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This thesis is devoted to a range of questions in applied mathematics and signal
processing motivated by applications in error correction,compressed sensing, and
writing on non-volatile memories. The underlying thread ofour results is the use of
diverse combinatorial methods originating in coding theory and computer science.

The thesis addresses three groups of problems. The first of them is aimed at the
construction and analysis of codes for error correction. Here we examine properties
of codes that are constructed using random and structured graphs and hypergraphs,
with the main purpose of devising new decoding algorithms aswell as estimating
the distribution of Hamming weights in the resulting codes.Some of the results
obtained give the best known estimates of the number of correctable errors for
codes whose decoding relies on local operations on the graph.

In the second part we address the question of constructing sampling operators
for the compressed sensing problem. This topic has been the subject of a large
body of works in the literature. We propose general constructions of sampling
matrices based on ideas from coding theory that act as near-isometric maps on
almost all sparse signal. This matrices can be used for dimensionality reduction
and compressed sensing.

In the third part we study the problem of reliable storage of information in non-
volatile memories such as flash drives. This problem gives rise to a writing scheme
that relies on relative magnitudes of neighboring cells, known as rank modulation.
We establish the exact asymptotic behavior of the size of codes for rank modula-
tion and suggest a number of new general constructions of such codes based on
properties of finite fields as well as combinatorial considerations.
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CHAPTER 1

Introduction

1.1 Introduction

This thesis is devoted to combinatorial aspects of the theory of error-correcting
codes. In most communication or storage systems operating in noisy environments,
codes are required to ensure that the transmitted or stored information is error-free.
In a communication scenario, the information to be transmitted is encoded as one
of the elements, orcodewordsof a codeC. The effect of the noise in discrete
channels can often be quantified by the number of errors introduced in a codeword
in transmission. Therefore, the number of errors that the code can correct is a
natural measure of code’s quality. The type of errors is related to the properties of
the communication channel: the most common channel models of communication
give rise to the Hamming metric, which is used as a figure of merit in a large part
of coding theory. At the same time, other channels arising inapplications can be
related to other types of errors, calling for studies of coding in permutations, coding
over matrices, spherical codes with the Euclidean metric, etc.

In this thesis we address three aspects of combinatorics forcodes. In the first
part, we discuss the parameters and performance ofcodes on graphs, an important
area in classical coding theory that deals withreliability of information transmis-
sion over channels that introduces bit-flip or similar errors. In the second part of the
thesis, anexplorationof coding-theoretic ideas applied tosignal processingprob-
lems stresses the fact that coding theory can be considered as a powerful tool in
discrete mathematics and can be used to solve seemingly unrelated problems such
as construction ofsampling matricesfor the compressed sensing problem. The
third part of the thesis emphasizes presentinnovationsin coding theory where its
principles are applied to tackle reliability issues in non-conventional systems such
as data protection in flash memory devices. A common thread ofthese works is ap-
plication of combinatorial methods to asymptotic problemsof coding theory with
an emphasis on constructions, bounds on the parameters of codes and performance
of decoding algorithms.

In the following sections of this introductory chapter, we briefly describe sev-
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Chapter 1. Introduction

eral concepts used throughout the dissertation.

1.2 Error-correcting codes

Let X be a metric space equipped with a distance functiond : X2 → R. A codeC

is a subset ofX with the property that any two elements orcodewordsof C are far
apart. Formally, letd be the largest integer such that for allc1 6= c2 ∈ C :

d(c1, c2) ≥ d.

The numberd is called theminimum distanceor simply thedistanceof the codeC.
Given a positive integerd and a metric spaceX, the main aim of coding theory

is to find the largest setC such that the distance ofC is at leastd. Such a subset
need not be unique. Let us consider next an example to see why such subsets will
be of interest.

Let Fn
2 be then-dimensional vector space over the binary fieldF2. Letwt(z) be

theHamming norm,i.e., the number of nonzero coordinates in the vectorz ∈ F
n
2 ,

also called the Hamming weight. TheHamming distancebetween vectorsx,y ∈
F

n
2 is defined aswt(x − y).

Consider the following communication scenario with a codeC ⊆ F
n
2 over an

adversarial channel. The sender selects a vectorx from C as a message to transmit
over the channel. The channel flips a few bits of the transmitted vector and the
received vector isx+e,wherewt(e) is the number of errors the channel introduces.
If the minimum distance of the code isd and the channel can introduce at most
t , b(d−1)/2c errors, it is possible to identify the transmitted vectorx uniquely from
the received vector just by finding the element ofC that is nearest to the received
vector. The numbert is called the error-correcting capability of the codeC. The
size of the setC equals the number of possible messages that can be sent over the
channel. Therefore, given a minimum distance (or error-correcting capability), one
aims to construct a code of the largest possible size.

It turns out that this is a very difficult problem. The largestpossible size of a
code inF

n
2 with minimum distanced is denoted byA(n, d). Even the asymptotic

behavior of this quantity is largely unknown. We will later discuss some simple
techniques to bound this quantity from below and from above.

The rate of a codeC ∈ F
n
2 is defined to be:

R(C) =
log |C|
n

. (1.1)

Here and in rest of the thesis the base of logarithms is2 if not specified otherwise.
The code maps2Rn messages into the spaceF

n
2 . We can say that, as a result of this

mapping,Rn bits of information are encoded in a codeword ofC of lengthn.
A straightforward way to estimate the transmitted vectorx from the received

vectory = x + e is to comparey with all the vectors inC and to state thatx = x̂,
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1.2. Error-correcting codes

wherex̂ is the codeword closest tox by the Hamming distance. However, if the size
of the code is large, such decoding becomes computationallyprohibitive. To sim-
plify the decoding and encoding procedures, coding theory often resorts to study-
ing linear codes, i.e., codes that form linear subspaces ofF

n
2 . A large amount of

research in coding theory is devoted to linear codes that afford low-complexity,
computationally feasible decoding algorithms. In Chapters 2, 3, 4 we discuss con-
struction of codes with this issue in mind. We note that the minimum distance of a
linear code equals the minimum weight among nonzero codewords.

More detailed information about the code (than is given by the minimum dis-
tance) is provided by the distribution of Hamming distancesbetween the code-
words. For a codeC ∈ F

n
2 thedistance distributionis the set of numbers(A0, A1,

. . . , An), where

Aw =
1

|C| |{(x1,x2) ∈ C2 : d(x1,x2) = w}|.

If C is a linear code thenAw is simply the number of vectors of weightw. In this
case the distance distribution is called theweight distributionof the codeC.

To motivate the last definition, consider a channel that introduces errors in a
probabilistic manner. Instead of the adversarial channel described above, con-
sider transmission of binary data over a binary symmetric channel (BSC) which
introduces errors (bit-flips) in the transmitted bits independently with some fixed
probability p ∈ (0, 1). The distance distribution of the code enables one to esti-
mate the average probability of decoding error for the code in such scenario. This
possibility was recognized and gainfully used by Gallager [52] and was ampli-
fied by the well-known work of Poltyrev [89]. This paper provides estimate of
the error probability of complete decoding for binary linear codes with a known
weight distribution. There is sizable literature on weightdistributions of various
ensembles of linear codes as well as on general estimates of the weight distribution
(e.g., [5,9,16,21,22,27,77,78,85]).

A useful concept related to the distance distribution of thecodeC is that of the
dual distance ofC. To define it, let us introduce the MacWilliams transform of the
distance distribution of a code [80, p. 139]. This is the set of numbers(A⊥

0 , A
⊥
1 ,

. . . , A⊥
n ), where for allw

A⊥
w =

1

|C|

m
∑

i=0

AiKi(w), (1.2)

whereKi(t) is a Krawtchouk polynomial of degreei. It is known thatA⊥
0 =

1, A⊥
w ≥ 0 for all w. The numberd⊥ such thatA⊥

1 = · · · = A⊥
d⊥−1

= 0, A⊥
d⊥

> 0
is called the dual distance of the codeC.
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Chapter 1. Introduction

1.3 The sphere-volume bounds

Let X be a finite metric space. A metric ball centered at a pointx ∈ X and radius
r is defined as follows:

Br(x) = {y ∈ X : d(x,y) ≤ r}.
In many examples of metric spaces, the volume of the ball doesnot depend on the
center. For instance, this is the case for the Hamming spaceF

n
2 , which simplifies

many proofs in coding theory. However, a number of applications that we consider
gives rise to metric spaces in which this property does not hold.

Suppose,|Br(x)| = Br is independent ofx. Let C ∈ X be a code of largest
possible cardinality with minimum distanced. Then,

|X|
Bd−1

≤ |C| ≤ |X|
Bt
, (1.3)

where t = b(d−1)/2c. The lower bound is called theGilbert-Varshamov(GV)
bound and the upper bound is known as thesphere-packing(Hamming) bound [80,
p.19, 33]. The upper bound follows from the fact that balls ofradiust around the
codewords must be disjoint: if they are not, there exist two pointsx1,x2 ∈ C such
thatd(x1,x2) ≤ d− 1, in violation of the distance condition.

To prove the lower bound in (1.3), consider the following greedy construction
of a code. Start with an empty setC. Pick an elementx1 from X arbitrarily and
include it inC. Next, discard all the points ofX in Bd−1(x1), and from the remain-
ing elements pickx2 arbitrarily, and include it inC. Choosex3 arbitrarily from
X\(Bd−1(x1) ∪ Bd−1(x2)) and include it inC. This procedure can continue until
all elements ofX are either discarded or included inC. By construction this will
produce a codeC with distanced. The size of the code must be at least|X|/Bd−1

otherwise the procedure would have continued.
When the metric space is such that|Br(x)| depends onx, the inequalities (1.3)

remain true if in the upper boundBt is replaced bymin{|Bt(x)| : x ∈ X} and
in the lower boundBd−1 is replaced bymax{|Bd−1(x)| : x ∈ X}. Surprisingly,
the lower bound holds true whenBd−1 is replaced by the average volume of the
ball instead of the maximum volume. This follows from an application of the well-
known Turán theorem of graph theory [99].

For the binary Hamming spaceFn
2 , we haveBr =

∑r
i=0

(n
i

)

. Consequently,

2n

∑d−1
i=0

(n
i

)
≤ A(n, d) ≤ 2n

∑t
i=0

(

n
i

) . (1.4)

This can be easily extended to theq-ary Hamming space forq > 2.
If C is the largest possible code in the Hamming space with distanced then the

rate ofC satisfies

1 − 1

n
log

d−1
∑

i=0

(

n

i

)

≤ R(C) ≤ 1 − 1

n
log

t
∑

i=0

(

n

i

)

.
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1.3. The sphere-volume bounds

Using standard bounds for binomial coefficients, we can further simplify these in-
equalities. These bounds will be crucial in many parts of this thesis.

Lemma 1.3.1. [80, p.309ff]Let0 < α < 1 be such thatαn is an integer. Then

2n h(α)

√

8nα(1 − α)
≤
(

n

αn

)

≤ 2n h(α)

√

2πnα(1 − α)
, (1.5)

whereh(z) = −z log z− (1− z) log (1 − z) is thebinary entropy function. More-
over, whenα ≤ 1/2,

2n h(α)

√

8nα(1 − α)
≤

αn
∑

i=0

(

n

i

)

≤ 2n h(α). (1.6)

The proof of the lemma uses Stirling’s approximation of the factorial.
Using the lemma above, one deduces that

lim inf
n→∞

logA(n, δn)

n
≥ 1 − h(δ) (1.7)

and

lim sup
n→∞

logA(n, δn)

n
≤ 1 − h(δ/2). (1.8)

Here0 ≤ δ ≤ 1/2 is called therelative distanceof the code. The above equations
represent theasymptoticGV bound and sphere-packing bound. The upper bound
(1.8) can be improved for all0 < δ < 1, and we refer the reader to [80, Ch. 17]
for such improvements. At the same time, (1.7) is the best known asymptotic lower
bound on the rate of a binary code. Given the rate, the achievable relative distance
guaranteed by the GV bound is denoted by

δGV(R) , h−1(1 −R).

A sequence of codes is calledasymptotically goodif as n increases both the
rate and the relative distance stay bounded away from zero. The GV lower bound
shows that there exist sequences of asymptotically good codes.

Let us end this section with an intuitive argument that relates the notion of
channel capacityto the packing of spheres in the Hamming space. In a binary
symmetric channel with crossover probabilityp, a ‘typical’ error vector will have
weight approximatelypn whenn is large. Suppose that a codeC ∈ F

n
2 is used

for transmitting information over the channel. Transmitted vectors will have a low
probability of being confused if for any two code vectorsx1,x2, the probability
Pr(x1 + e1 = x2 + e2) is small for any vectorse1,e2 of weight pn. In other
words, spheres of radiuspn about the codewords ofC must be nearly disjoint. By
(1.8) the rate of such code is at most1 − h(p). This informal argument can be
made rigorous, and this upper bound on rate can be shown to be true. Moreover
there exist code sequences that approach the transmission rate1 − h(p) with low
probability of decoding error asn increases. The quantity1− h(p) gives the value
of Shannoncapacityof the binary symmetric channel.
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Chapter 1. Introduction

1.4 Linear codes

As mentioned above, a linear code is a linear subspace of the Hamming spaceFn
2 .

Without much effort all statements of this section generalize to the case of linear
codes over aq-ary alphabet whereq is a prime power other than 2. By definition
a binary linear codeC always has cardinality2k for some0 ≤ k ≤ n. We write
C[n, k, d] to refer to a linear code of lengthn, dimensionk and distanced.A similar
notationC(n,M, d) with respect to a code which is not necessarily linear replaces
the dimensionk with the cardinality|C| = M.

A linear code can be viewed as a linear mappingC : F
k
2 → F

n
2 . A basis of this

mapping forms ak × n matrixG called the generator matrix of the codeC. The
codeC can be defined by the generator matrixG in the following way:

C = {uG : u ∈ F
k
2}.

Hereu denotes a row vector. A matrixH of rankn − k such thatGHT = 0 is
called the parity-check matrix ofC. The parity-check matrixH can also be used to
define the code:

C = {x ∈ F
n
2 : Hx = 0};

here0 is the all-zero vector of lengthn− k.

It is known that there exist sequences of linear codes that achieve the Gilbert-
Varshamov bound. There are more than one way to prove this statement. We will
show this using the so-calledprobabilistic methodwhich will be another common
thread of this dissertation.

One of the most important concepts related to linear codes isthat of adual
code. For a linear codeC with generator matrixG, the dual codeC⊥ is defined
to be the linear code whose parity-check matrix isG. Thedual distanced⊥ of the
codeC is the minimum distance of the dual codeC⊥. Let (Aw, w = 0, 1, . . . , n)
and(A⊥

w , w = 0, 1, . . . , n) be the weight distributions ofC andC⊥ respectively.
These distributions are related by the MacWilliams identities (1.2).

The parity-check matrix of a linear code can be used to form another class
of representations for codes, namely, graphical representations. A hypergraph
H(V,E) consists of a set of verticesV and a set of (hyper)-edgesE. The ele-
ments ofE are subsets of the verticesV. In the case when the size of this sub-
sets is restricted to be exactly2, we obtain the notion of agraph. Given the
parity-check matrixH of a linear codeC one can form a hypergraphH(V,E)
as follows. Every row ofH can be identified with an element ofV . That is
V = {1, . . . , n − k}. Every column ofH can be identified with an element of
E. Let us denoteE = {ei, i = 1, . . . , n}. We setej to be a subset ofV such that
i ∈ ej if and only ifH(i, j) = 1. This representation and its extensions will be the
subject of study of the Chapters 2, 3 and 4.

8



1.5. Probabilistic methods

1.5 Probabilistic methods

The termprobabilistic methodsloosely refer to the use of identities and inequalities
from probability theory to prove combinatorial statements. Informally, if a random
object picked from a collection of finite objects has a certain property with prob-
ability greater than zero then this proves the existence of at least one object in the
collection that has the property. Another way to use the probabilistic method is by
calculating the expected value of some random variable. It can often be claimed
that the random variable can take a value less than or equal tothe expected value.

As one would guess, there are no formal boundaries where suchmethods can
be used. Let us illustrate the power of these methods via an example that will be
useful later.

Proposition 1.5.1. For any positive integerk < log
(

2n
∑d−1

i=1 (n
i)

)

, there exists a

linear code of lengthn, distanced and size≥ 2k.

Proof. We will prove the claim by considering the ensemble of linearcodes defined
by random parity-check matrices. Consider a(n− k)×n random binary matrixH
whose entries are independent uniform Bernoulli random variables. Consider the
codeC given byC = {x ∈ F

n
2 : Hx = 0}. As the rank ofH is at mostn− k the

cardinality of the code|C| ≥ 2k.
Now for anyx ∈ F

n
2 \ 0,

Pr(x ∈ C) = Pr(Hx = 0) =
1

2n−k
.

Suppose that a random variableX denotes the number of non-zero codewords of
weight at mostd− 1 that are in the codeC. Clearly,

EX =
1

2n−k

[

d−1
∑

i=1

(

n

i

)

]

.

If EX < 1 then there must exist a code with distanced. However,EX < 1 is true
if

2k <
2n

∑d−1
i=1

(n
i

)
.

This shows that there exists a linear code that achieves the GV bound. Simi-
lar arguments can be used to prove the same fact considering arandom generator
matrix in place of the parity-check matrix.

From the above proof we also observe that the expected weightdistribution of
the codeC is given byA0 = 1, Aw =

(n
w

)

2k−n, w = 1, . . . , n. Below we call this
distribution thebinomial weight distribution.

9



Chapter 1. Introduction

1.6 Isometric mappings

We will repeatedly use the concept ofnear-isometricmappings in this dissertation.
Let X andY be two metric spaces with distance functionsd andd′ respectively. A
mappingf : X → Y is calleddistance-preservingif for all x,y ∈ X,

d′(f(x), f(y)) ≥ d(x,y).

Distance-preserving mappings are useful in the context of showing existence of a
code with certain distance in the metric spaceY, especially if it is easier to construct
such a code inX and then map it toY usingf .

If the function f : X → Y is such thatf(X) = {f(x) : x ∈ X} ⊂ Y

then we call it anembedding. In Chapters 7 and 8 we will see many examples of
embeddings where the functionf−1 is well-defined and distance-preserving. In
particular in Chapter 8 we use such embeddings to construct codes in the space of
permutations.

If the mappingf : X → Y is such that for allx,y ∈ X,

C1d(x,y) ≤ d′(f(x), f(y)) ≤ C2d(x,y),

for some bounded constantsC1 andC2, then the mapping is callednear-isometric.
Clearly near-isometric maps are distance preserving. Moreover if there exists a
code with a certain distance guarantee inX, there will exist a code with a similar
guarantee inY, and thus the sphere-packing bound inY will also be an upper bound
on the size of the codes inX. Also, it is possible to upper-bound the volume of
spheres of radiusd in X with the volume of spheres of radiusC2d in Y, which
could be easier to estimate. Then one can use Gilbert-Varshamov-type arguments
to bound below the maximum size of a code inX even when computing the volume
of the sphere inX is difficult.

When the metric spacesX and Y are `p-spaces, for instance,X = R
n and

Y = R
m, m < n, near-isometric mappings are of special interest. Any homo-

morphism betweenRn and R
m can be represented by am × n matrix Φ. The

well-known Johnson-Lindenstrauss lemma asserts that there exists an ensemble of
m × n matrices where for most matrices in the ensemble the near-isometry prop-
erty holds for any two fixedx,y ∈ R

n. The rigorous statement of this lemma and
a proof based on simple probabilistic methods can be found in[43].

In most applications one wants explicit matrices with the near-isometry prop-
erty for special subsets ofRn. Compressed sensing is one such application in the
domain of signal processing where the requirement is to construct matrices that act
as near-isometries on the set ofsparsereal signals (vectors with a small number
of nonzero coordinates). It is interesting that one can construct such matrices from
binary codes. This is the subject of discussion in Chapters 5, 6.

10
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1.7 Organization

Apart from this introductory chapter, the dissertation is divided into three different
parts to highlight different combinatorial applications.The first part is devoted to
codes constructed by considering sparsegraphsandhypergraphs.In Chapter 2 we
introduce the concept of codes on graphs and then estimate the minimum distances
and weight distributions for several ensembles of such codes. In Chapter 3 we dis-
cuss possible decoding algorithms for codes on graphs. An important result in this
part is a new low-complexity decoding algorithm for codes onhypergraphs that has
a good error-correcting guarantee for explicitly constructed codes. In Chapter 4 we
consider a certain special ensemble of graph codes that are constructed by concate-
nating several copies of codes with small distance. We show that for this case, the
proposed decoding algorithm corrects error patterns of weight that grows linearly
with the length of the codes.

The second part of the thesis is devoted to construction of sampling matrices
that find use incompressed sensingandsparse recovery, a highly active recent re-
search area. In Chapter. 5 we show that sampling matrices that act as near-isometry
on sparsesignals can be constructed from binary linear codes. The construction
discussed also gives the so-called dictionaries withlow coherence.In the follow-
ing chapter, a statistical near-isometry property is considered, and it is shown that
matrices constructed from codes possess such property; thus, they are useful in the
context of compressed sensing.

The third part highlights an application of coding theoretic ideas to a non-
conventional error process motivated by the method of writing information onto
flash memory devices. We consider the newly proposed model ofrank modulation
for coding in flash memories [67]. This scheme calls for construction of codes in
the metric space of permutations with distance between themgiven by the mini-
mum number of transpositions of adjacent symbols. We give bounds on the param-
eters of such codes in Chapter 7 and propose several classes of constructions for
rank modulation codes in Chapter 8.

We would also like to mention a few other works by the present author that rely
on the methods similar to those employed in this thesis. In the work on linear bal-
ancing sets [82] we explored a particular combinatorial question in the Hamming
space. In [83], we considered a natural model for errors thatarises in high-density
magnetic media and estimated the capacity of information storage possible within
such model. The recent paper [84] further extends these considerations. In all
these works, the basic combinatorial ideas discussed in this thesis are highlighted
as technical tools. These works are not included in the dissertation although they
are within the scope of its methods.
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CHAPTER 2

Codes on Graphs: Weight Distribution

2.1 Introduction

In the description of linear codes in Chapter 1 we briefly mentioned graphical rep-
resentation of codes. Although every linear code affords a graphical representation,
codes that are constructed and analyzed primarily relying on it, are calledcodes on
graphs.One useful approach to codes on graphs relies on the assumption that the
maximum degree of the graph (the number of edges connected toa vertex) is kept
constant while the number of vertices (and edges) increases. The resulting family
of codes is known under the general name oflow density parity check codesor
LDPCcodes.

Considerable attention in recent years was devoted to the study of error cor-
rection with graph codes and in particular, LDPC codes. Codes on graphs account
for some of the best known code families in terms of their error correction under
low-complexity decoding algorithms. They are also known toachieve a very good
tradeoff between the rate and relative distance. The most well-studied case is that of
codes defined on a bipartite graph. In this construction, a code of lengthN = mn is
obtained by “parallel concatenation” of2m codes of a small lengthn which refers
to the fact that each bit of the codeword is checked by two independent length-n
codes. These length-n codes are referred as local codes or subcodes below. The
arrangement of parity checks is specified by the edges of a bipartite graph which
are in one-to-one correspondence with the codeword bits.

There exists codes on bipartite graphs that are known to be asymptotically
good, i.e., to have nonvanishing rateR and relative distanceδ as the code lengthN
tends to infinity. Constructive families of bipartite-graph codes with the best known
tradeoff betweenR andδ have been found in [16].

Moving from constructive families to existence results obtained by averaging
over ensembles of bipartite-graph codes, it is possible to derive even better rate-
distance tradeoffs. In particular, bipartite-graph codeswith random local codes and
random bipartite graphs attain the asymptotic GV bound (1.7) for relatively small
code rates and are only slightly below it for higher rates [16].
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Chapter 2. Codes on Graphs: Weight Distribution

A natural way to generalize codes on bipartite graphs is to consider concate-
nations governed by regularl-partite hypergraphs,l ≥ 2. This code family was
studied by Bilu and Hoory in [19]. While constructive families of bipartite-graph
codes rely on the expansion property of the underlying graph, expansion is not
well defined for hypergraphs. Instead, Bilu and Hoory put forward a property of
hypergraphs, calledε-homogeneity, which replaces expansion in the analysis of hy-
pergraph codes. They showed that there exist explicit, easily constructible families
of ε-homogeneous hypergraphs, and estimated the number of errors corrected by
their codes under a decoding algorithm suggested in their paper.

In this chapter we study hypergraph codes from the perspective of weight dis-
tributions. In Theorem 2.4.2 and its corollary we prove thatthe code ensemble
defined by random regularl-partite hypergraphs and random local linear codes con-
tains codes that meet the GV bound if the rate of codes satisfies a certain condition.
This condition becomes less restrictive asl increases from the valuel = 2, and
covers all values of the rateR except a small neighborhood ofR = 1 for largel.
We also show (Theorem 2.4.7, Cor. 2.4.8) that the ensemble ofhypergraph codes
contains codes that attain the GV bound even if random hypergraphs are replaced
with a fixedε-homogeneous hypergraph. Specializing the last result forl = 2, we
establish that expander codes of Sipser and Spielman [93] constructed from a fixed
graph with a large spectral gap1 and random local codes attain the GV bound with
high probability. Finally, we derive an estimate of the average weight distribution
for the ensemble of hypergraph codes with a fixed local code (see Theorem 2.4.5)
that refines substantially a corresponding result in [16] and generalizes it froml = 2
to arbitraryl.

The material presented in this chapter is published in [14].

2.1.1 Codes on bipartite graphs

Let G(V,E) be a balanced,n-regular bipartite graph with the vertex setV = V1 ∪
V2, |V1| = |V2| = m and |E| = N = nm edges. Let us choose an arbitrary
ordering of edges inE. For a given vertexv ∈ V this defines an ordering of edges
v(1), v(2), . . . , v(n) incident to it. We denote this subset of edges byE(v). Given
a binary vectorx ∈ {0, 1}N , let us establish a one-to-one correspondence between
the coordinates ofx and the edges inE. For a given vertexv let x(v) = (xe, e ∈
E(v)) be the subvector that corresponds to the edges inE(v). Denote byλ the
second largest in the absolute value eigenvalue of the graphG.

Consider a set of binary linear codesAv[n,R0n] of lengthn and rateR0 ,

1The spectrum of a graph is defined as the spectrum of its adjacency matrix. If the graph is regular
of degreen, then the largest eigenvalue isn. The spectral gap is defined as the difference betweenn

and the second largest eigenvalue (by the absolute value). The spectral gap is known to control the
expansion property of the graph [63]
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2.1. Introduction

dim(Av)/n, wherev ∈ V. Define abipartite-graph codeas follows:

C(G, {Av , v ∈ V }) = {x ∈ {0, 1}N : ∀v∈V1∪V2x(v) ∈ Av}.

The rate of the codeC is easily seen to satisfy

R(C) ≥ 2R0 − 1. (2.1)

If we assume that all the local codes are the same, i.e.,Av = A,whereA[n,R0n, d0

= δ0n] is some linear code, then the distance of the codeC can be estimated as
follows [104]:

d/N ≥ δ20

(

1 − λ

d0

)2

(we will write C(G, A) instead ofC(G, {A}) in this case). In particular, if the
spectral gap ofG is large, i.e.,λ is small compared tod0, then the relative distance
d/N is close to the valueδ20 , similarly to the case of the direct product codeA⊗A.

The weight distribution of bipartite-graph codes constructed from random reg-
ular bipartite graphs and a fixed local codeA with a known weight distribution was
analyzed in [25, 74]. In particular, it was shown that ifA is the Hamming code
then the ensembleC = (C(G, A)) contains asymptotically good codes. Paper [16]
also studied the weight distribution of bipartite-graph codes with random regular
bipartite graphs. It was shown that forN → ∞ the ensemble of codes constructed
from random regular bipartite graphs and a fixed codeA with distanced0 ≥ 3 con-
tains asymptotically good codes. It has also been shown [16]that if the local codes
are chosen randomly, then the code ensembleC contains codes that meet the GV
bound in the interval of code ratesR(C) ≤ 0.202.

2.1.2 Codes on hypergraphs

Generalizing the above construction, letH = (V,E) be al-uniform l-partiten-
regular hypergraph. This means that the set of verticesV = V1 ∪ · · · ∪ Vl of
H consists ofl disjoint parts of equal size, say,|Vi| = m, 1 ≤ i ≤ l. Every
hyperedge{vi1 , vi2 , . . . , vil} contains exactlyl vertices, one from each part, and
each vertex is incident ton hyperedges. Below for brevity we say edges instead
of hyperedges. The number of edges ofH equalsN = mn which will also be the
length of our hypergraph codes. As above, assume that the edges are ordered in an
arbitrary fixed way and denote byE(v) the set of edges incident to a vertexv. For
definiteness, let us assume that edgese(i−1)n+j , j = 1, . . . , n are incident to the
vertexvi ∈ V1, 1 ≤ i ≤ m. This fixes the order of edges in partV1, while the order
in the other parts ofH is established by the connections in the hypergraph.

Given a binary vectorx ∈ {0, 1}N whose coordinates are in a one-to-one
correspondence with the edges ofH denote byx(v) its subvector that corresponds
to the edges inE(v).
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Figure 2.1: Alternate construction of the hypergraph code: The setD1 =
{e1, . . . , eN}, wheredeg(ei) = l for all i, represents the coordinates of the code
(hyperedges ofH); the setsV1, . . . , Vl, where |Vj | = m for all j, represent the
vertices of the hypergraphH. Each vertexvi,j, 1 ≤ i ≤ l, 1 ≤ j ≤ m carries a
codeword of the local codeA of lengthn.

Define ahypergraph codeas follows:

C(H, {Av , v ∈ V }) = {x ∈ {0, 1}N : ∀v∈V x(v) ∈ Av},

where{Av , v ∈ V } is a set of binary linear codes of lengthn. As above, if all the
codes are the same, we writeC(H, A). Assume that all the codesAv have the same
rateR0, then the rate of the codeC satisfies

R(C) ≥ lR0 − (l − 1). (2.2)

Remark1. An equivalent description of the bipartite-graph code ensemble is ob-
tained by considering an edge-vertex incidence graph of thegraphG(V,E), i.e., a
bipartite graph(D1 ∪D2, Ē) whereD1 = E,D2 = V1 ∪ V2, each vertex inD1 is
connected to one vertex inV1 and to one vertex inV2, and there are no other edges
in Ē. Thus, for allv ∈ D1,deg(v) = 2, and for allv ∈ D2, deg(v) = n. The local
code constraints are imposed on the vertices inD2. By increasing the number of
parts inD2 from two tol, we then obtain the hypergraph codes defined above. This
gives an alternate description of the hypergraph code presented in Fig. 2.1.

The ensemble of hypergraph codes with local constraints given by single parity-
check codes was introduced by Gallager [52, p.12]. The proportion of errors cor-
rectable with these codes using the so-called “flipping” algorithm was estimated
in [107]. Several generalizations of this ensemble were studied in [14,19].

Definition 2.1.1. [19] A hypergraphH is calledε-homogeneous if for everyl sets
D1,D2, . . . ,Dl withDi ⊆ Vi and |Di| = αim,

|E(D1,D2, . . . ,Dl)|
N

≤
l
∏

i=1

αi + ε min
1≤i<j≤l

√
αiαj, (2.3)

whereE(D1,D2, . . . ,Dl) denotes the set of edges that intersect all the setsDi.
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This definition quantifies the deviation of the hypergraphH from the expected
behavior of a random hypergraph. Forl = 2 the well-known “expander mixing
lemma” (e.g., [63]) asserts that

∣

∣

∣

|E(D1,D2)|
N

− α1α2

∣

∣

∣ ≤ λ

n

√
α1α2,

showing that regular bipartite graphs areλ/n-homogeneous. This inequality is
frequently used in the analysis of bipartite-graph codes [93,104].

Let A[n,R0n, d0 = δ0n] be a binary linear code. The distance of a code
C(H, A) whereH is ε-homogeneous satisfies [19]

d/N ≥ δ
l

l−1

0 − c1(ε, δ0, l) (2.4)

wherec1 → 0 asε→ 0.

One of the main results in [19] gives an explicit construction of ε-homogeneous
hypergraphsH starting with a regular graphG(U,E) with degree∆ and second
eigenvalueλ. PuttingVi = U, i = 1, 2, . . . , l and introducing a hyperedge when-
ever thel vertices in the graphG are connected by a path of lengthl − 1, that
paper shows that the resulting hypergraph isn-regular andε-homogeneous with
n = ∆l−1, ε = 2(l − 1)λ/∆. Therefore, starting with a family of∆-regular bipar-
tite graphs with a large spectral gap, one can construct a family of regular homo-
geneous hypergraphs with a small value ofε. Paper [19] also shows that random
n-regular hypergraphs with high probability areO(1/

√
n)-homogeneous.

2.2 Ensembles of graph codes

Below we consider ensembles of random codes on graphs and hypergraphs. There
have been many studies in coding theory that consider different ensembles of graph
codes (see, [16, 25, 26, 52, 74, 77, 78, 87, 106, 107]). There are two components in
these codes that can be randomized; namely, the graph and thelocal codes. Below
we consider all three possible randomization scenarios: the graph is random but the
local codes are fixed, the graph is fixed but the local codes arerandom, and both the
graph and local codes are random. We proceed to define three general ensembles
of codes on graphs that includes all previous considerations as special cases.

Let us consider the scenarios when the (hyper)graph will be selected randomly.
In the case of bipartite graphs this is done as follows. Connect the edgese(i−1)n+j ,
j = 1, . . . , n to the vertexvi ∈ V1, i = 1, . . . ,m. Next choose a permutation
on the setE with a uniform distribution and connect the remaining half-edges to
the vertices inV2 using this permutation. Similarly, to construct an ensemble of
random hypergraphs, we choosel − 1 permutations independently with uniform
distribution and use them to connect the parts ofH.
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Random linear codes are selected from the standard ensembleof length-n codes
defined byn(1 − R0) × n random binary parity-check matrices whose entries are
chosen independently with a uniform distribution.

Definition 2.2.1. We consider the following three ensembles of hypergraph codes.

EnsembleC1(l). A codeC(H, {A1, . . . , Al}) ∈ C1(l) is constructed by choos-
ing a randoml-partite hypergraphH and choosing random local linear codesAi

of lengthn independently for each partVi ∈ V.

EnsembleC2(l, A). A codeC(H, A) ∈ C2 is constructed by choosing a random
l-partite hypergraphH and using the same fixed local codeA[n,R0n, d0] as a local
code at every vertex.

EnsembleC3(l,H). A codeC(H, {Av}) from this ensemble is formed by choos-
ing a fixed, nonrandom hypergraphH and taking random local linear codesAv

independently for each vertexv ∈ V .

Our purpose is to compute ensemble-average asymptotic weight distributions
for codes in these ensembles and to estimate the average minimum distance assum-
ing thatm → ∞ andn is a constant. The casel = 2 corresponds to ensembles
of bipartite-graph codes, some of which were studied in [16,25, 74]. Below we
will cover the remaining cases for the code ensemblesCi(l), i = 1, 2, 3 and any
l ≥ 2. The analysis for the ensembleC1(l) extends the results of [16] from graphs
to hypergraphs while the results for the remaining two ensembles have no direct
precursors in the literature.

2.3 Prior work on concatenated codes

Calculations of the weight distributions in this chapter reveal some parallels to
earlier results for concatenated code ensembles [9,21,98]. These similarities are to
some extent expected because graph codes can be interpretedas a version of code
concatenation. This fact has been discussed in detail in [17]. At the same time,
calculations for graph codes are rather different from those for concatenated codes.
We define concatenated codes and quote earlier results to underscore these links.

Code concatenation is a method of obtaining long codes from short codes. The
first construction of this kind was put forward by Elias [49] under the name of
product codes. Given two binary linear codesA[n1, k1, d1] andB[n2, k2, d2] we
can construct a codeC = A ⊗ B by taking the tensor product. The codeC has
parameters[n1n2, k1k2, d1d2]. Decoding of product codes poses a set of interesting
and as yet unresolved questions (see e.g., [55, 92]). As noted above, codes on
bipartite graphs form an extension of Elias’s construction.

Another extension was suggested by Forney under the name concatenated codes
[51]. Given a binary linear codeB[n2, k2, d2] and a linear codeA[n1, k1, d1] over
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the field ofq = 2k2 elements, we define a concatenated code via the composite map

F
k1k2
2 → F

k1
q

A→ (Fq)
n1 → (Fk2

2 )n1 B→ (F2)
n2n1 .

In words: the binary message ofk1k2 bits is first mapped to aq-ary message vector
for the codeA, and the resulting lengthn1 vector overFq is mapped onn1 binary
vectors of the codeB. The image of this map is a concatenated codeC with the
parameters[n1n2, k1k2,≥ d1d2]. Unlike product codes, the valued1d2 is only a
coarse lower bound on the distance of the concatenated codeC. This fact manifests
itself in early works [21, 98] showing that ensembles of concatenated codes (with
various assumptions on the ensembles of constituent codes)attain the GV bound,
which is a much higher distance than the product bound. If oneof the constituent
codesA,B is fixed rather than random, the resulting distance estimates are below
the GV bound, but still better than the product bound. We quote a result from
[21,98].

Theorem 2.3.1. Suppose that the codeB is drawn from the ensemble of binary
codes defined by random parity-check matrices of dimensions(n2 − k2) × n2 and
the codeA is aq-ary Reed-Solomon code [80, p. 294] with the parameters[n1, k1],
whereq = 2k2. The average number of vectors of weightw = ωN over the ensem-
ble of resulting concatenated codes equals2n1n2(F (ω,R,R0)+o(1)), where

F (ω,R,R0) =

{

R−R0 − ω log(21−R0 − 1) 0 < ω ≤ 1 − 2R0−1

h(ω) +R− 1 ω > 1 − 2R0−1

whereR0 = k2/n2, R = k1k2/n1n2. The ensemble-average relative distance as a
function of the code rateR is given by

δ(R) =

{

δGV(R) R0 ≥ log(2(1 − δGV(R)))
R−R0

log(21−R0−1)
0 ≤ R0 < log(2(1 − δGV(R)))

whereδGV(x) = h−1(1 − x) as defined in Sec. 1.3.

In particular, this theorem exhibits the range of code ratesfor the attainment
of the GV bound. This happens when the weight distribution ofthe code matches
the weight distribution of random codes from the parity-check ensemble (the so-
called binomial weight distribution). The theorem also quantifies the gap between
the weight distribution of concatenated codes and the binomial weight distribution
in the case that the GV bound is not attained. The latter result is important for
estimating the error probability of decoding as shown for instance in [9].

This result has set stage for a number of later studies on concatenated codes
and codes on graphs [12, 16, 61]. Similarities of this resultwith some theorems in
this chapter will become apparent below; yet we note that theproofs involve new
ideas compared to the earlier works.
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2.4 Weight distribution

Below Aw = Aw(C) denotes the number of codewords of weightw andwt(x)
denotes the Hamming weight of the vectorx as before. Before proceeding, we
note that upper bounds on the ensemble-average weight distribution in many cases
also give a lower bound on the code’s distance.

Lemma 2.4.1. Suppose that for an ensemble of codesC of lengthN there exists
anω0 > 0 such that

lim
N→∞

∑

w≤ω0N

EAw = 0.

Then for largeN the ensemble contains codes whose relative distance satisfies
d/N ≥ ω0.

Proof. The proof is almost obvious because for a randomly chosen codeC ∈ C ,

Pr[d(C) ≤ ω0N ] ≤
∑

w≤ω0N

Pr[Aw(C) ≥ 1] ≤
∑

w≤ω0N

EAw.

2.4.1 EnsembleC1(l)

Theorem 2.4.2.For m→ ∞ the average weight distribution over the ensemble of
linear codesC1(l) of lengthN = mn and rate (2.2) satisfiesEAωN ≤ 2N(F+γ),
where

F =

{

ωl log2(2
(1−R)/l − 1) − (l − 1) h(ω) if 0 ≤ ω ≤ 1 − 2(R−1)/l ,

h(ω) +R− 1 if ω ≥ 1 − 2(R−1)/l ,
(2.5)

and
γ ≤ (l/n)(1 + log2 n) + (l/2N) log2(2N).

Proof. LetCi, i = 1, . . . , l be the set of vectorsx ∈ {0, 1}N that satisfy the linear
constraints of partVi of the hypergraphH so that the codeC = ∩iCi. Let Pi =
Pr[x ∈ Ci]. The eventsx ∈ Ci for different i are independent, and therefore

Pr[x ∈ C] = P l
i

(for any i = 1, . . . , l). Let Bw(Ci) be the random number of vectors of weightw
in the codeCi. Then,EBw(Ci) =

(N
w

)

Pi and

EAw(C) =

(

N

w

)

Pr[x ∈ C] =

(

N

w

) l
∏

i=1

EBw(Ci)
(N

w

) .
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Let Xs,w be the set of vectors of weightw = ωN whose nonzero coordinates are
incident to some verticesvi1, . . . , vis ∈ V1, s ≥ w/n. Let wj = wt(x(vij )), j =
1, . . . , s and letωj = wj/n. We have

|Xs,w| =

(

m

s

)

∑

w1,...,ws
∑

wj=w

s
∏

j=1

(

n

wj

)

≤
(

m

s

)

∑

w1,...,ws
∑

wj=w

2n
∑

j h(ωj).

By convexity of the entropy function, the maximum of the lastexpression on
ω1, . . . , ωs under the constraintn

∑

j ωj = ωN is attained forωj = ωm/s, j =
1, . . . , s. Since the sum contains no more thanns terms, we obtain

|Xs,w| ≤ 2m h(x)+s log n+snh(ωm/s) ≤ 2N(x h(ω/x)+ε)

wherex = s/m andε = (1+ log n)/n. A vectorx ∈ Xs,w is contained inC1 with
probability2sn(R0−1). Thus,

EBw(C1) = |Xs,w|2sn(R0−1),

and the same expression is true forEBw(Ci), i = 2, . . . , l. Therefore,

EAw(C) ≤
(

N

w

)−(l−1)

2lN(maxω≤x≤1(x(h(ω/x)+R0−1))+ε).

Sincel(R0 − 1) ≤ R− 1, we obtainEAw(C) ≤ 2N(F (ω)+γ), where

F (ω) ≤ −(l − 1) h(ω) + l max
ω≤x≤1

(x(R0 − 1 + h(ω/x)))

≤ −(l − 1) h(ω) + max
ω≤x≤1

(x(R − 1 + l h(ω/x))).

The maximum onx of x(R − 1 + l h(ω/x)) is attained forx = x0 = ω/(1 − z)
wherel log2 z = R − 1. The two cases in the theorem are obtained depending on
whetherx0 < 1 or not. If x0 < 1, we substitutex0 in the expression forF (ω) and
obtain

F (ω) ≤ −(l − 1) h(ω) + ωl log2
z

1 − z

which implies the first part of (2.5) on account of the identity R − 1 + l h(z) =
l(1 − z) log2(z/(1 − z)). If x0 ≥ 1, we substitute the valuex = 1 to obtain the
second part of (2.5).

Corollary 2.4.3. Letω∗ be the only nonzero root of the equation

ω
(

R− 1 − l log2

(

1 − 2(R−1)/l
))

= (l − 1) h(ω).

Then the average relative distance over ensembleC1(l) behaves as

δ(R) ≥
{

ω∗, if R ≤ log2(2(1 − δGV(R))l)

δGV(R), if R > log2(2(1 − δGV(R))l).
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Chapter 2. Codes on Graphs: Weight Distribution

The proof is analogous to the proof of Corollary 4 in [16] and will be omitted.
For l = 2 it was proved in [16] that ensembleC1 contains codes that reach the

GV bound if the code rate satisfies0 ≤ R ≤ 0.202. This result forms a particular
case of the above corollary. Increasingl, we find that the ensemble contains codes
that reach the GV bound for the values of the rate as shown below:

l = 3 4 10

R ≤ 0.507 0.737 0.998.

Thus already forl = 10 almost all codes in the ensembleC1 attain the GV bound
for all but very high rates.

2.4.2 EnsembleC2(l, A).

In this case the results depend on the amount of information available for the local
codes. Specifically, [16] shows that forl = 2 the ensemble contains asymptotically
good codes provided that the distance of the local codeA is at least 3. In the case
when the weight distribution of the codeA is known, a better estimate is known
from [25,74].

Theorem 2.4.4.LetA be a linear code of lengthnwith weight enumeratora(x) =
∑n

i=0 aix
i, i.e., the number of codewords of weighti in A is ai. Let Aw be the

random number of codewords of weightw of a codeC(H, A) ∈ C2(l, A). Then its
average value over the ensemble satisfies

lim
N→∞

1

N
log2 EAωN ≤− (l − 1) h(ω) +

l

ln 2

( 1

n
ln a(es

∗

) − s∗ω
)

,

wheres∗ is the root of (ln a(es))′s = nω.

This theorem enables us to estimate the asymptotics of the mean relative dis-
tanceδ = lim

m→∞
Ed(C)

N for the ensembleC2. Let us consider several examples.

1. Let l = 3 and letA be the Hamming code of lengthn = 15 and rate
R0 = 11/15. Then the rateR(C2) ≥ 0.2 and the distanceδ = 0.2307. The relative
GV distance for this rate isδGV(0.2) = 0.2430.

2. Let l = 3 and letA be the Hamming code of lengthn = 31. ThenR(C2) ≥
16/31 andδ ≈ 0.0798. Using the same code withl = 4 givesR(C2) ≥ 11/31 and
δ ≈ 0.1607 while δGV(11/31) ≈ 0.1646.

3. Let l = 3 and letA be the 2-error-correcting primitive BCH code of length
n = 31 and rateR0 = 21/31. Then the rateR(C2) ≥ 1/31 and the value ofδ is
≈ 0.3946608. The relative GV distance for this rate isδGV(1/31) ≈ 0.3946614.

Let us turn to the case when only the minimum distanced0 of the codeA is
available. In [16] the casel = 2 was addressed, proving that as long asd0 ≥ 3,
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2.4. Weight distribution

there exists anε > 0 such that the ensemble-average relative distanceδ > ε as
m → ∞. In the next theorem this result is extended to arbitraryl ≥ 2. We also
prove a related result which gives an upper bound on the average weight spectrum
and provides a way of estimating the value ofω0.

Theorem 2.4.5. (a) LetA be the local code of lengthn and distanced0 used to
construct the ensembleC2(l, A) of hypergraph codes. Letx0 = x0(ω) be the
positive solution of the equation

ωn+

n
∑

i=d0

(

n

i

)

(ωn− i)xi = 0. (2.6)

The ensemble-average weight distribution satisfies

lim
N→∞

1

N
log EAωN ≤ l

n
log

1 +
∑n

i=d0

(

n
i

)

xi
0

xωn
0

− (l − 1) h(ω).

(b) The inequalityd0 > l/(l − 1) gives a sufficient condition for the ensemble to
contain asymptotically good codes.

Proof. (a) LetH be a random hypergraph andC(H, A) be the corresponding code.
Recall thatC = ∩iCi, whereCi is the set of vectors that satisfy the constraints
of part i of the graph. LetUi(w, d0) be the set of vectorsx ∈ {0, 1}N such that
wt(x) = w andwt(x(v)) = 0 or wt(x(v)) ≥ d0 for all v ∈ Vi. Since the number
of such vectors is the same for alli, below we write|U(w, d0)| omitting the sub-
script. Let us choose a vectorx ∈ {0, 1}N randomly with a uniform distribution.
Then

Pr[x ∈ C1|wt(x) = w] ≤ |U(w, d0)|
(N

w

)

and fori ≥ 2,

Pr[x ∈ Ci|wt(x) = w,x ∈ C1] = Pr[x ∈ Ci|wt(x) = w].

Then

EAw(C) =

(

N

w

)

Pr[x ∈ C|wt(x) = w] =

(

N

w

)

(Pr[x ∈ C1|wt(x) = w])l

≤ |U(w, d0)|l
(N

w

)l−1
. (2.7)

Given a vectorx denote byjı the number of verticesv ∈ Vi such thatwt(x(v)) = ı.
Clearly,

|U(w, d0)| =
∑

j0,jd0
,jd0+1,...,jn

∑

ıjı=w, j0+
∑

ı≥d0

jı=m

(

m

j0, jd0 , . . . , jn

) n
∏

ı=d0

(

n

ı

)jı

.
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Chapter 2. Codes on Graphs: Weight Distribution

This sum contains no more than(m + 1)n = O(Nn) terms, so forN → ∞ its
exponent is determined by the maximum term (which has exponential growth).

We obtain

1

N
log |U(ωN, d0)|l ≤ l

n
max

ν0,νd0
,...,νn

∑

ıνı=ωn,
∑

νı=1

{

h(ν0, νd0 , νd0+1, . . . , νn)

+

n
∑

ı=d0

νı log

(

n

ı

)

}

+
logN

m
, (2.8)

whereνı = jı/m, ı = 0, d0, d0 + 1, . . . , n, andh(z) denotes the entropy of the
probability vectorz ∈ R

n+1. The objective function is concave, so the point of
extremum is found from the system of equations

(

n

i

)

(1 −
n
∑

ı=d

νı) = νiµ
−i, i = d0, d0 + 1, . . . , n

n
∑

ı=d0

ıνı = ωn.

Its solution is given by

νi =

(n
i

)

µi

1 +
∑n

ı=d

(n
ı

)

µı
, i = d0, d0 + 1, . . . , n,

whereµ is chosen so as to satisfy the last equation of the system. Evaluating
∑

i iνi

and writingx instead ofµ,we observe that it should satisfy Eq. (2.6). This equation
has a unique rootx0 > 0 because puttingx = p/(1 − p), we can write it as

ωn
( Pr[X = 0]

Pr[X ≥ d0]
+ 1
)

= E[X|X ≥ d0],

whereX is a binomial(p, 1 − p) random variable. Asp changes from 0 to 1, the
left-hand side of the last equation decreases monotonically from +∞ to ωn while
the right-hand side increases monotonically fromd0 to n.

Finally, computing the entropy and simplifying, we obtain the estimate

lim
N→∞

1

N
log |U(ωN, d0)|l ≤ log

1 +
∑n

i=d0

(

n
i

)

xi
0

xωn
0

.

(b) The proof of the second part is analogous to the case ofl = 2 in [16]. Let
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2.4. Weight distribution

w, 1 ≤ w ≤ N be the weight and letp = w/d0. We have

|U(w, d0)| ≤
p
∑

i=w/n

(

n

i

)(

n

d0

)i( in

(p− i)d0

)

≤
(

m

p

)(

n

d0

)p p
∑

i=w/n

(

pn

(p− i)d0

)

≤
(

m

p

)(

n

d0

)p

2pn.

Then

EAw(C) ≤
(

(

m

p

)(

n

d0

)p

2pn
)l
(

N

w

)1−l

.

Using the estimates(n
k )k ≤

(n
k

)

≤ (en
k )k, we compute

EAw(C) ≤
(em

p

)pl
nd0pl2lpn

(w

N

)w(l−1)

= (sm/w)
w
d0

(l−d0(l−1))
,

wheres = ((ed02
n)lnd0)

1
l−d0(l−1) . Thus, for anyω satisfyingω < s/m, the aver-

age number of vectors of weightωN tends to 0 asm→ ∞ as long asd0(l−1) > l.
This proves that under this condition the ensemble containsasymptotically good
codes.

Example:LetA be the[7, 4, 3] Hamming code and letl = 2. Theorem 2.4.5(a)
implies a lower boundδ ≥ 0.01024 on the average relative distance for the en-
sembleC2(2, A). This improves upon previous results ( [25, 74]; also Part (b)of
this theorem) which assert only that the ensemble contains asymptotically good
codes. Of course, in this case we can use the entire weight distribution of the code
A to find the estimateδ ≥ 0.186 from Theorem 2.4.4; however, in cases when the
weight distribution is difficult to find, the last theorem provides new information
for the ensemble of graph codes.

Similarly, for A[23, 12, 7] from Theorem 2.4.5(a) we obtain the estimateδ ≥
0.0234. Again, using the entire weight distribution, it is possible to obtain a better
estimate.

Part (a) of the last theorem implies the following corollarywhich shows what
happens to the average weight spectrum of the ensemble for long local codes.

Corollary 2.4.6. Letd0 = δ0n. Then

1

N
log EAωN (C) ≤ lω

δ0
h(δ0) − (l − 1) h(ω) + γ

whereγ ≤ (logN)/m+ (log n)/n.
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Proof. In (2.8) let us bound aboveh(·) by log n. Then

1

N
log |U(w, d0)|l ≤

l

n
max

νd0
,...,νn

∑

ıνı=ωn,

n
∑

ı=d0

νı log

(

n

ı

)

+ γ.

Computing the maximum amounts to solving a linear programming problem whose
dual is

ωnz → min

ız ≥ log

(

n

ı

)

, ı = d0, d0 + 1, . . . , n; z ≥ 0.

Its solution is given byz∗ = ωnmaxd0≤ı≤n log
(n

ı

)

/ı. We obtain

1

N
log |U(w, d0)|l ≤ lω max

δ0≤x≤1

h(x)

x
+ γ ≤ lω h(δ0)/δ0 + γ.

Employing (2.7) now completes the proof.

2.4.3 EnsembleC3(l, H)

Theorem 2.4.7.Assume thatH isε-homogeneous. Form → ∞ the average weight
distribution over the ensemble of linear codesC3(l,H) satisfiesEAωN ≤ 2N(F+γ)

where

F =

{

−x0(1 −R) + xl
0 h
(

ω
xl
0

)

if x0 < 1,

h(ω) +R− 1 if x0 ≥ 1,

wherex0 is the unique positive root of the equation

lxl−1 log(xl/(xl − ω)) = 1 −R, (2.9)

γ = l(n+ logm)/N + ε.

Proof. LetC ∈ C3(l,H) and letx ∈ {0, 1}N be a nonzero vector. Denote byBi the
set of nonzero vertices ofx in the partVi, i = 1, . . . , l. LetE = |E(B1, B2, . . . , Bl)|.
Let bi = |Bi|, βi = bi/m, then the probability thatx ∈ C equals2−(1−R0)N

∑

i βi .
Assume w.l.o.g. thatβ1 < β2 < · · · < βl. The average number of vectors of
weightw = ωN in the codeC can be bounded above as

EAw ≤
∑

ωm≤b1,b2,...,bl≤m

(

N
∏l

i=1 βi + ε
√
b1b2

w

) l
∏

i=1

(

n

bi

)

2−(1−R0)N
∑

i βi .

Then

1

N
log EAωN ≤ max

ω≤βi≤1
∏

i βi≥ω

{

∏

i

βi h
( ω
∏

i βi

)

− (1 −R0)
∑

i

βi

}

+ γ.
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Let φ(β1, . . . , βl) be the function in the brackets in the last expression. Let us
prove thatφ is concave in the domainD =

∏

i[ω, 1]∩ {(β1, . . . , βl) :
∏

i βi ≥ ω}.
Computing its Hessian matrix, we obtain

Hφ = − log e















s1

β2
1

s2
β1β2

. . . s2
β1βl

s2
β2β1

s1

β2
2

. . . s2
β2βl

...
...

. . .
...

s2
βlβ1

s2
βlβ2

. . . s1

β2
l















,

where

s1 =
ω
∏

i βi
∏

i βi − ω

s2 = s1 +
∏

i

βi ln
(

1 − ω
∏

i βi

)

.

The matrixHφ can be written as

Hφ = − log e(s2zz
T + (s1 − s2)diag(β−2

1 , . . . , β−2
l )),

wherez = (1/β1, . . . , 1/βl)
T and diag(·) denotes a diagonal matrix. We wish to

prove thatHφ is negative definite forβi > 0, 0 < ω <
∏

i βi. Clearly,s1 > s2, and
therefore the claim will follow if we show thats2 > 0. This is indeed true because
lettingQ =

∏

i βi and using the inequalityx > ln(1+x) valid for x > −1, x 6= 0,
we have

s2 = Q
( ω

Q− ω
+ ln

Q− ω

Q

)

> Q
(

ln
(

1 +
ω

Q− ω

)

+ ln
Q− ω

Q

)

= 0.

We will now show that the maximum ofφ in D is attained on the linè given
by β1 = β2 = · · · = βl. Note thatD is an intersection of convex domains and
therefore itself convex. Moreover, the domainD is also symmetric in the sense
that together with any pointp = (β1, . . . , βl) it also contains all the points obtained
from p by permuting its coordinates, and the value ofφ at each of these points is the
same and equal toφ(p). Becauseφ is strictly concave, for any pointp ∈ D, p 6∈ `
it is possible to find a pointq such thatφ(q) > φ(p) (any pointq on the segment
betweenp and one of its symmetric points will do). This shows that the global
maximum ofφ in D is attained oǹ including possibly the pointβ1 = · · · = βl = 1.
Thus, we obtain

1

N
log EAw ≤ max

ω1/l≤x≤1
{−(1 −R)x+ xl h

( ω

xl

)

} + γ.

The maximum of this expression onx is attained forx determined from (2.9).
This equation has a unique positive rootx0 because the left-hand side is a falling
function ofx that takes all positive values forx ∈ (ω1/l,∞). This concludes the
proof.
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Figure 2.2: Average weight spectra for ensembles of graph codes: (I)l = 2, R =
0.2, (II) l = 3, R = 0.4; (a) ensembleC3(2,H), (b) ensembleC1(2), (c) ensemble
of random linear codes.

This theorem implies the following result.

Corollary 2.4.8. For all values of the code rate satisfyingR ≥ log(2(1−δGV(R))l),
almost all codes in the ensembleC3(l) approach the GV bound asN → ∞.

Proof. From the previous theorem, the GV bound is met for the first time when
x0 becomes 1. Substituting 1 in (2.9), we obtain a condition onω in the form
ω = 1− 2(R−1)/l. As long as this value is less thanδGV(R), the ensemble-average
relative distance approachesδGV(R) asN → ∞.

We note that the condition for the attainment of the GV bound turns out to
be the same as for the ensembleC1(l) constructed from random graphs. Theε-
homogeneity condition, and in particular, the expander mixing lemma for bipartite
graphs are known to approximate the behavior of random graphs. This approxima-
tion turns out to be good enough to ensure that both ensemblescontain GV codes in
the same interval of code rates. Moreover, for small weightsthe average number of
codewords for the ensembleC3(l,H) turns out to be smaller than for the ensemble
C1(l). This is illustrated in the two examples in Fig. 2.2.

For l = 2 codes in the ensemblesC3 andC1 reach the GV bound for code
ratesR ≤ 0.202. ForR > 0.202 the codes are still asymptotically good, although
slightly below the GV bound. For these values of the rate, theaverage relative
distance for the ensembleC3 is greater than for the ensembleC1 as shown by the
following numerical examples.

R 0.3 0.5 0.7 0.9
C1(2) 0.18558 0.09276 0.03211 0.00337
C3(2,H) 0.18605 0.09492 0.03242 0.00380
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2.4. Weight distribution

Similar relations between the weight spectra and distancesof the ensembles
C1(l),C3(l,H) hold also for larger values ofl.
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CHAPTER 3

Codes on Graphs: Decoding

3.1 Introduction

The principal appeal of graph codes lies in their performance under iterative local
decoding procedures. This idea is prominent in the study of theoretical properties
and applications of LDPC codes [91]. It has also given rise toa number of inter-
esting results in the area of generalized LDPC codes, i.e., general linear codes on
graphs.

Error correction with graph codes has been studied along twolines, namely, by
examining explicit code families whose construction involves graphs with a large
spectral gap, or by computing the average number of errors correctable with some
decoding algorithm by codes from a certain random ensemble of graph codes. The
focus of this chapter will be on the first direction. The second line of work will be
the subject of Chapter 4.

The research topic of this chapter, initiated in Tanner’s paper [96] and in Sipser
and Spielman’s [93], pursues estimates of error correctionwith codes on regular
graphs with a small second eigenvalue and ensuing expansionproperties. Presently
it is known that such codes under iterative decoding can correct the number of errors
equal to a half of the designed distance of graph codes [17, 94]. This estimate fits
in a series of analogous results for various “concatenated”coding schemes and has
prompted a view of graph codes as parallel concatenations ofthe local codes [17].

The focus of this chapter is on decoding of hypergraph codes.The only known
algorithm for their decoding [19] stops short of exploitingthe full power of these
codes as indicated in particular by its parameter estimates. This shortcoming shows
most prominently for the case of small relative distances when the proportion of
errors corrected by this algorithm vanishes compared to thevalue of the distance.
At the same time, the tradeoff between the rate and relative distance of hypergraph
codes shows an improvement over bipartite graph codes for small values of the
distance. Motivated by this, we propose a new decoding algorithm of hypergraph
codes and estimate its error-correcting capability. We show that it corrects the
number of errors which constitutes a fixed proportion of the code’s distance. The
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material presented in this chapter is published in [14].

3.2 Decoding of bipartite graph codes

We set stage by presenting a by now standard iterative decoding algorithm for bi-
partite graph codes of Zémor [104]. Consider a codeC(G, A) on a bipartite graph
G(V,E), V = V1∪V2. Its decoding can be performed by a natural algorithm [104]
that alternates between parallel decoding of local codes inthe partsV1 andV2 until,
hopefully, it converges to a fixed point. In this algorithm, the most current value
of each edge (bit) is stored at the vertex in the part decoded in the most recent
iteration.

For the ease of analysis we assume that the local codes are decoded to correct
up to t errors, wheret ≥ 0 is an integer that satisfies2t + 1 ≤ d0 andd0 is the
distance of the codeA. Formally, define a mappingψA,t : {0, 1}n → {0, 1}n such
thatψA,t(z) = x ∈ A if x is the unique codeword that satisfiesd(z,x) ≤ t and
ψA,t(z) = z otherwise. Lety(i) be the estimate of the transmitted vector before
the ith iteration,i ≥ 1, wherey = y(1) is the received vector. The next steps are
repeated for a certain number of iterations.

Algorithm I (y(1))
• i odd: for allv ∈ V1 puty(i+1)(v) = ψA,t(y

(i)(v));
• i even: for allv ∈ V2 puty(i+1)(v) = ψA,t(y

(i)(v)).

We say more on this algorithm in the next chapter; however, upon some reflec-
tion it becomes clear this algorithm as well as other “edge-oriented” procedures do
not easily generalize to the case of hypergraphs when one edge is checked by more
than two vertices.

3.3 Decoding of hypergraph codes

In [19] the following alternative to Algorithm I is suggested: starting from the
values of the bits stored on the edges ofH decode in parallel all local codes inall
parts ofH and for eachv ∈ V form an independent decision about the codeword of
A that corresponds to the edgesE(v). Next, the values of the bits at every vertex
are updated, so that now every vertex stores an independent opinion of its bits’
values. For the update, the value of the bitxe(v) is set to the majority value of the
decoded versions of this bit at all the verticesv′ ∈ e\v, wheree 3 v is an edge
(for this to be well-defined, the values ofl are assumed to be even). The decoding
then iterates, repeating this parallel decoding round until all the vertices agree on
all bits.

In [19] this algorithm is shown to correct all patterns of errors provided that
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3.3. Decoding of hypergraph codes

their proportion, as a fraction of the blocklengthN , is less than

(

l − 1

l/2

)−2/l (δ0
2

)(l+2)/l

− c2(ε, δ0, l) (3.1)

wherec2(ε, δ0, l) → 0 asε → 0. This algorithm consists oflogN iterations, each
of which has serial running time linear in the blocklengthN . Its analysis relies on
theε-homogeneous property ofH.

This result should be contrasted with the distance estimateof (2.4). For fixed
values ofl > 2, if one thinks ofδ0 as a variable quantity, then the number of
correctable errors in (3.1) is not a constant fraction of thedesigned distance (2.4).
For example, forl = 4, (3.1) gives a decoding radius equal toN times the fraction

δ
3/2
0

2
√

6
.

For smallδ0 this is a much smaller quantity than the relative designed distanceδ4/3
0 .

This consideration is reinforced by the fact that advantages of hypergraph codes are
most pronounced for small values of the distanceδ.

Our objective is to propose an alternative decoding strategy that decodes a con-
stant fraction of the designed distance.

For everyi = 1, 2 . . . , l, we shall define ai-th subprocedurethat decodes the
local codeA on every vertex belonging to the vertex setVi. We shall claim that if
the initial number of errors is less than a bound that we shallintroduce, thenfor
at least onei, the i-th subprocedure applied to the initial error pattern produces a
pattern with a smaller number of errors.

Let us now describe the decoding procedure in more detail. For every vertex
v, and the associated subspace{0, 1}n where coordinates are indexed by the edges
incident tov, we will use the followingthreshold decodingprocedureTκ of the
constituent codeA. This means that we introduce a numberκ ≥ 2, to be optimized
later, and that we decode a vertex subcodeonly if its Hamming distance to the
nearest codeword is less or equal toθ = d0/κ. If every codeword ofA is at distance
more thand0/κ we leave the subvector untouched. LetVi = (vi,1, . . . , vi,m) be
the ith component ofH. Given anN -vectorz = (z(vi,1), . . . ,z(vi,m)), we can
decode each of them of its subvectors withTκ, obtaining anN -vectorw. Abusing
notation, we will writew = Tκ(z). Thei-th subprocedurenow consists of applying
Tκ to the componentVi.

As mentioned above, we shall claim that one amongl of thei-th subprocedures
lowers the total number of errors. However the decoding algorithm will not be able
to discern which of thei-th subprocedures is successful. So the decoder will apply
all l subprocedures in parallel to the received vector, yieldingl output vectors. The
next decoding iteration will have to be applied to every output of the preceding iter-
ation, so thats iterations of the algorithm will yieldls output vectors. We will only
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apply the algorithm for a constant number of iterations however, until we are guar-
anteed that the number of remaining error for at least one of thels outputs has fallen
below the error-correcting capability of Bilu and Hoory’s decoding procedure. We
then let the latter decoder take over and decode allls candidates. At least one of
them is guaranteed to be the closest codeword, and it can be singled out simply by
computing the Hamming distance of every candidate to the initial received vector.

To give a more formal description of the algorithm, suppose thaty ∈ {0, 1}N

is the vector received from the channel. In each iteration the processing is done in
parallel in all the vertices ofH. Let Y j

i = {y(j)
i,l } be the set ofN -vectors stored at

the vertices of the componentVi before thejth iteration. By the discussion above,
|Y j

i | ≤ lj−1.

We begin by settingY 1
i = {y} for all i. Iterationj, j = 1, 2, . . . , s consists of

runningl parallel subprocedures. Theith subprocedure applies decoderTκ to every
vectory(j)

i,l in the setY j
i , replacing it with the vectorTκ(y

(j)
i,l ), l = 1, . . . , |Y j

i |.
The outcome of this step createsl potentially different decodings of every vector
y

(j)
i,l ∈ Y

j
i , i = 1, . . . , l. In the second part of the iteration we form the sets

Y
j+1

i , i = 1, . . . , l by replacing each vectory(j)
i,l ∈ Y

j
i with its decodings obtained

in all the l subprocedures.
Next, we prove that one of thel subprocedures will actually diminish the num-

ber of errors. This analysis also relies onε-homogeneity, although in a way differ-
ent from [19]. LetE be the set of coordinates, i.e. the set of edges, that are in error.
For everyi = 1 . . . l, let us partition the set of vertices inVi that are incident toE
into three subsets,Gi, Ni, Bi. The setGi is the subset of vertices that will be cor-
rectly decoded,Ni is the subset of vertices that are left untouched by the threshold
decoder, andBi is the set of those vertices that are wrongly decoded to a parasite
codeword ofA. The situation is summarized in Figure 3.1. From now on by the
E-degreeof a vertex we shall mean the degree of this vertex in the subhypergraph
induced by the edge setE. It should be clear that every vertex ofGi hasE-degree
not more thand0/κ, every vertex inNi hasE-degree at leastd0/κ, and every vertex
in Bi hasE-degree at least(κ− 1)d0/κ.

We use a shorthand notationE(Gi) to mean the set of edges that has one of its
endpoints inGi. Similarly we shall writeE(Ni) andE(Bi).

Lemma 3.3.1. If the i-th decoding subprocedure introduces more errors than it
removes, then|E(Gi)| ≤ |E|/κ. Moreover, if

µi =
|E(Ni)|

|E(Ni) ∪ E(Bi)|
, i = 1, . . . , l

then

|E(Gi)| ≤
1 − µi

κ− µi
|E|.
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3.3. Decoding of hypergraph codes

Ni

Gi

Bi

Vi

(bad) vertices in error that
will be badly decoded

(neutral) vertices in error that
are left untouched

(good) vertices in error that
will be correctly decoded

Figure 3.1: Details of the set of vertices incident to edges in error. Themax E-
degree inGi is less thand0/κ, the minE-degree inBi is at least(κ − 1)d0/κ, the
min E-degree inNi is at leastd0/κ.
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Chapter 3. Codes on Graphs: Decoding

Proof. The first part of the lemma follows from the second part, whichis proved
as follows. We bound from above|E(Gi)|, the set of edges removed, by the set of
edges added,|E(Bi)|: we get

|E(Gi)| ≤ |Bi|
d0

κ
= |Bi|d0

(

1 − 1

κ

)

1

κ− 1

≤ |E(Bi)|
1

κ− 1
.

The first inequality comes from the definition ofκ and the threshold decoder. The
second inequality states that(1−1/κ)d0 is a lower bound on the minimumE-degree
in Bi. We now have

|E| = |E(Gi)| + |E(Ni)| + |E(Bi)| = |E(Gi)| + |E(Bi)|/(1 − µi) (3.2)

≥ κ− µi

1 − µi
|E(Gi)|

which proves the lemma.

Theorem 3.3.2.For anyα > 0, if the number of errorseN is such that

e ≤ (1 − α)
δ
l/(l−1)
0

(l + 1)(l+1)/(l−1)
(3.3)

they can be corrected in timeO(N logN ).

Proof. The theorem will follow if we show that at least one subprocedure reduces
the error count by a constant fraction. Indeed, in this case aconstant number of
rounds of the above algorithm will reduce the error count to any positive propor-
tion of the designed distance whereupon the remaining errors will be removed in
O(logN) steps of Bilu-Hoory’s algorithm.

Assume toward a contradiction thatall the i-th decoding subprocedures,i =
1, . . . , l, introduce more errors than they remove. Let us introduce the following
notation: |E| = eN, Si = Bi ∪ Ni, |Si| = σim. Note that since the minimum
E-degree inSi is at leastd0/κ, we have

σi ≤ κe/δ0. (3.4)

Consider the subset of edges obtained fromE by removing all edges incident to
“good” verticesGi for all i. We are left with a subhypergraphHE with vertex
setSi, i = 1 . . . l. Use Lemma 3.3.1 (the first part) for alli to argue that the total
fraction of edges inHE is at leaste(1−l/κ). Applying theε-homogeneous property
(2.3) gives

e

(

1 − l

κ

)

≤ σ1 · · · σl + ε min
1≤i<j≤l

(σiσj)
1/2.
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3.3. Decoding of hypergraph codes

Applying (3.4) we obtain

e

(

1 − l

κ

)

≤
(

κe

δ0

)l

+ ε
κe

δ0
.

This inequality does not hold (and therefore our assumptionis false) if

e < δ
l/(l−1)
0

(

1 − l/κ− εκ/δ0
κl

)1/(l−1)

. (3.5)

Takingκ = l + 1, rewrite the expression in the brackets on the right as

( 1

l + 1

)(l+1)/(l−1)(

1 − (l + 1)2ε

δ0

) 1
l+1
.

By taking sufficiently largen it is possible to makeε small enough so that for any
givenα′ > 0 there holds

(1 − (l + 1)2ε/δ0)
1/l+1 > 1 − α′.

This means that (3.5) is satisfied for all

e < (1 − α′)
δ
l/(l−1)
0

(l + 1)(l+1)/(l−1)
.

Finally, choosingα′ < α guarantees that at least one subprocedure reduces the
error count by a constant fraction.

We see that the upper bound on the number of correctable errors given by The-
orem 3.3.2 is a constant proportionγ of the designed distanceδN (2.4), where
γ = 1/(l + 1)(l+1)/(l−1). For example, forl = 3, 4 we getγ = 1/16 and1/14.2,
respectively.

The next theorem provides a better estimate ofγ by refining the above analysis.
The way this is done is to rely on the full power of Lemma 3.3.1 instead of its first
part as above.

Theorem 3.3.3.For anyα > 0, if the number of errorseN is such that

e ≤ (1 − α)δ
l/(l−1)
0 max

κ≥2
min

0<µ<1
f(µ, κ)

with

f(µ, κ) =
[1 − l(1 − µ)/(κ − µ)]1/(l−1)

κl/(l−1)[µ+ (1 − µ)/(κ − 1)]l/(l−1)

they can be corrected in timeO(N logN ).
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Proof. We proceed as in the previous theorem, assuming toward a contradiction
that each subprocedure increases the error count. Using thedefinition ofµi given
above,

|E(Si)| =
|E(Bi))|
1 − µi

=
|E(Ni)|
µi

.

Recall that the subhypergraphHE is formed of the edges all of whose vertices are in
Si. To count the total fraction of edgesβ(HE) in the subhypergraphHE we employ
Lemma 3.3.1:

β(HE) ≥ e
(

1 −
l
∑

i=1

1 − µi

κ− µi

)

.

The E-degree of a vertex inSi (resp.,Bi) is at leastd0/κ (resp.,d0(κ − 1)/κ).
Hence

|Si| = |Bi| + |Ni| ≤ E(Ni)
κ

d0
+ E(Bi)

κ(1 − µi)

d0(κ− 1)

≤ κe

d0

(1 − µi

κ− 1
+ µi

)

N.

Using the last two inequalities in (2.3), we obtain

e
(

1 −
l
∑

i=1

1 − µi

κ− µi

)

≤
(κe

δ0

)l
l
∏

i=1

(1 − µi

κ− 1
+ µi

)

+ ε
κe

δ0
.

To contradict this, let

e <
(δ0
κ

)l/(l−1)
{

1 −∑l
i=1

1−µi
κ−µi

− εκ/δ0
∏l

i=1(
1−µi
κ−1 + µi)

}1/(l−1)

.

We again bound the terms that involveε from below by a multiplicative term1−α′.
Optimizing on all possible values ofµi givesµi = µ for all i = 1 . . . l, whereupon
the expression on the right can be replaced by(1− α)δ

l/(l−1)
0 f(µ, κ). The proof is

thus complete.

Numerically, the first values of the decoding radiusρ given by Theorem 3.3.3
are

ρ ≥ δ
3/2
0

5.94
for l = 3 ρ ≥ δ

4/3
0

6.46
for l = 4

attained forκ satisfying(κ− 1)−l = 1− l/κ andµ = 0 or 1. These results should
be compared with the estimate of the designed distance of codes given by (2.4): one
notices that we are now correcting a constant proportion of the designed distance
which was our goal. This is also an advance over the earlier result of [19] given in
(3.1).

Can one obtain better bounds for the decoding radius? In principle, it is possible
to obtain further improvements by introducingmultiple thresholds instead of the
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3.3. Decoding of hypergraph codes

single decoding thresholdθ = d0/κ, and approachρ = δ/2 by increasing their
number. However we shall only be able to claim that using one of the multiple
thresholds reduces the number of errors for one of the subprocedures, but we shall
not be able to discern which decoding threshold achieves that. This will result
in yet another layer of parallelism, further increasing thevalue of the constant in
the decoding complexity. We will not pursue this line of research further here. A
remaining challenge is to decode up to half the designed distance with an iterative
decoding procedure of reasonable complexity.
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CHAPTER 4

Codes on Graphs: Correctable Errors

4.1 Introduction

In this chapter we are interested in estimating the average number of errors cor-
rectable with the ensemble of codes on graphs. The work in this direction originates
in the works of Gallager [52] and Zyablov and Pinsker [107] who showed that ran-
dom LDPC codes of growing length can correct a nonvanishing fraction of errors.
Recently the decoding algorithm of [107] was studied by Burshtein [26] who de-
rived an improved estimate of the number of correctable errors compared to [107]
and by Zyablov et al. [106] who provided estimates of the number of errors under
the assumption of local single error-correcting (Hamming)codes.

As is well known (e.g., [63]), graphs with high expansion andrandom graphs
share many properties that can be used to prove estimates of error correction. Re-
garding the proportion of errors corrected by graph codes under iterative decod-
ing, we note one difference between (generalized) LDPC codes on random graphs
and explicit constructions based on the graph spectrum. Theexplicit constructions
based on regular graphs depend on the difference between thelargest and the sec-
ond largest eigenvalue of the graph (the “spectral gap”). For this reason, one is
forced to rely on local codes with rather large minimum distanced0, for instance,
d0 greater than the square root of the degreen of the graph. Even though in the
construction of [93] and later works,n is kept constant, this effectively rules out
of consideration local codes with small minimum distance such as the Hamming
codes and the like. The square root restriction is implied bythe spectral gap of
regular bipartite graphs, and is the best possible owing to the Alon-Boppana bound
for graph spectra [86]. The purpose of the present chapter isto lift this limitation
on the distanced0 by switching from graphs with a large spectral gap to random
graphs.

In this chapter we obtain new estimates of the number of correctable errors for
random ensembles of bipartite-graph and hypergraph codes under iterative decod-
ing. The first part of the chapter is devoted to codes on regular bipartite graphs. To
construct long graph codes, we assume that the degree of the graph is fixed and the
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Chapter 4. Codes on Graphs: Correctable Errors

number of vertices in both parts approaches infinity. Assuming that local constraint
codes are used to correct 2 or more errors, we show that almostall codes in the
ensemble of graph codes are capable of correcting all error patterns of weight that
forms a constant fraction of the code length. This is a much less restrictive assump-
tion on the local codes than the one taken in earlier works on the decoding of graph
codes [17,104].

We then observe that if the degree of the graph is allowed to increase then
graph codes with local codes of constant distance do not correct a linearly growing
number of errors under the proposed iterative decoding. This motivates us to study
graph codes with long local codes correcting a growing number of errors that forms
a fixed proportion of the degree. The results obtained in thiscase parallel earlier
theorems for product codes and graph codes based on the spectral gap.

In the second part of the chapter we establish similar results for codes on hy-
pergraphs, showing that a constant proportion of errors is corrected by an iterative
decoding algorithm. Constructing the code ensemble based on regular hypergraphs
of a fixed degree, we show that they contain codes capable of correcting a con-
stant proportion of errors. The proof involves no assumptions on the distance of
the local codes; in particular, we show that networks of Hamming codes correct a
fixed proportion of errors under iterative decoding. This fact was previously proved
by Tanner [96] under the assumption that the underlying graph is a tree. This as-
sumption is not needed in our results. As in the case of the graph ensemble, we
also perform the analysis of the decoding algorithm for the case of growing degree,
finding the proportion of errors correctable with hypergraph codes based on long
local codes.

The material presented in this chapter is published in [12].

4.1.1 Code ensembles

For the bipartite graph codes we consider the ensemble of codesC2(2, A) described
in Definition 2.2.1 of Chapter 2. HereA[n,R0n, d0] is the fixed linear binary local
code. Suppose that the[N,RN ] codeC(G) is constructed by associating it with a
graphG(V1 ∪ V2, E), |V1| = |V2| = m, |E| = mn = N , sampled from the set of
graphs defined by a random permutation onN elements which establishes how the
edges originating inV1 are connected to the vertices inV2.

Generalizing, we consider for hypergraph codes the ensemble of codesC2(l, A)
from Definition 2.2.1. A codeC in this ensemble is constructed on anl-partiten-
regular uniform hypergraphH = (V,E), V = V1∪· · ·∪Vl, |V1| = · · · = |Vl| = m,
|E| = mn = N , which is constructed by sampling a random hypergraph from
the set of hypergraphs defined byl − 1 independent random permutations onN
elements. Fori = 1, 2, . . . , l−1, theith permutation accounts for the placement of
edges between partsV1 andVi+1 of H. As earlierA[n,R0n, d0] is the fixed linear
binary local code.

Recall that the rateR of the codesC ∈ C2(l, A) satisfiesR ≥ lR0−(l−1), l =
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4.2. Decoding algorithms for graph codes

2, 3, . . . . Denote bydC = d(C2(l, A)) the average value of the minimum distance
of codes in the hypergraph ensemble and let

δ = δ(C2) , lim inf
N→∞

dC

N
. (4.1)

In Chapter 2 we discussed ways to bound the value ofδ from below using the
distribution of distances in the local codeA (suggested in [25, 74]). In particular,
we showed thatδ(C2) > 0 if the local distanced0 satisfiesd0 > l/(l − 1). For
the bipartite graph ensembleC2(2, A) this implies thatd0 ≥ 3; i.e., there exist
codes in the ensemble that are asymptotically good (have non-vanishing rate and
relative distance) when the local codes correct one or more errors. For hypergraphs
with l = 3 or more parts any local codes (without repeated vectors) account for
an asymptotically good ensemble. An explicit lower bound for δ(C2) that depends
only on l andd0 is also discussed in Chapter 2, see Theorem 2.4.5 in there and
rephrased in 4.3.8 below. For the case whenn is large andd0 = δ0n, a lower
estimate ofδ(C2) is given by the solution forx of the following equation from
Corollary 2.4.6:

h(x)

x
=

l

l − 1

h(δ0)

δ0
. (4.2)

4.2 Decoding algorithms for graph codes

4.2.1 Decoding for the ensembleC2(2, A)

In our estimates of the number of correctable errors for the ensemble we rely upon
the Algorithm I described in the Chapter 3.

4.2.2 Decoding for the ensembleC2(l, A)

For the hypergraph ensembleC2(l, A) we use the decoding algorithm proposed
in Chapter 3. Although the main steps remain same, we modify the algorithm
at certain points to accommodate the special setting of ensemble C2(l, A). It is
described below.

Let C ∈ C2(l, A) be a code and letH(V,E), V = V1 ∪ · · · ∪ Vl be the graph
associated with it. For everyi = 1, 2 . . . , l we will define ani-th subprocedure
that decodes the local codeA on every vertex in the partVi. Suppose that a vector
u ∈ {0, 1}N is associated with the edgese ∈ E. Let vi,1, . . . , vi,m be the vertices
in the partVi of H and letui,1 = u(vi,1), . . . ,ui,m = u(vi,m) be them subvectors
obtained fromu upon permuting its coordinates according to the order of edges
in Vi and projecting it on the verticesvi,1, . . . , vi,m. In other words, the vector
(ui,1, . . . ,ui,m) is obtained fromu using the permutation that establishes edge
connections between partsV1 and Vi. The ith subprocedure replaces the vector
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Chapter 4. Codes on Graphs: Correctable Errors

(ui,1, . . . ,ui,m) with the vector(ψA,t(ui,1), . . . , ψA,t(ui,m)). ψA,t is the bounded-
distance decoder of the local code defined in section 3.2.

The algorithm proceeds in iterations. Lety ∈ {0, 1}N be the received vector.
Denote byY (j) the set of estimates of the transmitted codeword (i.e., the set of
N -vectors) stored at the vertices ofH before thejth iterationj = 1, 2, . . . . After
each iteration, this set is formed as the union of the vectorsobtained upon decoding
of the vertices in theith part,i = 1, . . . , l. Decoding begins with settingY (1) =
{y}. After the first iteration we obtainl potentially different vectors (one for each
subprocedure) which form the current estimates of the transmitted vector. These
vectors form the setsY (2)

i , i = 1, . . . , l. In the next iteration each subprocedure will
have to be applied to each of thel outcomes of the preceding iteration. Proceeding
in this way, we observe that|Y (j)

i | ≤ lj−1.

This algorithm, called Algorithm II below, will only be applied for a constant
numbers of iterations until we can guarantee that at least one subprocedure has
reduced the number of errors to a specified proportion, say from γ0N to some
γ1N, γ1 < γ0. We then let another algorithm take over and decode all thels can-
didates. Any low-complexity decoder of graph codes that removes an arbitrarily
small positive fraction of errorsγ1 will do at this stage. This is because taking the
proportion of errors fromγ0 to γ1 > 0 can be accomplished in a constant number
s of steps, so the number of candidates that this decoder has tohandle is at mostls

and does not depend onN.
For the case of local codes correctingt ≥ 2 errors we let this algorithm to be

the decoding algorithm of bipartite-graph codes (Algorithm I), making sure that
γ1 is below the proportion of errors that are necessarily corrected by this algo-
rithm for the ensembleC2(2, A). This is possible because, leaving any two parts
of the original hypergraphH to form a bipartite graphG, we obtain a random code
from the ensembleC2(2, A) which with high probability (over the ensemble) will
remove all the residual errors from at least one candidate estimate. Fort = 1
this approach fails for the reasons discussed in the next section, so we resort to a
procedure in [106] that corrects a small linear fraction of errors for single-error-
correcting Hamming codes.

Upon performing the described procedure we obtain a list of at mostls candi-
date codewords of the codeC. The final decoding result is found by choosing the
codeword from this list closest toy by the Hamming distance.

4.3 Number of correctable errors

4.3.1 The ensembleC2(2, A)

Let C ∈ C2(2, A) be a code and letG(V,E) be the graph associated with it. For
a given subset of verticesS ⊂ Vi, i = 1, 2 and a vertexv denote bydegS(v) the
number of edges betweenv andS. Let Tr(S) = {v ∈ V : degS(v) ≥ r + 1},
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4.3. Number of correctable errors

wherer ∈ {0, . . . , n− 1} is an integer.
Below h(z) denotes the entropy of the probability vectorz = (z0, . . . , zn) ∈

R
n+1, i.e.,h(z) = −∑n

i=0 zi log zi. As before, in the particular case ofn = 1 we
write h(z) instead ofh(z, 1 − z).

Let t ≥ 0 be any integer such that2t+ 1 ≤ d0. The calculation in this section
is based on the following simple observation.

Proposition 4.3.1. Suppose that for allS ⊂ Vi, i = 1, 2, |S| ≤ σm, σ ∈ (0, 1),
there existsε > 0 such that|Tt(S)| ≤ |S| − εm. Then anyσtm = σt(N/n) errors
will be corrected by Algorithm I inO(logm) iterations.

Proof. Suppose that no more thanσtm errors occurred in the channel. LetSi be
the set of vertices that are decoded incorrectly in iteration i of Algorithm I. The
assumption of the proposition implies that|Si+1| ≤ |Si|(1 − ε/σ), soO(logm)
iterations suffice to remove all the errors.

Define

Fn,t(σ) = h(σ) − σn log x

+ σ log
n
∑

i=t+1

(

n

i

)

xi + (1 − σ) log
t
∑

i=0

(

n

i

)

xi, (4.3)

wherex > 0 is found from the equation

t
∑

i=0

n
∑

j=t+1

(

n

i

)(

n

j

)

(σ(n − j) − i(1 − σ))xi+j−t−1 = 0. (4.4)

Let Zn = {z ∈ [0, 1]n+1 :
∑n

i=0 zi = 1} be the(n + 1)-dimensional probability
simplex.

The main result of this section is given by the next theorem.

Theorem 4.3.2.LetA[n,R0n, d0] be the local code, letm → ∞, and let2 ≤ t <
d0/2. All codes in the ensembleC2(2, A) except for an exponentially small (inN )
proportion of them correct any combination of errors of weight σtm in O(logm)
iterations of Algorithm I, where0 < σ < σ0 andσ0 is the smallest positive root of
the equation

Fn,t(σ) = (n − 1) h(σ).

Remark2. The case of local codes witht = 1 is excluded from this theorem
becauseG with high probability contains a large number of 4-cycles, which means
that correcting single error at every vertex does not ensureoverall convergence
of the decoding. Indeed, if two vertices are affected by two errors each, and the
corresponding 4 edges form a cycle, then the decoder will loop indefinitely without
approaching the correct decision. The theorem is still valid in this case, but gives
σ0 = 0.
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Proof. We need to verify the assumption of Proposition 4.3.1. LetS ⊂ V1, |S| =
σm and letmi = |{v ∈ V2 : degS(v) = i}|, i = 1, . . . , n. Clearly,

n
∑

i=1

mi ≤ m,
n
∑

i=t+1

mi = |Tt(S)|,
n
∑

i=1

imi = |S|n.

Let us compute the probability (over the choice ofG) that|Tt(S)| ≥ (σ−ε)m. Let
µ = (m1, . . . ,mn) be a vector with nonnegative integer components, let

Mε(t, σ) = {µ :
n
∑

i=1

mi ≤ m,
n
∑

i=1

imi = σN,
n
∑

i=t+1

mi ≥ (σ − ε)m},

and let
(

m
µ

)

denote the number of choices of subsets of sizem1, . . . ,mn out of a
set of sizem. We have

Pr(|Tt(S)| ≥ |S| − εm) =
1
( N
σN

)

∑

µ∈Mε(t,σ)

(

m

µ

) n
∏

i=1

(

n

i

)mi

. (4.5)

LetL1(s) denote the event thatV1 contains a subsetS, |S| = s for which |Tt(S)| ≥
|S| − εm. We have

Pr(L1(σm)) ≤
(

m

σm

)

Pr(|Tt(S)| ≥ |S| − εm)

and

Pr
(

σm
⋃

i=1

L1(i)
)

≤ mPr(L1(σm)).

Denote byL2(σ) an analogous event with respect toV2. Then

Pr
(

σm
⋃

i=1

(L1(i) ∪ L2(i))
)

≤ 2m
( m
σm

)

( N
σN

)

∑

µ∈Mε(t,σ)

(

m

µ

) n
∏

i=1

(

n

i

)mi

. (4.6)

LettingL to be the logarithm of the left-hand side divided bym and omittingom(1)
terms, we obtain the estimateL ≤ n−1F̄n,t(σ), where

F̄n,t(σ) = −(n− 1) h(σ) + max
z∈M ′

ε(t,σ)

(

h(z) +

n
∑

i=1

zi log

(

n

i

)

)

,

where

M
′
ε(t, σ) =

{

z ∈ Zn :
n
∑

i=1

izi = σn,
n
∑

i=t+1

zi ≥ σ − ε
}

andzi = mi/m, z0 = (m−∑mi)/m.
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The rest of the proof is concerned with the evaluation of the above maximum.
Define

g(z) = h(z) +

n
∑

i=1

zi log

(

n

i

)

(4.7)

σ̄ = sup{σ > 0 : F̄n,t(y) < 0 for all 0 ≤ y < σ}.
As long asσ < σ̄, the probability of not being able to correctσtm errors with
a random code from the considered ensemble approaches zero.Thus, we need to
find the maximummaxz∈M ′

ε(t,σ) g(z) for all σ ∈ [0, σ̄). The proof will be accom-
plished in the next three steps. Sinceε will be assumed arbitrarily small, we will
omit it from our considerations and writeM ′ instead ofM ′

ε.
1. We find the pointz∗ that gives the maximum ofg(z) without the constraint

∑n
i=t+1 zi ≥ σ.
2. Next we show that for0 ≤ σ < σ̄, the pointz∗ 6∈ M ′, and therefore the

maximum overM ′ is attained on the boundary, i.e., we can replaceM ′ with

M (t, σ) =
{

z ∈ Zn :

n
∑

i=1

izi = σn,

n
∑

i=t+1

zi = σ
}

.

3. Finally we compute the value of the maximum.

Step 1. Without the constraint
∑n

i=t+1 zi ≥ σ the maximum is easily com-
puted. Indeed, the proportion of edges incident to the vertices inS out of the
N edges ofG is σ, so the fraction of vertices withS-degreei should be close
to z∗i (σ) =

(n
i

)

σi(1 − σ)n−i. Thus, the coordinates of the maximizing point
z∗ = z∗(σ) arez∗i , i = 1, . . . , n; z0 = 1 −∑i z

∗
i , and

g(z∗) = n h(σ).

Slightly more formally, note thatz∗ is the unique stationary point of the function
g(z), and that this function is strictly concave inz. Therefore,z∗ is a unique max-
imum of g(z) on Zn, and the functiong(z) grows in the directionz∗ − z for any
z ∈ Zn.

Step 2. Suppose that0 ≤ σ ≤ σ̄. Observe thatp(σ) ,
∑n

i=t+1 z
∗
i = Pr(X ≥

t + 1), whereX is a (σ, 1 − σ) binomial random variable. This probability is
monotone increasing onσ for σ ∈ [0, 1], andp(0) = p′(0) = 0. Thus forσ ∈ [0, α)
whereα is the smallest positive root of

∑n
i=t+1 z

∗
i (σ) = σ, we have

n
∑

i=t+1

z∗i =
n
∑

i=t+1

(

n

i

)

σi(1 − σ)n−i < σ,

and so the pointz∗(σ) 6∈ M ′(t, σ). Our claim will follow if we show that̄σ < α.
This is indeed the case because for0 ≤ σ < σ̄,

max
z∈M ′(t,σ)

g(z∗(σ)) < (n− 1) h(σ).
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On the other hand,g(z∗(α)) = n h(α). This establishes that the maximum ofg(z)
onz ∈ M ′ is attained on the hyperplane

∑n
i=t+1 zi = σ.

Step 3. To compute the maximum ofg(z) onz, let us form the Lagrangian

U(z, τ1, τ2) = h(z)+

n
∑

i=1

zi log

(

n

i

)

+τ1

(

n
∑

i=1

izi−σn
)

+τ2

(

n
∑

i=t+1

zi−σ
)

.

Setting∇U = 0 andτ1 = log x, τ2 = log y, we find that

zi =



















(

n

i

)

xiD if 0 ≤ i ≤ t

(

n

i

)

yxiD if t < i ≤ n,

where we have denoted

D =
[

t
∑

i=0

(

n

i

)

xi + y

n
∑

i=t+1

(

n

i

)

xi
]−1

.

Adding these equations together, we find conditions forx andy:

σ = Dy
n
∑

i=t+1

(

n

i

)

xi

σn = D
(

t
∑

i=0

i

(

n

i

)

xi + y

n
∑

i=t+1

i

(

n

i

)

xi
)

.

Oncey is eliminated from the last two equations, we obtain the condition (4.4)
for x. Finally, substituting the found values ofzi, i = 1, . . . , n into g(z), we find
that the maximum evaluates to the expressionFn,t(σ) given in (4.3) (and therefore,
σ̄ = σ0). Since we seek to obtain a valueL < 0, the boundary condition for the
proportion of correctable errors is obtained by settingL = 0. This concludes the
proof.

Example: Using Theorem 4.3.2 together with (4.3) we can compute the pro-
portion of errors corrected by codes in the ensembleC2(2, A),m → ∞ for several
choices of the local codeA. For instance, takingA to be the binary Golay code of
lengthn = 23 we findσ0 ≈ 0.0048586 and therefore, the proportion of correctable
errors isσ0t

n ≈ 0.00063. Similarly, for the 2-error-correcting[n = 31, k = 21]
BCH code we findσ0 ≈ 0.000035 and σ0t

n ≈ 0.0000023.

To underscore similarities with the results obtained for product codes and their
later variations including graph codes (e.g., [104]) we compute the proportion of
errors correctable with codes from the ensembleC2(2, A) in the case of largen.
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Proposition 4.3.3. Let t = τn. Then the ensembleC2(2, A) contains codes that
correctστN errors for anyσ ≤ σ0, whereσ0 is given by

σ0 = sup
{

σ > 0 : ∀0<x<σ (1 − x) h
(x(1 − τ)

1 − x

)

+ xh(τ) + εn < h(x)
}

whereεn = (1 + log n)/n.

Proof. Referring to the notation of the previous proof, let us evaluate the asymp-
totic behavior of the exponentL of the probability in (4.6). Sinceh(z) ≤ log n,
we have

n−1F̄n,t(σ) ≤ − h(σ) + n−1 max
z∈M (τn,σ)

n
∑

i=0

zi log

(

n

i

)

+ n−1(1 + log n).

Next,

1

n

n
∑

i=0

zi log

(

n

i

)

≤
∑

i

zi h
( i

n

)

= (1 − σ)

t
∑

i=0

zi
1 − σ

h
( i

n

)

+ σ

n
∑

i=t+1

zi
σ

h
( i

n

)

≤ (1 − σ) h
(

∑t
i=1 izi

(1 − σ)n

)

+ σ h
(

∑n
i=t+1 izi

σn

)

.

Let y = n−1
∑n

i=t+1 izi, then for anyz ∈ M (τn, σ) we have

1

n

n
∑

i=0

zi log

(

n

i

)

≤ max
τσ≤y≤σ

{

(1 − σ) h
(σ − y

1 − σ

)

+ σ h
( y

σ

)}

.

The function on the right-hand side of this inequality is concave. Its global max-
imum equalsh(σ) and is attained fory = σ2. Thus, assuming thatσ < τ, we
conclude that the constrained maximum occurs fory = τσ, which gives the fol-
lowing bound onn−1F̄n,t(σ) :

n−1F̄n,t(σ) ≤ − h(σ) + (1 − σ) h
(σ(1 − τ)

1 − σ

)

+ σ h(τ) + εn.

As long as the right-hand side of the this inequality is negative, the previous proof
implies that the code corrects all errors of multiplicity upto στN.

From the expression of this proposition we observe that (asn → ∞) the value
of σ0 approachesτ, so the ensembleC2(2, A) contains codes that correct up to a
τ2 proportion of errors, whereτn = d0/2 is the error-correcting capability of the
codeA. This result parallels the product bound on the error-correcting radius of
direct product codes. As in the case of product and expander codes (e.g., [17]), the
proportion of correctable errors can be improved fromτ2 = (d0/(2n))2 by using a
more powerful decoding algorithm.
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4.3.2 The ensembleC2(l, A)

In this section we first state a sufficient condition for the existence of at least one
subprocedure within each step of Algorithm II that reduces the number of errors,
and then perform the analysis of random hypergraphs to show that with high prob-
ability this condition is satisfied. Overall this will show that the number of errors in
at least one of the candidates in the list generated after a few iterations is reduced
to a desired level.

Denote byE(v) the set of edges incident to a vertexv ∈ V. Let C ∈ C2(l, A)
be a code and letH(V,E) be its associated graph. LetE ⊂ E be the set of errors
at the start of some iteration of the algorithm. The next set of arguments will refer
to this iteration. LetGi = {v ∈ Vi : |E(v) ∩ E| ≤ t} be the set of vertices such
that each of them is incident to no more thant edges fromE (such errors will be
corrected upon one decoding). LetBi = {v ∈ Vi : |E(v)∩ E| ≥ d0 − t} be the set
of vertices that can introduce errors after one decoding iteration. Note that each of
such vertices introduces at mostt errors.

The main condition for successful decoding is given in the next lemma.

Lemma 4.3.4. Assume that for everyE ⊂ E, |E| ≤ γN there existsi = i(E), 1 ≤
i ≤ l such that|E(Gi)| ≥ t|Bi|+ εN, whereE(Gi) is the set of edges ofE incident
to the vertices ofGi andε > 0. Then for any0 < β < γ, Algorithm II will reduce
anyγN errors in the received vector to at mostβN errors in c(β, γ, ε), iterations
wherec is a constant independent ofN .

Proof. We need to prove that at least one of the subprocedures will find a vector
with no more thanβN errors after a constant number of iterations. In any given
iteration by the assumption of the lemma there exists a componentVi for which the
ith subprocedure will decrease the count of errors by|E(Gi)| − tBi ≥ εN. Thus,
in each iteration there exists a subprocedure that reduces the number of errors by a
positive fraction.

Next we show that the assumption of Lemma 4.3.4 holds with high probability
over the ensemble. Consider the function

F̃n,t(γ) = max
z∈M (t,γ)

(

h(z) +

n
∑

i=0

zi log

(

n

i

)

)

, (4.8)

where in this section the regionM (t, γ) will be as follows:

M (t, γ) =
{

z ∈ Zn :

n
∑

i=1

izi = γn,

t
∑

i=1

izi =

n
∑

i=d0−t

tzi

}

. (4.9)

Lemma 4.3.5. Letm→ ∞ and let

γ0 = sup{x > 0 : ∀0<γ≤x (l/n)F̃n,t(γ) < (l − 1) h(γ)}. (4.10)
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A hypergraph from the ensemble ofl-partite uniformn-regular hypergraphs with
probability 1 − 2−Ω(N) has the property that for allE ⊂ E, |E| < γ0N, and some
ε > 0, the inequality|E(Gi)| ≥ t|Bi| + εN holds for at least onei ∈ {1, . . . , l}.

Proof. Let E ⊂ E, |E| = γN. Letmi = |{v ∈ V1 : |E(v)∩E| = i}|, i = 1, . . . , n.
Clearly |E(G1)| =

∑t
i=0 imi and|B1| =

∑n
i=d0−tmi. We have

p , Pr(|E(Gi)| ≤ t|Bi| + εN) =
1
( N
γN

)

∑

µ∈Mε(t,γ)

(

m

µ

) n
∏

i=0

(

n

i

)mi

,

whereµ = {m1, . . . ,mn},

Mε(t, γ) = {µ ∈ (Z+ ∪ 0)n :
n
∑

i=1

mi ≤ m,

n
∑

i=1

imi = γN,

t
∑

i=1

imi ≤
n
∑

i=d0−t

tmi + εN}.

Denote byL (E) the event that for a given subsetE ⊂ E, |E| = γN no partVi of
H satisfies the assumption of Lemma 4.3.4. ThenPr(L (E)) = pl and

Pr{∃E : (|E| ≤ γN) ∧ (L (E))} ≤ N

(

N

γN

)

pl.

LettingL to be the logarithm of the left-hand side of this inequality divided byN
and omittingoN (1) terms, we obtain

L ≤ −(l − 1) h(γ) +
l

n
max

z∈M ′(t,γ)
g(z), (4.11)

whereg(z) is defined in (4.7),

M
′(t, γ) = {z ∈ Zn :

n
∑

i=1

izi = γn,

t
∑

i=1

izi ≤
n
∑

i=d0−t

tzi}

andzi = mi/m (as in the previous section, we have omittedε which can be made
arbitrarily small).

The proof will be complete if we show that the optimization region M ′ can
be replaced byM . For that we follow the logic of the second part of the proof of
Theorem 4.3.2. As before, the maximum ofg(z) without the constraint

∑t
i=1 izi ≤

∑n
i=d0−t tzi is attained at the pointz∗(γ) = (z∗0 , z

∗
1 , . . . , z

∗
n) ∈ Zn, where

z∗i = z∗i (γ) =

(

n

i

)

γi(1 − γ)n−i, i = 1, . . . , n.
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We need to show that as long as0 ≤ γ < γ0, the pointz∗ 6∈ M ′(t, γ). By
concavity of the objective function and the optimization region, this will imply that
the maximum is on the boundary. As before, it is possible to show that in the
neighborhood ofγ = 0,

t
∑

i=1

iz∗i >
n
∑

i=d0−t

tz∗i .

and thus forγ < β,whereβ is the smallest positive root of
∑t

i=1 iz
∗
i =

∑n
i=d0−t tz

∗
i ,

the pointz∗(γ) 6∈ M ′(t, γ). Let

γ̄ = sup{γ : ∀ 0 < x < γ, rhs of (4.11)< 0}.

We note that for allγ ≤ γ̄,

max
z∈M ′(t,σ)

g(z) < (l − 1)n h(γ).

On the other hand,g(z∗(β)) = n h(β). This implies that̄γ < β, and so for all
γ < γ̄, the pointz∗(γ) 6∈ M ′(t, γ). Thus the regionM ′ in the maximization can
be replaced withM (andγ̄ = γ0).

This lemma establishes that the number of errors in at least one of the candi-
dates in the list generated after a few iterations is reducedto a desired level. After
that the residual errors can be removed by another procedureas described above.
In this situation we say that the errors are correctable by Algorithm II, without
explicitly mentioning the second stage.

In the next theorem, which is the main result of this section,δ refers to the
lower estimate of the average relative distance of the hypergraph code ensemble
H from Theorem 4.3.8 below.

Theorem 4.3.6.Let t ≥ 2 be the number of errors correctable by the local code
A. Algorithm II corrects any combination of up toN(min(γ0, δ/2)) errors for any
codeC ∈ C2(l, A) except for a proportion of codes that declines exponentially
with the code lengthN = nm,m→ ∞.

Proof. With high probability over the ensemble of hypergraphs considered, for a
given hypergraphH(V,E) a constant numbers of iterations of the algorithm will
decrease the weight of error fromγ0N to any given positive proportionβ for at
least one of thels candidates in the listY (s+1)

1 . Takeβ = σ0, whereσ0 is the
quantity given by Theorem 4.3.2. Next consider the bipartite graphG(VG = V1 ∪
V2, EG) whereV1, V2 are the parts ofH and where(v1, v2) ∈ EG if v1, v2 ∈ e
for some edgee ∈ E. By the previous section, with high probability theseσ0N
errors can be corrected withO(logm) iterations of Algorithm I. Finally, the correct
codevector will be selected from the list of candidates because the proportion of
errors is assumed not to exceedNδ/2.

54



4.3. Number of correctable errors

The complexity of this decoding isO(N logN) where the implicit constant
depends on the codeA.

In the following theorem we extend the results of this section to the case of
A being a perfect single-error correcting Hamming code of length n = 2r − 1
for somer = 3, 4, . . . . In this case the maximum onz in the above proof can
be computed in a closed form. As remarked above, in this case in the last part of
the error correction procedure we use the decoding algorithm of [106] to remove
residual errors from the candidate vectors.

Theorem 4.3.7.Suppose that the local codesA are taken to be one-error-correcting
Hamming codes and letδ = δ(C2) be the relative average distance (4.1) of the en-
sembleC2(l, A). Then almost all codes in the ensembleC2(l, A) can be decoded to
correctN min(γ0, δ/2) errors, whereγ0 is given by (4.10) and

F̃n,1(γ) = −γn log x+ log

(

1 + 2

√

√

√

√n

n
∑

i=2

(

n

i

)

xi+1

)

(4.12)

wherex is the only positive root of the equation

∑n
i=2(i+ 1)

(n
i

)

xi+1

2n
∑n

i=2

(n
i

)

xi+1 +
√

n
∑n

i=2

(n
i

)

xi+1
= γ.

Proof. It is obtained by maximizing the functiong(z) over the region

M (1, γ) = {z ∈ Zn :

n
∑

i=1

izi = γn, z1 =

n
∑

i=2

zi}.

The Lagrangian takes the form

h(z) +
n
∑

i=2

zi

(

log n+ log

(

n

i

)

)

+ λ
(

n
∑

i=2

(i+ 1)zi − γn
)

,

wherez = (z1, z2, . . . , zn, 1 −∑i zi) and z1 =
∑n

i=2 zi andλ is an arbitrary
multiplier. Setting the partial derivatives to zero, we findthe valueλ to satisfy
2x = λ, wherex is given above. The calculations are tedious but straightforward
and will be omitted.

The last theorem enables us to find the proportion of correctable errors for the
case whenA is the Hamming code of lengthn = 2r −1, t = 1. Since the examples
below rely on the value of the ensemble-average distance, werephrase and restate
the theorem 2.4.5 from Chapter 2.
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Theorem 4.3.8. Let δ(C2) be the asymptotic average relative distance of codes
in the l-hypergraph ensemble constructed from the local codeA of lengthn and
distanced0. Then

δ(C2) ≥ sup
ω>0

{

ω :
l

n
log

1 +
∑n

i=d0

(n
i

)

xi
0

xωn
0

< (l − 1) h(ω)
}

wherex0 = x0(ω) is the positive solution of the equation

ωn+
n
∑

i=d0

(

n

i

)

(ωn− i)xi = 0.

For instance, for the casen = 31, l = 5 this theorem gives the value of the
relative distanceδ(C2) ≥ 0.01618 (the rate of codesR ≥ 6/31). Performing the
calculation in (4.12), we find that the average code from the ensembleC2(5, A) the
proportion of errors correctable by codes in the ensemble using Algorithm II to be
at leastγ0 = 1.2 × 10−5.

We include some more examples. In the following tablen = 29 − 1.

l 17 23 28 34
Rate 0.7006 0.5949 0.5069 0.4012
γ0 0.000235 0.000401 0.000521 0.000644

δ(C2) 0.00415 0.00504 0.00558 0.00608

l 40 45 51
Rate 0.2955 0.2074 0.1018
γ0 0.000747 0.000821 0.000898

δ(C2) 0.00648 0.00676 0.00704

It is also of interest to compute the values ofγ0 for code rateR(C) ≈ 0.5.

n 127 255 511 1023
l 9 16 28 51

Rate 0.5039 0.4980 0.5068 0.5015
γ0 0.0002012 0.0004873 0.0005207 0.0004227

δ(C2) 0.01157 0.008658 0.005581 0.003394

These estimates are at least an order of magnitude better than the corresponding
results in [26,106] obtained for LDPC codes and their generalizations based on the
“flipping” algorithm of [107].

The case of largen. As in the previous section, it is interesting to examine the
case of long local codesA because it reveals some parallels with the analysis of the
decoding algorithm in the case of nonrandom hypergraphs [14]. We begin with the
observation that the proportionγ0 of correctable errors for the ensembleC2(l, A)
computed above is a function of the number of errorst that each local code corrects
in each iteration.
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Lemma 4.3.9. Let t = τn, d0 = δ0n. The ensembleC2(l, A) contains codes that
correctγN errors for anyγ < γ0(τ) , min(τ, x0(τ)) where

x0(τ) = sup{x > 0 :
(

1 − x

δ0

)

h
( xτ

δ0 − x

)

+
x

δ0
h(δ0 − τ)

+ εn < (1 − 1/l) h(x)}

andεn = log n/n.

Proof. Referring to the proof of Lemma 4.3.5, we aim at establishingconditions
for the exponentL of the eventL (E) to be negative asm approaches infinity. We
assume thatγ ≤ τ (otherwise our estimates do not imply that the convergence
condition of Lemma 4.3.4 holds with high probability over the graph ensemble).

From (4.11), (4.7) we have

L ≤ −(l − 1) h(γ) + l max
z∈M (t,γ)

n
∑

i=0

zi h
( i

n

)

+
l log n

n
,

whereM (t, γ) is defined in (4.9). Next, write

t
∑

i=0

zi h
( i

n

)

≤ λh
(

∑t
i=1 izi
λn

)

= λh
(µ1

λ

)

, (4.13)

where we have denoted
∑t

i=0 zi = λ,
∑t

i=1 izi = µ1n. In addition let us put
∑n

i=d0−t izi = µ2n, then the values of the sums
∑

i zi and
∑

i izi over each of the
three intervalsI1 = [0, t], I2 = [t+ 1, d0 − t− 1], I3 = [d0 − t, n] can be found
from the following table:

I1 I2 I3
∑

zi λ 1 − λ− µ1/τ µ1/τ
∑ i

nzi µ1 γ − µ1 − µ2 µ2.

The variables introduced above depend on the pointz and satisfy the following
natural constraints: for anyz ∈ M (t, γ),

µ1 ≤ τλ

τ
(

1 − λ− µ1

τ

)

≤ γ−µ1 − µ2 ≤ (δ0 − τ)
(

1 − λ− µ1

τ

)

(δ0 − τ)
µ1

τ
≤µ2 ≤ µ1

τ
. (4.14)

Proceeding as in (4.13), we can estimate the sum onzi in L as follows:

n
∑

i=0

zi h
( i

n

)

≤ f(λ, µ1, µ2) (4.15)
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where

f(λ, µ1, µ2) = λh
(µ1

λ

)

+
(

1 − λ− µ1

τ

)

h
( γ − µ1 − µ2

1 − λ− (µ1/τ)

)

+
µ1

τ
h
(µ2τ

µ1

)

.

Our plan is to prove that some of the inequalities in (4.14) can be replaced by
equalities, thereby expressing the variablesλ, µ1, µ2 as functions ofγ, τ. We will
rely on the fact that the functionf is concave in its domain. The proof of this claim
follows.

First we prove that the function

φ(x, y) = (1 − x) h
(γ − y

1 − x

)

is concave (not necessarily in the strict sense) for0 < x, y < 1, 0 < γ−y < 1−x.
For that, let us compute its Hessian matrix:

H =
1

ln 2

( γ−y
(1−x)(γ−y+x−1) − 1

γ−y+x−1

− 1
γ−y+x−1

1−x
(γ−y)(γ−y+x−1)

)

The eigenvalues ofH are

0,
(γ − y)2 + (1 − x)2

(1 − x)(γ − y)(γ − y − (1 − x))
< 0,

soH � 0, and soφ is concave. Next observe that the function
(

1 − λ− µ1

τ

)

h
( γ − µ1 − µ2

1 − λ− (µ1/τ)

)

can be obtained fromφ by a linear change of variables

x = λ+ µ1/τ, y = µ1 + µ2

and therefore is also concave. Finally, the functionsλh(µ1/λ) and(µ1/τ) h(µ2τ/µ1)
are also concave, and thus so is the functionf(λ, µ1, µ2).

Note that for allz ∈ Zn the sum

n
∑

i=0

zi h
( i

n

)

≤ h(γ)

and that it equalsh(γ) at the pointz̃ such thatzi = 1 for i = dγne andzi = 0
elsewhere. Also note that sinceγ < τ, the pointz̃ is outside the regionM (t, γ)
and thus, by concavity,

a := max
z∈M (t,γ)

n
∑

i=0

zi h
( i

n

)

< h(γ).
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Let z1 be the point at which this maximum is attained, and letx1 = (λ, µ1, µ2)
be the corresponding point for the arguments off. By construction, the pointx1

satisfies the inequalities of (4.14). At the same time, consider the functionf(·)
on the lineλ = µ1 = µ2. As the variables approach 0 along this line, the value
f(λ, µ1, µ2) approachesh(γ).

To summarize, we have found two points,x1 andx2 = (0, 0, 0) that are located
on different sides of the hyperplane

τ
(

1 − λ− µ1

τ

)

= γ − µ1 − µ2

such thatf(x1) ≥ a, f(x2) > a. Invoking concavity of the functionf, we now
conclude that there is a feasible pointx′ on this hyperplane such thatf(x′) ≥ a.

Therefore, putµ2 = γ − τ(1 − λ) and write

f1(λ, µ1) = λh
(µ1

λ

)

+
(

1 − λ− µ1

τ

)

h(τ) +
µ1

τ
h
(τ(γ − τ(1 − λ))

µ1

)

where the variables are constrained as follows: for anyz ∈ M (t, γ),

µ1 ≤ τλ

τ(1 − λ) − µ1 ≥ 0 (4.16)

(δ0 − τ)
µ1

τ
≤ γ−τ(1 − λ) ≤ µ1

τ
. (4.17)

Sincef1 is a restriction off to a hyperplane, it is still concave. Now notice that
f1(1, τ) = h(γ) and that the point(1, τ) does not satisfy inequality (4.16) and
the left of the inequalities (4.17). Repeating the above argument, we claim that
the functionf in (4.15) can be further restricted to the intersection of the planes
τ(1 − λ) = µ1 and(δ0 − τ)(µ1/τ) = γ − τ(1 − λ). Altogether this gives:

λ = 1 − γ/δ0, µ1 = γτ/δ0.

Let us substitute these values into the expression forf1 and rewrite (4.15) as fol-
lows: for any0 ≤ γ < τ,

max
z∈M (t,γ)

n
∑

i=0

zi h
( i

n

)

≤
(

1 − γ

δ0

)

h
( γτ

δ0 − γ

)

+
γ

δ0
h(δ0 − τ). (4.18)

Thus if the condition in the statement is fulfilled thenL < 0. This concludes the
proof.

The main part of the proof is estimating the solution of the following linear
program

max
z

n
∑

i=1

zi h
( i

n

)

z = (z0, z1, . . . , zn) ∈ M (t, γ)
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where the variables define a probability distribution on{0, 1, . . . , n}. It is clear
from concavity that the maximum is attained at the point where among all the
indicesi ∈ I1 at most one valuezi is nonzero, and the same applies toI2 andI3.
We have shown that the value of the program is bounded above bythe right-hand
side of (4.18). The following point gives this value and is therefore a maximizing
point:

zi1 = 1 − γ

δ0
, zi2 =

γ

δ0
, zi = 0 otherwise,

wherei1 = nγτ/(δ0 − γ), i2 = n(δ0 − τ). Since

γτ

δ0 − γ
≤ τ,

this shows that the worst-case allocation of errors to vertices in a given part of the
graph assigns no edges to vertices that are neither good nor bad. This also confirms
the intuition suggested by Lemma 4.3.4 that bad vertices (vertices assumed to add
errors) should each be assigned the smallest possible number of error edgesd0 − t.

The next proposition is now immediate.

Proposition 4.3.10. The ensembleC2(l, A) with long local codes contains codes
that can be decoded using Algorithm II to correct all error patterns whose weight
is less thanγ0N, where

γ0 = max
0<τ≤δ0/2

γ0(τ). (4.19)

Estimating the number of correctable errors for the ensemble C2(l, A) from
Proposition 4.3.10 analytically is difficult because it involves optimization onτ
(generally, the local codes should be used to correct a smaller thanδ0/2 proportion
of errors). We note that in the particular case ofτ = δ0/2 the proof of Lemma
4.3.9 can be considerably simplified, although the resulting value ofγ is not always
optimal.

Example: Let l = 3. Using local codes withδ0 = 0.05 we can construct
hypergraph codes of rateR ≥ 0.19. From Corollary 2.4.6, the ensemble-average
relative distance is at leastδ ≈ 0.0112 and the proportion of errors correctable by
Algorithm II is found from (4.19) to beγ0 ≈ 0.0035.

Example:Let δ0 = 0.01 andl = 10. In this case, we find from 2.4.6 the value
of the relative distanceδ ≈ 0.00599. The code rate satisfiesR ≥ 0.14. Performing
the computations in (4.19) and Lemma 4.3.9 we find the estimate of the proportion
of correctable errors to beγ0 ≈ 0.002198.

In conclusion we have estimated the proportion of errors correctable by codes
from ensembles defined by randoml-partite graphs,l ≥ 2. In contrast to the case of
expander codes [93], [104], [17], [19], [14] our calculations cover the case of local
codes of arbitrary given length and distance, including small values of the distance.
In this part of the dissertation we provided answers to a set of basic questions
regarding networks of short linear binary codes. This extends our perspective of
concatenated code constructions to the case of sparse regular graphs.
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CHAPTER 5

Compressed Sensing and the RIP

5.1 Introduction

In the next two chapters we study applications of error-correcting codes in the
problem ofcompressed sensing. Compressed sensing is a technique of recover-
ing sparseN -dimensional signals from low-dimensional sketches, i.e., their linear
images inRm,m � N. In formal terms the problem can be stated as follows. Let
Φ : R

m → R
N be a linear operator used to create a “sketch” of a signal represented

by a real vectorx ∈ R
N . In other words, we observe a vectorr = Φx, whereΦ is

anm×N sampling matrix. Recoveringx from r is generally impossible because
the system of equations is under-determined, and the solutions form an affine sub-
space inRN . The problem becomes tractable if we know thatx is sparse, i.e., have
only k � N nonzero entries. In particular we seek an approximation ofx by a
vectorx̂, such that

‖x − x̂‖p1 ≤ C min
x′ is k-sparse

‖x − x′‖p2 (5.1)

for somep1, p2 ≥ 1 and some constantC. A k-sparse vector is a vector withk or
fewer nonzero coordinates, wherek � N. Note that ifx is itself k-sparse, then
(5.1) implies that̂x = x. Moreover, the recovery is stable: ifx is approximately
sparse (has onlyk “significant” entries), then the approximation error is bounded
by (5.1).

In this formulation, the study of the compressed sensing problem has been fo-
cused on the design of good sampling matricesΦ in conjunction with low-complexity
recovery algorithms that provide an error guarantee of the form (5.1) based on as
few samples as possible. As one of the first examples, it was shown that ran-
dom Gaussian matrices provide a(p1 = 2, p2 = 1) error guarantee withm =
O(k log(N/k)) sketch length and a polynomial-time (linear programming) recov-
ery algorithm [32].

It is known that at leastm = Ω(k log(N/k)) samples are required for any
recovery algorithm with an error guarantee of the form (5.1)(see, for example, [69],
[7]); and the best known guarantee is given by random matrices with independent
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Gaussian entries [32, 33]. It has also been shown that the same error guarantee
is provided by independent Bernoulli random variables taking values in the set
{± 1√

m
} with the same number of samplesm = Ω(k log(N/k)) [33]. However,

constructing such a matrix requiresmN = Ω(kN log(N/k)) random bits, so this
approach is very far from being explicit (deterministic) even for small values ofk.

Arguably one of the most efficient ways of constructing deterministic sampling
matrices relies on their links with error-correcting codes. We pursue this link, pro-
viding constructions of matrices for sketch lengthm = O(k2 logN) where no
previous deterministic constructions were known (in particular, the constructions
of [46] and subsequent works requireΘ(k2 log2N) samples).

One notational difference this part has from the other partsof the dissertation
is that the length of the binary code concerned is denoted here bym instead ofn,
and the cardinality of the code is denoted byN (rather than the notationM used
elsewhere). We adopt this change in order not to deviate too much from the existing
literature on the compressed sensing problem.

A useful tool for the construction of sampling matrices is provided in the works
of Candés et al. [32,33] who showed that recovery is possible with a(p1 = 2, p2 =
1) error guarantee if the matrixΦ has therestricted isometry property (RIP). In par-
ticular most matrices in the ensemble of the random Gaussianand Bernoulli matri-
ces satisfy the RIP. Thus the construction problem of sampling operators reduces to
the problem of construction of RIP matrices. Checking whether a given matrix has
the RIP property is computationally infeasible unless the matrix has some struc-
tural properties. In this chapter we give explicit constructions of matrices with RIP
based on error-correcting codes.

The RIP is known to hold if the columns ofΦ are near-orthonormal, i.e.,
‖φi‖2

2 = 1, |φT
i φj| ≤ µ for all i 6= j and someµ < 1. Such collections of

vectors are also known asincoherent dictionaries(e.g., [100]). As such dictionar-
ies are chosen from the unit sphere inR

m, the problem becomes equivalent to the
construction of goodspherical codes[41]. If we further restrict the vectors in the
dictionary to have binary coordinates±1√

m
, then the problem reduces to construc-

tion of binary codes in which the Hamming distance between every pair of vectors
is close tom/2 (the code has anarrow distance distribution). This fact was used
implicitly in [46, 60] and later more explicitly in [11, 24, 28, 88] and other works.
Thus, this thesis is not the first work to pursue the link between sampling operators
and codes. The performance limits of these construction, set by bounds on spheri-
cal and binary codes, precludes them from approaching the optimal sketch length.
The new results obtained in this chapter pertain to improvements over the existing
work: they lead to a deterministic construction of samplingmatrices with RIP for
m = O(k2 logN) which is by a factor oflogN smaller than what was known
before, and is a factork away from the optimal (shortest possible) sketch length.

The results of this chapter appear in [11,13].
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5.2. RIP and codes

5.1.1 The restricted isometry property of sampling matrices

Let I ⊆ [N ] := {1, . . . , N}. Denote byΦI ∈ R
m×|I| the matrix formed of the

columns ofΦ with indices inI.

Definition 5.1.1 (The Restricted Isometry Property (RIP)). A matrixΦ ∈ R
m×N

is said to satisfy the(k, δ) restricted isometry property, or (k, δ)-RIP, k ≤ m,
0 ≤ δ ≤ 1 , if for all I ⊂ [N ] such that|I| = k and for allu ∈ R

k,

(1 − δ)‖u‖2
2 ≤ ‖ΦIu‖2

2 ≤ (1 + δ)‖u‖2
2. (5.2)

It is known [34] that a(2k,
√

2 − 1)-RIP matrix enables one to approximate
anyk-sparse signal with(p1 = 2, p2 = 1) error guarantee (5.1). Namely, the basis
pursuit algorithm of Candés et al. [33] solves the following linear program:

‖x‖1 → min

subject toΦx = r, Φ ∈ R
m×N .

The above optimization problem can be solved with time complexity at mostO(N3).
In [34], it is shown that ifΦ is (2k,

√
2 − 1)-RIP then the solution̂x of the above

linear program satisfies, for some constantC,

‖x − x̂‖2 ≤ C√
k

min
x′ is k-sparse

‖x − x′‖1.

In the rest of this chapter our aim will be to constructm×N (k, δ)-RIP matrices
with minimum possible number of samples (m).

5.2 RIP and codes

5.2.1 Sampling matrices as incoherent dictionaries

While random matrices with high probability have RIP, constructing structured
sampling matrices is related to introducing certain restrictions on their entries. One
such constructive approach assumes that every columnφi ∈ R

m of Φ is a unit-
length real vector (i.e.,‖φi‖2

2 = 1). A system of such vectors is characterized by
their coherence parameter

µ = max
i6=j

|φT
i φj|.

For everyI ⊂ [N ] with |I| = k we have

ΦT
I ΦI = Idk + F,

whereIdl is thel × l identity matrix and the absolute value of every entry ofF is
at mostµ.
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Theorem 5.2.1.(The Gershgorin circle theorem [64, p.344], [72, p.240])LetA be
ann× n complex matrix andaij is the(i, j)th entry ofA. Define the set ofn disks
in C given by|z − aii| =

∑

j 6=i |aij |, 1 ≤ i ≤ n. Then every eigenvalue ofA is
contained in one of these disks.

We use this theorem for the matrixΦT
I ΦI which is real symmetric with1 in the

diagonal entries and the off-diagonal terms whose magnitude is bounded above by
µ. Therefore its eigenvalues, which are real, satisfy|λ − 1| ≤ (k − 1)µ. In other
words, the matrixΦ is (k, kµ)-RIP.

Sets of unit vectors with small coherence (incoherent dictionaries) are called
spherical codes. An (m,N,µ) spherical codeC ⊂ R

m of size|C| = N is a set of
unit-norm vectors such that the points ofC are well-separated, i.e.,xT

1 x2 ≤ µ for
any two distinctx1,x2 ∈ C. Thus, bounds for spherical codes [41] can be used to
quantify the tradeoff between size, dimension, and coherence of the dictionary. In
particular the Shannon bound implies that for largem there exist dictionaries with
coherenceµ such that

m ≤ 2 lnN

µ2
(1 + o(1)).

At the same time, by the Kabatiansky-Levenshtein bound, forall dictionaries

m ≥ 4 lnN

µ2 ln(4e/µ2)
(1 − o(1)).

Further lower bounds on the sketch length for dictionaries from spherical codes are
given by [75].

5.2.2 RIP property of matrices from binary codes

Further restricting the alphabet of dictionaries, we construct sampling matrices
from binary codes. LetC be a binary code of lengthm and sizeN (briefly, an
(m,N) code), i.e., a set ofN vectors in{0, 1}m. Given a codewordx ∈ C, let us
map it to a unit vectorφ ∈ R

m by setting0 → + 1√
m

and1 → − 1√
m
. In this way,

a binary codeC gives rise to a matrixΦ = (φ1, . . . , φN ). The inner product of any
two column ofΦ equals

φT
i φj = 1 − 2d(xi,xj)

m

wherexi,xj are the codewords ofC that correspond toφi, φj . Assume that for
everyxi,xj ∈ C, i 6= j, the Hamming distance between them satisfies|d(xi,xj)−
m
2 | ≤ wm. If the codeC satisfies this assumption for somewm, we call the number
wm thewidth of C (to be precise, this is the “width” of the distance distribution of
the code). From the above discussion we conclude:

Proposition 5.2.2.A binary codeC with widthwm gives rise to a(k, δ)-RIP matrix
with δ = 2kwm

m .
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Therefore, a sufficient condition of(k, δ)-RIP is given bywm ≤ mδ
2k . Thus, we

would like to design a codeC ∈ {0, 1}m of a given sizeN such that the following
condition is satisfied.

Property 1: For a givenk and any distinctc1, c2 ∈ C,

∣

∣

∣d(c1, c2) −
m

2

∣

∣

∣ ≤ mδ

2k
.

For a linear binary codeC the distribution of Hamming distances is identical
to the distribution of Hamming weights (see Sec. 1.2). Therefore, we can restate
Property 1 as follows:

Property 2: All nonzero vectorsc ∈ C satisfy

∣

∣

∣
wt(c) − m

2

∣

∣

∣
≤ mδ

2k
. (5.3)

Linear codes with bounded width have been considered in coding theory. One
prominent example is given by codes dual to primitive BCH codes of lengthm that
correctt <

√
m/2 errors. Their width is related to bounds on exponential sumsand

is given by the Carlitz-Uchiyama bound [80, p.280]. This andrelated constructions
of incoherent dictionaries were considered in [1,6,65,103]. General constructions
of codes of small width were considered in Alon et al. [2], with the current best con-
struction by Ben-Aroya and Ta-Shma [18]. Independently, DeVore [46] followed
the same line of thought, considering binary images of Reed-Solomon codes over
Fq under the trivial map that sends the symbola ∈ Fq to itsq-dimensional indicator
vector. The number of samples required in his construction ism = Θ(k2 log2N).

5.2.3 Linear codes with random generator matrices

Next we present a randomized construction that uses onlym logN random bits as
input and provides a matrix satisfying(k, δ)-RIP with high probability. We use
a version of the GV bound in an argument similar to Prop. 1.5.1, switching from
random parity-check matrices to random generator matrices.

Theorem 5.2.3. Let l = logN and letG = (g1, . . . ,gm) be anl × m binary
matrix whose columns are chosen independently withP [gi = y] = 2−l for all
y ∈ {0, 1}l. Letm = d4(k/δ)2 lnNe. Then the linear codeC spanned by the rows
ofG satisfies Property 2 with probability approaching 1 asN → ∞.

Proof. LetX be the random number of codewords of weightw in the codeC such
that |w − m

2 | ≥ mδ
2k . Let u ∈ {0, 1}l be a nonzero row vector. We haveP [ugi = 0

(mod 2)] = P [ugi = 1 (mod 2)] = 1/2. Then the probability that the codeword
uG has weightw equals

(m
w

)

2−m. Hence the expected number of vectors of weight
w > 0 in C equals

EAw =
(N − 1)

2m

(

m

w

)

. (5.4)
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Therefore, using (1.6)

EX ≤ 2
N − 1

2m

m( 1
2
− δ

2k
)

∑

w=0

(

m

w

)

≤ N21−m(1−h( 1
2
− δ

2k
)). (5.5)

Next we use the Taylor series expansion forh(x) around1/2:

1 − h(1/2 − x) = (2/ ln 2)(x2 + 2/3x4 +O(x6)) (0 ≤ x < 1/2). (5.6)

Finally, sincem ≥ 4(k/δ)2 lnN we obtainEX ≤ 2/N. However,Pr(X > 0) =
∑

i≥1 Pr(X = i) ≤ EX, and thus the proportion of codes for which Property 2
holds approaches one asN increases.

5.2.4 Explicit RIP matrices

Here we derandomize the theorem and the proof from the previous section. This
results in an explicit construction ofk-RIP matrices with complexityO(mN).

The derandomization procedure that we employ is very similar to explicit con-
structions of linear codes achieving GV bound. Linear[m, logN ] codes reaching
the GV bound can be shown to exist relying both on random parity-check matrices
and random generator matrices (see, Sec. 1.5). Derandomizing the parity-check
ensemble involves complexityO(m32m−log N ) and is easily accomplished using
a greedy procedure. However in our settingm = Θ(k2 logN), i.e, the resulting
complexity isO(Nk2

). We will show that the construction relying on random gen-
erator matrix of the previous section can also be derandomized, resulting in RIP
matrices constructible with a lower complexity ofO(mN).

Derandomizing Gilbert-Varshamov codes from generator matrices was recently
addressed by Porat and Rotschild [90]. We follow their main idea with some slight
technical changes. In particular, we tailor it to our goal ofconstructing codes of
small width as opposed to codes with large distance. We note that codes of small
width constructed below also meet the Gilbert-Varshamov bound on the minimum
distance.

The method of conditional expectations, used below and alsoin [90], is due to
Spenser and Raghavan (see [4]). We will recursively select columns in thel ×m
generator matrixG, l = logN. Before any columns are selected, the expected
number of vectors of weightw in the codeC (the row space ofG) is as given
in (5.4) and the expected number of vectors of weight far fromm/2 (outliers) is
given by (5.5). The algorithm selects columns one by one so that the expectation
of the number of outlying vectorsconditionedon the columns already chosen is the
smallest possible.

Theorem 5.2.4.Letm = d4(k/δ)2 lnNe. It is possible to deterministically con-
struct in timeO(k2N logN) a linear code of widthmδ

2k (see(5.3)). Therefore, a
deterministicm×N sampling matrixΦ with (k, δ)-RIP can be constructed in time
O(k2N logN).
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5.2. RIP and codes

Proof. In this proof we denote bygi, i = 1, . . . ,m random variables taking values
in the set of vectors{0, 1}l (random columns ofG) and denote bygi realizations
of these random variables. As before, letX be the random number of vectors
in the code with generator matrixG = (g1, . . . ,gm) whose weightw satisfies
|w − m

2 | ≥ mδ
2k . The expectationEX = Eg1,...,gm

X is given by (5.5). Define
a sequence of random variablesX0 = X,X1, . . . ,Xm. Here fori = 1, . . . m the
variableXi = Xi(g1, . . . , gi) is the random number of outlying vectors conditioned
on the specific choice of the firsti columns

Xi =
∣

∣

∣

{

x ∈ C : |wt(x) − m

2
| ≥ mδ

2k
given thatgj = gj , 1 ≤ j ≤ i

}∣

∣

∣
.

The dependence ofXi on the vectorsg1, . . . , gi is understood and will be sup-
pressed below. The quantityXm is a (nonrandom) number of outlying vectors in
the row space ofG, and our purpose is to construct a code withXm ≤ EX < 1.

Chooseg1 arbitrary nonzero. Suppose thatgj = gj , j = 1 . . . , i have been
chosen. For a givenu ∈ {0, 1}m consider the probability

Pr(wt(uG) = w | g1, . . . , gi) = Pr(wt(uG) = w | g1 = g1, . . . ,gi = gi).

We have

Pr(wt(uG) = w | g1, . . . , gi)

=
∑

gi+1∈{0,1}l

2−l Pr(wt(uG) = w | g1, . . . , gi;gi+1 = gi+1). (5.7)

Denoting the number of vectors of weightw in C byAw, we have

E(Aw | g1, . . . , gi) =
∑

u6=0

Pr(wt(uG) = w | g1, . . . , gi)

for all 0 < i,w ≤ m (if the values ofi, w are inconsistent with each other, then the
summation terms are 0). Finally, by (5.7)

EXi =
∑

w:|w−m/2|≥mδ
2k

E(Aw | g1, . . . , gi)

=
∑

w:|w−m/2|≥mδ
2k

∑

u6=0

Pr(wt(uG) = w | g1, . . . , gi)

=
∑

w:

|w−m/2|≥mδ
2k

∑

u6=0

∑

gi+1∈{0,1}l

2−l Pr(wt(uG) = w | g1, . . . , gi, gi+1)

≥ min
gi+1∈{0,1}l

∑

w:

|w−m/2|≥mδ
2k

∑

u6=0

Pr(wt(uG) = w | g1, . . . , gi, gi+1).
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This shows that for everyi = 1, . . . ,m. there is a choice of the(i + 1)st column
such thatEXi ≥ EXi+1. SinceEX0 = EX, also EXm = Xm ≤ EX. From
(5.5)-(5.6),

Xm ≤ N21−m(1−h( 1
2
− δ

2k
)) ≤ N21−2m δ2

4k2 .

Finally, substituting the value ofm from the statement, we observe thatXm < 1
for all N > 2, i.e., the width ofC ismδ/2k.

To estimate the complexity of the procedure described we need to specify a way
to compute the probabilitiesPr(wt(uG) = w | g1, . . . , gi), i = 1, 2, . . . , which
can be used to computeEXi.

LetGi := (g1, . . . , gi) and letCi be the row space ofGi. For a given choice of
the firsti columnsg1, . . . , gi and a givenu ∈ {0, 1}l we have

Pr(wt(uG) = w | g1, . . . , gi) =

(

m− i

w − wt(uGi)

)

2−(m−i)

if w ≥ wt(uGi) and0 otherwise. Therefore,

E(Aw | g1, . . . , gi) =
∑

u6=0

(

m− i

w − wt(uGi)

)

2−(m−i),

and
EXi =

∑

u6=0

f(i,wt(uGi)),

where

f(i, s) =
∑

w:
|w−m/2|≥mδ/2k

(

m− i

w − s

)

2−(m−i).

The complexity of the algorithm is determined by the cost of finding the value
of gi+1. For that we must, for every possiblegi+1, computeEXi+1 and find the
smallest of these quantities. ComputingEXi+1 takes finding the valuef(i +
1,wt(uGi+1)) for every choice ofu. There are at most2m possible values of
f , but finding the weightswt(uGi+1) has to be done for eachu and eachgi+1,
resulting inN2 evaluations.

To reduce the complexity toO(mN), we follow the idea of [90]. Namely, it is
possible to choose the entries of the columngi+1 one by one, optimizing the choice
in every step. This results in a more cumbersome expression for the expectation,
but gives a simpler algorithm. Sincem = Θ(k2 logN), we obtain the complexity
expression claimed in the theorem.

Thus we have constructed explicit(k, δ)-RIP matrices of dimensionsm × N
wherem = Θ(k2 logN) which enables recovery ofk-sparse signals fromm-
dimensional sketches. In the next chapter we examine the question of what happens
if we relax the condition of RIP to permit a small proportion of sparse signals to be
lost. It will turn out that much shorter sketches should suffice.
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5.3 Further remarks on RIP matrices from code ensem-
bles

In this section we make brief comments relating to Theorem 5.2.3. Once it is real-
ized that codes with small width give good sampling matrices, this theorem follows
by a standard argument about the existence linear codes achieving the GV bound
(as in 1.5.1). In applying it, we are seeking codes whose relative distance differs
from 1/2 by a small amount, namely, byδ/2k. Sincek is a growing quantity, the
result follows by looking at the asymptotic behavior of the rate of codes achieving
the GV bound in the neighborhood ofR = 0. We note that, apart from the ensem-
ble of linear codes defined by uniform random generator matrices it is possible to
consider other code ensembles that contain codes achievingthe GV bound or even
codes that do not attain it but are nevertheless asymptotically good. The purpose
of this consideration is a partial derandomization of the construction of sampling
matrices.

This line of thought was examined in [11] where we looked at various fami-
lies of concatenated codes and codes on graphs and hypergraphs (see Ch. 2) with
the purpose of locating code ensembles that give rise to(k, δ)-RIP matrices re-
lying on a small number ofrandom bits. The number of random bits employed
in Theorem 5.2.3 is clearlykm which is O(k2 log2N) since k = logN and
m = O(k2 logN). The smallest number of random bits among the ensembles con-
sidered in [11] is required for sampling matrices arising from hypergraph codes. It
it slightly less than the above quantity, and for the same range of parameters equals
O(k2 logN log logN).
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CHAPTER 6

The Statistical Isometry Properties

6.1 Introduction

There is another aspect of compressed sensing where randomization is built into
the signal and recovery model [28, 31, 57, 100]. As in many applied problems
(for instance, transmission over noisy channels), performance can be enhanced by
permitting an almost always recovery ofk-sparse signals with some guarantee of
the form of (5.1). The idea behind this approach is a standardone in probabilistic
combinatorics, namely, we relax the requirement (5.2) thatthe sampling operator
Φ be a near-isometry from all to almost all sparse vectors. Analyzing the recovery
properties under this relaxation is not immediate; however, a number of useful
ideas in this direction have been suggested in earlier works[28, 57, 100]. The two
properties desired from a sampling matrix that had been put forward by these works
are the Statistical RIP (SRIP) and Statistical Unique Recovery Property (SURP).

We show that it is possible to construct sampling matrices from codes that sat-
isfy both SRIP and SURP, i.e. act as near-isometry on mostk-sparse signals. Let
us define a version of the SRIP used in our analysis below. The definition that we
give is slightly stronger than the one in [28] and is close to the definition in [57].

Definition 6.1.1(SRIP). Anm×N sampling matrixΦ is said to satisfy the(k, δ, ε)-
SRIPk ≤ m, 0 ≤ δ ≤ 1, 0 ≤ ε < 1 (is (k, δ, ε)-SRIP), if (5.2) holds for at least
1 − ε proportion of all subsetsI ⊂ [N ] such that|I| = k.

The statistical unique recovery property (SURP) is anotheruseful property for
sparse signal recovery. The following definition is similarto the notion appearing in
[100]. Consider the product measurePk ×Pz wherePk is the uniform distribution
on thek-subsets of[N ] and wherePz is any absolutely continuous probability
distribution on the set ofk-dimensional real vectorsz, with respect to the Lebesgue
measure onRk. In the following definition the probability is computed according
to this measure.

Definition 6.1.2(SURP). Letk ≤ m, 0 ≤ ε < 1. Anm×N sampling matrixΦ is
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said to satisfy the(k, ε)-SURP if

Pr({k-sparsey ∈ R
n,y 6= x : Φy = Φx}) < ε. (6.1)

The definition of SURP is close to [28, Def. 2], but not equivalent to it.
The SRIP and SURP are used by Calderbank et al. [28, 29] to showrecovery

guarantee fork-sparse signals under their reconstruction algorithm. These prop-
erties are also used in [100] to show that exact recovery of signals under some
random models are possible. The good performance of some sampling matrices
are also justified by their statistical recovery propertiesin [73].

Taking a step back, we show that the above statistical isometry properties hold
for matrices constructed from a large class of binary linearcodes. This conclusion
is made possible by properties of the distance distributionof codes that we study in
the next sections.

6.2 Statistical isometry properties of matrices from codes

In this section, we address the task of constructing matrices with statistical recovery
properties. The matrices that we examine are constructed from binary codes as in
Sec. 5.2.2.

Let C ⊂ {0, 1}m be an(m,N) code. Surprisingly, we will find that the only
condition required from the codeC to yield a statistical RIP matrix is that the first
two moments of its distance distribution are the same as those of a random linear
code. This is ensured if the dual distanced⊥(C) ≥ 3 which is not a very restrictive
condition. In the case of linear codes, this condition can bestated as a requirement
that the generator matrix ofC have no identical columns (such linear codes are
called projective).

We rely on the concepts of the distance distribution and dualdistance of codes,
which apply both to linear and unrestricted codes (see Sec. 1.4). To remind our-
selves, the distance distribution of an(m,N) codeC is the set of numbers(A0 =
1, A1, . . . , Am) such that

Aw =
1

N
|{(x1,x2) ∈ C2 : d(x1,x2) = w}|.

Let d⊥ be the dual distance of the codeC.

We will need moments of the distance distribution of binary codes. If the dual
distance of the code satisfiesd⊥ > l for somel, it is possible to find the exact
values of the firstl moments, which do not depend on the code, and are equal to
the moments of the distance distribution of a code from the random parity-check
matrix ensemble (the binomial distance distribution).
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6.2. Statistical isometry properties of matrices from codes

Lemma 6.2.1. (Pless power moment identities)LetC be a binary code of lengthn
and suppose thatd⊥(C) > l. Then

m
∑

w=0

Aw

N

(

w − m

2

)l
=

1

2m

m
∑

w=0

(

m

w

)

(

w − m

2

)l
. (6.2)

Proof. We use a version of these identities that relates to central moments of the
distance distribution of the code. For linear codes a proof is given in [80, p. 132].
With minimal changes it also applies to general codes.

In the particular case ofl = 2 we can compute these moments directly. The
following lemma will be useful later.

Lemma 6.2.2. Let C be an(m,N) binary code suchd⊥(C) ≥ 3. Suppose that a
pair of codewordsx1,x2 is chosen randomly and uniformly out of theN(N − 1)
such pairs and letZ = d(x1,x2). Then

E

(

1 − 2Z

m

)2
=

N −m

m(N − 1)
(6.3)

and

E

∣

∣

∣
1 − 2Z

m

∣

∣

∣
≤
√

N −m

m(N − 1)
. (6.4)

Proof. Inequality (6.4) is immediate from (6.3) becauseE|ξ| ≤ (E|ξ|2)1/2 for any
random variableξ. What is left to prove is (6.3) which is done below.

The probability thatd(x1,x2) = w satisfies

Pr(Z = w) =
|{(x1,x2) ∈ C2 : d(x1,x2) = w}|

N(N − 1)
=

Aw

N − 1
.

Therefore,

E

(

1 − 2Z

m

)2
=

m
∑

w=1

Aw

N − 1

(

1 − 2w

m

)2

=
1

N − 1

(

m
∑

w=1

Aw − 4

m

m
∑

w=1

wAw +
4

m2

m
∑

w=1

w2Aw

)

Ford⊥(C) ≥ 3 we have [80, p. 131]

m
∑

w=1

wAw =
mN

2
,

m
∑

w=1

w2Aw =
Nm(m+ 1)

4
.
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Hence,

E

(

1 − 2w

m

)2
=

1

N − 1

(

N − 1 − 4

m

mN

2
+

4

m2

Nm(m+ 1)

4

)

=
N −m

m(N − 1)
.

The next lemma gives an approximation to the central momentsof binomial
distribution.

Lemma 6.2.3. For l ≥ 2,

1

2m

m
∑

w=0

(

m

w

)

(

w − m

2

)l
=

l!

2l/2(l/2)!

(m

4

)l/2
+O(ml/2−1)

≤
√

2
( l

e

)l/2(m

4

)l/2
+O(ml/2−1).

Proof. Central moments of the binomial distribution form a well-studied subject.
We quoted the first equality above from [105]. To prove the second inequality, we
use the Stirling formula for the factorials [80, p. 309] to compute that for alll ≥ 2,

l!

2l/2(l/2)!
≤

√
2
( l

e

) l
2
.

6.2.1 SRIP from codes

We are now ready to state one of the main theorems of this chapter.

Theorem 6.2.4.LetC be an(m,N) code withd⊥(C) ≥ l, l even, and letΦ be the
sampling matrix constructed from it. Suppose that

m ≥ 2lk2+2/l

δ2eε2/l
.

ThenΦ is (k, δ, ε)-SRIP.

Proof. Let I ⊂ [N ] be a uniformly randomk-subset. Note that the matrixΦT
I ΦI

is real symmetric; therefore from the Rayleigh-Ritz theorem [64, Thm. 4.2.2], for
anyx ∈ R

k,

λmin ≤ ‖ΦIx‖2
2

‖x‖2
2

≤ λmax,

whereλmin andλmax are the minimum and maximum eigenvalues ofΦT
I ΦI .
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6.2. Statistical isometry properties of matrices from codes

For brevity we writeIi = I \ {i}. We again rely on the Gershgorin theorem,
Thm. 5.2.1. For any eigenvalueλ of ΦT

I ΦI ,

|λ− 1| ≤
∑

j∈Ii

|φT
i φj |.

for somei ∈ I. The remaining task is to show that the probability

Pr
(

∃i ∈ I :
∑

j∈Ii

|φT
i φj | > δ

)

< ε,

which will imply that all eigenvalues ofΦT
I ΦI belong to the interval[1 − δ, 1 + δ]

with probability at least1 − ε. This will prove the theorem.
We have

Pr
(

∃i ∈ I :
∑

j∈Ii

|φT
i φj | > δ

)

≤ k Pr
(

∑

j∈Ii

|φT
i φj| > δ

)

≤ k
1

δl
E

(

∑

j∈Ii

|φT
i φj |

)l

= k
(k − 1)l

δl
E

( 1

k − 1

∑

j∈Ii

|φT
i φj|

)l

≤ k(k − 1)l−1

δl
E

∑

j∈Ii

(φT
i φj)

l

=
k(k − 1)l−1

δl
E

∑

j∈Ii

(

1 − 2d(ci, cj)

m

)l
.

Hereci, cj are the codewords ofC that correspond toφi, φj . The expectation on
the last line is taken with respect to the choice of ak-subsetI. We claim that the
value of the expectation does not change if instead, the vectors ci, cj are chosen
from C uniformly without replacement. Write out the expectation on the choice of
I:

E

∑

j∈Ii

(

1 − 2d(ci, cj)

m

)l
=

∑

i1<i2<···<ik

1
(N

k

)

k
∑

j=2

(

1 −
2d(ci1, cij)

m

)l

=
1

k!
(

N
k

)

∑

i1 6=i2 6=···6=ik

k
∑

j=2

(

1 −
2d(ci1 , cij )

m

)l

=
1

N(N − 1)

k
∑

j=2

N
∑

i1=1

∑

ij 6=i1

(

1 −
2d(ci1, cij )

m

)l

= (k − 1)E
(

1 − 2d(ci, ci)

m

)l
, (6.5)
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where the expectation on the last line is defined with respectto a pair of uniform
distinct random vectors fromC. Next,

E

(

1 − 2d(ci, ci)

m

)l
=
( 2

m

)l
m
∑

w=1

Aw

N − 1

(

w − m

2

)l

=
( 2

m

)l N

N − 1

[

m
∑

w=0

Aw

N

(

w − m

2

)l
− 1

N

(m

2

)l]

=
( 2

m

)l N

N − 1

[ 1

2m

m
∑

w=0

(

m

w

)

(

w − m

2

)l
− 1

N

(m

2

)l]

,

where on the last line we have used Lemma 6.2.1 asl < d⊥(C). Now invoke
Lemma 6.2.3 to compute

E

(

1 − 2d(ci, ci)

m

)l
≤
( l

e

)l/2
√

2

ml/2
(1 + o(1)).

This implies the following inequality:

Pr
(

∃i ∈ I :
∑

j∈Ii

|φT
i φj | > δ

)

≤
√

2k
(k − 1

δ

)l( l

em

)l/2
(1 + o(1))

< ε,

where in the last step we used the assumption form.

We can strengthen the previous theorem for some values ofk using a stronger
inequality than the Markov inequality. Namely, if we have control of the width of
the codeC then the number of samplesm can be made proportional tolog 1/ε rather
than to1/ε2/l. To be specific, we have:

Theorem 6.2.5.Letk satisfiesk < 2 lnN log(k/ε) andm ≥ 8(k/δ2) log(k/ε) lnN .
Suppose thatC is a linear(m,N) code of width mδ

2
√

2k log(k/ε)
andd⊥(C) > 2, and

let Φ be the sampling matrix constructed from it. ThenΦ is (k, δ, ε)-SRIP.

Proof. The proof of the theorem relies on identifying a martingale sequence and
then using the Azuma-Hoeffding inequality. LetI be chosen randomly and uni-
formly from [N ]. We use the same first few steps as in the proof of Theorem 6.2.4.
We have,

Pr
(

∃i ∈ I :
∑

j∈Ii

|φT
i φj| > δ

)

≤ kPr
(

∑

j∈Ii

|φT
i φj | > δ

)

= kPr
( 2

m

∑

j∈Ii

∣

∣

∣

m

2
− d(ci, cj)

∣

∣

∣
> δ
)

= kPr
(

k−1
∑

j=1

Yj > mδ/2
)

,
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whereYj = |m2 − d(c, cj)|, j = 1, . . . , k − 1 and c1, . . . , ck−1 are codewords
chosen uniformly fromC \ {c} in that order without replacement. We want the
above probability to be less thanε.

Define the random variablesZi, 0 ≤ i ≤ k − 1 as follows.

Z0 = 0 with probability1,

and for1 ≤ i ≤ k − 1

Zi =
i
∑

j=1

Yj −
i
∑

j=1

EYj.

It is easy to verify thatE[Zi|Zi−1] = Zi−1. Moreover, from the condition on
the width ofC we have

|Zi − Zi−1| = |Yi − EYi| ≤
mδ

2
√

2k log(k/ε)
a.s.

Therefore, the sequenceZi, 0 ≤ i ≤ k − 1 forms a bounded martingale, and the
Azuma-Hoeffding large deviations bound [4,62] applies. Weobtain

Pr(Zk−1 > a) ≤ exp
(

− 16a2k log(k/ε)

(k − 1)m2δ2

)

.

The codeC satisfies (6.4)

k−1
∑

j=1

EYj ≤ k
√
m/2.

We need to prove thatPr(
∑k−1

j=1 Yj > mδ/2) < ε/k. Leta = mδ/2−k√m/2.
We have

Pr
(

k−1
∑

j=1

Yj >
mδ

2

)

= Pr
(

Zk−1 >
mδ

2
−

k−1
∑

j=1

EYj

)

≤ Pr(Zk−1 > a)

≤ exp
(

− 16m2δ2k log(k/ε)(1 − k/
√
δ2m)2

4(k − 1)m2δ2

)

≤ exp
(

− 4 log(k/ε)
(

1 −
√

k

8 lnN log (k/ε)

)2)

< exp
(

− 4 log(k/ε)(1 − 1/2)2
)

= ε/k,

where we have used the fact thatk < 2 lnN log(k/ε).
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We comment that the matrixΦ of the above theorem can be constructed de-
terministically with complexity polynomial inN and k. To do that we need to
construct a linear(m,N) codeC with lengthm ≥ 8(k/δ2) log(k/ε) lnN , width

mδ

2
√

2k log(k/ε)
andd⊥(C) > 2. We can modify Thm. 5.2.4 to construct a code with

the claimed length, width and dual distance. The modification deals with the issue
of d⊥ > 2 which is guaranteed by constructing a generator matrix withdistinct
columns. We omit the specific details to have the focus on the main part of the
theorem.

6.2.2 SURP from codes

Next we prove that matrices constructed from some binary codes have the SURP.
Here we rely on the ideas of [100],making some changes related to our construction
of sampling matrices.

Theorem 6.2.6. Let C be an(m,N) code and letd⊥(C) > l for some evenl.
Suppose that

m ≥ max
(6lk2+2/l

δ2eε2/l
,

2kl

ε2/l(1 − δ)

)

.

Then the sampling matrixΦ constructed fromC is (k, ε)-SURP and(k, δ, ε/3)-
SRIP.

Since0 < δ < 1 is an absolute constant (for instance, we can assume that
δ ≤

√
2 − 1 (5.2) ), we assume belowk > δ2/(1 − δ).

We need the following lemma in whichCol(A) denotes the column space over
R of the matrixA.

Lemma 6.2.7. Suppose that a sampling matrixΦ is constructed from a binary
(m,N) codeC withd⊥(C) > l for some evenl. Suppose further thatΦ is (k, δ, ε/3)-
SRIP. LetI, J ⊂ [N ] be twok-subsets. IfI is uniformly random, then

Pr(dim(Col(ΦI) ∩ Col(ΦJ)) ≤ k − 1) ≥ 1 − 2ε

3

wheneverm > 2kl
ε2/l(1−δ)

.

Proof. Without loss of generality we assume the dimension of columnspace of
ΦJ is k, otherwise there is nothing to prove. LetQI = ΦI(Φ

T
I ΦI)

−1ΦT
I be the

orthogonal projection on the spaceCol(ΦI) (indeed,Q2
I = QI andQT

I = QI ). Let
J 6= I andi ∈ J \ I. We will prove that‖QIφi‖2 < ‖φi‖2 = 1, which will imply
thatφi 6∈ Col(ΦI).

SinceΦ satisfies(k, δ, ε/3)-SRIP, the absolute value of any eigenvalue ofΦT
I ΦI

is at least1−δ with probability at least1−ε/3. Therefore, with probability at least
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1 − ε/3,

‖QIφi‖2 = φT
i Q

T
I QIφi = (ΦT

I φi)
T (ΦT

I ΦI)
−1(ΦT

I φi)

≤ ‖ΦT
I φi‖2

1 − δ
.

Denote byci the codeword ofC that corresponds to the columnφi. We have

‖ΦT
I φi‖2 =

∑

j∈I

|φT
j φi|2 =

∑

j∈I

(

1 − 2d(cj , ci)

m

)2

and therefore for any evenl ≤ d⊥,

‖ΦT
I φi‖l =

(

∑

j∈I

(

1 − 2d(cj , ci)

m

)2)l/2

≤ kl/2−1
∑

j∈I

(

1 − 2d(cj, ci)

m

)l
.

Hence,

E‖ΦT
I φi‖l ≤ kl/2−1

E

∑

j∈I

(

1 − 2d(cj , ci)

m

)l

≤
√

2
( kl

em

)l/2
(1 + o(1));

here we have used Lemmas 6.2.1 and 6.2.3 and the derivation in(6.5) as in the
proof of Theorem 6.2.4.

From the Markov inequality we further have

Pr(‖ΦT
I φi‖2 ≥ 1 − δ) ≤ 1

(1 − δ)l/2
E‖ΦT

I φi‖l

≤
√

2
( kl

em(1 − δ)

)l/2
(1 + o(1))

<
ε

3

where in the last step we used the assumption aboutm.
Now combining the facts above we conclude that with probability at least1 −

2ε/3,

‖QIφi‖2 ≤ ‖ΦT
I φi‖2

1 − δ
< 1,

which proves the lemma.

81



Chapter 6. The Statistical Isometry Properties

Proof of Theorem 6.2.6.The assumption onm together with Theorem 6.2.4 im-
plies thatΦ is (k, δ, ε/3)-SRIP. Therefore, by (5.2), we have thatPr(I : rank(ΦI) =
k) ≥ 1−ε/3, where the probability is computed with respect to the uniform choice
of k-subsetsI of [N ].

Let x be ak-sparse vector supported onI, let s = ΦIx and letrank(ΦI) = k.
If there is ak-sparse vectory such thatΦIy = s then the support ofy is different
from I. Therefore, if ak-sparsex is supported on some randomly chosenk-subset
I andy is anotherk-sparse vector with the same sketch, then with probability at
least1 − ε/3 the supports ofx andy are different.

Assuming thatx andy have different supports, we observe that the vectors

lies inCol(ΦI)∩Col(ΦI′) whereI ′ = supp(y). By Lemma 6.2.7, with probability
≥ 1 − 2ε/3 with respect to the uniform choice ofI, the vectors lies in an at most
(k − 1)-dimensional subspace, and so doesx wheneverΦI has rankk. Now let
us use the absolute continuity of the distributionPz with respect to the Lebesgue
measure. A random vector fromRk chosen with respect toPz falls in a (k − 1)-
dimensional space with probability 0.

To conclude, a random vectorx fails the unique recovery condition (6.1) either
if there isy with the same support asx (probability< ε/3) or if Lemma 6.2.7 fails
to hold (probability< 2ε/3), soΦ is (k, ε)-SURP.

Remark3. The two aspects of the compressed sensing problem analyzed in this
thesis correspond to the recovery of all sparse signals and ‘almost all’ sparse sig-
nals. They are close in spirit to combinatorial vs. probabilistic error correction for
transmission over noisy channels. As in information theory, moving from the ad-
versarial to the statistical scenario enables us to use muchfewer samples for reliable
signal recovery.

From previous works [10, 60, 88] it is known that RIP matricescan be con-
structed from binary codes (as well as from codes over other alphabets). However,
constructions of this kind are limited by the classical bounds on error correcting
codes (binary or spherical). We have shown that it is possible to surpass these lim-
itations by permitting a small proportion of sparse signalsfor which the sampling
operator fails to show near-isometry. In particular,any binary codewith d⊥ ≥ l
can be used to construct anm×N sampling matrix with(k, δ, ε)-SRIP and(k, ε)-
SURP, withm = O(k2+2/l/(ε1/lδ)2). Note that the dual distance of the Delsarte-
Goethals codes employed in [29] equals 8. In that case the code structure enables
one to prove the reliable recovery properties. Here we used standard properties of
codes to be able to make a more general claim.

The dual distance of the code is known to control how far the code is from a
random code. Examples of this principle include the behavior of moments of the
distance distribution [80] as well as of the CDF of this distribution (Sidelnikov’s
theorem [80, pp.295ff]). If the code is sufficiently random (has larged⊥), the eigen-
value statistic should match that of random Gaussian matrices. This has been stud-
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ied experimentally in [6]. A proof has been recently announced in [8].
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Permutations

85





CHAPTER 7

Codes in Permutations: Bounds

7.1 Introduction

So far in this dissertation, we considered codes in the binary Hamming space
{0, 1}n. The underlying geometric idea of constructing good packings extends to
other metric spaces such as the sphere inR

n and a range of finite spaces of diverse
nature. One of these spaces is the set of permutations ofn elements, i.e., thesym-
metric groupSn. Codes in permutations form a classical subject of coding theory.
Various metric functions onSn have been considered, giving rise to diverse com-
binatorial problems. The most frequently studied metric onSn is the Hamming
distance. Codes inSn with the Hamming distance, traditionally called permuta-
tion arrays, have been the subject of a large number of papers; see, e.g., the works
by Blake et al. [20], Colbourn et al. [38] and the survey by [30]. In this part of the
dissertation we are interested in a different metric onSn which is defined below.
For any twoa < b ∈ Z, let

[a, b] = {a, a+ 1, a+ 2, . . . , b}.

If a ≥ b = 1 we write[a] instead of[1, a].

Definition 7.1.1. [70] Let σ = (σ(1), . . . , σ(n)) be a permutation of the set[n].
TheKendall tau distancedτ (σ, π) from σ to another permutationπ is defined as
the minimum number of transpositions of pairwise adjacent elements required to
changeσ into π.

Denote byXn = (Sn,dτ ) the metric space of permutations onn elements
equipped with the distancedτ . We use the vector notation for permutations: for
instance (2,1,3) refers to the permutation

(1,2,3
2,1,3

)

. For a permutationσ = (σ(1), . . . ,

σ(n)) we denote its inverse byσ−1 = (σ−1(1), . . . , σ−1(n)), where ifσ(i) = j
thenσ−1(j) = i.

The Kendall distance originates in statistics and has been adopted as a measure
of quality of codes under the so-called rank modulation scheme, first considered
by Chadwick and Kurz [35]. In this scheme, data is encoded into permutations
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of n elements while the information is carried by the relative magnitude (rank) of
elements in the transmitted sequences rather than by the absolute value of the ele-
ments. The motivation for considering this scheme in [35] stems from systems in
which transmitted signals are subjected to impulse noise that changes the value of
the signal substantially but has less effect on the relativemagnitude of the neigh-
boring signals.

7.1.1 Flash memory and the rank modulation scheme

Recently substantial attention in the literature was devoted to coding problems for
non-volatile memory devices, including error correction in various models as well
as data management in memories [10,66–68]. Non-volatile memories, in particular,
flash memory devices store data by injecting charges of varying levels in memory
cells that form the device. Consider a block ofn cells in floating-gate flash memory.
Each cell is capable of storing some amount of electrical charge, called the capacity
of the cell. One can quantize this capacity of charge storageinto q levels and write
information in the memory using aq-ary alphabet: each level of charge represents
an element in{0, . . . , q − 1}. Reliability of the data stored in flash memory is
affected by the drift in the charge of the cells caused for instance by ageing devices
or other reasons. Because of the drift, after some amount of time all (or most) of the
cells will contain erroneous values, and conventional error-correcting coding will
fail to recover the message written into the memory. It is advantageous to encode
the message into the ranking of the charge-levels ofn cells (i.e., a permutation).
Recently (and independently of [35]) codes in permutation and therank modulation
schemewas suggested by Jiang et al. [67, 68] as a means of efficient writing of
information into flash memories. Errors occur in the data stored in rank modulation
scheme only if the loss of charge in different cells occurs atdifferent speed. In this
case errors introduced in the data are adequately accountedfor by tracking the
Kendall distance between the permutations. Details of boththe writing and the
error processes in memory are given in [68] and references inthat paper.

The focus of our work is on bounds and constructions of codes in the Kendall
spaceXn. The size of the maximum packing in the spaceXn is related to finding
the volume of the sphere (see (1.3) in the Introduction). Spheres in the Kendall
space were studied by analytic means in a number of earlier works [79,81] relying
on the well-known correspondence of permutations and theirinversion vectors;
however it turned out that code bounds that can be obtained from these works do
not cover the range of parameters of interest to us. Regarding specific code families
for correcting Kendall errors, the only previous work is that by Jiang et al. [68] who
constructed a codes of cardinalityM ≥ 1

2(n− 1)! that correct one Kendall error.
An (n,M, d) codeC ⊂ Xn is a set ofM permutations in which any two dis-

tinct permutations are at leastd distance units apart. To distinguish these codes
from codes in the Hamming space, we call them rank permutation codes (or rank
modulation codes) . In this chapter we discuss several possible ways to bound the

88



7.2. Basics of permutations

size of codes for rank modulation, i.e. boundingM as a function ofn andd. We
derive a Singleton-type bound and sphere-packing bounds onsuch codes. Since the
maximum value of the distance inXn is

(

n
2

)

, this leaves a number of possibilities
for the scaling rate of the distance for asymptotic analysis, ranging fromd = O(n)
to d = Θ(n2). These turn out to be the two extremes for the size of optimal rank
permutation codes. Namely, earlier work in combinatorics of permutations implies
that the log-cardinality of a code with distanced = Θ(n2) occupies a vanishing
proportion oflog |Xn| while a code of distanceO(n) can take a close-to-one pro-
portion. We cover the intermediate cases, showing that the size of optimal codes
with distanced ∼ n1+ε, 0 < ε < 1 scales asexp((1 − ε)n lnn). It is interesting
that unlike many other asymptotic coding problems, the Kendall space of permu-
tations affords an exact answer for the growth rate of the size of optimal codes.
The proof of the bounds relies on weight-preserving embeddings ofXn into other
metric spaces which provide insights into the asymptotic size of codes.

We also show the existence of a family of rank permutation codes that correct
a constant number of errors and have size within a constant factor of the sphere
packing bound. The construction relies on the well-known Bose-Chowla Theorem
in additive number theory.

The results of this chapter appeared in [10].

7.2 Basics of permutations

We begin with a description of basic properties of the distancedτ such as its relation
to the number of inversions in the permutation, and weight-preserving embeddings
of Sn into other metric spaces. Their proofs and a detailed discussion are found
for instance in the books by Comtet [39] or Knuth [71, Sect. 5.1.1].

The distancedτ is a right-invariant metric which means thatdτ (σ1, σ2) =
dτ (σ1σ, σ2σ) for any σ, σ1, σ2 ∈ Sn where the operation is the usual multipli-
cation of permutations. Therefore, we can define the weight of the permutationσ
as its distance to the identity permutatione = (1, 2, . . . , n).

Because of the invariance, the graph whose vertices are indexed by the permu-
tations and edges connect permutations one Kendall step apart, is regular of degree
n−1. At the same time it is not distance-regular, and so the machinery of algebraic
combinatorics does not apply to the analysis of the code structure. The diameter
of the spaceXn equalsN ,

(n
2

)

and is realized by pairs of opposite permutations
such as(1, 2, 3, 4) and(4, 3, 2, 1).

The main tool to study properties ofdτ is provided by the inversion vector
of the permutation. An inversion in a permutationσ ∈ Sn is a pair(σ(i), σ(j))
such thati < j andσ(i) > σ(j). It is easy to see thatdτ (σ, e) = I(σ), the total
number of inversions inσ. Therefore, for any two permutationsσ1, σ2 we have
dτ (σ1, σ2) = I(σ2σ

−1
1 ) = I(σ1σ

−1
2 ). In other words,

dτ (σ, π) = |{(i, j) ∈ [n]2 : i 6= j, π−1(i) > π−1(j), σ−1(i) < σ−1(j)}|.
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To a permutationσ ∈ Sn we associate aninversion vectorxσ ∈ Gn , [0, 1] ×
[0, 2] × · · · × [0, n − 1], wherexσ(i) = |{j : j < i + 1, σ(j) > σ(i + 1)}|, i =
1, . . . , n − 1. It is well known that the mapping from permutations to the space
of inversion vectors is one-to-one, and any permutation canbe easily reconstructed
from its inversion vector. LetJ : Gn → Sn be the map such thatJ(xσ) = σ : for
instance,J((1, 0, 1, 2, 0, 2, 0, 1)) = (2, 1, 6, 4, 3, 7, 5, 9, 8). Moreover,

I(σ) =

n−1
∑

i=1

xσ(i). (7.1)

For the type of errors that we consider below we introduce thefollowing `1 distance
function onGn :

d1(x,y) =
n−1
∑

i=1

|x(i) − y(i)| (x,y ∈ Gn) (7.2)

where the computations are performed over the integers, andwrite ‖x‖ for the
corresponding weight function (this is not a properly defined norm becauseGn

is not a linear space). For instance, letσ1 = (2, 1, 4, 3), σ2 = (2, 3, 4, 1), then
xσ1 = (1, 0, 1),xσ2 = (0, 0, 3). To compute the distancedτ (σ1, σ2) we find

I(σ2σ
−1
1 ) = I((1, 4, 3, 2)) = ‖(0, 1, 2)‖ = 3.

Observe that the mappingσ → xσ is a weight-preserving bijection between
Xn and the setGn. At the same time, this mapping is not distance-preserving.
However, a weaker property is true, namely,

dτ (σ1, σ2) ≥ d1(xσ1 ,xσ2). (7.3)

Indeed, if the Kendall distance between two permutations is1, then thè 1 distance
between the corresponding two inversion vectors is1 as well. The converse is not
necessarily true.

From (7.3), if there exists a code inGn with `1 distanced then there exists a
code of the same size inXn with Kendall distance at leastd.

Another embedding ofXn is given by mapping each permutation to a binaryN -
dimensional vectora whose coordinates are indexed by the pairs(i, j) ⊂ [n]2, i <
j, anda(i,j) = 1 if the pair (i, j) is an inversion anda(i,j) = 0 otherwise. Clearly
the Hamming weight ofa equalsI(σ), and so this mapping is an isometry between
Xn and a subset of the Hamming space{0, 1}N . This mapping was first considered
in [36].
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7.3. Bounds on the size of rank permutation codes

7.3 Bounds on the size of rank permutation codes

Let X(n, d) be the maximum size of the code inXn with distanced. For the
purposes of asymptotic analysis we define the rate of a codeC ⊂ Xn of sizeM as

R(C) =
lnM

lnn!
. (7.4)

Let

C(d) = lim
n→∞

lnX(n, d)

lnn!

be thecapacityof rank permutation codes of distanced (our proof of Theorem
7.3.1 will imply that the limit exists). The main result of this section is given in the
following theorem whose proof is given in Sections 7.3.2 and7.3.3 below.

Theorem 7.3.1.

C(d) =











1 if d = O(n)

1 − ε if d = Θ(n1+ε), 0 < ε < 1

0 if d = Θ(n2).

(7.5)

Remark4. As will be seen from the proof, the equalityC(d) = 1− ε holds under a
slightly weaker condition, namely,d = n1+εα(n), whereα(n) grows slower than
any positive power ofn.

7.3.1 A Singleton bound

Recall the well-known Singleton bound on the size of codes inthe Hamming space
over aq-ary alphabet,q ≥ 2 [80]. SupposeA is such a code in Hamming space
with distanced and lengthn. Let us delete coordinates1, . . . , d − 1 from every
vector inA. In the resulting set, all the vectors are distinct, and their number is not
more than the total number of vectors of lengthn − d + 1, i.e., |A| ≤ qn−d+1. In
this section we adapt this idea for the spaceXn.

Theorem 7.3.2.Letd > n− 1, then

X(n, d) ≤
⌊

3/2 +
√

n(n− 1) − 2d+ 1/4
⌋

!. (7.6)

Proof. Let C ⊂ Xn be an(n,M, d) code. Since the metricdτ is right-invariant, we
can assume thatC contains the identity permutatione.

Let k ≤ n and letCk ∈ Sk be a code derived fromC in the following way. Let
ψk : Sn → Sk be a mapping that acts onσ by deleting elementsk+1, . . . , n from
it. Thus,ψk(σ) is a permutation onk elements that maintains the relative positions
of the elements of[k] given byσ.

Let k be the greatest number such thatψk is not injective. Thenψk+1 is in-
jective, andM ≤ (k + 1)!. Suppose that permutationsσ1, σ2 ∈ Sn are such that
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ψk(σ1) = ψk(σ2). Because of the last equality, none of the firstk entries of the
permutationσ2σ

−1
1 contain pairs that form inversions. Therefore,

d ≤ dτ (σ1, σ2) ≤
(

n

2

)

−
(

k

2

)

.

This gives

k ≤ 1 +
√

4n(n− 1) − 8d+ 1

2
,

which proves inequality (7.6). This estimate is nontrivialif

3

2
+
√

n(n− 1) − 2d+ 1/4 < n

which is equivalent to the conditiond > n− 1.

To gain an insight into this bound, letd = δN . Using the inequalitym! ≤
(m/2)m in (7.6), we obtain the asymptotic inequality

X(n, δN) ≤ exp(n(lnn)
√

1 − δ(1 + c(lnn)−1)),

where the constantc does not depend onn. As we will show in the next section, the√
1 − δ in this bound can in fact be improved to a quantity that decaysas(ln n)−1

asn grows.

7.3.2 Sphere packing bounds

Sphere packing bounds on codes in the Kendall spaceXn are related to the count
of inversions in permutations. In this section we discuss several classic and new
results in this area, showing that they imply the asymptoticscaling order ofC(d)
for very small or very large values ofd.

Denote byBr(Xn, e) the ball of radiusr in Xn centered at the identity permu-
tation e. It is evident that inXn the volume of a ball of a given radius does not
depend on the center of the ball. From (1.3),

n!

|B2r(Xn, e)|
≤ X(n, 2r + 1) ≤ n!

|Br(Xn, e)|
. (7.7)

The embeddings ofXn into other metric spaces can be used to derive estimates of
X(n, d) based on these inequalities. In particular, estimating thevolume of thè 1-
metric ball in[n]n = {1, . . . , n}n and using (7.12), both lower and upper bounds
will follow from the embedding ofXn in the space[n]n.

LetKn(k) = |{σ ∈ Sn : In(σ) = k}| be the number of permutations withk
inversions. By (7.1),Kn(k) is the number of solutions of the equation

n−1
∑

i=1

xi = k, wherexi ∈ [0, i].
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7.3. Bounds on the size of rank permutation codes

Then clearlyKn(k) = 0 for k > N and

Kn(k) = Kn

(

N − k
)

for 0 ≤ k ≤ 1

2
N.

The number of inversions in a random permutation is asymptotically Gaussian with
mean1

2N and variance2n3+3n2−5n
72 ≈ n3

36 , [50, p.257]. This suggests that codes
with distance greater than12N cannot have large size. We show that this is indeed
the case in Sect. 7.3.4.

The generating function for the numbersKn(k) has the form

K(z) =

∞
∑

k=0

Kn(k)zk =

n
∏

i=1

1 − zi

1 − z
. (7.8)

For1 ≤ k ≤ n the number of permutations withk inversions can be found explic-
itly [71]:

Kn(k) =

(

n+ k − 2

k

)

−
(

n+ k − 3

k − 2

)

+
∑

j≥2

(−1)j
[

(

n+ k − uj − 1

k − uj

)

+

(

n+ k − uj − j − 1

k − uj − j

)

]

, (7.9)

whereuj = (3j2 − j)/2 and the summation extends for as long as the bino-
mial coefficients are positive (it contains about1.6

√
k terms). This implies that

|B1(Xn, e)| = n, andX(n, 3) ≤ (n−1)!. As shown in [81], forn = k+m,k ≥ 0

Kn(k) = (0.289 . . .)
2m+n−1

√
πm

(1 +O(m−1)). (7.10)

The case ofk > n is much more difficult to analyze. An obvious route for finding
asymptotic approximation ofKn(k) is to start with the integral representation of
the coefficients ofK(z) (7.8). Namely, sinceK(z) converges for everyz in the
finite plane, we can write

Kn(k) =
1

2πi

∮ n
∏

`=1

(1 − z`

1 − z

)

z−k−1dz.

where the integration is over any circle around the origin. In particular, for|z| = 1
we obtain

Kn(k) =
1

2π

∫ π

−π

n
∏

`=1

1 − ei`ω

1 − eiω
e−ikωdω (7.11)

=
2

π

∫ π/2

0
cos (x (N − 2k))

n
∏

`=1

sin(x`)

` sinx
dx.
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Asymptotic analysis of this expression involves saddle point calculations and is
rather involved even in the particular cases for which it hasbeen accomplished, see
Margolius [81] and Louchard and Prodinger [79]. The next theorem is a combina-
tion of results of these works, stated here in the form suitable for our context.

Theorem 7.3.3.There exist constantsc1 andc2 such that

Kn(k) ≤ exp(c1n) if k = O(n),

Kn(k) = n!/ exp(c2n) if k = Θ(n2).

The implicit constants in this theorem can be found in cited references. From
this theorem and inequalities (7.7), we obtain the two boundary cases of the expres-
sion forC(d) in (7.5).

7.3.3 Bounds from embedding in thè 1 space

In this section we prove the main part of Theorem 7.3.1. Our idea is to derive
bounds onC(d) by relating the Kendall metric to thè1 metric onSn. From the
results of Diaconis and Graham [48],

1/2D(σ1, σ2) ≤ dτ (σ
−1
1 , σ−1

2 ) ≤ D(σ1, σ2). (7.12)

whereD(σ1, σ2) =
∑n

i=1 |σ1(i)−σ2(i)|. Therefore, existence of any codeC ⊂ Sn

with Kendall distanced must imply existence of a codeC′ = {σ−1 : σ ∈ C} of
same size that havè1 distance at leastd. On the other hand existence of any code
C ⊂ Sn with `1 distanced implies the codeC′ = {σ−1 : σ ∈ C} will have Kendall
distance at leastd/2.

Remark5. DefineT (σ1, σ2) to be the number of inversions of (not necessarily
adjacent) symbols needed to changeσ1 into σ2. Paper [48] in fact shows that

dτ (σ
−1
1 , σ−1

2 ) ≤ D(σ1, σ2) − T (σ1, σ2)

which is a stronger inequality than the one given above. We however will not use
it in the derivations below.

Proposition 7.3.4. Let Br([n]n,x) be the metric ball of radiusr with center atx
in the space[n]n = {1, 2, . . . , n}n with the`1 metric. Then the maximum size of a
code inXn with distanced satisfies

n!

maxx∈[n]n |B2d−1([n]n,x)| ≤ X(n, d) ≤ nn

minx∈[n]n |Bt([n]n,x)| ,

wheret = b(d− 1)/2c.
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Proof. Under the trivial embeddingSn → [n]n the`1 distance does not change, so
any codeC in Sn with `1 distanced is also a code in[n]n with the same distance
and as such, must satisfy the sphere-packing bound (see, (1.3)). Together with
(7.12) this gives the upper bound of our statement.

Turning to the lower bound, let us perform the standard Gilbert-Varshamov pro-
cedure in the space of permutations with respect to the`1 distance (see Sect. 1.3),
aiming for a codeD with `1 distancem. The resulting code satisfies

|D| max
σ∈Sn

|Bm−1(Sn, σ)| ≥ n!.

Since |Br([n]n, σ)| ≥ |Br(Sn, σ)|, we can replace the volume inSn with the
volume in[n]n in the last inequality. In the spaceXn, the codeD′ = {σ−1 : σ ∈
D} will then have Kendall distance at leastm/2.

Below we consider only spheres in the space[n]n and omit the reference to it
from the notationBr([n]n, ·).
Lemma 7.3.5. Let1 = (1, 1, . . . , 1) ∈ [n]n. Then for anyz,y ∈ [n]n,

2−n|Br(z)| ≤ |Br(1)| ≤ |Br(y)|.

Proof. Suppose thatx = (x1, x2, . . . , xn) ∈ Br(1) and1 6= y = (y1, y2, . . . , yn) ∈
[n]n. Consider the mappingζ : Br(1) → Br(y) wherex 7→ u, whereu =
(u1, u2, . . . , un) is given by

ui =

{

yi + (xi − 1) if yi + (xi − 1) ≤ n

n− (xi − 1) if yi + (xi − 1) > n.

Clearlyu ∈ [n]n andxi − 1 ≥ |ui − yi| for i = 1, . . . , n, so every point within
distancer of 1 is sent to a point within distancer of y. Furthermore, this mapping
is injective because ifx1,x2 are two distinct points inBr(1) then their images can
coincide only if in some coordinates

yi + (x1,i − 1) = n− (x2,i − 1).

However, the left-hand side of this equality is≥ yi while the right-hand side is< yi

by definition ofui. This proves the right inequality.
To prove the lower bound, writeBr(z) asz +Dr(z), whereDr(z) is the set

of differences:

Dr(z) = {u ∈ Z
n : |ui| ≤ n−1, 1 ≤ i ≤ n;

n
∑

i=1

|ui| ≤ r andz+u ∈ [n]n}.

Writing Br(1) in the same way as1 +D+
r , we have

D+
r = {u ∈ Z

n : 0 ≤ ui ≤ n− 1;

n
∑

i=1

|ui| ≤ r}.
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By taking the absolute values of the coordinates, any point in Dr(z) is sent to a
point inD+

r , and no more than2n points have the same image under this mapping.
This proves our claim.

These arguments give rise to the next proposition.

Proposition 7.3.6.

n!

2n
∑2d−1

r=0 Q(n, r)
≤ X(n, d) ≤ nn

∑t
r=0Q(n, r)

, (7.13)

where

Q(n, r) =
∑

i≥0

(−1)iKn,r(i)

andKn,r(i) =
(n

i

)(n+r−ni−1
r−ni

)

andt = b(d− 1)/2c.

This claim is almost obvious because, by the previous lemma,

n!

2n|B2d−1(1)| ≤ X(n, d) ≤ nn

|Bt(1)|

Next,

|Bs(1)| =

s
∑

r=0

Q(n, r),

whereQ(n, r) is the number of integer solutions of the equation

x1 + x2 + . . .+ xn = r,

where0 ≤ xi ≤ n − 1, 1 ≤ i ≤ n. The expression forQ(n, r) given in the
statement is well known (e.g., [53, p.1037]).

Expression (7.13) gives little insight into the behavior ofthe bound. In the
remainder of this section we estimate the asymptotic behavior of this bound and
derive an estimate of the code capacity.

Lemma 7.3.7. Suppose thatr < n2/ ln n. Then

(

n+ r − 1

r

)

− n

(

r − 1

r − n

)

≤ Q(n, r) ≤
(

n+ r − 1

r

)

.

Proof. Let S(n, j) =
∑

i≥j(−1)iKn,r(i). The lemma will follow if we prove that

S(n, 1) < 0 andS(n, 2) > 0. (7.14)
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Under the assumption onr we have

(r+n−n(i+1)−1
r−n(i+1)

)

(r+n−ni−1
r−ni

) =

n−1
∏

j=1

r − ni− n+ j

r − ni+ j

=

n−1
∏

j=1

(

1 − n

r − ni+ j

)

≤
(

1 − n

r − n(i− 1) − 1

)n−1

≤ e
− n(n−1)

r−n(i−1)−1

≤ n−
n−1

n

≤
√

2

n
.

Thus fori ≥ 1

Kn,r(i+ 1)

Kn,r(i)
≤ n− i

i+ 1

√
2

n
< 1.

Therefore−Kn,r(2m − 1) + Kn,r(2m) < 0 for all m. Since the sumS(n, 1)
starts with a negative term and the sumS(n, 2) with a positive one, the required
inequalities in (7.14) follow.

From the foregoing arguments we now have the following explicit bounds on
X(n, d) :

n!

2n
(n+2d−1

2d−1

) ≤ X(n, d) ≤ nn

∑t
r=0

((

n+r−1
r

)

− n
(

r−1
r−n

)) , (7.15)

wheret = b(d− 1)/2c. Here the right part is obvious and for the left inequality we
used (7.13), Lemma 7.3.7, and the identity

∑

i≤n

(s+i
i

)

=
(s+n+1

n

)

.

Now we are ready to complete the proof of Theorem 7.3.1. Assume thatd =
Θ(n1+ε) for some0 ≤ ε < 1. The two boundary cases of (7.5) were established in
the previous section. Let us prove the middle equality. From(7.15),

X(n, d) ≤ nn

(n+t−1
n−1

)

− n
(t−1
t−n

)

97



Chapter 7. Codes in Permutations: Bounds

To estimate the denominator, write

(

n+ t− 1

n− 1

)

=

(

t− 1

t− n

) n−1
∏

j=1

(

1 +
n

t− j

)

>

(

t− 1

t− n

)

(

1 +
n

t

)n−1

> n

(

t− 1

t− n

)

e(n−1)(n
t
− 1

2
(n

t
)2)−ln n

= n

(

t− 1

t− n

)

eΘ(n1−ε)

(because ofln(1 +n/t) > (n/t)− 1
2(n/t)2, for n/t < 1.) So starting with somen

we can estimate the denominator below by1/2
(n+t−1

n−1

)

. Therefore,

X(n, d) ≤ 2nn

(

n+t−1
t

) ≤ 2nn(n− 1)n−1

(n+ t− 1)n−1
.

Next
lnX(n,Θ(n1+ε))

n lnn
≤ 2 − (1 + ε) + o(1) = 1 − ε+ o(1).

On the other hand, using
(

n+ 2d− 1

2d− 1

)

≤
( (n+ 2d)e

n

)n
< (2e)nΘ(nnε)

andn! > (n/3)n, we obtain from (7.15)

X(n, d) ≥ nn

(12e)nΘ(nnε)
.

Taking the logarithms and the limit, we find thatC(d) ≥ 1− ε. This completes the
proof of Theorem 7.3.1.

7.3.4 Bounds from embedding in the Hamming space

Since the embedding ofXn into the Hamming space{0, 1}N of dimensionN =
(n
2

)

is isometric, the known results for codes correcting Hamming errors can be
used to derive estimates and constructions for codes in the Kendall space. In par-
ticular, the known bounds on codes in the Hamming space can berewritten with
respect to the spaceXn. For instance, the Plotkin bound implies that

X(n, d) ≤ 2d/(2d −N)

and thus any codeC ⊂ Xn with distance greater than the average (i.e.,1
2N ) satisfies

|C| = O(N).

98



7.4. Towards optimalt-error-correcting codes

Given the image of a codeC ⊂ Xn in {0, 1}N it is easy to reconstruct the code
C itself. Indeed, it is immediate to find the inversion vector of a permutationσ
given the image ofσ in {0, 1}N , and then to recoverσ from its inversion vector.

Of course, not every code in{0, 1}N will have a code inXn corresponding to
it. The next simple proposition shows that nevertheless, binary codes in{0, 1}N

can be used to claim existence of good rank permutation codes.

Proposition 7.3.8. Suppose that there exists a binary linear[
(n
2

)

, k, d] codeA.

Then there exists an(n,M ≥ n!
2N−k , d) rank permutation code.

Proof. One of the2N−k cosets ofA in {0, 1}N must contain at leastn!/2N−k

vectors that map back to valid permutations.

For example, let us assume that the valueN is such that there exists at-error-
correcting binary BCH code of lengthN (if not, we can add zeros to a shorter BCH
code). Its dimension is at leastN − t log2(N + 1). This shows the existence of a
t-error-correcting rank permutation code of sizen!

(N+1)t = n!
O(n2t) .

On the other hand, by the sphere packing bound the size of at-error-correcting
code inXn is at mostM ≤ O( n!

nt ). Thus, using the embeddingXn → {0, 1}N

we are not able to close a gap between the existence results and the upper bounds.
In the next section we use a different method to construct codes that achieve the
sphere packing bound to within a constant factor for any given t.

7.4 Towards optimal t-error-correcting codes

The representation of permutations by inversion vectors provides a way to construct
error-correcting rank permutation codes. In this section we construct codes in the
space of inversion vectorsGn equipped with̀ 1 distanced1, and claim the existence
of rank permutation codes by the inequality on the code distances (7.3). Below‖x‖
denotes thè1 norm of the vectorx.

We begin with constructing codes over the integers that correct additive errors.
Once this is accomplished, we will be able to claim existenceof good rank permu-
tation codes. LetA be some subset ofZ and letAL be the space ofL-tuples of
integers fromA equipped with thè1 distance (7.2);L > 0 is an integer. A code
D ⊂ AL is said to correctt additive errors if for any two distinct code vectorsx,y
and anye1,e2 ∈ Z

L, both of weight at mostt (i.e., such that‖e1‖, ‖e2‖ ≤ t),

x + e1 6= y + e2.

Remark6. If in the above definitionei ≥ 0 for all i, the code is said to correctt
asymmetricerrors [40]. However below we need to consider the general case.

We assume thatA andt are such thatD is well defined: for instance, below we
will takeA = [0, s − 1] wheres is some integer sufficiently large compared tot.
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Chapter 7. Codes in Permutations: Bounds

Definition 7.4.1. Letm ≥ L and leth1, . . . , hL, 0 < hi < m, i = 1, . . . , L be a
set of integers. Define the codeC as follows:

C =
{

x ∈ AL
∣

∣

∣

L
∑

i=1

hixi ≡ 0 mod m
}

. (7.16)

This code construction was first proposed by Varshamov and Tenenholtz [102]
for correction of one asymmetric error (it was rediscoveredlater by Constantin and
Rao [40] and, in a slightly different context, by Golomb and Welch [54]). General-
izations to more that one error as well as to arbitrary finite groups were studied by
Varshamov [101], Delsarte and Piret [44], and others; however, these works dealt
with asymmetric errors. Below we extend this construction to the symmetric case.

Proposition 7.4.2. The codeC defined in (7.16) correctst additive errors if and
only if for all e ∈ Z

L, ‖e‖ ≤ t the sums
∑L

i=1 eihi are all distinct and nonzero
modulom.

This proposition is obvious as it amounts to saying that all the syndromes of
error vectors of weight up tot are different and nonzero.

We will need the following theorem of Bose and Chowla [23]. Inthe following
argumentsq is a power of prime andm = (qt+1 − 1)/(q − 1).

Theorem 7.4.3.(Bose and Chowla) There existq+1 integersj0 = 0, j1, . . . , jq in
Zm such that the sums

ji1 + ji2 + . . .+ jit (0 ≤ i1 ≤ i2 ≤ . . . ≤ it ≤ q)

are all different modulom.

This theorem provides a way of constructing an asymmetrict additive error-
correcting code of lengthq. This is because for any error vectore with ||e|| ≤ t <
m such thatei ≥ 0, the sums

∑q
i=1 eiji involve at mostt of the numbersji and thus

are all different. In coding theory, this theorem was previously used to construct
constant weight codes in the Hamming space [45,56].

We extend the Theorem 7.4.3 so that one can construct a general t additive
error-correcting code. In the following discussions, letmt = t(t + 1)m if t is odd
andmt = t(t+ 2)m if t is even.

Theorem 7.4.4.For 1 ≤ i ≤ q + 1 let

hi =

{

ji−1 + t−1
2 m for t odd

ji−1 + t
2m for t even

where the numbersji are given by the Bose-Chowla theorem. For alle ∈ Z
q+1

such that||e|| ≤ t the sums
∑q+1

i=1 eihi are all distinct and nonzero modulomt.
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Proof. Let t be odd and letHq = {0, h1, . . . , hq+1}. Observe that

(t− 1)m/2 ≤ hi < (t+ 1)m/2. (7.17)

(i) For anyk1 ≤ k2 ≤ . . . ≤ kt ∈ Hq, the sums
∑t

i=1 ki are all distinct modulo
m and therefore also modulomt. These sums are also nonzero modulom except
for the case when all theki’s are0.

(ii) Moreover, for anyk1 ≤ k2 . . . ≤ k2t ∈ Hq, the sum

2t
∑

i=1

ki < mt,

and is therefore nonzero modulomt.

(iii) Finally, for any 0 < k1, k2, . . . , k2t ∈ Hq and anyr < t,

2t
∑

i=2t−r+1

ki < r
t+ 1

2
m ≤ (2t− r)

t− 1

2
m

≤
2t−r
∑

i=1

ki. (7.18)

Let us suppose now that there exist nonzero vectorse1,e2 ∈ Z
q+1 both of

weight at mostt such that

either (a)
∑q+1

i=1 e1ihi = 0 mod mt

or (b)
∑q+1

i=1 e1ihi =
∑q+1

i=1 e2ihi mod mt.

However assuming (a) contradicts property (i). On the otherhand if (b) is true
then one of the following two scenarios can happen. In the first case,e1i ≥ 0 and
e2i ≤ 0 for all i or e1i ≤ 0 ande2i ≥ 0 for all i. It is easy to see that this assumption
contradicts property (ii). In all other situations, (b) contradicts either property (i) or
property (iii) above.

The claim fort even is proved in an analogous way. Namely, we will have

tm/2 ≤ hi ≤ (t+ 2)m/2

and
2t
∑

i=2t−r+1

ki < r
(t+ 2

2

)

m ≤ (2t− r)
tm

2
≤

2t−r
∑

i=1

ki

instead of (7.17) and (7.18), respectively. The rest of the proof remains the same.
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Together with Proposition 7.4.2 this theorem implies the existence of at-error-
correcting codeC of lengthq+1 over the alphabetA = Zmt that correctst additive
errors. Recall that our goal is to construct a code over the set of inversion vectors
Gn that correctst additive errors. At this point let us setq + 1 = n − 1. Note
that,Gn is a subset of[0, n − 1]n−1 which is a subset ofZn−1

mt
. SinceC is a group

code with respect to addition modulomt, its cosets inZn−1
mt

partition this space into
disjoint equal parts. At least one such coset containsM ≥ n!/mt vectors fromGn.
Invoking (7.3) we now establish the main result of this section.

Theorem 7.4.5.Letm = ((n − 2)t+1 − 1)/(n − 3), wheren − 2 is a power of
a prime. There exists at-error-correcting rank permutation code inSn whose size
M satisfies

M ≥
{

n!/(t(t+ 1)m) (t odd)

n!/(t(t+ 2)m) (t even).

This theorem establishes the existence of codes whose size is of the same order
O(n!/nt) as given by the sphere packing bound of the previous section.

As a final remark, note that the construction is explicit except for the last step
where we claim existence of a large-size code in some coset ofthe codeC.

102



CHAPTER 8

Codes in Permutations: Constructions

8.1 Introduction

In the previous chapter we established the asymptotic scaling of the rate of optimal
codes in the Kendall spaceXn. However, the main question related to the appli-
cations of the rank modulation scheme relates to explicit coding schemes for error
correction. Codes correcting one Kendall error were constructed in [68]. In the
previous chapter we proved the existence of a family of rank permutation codes
that correct a constant number of errors and have size withina constant factor of
the sphere packing bound. The major gap in the literature on coding for rank modu-
lation has been the absence of explicit constructions of families of rank modulation
codes. Addressing this issue, in the present chapter we provide few general con-
structions of rank modulation codes that correct errors of multiplicity varying over
a large range of values.

The results of this chapter appear in [15].

8.2 Rank modulation codes and permutation polynomials

Our first construction of rank modulation codes is algebraicin nature. We identify
the permutations on the elements of a field with the permutation polynomials over
the field.

Let q = pm for some primep and letFq = (α0, α1, . . . , αq−1) be the finite
field of q elements. A polynomialg(x) ∈ Fq[x] is called apermutation polynomial
if it permutes the elements ofFq (this means that the valuesg(a) are distinct for
distinct values ofa ∈ Fq) [76, Ch. 7].

Consider the evaluation mapf 7→ (f(α0), . . . , f(αq−1)) which sends permuta-
tion polynomials to permutations ofq elements. Evaluations of permutation poly-
nomials of degree≤ k form a subset of aq-ary Reed-Solomon code of dimension
k + 1. Reed-Solomon codes form a family of error-correcting codes in the Ham-
ming space with a number of desirable properties including efficient decoding. For
an introduction to them see [80, Ch. 10].
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Chapter 8. Codes in Permutations: Constructions

At the same time, evaluating the size of a rank permutation code constructed
in this way is a difficult problem because it is hard to computethe number of per-
mutation polynomials of a given degree. In this section we formalize a strategy of
constructing codes along these lines. This does not result in a very good rank mod-
ulation code; in fact, our later combinatorial constructions will be much better, in
terms of the size of the codes with given error-correcting capabilities. Nonetheless,
the construction involves some interesting observations which is why we decided
to include it.

A polynomial overFq is calledlinearizedof degreeν if it has the form

L(x) =

ν
∑

i=0

aix
pi

Note that a linearized polynomial of degreeν has degreepν when viewed as a
standard polynomial.

Lemma 8.2.1. The number of linearized polynomials overFq of degree less than
or equal toν that are permutation polynomials inFq is at least

(

1 − 1

p− 1
+

1

q(p− 1)

)

qν+1 ≥ qν .

Proof. The polynomialL(x) acts onFq as a linear homomorphism. It is injective
if and only if it has a trivial kernel, in other words if the only root of L(x) in Fq is
0. Hence,L(x) is a permutation polynomial if and only if the only root ofL(x) in
Fq is 0.

The total number of linearized polynomials of degree up toν is qν+1. We are
going to prove that at least a(1− 1

p−1 + 1
q(p−1)) proportion of them are permutation

polynomials. To show this, choose the coefficientsai, 0 ≤ i ≤ ν, of L(x) =
∑ν

i=0 aix
pi

uniformly and randomly fromFq. For a fixedα ∈ F
∗
q, the probability

thatL(α) = 0 is 1/q. Furthermore, the set of roots of a linearized polynomial is an
Fp-vector space, hence the set of non-zero roots is a multiple of p− 1. The number
of 1-dimensional subspaces ofFq overFp is q−1

p−1 . The probability that one of these
sets is included in the set of roots ofL(x) is, from the union bound,

Pr(∃α ∈ F
∗
q : L(α) = 0) ≤ q − 1

p− 1
· 1

q
.

Hence, the probability thatL(x) is a permutation polynomial is greater than or
equal to1 − q−1

q(p−1) .

8.2.1 Code construction

We can either taken = q or n = q − 1 whereq is the size of a field and we
construct a rank modulation code inSn. Note that a linearized polynomialL(x)
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8.2. Rank modulation codes and permutation polynomials

always maps zero to zero, so that when it is a permutation polynomial it can be
considered to be a permutation of the elements ofFq and also of the elements of
F
∗
q. Let t be a positive integer and letν = blogp(n − 2t− 1)c. Let Pt be the set of

all linearized polynomials of degree≤ ν that permuteFq. Setn = q− 1 and define
the setA ⊂ F

n
q

A = {(L(a), a ∈ F
∗
q), L ∈ Pt}

to be the set of vectors obtained by evaluating the polynomials in Pt at the points of
F
∗
q. Form a codeC by writing the vectors inA as permutations (for that, we fix some

bijection between[n] andF
∗
q, which will be implicit in the subsequent discussion).

We can haven = q rather thann = q − 1 if desired: for that we add the zero field
element in the first position of the(q − 1)-tuples ofA, and the construction below
readily extends.

The idea behind the construction is quite simple: the setA is a subset of a Reed-
Solomon code that correctst Hamming errors. Every Kendall error is a transposi-
tion, and as such, affects at most two coordinates of the codeword of C. Therefore
the codeC can correct up tot/2 errors. By handling Kendall errors more carefully,
we can actually correct up tot errors. The main result of this part of our work is
given by the following statement.

Theorem 8.2.2.The codeC has lengthn = q− 1 and size at leastqblogp(n−2t−1)c.
It corrects all patterns of up tot Kendall errors in the rank modulation scheme
under a decoding algorithm of complexity polynomial inn.

Proof. It is clear that|C| = |A|, and from Lemma 8.2.1|A| ≥ qblogp(n−2t−1)c.
Let σ = (a1, a2, . . . , ai, ai+1, . . . , an), whereaj ∈ F

∗
q, 1 ≤ j ≤ n, be a

permutation inXn (with the implied bijection between[n] andF
∗
q) and letσ′ =

(a1, a2, . . . , ai+1, ai, . . . , an) be a permutation obtained fromσ by one Kendall
step (an adjacent transposition). We have

σ − σ′ = (0, . . . , 0, θ,−θ, . . . , 0)

whereθ = ai − ai+1 ∈ F
∗
q.

Let

P =

















1 0 0 · · 0
1 1 0 · · 0
1 1 1 · · 0
· · · · · ·
· · · · · ·
1 1 1 · · 1

















be ann× n matrix. Note that

P (σ − σ′)T = (0, . . . , 0, θ, 0, . . . , 0)T .
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This means that multiplication by the accumulator matrixP converts one adjacent
transposition error into one Hamming error. Extending thisobservation, we claim
that if dτ (σ, π) ≤ t with π being some permutation, and anyt ≤ n

2 , then the
Hamming weight of the vectorP (σ−π)T is not more thant. Here we again takeσ
andπ to be vectors with elements fromF∗

q with the implied bijection between[n]
andF

∗
q.

Now letL(x) be a linearized permutation polynomial and let1, α, α2, . . . , αq−2

be the elements ofF∗
q for some choice of the primitive elementα. Let

σ = (L(1),L(α),L(α2), . . . ,L(αq−2)).

SinceL(a+ b) = L(a) + L(b), we have

PσT = (L(β0),L(β1),L(β2), . . . ,L(βq−2))
T

where

βi =

i
∑

j=0

αj , i = 0, 1, . . . , q − 2.

It is clear thatβi 6= 0, 0 ≤ i ≤ n− 1 and alsoβi 6= βj for 0 ≤ i < j ≤ n− 1,
Therefore, the vectorPσT is a permutation of the elements ofF

∗
q. At the same time,

it is the evaluation vector of a polynomial of degree≤ n − 2t − 1. We conclude
that the set{PσT , σ ∈ A} is a subset of vectors of an (extended) Reed-Solomon
code of lengthn, dimensionn− 2t and distance2t+1. Any t errors in a codeword
of such a code can be corrected by standard RS decoding algorithms in polynomial
time.

The following scheme for writing data with the codeC corrects anyt Kendall
errors. Supposeσ ∈ A is read off from memory asσ1. Evaluatez = PσT

1 ,
and use a Reed-Solomon decoding algorithm to correct up tot Hamming errors
in the vectorz, obtaining a vectory. If dτ (σ, σ1) ≤ t, theny corresponds to a
transformed version ofσ, i.e.,y = PσT . Soσ is recovered asP−1yT , i.e.,

σi = yi+1 − yi, 1 ≤ i ≤ n− 1; σn = yn.

We note an earlier use of permutation polynomials for constructing permutation
codes in [37]. At the same time, since the coding problem considered in that paper
relies on the Hamming metric rather than the Kendall tau distance, its results have
no immediate link to the above construction.
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8.3. Rank modulation codes from codes in the Hamming space

8.3 Rank modulation codes from codes in the Hamming
space

In this section we present other ideas for constructing rankpermutation codes using
the weight-preserving embedding of the Kendall spaceXn into a subset of integer
vectors discussed in Sect. 7.2. To evaluate the error-correcting capability of the
resulting codes, we further link codes over integers with codes correcting Hamming
errors.

8.3.1 From inversion vectors to the Hamming space via Gray map

Recall that the mapping from permutations to the space of inversion vectors is one-
to-one, and any permutation can be easily reconstructed from its inversion vector
with the mapJ defined in Sect. 7.2.

We will need theGray mapwhich is a mappingφs from the ordered set of
integers[0, 2s − 1] to {0, 1}s with the property that the images of two successive
integers differ in exactly one bit. Suppose thatbs−1bs−2 . . . b0, bi ∈ {0, 1}, 0 ≤
i < s, is the binary representation of an integeru ∈ [0, 2s − 1]. Set by definition
bs = 0 and defineφs(u) = (gs−1, gs−2, . . . , g0), where

gj = (bj + bj+1) (mod 2) (j = 0, 2, . . . s− 1) (8.1)

(note that generally the Gray map is not uniquely defined fors ≥ 4).
Now let i = 2, . . . , n,

mi = blog ic,

and let
ψi : {0, 1}mi → [0, i− 1]

be the inverse Gray mapψi = φ−1
i . Clearlyψi is well defined; it is injective but not

onto since the size of its domain is only2mi .

Proposition 8.3.1. Suppose thatx,y ∈ {0, 1}mi . Then

|ψi(x) − ψi(y)| ≥ d(x,y),

whered denotes the Hamming distance.

Proof. This follows from the fact that if the difference of magnitude is1 between
the numbers, then their Gray images have Hamming distance1 between them. If
two numbersu < v are such that|u−v| = d, then one can obtain the ordered set of
d+ 1 numbersu, u+ 1, u+ 2, . . . , v = u+ d. Hence, from the triangle inequality
the Hamming distance between the Gray images ofu andv is less than or equal to
d.
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Consider a vectorx = (x2|x3| . . . |xn), wherexi ∈ {0, 1}mi , i = 2, . . . , n.
The dimensionm of x equals

∑

j mj ≈ log n!, or more precisely

m =
mn−1
∑

j=1

(2j+1 − 2j)j +mn(n+ 1 − 2mn)

=
mn−1
∑

j=1

j2j +mn(n+ 1 − 2mn)

= (mn − 2)2mn + 2 +mn(n+ 1 − 2mn)

= (n+ 1)mn − 2mn+1 + 2.

Given a vectorx ∈ {0, 1}m let

Ψ(x) = Ψ(x2|x3| . . . |xn) = (ψ2(x2), . . . , ψn(xn)).

Proposition 8.3.2. Letx,y ∈ {0, 1}m. Then

d1(Ψ(x),Ψ(y)) ≥ d(x,y),

where the distanced1 is the `1 distance defined in (7.2) andd is the Hamming
distance.

Proof.

d1(Ψ(x),Ψ(y)) =

n
∑

i=2

|ψi(xi) − ψi(yi)|

≥
n
∑

i=2

d(xi,yi)

= d(x,y).

Now we can formulate a general method to construct rank permutation codes:
take a binary code of lengthm and cardinalityM in the Hamming space and send
each of its vectors to a permutation using the composition map J ◦ Ψ. Both parts
of this map are injective, so the cardinality of the resulting code isM . Moreover,
each of the two mappings can only increase the distance (namely, see (7.3) and the
above proposition). Summarizing, we have

Theorem 8.3.3.Let C be a binary(m,M, d) code, wherem = (n + 1)blog nc −
2blog nc+1 + 2. Then the set of permutations

Cτ =
{

π ∈ Sn : π = J(Ψ(x)),x ∈ C
}

forms an rank modulation code onn elements of sizeM and distance at leastd in
the Kendall spaceXn.
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Example: Consider at-error-correcting (shortened) BCH code of lengthm =
(n+ 1)blog nc− 2blog nc+1 + 2 and designed distance2t+ 1. If m is one less than
a power of two, then the size of the code is

M ≥ 2m

(m+ 1)t
.

This shows that we can construct a set of(n,M) rank modulation codes that correct
t errors. Note that for constantt any codeC in Xn satisfies|C| ≤ O(n!/nt).
The rank modulation codes constructed from binary BCH codeshave sizeM =
Ω(n!/ logt n!) = Ω(n!/nt logt n).

For instance, taken = 62, thenm = 253. Taking twice shortened BCH codes
Ct of lengthm, we obtain a range of rank modulation codes according to the de-
signed distance ofCt. In particular, there are rank permutation codes inX62 with
distance at least2t+ 1 and sizeM given by:

logM 247 239 231 223 . . .
t 1 2 3 4 . . .

Similarly, takingn = 105, we can construct a suite of rank permutation codes from
shortened BCH codes of lengthm = 510, etc.

Consider now the case when the number of errorst grows withn. Since the
binary codes constructed above are of lengthn log n, we can obtain rank permuta-
tion codes inXn that correct error patterns of Kendall weightt = Ω(n log n). But
in fact more is true. We need the following proposition.

Proposition 8.3.4. Letx,y ∈ {0, 1}m. Then

d1(Ψ(x),Ψ(y)) ≥ n− 1

2

(

2
d(x,y)
n−1 − 1

)

.

Proof. We first claim that, for anyx,y ∈ {0, 1}mi , the inequalityd(x,y) ≥ wi ≥
1 implies that|ψi(x) − ψi(y)| ≥ 2wi−1. This is true because of the ‘reflective’
nature of the standard Gray map as is evident from Eq. (8.1).

Now consider vectorsx = (x2|x3| . . . |xn),y = (y2|y3| . . . |yn) in {0, 1}m

wherexi,yi ∈ {0, 1}mi , 2 ≤ i ≤ n. Suppose thatd(xi,yi) = wi for all i, and
∑n

i=2wi = w wherew = d(x,y).
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Hence,

d1(Ψ(x),Ψ(y)) =
n
∑

i=2

|ψi(xi) − ψi(yi)|

≥
∑

i: wi>0

2wi−1

=

n
∑

i=2

2wi−1 −
∑

i:wi=0

1

2

≥ 1

2

(

min
wi>0,

∑n
i=2 wi=w

n
∑

i=2

2wi −
∑

i:wi=0

1
)

≥ n− 1

2

(

2
w

n−1 − 1
)

.

We have the following theorem as a result.

Theorem 8.3.5. Let C and Cτ be the binary and rank permutation codes defined
in Theorem 8.3.3. Suppose furthermore that the minimum Hamming distanced of
the codeC satisfiesd ≥ εm wherem is the blocklength ofC. Then the minimum
Kendall distance of the codeCτ is Ω(n1+ε).

Proof. Observe thatm ≥ n(log n − 3) so d ≥ εm ≥ εn(log n − 3). From the
previous proposition the minimum distance ofCτ is at least

n− 1

2

(

2εn(log n−3) − 1
)

= Ω(n1+ε).

From the existing asymptotically good families of binary codes with rateR > 0
and relative distance0 < ε < 1/2, one can therefore construct rank permutation
codes of distanceΩ(n1+ε) and rateR (see (7.4)). The upper limit of1/2 on ε
is due to the fact that no binary codes of large size (positiverate) are capable of
correcting a higher proportion of errors.

The above theorem can be extended to the case whenε ≥ 1/2, namely, to
obtain rank permutation codes of distanceΩ(n1+ε), 1/2 ≤ ε < 1 and positive
rate. This extension is not direct, and results in an existential claim as opposed
to the constructive results above. To be precise, one can show that for any0 ≤
ε < 1, there exist infinite families of binary(m,M, d) codesC, with rateR >
0, such that the associated rank modulation codeCτ for permutations of[n] in
Theorem 8.3.3 has minimum Kendall distanceΩ(n1+ε). We will not prove this
result here. Instead, in the next section we will present another construction of rank
modulation codes that is effective in this range of distance.
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8.3.2 Another construction: A quantization map

In this section we describe another construction of rank modulation codes that relies
on a different mapping from binary vectors to inversions.

Recall again our notationGn for the space of inversion vectors and the map
J : Gn → Sn that sends them to permutations (see Sect. 7.2). To obtain a code in
Gn we will start with a set of binary vectorsC ∈ {0, 1}n and send them to inversion
vectors. This is done using the mappingϑ : {0, 1}n → Gn such that

b = (b1, . . . , bn−1)
ϑ7→ x = (x1, . . . , xn−1)

xi =

{

0 if bi = 0

i if bi = 1
, i = 1, . . . , n− 1.

Next, the obtained subset ofGn is mapped byJ to a subset ofSn, which we denote
by Cτ .

Theorem 8.3.6.In the above construction letC(n,M, d ≥ 2t+1) be a code in the
binary Hamming space. Then the codeCτ ⊂ Sn has cardinalityM and corrects
anyr Kendall errors wherer = t2/4 if t is even andr = (t2 − 1)/4 if t is odd.

Proof. To prove the claim about error correction, consider the following decoding
procedure of the codeCτ . Let π be a permutation. To decode it withCτ , find its
inversion vectorxπ = (x1, . . . , xn−1) and form a binary vectory by putting

yi =

{

0 if xi ≤ bi/2c
1 if xi > bi/2c.

Next decodey with the codeC to obtain a codevectorc. Then compute the overall
decoding result asJ(ϑ(c)).

Let σ be the original permutation, letxσ be its inversion vector, and letc(σ)
be the corresponding codeword ofC. The above decoding can go wrong only if
the Hamming distanced(c(σ),y) ≥ t. For this to happen thè1 distance between
xπ andxσ must be large, in the worst case satisfying the conditiond1(xπ,xσ) ≥
∑t

i=1bi/2c. This gives the claimed result.

From a binary code in Hamming space of rateR that corrects anyτn errors,
the above construction produces a rank modulation code of size2Rn that is able to
correctΩ(n2) errors.

This construction can be further generalized to construct codes that are able
to correct a wide range of Kendall errors by observing that the quantization map
employed above is a rather coarse tool which can be refined if we rely on codes in
theq-ary Hamming space forq > 2. As a result, for anyε < 1 we will be able to
construct families of rank permutation codes of rateR = R(ε) > 0 (see, (7.4)) that
correctΩ(n1+ε) errors.
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Let l > 0 be an integer. LetQ = {a1, a2, . . . , aq} be the code alphabet.
Consider a codeC of lengthn′ = 2(l−1)(q−1) overQ and assume that it corrects
any t Hamming errors (i.e., its minimum Hamming distance is at least 2t + 1).
Let n = (2l + 1)(q − 1). Consider the mappingΘq : Qn−1 → Gn, defined as
Θq(b) = (ϑ1(b1), ϑ2(b2), . . . , ϑn−1(bn−1)), b = (b1, . . . , bn−1) ∈ Qn−1, where

ϑi(aj) =











0 if i < 3(q − 1)

(2k − 1)(j − 1) if (2k − 1)(q − 1) ≤ i < (2k + 1)(q − 1)

k = 2, 3, . . . , l,

j = 1, 2, 3, . . . , q.

To construct a code in permutationsCτ from the codeC we perform the follow-
ing steps:

1. Prepend each vector inC with 3(q − 1) − 1 symbolsa1;

2. Map the obtained set of(n−1)-dimensional vectors toSn using the mapJ ◦Θq.

The properties of this construction are summarized in the following statement.

Theorem 8.3.7. In the above construction letC(n′,M, d ≥ 2t + 1) be a code
in the binary Hamming space. Then the codeCτ ⊂ Sn has cardinalityM and
corrects anyr Kendall errors wherer = (t + 1 − (q − 1)s)(s + 1) − 1 and
s = b(t+ 1)/(2(q − 1))c.

Proof. We generalize the proof of the previous theorem. Consider the following
decoding procedure of the codeCτ . Let π be a permutation. To decode it withCτ ,
we first find its inversion vectorxπ = (x1, . . . , xn−1) and form aq-ary vectory by
putting

yi =











a1 if i < 3(q − 1)

aj if (2k − 1)(q − 1) ≤ i < (2k + 1)(q − 1)

and(2k − 1)(j − 1) − (k − 1) ≤ xi ≤ (2k − 1)(j − 1) + k,

k = 2, 3 . . . , l

for i = 1, . . . , n − 1. Next decodey′ = (y3(q−1), . . . , yn−1) with the codeC to
obtain a codevectorc. The vectorc is used to obtain the end result (a permutation)
using the mapping defined before the theorem.

There will be an error in decoding only wheny′ contains at leastt+1 Hamming
errors.y′ contains coordinates3(q−1) ton−1 of y. Suppose thattj , 1 ≤ j ≤ l−1
is the number of errors in coordinates between(2j+1)(q−1) and(2j+3)(q−1).
We have

∑l−1
j=1 tj ≥ t + 1 and tj ≤ 2(q − 1). Here the`1 distance between the
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received and original inversion vectors is

l−1
∑

j=1

jtj ≥ min
tj≤2(q−1)
∑

j tj≥t+1

l−1
∑

j=1

jtj

= 2(q − 1)(1 + 2 + · · · + s) + (t+ 1 − 2(q − 1)s)(s + 1)

= (q − 1)s(s + 1) + (t+ 1 − 2(q − 1)s)(s + 1)

= (t+ 1 − (q − 1)s)(s + 1).

Therefore if thè 1 distance between the received and original inversion vectors is
less than or equal tor then decodingy′ with the codeC will recover xσ. Using
(7.3) we complete the proof.

Choosingt = 2(l − 1)(q − 1)τ , where0 ≤ τ ≤ 1/4, the number of errors
correctable byCτ is

r = (2(l − 1)(q − 1)τ − (q − 1)bτ(l − 1)c)(bτ(l − 1)c + 1) − 1

≈ τ2(l − 1)2(q − 1)

≈ τ2n2

q
.

For instance, takeq = O(n1−ε), 0 < ε < 1, thenr = Ω(n1+ε). If the codeC

has cardinalityqRn′

then|Cτ | = qRn′

= qR(n−3(q−1)). Using (7.4) yields the value
(1 − ε)R for the rate of the codeCτ .

We have constructed a large class of rank permutation codes,associating them
with binary andq-ary codes in the Hamming space. If the latter codes possess
efficient decoding algorithms, then the methods discussed above translate these
algorithms to decoding algorithms of rank permutation codes of essentially the
same complexity. Thus, the existing theory of error-correcting codes can be used
to design practical error-correcting codes and proceduresfor the rank modulation
scheme.
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