choices 

and getting feedback.  As with the reward schedule, the block type remained 

constant throughout the entire 80-trial block.  In each block, on a randomly 

selected trial between 30 and 50, inclusive, the reward mapping was reversed, 

making the previously lower probability option the higher probability option.  The 

reversal trial was not cued; monkeys had to learn through trial and error that the 

reward mapping switched.   

2.2.5 Task training  

All animals were trained on the task using the same procedure.  Eight out of 

ten monkeys (5 of the 6 controls and 3 of the 4 lesion monkeys) had a more 

extensive training history.  These monkeys completed other tasks before beginning 

training for the current task.  In the previous tasks they learned only object based 

reward associations.  After the remaining two monkeys (1 control and 1 

lesion) learned to make saccades to fixate on targets they were trained on a simple 
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two arm bandit RL task in which they learned only object based 

reward associations.  

Next, all monkeys were trained with a deterministic schedule (100/0) in 

both the What and Where conditions.  Monkeys were first introduced to one block 

type, either What or Where, with block type randomly assigned and balanced 

across the group.  Once monkeys could successfully perform 15-24 blocks per 

session, we introduced the other block type by itself, and then upon stabilized 

performance in that block type, we mixed the two block types.  Once the monkeys 

reached stable performance in the deterministic setting, we gradually 

introduced probabilistic outcomes; probabilities were lowered until the 

final schedules of 80/20, 70/30, 60/40 were reached. 

2.2.6 Eye tracking  

Objects provided as choice options were normalized for luminance and 

spatial frequency using the SHINE toolbox for MATLAB (148). All objects were 

converted to grayscale and subjected to a 2D FFT to control spatial frequency. To 

obtain a goal amplitude spectrum, the amplitude at each spatial frequency was 

summed across the two object dimensions and then averaged across objects. Next, 

all objects were normalized to have this amplitude spectrum. Using luminance 

histogram matching, we normalized the luminance histogram of each color channel 
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in each object so it matched the mean luminance histogram of the corresponding 

color channel, averaged across all objects. Spatial frequency normalization always 

preceded the luminance histogram matching. Each day before the monkeys began 

the task, we manually screened each object to verify its integrity. Any object that 

was unrecognizable after processing was replaced with an object that remained 

recognizable.  Eye movements were monitored and the object presentation was 

controlled by PC computers running the Monkeylogic (version 1.1) toolbox for 

MATLAB (149) and Arrington Viewpoint eye-tracking system (Arrington 

Research).    

2.2.7 Bayesian model of reversal learning  

We fit a Bayesian model to estimate probability distributions over several 

features of the animals’ behavior as well as ideal observer estimates over these 

features (10, 11, 150, 151).  The Bayesian ideal observer model inverts the causal 

model for the task, so it is the optimal model.  Using the ideal model we estimated 

probability distributions over reversal points to estimate when a reversal occurred. 

To estimate the Bayesian model we fit a likelihood function given by: 

(1)   𝑓𝑓(𝑥𝑥,𝑦𝑦|𝑟𝑟, 𝑝𝑝, ℎ, 𝑏𝑏) =  ∏ 𝑞𝑞(𝑘𝑘)𝑇𝑇
𝑘𝑘=1  

Where 𝑟𝑟 is the trial on which the reward mapping is reversed (𝑟𝑟 ϵ 0-81) and 𝑝𝑝 is 

the probability of reward of the high reward option. The variable ℎ encodes 



 

 

74 
 

whether option 1 or option 2 is the high reward option at the start of the block (ℎ ϵ 

1, 2) and 𝑏𝑏 encodes the block type (𝑏𝑏 ϵ 1, 2 – What or Where). The variable 𝑘𝑘 

indexes trial number in the block and 𝑇𝑇 is the current trial. The variable 𝑘𝑘 indexes 

over the trials up to the current trial so, for example, if 𝑇𝑇 = 10, then 𝑘𝑘 =

1, 2, 3, … 10. The variable 𝑟𝑟 ranges from 0 to 81 because we allow the model to 

assume that a reversal may not have happened within the block, and that the 

reversal occurred before the block started or after it ended. In either scenario where 

the model assumes the reversal occurs before or after the block, the posterior 

probability of reversal would be equally weighted for 𝑟𝑟 equal to 0 or 81. The 

choice data are given in terms of 𝑥𝑥 and 𝑦𝑦, where elements of 𝑥𝑥 are the rewards (𝑥𝑥𝑖𝑖 

ϵ 0, 1) and elements of 𝑦𝑦 are the choices (𝑦𝑦𝑖𝑖  ϵ 1, 2) in trial, 𝑖𝑖. The variable 𝑝𝑝 is 

varied from 0.51 to 0.99 in steps of 0.01. It can also be indexed over just the exact 

reward schedules (i.e. 0.8, 0.7 and 0.6), although this makes little difference as we 

marginalize over 𝑝𝑝 for all analyses. 

 For the ideal observer model used to estimate the block type in the Bayesian 

analysis, we estimated the block type probability at the current trial, 𝑇𝑇, based on 

the outcomes from the previous trials. Thus, the estimate is based on the 

information that the monkey had when it made its choice in the current trial. For 

each schedule, the following mappings from choices to outcomes gave us 𝑞𝑞(𝑘𝑘). 

For estimates of What (i.e. 𝑏𝑏 = 1), targets 1 and 2 refer to the individual objects 
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and saccade direction is ignored; whereas for Where (i.e. 𝑏𝑏 = 2), targets 1 and 2 

refer to the saccade direction and the object is ignored. For 𝑘𝑘 < 𝑟𝑟 and ℎ = 1, 

(when target 1 is the high probability target and the trial is prior to the reversal) 

choose 1 and get rewarded 𝑞𝑞(𝑘𝑘) = 𝑝𝑝, choose 1 and receive no reward 𝑞𝑞(𝑘𝑘) = 1 −

𝑝𝑝, choose 2 and get rewarded 𝑞𝑞(𝑘𝑘) = 1 − 𝑝𝑝, choose 2 and have no reward 𝑞𝑞(𝑘𝑘) =

𝑝𝑝. For 𝑘𝑘 ≥ 𝑟𝑟 these probabilities are flipped. For 𝑘𝑘 < 𝑟𝑟 and ℎ = 2 the probabilities 

are complementary to the values where 𝑘𝑘 < 𝑟𝑟 and ℎ = 1. To estimate reversal, all 

values were filled in up to the current trial, 𝑇𝑇.  

 For the animal’s choice behavior, used to estimate the posterior over 𝑏𝑏 for 

each group, the model is similar, except the inference is only over the animal’s 

choices, and not whether it is rewarded. This model assumes that the animal had a 

stable choice preference which switched at some point in the block from one object 

to the other. Given the choice preference, the animals chose the wrong object (i.e. 

the object inconsistent with their choice preference) at some lapse rate 1-p. Thus, 

for k < r and h = 1 choosing option 1: q(k) = p, choosing option 2: q(k) = 1 – p. For 

k >= r and h = 1, choosing option 1: q(k) = 1 – p, choosing option 2: q(k) = p. 

Correspondingly for k < r and h = 2, choosing option 2: q(k) = p, etc.  The choice 

behavior model is therefore similar to the ideal observer, except p indexes reward 

probability in the ideal observer model and 1-p indexes the lapse rate in the 
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behavioral model.  The reward outcome also does not factor into the behavior 

model. 

Using these mappings for 𝑞𝑞(𝑘𝑘), we then calculated the likelihood as a function of 

𝑟𝑟, 𝑝𝑝, ℎ, and 𝑏𝑏 for each block of trials. The posterior is given by: 

(2)  𝑝𝑝(𝑟𝑟, 𝑝𝑝,ℎ, 𝑏𝑏|𝑥𝑥,𝑦𝑦) = 𝑓𝑓(𝑥𝑥,𝑦𝑦|𝑟𝑟, 𝑝𝑝,ℎ, 𝑏𝑏)𝑝𝑝(𝑟𝑟)𝑝𝑝(𝑝𝑝, ℎ, 𝑏𝑏)/𝑝𝑝(𝑥𝑥,𝑦𝑦) 

For r, 𝑝𝑝, ℎ and 𝑏𝑏, the priors were flat. There is general agreement between the ideal 

observer estimate of the reversal point and the actual programmed reversal point 

(10, 150).   

With these priors, we calculated the posterior over the reversal trial by 

marginalizing over 𝑝𝑝, ℎ and 𝑏𝑏. 

(3)  𝑝𝑝(𝑟𝑟|𝑥𝑥,𝑦𝑦,𝑀𝑀) =  ∑ 𝑝𝑝(𝑟𝑟, 𝑝𝑝,ℎ, 𝑏𝑏|𝑥𝑥,𝑦𝑦)𝑝𝑝,ℎ,𝑏𝑏   

The posterior over block type could correspondingly be calculated by 

marginalizing over 𝑟𝑟, 𝑝𝑝 and ℎ. 

2.2.8 Reinforcement learning model of choice behavior  

We fit 6 different reinforcement learning models that varied in the number 

of parameters used to model the data.  In the results we focus on the two models 

that most often accounted for the behavior.  All models were based on a Rescorla-

Wagner (RW), or stateless RL value update equation given by:  

(4)  𝑣𝑣𝑖𝑖(𝑘𝑘 + 1) =  𝑣𝑣𝑖𝑖(𝑘𝑘) +  𝛼𝛼𝑓𝑓�𝑅𝑅 −  𝑣𝑣𝑖𝑖(𝑘𝑘)�      
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We then passed these value estimates through a logistic function to generate choice 

probability estimates: 

(5)  𝑑𝑑𝑗𝑗(𝑘𝑘) = (1 +  𝑒𝑒𝛽𝛽�𝑣𝑣𝑖𝑖(𝑘𝑘)−𝑣𝑣𝑗𝑗(𝑘𝑘)+ℎ𝑖𝑖(𝑘𝑘)−ℎ𝑗𝑗(𝑘𝑘) �)−1,    𝑑𝑑𝑖𝑖(𝑘𝑘) = 1 −  𝑑𝑑𝑗𝑗(𝑘𝑘) 

   

The variable 𝑣𝑣𝑖𝑖  is the value estimate for option 𝑖𝑖, 𝑅𝑅 is the reward feedback for the 

current choice for trial 𝑘𝑘, and 𝛼𝛼𝑓𝑓 is the learning rate parameter, where 𝑓𝑓 indexes 

whether the current choice was rewarded (𝑅𝑅 = 1) or not (𝑅𝑅 = 0). For each trial, 

𝛼𝛼𝑓𝑓 is one of two fitted values used to scale prediction errors based on the type of 

reward feedback for the current choice.  Note that models M1, M2, and M3 

described below do not have the hj factors.  The variable ℎ𝑗𝑗(𝑘𝑘) implemented a 

choice autocorrelation function, which increased the value of a cue that had 

occurred in the same location, recently.  This allows us to model a tendency to 

repeat a given choice, independent of whether it was rewarded.  Because we 

wanted to use the same model across both What and Where, we implemented the 

choice autocorrelation functions as repetitions of choices when the same object 

occurs in the same location, which results in autocorrelations across 4 terms (i.e 

stim 1 left, stim 1 right, stim 2 left, stim 2 right).  A model which used only choice 

repetition across location could not be fit to the Where condition, since the animals 

should “perseverate” on location.  Thus, the use of object-location terms for the 

autocorrelation allows us to use the same model in both tasks. 
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The autocorrelation function was defined as follows:  

(6)  ℎ𝑖𝑖(𝑘𝑘) = 𝜅𝜅𝑒𝑒−𝜆𝜆(𝑘𝑘−𝑘𝑘𝑙𝑙(𝑖𝑖)) 

where the variable 𝜅𝜅 and 𝜆𝜆 were free parameters scaling the size of the effect and 

the decay rate, respectively.  The variable 𝑘𝑘𝑙𝑙(𝑖𝑖) indicates the last trial on which a 

given object was chosen in a given location, 𝑖𝑖.  There were four separate values for 

𝑘𝑘𝑙𝑙(𝑖𝑖) as it tracked two cues across locations.  The values entered into equation 5 

were the two (of the 4) that corresponded to the object/location pairs actually 

presented in the current trial.  These parameters allowed us to characterize choice-

perseveration across the interaction of object and action choices.   

The likelihood was given by: 

(7)  𝑓𝑓(𝑥𝑥,𝑦𝑦|𝛽𝛽, 𝑎𝑎, 𝜅𝜅, 𝜆𝜆) =  ∏ [𝑑𝑑1(𝑘𝑘)𝑐𝑐1(𝑘𝑘) + 𝑑𝑑2(𝑘𝑘)𝑐𝑐2(𝑘𝑘)𝑘𝑘 ] 

Where 𝑐𝑐1(𝑘𝑘) had a value of 1 if option 1 was chosen on trial 𝑘𝑘 and 𝑐𝑐2(𝑘𝑘) had a 

value of 1 if option 2 was chosen. Conversely, 𝑐𝑐1(𝑘𝑘) had a value of 0 if option 2 

was chosen, and 𝑐𝑐2(𝑘𝑘) had a value of 0 if option 1 was chosen for trial 𝑘𝑘. We used 

standard function optimization methods to maximize the likelihood of the data 

given the parameters.  Note, not all parameters were present in all models. 

 Three of the models (M1, M2, & M3) had different numbers of learning rate 

and inverse temperature parameters.  M1 had one inverse temperature and two 

learning rate parameters (indexed by the subscript f on α), one for positive 

feedback and one for negative feedback.  M2 had one inverse temperature and one 
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learning rate parameter.  M3 had two inverse temperatures, one for the acquisition 

phase and one for the reversal phase, and four learning rates, two for the 

acquisition phase (one for positive feedback and one for negative feedback), and 

two for the reversal phase(one for positive feedback and one for negative 

feedback).  The remaining three models are the plus versions of the models 

discussed above (M1+, M2+, & M3+).  The plus models have the same number of 

parameters as the basic (i.e. M1, M2, M3) model with the addition of two more 

parameters, one for the coefficient on the autocorrelation factor, 𝜅𝜅, and one for the 

decay factor on the autocorrelation, 𝜆𝜆.  Models M2 and M2+ predicted behavior 

most often across groups, so to simplify presentation we show results for these two 

models only, and the plots for these models show only the number of times these 

were the best model.         

2.2.9 ANOVA models  

To quantify the difference between choice behavior in each group, we first 

flipped the data following the reversal when we entered it into the ANOVA.  Data 

is plotted unflipped.  Next, we performed an arcsine transformation on the choice 

accuracy values from each session, as this transformation normalizes the data 

(152).  Data were then averaged across sessions within monkey.  We then carried 

out an N-way ANOVA (ANOVAN).  Monkey was included as a random factor.  
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All other factors were fixed effects.  For all reported ANOVAs, we always ran an 

omnibus model with all factors and interactions of all order.  Non-reported 

interactions were not significant.  The ANOVA on win-stay lose-switch, entropy 

and reversal trial difference were done in the same way as above without the 

arcsine transformation.  For the choice strategy model, we entered both win-stay 

and lose-switch as dependent variables and included a factor in the model for 

choice-strategy (i.e. either win-stay or lose-switch).  Effect size is reported using 

ω2 (153). 

2.3 Results  

We tested rhesus macaques on a two-armed bandit reversal learning task 

with three different stochastic reward schedules: 80%/20%, 70%/30%, 60%/40%.  

In addition to the three different reward schedules, there were two different block 

types: What and Where.  In ‘what’ blocks, the higher-probability option was one of 

the two objects independent of the chosen location.  In ‘where’ blocks, the higher-

probability option was one of the two saccade directions independent of the chosen 

object.  There was no cue to indicate block type.  Therefore monkeys determined 

block type by making choices and getting feedback.  In each block, on a randomly 

selected trial between 30 and 50 (inclusive) the reward mapping was reversed, 

making the previously lower probability option the higher probability option and 
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vice versa.  The reversal trial was not cued and therefore monkeys had to learn 

through trial and error that the reward mapping switched.    

 

 

 
Figure 1. Task and lesion extent.  A, B. What and Where Task.  The task was divided into 80-trial blocks.  At 
the beginning of each 80-trial block we introduced two new objects that the animal had never seen before.  
Each block of trials was either a What block or a Where block.  If it was a What block, we assigned a high 
reward probability to one object and a low reward probability to the other.  If it was a Where block we 
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assigned a high reward probability to one of the locations and a low reward probability to the other.  We used 
three different reward schedules (80/20, 70/30 and 60/40).  The reward schedules were randomly assigned to 
the block and remained fixed for the block.  The block type was also randomized and remained fixed for the 
entire block.  There was no cue to indicate block type. Therefore, the animals had to infer the block type.  In 
addition, on a randomly chosen trial between 30 and 50 we reversed the choice-outcome mapping, such that 
the better choice became the worse choice and vice-versa.  C. Extent of lesion and number of animals with 
shown extent, overlaid on a standardized macaque brain template.   

2.3.1 Choice behavior  

We began by analyzing the monkeys’ choice behavior.  Because the reversal 

trial differed across blocks, we first aligned each block to the true reversal point 

and interpolated the trials in the acquisition and reversal phases so there were 40 

“trials” in each.  We then carried out ANOVAs on this data, where the dependent 

variable was the fraction of times the animals chose the best initial option (Fig. 2).   

We first carried out an ANOVA across both block types (What and Where).  There 

was no average difference in performance across block type (Block-Type; F(1,8) = 

0.05, p = 0.83, 𝜔𝜔2 = 0).  We did however, find differences in reward schedule 

(Schedule; F(2,16) = 107, p < 0.001, 𝜔𝜔2 = 0.171) on choices.  There were also 

differences in these factors by trial (Block Type x Trial; F(78,624) = 4.1, p < 

0.001, 𝜔𝜔2 = 0.007 and Schedule x Trial; F(156,1248) = 23.4, p < 0.001, 𝜔𝜔2 = 

0.026), which reflects both the initial learning, and the reversal of choices after the 

reversal in reward mapping.  We also found that control monkeys performed better 

than amygdala monkeys and this varied by trial (Group x Trial; F(79,632) = 2.3, p 

< 0.001, 𝜔𝜔2 = 0.014), and by schedule (Group x Schedule x Trial; F(156,1248) = 
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1.3, p = 0.01, 𝜔𝜔2 = 0.001).  The groups did not, however, differ by block type 

(Group x Block Type x Trial; F(79,632) = 0.6, p = 0.99, 𝜔𝜔2 = 0.001). 

Although there were no group differences by block type, we carried out 

planned comparisons on the data from each condition.  In What blocks both groups 

chose more accurately in the richer reward schedules (Schedule x Trial; 

F(156,1248) = 16.3, p < 0.001, 𝜔𝜔2 = 0.027).  We also found that control monkeys 

performed better than the amygdala lesioned monkeys and this varied by trial 

(Group x Trial; F(78,624) = 2.1, p < 0.001, 𝜔𝜔2 = 0.013), and by schedule (Group x 

Schedule x Trial; F(156,1248) = 1.4, p = 0.003, 𝜔𝜔2 = 0.002).  Similarly, in Where 

blocks, both groups chose more accurately in the richer reward schedules 

(Schedule x Trial; F(156,1248) = 8.9, p < 0.001, 𝜔𝜔2 = 0.029).  Control monkeys 

performed better than the amygdala monkeys which varied by trial (Group x Trial; 

F(79,632) = 1.6, p < 0.001, 𝜔𝜔2 = 0.018), but there was no difference across 

schedule (Group x Schedule x Trial; F(156,1248) = 1.1, p = 0.27, 𝜔𝜔2 = 0.003). 
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Figure 2. Behavioral performance in What and Where conditions.  A. Fraction of times the animals chose the 
best initial cue in the What condition.  Shaded region indicates +/- 1 s.e.m., where the N = the number of 
animals in each group (4 lesion, 6 control).  B. Same as A for the Where condition. 
        
 

To further characterize the learning behavior, we analyzed the win-stay, 

lose-switch performance (Fig. 3).  Win-stay is the probability that the animals 

chose the same option after a positive outcome in the previous trial and lose-switch 
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is the probability that they chose the other option after a negative outcome in the 

previous trial.  For purposes of the ANOVA we analyzed only win-stay and lose-

switch probabilities.  The difference between win-stay and lose-switch was coded 

as a choice-strategy effect.  We found differences across block types (Block type; 

F(1, 8) = 23.7, p = 0.001, 𝜔𝜔2 = 0.006).  Consistent with the decreased overall 

accuracy of the lesioned animals, they also had lower win-stay strategies relative to 

higher lose-switch than controls (Group x Choice Strategy; F(1, 8) =  6.4, p  = 

0.036, 𝜔𝜔2 = 0.035).  These group strategies did not differ by block type (Group x 

Choice Strategy x Block-type; F(1, 8) = 1.8, p = 0.217, 𝜔𝜔2 = 0.004).   We then ran 

the analysis separately for Win-stay and Lose-switch strategies and found that 

there were no group differences for Win-stay (Group; F(1, 8) = 3.6, p = 0.095, 𝜔𝜔2 

= 0.101).  However, lesioned animals more often switched following a negative 

outcome (Group; F(1, 8) = 11.1, p = 0.010, 𝜔𝜔2 = 0.393).  Therefore, across block 

types, lesioned animals switched after a negative outcome more frequently than the 

control animals.  The groups also differed by block type (Group x Block type; F(1, 

8) = 16.3, p = 0.004, 𝜔𝜔2 = 0.004).  When we ran the analysis separately for each 

group, controls did not differ by block type (Block type; F(1,5) = 0.6, p = 0.46, 𝜔𝜔2 

= 0) but the lesioned animals did (Block type; F(1,3) = 21.7, p = 0.018, 𝜔𝜔2 = 0.37). 
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Figure 3. Win-stay, Lose-switch.  A. Win-stay, lose switch performance for the two groups in the What 
condition, averaged across schedules.  B. Win-stay, lose-switch performance for the two groups in the Where 
condition, averaged across schedules. Error bars are +/- 1 s.e.m. (N = 6 control, 4 lesion).   
 
 

Next, we looked at the probability that while animals were in one block type 

they were making choices consistent with the other block type (Fig. 4).  For What 

blocks we quantified the probability of choosing the most frequently chosen 

location and for Where blocks we quantified the probability of choosing the most 

frequently chosen object.  On average, monkeys should be choosing each action at 

chance levels in What blocks, and each object at chance levels in Where blocks.  

However, even if they infer the correct block type, at the beginning of the block, 

they may make choices consistent with the wrong block type for several trials, and 

this can persist into the block.   
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We started by analyzing both block types together and found that animals 

were closer to chance, and therefore were making choices more consistent with the 

appropriate block type in easier schedules (Schedule; F(2,16) = 2.6, p < 0.001, 𝜔𝜔2 

= 0.009).  In addition, we found that the groups differed across schedule and block 

type (Group x Schedule x Block-type; F(2,16) = 11.2, p < 0.001, 𝜔𝜔2 = 0.018).  The 

amygdala lesioned animals were making relatively more location choices in What 

blocks than Control animals, when compared to object choices in Where blocks 

and this differed by schedule.  To examine this in more detail we analyzed each 

block type separately.  In What blocks (Fig. 4A) we found that animals performed 

better in easier schedules (Schedule; F(2,16) = 37.5, p < 0.001, 𝜔𝜔2 = 0.35).  We 

also found that the groups differed across schedule (Group x Schedule; F(2,16) 

= 8.2, p = 0.003, 𝜔𝜔2 = 0.039).  In Where blocks (Fig. 4B) we again found that 

animals performed better in easier schedules (Schedule; F(2,16) = 19.6, p < 0.001, 

𝜔𝜔2 = 0.042).  There were, however, no group differences across schedules (Group 

x Schedule; F(2,16) = 2.9, p = 0.081, 𝜔𝜔2 = 0.006).   
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Figure 4. Cross condition choice frequencies.  A. Probability of choosing the most frequently chosen location 
in the What condition, averaged across reversals (with reversal data flipped).  B. Probability of choosing the 
most frequently chosen object in the Where condition.  Error bars are +/- 1 s.e.m., where the N = the number of 
animals in each group (4 lesion, 6 control).   
 

2.3.2 Reinforcement learning model 

To further investigate why the monkeys with amygdala lesions behave 

differently we fit several RL models which varied in the number of free parameters 

used to model the choice behavior (see methods).  We used the Bayesian 

Information Criterion (BIC) to assess which model fit best in each session for each 

animal (Fig. 5).  Across monkeys, the model which most frequently fit best had 4 

parameters (M2+).  The M2+ model had one learning rate, one inverse 

temperature, one autocorrelation parameter and one decay parameter which decays 

the autocorrelation perseveration effects.  The autocorrelation and decay 

parameters characterized the tendency to perseverate on choices, independent of 

whether they were appropriate to the current block.  The model which fit second 
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most frequently had 2 parameters (M2).  The M2 model had one learning rate and 

one inverse temperature parameter but no perseveration parameters.  The M2+ 

model captures perseverative choice biases driven by choices consistent with the 

opposite block type.  Therefore, a preference for the plus model suggests the 

monkeys choices are not driven by the choice-outcome effects for the current block 

type, to the same extent. 

The relative preference for the M2+ model was larger in amygdala animals 

than controls in the What condition than the Where condition (Fig. 5; Group x 

Block-Type x Model; F(1,8) = 6, p = 0.040, 𝜔𝜔2 = 0.083).  Next we split the 

analysis by block type.  In the What condition there was a preference for the M2+ 

model (Model; F(1,8) = 21.5, p = 0.001), but there was no preference in the Where 

condition (Model; F(1,8) = 0.7, p = 0.434).  However, there were no group effects 

or interactions with group in either the What or Where conditions (p > 0.05).  

Therefore, there was a shift towards the M2 model, relative to the M2+ model, in 

the amygdala animals in the Where conditions.  Since the plus model captures a 

tendency to repeat a response to an object at a specific location, independent of 

reward, this suggests that there is a shift towards a less object dependent strategy in 

the Where condition, relative to a location dependent strategy in the What 

condition, in the amygdala animals.   
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Figure 5. Bayesian Information Criterion (BIC) model selection.  A. Percentage of sessions BIC selected 
models M2 and M2+ (out of all 6 models) in the What condition.  Error bars are +/- 1 s.e.m., where the N = the 
number of animals in each group (4 lesion, 6 control).  B. Same as A for the Where condition.  
 
 

Next, we examined the parameters for the M2+ model.  The only parameter 

that the groups differed on was the autocorrelation coefficient, 𝜅𝜅 (Fig. 6), which 

was larger in controls across both conditions (Group; F(1,8) = 15.6, p = 0.004, 𝜔𝜔2 

= 0.582).  The autocorrelation factor captures the tendency to repeat choices of 
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objects at specific locations, and therefore captures perseveration across actions 

and objects (154, 155).   

 

      
 
Figure 6. Autocorrelation parameter for model M2+. A. Autocorrelation parameter in the What condition. 
Error bars are +/- 1 s.e.m., where the N = the number of animals in each group (4 lesion, 6 control).  B. Same 
as A for the Where condition.   
 

2.3.3 Reversals  

Learning in this task is governed by three processes, which may or may not 

map onto different neural systems.  Monkeys have to infer the block type, they 

have to infer the correct option within each block type, and they have to reverse 

this preference when the outcome mapping reverses.  The animals have extensive 

experience on the task before we collect behavioral data and, at least control 

animals, learn that reversals happen in the middle of the block (150).  The 
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monkeys use the acquired task knowledge to improve performance on the task.  

The results above show that monkeys with amygdala lesions have deficits in both 

the What and Where conditions.  However, it is not clear whether animals with 

amygdala lesions have general deficits in forming associations between actions or 

objects and rewards, or whether they have deficits in reversing these preferences.  

Therefore, we next addressed the reversal performance directly.   

We used a Bayesian model to analyze the reversal behavior.  The model 

assumes that the animals develop an initial preference for one option, and then 

reverse this preference at some point in the block.  Because behavior is stochastic, 

the animals do not pick one option exclusively, and then switch at some point in 

the middle of the block to picking the other option.  However, they tend to pick 

one of the options more often and this tendency switches in the middle of the block 

(Fig. 2).  The model generates the probability that the animal reversed its choice 

behavior on each trial of the block – a probability distribution over reversal trial 

(𝑝𝑝(𝑟𝑟), Fig. 7).  On average, these probability distributions were better centered 

around the actual reversal points for the easier than harder reward schedules (Fig. 

7A, B, D, E).  We tested this by taking the value of the probability distribution on 

the average expected reversal trial (40).  When we compared these values across 

both block types, we found that animals had higher values in easier schedules 

(Schedule; F(2,16) = 11.4, p < 0.001, 𝜔𝜔2 = 0.127). 
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To characterize the distributions and examine group differences, we 

calculated the entropy (i.e. ℎ� = −∑ 𝑝𝑝(𝑟𝑟)𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(𝑟𝑟)𝑟𝑟=0..81 ) of the posterior 

distribution over reversals in each block (Fig. 7C, 7F).  The entropy generalizes the 

concept of variance to non-Gaussian distributions.  It is a measure of how 

concentrated the distribution is around the mean or mode. Higher entropy indicates 

broader reversal distributions and therefore noisier, less precise reversals.  When 

we compared the entropy across both block types, we found an overall effect of 

schedule on entropy (Schedule; F(2,16) = 47.5, p < 0.001, 𝜔𝜔2 = 0.107).  Therefore, 

the switch in choice preference was more clearly defined for the easy than hard 

schedules.  We also found that the entropy for control monkeys was significantly 

lower than for the monkeys with amygdala lesions (Group; F(1,14) = 9.4, p = 

0.015, 𝜔𝜔2 = 0.197).  Next, we analyzed the What and Where blocks separately.  In 

What blocks we found an overall effect of schedule (Schedule; F(2,16) = 25.2, p < 

0.001, 𝜔𝜔2 = 0.07) and a group effect (Group; F(1,8) = 9, p = 0.017, 𝜔𝜔2 = 0.252).  

In Where blocks we also found effects of schedule (Schedule; F(2,16) = 31.1, p < 

0.001, 𝜔𝜔2 = 0.157) and group (Group; F(1,8) = 6.9, p = 0.030, 𝜔𝜔2 = 0.147). 
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Figure 7. Posterior distributions and entropy of posterior.  A. Posterior distribution for control group in the 
What condition, overlaid on ideal observer posterior for each schedule of the What condition.  B. Same as A 
for the lesion group.  C. Entropy of posterior distribution for both groups for the What condition, broken out by 
schedule.  Error bars are +/- 1 s.e.m. (N = 6 control, 4 lesion).  D. Same as A for the Where condition.  E. 
Same as B for the Where condition.  F. Same as C for the Where condition. 
    
 

Two distributions can have different entropy but the same mean.  Therefore, 

we next examined whether the estimated reversal trial differed between lesion and 

control groups, to see if the groups tended to reverse on the same trial.  To do this, 

we calculated the expected value (i.e., the mean) of the reversal distribution in each 
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block (i.e. �̂�𝑟 = ∑ 𝑟𝑟𝑝𝑝(𝑟𝑟)𝑟𝑟=0..81 ).  This gives us a single number for each block, 

estimating the trial on which the animal reversed its choice preference.  This 

number can be compared to where the actual reversal occurred, which we refer to 

as the reversal trial difference (i.e. �̂�𝑟 − 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙; Fig. 8A, 8B).  The variable �̂�𝑟 

characterizes our estimate of where the monkey reversed and 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙 is the 

programmed reversal trial.  When we analyzed both block types together, we found 

no effect of block type on the difference between the reversal trial of the animals 

and the actual reversal trial (Block Type; F(1,8) = 0.01, p = 0.92, 𝜔𝜔2 = 0).  

However, there was an effect of schedule (Schedule; F(2,16) = 17.1, p < 0.001, 𝜔𝜔2 

= 0.24), with animals reversing before the actual reversal trial in the harder 

conditions, consistent with previous work (11, 150).  There were no group 

differences (Group; F(1,8) = 1.2, p = 0.3, 𝜔𝜔2 = 0.033).  When we analyzed the 

where block by itself, we found that the groups differed in reversal behavior across 

schedule, reflecting the difference in the 60/40 condition (Group x Schedule; 

F(2,16) = 5.2, p = 0.018, 𝜔𝜔2 = 0.121).   

Following this we looked at the absolute value of the difference between the 

monkey reversal and the actual reversal (i.e.  |�̂�𝑟 − 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙|; Fig. 8A, 8B).  Unlike 

the difference in reversal trials (Fig. 8A and 8B), the absolute value of the 

difference (Fig. 8C and 8D) characterizes how close the animals were to the actual 

reversal, either before or after.  As above we found an effect of schedule 
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(Schedule; F(2,16) = 64.0, p < 0.001, 𝜔𝜔2 = 0.35).  There were, however, no 

differences across block type (Block Type; F(1,8) = 0.03, p = 0.87, 𝜔𝜔2 = 0) and 

there were no differences between groups (Group; F(1,8) = 0.15, p = 0.71, 𝜔𝜔2 = 

0.01).  Overall, therefore, despite their generally noisier behavior, the monkeys 

with amygdala lesions tended to reverse on the same trial as the controls, and they 

were as close to the actual reversal, in absolute value. 

 

   
 
Figure 8. Relative and absolute difference in reversal behavior.  Error bars are +/- 1 s.e.m. (N = 6 control 
animals and 4 lesion animals).  A. Relative reversal trial in the What condition.  The relative reversal trial is 
given by the difference between the point estimate of the monkey’s reversal trial in each block and the actual 
reversal trial.  Negative numbers indicate that the monkey reversed before the actual reversal trial.  B. Relative 
reversal trial in the Where condition.  C. Absolute value of the difference in the reversal trial in the What 
condition.  In each block we computed the difference between the estimated reversal trial of the animal, and 
the actual reversal trial.  We then took the absolute value of this difference.   
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The increased entropy of the reversal distribution may be driven by noisy 

choice behavior.  The algorithm assumes that any choice not consistent with the 

dominant choice in a phase is possibly a reversal.  Therefore, noisy choices 

broaden the reversal distribution.  To characterize this in more detail, we first 

calculated the average fraction of correct choices for each animal relative to the 

currently most rewarded object, across the block.  We then correlated the average 

fraction of correct choices with the average entropy of the reversal distribution 

(Fig. 9A), the average reversal trial difference (Fig. 9C) and the average absolute 

value of the reversal trial difference (Fig. 9B).  The correlation between fraction 

correct and the entropy was large and negative across animals (ρ  = -0.920, p < 

0.001), as would be expected as entropy depends on choice accuracy.  The 

correlation was also significant with the absolute value of the difference between 

the monkey and actual reversal trial (ρ = -0.773, p < 0.01).  However, the 

correlation between the fraction correct and the signed difference in the reversal 

trial was not significant (ρ = 0.117, p > 0.05).  The correlation between fraction 

correct and entropy was significantly larger than the correlation between fraction 

correct and the reversal trial difference (Z = 3.19, p = 0.001) but the difference 

between the correlation of the fraction correct and the entropy, and the correlation 

between the fraction correct and the absolute value, was not different (Z = 1.05, p 

= 0.300).  It is not surprising that these correlations do not differ, because the 
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absolute value is related to the entropy.  The entropy characterizes the width of the 

posterior over reversal trials, and the absolute value characterizes how far samples 

from this distribution are, from the mean, on average. 

 

 
 
Figure 9. Correlation plots for all 10 monkeys (6 control, 4 lesion).  A. The correlation between fraction 
correct and entropy.  B. Same as A, but the correlation is between fraction correct and absolute reversal trial 
difference.  C. Same as A, but the correlation is between fraction correct and reversal trial difference.   
 
 

2.3.4 Block type  

The Bayesian model also estimates whether the monkey’s choices were 

more consistent with choosing one of the objects (What block) or one of the 

saccade directions (Where blocks).  These estimates provide evidence for the block 

type the monkeys thought they were in based on their choice strategy (Fig. 10).  

Across conditions there was a fourth order interaction (Group x Trial x Schedule x 

Block-Type; F(158,1264) = 1.3, p = 0.007, 𝜔𝜔2 = 0.001).  To examine this in detail 

we analyzed each block-type separately.  In What blocks we found that posteriors 



 

 

99 
 

were higher for easier schedules (Schedule; F(2,16) = 42.7, p < 0.001, 𝜔𝜔2 = 0.12).  

We also found that group differences varied across schedules and trials (Group x 

Trial x Schedule; F(158,1264) = 2.4, p < 0.001, 𝜔𝜔2 = 0.004).  When we analyzed 

effects in the What blocks separately for each schedule, we found the groups 

differed across trials in all schedules, (Group x Trial; 60/40 F(79, 632) = 3.5, p < 

0.001, 𝜔𝜔2 = 0.028); 70/30 F(79, 632) = 6.6, p < 0.001, 𝜔𝜔2 = 0.036); 80/20 F(79, 

632) = 1.31, p = 0.044, 𝜔𝜔2 = 0.009).   In Where blocks (Fig. 10B) we found that 

posteriors were higher in easy schedules, reflecting increased consistency in the 

monkey’s choice behavior (Schedule; F(2,16) = 29.9, p < 0.001, 𝜔𝜔2 = 0.117).  

There were, however, no group differences.  Therefore, in What blocks the 

monkeys with amygdala lesions were less consistently choosing one of the objects 

relative to the controls.  However, in Where blocks the groups did not differ.  
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Figure 10. Posterior probability of the choice strategy used by the monkeys. A. Probability that the monkeys 
were using a What strategy in What blocks.  A What strategy implies that the monkeys are consistently picking 
one of the objects.  B. Probability that the animals were using a Where strategy in Where blocks.  A Where 
strategy implies that the monkeys are consistently picking a location. Shaded region indicates +/- 1 s.e.m., 
where the N = the number of animals in each group (4 lesion, 6 control).    
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2.4 Discussion  

In the present study, we found that lesions of the amygdala affected learning 

to select rewarding stimuli (what) and rewarding actions (where).  In both block 

types, we found that controls more often chose the better option than the monkeys 

with amygdala lesions.  The choice accuracy deficit in the animals with amygdala 

lesions was not significantly different in one block type versus the other.  When we 

analyzed win-stay, lose-switch measures of the monkey’s choices, we found that 

the lesioned animals more often switched after a negative outcome, which 

decreased performance due to the stochastic schedules.  Therefore, much of their 

decreased accuracy, overall, followed from switching after negative outcomes, and 

these effects were significant in the What condition, although we did not find that 

the groups differed significantly across conditions.  We also found that the animals 

with amygdala lesions tended to consistently select locations more often in What 

blocks, relative to control animals in harder schedules.  This was consistent with 

the finding that animals with amygdala lesions were better fit by a model with 

object by location perseveration in the What condition than the Where condition.  

Because the perseveration term in the RL model is independent of reward, it will 

tend to lower performance and therefore it lowered performance relatively more in 

the What condition than the Where condition.   
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Because the operated monkeys sustained a variable amount of damage to 

structures adjacent to the amygdala, in addition to the substantial, planned damage 

to the amygdala, we considered the possibility that the behavioral impairments 

arose from the inadvertent, extra-amygdala damage.  Notably, there was no 

apparent correlation of behavioral scores with the amount of inadvertent damage to 

a particular structure. For example, cases M2 and M3 had similar scores on 

acquisition yet ranked 4th and 1st among lesion subjects in extent of damage to the 

entorhinal cortex, respectively. In addition, based on prior work, we can be 

confident that the amount of damage estimated from T2-weighted scans, reported 

in Table S1, is an overestimate (147).  These two factors militate against the 

possibility that extra-amygdala damage is responsible for the behavioral 

impairments we observed. 

We also examined the reversal behavior in detail, to see whether the animals 

with amygdala lesions had specific deficits in reversing their choice-outcome 

preferences.  For both block types, we found that the lesion group had higher 

entropy in their reversal distributions.  This would be expected if the animals less 

consistently chose the better option in both the acquisition and reversal phase, as 

each time the animals choose the less preferred option, there is a small probability 

that they are reversing their choice preference.  This is, therefore, consistent with 

the increased lose-switch probability of the lesioned group.  When we compared 
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the mean and absolute values of the estimated reversal trials, we found no average 

differences between the groups.  Therefore, the monkeys with amygdala lesions 

reversed, on average, as effectively as the controls.  In other work we have found a 

correlate of the reversal inference in dorsal lateral prefrontal cortex (156), which 

suggests it may be playing an important role in the reversal process, although we 

have not yet looked for such a correlate in the amygdala.  As stated earlier, 

learning in this task requires three processes.  Monkeys have to infer the block 

type, they have to figure out the best choice within each block type, and they have 

to reverse this preference when the outcome mapping reverses.  (It is possible that 

inferring the block type and figuring out the best option are done as one process.)  

Of these three processes, only the ability to consistently pick the best option was 

significantly impaired in monkeys with amygdala lesions, and this was primarily 

driven by more frequently switching after a negative outcome.  The fact that our 

results are not statistically distinguishable across the different block types suggests 

that the amygdala plays a general role in forming associations between both 

objects and actions with rewards.  Whether this is a deficit in representing the 

choices, the rewards, or in forming associations between them is not clear from the 

current results.  Previous work would suggest the deficit, at least in part, is in 

forming the association (10, 51, 157).  These data are also consistent with previous 

work, examining learning to reverse, which showed that monkeys with amygdala 
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lesions learned to reverse faster (151).  The current results suggest that the faster 

reversals in those studies followed from weaker object outcome associations, not 

stronger prior probabilities on variability in the environment (151). Also relevant is 

the finding discerned from fMRI that, in intact monkeys, amygdala activity during 

both deterministic and probabilistic learning specifically predicts lose-shift 

behavior, and adaptive win-stay, lose-shift signals are evident in ventrolateral 

prefrontal cortex area 12o (157), a region necessary for probabilistic discrimination 

learning (158).  Future studies could address whether probabilistic learning like 

that examined here requires the functional interaction of the amygdala with the 

ventrolateral prefrontal cortex.  

Learning systems and their anatomical substrates can be dissociated in 

various ways.  For example, learning is often studied using Pavlovian or 

instrumental paradigms (114).  Formation of Pavlovian CS-US associations is 

mediated, to some extent, by the amygdala (51, 79).  Formation of instrumental 

associations, on the other hand, is thought to be mediated by frontal-striatal 

systems (115).  Both forms of conditioning were developed from purely behavioral 

considerations and, therefore, they do not necessarily map cleanly onto separable 

neural systems.  Furthermore, there is considerable interaction between these 

behavioral processes in tasks like Pavlovian Instrumental Transfer (116) and 

conditioned reinforcement (117).  The bandit tasks often used to study 
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reinforcement learning (7, 10, 159), do not map cleanly onto Pavlovian or 

instrumental constructs.  Actions are required to select options in bandit tasks.  

However, when the reward values of objects are being learned, the required action 

varies depending on the location of the object.  Furthermore, when the reward 

values of actions are being learned, it is likely that learning the reward values of 

arm movements may engage different neural systems than learning the reward 

values of eye movements, given the differing neural systems engaged by each type 

of action (160).  It is also possible that learning deficits following amygdala lesions 

may depend on the type of motor response required to register choices.  Additional 

work will be required to clarify this hypothesis.   

From a psychological perspective, it is of interest that the amygdala is 

essential for both object-outcome and action-outcome associations as assessed with 

devaluations tasks (98, 161). Together with the present data, these findings show 

that the amygdala is important for learning about both objects and actions as they 

relate to reward probability (present study) and current reward value, including 

reward magnitude (98, 139, 161). An earlier study on object reversal learning 

found that, relative to unoperated controls, monkeys with amygdala lesions 

benefitted more from correct choices that follow an error in a deterministic setting 

(162). While this finding would seem to be at odds with the present findings, we 

note that the object reversal tasks differ in more ways than use of deterministic vs. 
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probabilistic outcomes. For example, the standard object reversal learning task 

employed by Rudebeck and Murray employed a small number (nine) of reversals 

whereas in the present study, all monkeys had received extensive training in 

reversals. As a result, unlike in the present study, monkeys in the deterministic task 

experienced unexpected uncertainty, at least in early reversals. In addition, the 

present and earlier task differ in the type of response required (manual vs. eye-

movement), in the location and type of reward (food reward under object vs. fluid 

reward delivered to mouth), and in the number of trials administered per session 

(30 trials vs. Massed trials). These task differences might account for the 

somewhat different picture gained from assessing amygdala contributions to the 

two kinds of reversal learning. Thus, the amygdala makes an essential contribution 

to reversal learning in probabilistic and even deterministic settings with massed 

trials in an automated apparatus (10) but not to reversal learning in deterministic 

settings with a small number of trials in a manual test apparatus (25).   

The What vs. Where task used in the current study was developed to 

separate neural circuits underlying learning rewards associated with objects whose 

locations vary, vs. learning to associate rewards with actions independent of the 

object at the saccade target location.  The hypothesis that such a dissociation 

should be possible follows from work in the visual and auditory systems (119, 163) 

based on the separable anatomical organization of visual cortex (119, 120), as well 
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as proposed frontal extensions of this circuitry (164).  Parietal cortex processes 

information about the spatial locations of objects in the environment, and the motor 

actions required to interact with these objects (165-167).  The ventral visual cortex, 

on the other hand, processes information about object features that allow for object 

identification and discrimination (168, 169).  This separable organization continues 

into prefrontal cortex (121, 122, 164, 170), and correspondingly into the striatal 

circuitry (123, 124, 127).  While there is evidence for anatomical segregation, 

neurophysiological recordings have shown integration of What and Where 

information in both prefrontal (171) and parietal (125) cortex. Thus, in neural 

circuits that are less proximal to sensory processes it is not clear that these separate 

streams differentially process behaviorally relevant information, particularly in 

frontal-striatal systems.  

The task was developed to separate learning about actions vs. learning about 

objects.  However, there are other differences between the conditions that may lead 

to behavioral effects.  For example, in the What condition, the preferred object is 

present on the screen, whereas in the Where condition, although the response zones 

are indicated on the screen, the animals have to internally generate the action that 

will most likely lead to reward.  Still, there is no reason to think monkeys with 

amygdala lesions are impaired in the ability to internally generate actions. An 

earlier study that examined the effects of amygdala lesions on conditional motor 
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learning found no impairment in learning new conditional problems in a 

deterministic setting, even though the responses were internally generated (172). It 

is also possible that the animals find one or the other condition to be more difficult.  

We have not systematically studied this, but in other work we have seen that some 

animals do better in either the Where relative to the What (11) or What relative to 

Where conditions (156, 173).  Therefore, animals do not consistently show a clear 

preference for one or the other condition. 

We have previously shown that learning oculomotor action sequences 

depends on a dorsal-lateral prefrontal, dorsal striatal circuit (132, 133).  The 

prefrontal and striatal nodes in this circuit processed sequence related information 

(132), and local injections of dopamine antagonists into the dorsal striatum led to 

deficits in performance during sequence learning (133).  The dorsal striatum also 

contains a stronger representation of action value than prefrontal cortex (130, 131).  

This suggests that the dorsal circuit is important for action learning, when actions 

are eye movements.  We have also found that lesions of the ventral striatum yield 

deficits specific to learning to select rewarding objects, without affecting learning 

to select rewarding actions, using the same What vs. Where task used here (11).  In 

other work we found that amygdala lesions affect learning to choose rewarding 

stimuli (10, 23).  We have not, however, carried out a double dissociation 
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experiment, using the same task with manipulations of either the dorsal or ventral 

striatum. 

Anatomy is often a guide to function.  Anatomically, the basolateral 

amygdala is strongly interconnected with the ventral, visual object system (127, 

140, 174).  It receives substantial projections from high level visual cortex (140), 

and correspondingly projects to the ventral striatum (175), and ventrolateral and 

orbital prefrontal cortex (176, 177).  Both prefrontal areas also receive input from 

temporal lobe, and not parietal lobe, visual areas (122).  The amygdala also 

interacts with the medial portion of the mediodorsal thalamic nucleus (178), which 

also projects to orbitofrontal cortex (179).   

Given the anatomical connections of the amygdala with the ventral visual 

pathway, we had hypothesized that it would be mostly related to learning to choose 

objects and not actions.  However, we found that lesions of the amygdala led to 

deficits in both learning to select actions and objects.  Numerically the choice 

accuracy effect was larger for selection of objects.  Although the amygdala has 

minimal connectivity with dorsal prefrontal areas that underlie oculomotor control 

(177) and no connections to the dorsal striatum, it does have substantial back-

projections across the visual hierarchy, including early visual cortex (140).  Given 

that early visual areas have minimal bilateral visual representation, these back-

projections may affect lateralized spatial representations.  Furthermore, 
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neurophysiology studies have shown that amygdala neurons contain 

representations of the spatial locations of rewarded objects (142, 143, 180-182).  

These spatially selective responses are also in contrast to the ventral striatum, 

which contains no spatial information (142).  Therefore, neurophysiology suggests 

a possible role for the amygdala in spatial-attentional processes, and the effects of 

these representations on behavior may be mediated by back-projections to early 

visual areas, or other pathways that connect these representations, 

polysynaptically, to areas that underlie eye movements.  In related work, the 

amygdala is also involved in revaluing arm-motor responses in devaluation 

paradigms, where the value associated with a specific motor response changes 

following a selective satiation procedure (161).    

Amygdala interactions with orbitofrontal and ventrolateral prefrontal cortex 

are also likely important for the learning processes we have examined (158, 183).  

Recent work in rats has shown that ablation of amygdala neurons that project to the 

OFC impairs reversal performance on a probabilistic spatial learning task (184).  

This deficit was due to the rats losing their ability to use positive outcomes to 

guide their choice behavior.  In this same study it was shown that ablation of OFC 

neurons projecting to amygdala enhanced reversal performance by destabilizing 

action values.  Related to this, it has been shown that lesions of the OFC impair 

reversal behavior, but subsequent lesions of the amygdala in the same animals 
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restore performance (185).  These results suggest that, under some circumstances, 

amygdala-OFC interactions may be detrimental to learning.   

Our Bayesian model assumes that a state inference process underlies 

reversal learning.  The model assumes the animals have a preference for one option 

(i.e., state A) which reverses at some point in the block (i.e. state B).  The posterior 

distribution over reversals is the estimate of where the animals switch states in 

each block.  Our data suggests that the amygdala is not involved in inferring state 

or state switches in our task.  Although monkeys with amygdala lesions have 

deficits in consistently choosing the better option in both conditions, they reverse 

their choice preference as well as controls.  Therefore, it is possible that state 

inference processes are being carried out by prefrontal cortical areas, as suggested 

by previous work (156, 186-192).  The interaction between cortical state-inference 

processes, and amygdala learning processes, may lead to deficits in some 

conditions, when there is a conflict between the best choices predicted by each 

process.  Under these conditions, lesions of the OFC to amygdala pathway may 

improve performance.  Future work can examine this possibility in more detail. 
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2.4.1 Conclusion  

We found that lesions of the amygdala led to deficits in consistently 

choosing the more frequently rewarded options.  We found these deficits in both 

the What condition, when animals had to learn to choose the best visual object, and 

in the Where condition, when the animals had to learn to choose the best action.  

The deficits in choice accuracy followed primarily from switching after a negative 

outcome, which led to decreased performance due to the stochastic schedules.  We 

did not find deficits in reversal accuracy; thus, monkeys with amygdala lesions 

were able to reverse their choice-outcome mappings, in both conditions, as well as 

controls.  Inferring reversals in choice-outcome mappings may, therefore, be more 

dependent on other brain areas, including cortex.  Overall, this suggests that the 

amygdala is important for consistently choosing a rewarded option.  Future work 

should focus on understanding how the network of areas that are important for 

learning orchestrates the multiple processes involved in learning in dynamic 

environments. 
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2.5 Supplemental Material  

Left Right 

Monkey Percent 
Estimated 
Damage 
from  
(Amygdala)  

Percent 
Estimated 
Damage 
from 
(Entorhinal 
Cortex)   

Percent 
Estimated 
Damage 
from 
(Perirhinal 
Cortex)   

Percent 
Estimated 
Damage from  
(Hippocampus)   

Percent 
Estimated 
Damage 
from  
(Amygdala) 

Percent 
Estimated 
Damage 
from  
(Entorhinal 
Cortex)   

Percent 
Estimated 
Damage 
from  
(Perirhinal 
Cortex)   

Percent 
Estimated 
Damage from  
(Hippocampus)   

M1 97.21% 68.92% 60.26% 27.14% 92.01% 46.18% 11.01% 24.99% 

M2 81.57% 10.69% 8.15% 3.25% 90.84% 4.00% 0.28% 3.22% 

M3 90.30% 42.62% 34.33% 14.26% 92.02% 81.25% 34.89% 41.89% 

M4 89.61% 55.76% 32.08% 41.35% 85.14% 57.68% 27.12% 14.38% 

Mean 89.67% 44.50% 33.71% 21.50% 90.00% 47.28% 18.33% 21.12% 

SD 6.40% 24.97% 21.30% 16.44% 3.29% 32.33% 15.61% 16.45% 

 

Figure S1. Estimates of the volume of lesion damage for intended (amygdala) and unintended (entorhinal 
cortex, perirhinal cortex, and hippocampus) brain structures.   
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Chapter 3: The Ventral Striatum’s Role in Learning 
from Gains and Losses 
 

3.1 Introduction  

Adaptive behavior requires that organisms choose wisely to gain rewards 

and avoid punishment. Reinforcement learning refers to the behavioral process of 

learning about the value of choices, based on choice outcomes.  From an 

algorithmic point of view, rewards and punishments exist on opposite sides of a 

single value axis.  Simple distinctions between rewards and punishments, however, 

and their theoretical expression on a single value axis, hide the considerable 

complexities that underlie appetitive and aversive reinforcement learning. Most 

notably, both rewards and punishments come in many forms.  Food, sex and 

ascending the social hierarchy are rewarding.  Correspondingly, loss of cached 

food, pain and social defeat are punishing (193).  Whether threat, pain, and loss of 

accumulated reward drive learning via the same neural systems, at any level, is 

unclear.  Furthermore, even when gains and losses are expressed with money, 

which has objective value, they can have differential subjective effects on behavior 

(194-196). 

Studies of reinforcement learning (RL) often use paradigms in which 

participants learn to choose options on the basis of reward frequency or reward 
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magnitude (10, 19, 159).  These studies have shown that the striatum, and the 

dopamine input to the striatum, underlies learning to select rewarding options.  

Theoretical models of RL extend directly to learning from losses, and therefore 

striatal mediated learning may generalize to these conditions (4).  This hypothesis 

is supported by work that has shown that dopamine neurons, which provide reward 

prediction error (RPE) signals to the striatum, increase their firing rates when 

rewards are unexpectedly delivered and decrease their firing rate when rewards are 

unexpectedly omitted (2, 5).  However, some studies have explicitly examined 

learning from gains and losses (as opposed to reward omission) and found that they 

are mediated by partially overlapping, but partially distinct systems that cross 

cortical and subcortical circuits.  For example, single neuron studies in macaques 

have shown that the dorsolateral prefrontal cortex, as well as the anterior cingulate 

cortex, encode both losses and gains in a competitive game in which conditioned 

reinforcers could be gained and lost (17).  In other work, the medial orbitofrontal 

cortex was found to encode gains and avoidance of losses, both of which have 

positive value (18).  This study also found that appetitive RPEs in reward trials (i.e. 

increases with unexpected rewards) correlated with the extent of activation in the 

ventral striatum (VS), whereas RPEs in aversive trials (i.e. increases with 

unexpected punishments) correlated with activation in the insula, consistent with 

other work (19).  In addition to the work in macaques and humans, work in 
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rodents, which has used various paradigms including conditioned place aversion 

and Pavlovian threat of shock, has shown that basolateral amygdala circuits 

through the VS encode reward mediated approach behavior, whereas circuits 

through the central nucleus of the amygdala encode avoidance (197-199).  Related 

experiments focusing on circuitry have found that dopamine inputs to the IL/PL 

regions of medial prefrontal cortex also encode avoidance behavior (200).  Thus, 

there is evidence that both overlapping and distinct systems underlie learning from 

rewards and punishments, using some paradigms.              

To examine the role of the VS in learning from both gains and losses, we 

adapted a previously used token reward system (17) to two-armed bandit RL tasks.  

In the tasks, rhesus monkeys made choices among options, and received tokens for 

their choices.  The tokens were represented by circles on the bottom of the screen 

and the animals periodically received juice in exchange for accumulated tokens.  

The use of tokens, which are secondary reinforcers, allowed us to study the effects 

of gains and losses on choices using one and the same unit of value.  We ran four 

variants of the task to address specific questions.  Three variants used deterministic 

outcomes, and one used stochastic.  We compared the behavioral performance of 3 

monkeys with lesions of the VS and 4 unoperated controls.      
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3.2 Methods   

3.2.1 Subjects  

The subjects included 6 male and 1 female rhesus macaques with weights 

ranging from 6-11 kg.  Three of the male monkeys received bilateral excitotoxic 

lesions of the VS.  The remaining four monkeys served as unoperated controls (3 

males and 1 female).  One of the male control animals was not able to complete all 

4 tasks, and therefore task 4 only has 3 controls.  For the duration of the study 

monkeys were placed on water control.  On testing days monkeys earned their 

fluid from their performance on the task.  Experimental procedures for all monkeys 

were performed in accordance with the Guide for the Care and Use of Laboratory 

Animals and were approved by the National Institute of Mental Health Animal 

Care and Use Committee. 

3.2.2 Surgery  

Three monkeys received two separate stereotaxic surgeries, one for each 

hemisphere, which targeted the VS using quinolinic acid.  After both lesion 

surgeries, each monkey received a cranial implant of a titanium head post to 

facilitate head restraint.  Unoperated controls received the same cranial implant.  
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Behavioral testing for all monkeys began after they had recovered from the implant 

surgery.  Lesioned animals were used in three previous studies (10, 11, 201).   

3.2.3 Lesion assessment   

Lesions of the VS were assessed from postoperative MRI scans.  We 

evaluated the extent of the damage with T2-weighted scans taken after the initial 

surgeries.  For the lesioned monkeys, MR scan slices were matched to drawings of 

coronal sections from a standard rhesus monkey brain at 1 mm intervals.  We then 

plotted the lesions onto standard sections.     

 

3.2.4 Task   

We tested rhesus macaques on three deterministic and one stochastic two-

arm bandit learning task.  We conditioned tokens as reinforcers, which allowed us 

to assess learning from both gains and losses within the same dimension.  All 

animals completed the 4 tasks in the same order.  Each experimental session was 

composed of nine novel and three familiar blocks that were randomly interleaved.  

In each novel block we introduced images the animal had never seen before and 

they had to learn the cue-outcome associations.  The images in the familiar blocks 

were kept constant for the duration of a task.  We completed testing on each task 

before beginning the next. 
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During the experiment the animals were seated in a primate chair facing a 

computer screen.  Eye movements were used as behavioral readouts.   In each 

single trial, the animals first acquired fixation (Fig. 1A).  After a fixation hold 

period, we presented two images, left and right of fixation.  The animals made an 

eye movement to one of the images to indicate their choice.  They were allowed to 

make an eye movement as soon as the targets appeared.  After a hold period, the 

number of tokens associated with their choice was added or subtracted from their 

accumulated tokens.  Every 4-7 trials, with the interval randomly selected, the 

animals received one drop of juice for each token they had at the time of cash-out.  

When each drop of juice was delivered one of the tokens disappeared from the 

screen.    

TkD- Token task 1 (Deterministic learning) 

In the first task (TkD), novel blocks consisted of 108 trials and familiar 

blocks of 36 trials.  Novel blocks consisted of 4 images the animals had never seen 

before.  Associated with each image was a value (+2, +1, -1, -2), such that if that 

image was chosen, the animal gained or lost the corresponding number of tokens.  

On each trial monkeys had to acquire and hold central fixation for 500 ms.  After 

monkeys held central fixation two of the images would appear to the left and the 

right of the fixation point.  The animal chose one by making a saccade to the image 

and holding for 500 ms.  The number of tokens associated with the image was then 
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added or subtracted from their total count, represented by circles at the bottom of 

the screen.  The animals could not have less than zero tokens, however.  Therefore, 

if they had one token and they chose a -2 image, they were reduced to 0 tokens.  

Every 4-7 trials their tokens were cashed out.  At cash-out, the animals were given 

one drop of juice for each token.  When each drop of juice was delivered, one 

token was removed from the screen.  There were six individual conditions in this 

task, defined by the possible pairs of images.  The conditions within a block of 108 

trials were presented pseudo-randomly.  The animals saw each condition twice, 

once on the left and once on the right, every twelve trials before seeing any 

condition a third time.  At the end of each 108 trial block we introduced 4 new 

images and the animals began the learning from scratch. 

NtK- Token task 2 (Deterministic learning) 

In the second task we included an image in the set which, if chosen, led to 

no change in the number of tokens.  Thus, at the beginning of each novel block we 

introduced 5 new images.  The images had associated token outcomes of +2, +1, 0, 

-1 and -2.  There were, therefore, 10 different pairs of objects which we refer to as 

conditions.  These were administered in blocks of 120 trials.  Each pair of images 

was seen twice every 20 trials, with each image presented once on the left and once 

on the right.  As before, the conditions were randomly interleaved within a mini-

block. 
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TkS – Token task 3 (Stochastic learning) 

In the third task, we examined performance when feedback was stochastic.  

In this task, at the beginning of each block we introduced 4 new images with 

associated reward magnitudes of +2, +1, -1 and -2.  The design was otherwise the 

same as the first token task.  Except, in this task, in 75% of the trials the number of 

tokens was adjusted by the magnitude associated with the chosen option, but in 

25% of the trials there was no change in the number of tokens.  This makes 

learning more difficult, and information has to be integrated across a larger number 

of trials to learn the correct choice.   

TkL- Token task 4 (Deterministic learning) 

In the final task, we again used deterministic feedback to examined 

performance.  This version of the task was similar to task 1 (TkD) with two 

differences.  First, we changed the value of the -2 cue to -4.  So the cues for this 

task were +2, +1, -1, -4.  Second, we gave the animals an endowment of 4 tokens 

after every cash-out to maintain motivation, and to increase the number of trials on 

which they would experience the actual 4 token loss.   

In some trials the animals had zero tokens and chose a loss cue.  In this case they 

had no change in tokens.  Therefore, the animals would know that they had not 

chosen a gain token, but they would not know the magnitude of the loss.  In task 1 
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this happened 12.5% of the time, in task 2 17.5% of the time, in task 3 13.2% of 

the time and in task 4 2.6% of the time.   

3.2.5 Images & eye tracking   

Images provided as choice options were normalized for luminance and 

spatial frequency using the SHINE toolbox for MATLAB (148). All images were 

converted to grayscale and subjected to a 2D FFT to control spatial frequency. To 

obtain a goal amplitude spectrum, the amplitude at each spatial frequency was 

summed across the two image dimensions and then averaged across images. Next, 

all images were normalized to have this amplitude spectrum. Using luminance 

histogram matching, we normalized the luminance histogram of each color channel 

in each image so it matched the mean luminance histogram of the corresponding 

color channel, averaged across all images. Spatial frequency normalization always 

preceded the luminance histogram matching. Each day before the monkeys began 

the task, we manually screened each image to verify its integrity. Any image that 

was unrecognizable after processing was replaced with an image that remained 

recognizable.  Eye movements were monitored and the image presentation was 

controlled by PC computers running the Monkeylogic (version 1.1) toolbox for 

MATLAB (149) and Arrington Viewpoint eye-tracking system (Arrington 

Research).    



 

 

123 
 

3.2.6 Reinforcement learning models   

We fit a large set of models that varied in the number of parameters they 

used to model the conditions.  In the results we focus on 4 models that most often 

accounted for behavior.  All models were built around a Rescorla-Wagner, or 

stateless RL value update equation given by: 

(1)  𝑣𝑣𝑖𝑖(𝑡𝑡 + 1) =  𝑣𝑣𝑖𝑖(𝑡𝑡) +  𝛼𝛼𝑗𝑗�𝑅𝑅 −  𝑣𝑣𝑖𝑖(𝑡𝑡)�. 

These values were then passed through a soft-max function to give choice 

probabilities for the pair presented in each trial: 

(2)  𝑑𝑑𝑗𝑗(𝑡𝑡) = (1 +  𝑒𝑒𝛽𝛽𝑘𝑘�𝑣𝑣𝑖𝑖(𝑎𝑎)−𝑣𝑣𝑗𝑗(𝑎𝑎)+ℎ𝑖𝑖(𝑎𝑎)−ℎ𝑗𝑗(𝑎𝑎)�)−1,𝑑𝑑𝑖𝑖(𝑘𝑘) = 1 −  𝑑𝑑𝑗𝑗(𝑘𝑘). 

The variable 𝑣𝑣𝑖𝑖  is the value estimate for option 𝑖𝑖, 𝑅𝑅 is the change in the number of 

tokens that followed the choice in trial 𝑡𝑡, and 𝛼𝛼𝑗𝑗  is the condition dependent 

learning rate parameter, for condition j.  In addition, we also used, for some 

models, condition dependent values of the choice consistency or inverse 

temperature parameter, 𝛽𝛽𝑘𝑘.  The variable ℎ𝑖𝑖(𝑡𝑡) implemented a choice 

autocorrelation function (202), which increased the value of a cue that had 

occurred in the same location, recently.  The autocorrelation function was defined 

as:  

(3)  ℎ𝑖𝑖(𝑡𝑡) =  𝜅𝜅𝑒𝑒−𝜆𝜆(𝑎𝑎−𝑎𝑎𝑙𝑙(𝑖𝑖)), 
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Where the variables, 𝜅𝜅 and 𝜆𝜆 were free parameters scaling the size of the effect and 

the decay rate, respectively.  The variable, 𝑡𝑡𝑙𝑙(𝑖𝑖), indicates the last trial on which a 

given cue, 𝑖𝑖, was chosen in a given location.  There were eight separate values for 

𝑡𝑡𝑙𝑙(𝑖𝑖) as it tracked the four cues across locations, except for Task 2 (TkN) which had 

ten values.   

We then maximized the likelihood of the animal’s choices, D, given the parameters 

present in the model under consideration, using as a cost function: 

(4)  𝑓𝑓�𝐷𝐷�𝛼𝛼𝑗𝑗 ,𝛽𝛽𝑘𝑘 , 𝜅𝜅, 𝜆𝜆  � =  ∏ [𝑑𝑑1(𝑘𝑘)𝑐𝑐1(𝑘𝑘) + 𝑑𝑑2(𝑘𝑘)𝑐𝑐2(𝑘𝑘)𝑎𝑎 ]. 

Where 𝑐𝑐1(𝑘𝑘) was an indicator variable that took on a value of 1 if option 1 was 

chosen and zero otherwise, and 𝑐𝑐2(𝑘𝑘) took on a value of 1 if option 2 was chosen 

and 0 otherwise.   

 The VALENCE model had one inverse temperature, and two learning rates, 

1 for positive cues and one for negative cues.  The CUE model had one inverse 

temperature, and one learning rate for each cue.  Note that the null cue in Task 2 

would always have a 0 reward prediction error, because the reward associated with 

this cue was 0, and its values started at 0.  Therefore, it does not need a learning 

rate. 

We also explored addition models that had: i. one inverse temperature and 

one learning rate, ii. two inverse temperatures, one for the loss-loss condition and 

one for the rest of the conditions and two learning rates, one for positive outcomes 
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and one for negative outcomes.  iii. two inverse temperatures, one for the 2 v 1 

condition, and one for the rest of the conditions, and two learning rates, one for 

positive feedback, one for negative feedback.  None of these models predicted 

behavior well, however, so to simplify presentation we do not show their results.   

3.2.2 ANOVA models  

To quantify differences between choice behavior in each group, we 

performed an arcsine transformation on the choice accuracy values from each 

session, as this transformation normalizes the data (152).  We then carried out an 

N-way analysis of variance (ANOVAN).  Monkey and session were included as 

random effects with session nested under monkey.  All other factors were fixed 

effects.  The ANOVA on learning rate parameters across experiments was also 

done as a mixed effects ANOVA with session and monkey as random effects and 

experiment and cue as fixed effects.   

All within group post-hoc analysis of aborted trials and reaction time was 

done using the multcompare function in MATLAB, specifically using the 

Bonferroni method.  Unless otherwise stated, multcompare within group stats will 

only be reported for the condition that is the least significant.     
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3.2 Results 

The monkeys were run on a series of four tasks. In each task, trials involved 

a forced choice between two images.  Selection of a particular image led to 

increases or decreases in accumulated tokens (Fig. 1A).  The outcome of each trial 

following a choice was realized on the monitor screen as a change in the number of 

tokens the animal had accumulated.  Every four to seven trials, with the interval 

chosen randomly, we cashed out the accumulated tokens.  During cash-out the 

monkeys received one drop of juice for each token.  The animals had to learn over 

trials to select the image from the pair that maximized their gains and minimized 

their losses.  When the monkeys had no tokens and they chose a loss cue there was 

no change in the tokens.  The animals could also not incur negative token counts.   

 The tasks were run in a fixed sequence (Fig. 1A). Each task evaluated the 

monkeys’ choices during learning and performance on novel or familiar stimulus-

outcome associations. In the novel blocks, the monkeys learned stimulus-reward 

associations for a novel set of images. In the familiar blocks (See SI Appendix 

Figs. S1-S4), the monkeys chose between stimuli they had repeatedly sampled over 

the course of prior experimental sessions.  The stimulus-outcome associations of 

these familiar choice options were fixed for the duration of the experiment.  Novel 

and familiar blocks were randomly interleaved each day.  The novel blocks 

allowed us to examine the rate at which cue-reward associations were learned, 
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whereas the familiar blocks allowed us to examine asymptotic performance with 

overlearned cue-reward associations.  
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3.2.1 Choice Behavior  

TkD  

We first evaluated the ability of the monkeys with or without lesions of the 

VS to learn deterministic stimulus-outcome associations.  In this task, at the 

beginning of each novel block, the monkeys encountered four images they had not 

seen before. Each image was associated with a fixed, deterministic gain or loss of 

tokens (+2, +1, -1 or -2 tokens). Two of the images were presented as choice 

options on each trial. This resulted in six unique pairs of images, which we refer to 

as conditions. In each block, conditions were randomly interleaved over intervals 

of twelve trials until each condition occurred 18 times in novel (Fig. 2) blocks and 

6 times in familiar (See SI Appendix Fig. S1) blocks.  

 In novel blocks, the monkeys learned the stimulus-outcome associations 

efficiently. With experience, they were able to choose the better option of the pair 

on a high proportion of trials (Fig. 2).  There were differences in performance 

across conditions (Condition; F(5, 20) = 140, p < 0.001) and differences in 

performance across trials in the different conditions (Condition x Trial; F(85, 38) = 

5.7, p < 0.001).  The monkeys performed best in the conditions in which there was 

a loss paired with the largest reward.  For example, they most often picked the best 

cue when choosing between the +2 and -1 and +2 and -2 conditions.  This effect 

was driven largely by the frequency with which they experienced the outcomes 
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associated with each cue and the differences in the values of the cues.  The animals 

most frequently picked the +2 cue across all conditions, and therefore most 

frequently received feedback on its value, and the value of this cue would also 

asymptote at +2.   

 In task 1, there were no differences between groups (Group; F(1, 9) = 0.1, p 

= 0.7611) and no differences between the groups  across conditions (Group x 

Condition; F(5, 22) = 0.5, p = 0.7801).  The monkeys did not perform well in the -

1 v -2 condition, although across the groups there was a significant positive 

correlation between choice accuracy and trial, which indicates learning (t(6) = 9.1, 

p < 0.001).  When we examined the groups individually, we found that both groups 

learned to choose the smaller loss more often with experience (Control: t(3) = 6.9, 

p = 0.006), VS: t(2) = 13.4, p = 0.005).     

 

 

  
 
Figure 2. TkD Deterministic Reinforcement Learning of Stimulus-Outcome Associations. Task 1 choice 
behavior.  Error bars are +/- s.e.m. with N = number of animals.  Plots shows the fraction of times monkeys 
chose the higher value option averaged across novel blocks for each group. Numbers at the top of each plot 
indicate the condition, which corresponds to the cues which were shown in those trials. 
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NtK  

 In task 2, we used five cues in each block with cue-outcome mappings of +2, 

+1, 0, -1 and -2.  This resulted in 10 pairs of cues and therefore 10 conditions.  In 

task 2, both the novel (Fig. 3) and familiar (See SI Appendix Fig. S2) blocks were 

composed of 120 trials, 12 per condition.  Therefore, in the novel blocks the 

monkeys saw each pair of cues 12 times.  Inclusion of the null cue allowed us to 

test two specific hypotheses.  First, does the absolute difference between the value 

of the cues drive performance independent of the reward value associated with the 

cues?  Second, can animals learn to select the null cue when it is paired with a loss 

cue?   

 In the novel blocks (Fig. 3), there was again a difference in performance 

across conditions (Condition; F(9, 19) = 54.7, p < 0.001) and also a difference in 

performance across trials in the different conditions (Condition x Trial; F(99, 398) 

= 8.2, p < 0.001).  There were no differences between groups (Group; F(1, 9) = 

0.1, p = 0.778) and no differences by condition (Group x condition; F(9, 14) = 0.6, 

p = 0.793).  There was also no difference between groups when we examined only 

the 2 v 1 condition (Group; F(1,5) = 3.6, p = 0.117).   

 Similar to task 1, when we grouped all the animals together there was a 

significant correlation between trial and performance when the animals had to 

choose between the two loss cues (t(6) = 3.3, p = 0.016).  However, when we 



 

 

131 
 

separated the groups, neither group reached significance alone (Controls: t(3) = 

2.3, p = 0.103; VS: t(2) = 3.1, p = 0.092).  There was also significant learning 

when the animals had to choose between the 0 and -1 cue across groups, but not in 

either group individually (t(6) = 3.9, p = 0.007; Controls: t(3) = 2.9, p = 0.062; VS: 

t(2) = 2.1, p = 0.164).  When the animals had to choose between the 0 and -2 cues 

there was learning across groups (t(6) = 5.7, p = 0.001).  However, when we 

examined the groups separately we found that only the controls performed 

significantly better than chance (Controls: t(3) = 3.5, p = 0.037; VS: t(2) = 4.1, p = 

0.053).   
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Figure 3. NtK Deterministic Reinforcement Learning Augmented by a Null Cue. Task 2 choice behavior.  
Error bars are +/- s.e.m. with N = number of animals.  Plots shows the fraction of times monkeys chose the 
higher value option averaged across novel blocks for each group.  Numbers at the top of each plot indicate the 
condition, which corresponds to the cues which were shown in those trials.   
 
 
TkS  

In task 3, we introduced four cues with cue-outcome associations of +2, +1, 

-1 and -2.  However, the cue-outcome associations were stochastic.  Therefore, 

when the animals chose one of the options, they received the outcome associated 

with that option in 75% of the trials, and no outcome (i.e. no change in tokens) in 

25% of the trials.  We introduced this task because we have previously seen that 

monkeys with VS lesions learn poorly under stochastic schedules (10), and the VS 

may be more important for slow learning, which is more affected by trial-by-trial 

stochasticity (203).  Both novel (Fig. 4) and familiar (See SI Appendix Fig. S3) 

blocks were 108 trials.  
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 Performance was consistent with the previous tasks (Fig. 4).  In the novel 

blocks, there was a difference in performance across conditions (Condition; F(5, 

38) = 315.0, p < 0.001) and learning also differed across trials in the different 

conditions (Condition x Trial; F(85, 135) = 7.4, p < 0.001).  In addition to these 

effects, and unlike the case for the tasks with deterministic outcomes, there was an 

overall effect of group (Group; F(1, 70) = 15.2, p < 0.001).  When we examined 

differences between groups in each condition, we found that the 2 v 1 condition 

approached significance, but this did not survive correction for 6 comparisons 

(Group; F(1,5) = 6.73, p = 0.049).  In this task monkeys showed learning when 

choosing between the -1 and -2 cues (All animals: t(6) = 2.7, p = 0.037).  When we 

looked at the groups separately we found that only controls learned to choose the 

smaller loss, (Control: t(3) = 3.3, p = 0.045; VS: t(2) = 0.7, p = 0.523).   

 

 

 

 
 
Figure 4. TkS Stochastic Reinforcement Learning. Task 3 choice behavior.  Error bars are +/- s.e.m. with N = 
number of animals.  Plots shows the fraction of times monkeys chose the higher value option averaged across 
novel blocks for each group. Numbers at the top of each plot indicate the condition, which corresponds to the 
cues which were shown in those trials. 
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TkL  

 In task 4, we introduced four cues with cue-outcome associations of +2, +1, 

-1, -4.  We added the larger loss cue to see if animals would learn to pick the 

smaller loss cue more effectively, when the difference between the two loss cues 

was larger.  We also gave the monkeys an endowment of four tokens on the first 

trial after each cash-out.  We did this to ensure that the animals had sufficient 

tokens to experience the large loss and to maintain motivation.  Novel (Fig. 5) and 

Familiar (See SI Appendix Fig. S4) blocks were both composed of 108 trials, with 

18 trials per condition. 

 Performance in novel blocks again showed a difference in performance 

across conditions (Fig. 5; Condition; F(5,43) = 231.0, p < 0.001) and a difference 

in performance across trials in different conditions (Condition x Trial; F(85,313) = 

4.6, p < 0.001).  There was also a main effect of group (Group; F(1,31) = 30.7, p < 

0.001).  None of the group effects in individual conditions survived multiple 

comparisons corrections.  The monkeys were able to learn to choose the smaller of 

the two losses (t(5) = 10.8, p < 0.001).  In addition, when we examined each group 

separately we found that both groups were able to learn to choose the smaller of 

the two losses (Control: t(2) = 5.2, p = 0.035), VS: t(2) = 14.6, p = 0.004).    
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Figure 5. TkL Deterministic Reinforcement Learning with a Large Loss.  Task 4 choice behavior.  Error bars 
are +/- s.e.m. with N = number of animals.  Plots shows the fraction of times monkeys chose the higher value 
option averaged across novel blocks for each group.  Numbers at the top of each plot indicate the condition, 
which corresponds to the cues which were shown in those trials. 
 

3.2.2 Reinforcement Learning Models  

Next, we fit RL models to the data in the novel blocks in all tasks.  We fit 

two models which varied in the number of free parameters used to model the 

choice behavior.  One model used one parameter for positive cues and one 

parameter for negative cues (VALENCE model), thus allowing learning rates to 

vary for positive vs. negative outcomes.  The second model used one parameter for 

each cue (CUE model), allowing for different learning rates for each outcome.  The 

VALENCE model fit behavior well in most conditions, particularly in the control 

group (See SI Appendix Fig. S5).  However, the VALENCE model overpredicted 

performance in the 2 v 1 condition.  This could be seen, for example, in task 3 

which had stochastic outcomes, and in which there was a large discrepancy 

between behavior and model predictions in the 2 v 1 condition (See SI Appendix 

Fig. S5 B, D). This effect was strongest for the VS animals (See SI Appendix Fig. 

S5D) but could also be seen for the control animals (See SI Appendix Fig. S5B).  
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In the other conditions, however, the VALENCE model fit well.  The CUE model 

did not show biases in any conditions in either group (See SI Appendix Fig. S5 A, 

C).   

 Averaged across tasks the VALENCE model overpredicted performance in 

the 2 v 1 condition in both groups (Fig. 6A, B; VALENCE Model vs. behavior, 

F(1,5) = 167.9, p < 0.001).  The VALENCE model over-predicted behavior more 

for the VS group than the controls (Group x VALENCE Model vs. Behavior, F(1, 

5) = 19.4, p = 0.007).  The CUE model, on the other hand, did not differ from 

behavior in the 2 v 1 condition, across tasks (CUE Model vs. behavior, F(1, 5) = 

0.2, p = 0.582), although the fit did differ by group (CUE model vs. Behavior x 

Group, F(1, 5) = 14.2, p = 0.016), with a closer fit between behavior and model in 

the VS group.  We also used the Bayesian Information Criterion (BIC) to assess 

which model fit best in each session for each animal and task.  In all animals in 

both groups, averaged across tasks, the CUE model was more frequently the best 

model than the VALENCE model.  Across groups there was a preference for the 

CUE model over the VALENCE model (t(6) = 2.84, p < 0.030, 57% of sessions 

best fit by CUE model).  This preference was not significant individually in the 

control (t(3) = 1.6, p = 0.210, 57%) or VS animals (t(2) = 3.03, p = 0.094, 57%).  

 Next, we compared the learning rate parameters between groups from the 

CUE model (Fig. 6C).  We found that the parameters varied across cues (Fig. 6C; 
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F(3, 15) = 45.6, p < 0.001) and tasks (F(3, 14) = 4.0, p = 0.030).  Learning rates 

were lower in the VS group (Group; F(1, 5) = 9.75, p = 0.026).  The groups did not 

differ across cues (Group x cue, F(3, 15) = 2.9, p = 0.070) or tasks (Group x task, 

F(3, 14) = 1.8, p = 0.193).  We also examined effects within the gain cues and 

within the loss cues, separately.  There were group differences within the gain cues 

(Group, F(1, 5) = 10.35, p = 0.024) and these effects differed marginally across the 

two cues (Group x cue, F(1, 5) = 9.3, p = 0.029).  There were no group differences 

in the loss cues (Group, F(1, 5) = 2.1, p = 0.206) but the groups did differ by cue 

(Group x cue, F(1, 5) = 9.2, p = 0.029).  When we examined group differences in 

the individual tasks, we found a difference in groups across cues for Task 3 with 

stochastic outcomes (Fig. 6D, Group x cue, F(3, 15) = 5.0, p = 0.014) but no other 

group differences in the other tasks (p > 0.05).  We also examined the inverse 

temperatures from the model fits.  These differed by experiment (F(3, 14) = 4.4, p  

= 0.021).  However, there were no differences across groups (F(1, 5) = 0.0, p = 

0.887) and only a trend by group across experiments (F(3, 14) = 1.5, p = 0.267).  

None of the choice autocorrelation parameters (see methods) varied by group (p > 

0.05). 

 Therefore, across tasks, the animals with VS lesions consistently had deficits 

in learning to discriminate between the two gain cues in the 2 v 1 condition, and 

this manifested as a significantly larger deficit relative to the VALENCE model 
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predictions in the 2 v 1 condition and a significant reduction in learning rates 

relative to controls specifically for the gain cues. 

 
 

 
Figure 6. Best fitting reinforcement learning models.  A. Overlay of behavior and predicted performance, 
averaged across experiments, for the 2 v 1 condition for the control animals.  B. Same as panel A for the VS 
animals. C. Learning rate parameters averaged across tasks, extracted from the RL CUE model.  Error bars are 
SEM across monkeys in each group.  D.  Average learning rates for the CUE model, cue parameters, in Task 3, 
with stochastic feedback. Control animals are blue and VS animals are red.     
 

3.2.3 Aborted Trials & Reaction Times 

We also examined aborted trials and reaction times across tasks (Fig. 7).  It 

was sometimes the case that, when the two images were presented, the animals 

broke fixation and did not select either image in the novel (Fig. 7A) or familiar 
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conditions (Fig. 7B).  The monkeys broke fixation more frequently when they had 

to choose between the -1 and -2 cues.  This was true even though following an 

error we repeated the same condition.  This differed by condition (Novel: 

F(24,116) = 17.9, p < 0.001; Familiar; F(24, 116) = 9.92, p < 0.001) and task 

(Novel: F(3, 23) = 4653.0, p < 0.001; F(3, 16) = 155.9, p < 0.001).  There were, 

however, no interactions of task with other variables, and there was no effect of 

group (Novel: F(1,5) = 2.26, p = 0.189; Familiar: F(1,5) = 0.85, p = 0.400).  In 

novel and familiar blocks, both groups aborted more trials in the -1 v -2 condition 

than any of the other conditions, when compared pair-wise (Controls: p < 0.001; 

VS: p < 0.001 for all pairs).  The number of aborted trials was, however, larger in 

the familiar than novel tasks in the -1 v -2 condition (Novel vs. Familiar, F(1,5) = 

8.95, p = 0.031).   

Next, we examined reaction times.  In both novel (Fig. 7C) and familiar 

(Fig. 7D) blocks, there were differences in reaction times across conditions (Novel: 

F(24,116) = 11.4, p < 0.001; Familiar: F(24,115) = 15.2, p < 0.001) and marginal 

differences across tasks (Novel: F(3,14) = 3.4, p = 0.046; Familiar: F(3, 14) = 4.09, 

p = 0.029.  However, there were no differences between groups (Novel: F(1,5) =  

0.45, p = 0.534; Familiar: F1,5) = 0.25, p = 0.636) and no higher-order interactions 

(p > 0.05).  In both the novel and familiar blocks, animals in both groups were 
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slowest when choosing between the two loss cues relative to all other conditions 

(Controls: p < 0.001; VS: p < 0.001 for all pairs). 

 

 
 
Figure 7. Aborted trials and reaction times averaged across tasks.  Note that the data from Task 2 are 
averaged here except the conditions that included a Null cue (i.e. 0/1, 0/-1, etc).  See Fig. S6 for all conditions 
of Task 2.  In addition, the ANOVA model included all conditions, as they were nested under Task.  A. 
Aborted trials in the novel conditions.  Errors indicate the fraction of trials where the animals held initial 
fixation, but then failed to select one of the choice options.  B. Aborted trials in the familiar condition.  C. 
Reaction times in novel conditions. D. Reaction times in familiar conditions. 
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3.4 Discussion 

We carried out four tasks in which we examined learning from gains and 

losses, using tokens as secondary reinforcers.  We found that monkeys learned to 

make choices that increased their tokens and to avoid choices that decreased their 

tokens.  When we examined group differences in learning novel cues, monkeys 

with VS lesions were impaired when the feedback was stochastic, and when the 

large loss choice had a value of -4.  We also fit RL models to behavior and found a 

preference for the CUE model, which had a separate learning rate for each of the 

cues, relative to the VALENCE model which had one learning rate for positive 

outcomes and one for negative outcomes.  When we compared learning rates from 

this model between groups, we found that animals with VS lesions had 

significantly reduced learning rates specifically for the gain cues.  Furthermore, 

when we examined behavior relative to the VALENCE model, to see where it 

failed to account well for choices, we found that it specifically overpredicted 

performance in the 2 v 1 condition, and this overprediction was larger in the VS 

animals than the control animals.  This was after optimizing learning rates in this 

model.  Therefore, animals with VS lesions show specific deficits in learning to 

choose between secondarily reinforced rewarding options, with no apparent 

deficits in learning to choose between gain and loss cues, or between two loss cues.  
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 Token based reward mechanisms have been used previously to motivate 

behavior in macaques (17).  We found that monkeys learned effectively to choose 

options that increased their tokens and avoid options that decreased their tokens.  

In addition, aversive stimuli can affect behavior in multiple ways (193).  

Consistent with this we found that when monkeys had to choose between two loss 

options, they learned to choose the option leading to the smaller loss. They also 

aborted significantly more trials and had the longest reaction times when they had 

to choose between two losses.  By these measures our monkeys found losing 

tokens to be aversive.  We found effects of VS lesions on choice behavior, but not 

reaction times or aborted trial behavior.  Therefore, these behaviors maybe be 

mediated by different systems, or the VS may contribute more to choice behavior 

than speed of response and avoidance.  

Distinct circuitry underlying appetitive and aversive learning 

 Recent work has attempted to delineate separable neural circuits underlying 

appetitive and aversive learning.  For example, Lammel et al. suggested that a 

circuit from the lateral habenula, through a subset of dopamine neurons that 

responded to aversive stimuli, to the IL/PL region of medial prefrontal cortex, was 

important for aversive learning (200).  Distinct from this, another circuit from the 

rostral-medial tegmental nucleus, through a subset of dopamine neurons that 

responded to appetitive stimuli, to the VS, was important for appetitive learning.  
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However, subsequent anatomical work has not supported the suggestion that 

dopamine neurons with different projection targets have different inputs (204, 

205).  Other work has suggested that basolateral amygdala neurons that project to 

the VS are important for appetitive learning, and basolateral amygdala neurons that 

project to the central nucleus of the amygdala are important for aversive learning 

(197, 206).  Circuitry connecting the amygdala to the dorsal anterior cingulate 

cortex has also been implicated in aversive learning (207).  Inactivation of both 

ventrolateral prefrontal cortex, and orbitofrontal cortex has also been shown to 

increase sensitivity to punishment (208).  And there is extensive work supporting 

the amygdala’s role in learning threat of shock (209). 

 In addition to the circuit work in rodents and nonhuman primates, other 

work has directly examined learning in the context of winning money, or not 

losing money, which has similarities to our use of tokens.  This work has also 

suggested that the VS, and dopamine modulation of VS activity, is important for 

learning to choose rewarding options (19).  The same study suggested that the 

insular cortex was important for learning to avoid losing money, a finding 

supported by work in patients with insular cortex lesions (210).  Notably, avoiding 

monetary losses has consistently been shown to be independent of dopamine (19, 

211).  Additional work has shown that aversive pruning, which is the process of 

eliminating choices that lead to future situations in which large punishments might 
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be experienced, engages the subgenual cingulate cortex (212).  It has also been 

shown that microstimulation in a related subgenual cingulate region can bias 

choices away from aversive options, although not in the context of learning (213).  

Thus, the VS has often been implicated in appetitive learning.  Aversive learning, 

on the other hand, has been linked to dorsal cingulate cortex, subgenual cingulate 

cortex, insular cortex and the central nucleus of the amygdala.  Our data are 

consistent with the hypothesis that the VS plays a specific role in learning about 

gains, without contributing to learning about or choosing when losses are involved.  

In our behavioral data the deficits in learning about gains were specific to choosing 

between pairs of gains and did not manifest when a gain was paired with a loss.   

However, the RL model showed that learning rates were overall lower for gain 

cues. 

 The differences between the circuit work in rodents and the systems work in 

humans and monkeys that have identified different systems for aversive learning 

may in part be due to differences in the appetitive and aversive modalities used.  

Appetitive and aversive stimuli come in many forms, and these are processed in 

separable systems, at some level (193, 214).  For example, nociceptive information 

relayed via the dorsal horn of the spinal cord is distinct from information about 

threats from conspecifics, which may arrive via the auditory or visual system, 

depending on the nature of the threats.  In addition, the processing of token losses 
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would presumably involve different neural circuits from conditioned defensive 

responses to shock or loud noise.  It is currently not clear where information about 

appetitive or aversive outcomes arising from different modalities is integrated, or if 

it is ever integrated.  Thus, there may be no simple circuit that processes all 

appetitive or aversive information, independent of modality.   

 Although the VS is not often implicated in aversive learning, studies have 

shown that VS neurons respond to both rewarding and aversive stimuli (215).  In 

addition, VS neurons respond to rewarding stimuli that have been subsequently 

negatively conditioned using injections of lithium chloride (216).  Other work has 

shown that cues that have been negatively conditioned can lead to increased 

dopamine release in the VS shell, but decreased dopamine release in the VS core 

(217).  In contrast to this, however, tail pinch has been shown to increase dopamine 

release in the dorsal striatum and the core of the VS (218, 219).  Removal of tail 

pinch also leads to increased dopamine release in the VS shell (218), consistent 

with the hypothesis that pain relief can be rewarding (220).  Further work has 

shown that oral infusions of quinine, which is aversive, leads to decreased 

dopamine concentration in the VS core, whereas oral infusion of sucrose leads to 

increased dopamine concentration (221).  Therefore, the relationship between 

single neuron responses, dopamine concentration and appetitive and aversive 
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stimuli in the VS core and shell is complex and depends on the modality of the 

stimulus and perhaps anesthesia state. 

Learning deficits in VS lesioned animals 

 In our study in the novel condition, we found differences between monkeys 

with VS lesions and unoperated controls in both task 3, in which outcomes were 

stochastic, and task 4 in which we used a large loss.  We have previously found 

that animals with VS lesions learn more effectively when outcomes are 

deterministic, and have substantial deficits when outcomes are stochastic (10, 11, 

201).  The deficits are consistently largest when the monkeys with VS lesions have 

to learn to choose between two options that have the same reward magnitude, but 

differ in reward probability. This may be consistent with work showing that lesions 

of the VS affect dopamine coding of prediction errors for reward delays, but not 

reward magnitudes (26).  Reward rate estimation, which is required for learning 

values in tasks with stochastic outcomes, requires estimates of time between 

rewards. 

 In the current study the two options always had different reward magnitudes, 

but the same reward probabilities.  While the monkeys with VS lesions had deficits 

in these tasks, the effect was smaller than we observed in a series of tasks with 

stochastic outcomes.  We have suggested that the amygdala, and also cortical 

systems (4, 158), learn in parallel with the VS.  The amygdala, however, learns 



 

 

147 
 

with a higher learning rate than the VS (10, 203).  Therefore, in monkeys with VS 

lesions the amygdala and anatomically related cortical systems may play a larger 

role in learning than in intact monkeys.  The higher learning rate amygdala system 

is more susceptible to noise, because it rapidly updates value estimates following a 

non-rewarded choice, and values therefore tend to oscillate when feedback is 

stochastic (203).  The VS updates values with a slower learning rate than the 

amygdala.  When the VS is intact, learning is less affected by stochastic outcomes 

because the VS value estimates are updated less, after individual outcomes, thereby 

offsetting the rapid updating carried out by the amygdala.  Thus, lesions of the VS 

lead to larger deficits when feedback is stochastic, and particularly large deficits 

when only reward probability, and not reward magnitude, can be used to optimize 

choices.  It is likely that the cortex, and mediodorsal thalamus, also contribute to 

learning in these tasks (158, 222, 223).  However, how this mono-synaptically 

connected circuit works together to mediate learning is a topic for future research. 

 We also found group differences in the familiar condition in all tasks.  

Except in task 1, however, the behavioral differences tended to be rather subtle.  

One possible explanation for the finding of subtle yet significant differences in the 

familiar conditions is that the controls often had near perfect performance in some 

conditions.  Because accuracy is a bounded variable (and despite the fact that we 

used a transform to normality before running the ANOVAs), this near perfect 
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performance leads to very small variance, which leads to significant differences.  

Therefore, the subtle differences in choice accuracy were significant.  In most 

conditions, performance was very high in the conditions that had at least 1 gain 

cue.  Performance in the -1 v -2 condition, or in the 0 v loss conditions in task 2, 

never reached high levels, even after extensive experience.   

 In previous tasks, we also found that monkeys with VS lesions responded 

faster than controls (10, 11).  In the current task, there were no group differences in 

reaction times, and there was a trend for the monkeys with VS lesions to respond 

more slowly than the controls.  Thus, the presence of loss cues in the token tasks 

slowed the reaction times of the VS animals.  Previously, we also found that much 

of the deficit in the VS animals, relative to controls, could be accounted for if 

reaction times were matched between groups (10).  This followed because there 

was a speed accuracy trade-off, such that responding quickly led to less consistent 

choice of the best cue.  Thus, the slowed reaction times in the current task may 

partially explain the accurate performance of the VS lesioned animals in several 

conditions. 

RL model 

 An RL model with a separate learning rate for each cue (CUE model) best fit 

the data for both the control and VS groups in all tasks.  For most of our tasks, the 

VALENCE model is the same as a model that would fit one learning rate for 
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positive reward prediction errors and one for negative reward prediction errors, 

because values start out at 0 and outcomes are deterministic.  When we examined 

learning rates across experiments, the monkeys with VS lesions had reduced 

learning rates specifically for gain cues.  When we examined performance of the 

models in each condition, to see where the VALENCE model failed to account for 

behavior, we found that it overpredicted performance in the 2 v 1 condition in both 

groups, but that this effect was larger in the monkeys with VS lesions relative to 

controls.  Therefore, analysis of learning across experiments showed specific 

deficits in the animals with VS lesions in learning the values of gain cues, with no 

overall deficits in learning the values of loss cues. 

 As a final point, the monkeys in both groups also appeared to learn poorly in 

the -1 v -2 condition, although they did show statistically significant learning in all 

tasks.  We did not find, however, that allowing for a different choice consistency 

parameter (i.e. inverse temperature) for loss choices improved the fit of the RL 

model.  Both the CUE and VALENCE models used different learning rates for 

gain and loss cues and learning was slower in the loss conditions.  In addition to 

the smaller learning rates for the loss cues, however, these cues were also chosen 

less often, and therefore their values were less frequently updated.  For example, 

the +2 cue was frequently chosen in every pair it was part of, whereas the -2 cue 

was rarely chosen.  Value updates only happen in the RL model when an option is 
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chosen and the outcome is experienced.  Therefore, the decreased learning in the -1 

v -2 condition follows both from decreased learning rates and less experience with 

the outcomes associated with those options. 

3.4.1 Conclusion  

We compared learning from gains and losses in animals with VS lesions and 

an unoperated control group.  We found behavioral deficits in monkeys with VS 

lesions in two of the 4 tasks, when comparing choice accuracy.  These deficits 

were consistently driven by trials in which animals had to choose between two 

cues that differed in positive reward magnitude.  There were no deficits when 

animals had to choose between options, one of which was associated with a loss.  

We also fit RL models to the data, and found that learning rates were lower for 

gain cues in the VS animals relative to controls.  Thus, lesions of the VS, in this 

task, specifically affected learning to choose between rewarding options, and had 

no effect on learning to avoid losses.   
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3.5 Supplemental data  

 

 
 
Fig. S1 Token task 1-  Deterministic learning 
 

 

In the familiar blocks (Fig. S1A), there were differences in performance 

across conditions despite the extensive experience the animals had with all cues 

(Condition; F(5,34) = 182.0, p < 0.001).  There were also differences between the 

groups across conditions (Group x Condition; F(5,26) = 14.8, p < 0.001).  To 

examine this effect, we tested each condition separately.  (All condition effects are 

reported uncorrected, but we only state effects as significant that would survive 

Bonferroni correction for number of conditions.)  The only condition that showed a 

significant difference between the groups was the -1 v -2 condition (F(1,5 ) = 

18.55, p = 0.008).  When we examined the average fraction correct in this 

condition we found that the monkeys did not do better than chance (t(6) = 0.8, p = 
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0.452).  In addition, when we looked at both groups individually we found that 

neither group learned to choose the smaller loss at above chance levels (Control: 

t(3) = -2.9, p = 0.058), VS: t(2) = 3.2, p = 0.087).  Overall, the VS animals 

performed slightly above chance, and the control animals performed slightly below 

chance, driving the group difference, but not leading to significant learning in 

either group.      

 

 
 
Fig. S2 Token task 2 -  Deterministic learning with a null cue 
 

 

In the familiar blocks (Fig. S2), there were differences across conditions 

(Condition; F(9,50) = 53.9, p < 0.001).  There was also an effect of group (Group; 

F(1,20) = 7.8, p = 0.011), but no effect of group by condition (Group x Condition; 

F(9,41) = 0.8, p = 0.580).  Because of the ceiling performance, some conditions 
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had low variance (e.g. 2 v 0, 2 v -1 and 2 v -2), which may have been driving the 

group differences.  In the familiar blocks, the animals performance in the condition 

in which they had to choose between the two loss cues was above chance (t(6) = 

3.5, p = 0.012).  When we tested the groups separately we found that only the VS 

animals reached significance (Controls: t(3) = 1.6, p  = 0.198; VS: (t(2) = 6.6, p = 

0.022).  All the animals and both groups chose between the 0 and -1 cue above 

chance (All animals: t(6) = 11.5, p <  0.001; Controls: t(3) = 7.3, p =  0.005; VS: 

t(2) = 10.1, p = 0.009).  This was also the case for choosing between the 0 and -2 

cue (All animals: t(6) = 13.9, p < 0.001; Controls: t(3) = 8.5, p = 0.003; VS: t(2) = 

19.5, p < 0.002).  

 

 
 
Fig. S3 Token task 3 -  Stochastic learning 
 
 

Performance in the familiar blocks was similar to performance in the other 

tasks.  Consistent with the previous experiments, there was a difference in 

performance across conditions (Conditions; F(5,38) = 539.0, p < 0.001).  There 

was also a difference between groups (Group; F(1,32) = 8.2, p = 0.007), but no 

difference in groups by condition (Group x Condition; F(5,35) = 1.5, p = 0.249).  
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The animals learned in the -1 v -2 condition (t(6) = 2.7, p = 0.032).  However, 

when we examined each group separately, neither group reached significance alone 

(Controls: t(3) = 2.4, p = 0.095; VS: t(2) = 2.9, p = 0.101). 

 

 

 
 
Fig. S4 Token task 4 - Deterministic learning with large loss  
 

 

In the familiar condition there were differences in performance across 

conditions (Fig. 8B; Condition; F(5,24) = 29.9, p < 0.001).  There was also an 

effect of group (F(1,40)= 6.1, p = 0.017), but no group by condition effect (Group 

x Condition; F(5,17) = 0.2, p = 0.955).  Similar to the novel data the animals were 

able to pick the smaller of the two losses more often than chance (t(5) = 13.9, p < 

0.001).  When we examined the groups individually we found that both groups 

chose the smaller loss (Controls; t(2) = 6.7, p = 0.022, VS; t(2) = 21.9, p = 0.002).   
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Fig. S5 Fits of CUE and VALENCE models overlaid on choice behavior for both groups for task 3, which 
used stochastic feedback.  Error bars are +/- s.e.m. with N = number of animals. 
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Fig. S6 Aborted trials and reaction times in the novel and familiar blocks of the Null token experiment.  A. 
Aborted trials in each condition in the novel blocks.  B. Same as A for familiar.  C. Reaction times for the 
novel conditions.  D. Same as C for the familiar conditions.   
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Chapter 4: The Amygdala’s Role in Learning from 

Gains and Losses 

 

4.1 Introduction  

The natural environment is comprised of both appetitive and aversive stimuli 

and it is essential for survival that an agent learns to respond to these appropriately.  

Reinforcement learning (RL) is the process organisms use to navigate an ever 

changing external environment.  More specifically, RL is the behavioral process of 

learning the value of actions or objects based on the consequences that follow the 

chosen action or object.  Most work on RL has focused on learning in strictly 

appetitive environments.  This work suggests that the striatum and the dopamine 

input to the striatum underlie RL (10, 19, 159).  This work has led to general 

assumptions about RL that ignore the effects that complex learning environments 

have on an organism.   

Different learning environments have different effects on psychological 

processes, such as motivation and emotion, which in turn can affect conditioning 

differently.  For example, when we tested monkeys with ventral striatum (VS) 

lesions on a learning task in which monkeys could gain or lose tokens, we found 
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that the VS lesion animals only had deficits when choosing between two gain cues 

with different reward magnitudes (Taswell, C, et al, 2019).  The monkeys with VS 

lesions did not have deficits when choosing between a gain and loss cue, or 

between two loss cues that varied in magnitude.  If this task only contained the 

appetitive cues (gains), we would have missed this differential effect that learning 

from gains and losses simultaneously had on behavior.  This result highlights the 

need to understand how a full spectrum learning environment, one that mimics the 

natural environment more closely where positive and negative outcomes are 

always possible, affects RL, and the ways in which neural systems underlie this 

process. 

The fact that VS lesions only lead to deficits when monkeys chose between 

two gain cues suggests that another structure is responsible for the other 

components of this task.  For numerous reasons the amygdala is uniquely suited to 

be this other structure.  First, from an anatomical perspective the amygdala projects 

to the ventral striatum (175), and ventrolateral and orbital prefrontal cortex (176, 

177), which positions it well to code value representations, specifically appetitive, 

and drive motivated behavior via these projections.  Indeed, there is evidence 

supporting this view, showing that the amygdala plays an important role in visual 

stimulus based RL (10, 23, 51, 134-136).   
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Second, the amygdala also projects to the periaqueductal grey (140), these 

two systems are often implicated in emotional processing, in particular aversive 

emotions (Baxter & Murray, 2002), which is thought to affect aversive stimulus 

outcome associations.  As with appetitive learning, there is evidence for the 

amygdala playing a role in aversive learning (Davis 1992, Cardinal, Parkinson et 

al. 2002, Namburi, Beyeler et al, 2015).   

Finally, In addition to the evidence associating the amygdala with appetitive 

and aversive stimulus based RL, there is considerable evidence for the amygdala 

playing a crucial role in conditioned reinforcement.  One of the possible 

conclusions for the minimal learning deficits of the VS lesioned animals in 

(Taswell, C, et al, 2019) is due to the tokens that were used as conditioned 

reinforcers.  Conditioned reinforcers can aide in the learning process, so it is 

possible that another structure, perhaps the amygdala, was able to take over and 

learn the stimulus outcome pairing, which is why that study only found deficits 

when animals had to choose between two rewarding options.  To assess the 

amygdala’s role in learning from gains and losses, we tested monkeys with lesions 

to the amygdala (n = 4) on the same experiments used in (Taswell, C, et al, 2019).  
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4.2 Methods  

4.2.1 Subjects 

The subjects included 6 male and 2 female rhesus macaques with weights 

ranging from 6-11 kg.  Three of the male monkeys and one female received 

bilateral excitotoxic lesions of the Amygdala.  The remaining four monkeys served 

as unoperated controls (3 males and 1 female).  One male from both the control 

and lesion animals was not able to complete all 4 tasks, and therefore task 4 only 

has 3 controls and 3 lesion monkeys (these were the same lesion monkeys used in 

chapter 2).  For the duration of the study monkeys were placed on water control.  

On testing days monkeys earned their fluid from their performance on the task.  

Experimental procedures for all monkeys were performed in accordance with the 

Guide for the Care and Use of Laboratory Animals and were approved by the 

National Institute of Mental Health Animal Care and Use Committee. 

4.2.2 Surgery  

See Chapter 2.2.2  

4.2.3 Lesion assessment  

See Chapter 2.2.3  
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4.2.4 Task   

See Chapter 3.2.4  

4.2.5 Image & Eye Tracking  

See Chapter 3.2.5    

4.2.6 ANOVA Models  

To quantify differences between choice behavior in each group, we 

performed an arcsine transformation on the choice accuracy values from each 

session, as this transformation normalizes the data (152).  We then carried out an 

N-way analysis of variance (ANOVAN).  Monkey and session were included as 

random effects with session nested under monkey.  All other factors were fixed 

effects.  

4.3 Results  

We compared monkeys with lesions to the amygdala (n = 4) against 

unoperated controls (n = 4) on a series of four tasks. In each task, trials involved a 

forced choice between two images.  Selection of a particular image led to increases 

or decreases in tokens (Fig. 1A).  The outcome of each trial following a choice was 

displayed on the monitor screen as a change in the number of tokens the animal 

had accumulated.  Every four to seven trials, with the interval chosen randomly, 
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we cashed out the accumulated tokens.  During cash-out the monkeys received one 

drop of juice for each token.  The animals had to learn over trials to select the 

image from the pair that maximized their gains and minimized their losses.  The 

animals could also not incur negative token counts, so when monkeys had no 

tokens and they chose a loss cue, there was no change in the tokens.   

 The tasks were run in a fixed sequence (Fig. 1A). Each task evaluated the 

choices during learning and performance on novel or familiar stimulus-outcome 

associations. In the novel blocks, the monkeys learned stimulus-reward 

associations for a novel set of images. In the familiar blocks, the monkeys chose 

between stimuli they had repeatedly sampled over the course of prior experimental 

sessions.  The stimulus-outcome associations of these familiar choice options were 

fixed for the duration of the experiment.  Novel and familiar blocks were randomly 

interleaved each day.  The novel blocks allowed us to examine the rate at which 

cue-reward associations were learned, whereas the familiar blocks allowed us to 

examine asymptotic performance with overlearned cue-reward associations.  
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Figure 1. Tasks used and Lesion Map.  A. Diagram of the trial structure used in all tasks.  The specific reward 
magnitudes used in each task are shown.  TkD, Task 1 in which deterministic reward magnitudes were +2, +1, 
-1 and -2.  NtK, Task 2 in which we include a null token giving deterministic reward magnitudes of +2, +1, 0, -
1 and -2.  TkS, Task 3 in which feedback was stochastic with magnitudes of +2, +1, -1 and -2.  TkL, Task 4 in 
which deterministic reward magnitudes, including a large loss, were +2, +1, -1 and -4.  B.  Lesion map of the 4 
animals in the lesion group.  Colors indicate number of animals that had lesion of corresponding extent. 
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4.3.1 Choice Behavior  

TkD 

 We first evaluated the ability of the monkeys with or without lesions of the 

amygdala to learn deterministic stimulus-outcome associations. In this task, at the 

beginning of each novel block, the monkeys encountered four images they had not 

seen before. Each image was associated with a fixed, deterministic gain or loss of 

tokens (+2, +1, -1 or -2 tokens). Two of the images were presented as choice 

options on each trial. This resulted in six unique pairs of images, which we refer to 

as conditions. In each block, conditions were randomly interleaved over intervals 

of twelve trials until each condition occurred 18 times in novel (Fig. 2) blocks and 

6 times in familiar (Fig. 3) blocks.  

 In novel blocks, the monkeys learned the stimulus-outcome associations 

efficiently. With experience, they were able to choose the better option of the pair 

on a high proportion of trials (Fig. 2).  There were differences in performance 

across conditions (Condition; F(5, 30) = 106, p < 0.001) and differences in 

performance across trials in the different conditions (Condition x Trial; F(85, 516) 

= 13.3, p < 0.001).  The monkeys performed best in the conditions in which there 

was a loss paired with the largest reward.  For example, they most often picked the 

best cue when choosing between the +2 and -1 and +2 and -2 conditions.  This 

effect was driven largely by the frequency with which they experienced the 
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outcomes associated with each cue and the differences in the values of the cues.  

The animals most frequently picked the +2 cue across all conditions, and therefore 

most frequently received feedback on its value.  There were no overall differences 

between groups (Group; F(1, 6) = 1.7, p = 0.244) and no differences between the 

groups across conditions (Group x Condition; F(5, 30) = 0.7, p = 0.64).  The 

monkeys did not perform well in the -1 v -2 condition, although across the groups 

there was a significant positive correlation between choice accuracy and trial, 

which indicates learning (t(7) = 5.4, p < 0.001).  When we examined the groups 

individually, we found that controls learned to choose the smaller loss more often 

with experience (Control: t(3) = 6.8, p = 0.006), while the lesioned animals did not 

(Amygdala: t(3) = 2.7, p = 0.059).     

 

 

 
 
Figure 2. TkD Deterministic Reinforcement Learning of Stimulus-Outcome Associations. Task 1 novel choice 
behavior.  Error bars are +/- s.e.m. with N = number of animals.  Plots show the fraction of times monkeys 
chose the higher value option averaged across novel blocks for each group.  Numbers at the top of each plot 
indicate the condition, which corresponds to the cues which were shown in those trials.   
 

In the familiar blocks (Fig. 3), there were differences in performance across 

conditions despite the extensive experience the animals had with all cues 
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(Condition; F(5,30) = 114.1, p < 0.001).  There were also differences between the 

groups across conditions (Group x Condition; F(5,30) = 4.68, p = 0.003).  To 

examine this effect, we tested each condition separately.  No condition showed a 

significant difference between the groups independently.  The largest effect, 

however, was in the -1 v -2 condition (F(1,6 ) = 8.9, p = 0.024, uncorrected).  

When we examined the average fraction correct in this condition we found that the 

monkeys perform better than chance (t(7) = 0.8, p = 0.443).  In addition, when we 

looked at both groups individually we found that neither group learned to choose 

the smaller loss at above chance levels (Control: t(3) = -2.9, p = 0.059), Amygdala: 

t(3) = 2.8, p = 0.066).   

   

 
 
Figure 3. TkD Deterministic Reinforcement Learning of Stimulus-Outcome Associations. Task 1 familiar 
choice behavior.  Error bars are +/- s.e.m. with N = number of animals.  Plots shows the fraction of times 
monkeys chose the higher value option averaged across novel blocks for each group.  Numbers at the top of 
each plot indicate the condition, which corresponds to the cues which were shown in those trials.   
 
 
NtK 

 In task 2, we used five cues in each block with cue-outcome mappings of +2, 

+1, 0, -1 and -2.  This resulted in 10 pairs of cues and therefore 10 conditions.  In 

task 2, both the novel (Fig. 4) and familiar (Fig. 5) blocks were composed of 120 
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trials, 12 per condition.  Therefore, in the novel blocks the monkeys saw each pair 

of cues 12 times.  Inclusion of the null cue allowed us to test two specific 

hypotheses.  First, does the absolute difference between the value of the cues drive 

performance independent of the reward value associated with the cues?  Second, 

can animals learn to select the null cue when it is paired with a loss cue?   

 In the novel blocks (Fig. 4), there was again a difference in performance 

across conditions (Condition; F(9, 54) = 103.6, p < 0.001) and also a difference in 

performance across trials in the different conditions (Condition x Trial; F(99, 599) 

= 0.9, p < 0.001).  There were no overall differences between groups (Group; F(1, 

6) = 2.3, p = 0.17) and no differences by condition (Group x condition; F(9, 54) = 

0.8, p = 0.6323).  There was, however, a difference between groups across trials 

(Group x trial; F(11, 66) = 2.3, p = 0.0174) and a three way interaction (Group x 

condition x trial; F(99,599) = 1.4, p = 0.008).   

Similar to task 1, when we grouped all the animals together there was a 

significant correlation between trial and performance when the animals had to 

choose between the two loss cues (t(7) = 4.3, p <  0.030).  However, when we 

separated the groups, only the lesion group reached significance (Controls: t(3) = 

2.6, p = 0.081; Amygdala: t(3) = 3.2, p = 0.049).  There was also significant 

learning when the animals had to choose between the 0 and -1 cue across groups 

(t(7) = 6.1, p < 0.001), and also in the amygdala animals when they were tested 
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individually (Amygdala: t(3) = 13.2, p <  0.001), but not the controls (Controls: 

t(3) = 2.9, p =  0.062).  When the animals had to choose between the 0 and -2 cues 

there was learning across groups (t(7) = 5.8, p < 0.001).  When we examined the 

groups separately we found that both groups performed significantly better than 

chance (Controls: t(3) = 3.5, p = 0.037; Amygdala: t(3) = 10.5, p = 0.002).      

   

 
 
Figure 4. NtK Deterministic Reinforcement Learning Augmented by a Null Cue. Task 2 novel choice 
behavior.  Error bars are +/- s.e.m. with N = number of animals.  Plots show the fraction of times monkeys 
chose the higher value option averaged across novel blocks for each group.  Numbers at the top of each plot 
indicate the condition, which corresponds to the cues which were shown in those trials.   
 

In the familiar blocks (Fig. 5), there were differences across conditions 

(Condition; F(9,54) = 38.1, p < 0.001).  There was no main effect of group (Group; 

F(1,6) = 0.9, p = 0.383), but there was an effect of group by condition (Group x 
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Condition; F(9,54) = 2.2, p = 0.032).  When we analyzed the conditions separately, 

no condition showed a significant group effect on its own.   

In the familiar blocks, the monkeys’ performance in the condition in which 

they had to choose between the two loss cues was above chance (t(7) = 3.2, p = 

0.015).  When we tested the groups separately we found that neither group reached 

significance alone (Controls: t(3) = 1.6, p  = 0.198; Amygdala: (t(3) = 2.7, p = 

0.069).  All the animals chose between the 0 and -1 cue above chance (All animals: 

t(7) = 9.6, p <  0.001).  This was also true when we looked at each group separately 

(Controls: t(3) = 7.2, p =  0.005; Amygdala: t(3) = 12.2, p < 0.001).  This was also 

the case for choosing between the 0 and -2 cue (All animals: t(7) = 12.9, p < 0.001; 

Controls: t(3) = 8.6, p = 0.003; Amygdala: t(3) = 24.0, p < 0.001).  
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Figure 5. NtK Deterministic Reinforcement Learning Augmented by a Null Cue. Task 2 familiar choice 
behavior.  Error bars are +/- s.e.m. with N = number of animals.  Plots shows the fraction of times monkeys 
chose the higher value option averaged across novel blocks for each group.  Numbers at the top of each plot 
indicate the condition, which corresponds to the cues which were shown in those trials 
 
 

 

TkS 

In task 3, we introduced four cues with cue-outcome associations of +2, +1, 

-1 and -2.  However, the cue-outcome associations were stochastic.  Therefore, 

when the animals chose one of the options, they received the outcome associated 

with that option in 75% of the trials, and no outcome (i.e. no change in tokens) in 

25% of the trials.  Both novel (Fig. 6) and familiar (Fig. 7) blocks were 108 trials.  

 Performance was consistent with the previous tasks (Fig. 6).  In the novel 

blocks, there was a difference in performance across conditions (Condition; F(5, 
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30) = 175.0, p < 0.001) and learning also differed across trials in the different 

conditions (Condition x Trial; F(85, 515) = 10.7, p < 0.001). There were no overall 

differences between groups (Group; F(1, 6) = 0.63, p = 0.4585) and no differences 

between groups  across conditions (Group x Condition; F(5, 30) = 0.18, p = 0.969).  

In this task monkeys showed learning when choosing between the -1 and -2 cues 

(All animals: t(7) = 4.2, p = 0.003).  When we looked at the groups separately we 

found that only controls learned to choose the smaller loss, (Control: t(3) = 3.3, p = 

0.045; Amygdala: t(3) = 3.0, p = 0.055).   

 

  
 
Figure 6. TkS Stochastic Reinforcement Learning. Task 3 novel choice behavior.  Error bars are +/- s.e.m. 
with N = number of animals.  Plots show the fraction of times monkeys chose the higher value option averaged 
across novel blocks for each group.  Numbers at the top of each plot indicate the condition, which corresponds 
to the cues which were shown in those trials.   
 

 

Performance in the familiar blocks (Fig. 7) was similar to performance in the 

other tasks.  Consistent with the previous experiments, there was a difference in 

performance across conditions (Conditions; F(5,30) = 128.0, p < 0.001).  There 

were no overall differences between groups (Group; F(1, 6) = 0.95, p = 0.352) and 

no differences between groups  across conditions (Group x Condition; F(5, 30) = 



 

 

172 
 

0.53, p = 0.752).  The animals learned in the -1 v -2 condition (t(7) = 4.4, p = 

0.003).  However, when we examined each group separately, only the lesion group 

performed better than chance (Controls: t(3) = 2.4, p = 0.095; Amygdala: t(3) = 

4.3, p = 0.022). 

 

 
 
Figure 7. TkS Stochastic Reinforcement Learning. Task 3 familiar choice behavior.  Error bars are +/- s.e.m. 
with N = number of animals.  Plots show the fraction of times monkeys chose the higher value option averaged 
across novel blocks for each group.  Numbers at the top of each plot indicate the condition, which corresponds 
to the cues which were shown in those trials.   
 
 
TkL 

In task 4, we introduced four cues with cue-outcome associations of +2, +1, 

-1, -4.  We added the larger loss cue to see if animals would learn to pick the 

smaller loss cue more effectively, when the difference between the two loss cues 

was larger.  We also gave the monkeys an endowment of four tokens on the first 

trial after each cash-out.  We did this to ensure that the animals had sufficient 

tokens to experience the large loss and to maintain motivation.  Novel (Fig. 8) and 

Familiar (Fig. 9) blocks were both composed of 108 trials, with 18 trials per 

condition. 
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Performance in novel blocks again showed a difference in performance 

across conditions (Fig. 8; Condition; F(5,20) = 78.3, p < 0.001) and a difference in 

performance across trials in different conditions (Condition x Trial; F(85,340) = 

3.6, p < 0.001).  There were no differences between groups (Group; F(1,4) = 1.13, 

p < 0.3480) and no difference between groups across conditions (Group x 

Condition; F(5, 20) = 0.61, p = 0.693).  The monkeys were able to learn to choose 

the smaller of the two losses (t(5) = 6.5, p = 0.001).  When we examined each 

group separately we found that only the control animals were able to learn to 

choose the smaller of the two losses (Control: t(2) = 5.2, p = 0.035), Amygdala: 

t(2) = 3.5, p = 0.072).        

 

 
 
Figure 8. TkL Deterministic Reinforcement Learning with a Large Loss.  Task 4 novel choice behavior.  Error 
bars are +/- s.e.m. with N = number of animals.  Plots shows the fraction of times monkeys chose the higher 
value option averaged across novel blocks for each group.  Numbers at the top of each plot indicate the 
condition, which corresponds to the cues which were shown in those trials.   
 

 

In the familiar blocks there were differences in performance across 

conditions (Fig. 9; Condition; F(5,20) = 11.8, p < 0.001).  There were no overall 

differences between groups (Group; F(1, 4) = 0.7, p = 0.452) and no differences 
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between groups  across conditions (Group x Condition; F(5, 20) = 0.56, p = 0.733).  

Similar to the novel data the animals were able to pick the smaller of the two losses 

more often than chance (t(5) = 11.3, p < 0.001).  When we examined the groups 

individually we found that both groups chose the smaller loss (Controls; t(2) = 6.7, 

p = 0.022, Amygdala; t(2) = 19.9, p = 0.003).   

 
 

 
 
Figure 9. TkL Deterministic Reinforcement Learning with a Large Loss.  Task 4 familiar choice behavior.  
Error bars are +/- s.e.m. with N = number of animals.  Plots shows the fraction of times monkeys chose the 
higher value option averaged across novel blocks for each group.  Numbers at the top of each plot indicate the 
condition, which corresponds to the cues which were shown in those trials.   

 

4.3.2 Aborted trials & reaction times  

To assess motivation we also examined aborted trials and reaction times.  

We only present stats and data from task 3 with stochastic outcomes for two 

reasons.  One, the trend of the data was very similar throughout all experiments.  

Two, task 3 was the only task where we found a group difference.    

It was sometimes the case that, when the two images were presented, the 

animals broke fixation and did not select either image.  In both novel (Fig. 10A) 
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and familiar (Fig. 10B) blocks, the proportion of trials aborted differed by 

condition (Novel: F(5,30) = 32.8, p < 0.001; Familiar; F(5, 30) = 36.8, p < 0.001).  

Monkeys broke fixation more frequently when they had to choose between the -1 

and -2/-4 cues.  This was true even though following an error we repeated the same 

condition.  There was no overall difference between groups (Novel: F(1,6) = 2.92, 

p = 0.138; Familiar: F(1,6) = 2.95, p = 0.136).  However, the groups differed by 

condition (Group x condition; Novel: F(5,30) = 3.58, p = 0.012; Familiar: F(5,30) 

= 4.58, p = 0.003).  When we examined the conditions individually it became clear 

that the driving force behind the difference between groups by condition was that 

lesion animals aborted a higher proportion of trials in the -1 v -2/-4 condition 

(Novel: F(1,6) = 8.0, p = 0.03; Familiar: F(1,6) = 10.8, p = 0.017).  It is important 

to note that even though the -1 v -2/-4 condition was the biggest difference 

between the groups, the effects do not survive correction.       

Next, we examined reaction times.  In both novel (Fig. 10C) and familiar 

(Fig. 10D) blocks, there were differences in reaction times across conditions 

(Novel: F(5,30) = 26.2, p < 0.001; Familiar: F(5,30) = 28.3, p < 0.001).  There was 

a tendency for the lesion animals to respond slower across all task and conditions, 

however, when we examined the stats we found no differences between groups 

(Novel: F(1,6) =  2.02, p = 0.205; Familiar: F(1,6) = 1.35, p = 0.290) and no 

higher-order interactions (p > 0.05).   
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Figure 10. Aborted trials and reaction times for task 3.  A. Aborted trials in the novel conditions.  Errors 
indicate the fraction of trials where the animals held initial fixation, but then failed to select one of the choice 
options.  B. Aborted trials in the familiar condition.  C. Reaction times in novel conditions. D. Reaction times 
in familiar conditions. 
 

4.4 Discussion  

We carried out four tasks in which we examined learning from gains and 

losses, using tokens as conditioned reinforcers.  Overall, we found that monkeys 

found gaining tokens to be reinforcing and losing tokens to be punishing.  This was 

evident by the fact that monkeys learned to make choices that increased their 

tokens and learned to avoid choices that decreased their tokens.  In addition to the 
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learning data, we found other behavioral factors that support the idea that monkeys 

found losing tokens to be aversive.  When monkeys had to make choices between 

two loss cues, all monkeys aborted significantly more trials.  This was the case 

despite the fact that aborted trials were repeated until they were successfully 

completed.  We also found that all monkeys were significantly slower at making a 

choice when they had to choose between two losses.       

When we examined group differences in learning, we found that monkeys 

with amygdala lesions had no learning deficits in any of the tasks.  In fact, 

monkeys with lesions to the amygdala performed numerically better than controls 

in both the novel and familiar blocks in the null token task (NtK).  When we 

analyzed what was driving these group differences, we found that lesion animals 

performed slightly better in conditions where a loss was paired with either a gain 

or neutral cue.  One interpretation of these results is that the monkeys with 

amygdala lesions were more sensitive to negative feedback.  We have previously 

found this to be the case in another bandit task where the negative feedback was 

neutral or no juice (224).  Another study found that monkeys with amygdala lesion 

learned better than unoperated controls from correct trials that followed an error 

(22), and monkeys with amygdala lesions tend to reverse faster in classical 

behavioral reversal learning tasks (151).   
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At first glance our results seem surprising and appear to be counter-intuitive 

when compared to the current literature, much of which suggests an important role 

for the amygdala in appetitive (10, 23, 51, 134-136) and aversive conditioning 

(Davis 1992, Cardinal, Parkinson et al. 2002, Namburi, Beyeler et al, 2015).  

However, there are several unique things about this task which may explain our 

findings.   

First, the current task is an instrumental conditioning paradigm and not a 

Pavlovian one.  Although there is certainly some overlap between these two forms 

of conditioning (52), their distinction is quite important.  Behaviorally these are 

separate process, due to the fact that they affect behavior differently.  The fact that 

these forms of conditioning can be separated behaviorally likely means they are 

separate neural processes.  The current literature supports this view, typically 

assigning a role for the amygdala in the formation of Pavlovian CS-US 

associations (51, 79) while instrumental conditioning is thought to be controlled by 

the striatal systems (115).  The current experiments are more closely related to the 

latter form of conditioning.    

Second, our task includes both appetitive and aversive cues.  There is less 

evidence on how aversive cues affect instrumental conditioning when there are 

also appetitive cues.  For example it is conceivable that the motivational value of a 

gain paired with a loss is much higher than a gain paired with a gain.  The former 
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can motivate the animal via positive and negative reinforcement (ie in these 

conditions the animals are motivated to make the best choice because of the gain in 

tokens (positive reinforcement), but the animals are also motivated in these 

conditions to avoid losing tokens (negative reinforcement)).  This is unique to the 

gain/loss conditions and it is possible that this is why we do not find any learning 

deficits in the monkeys with amygdala lesions.  In support of this, we do find that 

all animals learn and maintain behavior the best in these conditions (gain/loss), but 

within and across experiments.  In addition to this, we ran the same animals with 

lesions to the amygdala on a different learning task (What/Where) where the most 

aversive outcome was a lower probability of receiving juice (likely not truly 

aversive).  When we compared the lesion animals to unoperated controls, we found 

that the lesion animals had learning deficits in both selecting rewarding stimuli 

(What) and selecting rewarding actions (Where) (Taswell, C, et al, 2020).  The fact 

that this same group of lesion animals had deficits in one task but not the other, 

suggests that RL is not simply learning the stimulus-outcome relationship.  If the 

amygdala is truly crucial for learning the stimulus-outcome relationship, one would 

expect deficits in the present study.  The fact that we do not find deficits in the 

present study likely means that there is at least one other component to effective 

conditioning.  We further support this theory with data from animals with lesions 

to the ventral striatum (VS).  We ran the same animals with lesions to the VS on 
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both the ‘Tokens’ and ‘What/Where’ tasks.  When compared to unoperated 

controls we found similar results to those discussed above for the amygdala 

animals.  In the ‘What/Where task we found that VS animals had major deficits in 

the ‘What’ condition, which suggested that without the VS, monkeys have 

problems learning stimulus-outcome relationship.  However, when we ran these 

same VS monkeys on the token experiments, much like amygdala animals, we 

found that the VS animals were able to learn stimulus-outcome relationships (128).   

This idea that performance in an instrumental conditioning task is not solely 

based on learning the stimulus-outcome relationship is not new, although it is often 

overlooked.  One theory suggests that instrumental behavior is under the influence 

of two systems.  The first system’s role is to learn stimulus-consequence 

relationship, while the second system is concerned with acquiring the motivational 

value of the consequence (104).  We propose that it is the latter system that is 

affected by the addition of aversive cues.  In this theory aversive cues increase the 

motivational value of selecting the best option.  This would explain how the same 

animals from the two lesion groups mentioned above have deficits in one task 

(What/Where) but not the other (Tokens).  As one can imagine this separation of 

value and motivation is quite difficult to prove, most experiments are designed in 

ways in which it is impossible to separate the two.  However, the few studies that 

have disassociated value from motivation have found that some brain areas, such 
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as the orbitofrontal cortex and anterior cingulate cortex only carry value signals, 

while areas such as the premotor cortex only carry motivation signals.  And other 

brain areas, such as VS and cuneus carry both value and motivation signals (225-

227).  Thus, there is evidence for both a value and motivation system.  

Finally, the token task used in the current study employs tokens as 

conditioned reinforcers.  This is in contrast to just providing a primary reward, 

such as juice, water, or food for correct behavior.  In the present study monkeys 

only receive juice (primary reinforcer) every 4-7 (randomly) trials for the tokens 

they have accumulated.  It is unclear at present, but it is possible the use of tokens 

as conditioned reinforcers influences the value or motivation system in a way that 

primary reinforcers do not, and it is this aspect of the task that is responsible for the 

differences we find in the lesion animals’ performance across the two tasks 

mentioned above. 

4.4.1 Conclusion  

The present study compared learning from gains and losses, using tokens as 

conditioned reinforcers, in monkeys with lesions to the amygdala compared to 

unoperated controls.  Across 4 tasks we found that monkeys with amygdala lesions 

had no learning deficits, and in fact performed better than unoperated controls in 

the novel and familiar blocks of the null token experiment (NtK).  The monkeys 



 

 

182 
 

with lesions to the amygdala appeared to be more sensitive to negative feedback, 

and this is what drove their better performance.      
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Chapter 5: What behavior can tell us about 
reinforcement learning   
 

 

5.1 Introduction  

One of the most successful RL theories is the temporal-difference 

reinforcement learning theory (TD), which suggests that midbrain dopamine codes 

the temporal difference error from RL (27), which is then used to learn actions that 

maximize reward and minimize punishment (1, 2).  In essence RL theories assume 

behaving organisms are optimal agents in the computer science/optimal control 

sense.  To understand and make proper conclusions about the RL literature, we 

need to understand and clarify what it means to learn, and the behavioral 

components that make up the RL process.  From a behavioral perspective there are 

a couple of things that are problematic for this theory.  First, what does it mean to 

learn something, and how do we measure learning?  Is it the case that once an 

organism learns something their behavior always displays it (ie they are optimal 

agents)?  There is considerable evidence that organisms do not simply behave 

based on what they know, but instead behave based on internal and external 

motivational processes.  It will become clear throughout this section that the 

distinction between learning and conditioning is an important one.  Behavior is 
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often controlled by the latter (28, 29).  In essence theories of optimality do not 

properly account for motivation. 

It has long been known that there are a number of environmental factors that 

affect the rate of responding in operant conditioning, which in turn affects 

performance.  For the purposes of this chapter we will focus on two of these 

factors, reinforcement rate and reinforcement structure.  While the former is 

concerned with the average per trial (or per time interval) rate of reinforcement, the 

latter is concerned with the reinforcement schedule.  There is no understating the 

importance of understanding how different reinforcement schedules predict 

different slopes and rates of behavior (28, 29).  However, despite the substantial 

amount of evidence presented in ‘Schedules of Reinforcement’ (29), which is 

regarded as one of the most important works in the science of understanding both 

human and nonhuman behavior, these important environmental factors are often 

overlooked and not accounted for in the reinforcement learning (RL) literature.  

Not accounting for how these environmental factors affect behavior can and often 

does lead to false or overstated conclusions in the RL literature.  It is beyond the 

scope of this chapter to examine all the different types of reinforcement schedules.  

We instead focus on two, fixed ratios (deterministic) and variable ratios 

(stochastic).  These are two of the more well-known schedules of reinforcement, 

yet the different affects they have on operant conditioning are often ignored.  In 
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this chapter we take a more traditional behavioral approach to the RL problem, 

believing that the conflicts in results and differences in theories are products of 

task designs and misinterpretations of the results they suggest. 

Formally there are at least two components to learning: acquisition of the 

stimulus/behavior-consequence relationship, and the maintenance of that 

relationship.  In traditional learning theories the former is concerned with learning 

(there is a cap on how fast an organism can learn an association), while the latter 

has been assigned to motivation.  Specifically, once an association is learned an 

organism can exploit it as much or as little as it wants depending on its 

motivational level.  It is not trivial to dissociate these two components, and it will 

become clear later, that without dissociating these one can attribute behavioral 

results to the wrong process.  In most cases an experimenter must judge learning 

from the behavior of the organism, which can be a mix of motivation and learning 

processes.  However, this behavior is not fixed.  Many things can alter this 

behavior, such as reward rate, reward schedule, and reward magnitude (30).  The 

fact that environmental contingencies have such a profound and stable effect (even 

across species) on behavior suggests, at the very least, that behavior is not simply a 

display of what one knows.  This means that an experimenter needs to design the 

proper experiments to get at their question (ie most studies suggest they are 

studying learning, but they are not studying learning in isolation).  To know what 
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aspect of behavior one is studying, one needs to systemically manipulate 

environmental contingences.  This is a prerequisite before one can make any 

conclusions about the behavior they are viewing.         

This is a tough problem to deal with because when it comes to behavior, 

separating learning rates from motivational factors is not trivial.  To understand 

and separate the environmental effects of learning tasks, we must run a series of 

tasks, where each task varies by just one parameter.  This is how we can separate 

the motivational effects of the environment from learning ability, thus, make strong 

statements about learning.  In the present study we attempt to account for these 

problems by conducting a post hoc analysis on the behavioral data presented in 

chapters 3 and 4.     

 

5.2 Methods  

5.2.1 Subjects  

The subjects included the unoperated control monkeys from chapters three 

and four (same control monkeys in both chapters).  Subjects also included the 

monkeys with VS lesion from chapter 3 and monkeys with amygdala lesions from 

chapter 4.    
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5.2.2 Task 

We conducted a post hoc analysis on the behavioral data in chapters 3 and 4 

for three of the token experiments.  For reasons stated in the introduction we only 

use data from 3 of the token experiments, the first (TkD), the third (TkS) and the 

fourth (TkL).  While these three experiments only vary slightly from one another 

the second token experiment (NtK) varied the most.  More importantly it has a 

different task parameter, which without major assumptions (which at its core this 

chapter is trying to point out is the problem as to why we are having problems 

identifying what these neuro structures are doing) makes it difficult to compare to 

the other task.  While TkD, TkS, and TkL have 4 cues and blocks that consist of 

108 trials, which means monkeys saw each condition eighteen times, NtK had 5 

cues and a block length of a 120 trials, which means monkeys saw each condition 

twelve times.  It is the block length and difference in the number of cues that 

excluded NtK from this analysis.  It should be noted that we did not try to include 

NtK in this analysis, simply because from a theoretical stand point, it does not 

make sense.  One of the points that the earlier chapters make is that making 

assumptions about tasks that have different environmental parameters is can lead to 

problems with interpretation especially when it is not clear how those parameters 

affect behavior.    
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5.2.3 Reinforcement learning models  

We fit a large set of models that varied in the number of parameters they 

used to model the conditions.  All models were built around a Rescorla-Wagner, or 

stateless RL value update equation given by: 

(1)  𝑣𝑣𝑖𝑖(𝑡𝑡 + 1) =  𝑣𝑣𝑖𝑖(𝑡𝑡) +  𝛼𝛼𝑗𝑗�𝑅𝑅 −  𝑣𝑣𝑖𝑖(𝑡𝑡)�. 

These values were then passed through a soft-max function to give choice 

probabilities for the pair presented in each trial: 

(2)  𝑑𝑑1(𝑡𝑡) = (1 +  𝑒𝑒𝛽𝛽𝑘𝑘�𝑣𝑣2(𝑎𝑎)−𝑣𝑣1(𝑎𝑎)�)−1,𝑑𝑑2(𝑘𝑘) = 1 −  𝑑𝑑1(𝑘𝑘). 

The variable 𝑣𝑣𝑖𝑖  is the value estimate for option 𝑖𝑖, 𝑅𝑅 is the change in the number of 

tokens that followed the choice in trial 𝑡𝑡, and 𝛼𝛼𝑗𝑗  is the condition dependent 

learning rate parameter, for condition j.  In addition, we also used, for some 

models, condition dependent values of the choice consistency parameter, 𝛽𝛽𝑘𝑘.  We 

then maximized the likelihood of the animal’s choices, D, given the parameters, 

using as a cost function: 

(3)  𝑓𝑓�𝐷𝐷�𝛼𝛼𝑗𝑗 ,𝛽𝛽𝑘𝑘 � =  ∏ [𝑑𝑑1(𝑘𝑘)𝑐𝑐1(𝑘𝑘) + 𝑑𝑑2(𝑘𝑘)𝑐𝑐2(𝑘𝑘)𝑎𝑎 ]. 

Where 𝑐𝑐1(𝑘𝑘) was an indicator variable that took on a value of 1 if option 1 was 

chosen and zero otherwise, and 𝑐𝑐2(𝑘𝑘) took on a value of 1 if option 2 was chosen 

and 0 otherwise. 
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5.2.4 ANOVA models  

To quantify differences between choice behavior in each group, we 

performed an arcsine transformation on the choice accuracy values, as this 

transformation normalizes the data (152).  We then carried out an N-way analysis 

of variance (ANOVAN).  All single condition choice analyses are presented in 

their uncorrected form.  Monkey and session were included as random effects with 

session nested under monkey.  All other factors were fixed effects.  Within group 

analysis was done the same way, the group factor was just dropped.     

 
 
 

5.3 Results  

We conducted a post hoc analysis on the behavioral data in chapters 3 and 4 

for three of the token experiments.  For reasons stated in the introduction we only 

use data from 3 of the token experiments, the first (TkD), the third (TkS) and the 

fourth (TkL).   

5.3.1 Choice Behavior  

TkD v TkS v TkL 

We started by comparing the novel data for the first (TkD), third (TkS) and 

fourth (TkL) token experiments (Fig. 1).  When we compared the novel behavior in 
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these experiments across groups, we found that performance differed across 

experiment (Experiment; F(2,14) = 20.9, p < 0.001).  We also found difference in 

performance across conditions (Experiment x Condition; F(10,70) = 27.9, p < 

0.001), trials (Experiment x Trial; F(34,238) = 2.1, p < 0.001), and in trials in 

conditions (Experiment x Condition x Trial; F(170,1190) = 1.6, p < 0.001) across 

experiments.  We found no groups effects, which suggest that all groups modulated 

their behavior similarly across experiments.  Next, to get a better idea of what 

conditions varied across the three experiments, we analyzed each condition 

separately.  All effects are presented in their uncorrected form, but we only 

consider effects to be significant if they correct.  When we looked at each 

condition separately across the groups, we found that performance in the 2 v 1 

condition varied across experiments (Experiment; F(2,14) = 26.9, p < 0.001), and 

trials by experiment (Experiment x Trial; F(34,238) = 2.1, p = 0.001).  There were 

no group effects in the 2 v 1 condition, but there was a trend for groups to differ by 

trial (Group x Trial; F(34,132) = 1.7) = 0.018), although this effect does not 

survive correction. The 1 v -1 condition did not survive correction, this was the 

only condition where performance did not vary by experiment (Experiment; 

F(2,14) = 6.7, p = 0.009).  There was, however, a trend for groups to differ in this 

condition across experiments (Group x Experiment; F(4,14) = 3.2, p = 0.047), 

which seems to be the result of VS animals not modulating their behavior the same 
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way as the controls and amygdala animals in this condition.  This was also the case 

for the 2 v -1 condition, which varied across experiments (Experiment; F(2,14) = 

32.9, p < 0.001), and had a trend for groups’ performance to differ by experiment 

(Group x Experiment; F(4,14) = 3.3, p = 0.043).  Performance in the 2 v -2/-4 

condition only varied across experiments (Experiment; F(4,14) = 16.1, p < 0.001).  

Performance in the 1 v -2/-4, and -1 v-2/-4 conditions varied across experiments (1 

v -2/-4: Experiment; F(2,14) = 22.9, p < 0.001; -1 v -2/-4: Experiment; F(4,14) = 

57.7, p < 0.001), and trials by experiments (1 v -2/-4: Experiment x Trial; 

F(34,238) = 1.8, p = 0.008; -1 v -2/-4: Experiment x Trial; F(34,238) = 2.3, p < 

0.001). 

Controls 

 To see to what extent each group performed differently across the 

experiments, we completed separate within group analysis for each group across 

experiments.  For the control animals we found that performance varied across 

experiments (Experiment; F(2,4) = 8.1, p = 0.04).  We also found that this 

difference in performance across experiments, differed by condition (Experiment x 

Condition; F(10,20) = 6.3 p < 0.001) and trials (Experiment x Trial; F(34,68) = 1.6, 

p = 0.048).  The three way interaction of experiment by condition by trial was not 

significant (Experiment x Condition x Trial; F(170,340) = 1.1, p = 0.232).   

VS 
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For the VS monkeys we found a main effect of experiment (Experiment; 

F(2,4) = 7.0, p = 0.049) and an interaction of experiment by condition (Experiment 

x Condition; F(10,20) = 11.3, p < 0.001).  VS animals did not perform differently 

across trials in different experiments (Experiment x Trial; F(34,68) = 0.54, p = 

0.973), but did perform differently across trials in different conditions by 

experiment (Experiment x Condition x Trial; F(170,340) = 1.3, p = 0.013).   

Amygdala     

For the amygdala monkeys we found that performance did not differ by 

experiment (Experiment; F(2,4) = 5.1, p = 0.078), but there was an interaction of 

experiment by condition (Experiment x Condition; F(10,20) = 16.4, p < 0.001).  

The amygdala animals’ performance did not differ across trials by experiment 

(Experiment x Trial; F(34,68) = 1.0, p = 0.477) and there was no three way 

interaction of experiment by condition by trial (Experiment x Condition x Trial; 

F(170,340) = 1.0, p = 0.431). 
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Figure 2. Reinforcement Learning of Stimulus-Outcome Associations across the 3 tasks. A. Within group 
performance averaged across groups for each of the 3 task. Error bars are +/- s.e.m. with N = number of 
groups.  B. Average performance for the control animals across tasks. C. Average performance for the VS 
animals across tasks. D. Average performance for amygdala animals across tasks. Error bars are +/- s.e.m. with 
N = number of animals.  Plots show the fraction of times monkeys chose the higher value option averaged 
across novel blocks for each group.  Numbers at the top of each plot indicate the condition, which corresponds 
to the cues which were shown in those trials.   
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The analysis above shows that for all groups performance varies with 

experiment.  However, because there are 3 experiments with slight variations in 

their reward environment, these analyses are not very informative in regards to 

what is driving these differences in performance across the experiments.  In the 

following sections we complete pairwise comparisons of each experiment.         

TkD v TkS 

To get a better idea of what was driving this difference in performance 

across experiments, we first compared performance in the first token experiment 

(TkD) against the performance in the third token experiment (TkS).  These two 

experiments were the most similar, and only had two differences.  The first 

difference is reward schedule, TkD had a deterministic reward schedule, while TkS 

had a stochastic reward schedule.  The second difference is a result of the first and 

has to do with the reward rate, TkD had a higher reward rate when compared to 

TkS.  When compared to un-operated controls we found no differences in 

performance in the TkD experiment for VS (chapter 3) or amygdala monkeys 

(chapter 4).  For the TkS experiment we did find that VS monkeys performed 

worse than controls (chapter 3), while there was no difference between the controls 

and amygdala monkeys (chapter 4).   

When we examined the performance for all three groups across experiments, 

we found that all groups performed better in TkS (Experiment; F(1,8) = 33, p < 
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0.001).  This was also true on a condition (Experiment x Condition; F(5,40) = 3.9, 

p = 0.005) and trial (Experiment x Trial; F(17,136) = 1.9, p = 0.018) basis.  The 

three way interaction, however, was not significant (Experiment x Condition x 

Trial; F(85,680) = 0.9, p = 0.571).  Again we found no group effects, which 

provides further support that all groups performed better in the TkS experiment (to 

varying degrees).  To get a better idea of what conditions drove this better 

performance in the TkS experiment, we analyzed each condition separately across 

experiments and groups.  When we looked at each condition separately we found 

that monkeys performed better in every condition in the TkS experiment when 

compared to the TkD experiment, with the exception of the -1 v -2 condition.  In 

the 2 v 1 condition there was a main effect of experiment (Experiment; F(1,8) = 

12.5, p = 0.008) and an experiment by trial interaction (Experiment x Trial; 

F(17,136) = 2.3, p = 0.004).  For conditions 2-5 we found main effects of 

experiment (1 v -1: Experiment; F(1,8) = 15.5, p = 0.004; 2 v -1: Experiment; 

F(1,8) = 33.9, p < 0.001; 1 v -2: Experiment; F(1,8) = 13.9, p = 0.006; 2 v -2: 

Experiment; F(1,8) = 19, p = 0.002).  The experiment by trial interaction was not 

significant in any of these conditions.  There were also no group effects in any of 

the conditions.    

Controls 
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Next, we performed within group analyses to see to what extent each group 

contributed to the overall better performance in the TkS experiment.  For control 

monkeys we found that they performed better in the TkS experiment (Experiment; 

F(1,3) = 13.5, p = 0.035).  In addition to this effect, we also found that control 

monkeys performed better in TkS across conditions (Experiment x Condition; 

F(5,15) = 4.5, p = 0.010) and trials (Experiment x Trial; F(17,51) = 2.0, p = 0.026).  

No higher order interactions reached significance.  Following this, we looked at 

each condition separately to see what conditions were driving this better 

performance in the TkS experiment.  We found that control monkeys performed 

slightly better in the TkS experiment in the 2 v 1 (Experiment; F(1,3)  = 5.7, p = 

0.097), 1 v -1 (Experiment; F(1,3) = 14.1, p = 0.033), 2 v -1 (Experiment; F(1,3) = 

21.8, p = 0.019), 1 v -2 (Experiment; F(1,3) = 5.8, p = 0.094) and 2 v -2 

(Experiment; F(1,3) = 12.7, p = 0.038) conditions.  We found no trend for 

differences across experiments for the -1 v -2 (Experiment; F(1,3) = 0.04, p = 

0.641).  No trial by experiment interaction reached significance alone, but there 

was a trend for the control animals performing better in TkS on a trial by trial basis 

for the 2 v 1 (Experiment x Trial; F(17,51)  = 2, p = 0.029) condition.  None of 

these effects survive correction individually, thus the better performance in TkS is 

due to control monkeys performing slightly better in each of the conditions above.    

VS 
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When we looked at the plot for VS monkeys’ performance in TkD and TkS, 

it appeared that the VS monkeys also performed overall better in TkS.  However, 

that was not the case, when we competed our within group analysis for VS 

monkeys, we found that performance in TkD and TkS did not differ (Experiment; 

F(1,3) = 6.8, p = 0.120).  In addition, there was no trial by experiment interaction 

(Experiment x Trial; F(17,34) = 0.4, p = 0.978), no condition by experiment 

interaction (Experiment x Condition; F(5,10) = 0.6, p = 0.674), and no three way 

interaction of experiment by condition by trial (Experiment x Condition x Trial; 

F(85,170) = 0.9, p = 0.734).    

Amygdala 

We found that amygdala monkeys followed the same trend as the control 

animals, and performed overall better in the TkS experiment (Experiment; F(1,3) = 

17.3, p = 0.025).  No higher order interactions involving experiment reached 

significance.  After examining each condition independently, we found that 

amygdala monkeys performed slightly better in the TkS experiment in every 

condition.  The conditions with the biggest difference between the two experiments 

were the 2 v 1 (Experiment; F(1,3) = 7.8, p = 0.068), the 2 v -1 (Experiment; F(1,3) 

= 14.5, p = 0.032), the 2 v -2 (Experiment; F(1,3) = 10.6, p = 0.047), and the -1 v -

2 (Experiment; F(1,3) = 7.8, p = 0.068).   
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Figure 3.  Reinforcement Learning of Stimulus-Outcome Associations across the TkD & TkS tasks. A. Within 
group performance averaged across groups for each of the tasks. Error bars are +/- s.e.m. with N = number of 
groups.  B. Average performance for the control animals across tasks. C. Average performance for the VS 
animals across task. D. Average performance for amygdala animals across task. Error bars are +/- s.e.m. with 
N = number of animals.  Plots show the fraction of times monkeys chose the higher value option averaged 
across novel blocks for each group.  Numbers at the top of each plot indicate the condition, which corresponds 
to the cues which were shown in those trials.   
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This analysis revealed that as a whole, all animals from all groups 

trended toward better performance in TkS when compared to TkD, with the 

only difference being the level of performance modulation.  While all groups 

performed better, they did not do this equally.  Thus the difference between 

the groups lies mainly in their performance modulation between the two 

experiments.  Both the control and amygdala monkeys perform significantly 

better in the TkS, while the VS animals only performed slightly better.  In 

chapter three when we compared the control monkeys to the VS monkeys 

we found that the control monkeys performed better than VS monkeys in the 

TkS experiment.  This point taken with the fact that we found no difference 

between the groups in the TkD experiment, suggest that the effect we found 

in chapter three, in the TkS experiment, is due to control monkeys 

improving their choice behavior more than VS monkeys did under stochastic 

schedules.   

In chapter four when we compared controls to the amygdala monkeys 

we found no difference in performance across the groups, which follows 

because the amygdala monkeys improve their choice behavior as well as 

control animals under the stochastic schedule of TkS.  It should be noted that 

if these differences in performance across experiments is in fact due to 

learning and not some other component, like motivation, animals should not 
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be able to perform better in the TkS experiment.  It should be harder to learn 

a stochastic cue-reward association when compared to a deterministic cue-

reward association.      

 
TkS v TkL 

Next, because TkD was the first experiment and TkS was the third 

experiment, we postulated that this could be a training effect.  So we compared 

TkS, the third experiment, to TkL, the fourth experiment (Fig. 3).  These two 

experiments differed in three ways.  The first way was the reward schedule, TkL 

had a deterministic reward schedule, while TkS had a stochastic reward schedule.  

The second way these two experiments differed is by reward rate, in TkL we gave 

monkeys an endowment of 4 tokens at the beginning of the session, and after each 

cash-out during the session.  The final way these experiments differed was with the 

value of the cues.  In the TkL experiment we replaced the -2 cue with a cue worth -

4. 

Similar to the comparison above, we first examined the effect of experiment 

on performance for all monkeys.  We found that performance across the two 

experiments did not differ (Experiment; F(1,6) = 3.9, p = 0.095). However, we did 

find that across the two experiments performance did differ across conditions 

(Experiment x Condition; F(5,30) = 39.7, p < 0.001), trials (Experiment x Trial; 

F(17,102) = 2.0, p = 0.016) and by trials in conditions (Experiment x Condition x 
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Trial; F(85,510) = 2.2, p < 0.001).  Again, we did not find any group effects, which 

indicates that all groups modulated their behavior in the same direction.  When we 

examined the individual conditions across groups, we found that monkeys 

performed better in TkS in the 2 v 1 condition (Experiment; F(1,6) = 45.2,p < 

0.001; Experiment x Trial; F(17,102) = 2.8, p < 0.001 ).  We also found a trend for 

groups to differ in this condition across trials (Group x Trial; F(34,126) = 1.6, p = 

0.025).  Performance across the experiments did not differ in the 1 v -1 condition 

(Experiment; F(1,6) = 5.6, p = 0.055).  In the 2 v -1 condition we found that 

monkeys performed overall better in the TkS experiment (Experiment; F(1,6) = 

53.16, p < 0.001).  The experiment by trial interaction for this condition did not 

survive correction.  The next 3 conditions have a value difference in favor of the 

TkL experiment.  Despite this value difference we find no differences (after 

correction) in performance across experiments in the in the 1 v -2/-4 condition 

(Experiment; F(1,6) = 6.8, p = 0.04).  This was also the case for the 2 v -2/-4 

condition (Experiment; F(1,6) = 2.4, p = 0.174).  However, in this condition, we 

did find an experiment by trial interaction (Experiment x Trial; F(17,102) = 2.3, p 

= 0.004).  Monkeys performed overall better in the TkL experiment in the -1 v -2/-

4 condition (Experiment; F(1,6) = 56.7, p < 0.001) condition.  This difference also 

differed across trials (Experiment x Trial; F(17,102) = 2.6,p = 0.002).       

Controls 
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 When we looked at the groups separately across tasks, we found no overall 

difference in performance across experiments (Experiment; F(1,2) = 1, p = 0.423) 

for control monkeys.  There was, however, a difference in performance across 

conditions (Experiment x Condition; F(5,10) = 6.9, p = 0.005), and in performance 

across trials (Experiment x Trial; F(17,34) = 2.0, p = 0.038), but no three way 

interaction of experiment by condition by trial (Experiment x Condition x Trial; 

F(85,170) = 1.2, p = 0.169).  When we looked at each condition separately, we 

found that control monkeys trended toward better performance in the TkS 

experiment in the 2 v 1 (Experiment x Trial; F(17,34) = 2.6, p = 0.009), and in the 

2 v -1 (Experiment; F(1,2) = 9.3, p = 0.092) conditions.  We found a trend for 

control animals to perform better in TkL in the 2 v -2/-4 (Experiment x Trial; 

F(17,34) = 1.8, p = 0.078), and in the -1 v -2/-4 (Experiment; F(1,2) = 11, p = 

0.080).  We found no trend for differences across experiments in any other 

condition.  

VS 

When we examined the VS animals’ performance across the experiments, 

we found no main effect of experiment (Experiment; F(1,2) = 7.2, p = 0.115).  

However, we did find that VS monkeys’ performance across conditions 

(Experiment x Condition; F(5,10) = 24.4, p < 0.001), trials (Experiment x Trial; 

F(17,34) = 5.9, p < 0.001), and trials by conditions (Experiment x Condition x 
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Trial; F(85,170) = 1.8, p < 0.001) differed by experiment.  When we looked at each 

condition independently, we found that VS monkeys trended toward better 

performance better in the TkS experiment in the 2 v 1 (Experiment; F(1,2) = 35.5, 

p = 0.027), 1 v -1 (Experiment; F(1,2) = 81.1, p = 0.012), 2 v -1 (Experiment; 

F(1,2) = 109.7, p = 0.009).  In addition to these trends for main effects of 

experiment, the 2 v 1 and 1 v-1 trended toward being better on a trial by trial bias 

(2 v 1: Experiment x Trial; F(17,34) = 2.4, p = 0.016; 1 v -1: Experiment x Trial; 

F(17,34) = 2.2, p = 0.024).  We found a trend for VS animals to perform both 

overall and on a trial by trial basis better in TkL in the -1 v -2/-4 condition 

(Experiment; F(1,2) = 19.0, p = 0.049; Experiment x Trial; F(17,34) = 1.9, p = 

0.048).  There were, no other effects or trends in any other condition.    

  

 

Amygdala  

For the amygdala animals there was no overall differences across 

experiments (Experiment; F(1,2) = 0.02, p = 0.889), or in trials across experiments 

(Experiment x Trial; F(17,34) = 0.7, p = 0.789). However, we did find that 

performance in conditions differed across experiments (Experiment x Condition; 

F(5,10) = 25.2, p < 0.001).  The three way interaction of experiment by condition 

by trial was not significant (Experiment x Condition x Trial; F(85,170) = 1.2, p = 
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0.191).  When we looked at each condition separately, we found that amygdala 

monkeys performed better in the TkS experiment in the 2 v 1 (Experiment; F(1,2) 

= 134.4, p = 0.007), and trended toward performing better in the TkL experiment 

in the -1 v -2/-4 (Experiment; F(1,2) = 50.9, p = 0.019).  It looked like there was at 

least a trend for amygdala animals performing better in the TkL experiment in the 

1 v -2/-4 condition, but this was not the case (Experiment; F(1,2) = 4.8, p = 0.161).  

There were, no other effects or trends in any other condition.    
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Figure 4. Reinforcement Learning of Stimulus-Outcome Associations across the TkS & TkL tasks. A. Within 
group performance averaged across groups for each of the tasks. Error bars are +/- s.e.m. with N = number of 
groups.  B. Average performance for the control animals across tasks. C. Average performance for the VS 
animals across task. D. Average performance for amygdala animals across task. Error bars are +/- s.e.m. with 
N = number of animals.  Plots show the fraction of times monkeys chose the higher value option averaged 
across novel blocks for each group.  Numbers at the top of each plot indicate the condition, which corresponds 
to the cues which were shown in those trials.   
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This analysis revealed several things.  First, despite the order of experiments 

and the value difference between the two experiments, monkeys don’t perform 

overall better in the TkL experiment.  In fact we find that monkeys performed 

better in the TkS experiment in the 2 v 1 and 2 v -1 conditions.  This suggest that 

the difference we found in the TkD v TkS comparison was not a result of training, 

but instead of a more basic behavior principal that underlies stochastic versus 

deterministic reward schedules.  Second, this analysis reveals that cue value does 

indeed matter, its just not the only component animals take into account.  This can 

be seen by the fact that monkeys trended toward performing better in the TkS 

experiment in the three conditions without the bigger value difference.  In the 

conditions with the bigger value difference, we do find that monkeys trended 

toward better performance in the TkL experiment.  The important thing to 

remember about these experiments is that the cues are the same for each condition 

throughout a block, thus these condition effects within and across experiments 

indicate that performance is not simply based cue acquisition.  Again, the 

difference between the groups lies in their level of behavior modulation.  In 

particular, the VS animals seem to discount more in the conditions without the 

value difference, when compared to control and amygdala animals.  This is 

consistent with the results we find in chapter three and chapter four.  In chapter 

three when we compared control monkeys to VS monkeys, we found that VS 
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monkeys had performance deficits.  In chapter four when we compared control 

monkeys to amygdala monkeys we found no deficits.        

 
TkD v TkL 

Finally, we compared performance in the first experiment (TkD) to the 

performance in the fourth experiment (TkL).  Both of these experiments were on 

deterministic reward schedules, with TkL having a bigger value difference between 

the cues and a much richer reward environment (because of the endowment).  

When we compared these two experiments across groups we found that 

monkeys performed overall better in the TkL experiment (Experiment; F(1,6 ) = 

22.5, p = 0.003).  We found that this effect of experiment differed by condition 

(Experiment x Condition; F(5,30) = 29.4, p < 0.001), trial (Experiment x Trial; 

F(17,102) = 1.9, p = 0.019), and trials by conditions (Experiment x Condition x 

Trial; F(85,510) = 1.7, p < 0.001).  In addition to these effects, for the first time in 

any of the task comparisons, we found that the performance difference across 

experiment differed by group (Group x Experiment; F(2,6) = 7.8, p = 0.019).  No 

other group effects were significant.  When we analyzed the conditions 

individually, we found that monkeys performed better in the TkD experiment in 

the 2 v 1 condition (Experiment; F(1,6) = 18.1, p = 0.005).  There were no higher 

order interactions or group effects.  When we looked at the 1 v -1 condition across 

experiments, we found no difference in performance (Experiment; F(1,6) = 0.01, p 
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= 0.944).  Again, there were no higher order interactions or group effects.  For the 

2 v -1 condition there was a trend for monkeys to perform better in the TkD 

experiment, however this effect did not survive correction (Experiment; F(1,6) = 

6.0, p = 0.049).  As with the previous conditions there were no higher order 

interactions or group effects.  In the next three conditions where there was a value 

difference between the two experiments.  We found that monkeys performed better 

in TkL conditions (1 v -2/-4: Experiment; F(1,6) = 85.9, p < 0.001; 2 v -2/-4: 

Experiment; F(1,6) = 24.1, p = 0.002; -1 v -2/-4: Experiment; F(1,6) = 54.5, p < 

0.001).  In addition to these main effects of experiment, we found experiment by 

trials interactions for the 1 v – 2/-4 (Experiment x Trial; F(17,102) = 2.4, p = 

0.003), -1 v -2/-4 (Experiment x Trial; F(17,102) = 3.3, p < 0.001), but not the 2 v -

2/-4 (Experiment x Trial; F(17,102) = 1.6, p = 0.068).   

Controls  

 In our within group analysis we found an overall trend for better 

performance in the TkL experiment for control animals (Experiment; F(1,2) = 

15.9, p = 0.057).  However, this effect was not significant, because the better 

performance in TkL that drove this trend is based off much better performance in 

the conditions with the value difference.  Thus, we found an condition by 

experiment interaction (Experiment x Condition; F(5,10) = 6.9, p = 0.005).  There 

was no trial by experiment interaction (Experiment x Trial; F(17,34) = 1.4, p = 
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0.202), nor was there the three way interaction with condition (Experiment x 

Condition x Trial; F(85,170) = 1.1, p = 0.318).  Next, we examined each condition 

separately.  It looked like there was a trend for control animals to perform better in 

the TkD experiment in the 2 v 1 condition, but this was not the case (Experiment; 

F(1,2) = 1.8, p = 0.313; Experiment x Trial; F(17,34) = 0.9, p = 0.570).  We found 

trends for control monkeys performing better in TkL for the conditions with the 

value difference (1 v -2/-4: Experiment; F(1,2) = 42.55, p = 0.023; 2 v -2/-4: 

Experiment; F(1,2) = 9.7, p = 0.089; -1 v -2/-4: Experiment; F(1,2) = 13.7, p = 

0.066).  The interactions with trials was less significant for all of these conditions.   

VS 

For the VS monkeys we found no effect of experiment (Experiment; F(1,2) 

= 4.3, p = 0.175).  There was, however, a difference in conditions across 

experiments (Experiment x Condition; F(5,10) = 11.8, p < 0.001), but not in trials 

across experiments (Experiment x Trial; F(17,34) = 0.6, p = 0.873).  The three way 

interaction of experiment by condition by trial was also not significant (Experiment 

x Condition x Trial; F(85,170) = 0.077).  When we examined each condition 

separately, we found that there were trends for VS monkeys performing better in 

the TkD experiment in the 2 v 1 (Experiment; F(1,2) = 72.0, p = 0.014), and the 2 v 

-1 (Experiment; F(1,2) = 16.5, p = 0.056) conditions.  We found that VS monkeys 

performed better in the TkD experiment in the 1 v -1 condition (Experiment; F(1,2) 
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= 179.7, p =0.005).  We found trends for VS monkeys performing better in the TkL 

experiment in the 1 v -2/-4 (Experiment; F(1,2) = 9.6, p = 0.090) and in the -1 v -

2/-4 (Experiment; F(1,2) = 8.6, p = 0.099) conditions.  The experiment by trial 

interaction was not significant for any of these conditions.    

Amygdala  

We found no overall difference in performance across experiments 

(Experiment; F(1,2) = 10.2, p = 0.086) for the amygdala animals.  We did find that 

performance in conditions varied by experiment (Experiment x Condition; F(5,10) 

= 14.9, p < 0.001), but not trials across experiments (Experiment x Trial; F(17,34) 

= 1.1, p = 0.356).  The three way interaction was also not significant (Experiment x 

Condition x Trial; F(85,170) = 1.1, p = 0.248).  When we examined each condition 

separately, we found that amygdala monkeys performed better in the TkD 

experiment in the 2 v 1 condition (Experiment; F(1,2) = 148.9, p = 0.006).  There 

was a trend for amygdala animals to perform better in the TkL experiment in the 1 

v -2/-4 (Experiment; F(1,2) = 45.6, p = 0.021), and in the 2 v -2/-4 (Experiment; 

F(1,2) = 72.2, p = 0.014) conditions.  Amygdala animals performed significantly 

better in the TkL experiment in the -1 v -2/-4 (Experiment; F(1,2) = 445.0, p = 

0.002) condition.  The experiment by trial interaction was not significant for any of 

these conditions.    
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Figure 5. Reinforcement Learning of Stimulus-Outcome Associations across the TkD & TkL tasks. A. Within 
group performance averaged across groups for each of the tasks. Error bars are +/- s.e.m. with N = number of 
groups.  B. Average performance for the control animals across tasks. C. Average performance for the VS 
animals across task. D. Average performance for amygdala animals across task. Error bars are +/- s.e.m. with 
N = number of animals.  Plots show the fraction of times monkeys chose the higher value option averaged 
across novel blocks for each group.  Numbers at the top of each plot indicate the condition, which corresponds 
to the cues which were shown in those trials.   
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Despite the order of experiments, and the value difference between the two 

experiments, monkeys still perform better in some of the TkD conditions.  The 

TkD and TkL experiments were both on deterministic reward schedules, so why do 

monkeys still perform better in some TkD conditions?  The only other difference 

between these two experiments, besides the value difference, is that TkL has a 

much richer reward environment, due to the endowment we give the monkeys.  We 

posit that in leaner reward environments (when everything else is held constant) 

monkeys become greedier in the leaner environment. Each of their choices 

becomes more valuable in the leaner reward environment.  This can be illustrated 

with the 2 v 1 condition, which seems to be the condition that modulates the most 

across experiments.  The difference between the groups in this comparison, again, 

seems to be that VS animals discount their choice behavior much more in the 

richer reward environment (TkL), when compared to the other two groups, which 

is shown by the group by experiment effect we found.      

  

5.3.2 Cash-out  

Fundamentally these three tasks only differ in a few ways.  We posit that 

performance across tasks varies with one or both of the following parameters of the 

task environment.  The two parameters we will discuss are reward rate and reward 

schedule.  The former is concerned with the average rate of reward, the latter is 
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concerned with the reward schedule.  The tasks in this analysis either employ a 

fixed (deterministic) or variable (stochastic) schedule of reinforcement.  In each of 

these tasks, the conditions within a block of 108 trials were presented pseudo-

randomly.  The animals saw each condition twice, once on the left and once on the 

right, every twelve trials, before seeing any condition a third time.  This 

information allowed us to find the maximum number of tokens monkeys could get 

every twelve trials, if they chose the higher value option in each of these trials.  

From this we could estimate a maximum per trial token rate.  Since we cashed out 

monkeys’ accumulated tokens every four to seven trials randomly, we could 

multiply this per trial token rate by the average number of trials in a cash out 

period (5.5), to get an average estimate of the maximum number of tokens 

monkeys could have per cash out (Fig. 6A).  Next, we found the average number 

of tokens monkeys had at cash outs (Fig.6B), and divided this value by the average 

maximum number of tokens monkeys could have at cash out, to get the average 

proportion (of maximum tokens) of tokens monkeys had per cash out (Fig. 6C).  

 When we looked at the average proportion of tokens monkeys had per cash 

out across tasks (Fig. 6D), we found that these proportions differed by experiment 

(Experiment; F(2,14.5) = 317.6, p < 0.001).  We also found that this difference in 

proportions by experiment, differed by group (Group x Experiment; F(4,14.5) = 

3.4, p = 0.0350).  Next, to see what was driving this group effect, we looked at 
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each group separately across the three experiments.  We found that the proportion 

of tokens differed across experiments for all three groups (Controls: F(2,4) = 89.8, 

P < 0.001; VS: F(2,4) = 108.0, p < 0.001; Amygdala: F(2,4) = 80.2, p < 0.001).  

TkD v TkS  

To get a better idea of how the proportions of tokens varied by tasks we 

completed our pairwise task comparisons.  We started by comparing TkD to TkS, 

these two experiments have the same max cashout, except in TkS choices are only 

reinforced 75% of the time.  Thus in TkD, the max tokens monkeys could get 

every 12 trials was 14, which came out to 1.17 tokens per trial.  While for TkS, the 

max tokens monkeys could get every 12 trials was 10.5 (14 * 0.75), which came 

out to 0.875 tokens per trial.  On average a cash-out occurs every 5 trials, so when 

we multiplied the per trial rate for each experiment by 5, we got a max average 

cash-out of 5.83 for TkD, and 4.38 for TkS.  When we compared TkD to TkS, we 

found that that monkeys earned a larger proportions of their max possible cash-out 

in the TkS experiment (Experiment; F(1,8) = 165.9, p < 0.001).  There were no 

group effects.  When we looked at each group separately across these two 

experiments, we found that control and amygdala animals earned a larger 

proportion of their max possible cash-out in the TkS experiment (Controls: 

Experiment; F(1,3) = 135.4, p = 0.001; Amygdala: Experiment; F(1,3) = 57.8, p = 

0.005).  There was a trend for VS animals to earn a larger proportion of their max 
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possible cash-out in TkS, this effect did not survive correction (VS: Experiment; 

F(1,2) = 19.4, p = 0.048).  This follows because in this task comparison, monkeys 

performed overall better in TkS, but the groups performed better to varying 

degrees.  Control and amygdala animals performed significantly better in TkS 

when compared to TkD, while VS animals only performed slightly better.  

TkS v TkL   

Next, we compared TkS to TkL.  In the TkL experiment monkeys received 

an endowment of 4 tokens on the first trial after a cash-out.  This resulted in a max 

of 26 tokens every 12 trials.  It should be noted that this is the max number of 

tokens monkeys could earn in TkL every 12 trials, this value assumes monkeys 

received three endowments of 4 tokens, totaling 12 tokens from endowments in 

this 12 trial period.  Thus, this max value assumes tokens were cashed-out every 4 

trials, which is the minimum number of trials before a cash-out occurred.  Cash-

outs don’t always occur on the fourth trial, but none the less, 26 tokens is the max 

number of tokens monkeys could earn for every 12 trials, which comes out to a avg 

per trial rate of 2.16.  When we compared TkS to TkL, we found that monkeys 

earned a larger proportion of their max possible tokens in TkS (Experiment; F(1,6) 

= 854.8, p < 0.001).  We found no group effects in this comparison.  When we 

looked at each group individually, we found that all groups earned a higher 

proportion of the max possible tokens in TkS (Controls: Experiment; F(1,2) = 
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235.2, p = 0.004; VS: Experiment; F(1,2) = 250.9, p = 0.003; Amygdala: 

Experiment; F(1,2) = 476.8, p = 0.002).   

TkD v TkL   

In the final task comparison TkD v TkL, we found that monkeys earned a 

higher proportion of tokens in the TkD task (Experiment; F(1,6) = 141.2, p < 

0.001).  There were no group differences in this task comparison.  When we looked 

at each group individually, we found that only VS animals earned a higher 

proportion of token in TkD (VS: Experiment; F(1,2) = 442.7, p = 0.002).  There 

was a trend for control and amygdala animals to earn a higher proportion of tokens 

in TkD, but neither group survived correction (Controls: Experiment; F(1,2) = 

17.4, p = 0.053; Amygdala: Experiment; F(1,2) = 31.1, p = 0.031).  These effects 

also follow the trend of the behavioral data, VS animals discount more in the TkL 

experiment when compared to TkD, in particular across the three conditions 

without the value difference, when compared to the other two groups.      
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Figure 6. Tokens at Cashout across the 3 tasks. A. Max number of tokens monkeys could have on average per 
cash-out across tasks. B. Average number of tokens monkeys had per cashout across tasks. C. Average 
proportion of tokens monkeys had on cash-outs for each monkey across tasks (Controls = monkeys 1-4, VS = 
monkeys 5-7 & Amygdala = monkeys 8-11). D. Average proportion of tokens monkeys had on cash-outs 
averaged within group. C & D were derived by dividing the number of tokens monkeys had by the max tokens 
monkeys could have (B/A). Error bars in B & D are +/- s.e.m. with N = number of animals. 
 

5.3.3 Reinforcement learning model 

We fit a large set of RL models (see supplemental material) to the novel 

choice data presented in chapter 3 and chapter 4.  All models were built around the 

Rescorla-Wagner or stateless RL equation, in which the models varied in the 
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number of free parameters used to model the choice behavior.  Following this we 

used the Bayesian Information Criterion (BIC) and Akaike information criterion 

(AIC) to assess which model fit best in each session, for each animal and 

experiment.  There was some variation in model selection across groups and tasks, 

but overall, model 11 was selected the most by both the AIC (Fig. 7A – 7C) and 

BIC (Fig 7D – 7F).  Model 11 consisted of one learning rate for each cue, one 

inverse temperature parameter across all conditions, one choice autocorrelation 

parameter, and one decay parameter.    

 

 
 
Figure 7. RL model selection across the three tasks. Top row (A-C) is AIC model selection for each group 
across the three experiments. Bottom row is the same as the top row but for BIC model selection.   

 



 

 

219 
 

We start each comparison section by presenting a table summarizing the 

anova results for model 11’s cue learning rate parameters across experiments for 

both our across and within group analysis.  Our across group analysis started with 

an anova over cue learning rate parameters for each monkey across the three 

groups.  This anova had main effects of ‘Group’, ‘Monkey’, ‘Cue’, and 

‘Experiment’.  A full model was run, so this initial model had two and three way 

interactions of all the factors listed above.  The interactions of interest are ‘Group x 

Cue’, ‘Group x Experiment’, ‘Cue x Experiment’, and ‘Group x Cue x 

Experiment’.  The three way interaction was never significant, so we stick to 

describing the main effects and the two way interactions.  Next, we separated the 

learning rates for cues by valance (gains & losses) and ran an anova with the same 

effects listed above.  Following this, if we found that learning rates from cues of 

the same valance differed from one another or across experiments, we ran an anova 

on each cue separately for that particular valance.  In the table and in the analysis 

all effects are presented in their uncorrected form, but we only bold (in table), and 

consider an effect significant in the written analysis, if it survived correction.  

Finally, we performed within group analysis in the same way described above, 

except the ‘Group’ factors are dropped.              
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TkD v TkS v TkL 
 

Monkeys Cues 
Included 

Group Cue  Experiment Group 
x Cue 

Group x 
Experiment 

Cue x 
Experiment  

All  +2,+1,-
1,-2/-4 

p = 
0.037 

p < 
0.001 

p = 0.014 p = 
0.045 

p = 0.435 p = 0.001 

All +2, +1 p = 
0.005 

p < 
0.001 

p < 0.001 p = 
0.963 

p = 0.413 p = 0.224 

All +2  p = 
0.019 

n/a p = 0.003 n/a p = 0.649 n/a 

All +1 p = 
0.013 

n/a p = 0.001 n/a p = 0.435 n/a 

All -1,-2/-4 p = 
0.689 

p = 
0.465 

p = 0.713 p = 
0.731 

p = 0.622 p = 0.734 

Controls  +2,+1,-
1,-2/-4 

n/a p = 
0.001 

p = 0.418 n/a n/a p = 0.039 

Controls +2, +1 n/a p = 
0.087 

p = 0.208 n/a n/a p = 0.148 

Controls -1,-2/-4 n/a p = 
0.928 

p = 0.482 n/a n/a p = 0.457 

VS +2,+1,-
1,-2/-4 

n/a p = 
0.004 

p = 0.358 n/a n/a p = 0.064 

VS +2, +1 n/a p = 
0.005 

p = 0.024 n/a n/a p = 0.073 

VS +2 n/a n/a p = 0.018 n/a n/a n/a 
VS +1 n/a n/a p = 0.032 n/a n/a n/a 
VS -1,-2/-4 n/a p = 

0.543 
p = 0.603 n/a n/a p = 0.858 

Amygdala  +2,+1,-
1,-2/-4 

n/a p = 
0.006 

p = 0.111 n/a n/a p = 0.577 

Amygdala +2, +1 n/a p = 
0.057 

p = 0.028 n/a n/a p = 0.601 

Amygdala -1,-2/-4 n/a p = 
0.698 

p = 0.594 n/a n/a p = 0.728 

Table 1. Across and within group ANOVA results for cue learning rate parameters across TkD, TkS, and TkL.   
 

When we compared learning rate parameters for model 11 across all three 

experiments, we found that learning rate parameters varied across cues (Cue; 

F(3,24) = 83.1, p < 0.001), experiments (Experiment; F(2,14) = 5.8, p = 0.0150), 

and learning cues by experiments (Experiment x Cue; F(6,43) = 4.7, p = 0.001).  
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We found that learning rates for cues differed by group (Group; F(2,8) = 5.2, p = 

0.037).  We also found that this group effect was driven by particular cues (Group 

x Cue; F(6,24) = 2.6, p = 0.045).  No other interactions were significant.  Next, we 

examined learning rates for the gain and loss cues separately.  For the gain cues, 

we found differences across cues (Cue; F(1,8) = 45.1, p < 0.001) and experiments 

(Experiment; F(2,14) = 17.6, p < 0.001).  We also found that the groups differed 

across gain cues (Group; F(2,8) = 11.1, p = 0.005).  No other interactions were 

significant.  Since we found differences in the gain cues, we looked at the learning 

rate for each gain cue separately across experiments.  For both the +2 and +1 cue, 

we found that their learning rates differed by experiment (+2: Experiment; F(2,14) 

= 8.9, p = 0.003; +1: Experiment; F(2,14) = 11.1, p = 0.001).  We also found a 

trend for the learning rates to differ by group (+2: Group; F(2,8) = 6.7, p = 0.02; 

+1: Group; F(2,8) = 7.7, p = 0.013), but individually they did not survive 

correction.  When we examined just the loss cues, we found no differences across 

cues (Cue; F(1,8) = 0.6, p = 0.465), or experiments (Experiment; F(2,14) = 0.35, p 

= 0.713).  There were no group differences for the loss cues (Group; F(2,8) = 0.4. p 

= 0.689), and no other interactions.     

 

Controls     
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For the control animals we found that learning rate parameters varied across 

cues (Cue; F(3,6) = 21.8, p = 0.001).  There was no main effect of experiment 

(Experiment; F(2,4) = 1.1, p = 0.418), but learning rates for cues did differ by 

experiment (Experiment x Cue; F(6,12) = 3.2, p = 0.039).  When we looked at 

learning rates for gain and loss cues separately, we found that learning rates for 

gain cues did not differ by cue (Cue; F(1,4) = 9.9, p = 0.087), experiment 

(Experiment; F(2,4) = 2.4, p = 0.208), or learning rates by experiment (Experiment 

x Learning rate; F(2,4) = 3.2, p = 0.148).  Learning rates for loss cues did not differ 

by cue (Cue; F(1,4) = 0.01, p = 0.928), experiment (Experiment; F(2,4) = 0.9, p = 

0.482), or learning rate by experiment (Experiment x Cue; F(2,4) = 0.9, p = 0.457).     

VS 

For the VS monkeys, we found that learning rate parameters differed across 

cues (Cue; F(3,6) = 13.7, p = 0.004).  There was no main effect of experiment 

(Experiment; F(2,4) = 1.3, p = 0.358), or cue by experiments interaction 

(Experiments x Cue; F(6,12) = 2.7, p = 0.064).  When we looked at the learning 

rate parameters for gain and loss cues separately, we found that the learning rates 

for the gain cues did differ by experiment (Experiment; F(2,4) = 10.8, p = 0.024), 

cue (Cue; F(1,2) = 204.9, p = 0.005), but the interaction of learning rates and 

experiment was not significant (Experiment x Learning rate; F(2,4) = 5.4, p = 

0.073).  To better characterize the individual effects of both gain cues, we analyzed 
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learning rates for these cues separately.  We found that learning rates for both the 

+2 (Experiment; F(2,4) = 12.8, p < 0.018) and +1 cue (Experiment; F(2,4) = 9.1, p 

= 0.032) trended toward being different across experiments (but they do not 

survive correction).  The learning rates for the loss cues did not differ by 

experiment (Experiment; F(2,4) = 0.6, p = 0.603), cue (Cue; F(1,2) = 0.5, p = 

0.543), or learning rates by experiment (Experiment x Cue; F(2,4) = 0.16, p = 

0.858). 

Amygdala       

For amygdala animals, we found that learning rates differed by cue (Cue; 

F(3,6) = 29.2, p < 0.001).  There was no main effect of experiment (Experiment; 

F(2,4) = 4.0, p = 0.111), and no interaction of experiment and learning rate 

(Experiment x Cue; F(6,12) = 0.8, p = 0.577).  When we looked at learning rates 

for gain and loss cues separately, it became clear that these effects were primary 

driven by the gain cues.  There was a trend for learning rates to differ across gain 

cues (Cue; F(1,2) = 16.0, p = 0.057), and experiments (Experiment; F(2,4) = 9.9, p  

0.028).  Again, there was no interaction of learning rate by experiment 

(Experiment x Cue; F(2,4) = 0.6, p = 0.601).  Learning rates for loss cues did not 

differ across experiments (Experiment; F(2,4) = 0.6, p = 0.594).  Learning rates for 

the loss cues did not differ from one another (Cue; F(1,2) = 0.2, p = 0.698), or 

across experiments (Experiment x Cue; F(2,4) = 0.3, p = 0.728). 



 

 

224 
 

   
 
Figure 8. Learning rate parameters for each cue across the three tasks. A. Learning rate parameters for the +2 
cue across the three tasks. B. Learning rate parameters for the +1 cue across the three tasks. C. Learning rate 
parameters for the -1 cue across the three tasks. D. Learning rate parameters for the -2/-4 cue across the three 
tasks.  
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TkD v TkS 
 

Monkeys Cues 
Included 

Group Cue  Experiment Group x 
Cue 

Group x 
Experiment 

Cue x 
Experiment  

All  +2,+1,-
1,-2/-4 

p = 
0.227 

p < 
0.001 

p = 0.006 p = 0.249 p = 0.297 p < 0.001 

All +2, +1 p = 
0.018 

p = 
0.007 

p < 0.001 p = 0.701 p = 0.169 p = 0.644 

All +2  p = 
0.046 

n/a p = 0.001 n/a p = 0.266 n/a 

All +1 p = 
0.125 

n/a p < 0.001 n/a p = 0.863 n/a 

All -1,-2/-4 p = 
0.998 

p = 
0.234 

p = 0.923 p = 0.829 p = 0.497 p = 0.619 

Controls  +2,+1,-
1,-2/-4 

n/a p < 
0.001 

p = 0.061 n/a n/a p = 0.006 

Controls +2, +1 n/a p = 
0.122 

p = 0.004 n/a n/a p = 0.904 

Controls +2, n/a n/a p = 0.007 n/a n/a n/a 
Controls +1 n/a n/a p = 0.047 n/a n/a n/a 
Controls -1,-2/-4 n/a p = 

0.031 
p = 0.821 n/a n/a p = 0.570 

VS +2,+1,-
1,-2/-4 

n/a p < 
0.001 

p = 0.34 n/a n/a p = 0.062 

VS +2, +1 n/a p = 
0.010 

p = 0.071 n/a n/a p = 0.105 

VS +2 n/a n/a p = 0.078 n/a n/a n/a 
VS +1 n/a n/a p = 0.074 n/a n/a n/a 
VS -1,-2/-4 n/a p = 

0.499 
p = 0.582 n/a n/a p = 0.553 

Amygdala  +2,+1,-
1,-2/-4 

n/a p < 
0.001 

p = 0.073 n/a n/a p = 0.156 

Amygdala +2, +1 n/a p = 
0.217 

p = 0.007 n/a n/a p = 0.848 

Amygdala +2, n/a n/a p = 0.069 n/a n/a n/a 
Amygdala +1 n/a n/a p = 0.017 n/a n/a n/a 
Amygdala -1,-2/-4 n/a p = 

0.731 
p = 0.459 n/a n/a p = 0.607 

Table 2. Across and within group ANOVA results for cue learning rate parameters across TkD and TkS.    
 

When we compared the learning rate parameters for TkD and TkS, we found 

that learning rates differed by cue (Cue; F(3,24) = 78.4, p < 0.001), experiment 

(Experiment; F(1,8) = 13.5, p = 0.006), and learning rates by experiment 
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(Experiment x Cue; F(3,24) = 10.5, p < 0.001).  Across all the learning rates, we 

found no group effects.  This supports the behavioral results above showing that all 

groups performed better in the TkS experiment, thus overall learning rates were 

higher for all groups in TkS as compared to TkD.  When we separated the learning 

rates for gain and loss cues, we found that the learning rates for gain cues differed 

by cue (Cue; F(1,8) = 12.9, p = 0.007) and the learning rates for gain cues were 

higher in TkS (Experiment; F(1,8) = 96.1, p < 0.001).  There was no interaction of 

learning rates by experiment (Experiment x Cue; F(1,8) = 0.23).  We did, however, 

find a main effect of group across learning rates for gain cues (Group; F(2,8) = 6.8, 

p = 0.018).  We did not find that learning rate parameters for gain cues differed by 

group across experiments (Group x Experiment; F(2,8) = 2.2, p = 0.170), which 

means all groups trended toward the same direction (higher learning rates in TkS).  

Since the learning rates for gain cues differed across cues and experiments, we 

looked at learning rates for each gain cue separately.  When we separated the 

learning rates for gain cues, it became clear that the learning rate for the +2 cue 

was driving this group effect.  For the +2 cue, we found that learning rates were 

higher in the TkS (Experiment; F(1,8) = 22.6, p = 0.001).  In addition to this effect, 

there was a trend for control and amygdala animals to have higher learning rates 

for the +2 cue (Group; F(2,8) = 0.046) when compared to VS animals (although 

this group effect does not survive correction).  When we looked at the learning 
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rates for the +1 cue, we found that learning rates for the +1 cue were higher in TkS 

(Experiment; F(1,8) = 40.4, p < 0.001).  The groups did not differ when it came to 

this learning rate (Group; F(2,8) = 2.7, p = 0.125).  For loss cues, we found that 

learning rates did not differ by cue (Cue; F(1,8) = 1.6, p = 0.234) or by experiment 

(Experiment; F(1,8) = 0.01, p = 0.923).   

Controls 

 Next, we completed our within group analysis of the learning rates in TkD 

compared to learning rates in TkS.  For control animals, we found that learning 

rates differed by cue (Cue; F(3,9) = 92.9, p < 0.001).  We did not find a main effect 

of experiment (Experiment; F(1,3) = 8.5, p = 0.061), but we did find that learning 

rates differed across experiments (Experiment x Cue; F(3,9) = 8.3, p = 0.006).  

When we separated the learning rates for gain and loss cues, we found that learning 

rates for gain cues were higher in TkS (Experiment; F(1,3) = 63.0, p = 0.004).  The 

learning rates for gain cues did not differ from one another (Cue; F(1,3) = 4.5, p = 

0.122), or by experiment (Experiment x Cue; F(1,3) = 0.02, p = 0.904).  When we 

separated the learning rates for gain cues, we found that learning rates for the +2 

cue was driving the higher learning rates for gain cues in TkS (Experiment; F(1,3) 

= 42.9, p = 0.007).  Learning rates for the +1 cue trended toward being higher in 

TkS (Experiment; F(1,3) = 10.5, p = 0.047), but did not survive correction.  We 

found no difference across tasks in learning rates for loss cues (Experiment; F(1,3) 
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= 0.1, p = 0.821),  and no difference in learning rates between loss cues (Cue; 

F(1,3)  = 14.5, p = 0.031). 

VS   

For VS animals we found that learning rates for cues differed from one 

another (Cue; F(3,6) = 40.3, p < 0.001).  We found no main effect of experiment 

(Experiment; F(1,2) = 1.5, p = 0.340), or learning rates across experiments 

(Experiment x Cue; F(3,6) = 4.3, p = 0.062).  When we looked at just the learning 

rates for gain cues, we found a trend for learning rates for gain cues to be higher in 

TkS (Experiment; F(1,2) = 12.6, p = 0.071), but did not reach significance.  

Learning rates for gain cues, also, did not differ across experiments (Experiment x 

Cue; F(1,2) = 8.0, p = 0.105).    We did find that learning rates for gain cues 

differed from one another (Cue; F(1,2) = 97.0, p = 0.010).  When we separated 

learning rates for gain cues, we found that VS monkeys trended toward having 

higher learning rates for both the +2 (Experiment; F(1,2) = 11.3, p = 0.078), and +1 

(Experiment; F(1,2) = 12.0, p = 0.074) cue in TkS, but neither reached 

significance.  The learning rates for loss cues did not differ from one another (Cue; 

F(1,2) = 0.67, p = 0.499), by experiment (Experiment; F(1,2) = 0.4, p = 0.582), or 

learning rates across experiments (Experiment x Cue: F(1,2) = 0.5, p = 0.553).   

Amygdala      
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 For amygdala animals, we found that learning rates for cues differed from 

one another (Cue; F(3,9) = 20.3, p < 0.001).  We did not find that learning rates 

differed by (Experiment; F(1,3) = 7.3, p = 0.073), or across (Experiment x Cue; 

F(3,9) = 2.2, p = 0.156) experiments.  When we separated learning rates for gain 

and loss cues, we found that learning rates for gain cues were higher in TkS 

(Experiment; F(1,3) = 43.9, p = 0.007).  Learning rates for gain cues did not differ 

from one another (Cue; F(1,3) = 2.3, p = 0.217) or across experiments (Experiment 

x Cue; F(1,3) = 0.04, p = 0.848).  When we separated learning rates for the gain 

cues, we found that learning rates for both the +2 and +1 cues trended toward 

being higher in TkS (+2: Experiment; F(1,3) = 7.7, p = 0.069; +1: Experiment; 

F(1,3) = 22.5, p = 0.017), but neither was significant alone.  Learning rates for loss 

cues did not differ by cue (Cue; F(1,3) = 0.1, p = 0.731), or by experiment 

(Experiment; F(1,3) = 0.7, p = 0.459). 

 Using RL modeling, we were able to better show how the groups differed 

between their performance in TkD versus their performance in TkS.  While we did 

not find a group effect across conditions, when we analyzed the choice behavior, 

this was the case because all groups performed better in the TkS experiment, and 

the condition where the control an amygdala animals performed better than the VS 

animals was spread across a couple conditions.  The learning rates for our RL 

model show that control and amygdala animals valued the gain cues more than the 
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VS animals, this was shown by bigger increases in the learning rates for gain cues 

by the control and amygdala animals when compared to VS animals.  This 

difference in value for the gain cues in the TkS experiment was mostly driven by 

the +2 cue.   

TkS v TkL 
 

Monkeys Cues 
Included 

Group Cue  Experiment Group 
x Cue 

Group x 
Experiment 

Cue x 
Experiment  

All  +2,+1,-
1,-2/-4 

p = 
0.078 

p < 
0.001 

p = 0.556 p = 
0.148 

p = 0.381 p = 0.154 

All +2, +1 p = 
0.015 

p = 
0.001 

p = 0.107 p = 
0.934 

p = 0.516 p = 0.212 

All +2  p = 
0.039 

n/a p = 0.072 n/a p = 0.770 n/a 

All +1 p = 
0.058 

n/a p = 0.75 n/a p = 0.286 n/a 

All -1,-2/-4 p = 
0.717 

p = 
0.914 

p = 0.587 p = 
0.741 

p = 0.448 p = 0.739 

Controls  +2,+1,-
1,-2/-4 

n/a p = 
0.004 

p = 0.633 n/a n/a p = 0.131 

Controls +2, +1 n/a p = 
0.157 

p = 0.954 n/a n/a p = 0.046 

Controls -1,-2/-4 n/a p = 
0.977 

p = 0.308 n/a n/a p = 0.359 

VS +2,+1,-
1,-2/-4 

n/a p < 
0.001 

p = 0.512 n/a n/a p = 0.211 

VS +2, +1 n/a p = 
0.011 

p = 0.075 n/a n/a p = 0.361 

VS +2 n/a n/a p = 0.042 n/a n/a n/a 
VS +1 n/a n/a p = 0.112 n/a n/a n/a 
VS -1,-2/-4 n/a p = 

0.931 
p = 0.503 n/a n/a p = 0.995 

Amygdala  +2,+1,-
1,-2/-4 

n/a p = 
0.001 

p = 0.313 n/a n/a p = 0.764 

Amygdala +2, +1 n/a p = 
0.109 

p = 0.145 n/a n/a p = 0.535 

Amygdala -1,-2/-4 n/a p = 
0.895 

p = 0.613 n/a n/a p = 0.610 

Table 3. Across and within group ANOVA results for cue learning rate parameters for TkS and TkL.  
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When we compared the learning rates from TkS to TkL, we found that 

learning rates differed by cue (Cue; F(3,23) = 56.6, p < 0.001), but not experiment 

(Experiment; F(1,6) = 0.4, p = 0.556).  There were no group effects or other 

interactions.  When we separated learning rates for gain and loss cues, we found 

that learning rates for gain cues differed by cue (Cue; F(1,8) = 23.2, p = 0.001) but 

not experiment (Experiment; F(1,6) = 3.6, p = 0.107).  We did, however, find a 

main effect of group (Group; F(2,8) = 7.5, p = 0.015).  To further investigate this 

group effect, we separated the learning rates for the gain cues, we found that 

neither cue alone had learning rates that differed across experiment (+2: 

Experiment; F(1,6) = 4.8, p = 0.072; +1: Experiment; F(1,6) = 0.11, p = 0.75).  

There was, however, a trend for a group difference for both gain cues (+2: Group; 

F(2,7) = 5.1, p = 0.04; +1: Group; F(2,7) = 4.2, p = 0.058), but neither was 

significant alone.  Learning rates for loss cues did not differ by cue (Cue; F(1,8) = 

0.01, p = 0.914) or experiment (Experiment; F(1,6)  = 0.33, p = 0.587). 

Controls    

 In our within group analysis we found that learning rates for control animals 

differed by cue (Cue; F(3,6) = 14.0, p = 0.004).  Learning rates did not differ by 

(Experiment; F(1,2) = 0.3, p = 0.633), or across experiments (Experiment x Cue; 

F(3,6) = 2.8, p = 0.131).  When we separated learning rates for the gain and loss 

cues, we found that learning rates for gain cues did not differed by cue (Cue; F(1,2) 
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= 4.9, p = 0.157), or experiment (Experiment; F(1,2) = 0, p = 0.954).  There was a 

trend for learning rates for gain cues to differ across experiments (Experiment x 

Cue; F(1,2) = 13.5 p = 0.046), but this effect did not survive correction.  Learning 

rates for loss cues did not differ by cue (Cue; F(1,2) = 0, p = 0.977), or experiment 

(Experiment; F(1,2) = 1.8, p = 0.308).  

VS 

 For VS animals, we found that learning rates across cues differed (Cue; 

F(3,6) = 26.8, p < 0.001), but not by experiment (Experiment; F(1,2) = 0.6, p = 

0.512).  When we separated learning rates for gain and loss cues, we found that 

learning rates for gain cues differed by cue (Cue; F(1,2) = 88.9, p = 0.011).  

Learning rates for gain cues did not differ by (Experiment; F(1,2)  11.7 = 0.075), or 

across experiments (Experiment x Cue; F(1,2) = 1.4, p = 0.361).  The interaction of 

learning rate by experiment was not significant (Experiment x Cue; F(1,228) = 0.8, 

p = 0.382).  Since there was a trend for the learning rates for gain cues to differ by 

experiment, we separated learning rates for the gain cues, and found that this trend 

was driven by the +2 (Experiment; F(1,2) = 22.0, p = 0.042).  Learning rates for 

loss cues did not differ by cue (Cue; F(1,2) = 0.01, p = 0.931), or by experiment 

(Experiment; F(1,2) = 0.7, p = 0.503). 

Amygdala    
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 For the amygdala animals, we found that learning rates differed by cue (Cue; 

F(3,6) = 21.3, p = 0.001).  Learning rates did not differ by (Experiment; F(1,2) = 

1.7, p = 0.313), or across (Experiment x Cue; F(3,6) = 2.1, p = 0.764) experiments.  

When we separated the learning rates for gain and loss cues, we found that neither 

differed by cue (Gains: Cue; F(1,2) = 7.6, p = 0.109; Losses: Cue; F(1,2) = 0.02, p 

= 0.895), or by experiment (Gains: Experiment; F(1,2) = 5.4, p = 0.145; Losses: 

Experiment; F(1,2) = 0.3, p = 0.613).  There was no interaction of learning rates by 

experiment for gain or loss cues.      

 This analysis revealed that despite the value difference in TkL, monkeys did 

not value the cues more in this experiment.  The difference between the groups lies 

in how the groups valued the gain cues in both experiments.  Control and amygdala 

animals valued the gain cues more in these two experiments, when compared to 

VS animals.    
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TkD v TkL 

Monkeys Cues 
Included 

Group Cue  Experiment Group 
x Cue 

Group x 
Experiment 

Cue x 
Experiment  

All  +2,+1,-
1,-2/-4 

p = 
0.064 

p < 
0.001 

p = 0.097 p = 
0.075 

p = 0.607 p < 0.089 

All +2, +1 p = 
0.017 

p < 
0.001 

p = 0.069 p = 
0.654 

p = 0.498 p = 0.123 

All +2  p = 
0.145 

n/a p = 0.206 n/a p = 0.594 n/a 

All +1 p = 
0.012 

n/a p = 0.058 n/a p = 0.495 n/a 

All -1,-2/-4 p = 
0.453 

p = 
0.500 

p = 0.351 p = 
0.425 

p = 0.885 p = 0.473 

Controls  +2,+1,-
1,-2/-4 

n/a p = 
0.005 

p = 0.395 n/a n/a p = 0.279 

Controls +2, +1 n/a p = 
0.025 

p = 0.314 n/a n/a p = 0.224 

Controls +2, n/a n/a p = 0.443 n/a n/a n/a 
Controls +1 n/a n/a p = 0.275 n/a n/a n/a 
Controls -1,-2/-4 n/a p = 

0.684 
p = 0.618 n/a n/a p = 0.563 

VS +2,+1,-
1,-2/-4 

n/a p = 
0.188 

p = 0.145 n/a n/a p = 0.551 

Amygdala  +2,+1,-
1,-2/-4 

n/a p < 
0.001 

p = 0.086 n/a n/a p = 0.537 

Amygdala +2, +1 n/a p = 
0.127 

p = 0.203 n/a n/a p = 0.677 

Amygdala -1,-2/-4 n/a p = 
0.145 

p = 0.392 n/a n/a p = 0.781 

Table 4. Across and within group ANOVA results for cue learning rate parameters across TkD and TkL. 
 

When we compared learning rates from TkD to TkL, we found that learning 

rates differed by cue (Cue; F(3,23) = 36.5, p < 0.001), but not experiment 

(Experiment; F(1,6) = 3.8, p = 0.097).  There was a trend for the control and 

amygdala animals to have higher learning rates across the experiments as 

compared to VS animals (Group; F(2,5) = 4.8, p = 0.064), and for the learning 

rates to differ by group across experiments (Group x Cue; F(6,23) = 2.2, p = 



 

 

235 
 

0.075).  When we separated learning rates for gain an loss cues, for gain cues, we 

found that learning rates differed by cue (Cue; F(1,8) = 30.4, p < 0.001), group 

(Group; F(2,6) = 8.5, p = 0.017).  Learning rates did not differ by (Experiment; 

F(1,6) = 4.8, p = 0.069), or across experiments (Experiment x Cue; F(1,6) = 3.2, p 

= 0.123).  When we separated the learning rates for gain cues, we found that the 

group effect across learning rates for gain cues was driven by the +1 cue (Group; 

F(2,5) = 11.7, p = 0.012).  The learning rates for the +1 cue did not differ by 

experiment (Experiment; F(1,6) = 5.5, p = 0.058), or by, group across experiment 

(Group x Experiment; F(2,6) = 0.8, p = 0.495).  There were no effects for the +2 

cue.  For loss learning rates, we found no difference across cues (Cue; F(1,8) = 0.5, 

p = 0.500), experiment (Experiment; F(1,6) = 1.0, p = 0.351), or any other 

interactions. 

Controls 

 When we looked at learning rates for just the control animals, we found that 

learning rates differed by cue (Cue; F(3,6) = 12.8, p = 0.005).  Learning rates did 

not differ by (Experiment; F(1,2) = 1.2, p = 0.395), or across experiments 

(Experiment x Cue; F(3,6) = 0.9, p = 0.279).  Learning rates for just gain cues 

differed by cue (Cue; F(1,2) = 37.8, p = 0.025).  They did not, however, differ by 

(Experiment; F(1,2) = 1.8, p = 0.314), or across experiments (Experiment x Cue; 

F(1,2) = 3.0, p = 0.224).  Learning rates for loss cues did not differ across cues 
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(Cue; F(1,2) = 0.2, p = 0.684), or by experiment (Experiment; F(1,2) = 0.3, p = 

0.618).  

VS  

 For VS animals, we found that learning rates did not differ across cues (Cue; 

F(3,6) = 2.2, p = 0.188), or by experiment (Experiment; F(1,2) = 5.4, p = 0.145).  

Learning rates for gain cues differed by cue (Cue; F(1,2) = 139.9, p = 0.007).  

Learning rates for gain cues did not differ by (Experiment; F(1,2) = 1.2, p = 0.385), 

or across experiments (Experiment x Cue; F(1,2) = 9.9, p = 0.087).  Learning rates 

for loss cues did not differ across cues (Cue; F(1,2) = 0.4, p = 0.594), or by 

experiment (Experiment; F(1,2) = 3.1, p = 0.221). 

Amygdala    

 Learning rates for amygdala animals differed across cues (Cue; F(3,6) = 

24.9, p < 0.001).  Learning rates did not differ by (Experiment; F(1,2) = 10.1, p = 

0.086), or across experiments (Experiment x Cue; F(3,6) = 0.8, p = 0.537).  

Learning rates for gain cues did not differ by cue (Cue; F(1,2) = 6.4, p = 0.127), or 

by experiment (Experiment; F(1,2) = 3.5, p = 0.203).  Learning rates for loss cues 

did not differ by cue (Cue; F(1,2) = 5.4, p = 0.145), or by experiment (Experiment; 

F(1,2) = 1.2, p = 0.392).  We did, however, find a trend for the learning rate for the 

-1 v -2/-4 condition to be higher in TkL (Experiment; F(1,2) = 18.4, p = 0.050), but 

this effect did not survive correction.   
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 This analysis revealed that despite value difference between the two 

experiments, monkeys did not value the cues differently.  However, as can been 

seen in Fig.7, control and amygdala animals value the gain cues more in TkL, 

when compared to VS animals.     

5.4 Discussion 

We carried out a post hoc analysis for three of the experiments (TkD, TkS, 

TkL) presented in chapter 3 and chapter 4.  We completed within and between 

group analysis of performance across the three experiments and found that for all 

three groups, performance varied by experiment.  All three groups modulated their 

behavior in the same directions (to varying degrees) across the three experiments, 

and this level of behavior modulation is why we find deficits in some experiments 

but not others.  When compared to control animals, we only found that monkeys 

with lesions to the VS had deficits in the last two experiments (TkS & TkL).  Our 

within group analysis revealed that these deficits were the result of VS animals not 

modulating their choice behavior as well as control and amygdala animals.   

We were able to fit RL models to this data, and further characterize what 

was driving these different levels of performance across experiments.  We found 

that VS animals had lower learning rates for gain cues in TkS and TkL, when 

compared to control and amygdala monkeys.  In the context of this analysis, these 



 

 

238 
 

cue specific learning rates can be seen as reflections of the value animals hold for 

said cue in its environmental setting.  Thus the deficits we find in TkS and TkL 

result from VS animals not valuing the gain cues as much as the other two groups 

did in these two experiments.  

Our present analysis of comparing performance across experiments revealed 

that several things affect performance.  First, we show that reward schedules have 

differential effects on learning.  This can be seen in our comparison of TkD to TkS.  

Overall all animals performed better in TkS, with the only difference between the 

groups being that control and amygdala animals performed significantly better in 

TkS when compared to their performance in TkD.  This effect is at odds with 

current theories of RL, if these differences in performance across experiments are 

in fact due to learning, animals should not be able to perform better in the TkS 

experiment.  It should be harder to learn a stochastic cue-reward association when 

compared to a deterministic cue-reward association.  Instead, what these analyses 

reveal is a behavioral phenomenon that has long been known in operant 

conditioning: stochastic schedules of reinforcement maintain higher rates of 

behavior, when compared to deterministic schedules of reinforcement (28, 29).  

The behavioral theory behind this effect is that in the real world most 

reinforcement is stochastic, thus organisms have developed mechanisms that make 

them more sensitive to stochastic reward schedules.  Recent work in dopamine 
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responses provide support for this theory, (228) found amplified dopamine 

responses in monkeys receiving rare rewards when compared to monkeys 

receiving constant rewards.  

Our analyses indicate that the experimental effects we find in chapter three 

showing that VS animals had learning deficits in TkS is not due to VS animals not 

being able to establish stimulus-outcome relationships, but instead due to VS 

animals not upping (lacking motivation to perform better) their choice behavior as 

well as control animals under stochastic schedules.  This is an important distinction 

because without our within group analysis across experiments, it would seem that 

VS animals just have problems learning cue-reward associations in stochastic 

environments.  Instead our analysis gives us a more in-depth look and helps reveal 

what role the VS actually plays in RL.  Based on this analysis it seems that the VS 

plays a role in making cues more valuable from a motivational aspect in stochastic 

learning environments.  This result along with the work showing that Pavlovian-

instrumental transfer (PIT) is at least partially mediated by the nucleus accumbens 

(13), provide strong support for the VS playing a motivational role in RL, and is 

not responsible for the actual learning of the stimulus-outcome relationship.   

Furthermore this theory holds for the results found in chapter four, in which 

monkeys with amygdala lesions had no performance deficits in any of the token 

experiments.  Evidence suggest that this form of PIT is mediated partially by the 
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amygdala, and partially by the nucleus accumbens.  In one study rats were trained 

to associate a light-noise compound stimulus with water.  Following this half of the 

rats received excitotoxic lesions of the basolateral amygdala.  Next both groups 

received intra-accumbens amphetamine infusions of d-amphetamine and began the 

test phase.  In the test phase two novel levers were available.  Neither lever 

produced water, but one did produce the conditioned reinforcer of the light-noise 

compound.  The authors found that the amphetamine infusions increased 

responding on the lever that produced the conditioned reinforcer, and no change in 

responding on the lever that had no consequence for both the sham-controls and 

lesion animals (53).  Thus, the lesion animals responded like the control animals 

(intra-accumbens amphetamine infusions of d-amphetamine produced amplified 

responding).   

This result should be viewed in contrast to a study by (13).  In this study 

experimenters examined the effects of cytotoxic lesions of the nucleus accumbens 

in rats across two instrumental conditioning experiments.  When experimenters 

compared rats with lesions of the nucleus accumbens to sham-controls, they found 

that instrumental responding of lever pressing and chain pulling for food 

reinforcers was mildly suppressed in the lesion animals.  However, this reduction 

in responding was not due to lesion animals having trouble learning the 

instrumental contingency, but instead due to a reduction in motivation.  In a second 
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experiment, d-amphetamine was administered into both the sham-controls and 

lesion rats, the authors found that the normally increased responding found when 

d-amphetamine is administered was significantly reduced in lesion animals.  These 

results suggest that the nucleus accumbens’ role in instrumental conditioning is to 

provide excitatory motivational effects of appetitively conditioned Pavlovian 

signals, instead of holding the value that is attached to instrumental outcomes.  The 

fact that infusions of d-amphetamine to the accumbens made rats with amygdala 

lesions respond like controls, but not rats with nucleus accumbens lesions provide 

further support for the hypothesis that the nucleus accumbens plays this excitatory 

motivational role. 

 

5.4.1 Conclusion  

Using our method of testing the monkeys on several different learning tasks 

we were able to replicate the inconsistent results in the RL literature and narrow 

down what role the VS plays in RL.  Based on our findings the VS seems to play a 

motivational role in appetitive learning conditions.  Specifically, our results 

suggest that the VS is important for Pavlovian motivational value for appetitive 

cues.    

 



 

 

242 
 

5.5 Supplemental Material  

5.5.1 Reinforcement learning models  

Model 1(M1)- 

M1 had nine total parameters. Three Learning rate parameters, one for 

positive feedback, one for neutral feedback, and one for negative feedback. 

In addition to the three learning rate parameters, there were six inverse 

temperature parameters, one for each condition.   

Model 2(M2)- 

M2 had ten total parameters. Four Learning rates (one for each cue) & six 

inverse temperature parameters (one for each condition). 

Model 3(M3)-  

M3 had twelve total parameters. six learning rates (one for each condition) 

& six inverse temperature parameters (one for each condition). 

Model 4(M4)- 

M4 had nine parameters. Three learning rates (one for each type of Trial 

(gain v gain, loss v loss & gain v loss)) & six inverse temperature parameters 

(one for each condition).   

Model 5(M5)- 
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M5 had six parameters. Three Learning rates (one for each type of trial ) & 

three inverse temperature parameters (one for each type of trial).   

Model 6(M6)- 

M6 had four parameters. Three Learning rate parameters, one for positive 

feedback, one for neutral feedback, and one for negative feedback. In 

addition to the three learning rate parameters, there were was one inverse 

temperature parameter. 

Model 7(M7)- 

M7 had five parameters. Two learning rates, one for positive feedback and 

one for negative feedback. In addition to the learning rate parameters three 

were three inverse temperature parameters (one for each type of trial).   

Model 8(M8)- 

M8 had three parameters. Two learning rates, one for positive feedback and 

one for negative feedback & one inverse temperature parameter.   

Model 9(M9)- 

M9 had four Parameters. Two Learning rates, one for positive feedback and 

one for negative feedback. This model also had two inverse temperature 

parameters (one for gain/gain trial type & one for everything else) 

Model 10(M10)- 
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M10 had four parameters. One Learning rate & three inverse temperature 

parameters (one for each trial type). 

Model 11(M11)-  

M11 had five parameters. One learning rate parameter for each cue & one 

inverse temperature parameter. 

Model 12(M12)- 

M12 had two parameters. One learning rate & one inverse temperature 

parameter.   

Model 13(M13)- 

M13 had three parameters. One learning rate & two inverse temperature 

parameters (one for loss/loss trial type & one for everything else).   

Model 14(M14)- 

M14 had four parameters. Two learning rates, one for positive feedback and 

one for negative feedback & two inverse temperature parameters (one for 

loss/loss trial type & one for everything else). 

Model 15(M15)- 

M15 had three parameters. One learning rate & two inverse temperature 

parameters (one for gain/gain trial type & one for everything else). 

Model 16(M16)-  
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M16 had three parameters. Two learning rates, one for gain/gain trial type 

and one for everything else. This model also had one inverse temperature 

parameter. 

Model 17(M17) –  

M17 had four parameters. Two learning rates, one for gain/gain trial type 

and one for everything else. This model also had two inverse temperature 

parameter, one for gain/gain trial type and one for everything else. 

Model 18(M18)-  

M18 had seven parameters. Six learning rates, one for each condition. This 

model also had one inverse temperature parameter. 

Model 19(M19)-  

M19 had four parameters. Three learning rates, one for each trial type. This 

model also had one inverse temperature parameter. 
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Chapter 6:  Conclusions  
 

6.1 Discussion 

In this thesis, we investigated the role of the VS and amygdala in 

reinforcement learning (RL).  There was little doubt that these two areas played a 

role in RL.  This was evident by sheer amount and the diversity of research 

implicating these two areas in RL.  However, the question was, what role do they 

play?  We hypothesized that the roles of these two areas might be overstated in 

current RL theories and this could be seen with the amount of inconsistent 

literature concerning these two areas.  In general current theories of RL suggest 

that the VS is responsible for operant conditioning (10, 11), while the amygdala is 

responsible for Pavlovian conditioning (4, 21, 229).  The problem with this view is 

that the literature does not support it for the VS (12-14), or amygdala (20, 21).     

We submitted that a large part of these inconsistences was due to three 

possible reasons.  One, the difference in learning environments (task design).  

Learning is a complicated process with many moving parts, many of the 

experiments that provide support for these two structures and their associated roles 

use similar learning environments.  When these learning environments are 
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changed, they are usually accompanied by results that are inconsistent with current 

theories.   

Two, definitions and a failure to account for well researched behavioral 

findings.  The foundation for all of the current theories on learning was built by the 

extensive behavioral work done by behaviorist, yet as the latency increases since 

these fields clearly separated, important behavioral distinctions have gotten 

blurred.  This is okay with some higher level concepts that were not well worked 

out, but this is not the case for the well worked out basic concepts.  Much like rules 

in mathematics, these concepts are based on one another, so it is difficult to pick 

and choose which behavioral laws to acknowledge.  As we stated in the 

introduction, this has led to misinterpretations of results and lead to overdrawn 

conclusions.   

Three, most of the strong RL evidence comes from physiology experiments 

(mostly studying Pavlovian conditioning).  This is important to note because in 

these complex learning tasks it is possible that one could be mistaking a factor that 

correlates with value but is not in fact value (for example motivation).  This risk is 

heightened when behavior and the underlying processes that evoke it are not well 

understood (ie the type of conditioning in control of the behavior being studied).            

To account for these reasons, we investigated the role of the VS and 

amygdala using monkeys with lesions to one of these areas and studied them on a 
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series of learning tasks that differed in a few environmental parameters.  This 

method controlled for all the reasons listed above, and allowed us to make stronger 

conclusions about the role of these two areas in RL.   

In chapter two we examined the role of the amygdala on object-based versus 

action-based learning.  In chapter three using a series of four tasks, we investigated 

the role of the VS in learning from gains and losses.  In chapter four we used the 

same series of tasks and examined the role of the amygdala in learning from gains 

and losses.  And finally, in chapter five we conducted a post hoc analysis of the VS 

and amygdala data from chapters three and four.          

Results recap   

In chapter two we found that lesions of the amygdala led to deficits in 

consistently choosing the more frequently rewarded options.  We found these 

deficits in both the What condition, when animals had to learn to choose the best 

visual object, and in the Where condition, when the animals had to learn to choose 

the best action.  The deficits in choice accuracy were due to amygdala monkeys 

switching after a non-rewarded outcome, which led to decreased performance due 

to the stochastic schedules.  We did not find deficits in reversal accuracy; thus, 

monkeys with amygdala lesions were able to reverse their choice-outcome 

mappings, in both conditions, as well as controls.  Inferring reversals in choice-

outcome mappings may, therefore, be more dependent on other brain areas, 
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including cortex.  Overall, this suggests that the amygdala is important for 

consistently choosing a rewarded option.  

In chapter three we carried out four tasks in which we examined the role of 

the VS in learning from gains and losses.  We found learning deficits in monkeys 

with VS lesions in two of the four tasks.  These deficits were consistently driven 

by trials in which animals had to choose between two cues that differed in positive 

reward magnitude.  There were no deficits when animals had to choose between 

options, one of which was associated with a loss.  We also fit RL models to the 

data, and found that learning rates were lower for gain cues in the VS animals 

relative to controls.  Thus, lesions of the VS, in this series of tasks, specifically 

affected learning to choose between rewarding options, and had no effect on 

learning to avoid losses.  

  In chapter four using the same tasks from chapter three we looked at 

learning from gains and losses in animals with amygdala lesions.  When we 

examined group differences in learning, we found that monkeys with amygdala 

lesions had no learning deficits in any of the tasks.  In fact, monkeys with lesions 

to the amygdala performed numerically better than controls in both the novel and 

familiar blocks in the null token task (NtK).  When we analyzed what was driving 

these group differences, we found that lesion animals performed slightly better in 

conditions where a loss was paired with either a gain or neutral cue.  One 
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interpretation of these results is that the monkeys with amygdala lesions were more 

sensitive to negative feedback.  

  In chapter five we carried out a post hoc analysis for three of the 

experiments (TkD, TkS, TkL) presented in chapter three and four.  We completed 

within and across group analysis of performance across the three experiments.  We 

found that for all three groups, performance varied by experiment.  All three 

groups modulated their behavior in the same directions (to varying degrees) across 

the three experiments, and this level of behavior modulation is why we find 

deficits in some experiments but not others.  When compared to control animals, 

we only found that monkeys with lesions to the VS had deficits in any of the 

experiments.  VS monkeys had deficits in two out of the four token tasks (TkS & 

TkL).  Our within group analysis revealed that these deficits were the result of VS 

animals not modulating their choice behavior as well as control and amygdala 

animals in stochastic and deterministic (with a high reward rate) learning 

environments.  We were able to fit RL models to this data, and further characterize 

what was driving these different levels of performance across experiments.  We 

found that VS animals had lower learning rates for gain cues in TkS and TkL.  In 

the context of this analysis, these cue specific learning rates can be seen as 

reflections of the value animals hold for said cue in its environmental setting.  Thus 
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the deficits we find in TkS and TkL come from VS animals not valuing the gain 

cues as much as the other two groups did in these two experiments.  

 

6.1.1 Conclusions  

Using our method of testing the monkeys on several different learning tasks 

we were able to replicate the inconsistent results in the RL literature.  This method 

allows us to make several important conclusions about the role of the VS and 

amygdala in learning and about RL as a whole.  We were able to narrow down the 

role of the VS and amygdala and make a number of stronger conclusions about 

their roles in RL.   

Neither structure is important for aversive learning  

The first conclusion is that neither the VS nor the amygdala seem to play a 

role in conditioning from losses.  This is evident from the results in chapter three 

and four, where we showed that neither group had learning deficits in conditions 

with a loss.  We also show that adding aversive consequences to learning 

environments changes how animals behave.     

Distinct roles  

The second conclusion is that both of these areas appear to only be important 

when it comes to conditioning from appetitive outcomes in particular conditioning 

environments.  Importantly these contributions from the VS and amygdala appear 
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to be distinct.  To show that the contribution of these two areas are distinct, we 

have to consider the results from chapter two and the results from (11).  This study 

ran the same VS animals used in this thesis on the What/Where task that we ran 

monkeys with amygdala lesions on in chapter two.  In the (11) study it was found 

that monkeys with VS lesions only had deficits in the What block type, they 

behaved similarly to controls in the Where block type.  This is in contrasts with the 

results in chapter two, where we found that monkeys with amygdala lesions had 

performance deficits in both the What and Where block types (deficits were larger 

in the What block type).   

`This distinction is further supported by the fact that in the token 

experiments monkeys with amygdala lesions had no deficits in any of the tasks.  

While, monkeys with VS lesions had deficits in TkS and TkL.  These deficits were 

due to VS monkeys not performing as well as control or amygdala monkeys in the 

gain/gain conditions, which was evident by the analysis in chapter five. 

Distinct motivational roles  

The third conclusion is that despite the fact that the VS and amygdala appear 

to have distinct roles in RL, both structures seem to play a role in motivation, and 

not in acquiring the stimulus-outcome association.  The chapter five analysis 

revealed that monkeys from all three groups modulated their behavior in the same 

directions across the token tasks, performing the best in TkS.  This level of 



 

 

253 
 

behavior modulation is where the VS monkeys differed from the other two groups, 

they did not increase their performance as much as the other two groups in TkS, 

and they lowered their performance in TkL more than the other two groups.   

It is the combination of these results that leads to the conclusion that these 

deficits are due to motivation and not learning the stimulus-outcome contingency.  

The fact that both lesions groups had performance deficits in the What/Where 

experiment, but minimum (VS group) to no (amygdala group) deficits in the token 

tasks, proves that both groups have the ability to learn stimulus-outcome 

relationships.  In the token tasks the level to which they perform is determined by 

environmental (task) variables.  The important thing is, this fact is true for control 

animals as well, as we show in chapter five.   

This performance modulation can also been seen in the individual token 

experiments.  The fact that all monkeys performed at different levels across the 

conditions speaks to this point because the cues are the same across the blocks.  

Thus, when the +2 cue is learned much faster in some conditions but slower in 

others speaks to motivation and not ability.  Further supporting this fact, we show 

that the absolute value difference between the two cues is not what drives better 

performance in some conditions versus others.   

Another point to consider about the results regarding the lesion groups is in 

the What/Where experiment, lesion animals tended to have faster reaction times 
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when compared to controls.  This trend is reversed for both groups in the token 

experiments (lesion animals tend to respond slower than controls).  In fact the VS 

monkeys have been shown to exhibit a speed accuracy trade off (10, 11).    

Reinforcement learning   

  In this thesis we also present data that is inconsistent with current RL 

theories.  The first of which is how different learning environments have distinct 

effects on the motivational component of learning.  Standard RL theories do not 

really take this into to account (evidence in this thesis suggest that the metrics they 

do have for motivation do not accurately capture it).  This point is exemplified by 

the fact that all monkeys performed their best in TkS.  This was the only token 

experiment on a stochastic schedule, current RL theories cannot account for this.  

The stochastic learning environment should be harder to learn in when compared 

to a deterministic learning environment.  Performing better in a stochastic learning 

environments has to be due to motivation and not learning ability.  From a 

behavioral perspective this result is not surprising.  It is easy to imagine why 

deprived animals would be more motivated (greedier) in lean and or stochastic 

reward environments.  This is a well-established behavior law, and this law is 

problematic for standard RL theories, because standard theories assume that 

animals are always trying to maximize their gains and minimize their losses (in a 

very specific and micro aspect).  The combination of experiments in this thesis 
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shows that performance is not fixed.  Furthermore, one should be careful at 

assuming they are viewing peak behavioral performance in any single learning 

environment.   

Single value axis? 

We also show that monkeys treated learning from loses different than 

learning from gains.  In all but the last token experiment (TkL), learning was 

always poor in the loss/loss condition.  Consistent with this finding, other work has 

found there to be a difference in how subjects treat gains and losses (194-196).  

This finding presents problems for the single value axis that is typically assumed in 

current RL theories.     

Finally, we provide insight into a better framework for future experimental 

design.  We show the value of understanding behavior and of testing animals on a 

number of different learning tasks.     
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