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This thesis is devoted to a range of questions in applied enadkics and signal
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diverse combinatorial methods originating in coding tlyesomd computer science.

The thesis addresses three groups of problems. The firstofithaimed at the
construction and analysis of codes for error correctiorrellee examine properties
of codes that are constructed using random and structuegdhg@and hypergraphs,
with the main purpose of devising new decoding algorithmseal as estimating
the distribution of Hamming weights in the resulting cod&ome of the results
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CHAPTER 1

Introduction

1.1 Introduction

This thesis is devoted to combinatorial aspects of the yheberror-correcting
codes In most communication or storage systems operating iryrasigironments,
codes are required to ensure that the transmitted or stof@uiiation is error-free.
In a communication scenario, the information to be transmiiis encoded as one
of the elements, ocodewordsof a codeC. The effect of the noise in discrete
channels can often be quantified by the number of errorsdatred in a codeword
in transmission. Therefore, the number of errors that ttee aman correct is a
natural measure of code’s quality. The type of errors igedl#o the properties of
the communication channel: the most common channel modflelsnamunication
give rise to the Hamming metric, which is used as a figure ofitnrea large part
of coding theory. At the same time, other channels arisingpiplications can be
related to other types of errors, calling for studies of ngdh permutations, coding
over matrices, spherical codes with the Euclidean metiic, e

In this thesis we address three aspects of combinatoriosoftes. In the first
part, we discuss the parameters and performanced#s on graphsan important
area in classical coding theory that deals wahability of information transmis-
sion over channels that introduces bit-flip or similar esrdn the second part of the
thesis, arexplorationof coding-theoretic ideas applied signal processingprob-
lems stresses the fact that coding theory can be consideracbawerful tool in
discrete mathematics and can be used to solve seemingliatent@roblems such
as construction ofampling matricedor the compressed sensing problem. The
third part of the thesis emphasizes predanbvationsin coding theory where its
principles are applied to tackle reliability issues in rammventional systems such
as data protection in flash memory devices. A common thredtese works is ap-
plication of combinatorial methods to asymptotic probleshsoding theory with
an emphasis on constructions, bounds on the parameterdes aad performance
of decoding algorithms.

In the following sections of this introductory chapter, wéeHy describe sev-
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Chapter 1. Introduction

eral concepts used throughout the dissertation.

1.2 Error-correcting codes

Let X be a metric space equipped with a distance funafieri(?> — R. A codeC
is a subset o with the property that any two elementsardewordsof C are far
apart. Formally, letl be the largest integer such that for@ll£ c; € C:

d(cl, Cg) > d.

The numbed is called theninimum distancer simply thedistanceof the codeC.

Given a positive integed and a metric spac¥, the main aim of coding theory
is to find the largest set such that the distance ¢fis at leastd. Such a subset
need not be unique. Let us consider next an example to seewhyssibsets will
be of interest.

LetF% be then-dimensional vector space over the binary figjdLet wt(z) be
the Hamming normij.e., the number of nonzero coordinates in the veeta Fy,
also called the Hamming weight. Tlamming distancéetween vectors:, y €
F?% is defined asvt(x — y).

Consider the following communication scenario with a c@de F5 over an
adversarial channel. The sender selects a vacfosm C as a message to transmit
over the channel. The channel flips a few bits of the tranenhittector and the
received vector ig+e, wherewt(e) is the number of errors the channel introduces.
If the minimum distance of the code ésand the channel can introduce at most
t £ |(d-1)/2] errors, itis possible to identify the transmitted vectariquely from
the received vector just by finding the elementCathat is nearest to the received
vector. The numbet is called the error-correcting capability of the coeleThe
size of the se€ equals the number of possible messages that can be senhever t
channel. Therefore, given a minimum distance (or erroreming capability), one
aims to construct a code of the largest possible size.

It turns out that this is a very difficult problem. The largpsisible size of a
code inF3y with minimum distancel is denoted byA(n,d). Even the asymptotic
behavior of this quantity is largely unknown. We will lateiscuss some simple
techniques to bound this quantity from below and from above.

The rate of a cod€ < [ is defined to be:

log |C|

R(€) = 22, (1.1)

Here and in rest of the thesis the base of logarithnesifisiot specified otherwise.
The code mapg/" messages into the spaEg. We can say that, as a result of this
mapping,Rn bits of information are encoded in a codeword2af lengthn.

A straightforward way to estimate the transmitted veatdrom the received
vectory = x + e is to comparey with all the vectors ir€ and to state that = z,

4



1.2. Error-correcting codes

wherez is the codeword closest tioby the Hamming distance. However, if the size
of the code is large, such decoding becomes computatiopailyibitive. To sim-
plify the decoding and encoding procedures, coding thefignaesorts to study-
ing linear codes i.e., codes that form linear subspacestgf A large amount of
research in coding theory is devoted to linear codes thatchtbw-complexity,
computationally feasible decoding algorithms. In Chagitei3[4 we discuss con-
struction of codes with this issue in mind. We note that theimum distance of a
linear code equals the minimum weight among nonzero cod#syor

More detailed information about the code (than is given lgyrtinimum dis-
tance) is provided by the distribution of Hamming distanbeswveen the code-
words. For a cod€ € F} thedistance distributioris the set of numberg4,, A;,

.., An), where

1
A, = @|{($1,$2) € 62 : d($1,$2) = w}|

If Cis a linear code ther,, is simply the number of vectors of weight In this
case the distance distribution is called Weight distributionof the codeC.

To motivate the last definition, consider a channel thabuhices errors in a
probabilistic manner. Instead of the adversarial chanestcibed above, con-
sider transmission of binary data over a binary symmetrenaokel (BSC) which
introduces errors (bit-flips) in the transmitted bits indiegently with some fixed
probability p € (0,1). The distance distribution of the code enables one to esti-
mate the average probability of decoding error for the codsmuch scenario. This
possibility was recognized and gainfully used by Gallage?] [and was ampli-
fied by the well-known work of Poltyrev [89]. This paper prdes estimate of
the error probability of complete decoding for binary lineades with a known
weight distribution. There is sizable literature on weidigtributions of various
ensembles of linear codes as well as on general estimaties wigight distribution
(e.0.,[5,9,16,21,22,27,77,78,85]).

A useful concept related to the distance distribution ofdbeeC is that of the
dual distance o€. To define it, let us introduce the MacWilliams transform of th
distance distribution of a code [80, p. 139]. This is the datwnbers(Az, A7,
..., AL, where for allw

1 m
AL = @ > AKi(w), (1.2)
=0

where ;(t) is a Krawtchouk polynomial of degree It is known thatA& =
1, Ay > Ofor all w. The numbewl such thatd;- = --- = A7, | =0,47 >0
is called the dual distance of the code
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Chapter 1. Introduction

1.3 The sphere-volume bounds

Let X be a finite metric space. A metric ball centered at a poimt X and radius
r is defined as follows:

Br(x) ={yeX:d(z,y) <r}.

In many examples of metric spaces, the volume of the ball doedepend on the
center. For instance, this is the case for the Hamming spacehich simplifies
many proofs in coding theory. However, a number of applicetithat we consider
gives rise to metric spaces in which this property does niat. ho

Suppose|B,(x)| = B, is independent of. Let C € X be a code of largest
possible cardinality with minimum distande Then,

X X
5o Sle<g (1.3)
wheret = |(d¢=1)/2]. The lower bound is called th&ilbert-Varshamov(GV)
bound and the upper bound is known asghbere-packingHamming) bound [80,
p.19, 33]. The upper bound follows from the fact that ballsaafiust around the
codewords must be disjoint: if they are not, there exist taimis x;, x> € C such
thatd(xz,,z2) < d — 1, in violation of the distance condition.

To prove the lower bound i _(1.3), consider the followingeghg construction
of a code. Start with an empty sét Pick an elemeni; from X arbitrarily and
include it inC. Next, discard all the points &f in B;_1(x1), and from the remain-
ing elements picke, arbitrarily, and include it in®. Choosexs arbitrarily from
X\ (Bg—1(x1) UBy_1(x2)) and include it inC. This procedure can continue until
all elements ofX are either discarded or included @ By construction this will
produce a cod€ with distanced. The size of the code must be at le88tB,_,
otherwise the procedure would have continued.

When the metric space is such th&t ()| depends o, the inequalities (1]3)
remain true if in the upper bounB; is replaced bymin{|B;(x)| : € X} and
in the lower boundB,_; is replaced bymax{|B,_1(x)| : € X}. Surprisingly,
the lower bound holds true wheB,;_; is replaced by the average volume of the
ball instead of the maximum volume. This follows from an éggion of the well-
known Turan theorem of graph theory [99].

For the binary Hamming spad®, we haveB, = "7 (7). Consequently,

2n 277,
— < An,d) < ——.
G IS SN )
This can be easily extended to th@ry Hamming space far > 2.

If € is the largest possible code in the Hamming space with distathen the

rate ofC satisfies

d—1 t
1 n 1 n
— — < <1l-—-— .
1 - log ZE:O <2> <R <1 - log ;:0 <z>

6
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1.3. The sphere-volume bounds

Using standard bounds for binomial coefficients, we carh&rrsimplify these in-
equalities. These bounds will be crucial in many parts & thesis.

Lemma 1.3.1. [80, p.309ff|Let0 < a < 1 be such thatvn is an integer. Then

nh(a) nh(a)
2 o ( n ) <2 (1.5)

8na(l —a) — \an 2mna(l —a)’

whereh(z) = —zlog z — (1 — z) log (1 — z) is thebinary entropy functionMore-
over, whern < 1/2,

nh(a) an
Y (1) < (16)
8na(l —a) — g\
The proof of the lemma uses Stirling’s approximation of thetdrial.

Using the lemma above, one deduces that

log Am.0n) 5 1 1) (L.7)

lim inf
n—oo n
and
. log A(n, on)
limsup ————=
n—oo n
Here0 < § < 1/2is called therelative distanceof the code. The above equations
represent thasymptoticGV bound and sphere-packing bound. The upper bound
(1.8) can be improved for all < § < 1, and we refer the reader to [80, Ch. 17]
for such improvements. Atthe same time, [1.7) is the besivkrassymptotic lower
bound on the rate of a binary code. Given the rate, the adblievalative distance

guaranteed by the GV bound is denoted by
dov(R) £h7'(1 - R).

< 1-h(5/2). (1.8)

A sequence of codes is callegymptotically goodf as n increases both the
rate and the relative distance stay bounded away from zdre.GV lower bound
shows that there exist sequences of asymptotically gooescod

Let us end this section with an intuitive argument that eslathe notion of
channel capacityto the packing of spheres in the Hamming space. In a binary
symmetric channel with crossover probabilitya ‘typical’ error vector will have
weight approximatelypn whenn is large. Suppose that a co@ec F3 is used
for transmitting information over the channel. Transndittectors will have a low
probability of being confused if for any two code vectars, x-, the probability
Pr(x1 + e1 = x5 + e2) is small for any vectorg;, e; of weight pn. In other
words, spheres of radiys: about the codewords &f must be nearly disjoint. By
(1.8) the rate of such code is at mdst- h(p). This informal argument can be
made rigorous, and this upper bound on rate can be shown toéde NMoreover
there exist code sequences that approach the transmisseéh- h(p) with low
probability of decoding error asincreases. The quantity— h(p) gives the value
of Shannorcapacityof the binary symmetric channel.
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Chapter 1. Introduction

1.4 Linear codes

As mentioned above, a linear code is a linear subspace ofahenting spac&’;.
Without much effort all statements of this section geneeato the case of linear
codes over g-ary alphabet where is a prime power other than 2. By definition
a binary linear cod€ always has cardinalit@” for some0 < k < n. We write
C[n, k, d] to refer to a linear code of length dimensiont and distancé. A similar
notationC(n, M, d) with respect to a code which is not necessarily linear regglac
the dimensiork with the cardinality|C| = M.

A linear code can be viewed as a linear mappingFs — F3. A basis of this
mapping forms & x n matrix G called the generator matrix of the co@eThe
codeC can be defined by the generator matsin the following way:

€ ={uG:uecF5}.

Herew denotes a row vector. A matrik of rankn — k such thatGH” = 0 is
called the parity-check matrix @. The parity-check matri¥{ can also be used to
define the code:

C={xeclFy: Hr =0},

here0 is the all-zero vector of length — k.

It is known that there exist sequences of linear codes thaeee the Gilbert-
Varshamov bound. There are more than one way to prove thenstat. We will
show this using the so-callggtobabilistic methodvhich will be another common
thread of this dissertation.

One of the most important concepts related to linear codésaisof adual
code For a linear code& with generator matrixG, the dual codeS' is defined
to be the linear code whose parity-check matriisThe dual distanced* of the
codeC is the minimum distance of the dual co@é. Let (A,,w = 0,1,...,n)
and (AL, w = 0,1,...,n) be the weight distributions o and G respectively.
These distributions are related by the MacWilliams idesgi{1.2).

The parity-check matrix of a linear code can be used to forwther class
of representations for codes, namely, graphical reprasens. A hypergraph
H(V, E) consists of a set of vertice and a set of (hyper)-edges. The ele-
ments of £ are subsets of the verticds In the case when the size of this sub-
sets is restricted to be exacty we obtain the notion of graph. Given the
parity-check matrixH of a linear codeC one can form a hypergrapH(V, E)
as follows. Every row ofH can be identified with an element &f. That is
V ={1,...,n — k}. Every column ofH can be identified with an element of
E. Letus denoteF = {e;,i = 1,...,n}. We sete; to be a subset df such that
i € ej ifand only if H (i, j) = 1. This representation and its extensions will be the
subject of study of the Chaptdrs2, 3 &mnd 4.
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1.5. Probabilistic methods

1.5 Probabilistic methods

The termprobabilistic method#oosely refer to the use of identities and inequalities
from probability theory to prove combinatorial statemett$ormally, if a random
object picked from a collection of finite objects has a certaioperty with prob-
ability greater than zero then this proves the existence lgfaat one object in the
collection that has the property. Another way to use the gibdistic method is by
calculating the expected value of some random variablearitaften be claimed
that the random variable can take a value less than or eqtla Expected value.

As one would guess, there are no formal boundaries whereraatinods can
be used. Let us illustrate the power of these methods via amgbe that will be
useful later.

Proposition 1.5.1. For any positive integek < log (Zﬁi’f(n)), there exists a
i=1 \4

linear code of length, distanced and size> 2k,

Proof. We will prove the claim by considering the ensemble of lineades defined
by random parity-check matrices. Considdna- k) x n random binary matri¥?
whose entries are independent uniform Bernoulli randorralbas. Consider the
codeC given byC = {z € Fy : Hx = 0}. As the rank ofH is at most: — k the
cardinality of the codéC| > 2.

Now for anyx € F4 \ 0,

1

Pr(x € ) =Pr(Hx =0) = Sk

Suppose that a random variab¥e denotes the number of non-zero codewords of
weight at most! — 1 that are in the cod€. Clearly,

d—1
> (7]

i=1 \!
If EX < 1then there must exist a code with distaacédowever,EX < 1 is true
if

EX =

1
2n—k

O

This shows that there exists a linear code that achieves Yhbdand. Simi-
lar arguments can be used to prove the same fact considerangdam generator
matrix in place of the parity-check matrix.

From the above proof we also observe that the expected waigfhibution of
the codeC is given by 4y = 1, A, = ()28, w = 1,...,n. Below we call this

distribution thebinomial weight distribution
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Chapter 1. Introduction

1.6 Isometric mappings

We will repeatedly use the conceptrdar-isometrianappings in this dissertation.
Let X andY be two metric spaces with distance functienandd’ respectively. A
mappingf : X — Y is calleddistance-preservingf for all x,y € X,

d'(f(x), f () = d(z,y).

Distance-preserving mappings are useful in the contexhafvihg existence of a
code with certain distance in the metric spgcespecially if it is easier to construct
such a code i and then map it t& using f.

If the function f : X — Y is such thatf(X) = {f(z) : ¢ € X} C Y
then we call it arembedding In Chapter§]7 and 8 we will see many examples of
embeddings where the functiofr ! is well-defined and distance-preserving. In
particular in Chaptdrl8 we use such embeddings to constadgtscin the space of
permutations.

If the mappingf : X — Y is such that for alke, y € X,

Cid(z,y) < d'(f(), f(y)) < Cod(z,y),

for some bounded constand§ andC,, then the mapping is calletear-isometric
Clearly near-isometric maps are distance preserving. Mereif there exists a
code with a certain distance guaranteéXinthere will exist a code with a similar
guarantee iy}, and thus the sphere-packing boundiwill also be an upper bound
on the size of the codes . Also, it is possible to upper-bound the volume of
spheres of radiugd in X with the volume of spheres of radids,d in Y, which
could be easier to estimate. Then one can use Gilbert-\fashéype arguments
to bound below the maximum size of a codeirven when computing the volume
of the sphere irX is difficult.

When the metric space¥ andYy are /,-spaces, for instancel = R™ and
Y = R™, m < n, near-isometric mappings are of special interest. Any homo
morphism betweerR™ and R™ can be represented byra x n matrix ®. The
well-known Johnson-Lindenstrauss lemma asserts thag thests an ensemble of
m X n matrices where for most matrices in the ensemble the nearesy prop-
erty holds for any two fixed:, y € R™. The rigorous statement of this lemma and
a proof based on simple probabilistic methods can be fouidBih

In most applications one wants explicit matrices with tharAisometry prop-
erty for special subsets @". Compressed sensing is one such application in the
domain of signal processing where the requirement is totonartanatrices that act
as near-isometries on the setspfarsereal signals (vectors with a small number
of nonzero coordinates). It is interesting that one cantcoassuch matrices from
binary codes. This is the subject of discussion in Chapids 5

10



1.7. Organization

1.7 Organization

Apart from this introductory chapter, the dissertationiisdid into three different
parts to highlight different combinatorial applicatioriBhe first part is devoted to
codes constructed by considering spapsphsandhypergraphsln Chaptef 2 we
introduce the concept of codes on graphs and then estineteithmum distances
and weight distributions for several ensembles of suchodeChaptel 13 we dis-
cuss possible decoding algorithms for codes on graphs. Aorant result in this
part is a new low-complexity decoding algorithm for codeswgpergraphs that has
a good error-correcting guarantee for explicitly congedacodes. In Chaptet 4 we
consider a certain special ensemble of graph codes thabas&rected by concate-
nating several copies of codes with small distance. We shawfor this case, the
proposed decoding algorithm corrects error patterns ofjtehat grows linearly
with the length of the codes.

The second part of the thesis is devoted to construction rapbag matrices
that find use ircompressed sensirandsparse recoverya highly active recent re-
search area. In Chaptkrl. 5 we show that sampling matriceadhas near-isometry
on sparsesignals can be constructed from binary linear codes. Thsetagstion
discussed also gives the so-called dictionaries Veith coherenceln the follow-
ing chapter, a statistical near-isometry property is aergid, and it is shown that
matrices constructed from codes possess such propersy;ttiay are useful in the
context of compressed sensing.

The third part highlights an application of coding theardatieas to a non-
conventional error process motivated by the method of mgitinformation onto
flash memory devices. We consider the newly proposed modah&modulation
for coding in flash memories [67]. This scheme calls for carsion of codes in
the metric space of permutations with distance between tieemn by the mini-
mum number of transpositions of adjacent symbols. We giumbs on the param-
eters of such codes in Chaplér 7 and propose several classesstructions for
rank modulation codes in Chapiér 8.

We would also like to mention a few other works by the presetiar that rely
on the methods similar to those employed in this thesis. énatbrk on linear bal-
ancing sets [82] we explored a particular combinatorialstjoa in the Hamming
space. In [83], we considered a natural model for errorsahsags in high-density
magnetic media and estimated the capacity of informatiorage possible within
such model. The recent paper [84] further extends thesadsyations. In all
these works, the basic combinatorial ideas discussedsrttibsis are highlighted
as technical tools. These works are not included in the dasmn although they
are within the scope of its methods.
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CHAPTER 2

Codes on Graphs: Weight Distribution

2.1 Introduction

In the description of linear codes in Chagtér 1 we briefly nogved graphical rep-
resentation of codes. Although every linear code affordsplycal representation,
codes that are constructed and analyzed primarily relymig, are calleccodes on
graphs. One useful approach to codes on graphs relies on the assmntipst the
maximum degree of the graph (the number of edges connectetlddex) is kept
constant while the number of vertices (and edges) incredasesresulting family
of codes is known under the general namdoef density parity check codes
LDPCcodes.

Considerable attention in recent years was devoted to thy stf error cor-
rection with graph codes and in particular, LDPC codes. Gautegraphs account
for some of the best known code families in terms of their recarrection under
low-complexity decoding algorithms. They are also knowadbieve a very good
tradeoff between the rate and relative distance. The mdkstuelied case is that of
codes defined on a bipartite graph. In this constructionda oblengthV = mn is
obtained by “parallel concatenation” ®fn codes of a small length which refers
to the fact that each bit of the codeword is checked by twopeddent length:
codes. These lengih-codes are referred as local codes or subcodes below. The
arrangement of parity checks is specified by the edges ofatligograph which
are in one-to-one correspondence with the codeword bits.

There exists codes on bipartite graphs that are known to yamstically
good, i.e., to have nonvanishing rdteand relative distancé as the code lengthv
tends to infinity. Constructive families of bipartite-ghapodes with the best known
tradeoff betweer? ands have been found in [16].

Moving from constructive families to existence resultsaited by averaging
over ensembles of bipartite-graph codes, it is possiblectivel even better rate-
distance tradeoffs. In particular, bipartite-graph cog#k random local codes and
random bipartite graphs attain the asymptotic GV bolnd) fbs7relatively small
code rates and are only slightly below it for higher rated.[16
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Chapter 2. Codes on Graphs: Weight Distribution

A natural way to generalize codes on bipartite graphs is tsider concate-
nations governed by regulépartite hypergraphd, > 2. This code family was
studied by Bilu and Hoory in [19]. While constructive fanesi of bipartite-graph
codes rely on the expansion property of the underlying graghansion is not
well defined for hypergraphs. Instead, Bilu and Hoory putvemd a property of
hypergraphs, calleethomogeneity, which replaces expansion in the analysig-of h
pergraph codes. They showed that there exist explicitlyeamnstructible families
of e-homogeneous hypergraphs, and estimated the number of eowected by
their codes under a decoding algorithm suggested in thpermpa

In this chapter we study hypergraph codes from the persgectiweight dis-
tributions. In Theorem 2.4.2 and its corollary we prove ttiegt code ensemble
defined by random regul&partite hypergraphs and random local linear codes con-
tains codes that meet the GV bound if the rate of codes satisfiertain condition.
This condition becomes less restrictive [ascreases from the value= 2, and
covers all values of the rat® except a small neighborhood & = 1 for large!.
We also show (Theoreim 2.4.7, Clor. 2]4.8) that the ensembigpsrgraph codes
contains codes that attain the GV bound even if random hygeig are replaced
with afixede-homogeneous hypergraph. Specializing the last result foR, we
establish that expander codes of Sipser and Spielman [@3}reted from a fixed
graph with a large spectral &pnd random local codes attain the GV bound with
high probability. Finally, we derive an estimate of the aggr weight distribution
for the ensemble of hypergraph codes with a fixed local coge Theorerh 2.415)
that refines substantially a corresponding result in [L8]|ganeralizes it from = 2
to arbitraryl.

The material presented in this chapter is published in [14].

2.1.1 Codes on bipartite graphs

Let G(V, E) be a balanced;-regular bipartite graph with the vertex dét= V; U

Vo, V1| = |Vo] = mand|E| = N = nm edges. Let us choose an arbitrary
ordering of edges iy. For a given vertex € V this defines an ordering of edges
v(1),v(2),...,v(n) incident to it. We denote this subset of edgesiiy). Given

a binary vectoee € {0, 1}, let us establish a one-to-one correspondence between
the coordinates of and the edges i®. For a given vertex let x(v) = (z.,e €
E(v)) be the subvector that corresponds to the edgeS(in). Denote by the
second largest in the absolute value eigenvalue of the draph

Consider a set of binary linear codés [n, Ryn] of lengthn and rateR, =

1The spectrum of a graph is defined as the spectrum of its adjpceatrix. If the graph is regular
of degreen, then the largest eigenvalueris The spectral gap is defined as the difference between
and the second largest eigenvalue (by the absolute valine) sfiectral gap is known to control the
expansion property of the graph [63]
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2.1. Introduction

dim(A,)/n, wherev € V. Define abipartite-graph codes follows:
C(G, {Ay,v e V}) = {z € {0,1}" : Yyerunz(v) € Ay}
The rate of the cod€ is easily seen to satisfy
R(C) > 2Ry — 1. (2.1)

If we assume that all the local codes are the sameA.e= A, whereA[n, Ron, dy
= Jopn] is some linear code, then the distance of the c®dman be estimated as
follows [104]:

d/N > 53(1 - %)2

(we will write C(G, A) instead ofC(G, {A}) in this case). In particular, if the
spectral gap o6 is large, i.e. \ is small compared td,, then the relative distance
d/N is close to the valué?, similarly to the case of the direct product cade A.

The weight distribution of bipartite-graph codes congeddrom random reg-
ular bipartite graphs and a fixed local cadavith a known weight distribution was
analyzed in [25, 74]. In particular, it was shown thatdifis the Hamming code
then the ensemble’ = (C(G, A)) contains asymptotically good codes. Paper [16]
also studied the weight distribution of bipartite-graptdes with random regular
bipartite graphs. It was shown that fdf — oo the ensemble of codes constructed
from random regular bipartite graphs and a fixed cddeith distanced, > 3 con-
tains asymptotically good codes. It has also been showrtfigjf the local codes
are chosen randomly, then the code ensergbtmntains codes that meet the GV
bound in the interval of code raté&(C) < 0.202.

2.1.2 Codes on hypergraphs

Generalizing the above construction, Iét= (V| E) be al-uniform [-partite n-
regular hypergraph. This means that the set of verticess V; U --- U V; of
H consists ofl disjoint parts of equal size, sajy;| = m,1 < i < [. Every
hyperedge{v;, ,v;,, ..., v; } contains exactly vertices, one from each part, and
each vertex is incident ta hyperedges. Below for brevity we say edges instead
of hyperedges. The number of edgesbéqualsN = mn which will also be the
length of our hypergraph codes. As above, assume that thes edg ordered in an
arbitrary fixed way and denote y(v) the set of edges incident to a vertexFor
definiteness, let us assume that edggs,y,;;,j = 1,...,n are incident to the
vertexv; € V1,1 <1i < m. This fixes the order of edges in pa4t, while the order
in the other parts oH is established by the connections in the hypergraph.

Given a binary vectorr € {0,1}" whose coordinates are in a one-to-one
correspondence with the edgestbfienote byx(v) its subvector that corresponds
to the edges i (v).
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Chapter 2. Codes on Graphs: Weight Distribution

Figure 2.1. Alternate construction of the hypergraph code: The Begt =
{e1,...,en}, wheredeg(e;) = [ for all 4, represents the coordinates of the code
(hyperedges ofl); the setsV,...,V;, where|V;| = m for all j, represent the
vertices of the hypergrapH. Each vertex; ;,1 < i < [,1 < j < m carries a
codeword of the local codd of lengthn.

Define ahypergraph codes follows:
C(H, {A,,v € V}) = {x € {0,1} : Vyevx(v) € Ay},

where{A,,v € V} is a set of binary linear codes of length As above, if all the
codes are the same, we writéH, A). Assume that all the code$, have the same
rate Ry, then the rate of the cod@satisfies

R(€) > 1Ry — (1 —1). (2.2)

Remarkl. An equivalent description of the bipartite-graph code ensle is ob-
tained by considering an edge-vertex incidence graph oftaeghG(V, E), i.e., a
bipartite graph(D; U Dy, E) whereD; = E, Dy = V4 U Va, each vertex inD is
connected to one vertex Iy and to one vertex ii,, and there are no other edges
in E. Thus, for allv € Dy, deg(v) = 2, and for allv € D,, deg(v) = n. The local
code constraints are imposed on the vertice®in By increasing the number of
parts inD- from two tol, we then obtain the hypergraph codes defined above. This

gives an alternate description of the hypergraph code predén Fig[2.11.

The ensemble of hypergraph codes with local constrainesngmy single parity-
check codes was introduced by Gallager [52, p.12]. The ptigmoof errors cor-
rectable with these codes using the so-called “flipping'oatgm was estimated
in [107]. Several generalizations of this ensemble werdistlin [14, 19].

Definition 2.1.1. [19] A hypergraphH is callede-homogeneous if for evelysets
Di,Ds,...,D; with D; C V; and ’Dl‘ = o4m,

!

|E(D1>D27"'7Dl)| .

< ) Y. .

N < l_IlozZ + e 1SI£1<1§_1§1 Vaiag, (2.3)
1=

whereE(Dq, Do, ..., D;) denotes the set of edges that intersect all the Bets
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This definition quantifies the deviation of the hypergrdpfrom the expected
behavior of a random hypergraph. Hoe= 2 the well-known “expander mixing
lemma” (e.g., [63]) asserts that

E(Dy,D A
[ED1, D)l (]1\; 2)’—041042 Sﬁm,

showing that regular bipartite graphs ax¢n-homogeneous. This inequality is
frequently used in the analysis of bipartite-graph cod&s104].

Let A[n, Ryn,dy = don] be a binary linear code. The distance of a code
C(H, A) whereH is e-homogeneous satisfies [19]

e
/N > 60" — er(e, 6o, 1) (2.4)

wherec; — 0 ase — 0.

One of the main results in [19] gives an explicit construttids-homogeneous
hypergraphdi starting with a regular grapts(U, E') with degreeA and second
eigenvalue\. PuttingV; = U,i = 1,2,...,1 and introducing a hyperedge when-
ever thel vertices in the graplix are connected by a path of length- 1, that
paper shows that the resulting hypergrapm-igegular and=-homogeneous with
n = A=l e =2(I — 1)A\/A. Therefore, starting with a family ah-regular bipar-
tite graphs with a large spectral gap, one can construct ayfafiregular homo-
geneous hypergraphs with a small valuesoPaper [19] also shows that random
n-regular hypergraphs with high probability av€1//n)-homogeneous.

2.2 Ensembles of graph codes

Below we consider ensembles of random codes on graphs aedgngphs. There
have been many studies in coding theory that consider differnsembles of graph
codes (see, [16, 25, 26,52,74,77,78,87,106, 107]). Threrensd components in
these codes that can be randomized; namely, the graph alwtéheodes. Below
we consider all three possible randomization scenari@sgtaph is random but the
local codes are fixed, the graph is fixed but the local codesaadom, and both the
graph and local codes are random. We proceed to define thneeaensembles
of codes on graphs that includes all previous considem@ésrspecial cases.

Let us consider the scenarios when the (hyper)graph wilelexted randomly.
In the case of bipartite graphs this is done as follows. Corthe edges;_ 1,4,
j =1,...,ntothe vertexy; € V1,47 = 1,...,m. Next choose a permutation
on the setE’ with a uniform distribution and connect the remaining hedfyes to
the vertices inV, using this permutation. Similarly, to construct an ensenuil
random hypergraphs, we chooke 1 permutations independently with uniform
distribution and use them to connect the part$lof
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Random linear codes are selected from the standard ensefihdhgth+ codes
defined byn(1 — Ry) x n random binary parity-check matrices whose entries are
chosen independently with a uniform distribution.

Definition 2.2.1. We consider the following three ensembles of hypergrapbsod

Ensemble®:(l). A codeC(H,{A4,...,A;}) € €1(l) is constructed by choos-
ing a randomi-partite hypergraphH and choosing random local linear codes
of lengthn independently for each palf, € V.

Ensemblet,(1, A). AcodeC(H, A) € %> is constructed by choosing a random
[-partite hypergraph and using the same fixed local cadg:, Ron, dy] as a local
code at every vertex.

Ensembless (1, H). A codeC(H, { A, }) from this ensemble is formed by choos-
ing a fixed, nonrandom hypergragh and taking random local linear coded,
independently for each vertexc V.

Our purpose is to compute ensemble-average asymptotichizdiigtributions
for codes in these ensembles and to estimate the averagauminiistance assum-
ing thatm — oo andn is a constant. The case= 2 corresponds to ensembles
of bipartite-graph codes, some of which were studied in 26674]. Below we
will cover the remaining cases for the code ensemiig$), i = 1,2,3 and any
[ > 2. The analysis for the ensemlstg (1) extends the results of [16] from graphs
to hypergraphs while the results for the remaining two efdesnhave no direct
precursors in the literature.

2.3 Prior work on concatenated codes

Calculations of the weight distributions in this chaptevea some parallels to
earlier results for concatenated code ensembles [9, 21T88ke similarities are to
some extent expected because graph codes can be intergsededersion of code
concatenation. This fact has been discussed in detail ih [A7the same time,
calculations for graph codes are rather different frométos concatenated codes.
We define concatenated codes and quote earlier results ¢oaaode these links.

Code concatenation is a method of obtaining long codes flwrt sodes. The
first construction of this kind was put forward by Elias [49der the name of
product codes. Given two binary linear codéB, k1, d;| and Blna, ko, d2] we
can construct a codé = A ® B by taking the tensor product. The co@ehas
parameter$nno, k1 k2, ddz]. Decoding of product codes poses a set of interesting
and as yet unresolved questions (see e.g., [55, 92]). Aglraiieve, codes on
bipartite graphs form an extension of Elias’s construction

Another extension was suggested by Forney under the narmatenated codes
[51]. Given a binary linear cod8[n., k2, ds] and a linear codel[ny, k1, d;] over
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the field ofg = 2*2 elements, we define a concatenated code via the composite map
FR = Ty S (Fg)™ — (FR)™ 5 ()",

In words: the binary message lofks bits is first mapped to gary message vector
for the codeA, and the resulting length; vector overF, is mapped om; binary
vectors of the codé3. The image of this map is a concatenated c6deith the
parametersning, k1ko, > dids]. Unlike product codes, the valug d, is only a
coarse lower bound on the distance of the concatenatedtcddes fact manifests
itself in early works [21, 98] showing that ensembles of @irnated codes (with
various assumptions on the ensembles of constituent cattes) the GV bound,
which is a much higher distance than the product bound. Ifadrike constituent
codesA, B is fixed rather than random, the resulting distance estsrate below
the GV bound, but still better than the product bound. We guotesult from
[21,98].

Theorem 2.3.1. Suppose that the codg is drawn from the ensemble of binary
codes defined by random parity-check matrices of dimensions k) x ny and
the codeA is ag-ary Reed-Solomon code [80, p. 294] with the paramelteysk |,
whereg = 2¥2. The average number of vectors of weight= wN over the ensem-
ble of resulting concatenated codes equils?2(F(«.f.Ro)+o(1)) \where

R— Ry —wlog(2'=f —1) 0<w<1—2F0—1
F(w, R, Ry) = o wlogl ) Oswsl2

h(w)+ R —1 w > 1—2F0~
where Ry = k2/n2, R = kik2/nin,. The ensemble-average relative distance as a
function of the code rat& is given by

dav(R) Ry > log(2(1 — dev (7))
)=\ ke g<py<l (2(1 — 6av(R)))

log(zlfRO—l) = 119 og — ogv
wheredgy(z) = h™*(1 — z) as defined in SeC1.3.

In particular, this theorem exhibits the range of code r&teshe attainment
of the GV bound. This happens when the weight distributiothefcode matches
the weight distribution of random codes from the parityathensemble (the so-
called binomial weight distribution). The theorem also wjifées the gap between
the weight distribution of concatenated codes and the bigomeight distribution
in the case that the GV bound is not attained. The latter résuportant for
estimating the error probability of decoding as shown fgtance in [9].

This result has set stage for a number of later studies onatemated codes
and codes on graphs [12, 16, 61]. Similarities of this resitlh some theorems in
this chapter will become apparent below; yet we note thaptbefs involve new
ideas compared to the earlier works.
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2.4 Weight distribution

Below 4,, = A, (C) denotes the number of codewords of weightnd wt(x)
denotes the Hamming weight of the vectoras before. Before proceeding, we
note that upper bounds on the ensemble-average weighbdigin in many cases
also give a lower bound on the code’s distance.

Lemma 2.4.1. Suppose that for an ensemble of co@ésf length N there exists
anwg > 0 such that

lim Z EA, = 0.

N—oo
w<woN

Then for largeN the ensemble contains codes whose relative distance assatisfi
d/N > wo-

Proof. The proof is almost obvious because for a randomly chosea €@l %,

Prid(C) <woN] < > Pr[A,(€) >1]< > EA,.

w<woN w<woN

2.4.1 Ensembles(I)

Theorem 2.4.2.For m — oo the average weight distribution over the ensemble of
linear codes?, (1) of lengthN = mn and rate [2.2) satisfieEA,y < 2NVF+7),
where

_ Jwllogy (2B — 1) — (1 = 1) h(w) if 0<w<1— 20D/
~ |hw)+R-1 if w>1-—20E-D/

(2.5)
and
v < (I/n)(1 +logyn) + (I/2N)logy(2N).

Proof. LetC;,i = 1,...,1 be the set of vectors € {0,1}" that satisfy the linear
constraints of pari/; of the hypergraptH so that the cod€ = N;C;. Let P, =
Pr[z € C;]. The eventse € C; for different: are independent, and therefore

Pr[z € €] = P!

(foranyi = 1,...,1). Let B, (C;) be the random number of vectors of weigit
in the codeC;. Then,EB,,(C;) = (V) P, and

EA,(C) = @) Pr[z € €] = (‘Z) H%@.

i=1
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2.4. Weight distribution

Let X, be the set of vectors of weight = w/N whose nonzero coordinates are
incident to some vertices;, , ..., v, € Vi, s > w/n. Letw; = wt(z(vi;)),j =
1,...,sandletw; = w;/n. We have

|xs,w|:<TZ> > H(;l)g(?) > arxihl),

Wi,..,Ws j=1 Wis...,Ws
= S

By convexity of the entropy function, the maximum of the |laspression on
wi, ... ,ws under the constraint } , w; = wN is attained forw; = wm/s,j =
1,...,s. Since the sum contains no more thanterms, we obtain

\TXZS w’ < th(x)‘f'SlOgn—i-snh(wm/s) < 2N($h(w/$)+€)
wherez = s/m ande = (1+logn)/n. Avectore € X, ,, is contained irC; with
probability 25 (Fo=1)  Thus,

EBy(Ch) = |Xs 0 [2°"H07 D),

and the same expression is true®B,,(C;),i = 2, ..., 1. Therefore,

A D)
EA,(€) g( ) oI (max, <o <1 (2(h(w/)+Ro—1))+2)
w

Sincel(Ry — 1) < R — 1, we obtainEA,,(€) < 2NF(@+) where
Fw)<—-(l-1h(w)+1 ma<1(x(R0 —1+h(w/x)))

w<zx

< —( = Dh(w) + max (@(R 1+ Ih(w/2))).

The maximum ore of (R — 1 + [h(w/x)) is attained forr = zp = w/(1 — 2)
wherellog, 2 = R — 1. The two cases in the theorem are obtained depending on
whetherzy < 1 or not. Ifxy < 1, we substituter, in the expression fof'(w) and
obtain

F(w) < —( —1)h(w) + wllog, 0 °

which implies the first part of(215) on account of the idgntit — 1 + [ h(z) =
I(1 = 2)logy(z/(1 — 2)). If 29 > 1, we substitute the value = 1 to obtain the
second part of (2]5). O

Corollary 2.4.3. Letw* be the only nonzero root of the equation
w(R —1—1llog, (1 - Q(R—l)/l>) = (- 1)h(w).
Then the average relative distance over enser#h|(é) behaves as

{w*, if R <log,(2(1—dov(R)))

6(R) = . .
dov(R), if R>logy(2(1—dav(R))").

23
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The proof is analogous to the proof of Corollary 4 in [16] anitl e omitted.

Forl = 2 it was proved in [16] that ensembtg contains codes that reach the
GV bound if the code rate satisfi@s< R < 0.202. This result forms a particular
case of the above corollary. Increasingve find that the ensemble contains codes
that reach the GV bound for the values of the rate as showmvbelo

=3 4 10
R <0.507 0.737 0.998.

Thus already fof = 10 almost all codes in the ensemi¥g attain the GV bound
for all but very high rates.

2.4.2 Ensemblesgy(l, A).

In this case the results depend on the amount of informatiaitadéle for the local
codes. Specifically, [16] shows that fbe 2 the ensemble contains asymptotically
good codes provided that the distance of the local cédeat least 3. In the case
when the weight distribution of the codé is known, a better estimate is known
from [25, 74].

Theorem 2.4.4.Let A be a linear code of length with weight enumeratod(x) =
Yoo a;x", i.e., the number of codewords of weighin A is a;. Let A,, be the
random number of codewords of weighof a codeC(H, A) € %»(l, A). Then its
average value over the ensemble satisfies

logoEA,ny <—(I—1)h(w)+ — (% Ina(e®) — s*w),

.
Ngnoo N
wheres* is the root of (In a(e®))’, = nw.

This theorem enables us to estimate the asymptotics of tlae madative dis-

tances = lim =49 for the ensemblé&s. Let us consider several examples.

m—00 N

1. Let! = 3 and letA be the Hamming code of lengith = 15 and rate
Ry = 11/15. Then the rate?(%2) > 0.2 and the distancé = 0.2307. The relative
GV distance for this rate &gy (0.2) = 0.2430.

2. Let! = 3 and letA be the Hamming code of length= 31. ThenR(%2) >
16/31 andd ~ 0.0798. Using the same code with= 4 givesR(%2) > 11/31 and
§ ~ 0.1607 while dgy(11/31) ~ 0.1646.

3. Let! = 3 and letA be the 2-error-correcting primitive BCH code of length
n = 31 and rateR, = 21/31. Then the rate?(%>2) > 1/31 and the value ob is
~ 0.3946608. The relative GV distance for this ratedgy(1/31) ~ 0.3946614.

Let us turn to the case when only the minimum distadg®f the codeA is
available. In [16] the cask= 2 was addressed, proving that as longias> 3,
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2.4. Weight distribution

there exists am > 0 such that the ensemble-average relative distance ¢ as
m — oo. In the next theorem this result is extended to arbitdary 2. We also
prove a related result which gives an upper bound on the geevaight spectrum
and provides a way of estimating the value.gf

Theorem 2.4.5.(a) Let A be the local code of length and distancely used to
construct the ensemblg;(l, A) of hypergraph codes. Lety = xg(w) be the
positive solution of the equation

wn + Z < > wn —i)x' = 0. (2.6)

The ensemble-average weight distribution satisfies

L1+ (D

1
lim — logEA, N < —log
Nl—]>qc1>oN0g N_n "

— (1 — 1) h(w).

(b) The inequalitydy > 1/(l — 1) gives a sufficient condition for the ensemble to
contain asymptotically good codes.

Proof. (a) LetH be a random hypergraph agdH, A) be the corresponding code.
Recall thatC = N;C;, where(; is the set of vectors that satisfy the constraints
of parti of the graph. LetU;(w,dy) be the set of vectors € {0,1}* such that
wt(x) = w andwt(x(v)) = 0 or wt(x(v)) > do for all v € V;. Since the number
of such vectors is the same for allbelow we write|U (w, dp)| omitting the sub-
script. Let us choose a vectarc {0, 1} randomly with a uniform distribution.
Then

U (w, do)|

(w)

Pr[xz € Ci|wt(x) = w] <

and for; > 2,

Prlz € Cj|wt(x) = w,x € C1] = Pr[x € C;| wt(z) = w).

Then
EA,(C) = <Jz\£> Prjz € Clwt(x) =w] = <Z> (Pr[z € C1| wt(z) = w))!
w !
’U((N)’ffi)’ | o

Given a vector denote byj, the number of vertices € V; such thatvt(x(v)) = «.
Clearly,

n j,L
m n
vwal= ¥ (" I
jOvjdovdeﬁ»lv"wjn 0 d07 TrooJn Z:do

Yo wh=w, jot Y, ju=m
12>dg
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This sum contains no more thdm + 1)” = O(N™) terms, so forN — oo its
exponent is determined by the maximum term (which has exg@igrowth).
We obtain

1 l
N10g|U(WN7 d0)|l < E VO,%E}?E,Vn {h(VO>Vd()>Vd()+17"'>Vn)
Sw=wn, Y v,=1
n
n log N
+Zuzlog< )}—I— & ) (2.8)
= 7 m

wherev, = j,/m,1 = 0,do,dy + 1,...,n, andh(z) denotes the entropy of the
probability vectorz € R™*!. The objective function is concave, so the point of
extremum is found from the system of equations

<7>(1—ZV2) =vp™t, i=do,do+1,...,n

1
1=d

n
E W, = Wn.

1=dp
Its solution is given by

I O
L+ 30 ()
wherey is chosen so as to satisfy the last equation of the systentudgivey ) _, iv;

and writingz instead ofu, we observe that it should satisfy EQ. (2.6). This equation
has a unique roat, > 0 because putting = p/(1 — p), we can write it as

12 i =dgo,dy+1,...,n,

@;&(Xi;% + 1) = E[X|X > do],

where X is a binomial(p, 1 — p) random variable. Ag changes from O to 1, the
left-hand side of the last equation decreases monotoyifralin +oc to wn while
the right-hand side increases monotonically fr@grio n.

Finally, computing the entropy and simplifying, we obtdie testimate

+ Z?:do (7) wZO )

wn
Lo

1 L1
— <
Jim - log |U(wN, do)[" < log

(b) The proof of the second part is analogous to the case-0f in [16]. Let
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2.4. Weight distribution

w,1 < w < N be the weight and let = w/dy. We have

|U(w,do)| < 'zp: (7;) <(Z) i((p _z'ni)d0>

i=w/n
() 2 (0 )
<))

Then

o= ()2 = ()

Using the estimate§?)* < (}) < (42)*, we compute

EAy(€) < @) l dopl2lpn(N>w(l )

p
(Sm/w)dol do(l= 1))’

1
wheres = ((edy2™)!n%) =4 @1 Thus, for anyw satisfyingw < s/m, the aver-
age number of vectors of weightV tends to 0 asn — oo as long agly(l—1) > I.
This proves that under this condition the ensemble cont@sysnptotically good
codes. O

Example:Let A be the[7, 4, 3] Hamming code and lét= 2. Theoreni 2.415(a)
implies a lower bound > 0.01024 on the average relative distance for the en-
semble%,(2, A). This improves upon previous results ( [25, 74]; also Partofb)
this theorem) which assert only that the ensemble contaysatotically good
codes. Of course, in this case we can use the entire weighbdigon of the code
A to find the estimaté > 0.186 from Theorem 2.4]4; however, in cases when the
weight distribution is difficult to find, the last theorem pides new information
for the ensemble of graph codes.

Similarly, for A[23,12, 7] from Theoreni_2.4]5(a) we obtain the estiméate:
0.0234. Again, using the entire weight distribution, it is poseilbd obtain a better
estimate.

Part (a) of the last theorem implies the following corollaviich shows what
happens to the average weight spectrum of the ensemblenfptdoal codes.

Corollary 2.4.6. Letdy = dgn. Then

L 1o EAuN (@) < () = (1 = 1) h(w) + 7
N %

wherey < (log N)/m + (logn)/n.
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Chapter 2. Codes on Graphs: Weight Distribution

Proof. In (2.8) let us bound above(-) by log n. Then

—log\U(w do)|! <— max Zyzlog< >

Vdo? “Un
wy=wn, "= do

Computing the maximum amounts to solving a linear programgrproblem whose
dual is
wnz — min

zz>log<>2—d0,do+1 ,n; z>0.

Its solution is given by:* = wn maxg,<,<y log (') /2. We obtain

1 l h(x)

_ < — < =+ 7.

N log]U(w,do)] lwéongl%;(l . +y lwh(5o)/5o y
Employing [2.7) now completes the proof. O

2.4.3 Ensembles;(l, H)

Theorem 2.4.7.Assume thall is e-homogeneous. Fon — oo the average weight
distribution over the ensemble of linear codég, H) satisfiesE A,y < 2VF+7)
where

o —x0(1—3)+x3h<ﬁ0) if 20 < 1,
h(w)+R—1 if 2o > 1,

wherex is the unique positive root of the equation
Iz og(a! /(2! —w)) =1 - R, (2.9)
v=1(n+logm)/N +e.

Proof. LetC € %3(I, H) and letz € {0, 1}V be a nonzero vector. Denote By the
set of nonzero vertices afinthe partV;,i = 1,...,l.LetE = |E(By, Ba, ..., By)|.
Letb; = |B;|, 8; = b;/m, then the probability that € € equals2—(1—Fo)N ;5
Assume w.l.o.g. thath) < (B < --- < ;. The average number of vectors of
weightw = wN in the codeC can be bounded above as

Nl |l_ ﬁ + €4/ b1b2 l n _(1_ )
EA, < =177 9—(1=Ro)N 2, Bi
= Z ( H b;

w
wm<by,ba,....b<m =1

Then

—logEAwN< max {Hﬁl (
H 6L>w ‘

5) ~ (=B 5} +4

Z
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2.4. Weight distribution

Let ¢(54,...,3) be the function in the brackets in the last expression. Let us
prove thatp is concave in the domai® = [[,(w, 1] N {(G1,....6) : [[; Bi > w}.
Computing its Hessian matrix, we obtain

[ 51 52 s ]

2 BB T BB
LA S
Hy = —loge 2.1 .2 2.l )
8.2 S9 s.l
| BB BB T B
where
51 = w Hl Bi
[LGi—w

w
S9 = 851 —I—l:[ﬁzln (1 — m)
The matrixH 4 can be written as
Hy = —log e(SszT + (81— 32)diag(ﬁ1‘2, . ,ﬁl_z)),

wherez = (1/44,...,1/3)" and diag-) denotes a diagonal matrix. We wish to
prove thatH 4 is negative definite fof; > 0,0 < w < [[, ;. Clearly,s; > s, and
therefore the claim will follow if we show that, > 0. This is indeed true because
letting @ = [, 8; and using the inequality > In(1 + z) valid forz > —1,z # 0,
we have

w Q—w w Q—w

32_Q(Q_w+1n7) >Q(m(1+m) =g ) —0.

We will now show that the maximum af in D is attained on the liné given
by 1 = B2 = --- = ;. Note thatD is an intersection of convex domains and
therefore itself convex. Moreover, the domdinis also symmetric in the sense
that together with any point = (4, . .., ;) it also contains all the points obtained
from p by permuting its coordinates, and the value @it each of these points is the
same and equal t9(p). Becausey is strictly concave, for any point € D,p & ¢
it is possible to find a poing such thatp(q) > ¢(p) (any pointg on the segment
betweenp and one of its symmetric points will do). This shows that thabgl
maximum of¢ in D is attained orf including possibly the point; = --- = 5, = 1.
Thus, we obtain

1 1 w
N logEA, < wlgjlagfgl{—(l —R)z+2'h (E)} +7.
The maximum of this expression anis attained forz determined from[(2]9).
This equation has a unique positive ragtbecause the left-hand side is a falling
function of z that takes all positive values far € (w'/!, 00). This concludes the
proof. O

29



Chapter 2. Codes on Graphs: Weight Distribution

0.2
0.1
0.3

0.2 0.25

) ()

Figure 2.2: Average weight spectra for ensembles of graph codeg:=IR, R =
0.2, (I) I = 3, R = 0.4; (a) ensemblé&s; (2, H), (b) ensemblé& (2), (c) ensemble
of random linear codes.

This theorem implies the following result.

Corollary 2.4.8. For all values of the code rate satisfyitft)> log(2(1—dgv(R))!),
almost all codes in the enseml¥g(l) approach the GV bound a8 — oo.

Proof. From the previous theorem, the GV bound is met for the firse timnen
xo becomes 1. Substituting 1 ib_(2.9), we obtain a conditionwoim the form
w=1-2E=-D/l As|ong as this value is less thagy (R), the ensemble-average
relative distance approach&sy(R) asN — oc. O

We note that the condition for the attainment of the GV bouwnmg out to
be the same as for the ensemislg(l) constructed from random graphs. The
homogeneity condition, and in particular, the expandelimgixemma for bipartite
graphs are known to approximate the behavior of random grafihs approxima-
tion turns out to be good enough to ensure that both ensemiegin GV codes in
the same interval of code rates. Moreover, for small weitffésaverage number of
codewords for the ensemb#&(/, H) turns out to be smaller than for the ensemble
%1(1). This is illustrated in the two examples in Fig. 2.2.

For! = 2 codes in the ensemble&g; and ¢, reach the GV bound for code
ratesR < 0.202. For R > 0.202 the codes are still asymptotically good, although
slightly below the GV bound. For these values of the rate,aberage relative
distance for the ensembi&; is greater than for the enseml¥é as shown by the
following numerical examples.

R 0.3 0.5 0.7 0.9
¢1(2) 0.18558 0.09276 0.03211 0.00337
¢3(2,H) 0.18605 0.09492 0.03242 0.00380
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2.4. Weight distribution

Similar relations between the weight spectra and distantd¢se ensembles
¢1(1),65(1, H) hold also for larger values of
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CHAPTER 3

Codes on Graphs: Decoding

3.1 Introduction

The principal appeal of graph codes lies in their perforneamaeder iterative local
decoding procedures. This idea is prominent in the studhedrietical properties
and applications of LDPC codes [91]. It has also given risa tmmber of inter-
esting results in the area of generalized LDPC codes, ieaeml linear codes on
graphs.

Error correction with graph codes has been studied alondines, namely, by
examining explicit code families whose construction imes graphs with a large
spectral gap, or by computing the average number of errgreatable with some
decoding algorithm by codes from a certain random ensenflgeaph codes. The
focus of this chapter will be on the first direction. The satbtne of work will be
the subject of Chaptét 4.

The research topic of this chapter, initiated in Tannerjsgp496] and in Sipser
and Spielman’s [93], pursues estimates of error correckiith codes on regular
graphs with a small second eigenvalue and ensuing expamsiperties. Presently
itis known that such codes under iterative decoding carecbthe number of errors
equal to a half of the designed distance of graph codes [1.7]/%s estimate fits
in a series of analogous results for various “concatenateding schemes and has
prompted a view of graph codes as parallel concatenatiotieedbcal codes [17].

The focus of this chapter is on decoding of hypergraph cotles.only known
algorithm for their decoding [19] stops short of exploititige full power of these
codes as indicated in particular by its parameter estimditas shortcoming shows
most prominently for the case of small relative distancesmthe proportion of
errors corrected by this algorithm vanishes compared twdhee of the distance.
At the same time, the tradeoff between the rate and relaistarece of hypergraph
codes shows an improvement over bipartite graph codes fall sialues of the
distance. Motivated by this, we propose a new decoding éhgorof hypergraph
codes and estimate its error-correcting capability. Wewstiat it corrects the
number of errors which constitutes a fixed proportion of théels distance. The
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Chapter 3. Codes on Graphs: Decoding

material presented in this chapter is published in [14].

3.2 Decoding of bipartite graph codes

We set stage by presenting a by now standard iterative degeadigorithm for bi-
partite graph codes of Zémor [104]. Consider a c8¢@, A) on a bipartite graph
G(V,E),V = V3 UV,. Its decoding can be performed by a natural algorithm [104]
that alternates between parallel decoding of local coddsipartsl’; andV5 until,
hopefully, it converges to a fixed point. In this algorithrhetmost current value
of each edge (bit) is stored at the vertex in the part decoddétia most recent
iteration.

For the ease of analysis we assume that the local codes avdedeto correct
up tot errors, whereg > 0 is an integer that satisfie¥ + 1 < dy anddj is the
distance of the codd. Formally, define a mapping ; : {0,1}" — {0,1}" such
thaty 4 :(z) = « € Aif x is the unique codeword that satisfiés, ) < t and
Yai(z) = z otherwise. Lety™ be the estimate of the transmitted vector before
the ith iteration,i > 1, wherey = yV) is the received vector. The next steps are
repeated for a certain number of iterations.

Algorithm 1 (y(1)

e i 0dd: for allv € V3 puty+) (v) = ha (¥ (v));
e i even: for allv € V5 puty 1 (v) = 14, (y@ (v)).

We say more on this algorithm in the next chapter; howevarnigome reflec-
tion it becomes clear this algorithm as well as other “eddented” procedures do
not easily generalize to the case of hypergraphs when oreigdbecked by more
than two vertices.

3.3 Decoding of hypergraph codes

In [19] the following alternative to Algorithm | is suggesie starting from the
values of the bits stored on the edgedioflecode in parallel all local codes afl
parts ofH and for eachv € V form an independent decision about the codeword of
A that corresponds to the edgE$v). Next, the values of the bits at every vertex
are updated, so that now every vertex stores an indepenganbrm of its bits’
values. For the update, the value of theaifv) is set to the majority value of the
decoded versions of this bit at all the verticése e\v, wheree > v is an edge
(for this to be well-defined, the values bare assumed to be even). The decoding
then iterates, repeating this parallel decoding round aflitthe vertices agree on
all bits.

In [19] this algorithm is shown to correct all patterns ofces provided that
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3.3. Decoding of hypergraph codes

their proportion, as a fraction of the blocklength is less than

=1\ 2/ 75\ 2/
<Z/2> (5‘)) — ¢a(e,60,1) (3.1)

wherecs (g, dg,1) — 0 ase — 0. This algorithm consists dbg N iterations, each
of which has serial running time linear in the blocklengd¥h Its analysis relies on
thee-homogeneous property &F.

This result should be contrasted with the distance estimia@.4). For fixed
values ofl > 2, if one thinks ofdy as a variable quantity, then the number of
correctable errors in(3.1) is not a constant fraction ofdbsigned distancé (2.4).
For example, fof = 4, (3.1) gives a decoding radius equalfotimes the fraction

26
4/3

For smalldy this is a much smaller quantity than the relative designsthdce’,’”.
This consideration is reinforced by the fact that advargagéypergraph codes are
most pronounced for small values of the distafice

Our objective is to propose an alternative decoding styaieat decodes a con-
stant fraction of the designed distance.

For everyi = 1,2...,1, we shall define a-th subprocedurghat decodes the
local codeA on every vertex belonging to the vertex $&t We shall claim that if
the initial number of errors is less than a bound that we shatbduce, therfor
at least onei, thei-th subprocedure applied to the initial error pattern posgua
pattern with a smaller number of errors.

Let us now describe the decoding procedure in more detail.ef@ry vertex
v, and the associated subspg6el}” where coordinates are indexed by the edges
incident towv, we will use the followingthreshold decodingprocedureT;,; of the
constituent codel. This means that we introduce a numhker 2, to be optimized
later, and that we decode a vertex subcodéy if its Hamming distance to the
nearest codeword is less or equadte dy/x. If every codeword ofd is at distance
more thand,/x we leave the subvector untouched. L&t= (v;1,...,v;.,) be
the ith component oHl. Given anN-vectorz = (z(v;1),...,2(vim)), We can
decode each of thex of its subvectors witlT}, obtaining anV-vectorw. Abusing
notation, we will writew = T,,(z). Thei-th subprocedur@ow consists of applying
T, to the componeny;.

As mentioned above, we shall claim that one ambotthei-th subprocedures
lowers the total number of errors. However the decodingrétya will not be able
to discern which of theé-th subprocedures is successful. So the decoder will apply
all I subprocedures in parallel to the received vector, yieldiogtput vectors. The
next decoding iteration will have to be applied to every autf the preceding iter-
ation, so that iterations of the algorithm will yield® output vectors. We will only
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apply the algorithm for a constant number of iterations h@axeuntil we are guar-
anteed that the number of remaining error for at least oneedf butputs has fallen
below the error-correcting capability of Bilu and Hoory'sabding procedure. We
then let the latter decoder take over and decodé’ alandidates. At least one of
them is guaranteed to be the closest codeword, and it camdpediout simply by
computing the Hamming distance of every candidate to thiimeceived vector.

To give a more formal description of the algorithm, suppdetd < {0, 1}
is the vector received from the channel. In each iteratienpttocessing is done in
parallel in all the vertices off. Let %; 7= {y(J } be the set ofV-vectors stored at
the vertices of the componeh before theyth iteration. By the discussion above,
27| <Vl

We begin by setting?;! = {y} for all i. Iterationj,j = 1,2, ..., s consists of
running! parallel subprocedures. Thith subprocedure applies deconrto every
vectory(l) in the set@] replacing it with the vectof (y (J)) [ =1,. ]@3\
The outcome of this step createpotentially different decodlngs of every vector

y%) € @i],i = 1,...,l. In the second part of the iteration we form the sets

@3+ i =1,...,1byreplacing each vectgy'’) € # with its decodings obtained
in all the! subprocedures. ’

Next, we prove that one of tHesubprocedures will actually diminish the num-
ber of errors. This analysis also reliessehomogeneity, although in a way differ-
ent from [19]. Leté be the set of coordinates, i.e. the set of edges, that arean er
For everyi = 1...1, let us partition the set of vertices I} that are incident t&
into three subsets;;, N;, B;. The set; is the subset of vertices that will be cor-
rectly decoded)V; is the subset of vertices that are left untouched by thelioids
decoder, and; is the set of those vertices that are wrongly decoded to aipara
codeword ofA. The situation is summarized in Figure13.1. From now on by the
&-degreeof a vertex we shall mean the degree of this vertex in the suidrigyaph
induced by the edge sét It should be clear that every vertex Gf hasé-degree
not more thanl,/x, every vertex inV; has€-degree at leasi,/~, and every vertex
in B; has€-degree at leasts — 1)dy /.

We use a shorthand notatiéiG;) to mean the set of edges that has one of its
endpoints inG;. Similarly we shall write€ (N;) and&(B;).

Lemma 3.3.1. If the i-th decoding subprocedure introduces more errors than it
removes, thef€ (G;)| < |€|/x. Moreover, if

[E(V3) ,
Wi = , i=1,...,1
|E(Ni) U E(B))|

then

L —pi
8(Gi)| < — e,

SR
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3.3. Decoding of hypergraph codes

(bad) vertices in error that
will be badly decoded

(neutral) vertices in error that
are left untouched

(good) vertices in error that
will be correctly decoded

Figure 3.1: Details of the set of vertices incident to edges in error. e &-
degree inG; is less thaniy/x, the min€-degree inB; is at least(x — 1)dy/x, the
min E-degree inV; is at leastly /.
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Proof. The first part of the lemma follows from the second part, whichroved
as follows. We bound from abové(G;)|, the set of edges removed, by the set of
edges added§& (B;)|: we get

1€(Gi)]

IA

d 1 1
1B;|=2 = |B;|dy (1--)
K k) k—1
1

< leB)—.

The first inequality comes from the definition @fand the threshold decoder. The
second inequality states th@t-1/x)dy is alower bound on the minimu&rdegree
in B;. We now have

€] = [8(Gi)| + |E(N)| + [E(Bi)| = [E(Ga)| + [E(B)|/(1 — i) (3.2)

I{_
>

Hi 4
which proves the lemma. O

Theorem 3.3.2.For anya > 0, if the number of errorg NV is such that

51/

0
e<(1—a) EDCLED (3.3)

they can be corrected in tin@ (N log N).

Proof. The theorem will follow if we show that at least one subpragedreduces
the error count by a constant fraction. Indeed, in this casenatant number of
rounds of the above algorithm will reduce the error country positive propor-
tion of the designed distance whereupon the remaining ewdl be removed in
O(log N) steps of Bilu-Hoory’s algorithm.

Assume toward a contradiction thall the i-th decoding subprocedures=
1,...,1, introduce more errors than they remove. Let us introduegfdlowing
notation: || = eN,S; = B; UN;, |S;| = o;m. Note that since the minimum
&-degree inS; is at leastdy /k, we have

o; < Kke/dy. (3.4)

Consider the subset of edges obtained fréroy removing all edges incident to
“good” verticesG; for all .. We are left with a subhypergraghs with vertex
setS;, i = 1...1. Use Lemma3.311 (the first part) for alto argue that the total
fraction of edges it ¢ is at least(1—1/x). Applying thes-homogeneous property
(2.3) gives

l .
e<1——> <o01---0;+€¢ min (Jiaj)l/z.
K 1<i<j<l
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Applying (3.4) we obtain

(11} < () 4 ore
k) = \Jy 50‘

This inequality does not hold (and therefore our assumpsidalse) if

Uk 1/(-1)
e<:53“‘1)<1' r E”/5°> . (3.5)

K!

Takingx = [ + 1, rewrite the expression in the brackets on the right as

<Z+L1)(l+1)/(l—1) (1 ¢ +501)2E> l%

By taking sufficiently largen it is possible to make small enough so that for any
givena’ > 0 there holds

(1—(1+1)%/6)YH > 1 —d.
This means that (3.5) is satisfied for all

o1/

/
e<(l-a )(l FRENCRYY(VE

Finally, choosinge’ < « guarantees that at least one subprocedure reduces the
error count by a constant fraction. O

We see that the upper bound on the number of correctablesayinan by The-
orem[3.3.2 is a constant proportignof the designed distanc&V (2.4), where
v =1/ + 1)HD/E=1)  For example, foi = 3,4 we gety = 1/16 and1/14.2,
respectively.

The next theorem provides a better estimate by refining the above analysis.
The way this is done is to rely on the full power of Lemima 3.8dtéad of its first
part as above.

Theorem 3.3.3.For any« > 0, if the number of errorgV is such that

e < (1—a)y™ max min, fu, k)

with

[ =101 = p)/(k — )0
f(p, k) = /{l/(l_l)[,u +(1—p)/(k— 1)]1/(1—1)

they can be corrected in tim@(N log N).
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Proof. We proceed as in the previous theorem, assuming toward sadariton
that each subprocedure increases the error count. Usirdgethetion of 11; given
above,

E(Bi))| _ [E(N)]

1 —pi pi

Recall that the subhypergraphy is formed of the edges all of whose vertices are in
S;. To count the total fraction of edgeggH¢) in the subhypergrapH¢ we employ

Lemmd3.3.1: z
BHe) > e(1 -3 ),

P
i=1 Hi

E(5)] =

The &-degree of a vertex ih; (resp.,B;) is at leastdy/x (resp.,do(k — 1)/k).

Hence (1 )
K R(L— i
il = |Bi| + |N;| < E(N;)— + E(B;) ———%
511 = B+ 1N < () + (B S
ke (1 — p;
< — ; .
_do(li—l—i_/h)N

Using the last two inequalities i (2.3), we obtain
!

() = () T o)+

K — 1L
i=1 Hi

To contradict this, let

(50)1/@—1) { 1= S0, 2 —en/o }w-l)
e< |— L ‘
H§:1(% + 1)
We again bound the terms that involvérom below by a multiplicative termh— o/

Optimizing on all possible values of; givesu; = pforalli = 1...1, whereupon

the expression on the right can be replacedlby a)dé/(l_l)f(ﬂ, k). The proof is
thus complete. O

K

Numerically, the first values of the decoding radjugiven by Theorerh 3.313

are
3/2 4/3

0, 0,
>0 _ for]= >0 forl=4
P =501 S T

attained fors satisfying(k — 1)~' = 1 —I/x andy = 0 or 1. These results should
be compared with the estimate of the designed distance esagiden by[(2}4): one
notices that we are now correcting a constant proportiomefdesigned distance
which was our goal. This is also an advance over the earleitref [19] given in
B.2).

Can one obtain better bounds for the decoding radius? Iniphin it is possible
to obtain further improvements by introducimgultiple thresholds instead of the
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3.3. Decoding of hypergraph codes

single decoding thresholél = d,/x, and approacky = §/2 by increasing their
number. However we shall only be able to claim that using dre multiple
thresholds reduces the number of errors for one of the sabgtwes, but we shall
not be able to discern which decoding threshold achieves thhis will result
in yet another layer of parallelism, further increasing théue of the constant in
the decoding complexity. We will not pursue this line of msd further here. A
remaining challenge is to decode up to half the designedrdistwith an iterative
decoding procedure of reasonable complexity.
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CHAPTER 4

Codes on Graphs: Correctable Errors

4.1 Introduction

In this chapter we are interested in estimating the averageber of errors cor-
rectable with the ensemble of codes on graphs. The worksrdthéction originates
in the works of Gallager [52] and Zyablov and Pinsker [107veihhowed that ran-
dom LDPC codes of growing length can correct a nonvanishiactibn of errors.
Recently the decoding algorithm of [107] was studied by Btei® [26] who de-
rived an improved estimate of the number of correctablergermompared to [107]
and by Zyablov et al. [106] who provided estimates of the neinds errors under
the assumption of local single error-correcting (Hammicmgjes.

As is well known (e.g., [63]), graphs with high expansion aaddom graphs
share many properties that can be used to prove estimateoterrection. Re-
garding the proportion of errors corrected by graph codekeuiterative decod-
ing, we note one difference between (generalized) LDPCsodaandom graphs
and explicit constructions based on the graph spectrum.eXplkcit constructions
based on regular graphs depend on the difference betwedargiest and the sec-
ond largest eigenvalue of the graph (the “spectral gap”) thig reason, one is
forced to rely on local codes with rather large minimum distd, for instance,
dy greater than the square root of the degreef the graph. Even though in the
construction of [93] and later works, is kept constant, this effectively rules out
of consideration local codes with small minimum distancehsas the Hamming
codes and the like. The square root restriction is impliedhsyspectral gap of
regular bipartite graphs, and is the best possible owingeg@ton-Boppana bound
for graph spectra [86]. The purpose of the present chapterlif§ this limitation
on the distancely by switching from graphs with a large spectral gap to random
graphs.

In this chapter we obtain new estimates of the number of ctaide errors for
random ensembles of bipartite-graph and hypergraph cauter iterative decod-
ing. The first part of the chapter is devoted to codes on redpipeartite graphs. To
construct long graph codes, we assume that the degree afdaple ig fixed and the
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number of vertices in both parts approaches infinity. Assgrttiat local constraint
codes are used to correct 2 or more errors, we show that abtiastdes in the

ensemble of graph codes are capable of correcting all eatterps of weight that
forms a constant fraction of the code length. This is a mus$ festrictive assump-
tion on the local codes than the one taken in earlier workéierlecoding of graph
codes [17,104].

We then observe that if the degree of the graph is allowed drease then
graph codes with local codes of constant distance do nctctoarlinearly growing
number of errors under the proposed iterative decodings Miativates us to study
graph codes with long local codes correcting a growing nuraberrors that forms
a fixed proportion of the degree. The results obtained indhge parallel earlier
theorems for product codes and graph codes based on theaspegt

In the second part of the chapter we establish similar regoitcodes on hy-
pergraphs, showing that a constant proportion of errorstiected by an iterative
decoding algorithm. Constructing the code ensemble baseegular hypergraphs
of a fixed degree, we show that they contain codes capablertdatimg a con-
stant proportion of errors. The proof involves no assunmgtion the distance of
the local codes; in particular, we show that networks of Hamgneodes correct a
fixed proportion of errors under iterative decoding. Thig faas previously proved
by Tanner [96] under the assumption that the underlyingtgia@ tree. This as-
sumption is not needed in our results. As in the case of thehgeasemble, we
also perform the analysis of the decoding algorithm for gmeewf growing degree,
finding the proportion of errors correctable with hyperdrajmdes based on long
local codes.

The material presented in this chapter is published in [12].

4.1.1 Code ensembles

For the bipartite graph codes we consider the ensemble es&d2, A) described

in Definition[2.2.1 of Chaptdr] 2. Heré[n, Ron, dy] is the fixed linear binary local
code. Suppose that th&’, RN] codeC(G) is constructed by associating it with a
graphG(Vy U Va, E), |Vi| = |Va| = m, |[E| = mn = N, sampled from the set of
graphs defined by a random permutation/érlements which establishes how the
edges originating ifv; are connected to the verticeslh.

Generalizing, we consider for hypergraph codes the enseafilsbdes6 (1, A)
from Definition[2.2.1. A code® in this ensemble is constructed on lapartite n-
regular uniform hypergrap = (V, E), V = ViU---UV}, [Vi| = --- = |V|| = m,
|E| = mn = N, which is constructed by sampling a random hypergraph from
the set of hypergraphs defined by- 1 independent random permutations &n
elements. For = 1,2,...,1—1, theith permutation accounts for the placement of
edges between part§ andV; ., of H. As earlierA[n, Ron, dy) is the fixed linear
binary local code.

Recall that the raté of the code® € %5(l, A) satisfiesR > [Ry—(I—1),l =
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4.2. Decoding algorithms for graph codes

2,3,.... Denote bydy = d(%2(l, A)) the average value of the minimum distance
of codes in the hypergraph ensemble and let

. A e . d((f
d = 0(%2) = lim inf N

N—oo

(4.1)

In Chapter 2 we discussed ways to bound the valué fstbm below using the
distribution of distances in the local code(suggested in [25, 74]). In particular,
we showed thab(%,) > 0 if the local distancel, satisfiesdy > /(I — 1). For
the bipartite graph ensembig,(2, A) this implies thatd, > 3; i.e., there exist
codes in the ensemble that are asymptotically good (havevawishing rate and
relative distance) when the local codes correct one or mooese For hypergraphs
with [ = 3 or more parts any local codes (without repeated vectorsjustdor
an asymptotically good ensemble. An explicit lower boundifes,) that depends
only on/ andd, is also discussed in Chapfer 2, see Thedrem]2.4.5 in there and
rephrased in_4.3/8 below. For the case wheis large andd, = don, a lower
estimate ofé(%3) is given by the solution for: of the following equation from
Corollary[2.4.6:

h(z) 1 h(d)

= 4.2
xT [—1 50 ( )

4.2 Decoding algorithms for graph codes

4.2.1 Decoding for the ensembl&; (2, A)

In our estimates of the number of correctable errors for tisemble we rely upon
the Algorithm | described in the Chaptédr 3.

4.2.2 Decoding for the ensembl&;(l, A)

For the hypergraph ensembi (I, A) we use the decoding algorithm proposed
in Chapte B. Although the main steps remain same, we mob#yatgorithm
at certain points to accommodate the special setting ofnelolees, (1, A). It is
described below.

LetC € %»(l, A) be a code and & (V, E),V =V, U--- UV, be the graph
associated with it. For every = 1,2...,l we will define ani-th subprocedure
that decodes the local codeon every vertex in the pait;. Suppose that a vector
u € {0,1}" is associated with the edges: E. Let Vi1, .., Vim be the vertices
in the partV; of H and letu; ; = w(v;1),. .., uim = u(v;,) be them subvectors
obtained fromu upon permuting its coordinates according to the order oksdg
in V; and projecting it on the vertices; 1, ..., v; ». In other words, the vector
(wi1,...,u;m) is obtained fromu using the permutation that establishes edge
connections between part§ andV;. The ith subprocedure replaces the vector
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Chapter 4. Codes on Graphs: Correctable Errors

(Wi, .., Wim)Withthe vector(va +(wi1), ..., Ya+(wim)). Yay is the bounded-
distance decoder of the local code defined in se€tion 3.2.

The algorithm proceeds in iterations. Lgtc {0,1}" be the received vector.
Denote byY () the set of estimates of the transmitted codeword (i.e., ¢hek
N-vectors) stored at the vertices Hfbefore thejth iterationj = 1,2,.... After
each iteration, this set is formed as the union of the vedtotained upon decoding
of the vertices in theth part,i = 1,...,l. Decoding begins with settingf(!) =
{y}. After the first iteration we obtaih potentially different vectors (one for each
subprocedure) which form the current estimates of the mnéited vector. These
vectors form the seti;’i@),z‘ =1,...,l. Inthe next iteration each subprocedure will
have to be applied to each of theutcomes of the preceding iteration. Proceeding
in this way, we observe thégYZ.(J)| < -1

This algorithm, called Algorithm Il below, will only be agphl for a constant
numbers of iterations until we can guarantee that at least one sgkpioge has
reduced the number of errors to a specified proportion, say N to some
v N,y1 < 7. We then let another algorithm take over and decode allttvan-
didates. Any low-complexity decoder of graph codes thatawss an arbitrarily
small positive fraction of errors; will do at this stage. This is because taking the
proportion of errors fromyy to ; > 0 can be accomplished in a constant number
s of steps, so the number of candidates that this decoder tasthe is at most
and does not depend o

For the case of local codes correctihg 2 errors we let this algorithm to be
the decoding algorithm of bipartite-graph codes (Algoritl), making sure that
~1 is below the proportion of errors that are necessarily cbed by this algo-
rithm for the ensembl&% (2, A). This is possible because, leaving any two parts
of the original hypergraphl to form a bipartite grapks, we obtain a random code
from the ensembl&; (2, A) which with high probability (over the ensemble) will
remove all the residual errors from at least one candidaima®. Fort = 1
this approach fails for the reasons discussed in the nekibseso we resort to a
procedure in [106] that corrects a small linear fraction wbes for single-error-
correcting Hamming codes.

Upon performing the described procedure we obtain a list oi@stl® candi-
date codewords of the codeé The final decoding result is found by choosing the
codeword from this list closest g by the Hamming distance.

4.3 Number of correctable errors

4.3.1 The ensembl&,(2, A)

Let C € %,(2, A) be a code and le&(V, E) be the graph associated with it. For
a given subset of verticeS C V;,i = 1,2 and a vertex» denote bydegg(v) the
number of edges betweenand S. Let T,.(S) = {v € V : degg(v) > r + 1},
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4.3. Number of correctable errors

wherer € {0,...,n — 1} is an integer.

Below h(z) denotes the entropy of the probability vectoe= (zg, ..., z2,) €
R™*1! ie.,h(z) = — > i, zilog z;. As before, in the particular case of= 1 we
write h(z) instead ofh(z,1 — z).

Lett > 0 be any integer such that + 1 < d,. The calculation in this section
is based on the following simple observation.

Proposition 4.3.1. Suppose that for alb C V;,i = 1,2,|S| < om,o € (0,1),
there existg > 0 such thai7;(S)| < |S| —em. Then anytm = ot(N/n) errors
will be corrected by Algorithm | it (log m) iterations.

Proof. Suppose that no more thatim errors occurred in the channel. L&t be
the set of vertices that are decoded incorrectly in itenatiof Algorithm I. The
assumption of the proposition implies thHat .| < |S;|(1 — /o), so O(log m)
iterations suffice to remove all the errors. O

Define

F, (o) =h(c) —onlogz

)

wherez > 0 is found from the equation

Zt: Zn: (?) (7;) (o(n—j) —i(l — o))" 77" = 0. (4.4)

i=0 j=t+1

LetZ, = {z € [0,1]"" : " ,z = 1} be the(n + 1)-dimensional probability
simplex.
The main result of this section is given by the next theorem.

Theorem 4.3.2.Let A[n, Ron, dy] be the local code, letv — oo, and let2 < ¢ <
do/2. All codes in the ensembi&, (2, A) except for an exponentially small (iN)
proportion of them correct any combination of errors of weigtm in O(log m)
iterations of Algorithm I, wher@ < o < g9 andoy is the smallest positive root of
the equation

Fo+(o) = (n—1)h(o).

Remark2. The case of local codes with = 1 is excluded from this theorem
becausés with high probability contains a large number of 4-cyclesjahh means

that correcting single error at every vertex does not ensuegall convergence
of the decoding. Indeed, if two vertices are affected by twors each, and the
corresponding 4 edges form a cycle, then the decoder will iodefinitely without

approaching the correct decision. The theorem is stilldvialithis case, but gives
o9 = 0.
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Proof. We need to verify the assumption of Proposition 4.3.1. $et V4, |S| =
om and letm; = [{v € V5 : degg(v) = i}|,i = 1,...,n. Clearly,

n n n
Yomi<m, Y mi=|T(S)|, Y im; =|S|n.
=1 1=t+1 1=1

Let us compute the probability (over the choice®fthat|7;(S)| > (o —e)m. Let
p = (mq,...,m,) be a vector with nonnegative integer components, let

M (t,o) = {p : zn:m, < m, zn:zmz = oN, Zn: m; > (0 —e)m},
i=1 i=1

i=t+1

and Iet(’z) denote the number of choices of subsets of size. . ., m, out of a
set of sizem. We have

1 m\ o (n\™
Pr(T(S)] > S| —em) = o~ 3 ( ) 11 () R
(UN) peMe(t,o) K i=1
Let.Z (s) denote the event th&f contains a subsét, |S| = s for which |T;(.S)| >
|S| — em. We have

Pr(Zi(om)) < (;;) Pr(T(S)| > |S| — em)

and .
Pr ( U .,zﬂl(z')) < mPr(Z(om)).
i=1

Denote by.% (o) an analogous event with respectifo Then

om

Pr<U($1(z') uzg(i))) < QT](V%) 3 <7Z> f[ <7Z> TS

=1 oN/J  pueM.(t,o) =1

Letting L to be the logarithm of the left-hand side dividedyand omittingo,, (1)
terms, we obtain the estimate< n~='F}, ;(o), where

zeM!(t,o

Fn,t(U) = —(n—1)h(c) + max : <h(2) + En:zi log <7Z>)>
=1

where

Mt o) = {z € Zy: Zz’zi =on, Z z; > O’—E}
i=1

i=t+1

andz; = m;/m,zp = (m —>_m;)/m.
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The rest of the proof is concerned with the evaluation of theva maximum.
Define

g(2) = h(z) + Z:; 2 log (7;) 4.7)

g =sup{oc >0: F,(y) <Oforall0 <y <o}

As long aso < &, the probability of not being able to correetm errors with
a random code from the considered ensemble approachesTiars, we need to
find the maximummax_.¢ ;) 9(2) for all o € [0, 7). The proof will be accom-
plished in the next three steps. Sincwill be assumed arbitrarily small, we will
omit it from our considerations and write’ instead of 7.

1. We find the point* that gives the maximum aof(z) without the constraint
D imt41 % 2 O

2. Next we show that fob < o < &, the pointz* ¢ .#’, and therefore the
maximum over.# is attained on the boundary, i.e., we can replagéwith

M(t,o) = {z S Zn:iizi =on, Zn: zi:a}.
i=1

i=t4+1
3. Finally we compute the value of the maximum.

Step 1. Without the constraift’;”, ; z; > o the maximum is easily com-
puted. Indeed, the proportion of edges incident to the a&stin S out of the
N edges ofG is o, so the fraction of vertices witl$-degree: should be close
to 27 (o) = (7)o’(1 — o) ". Thus, the coordinates of the maximizing point

z¥=2z"(o)arezl,i=1,...,n;20=1-> .2, and

9(=*) = nh(o).

Slightly more formally, note that* is the unique stationary point of the function
g(z), and that this function is strictly concave in Therefore z* is a unique max-
imum of g(z) on Z,,, and the functiory(z) grows in the directiorz* — =z for any
z € Zy.

Step 2. Suppose that< ¢ < 7. Observe thap(c) £ >, | 2F = Pr(X >
t + 1), whereX is a (0,1 — o) binomial random variable. This probability is
monotone increasing anfor o € [0, 1], andp(0) = p/(0) = 0. Thus fore € [0, «)
wherea is the smallest positive root §f )", | 2 (o) = o, we have

n n
n . .
S i=Y (Y)ru-ar<o
i=t+1 i=t+1

and so the point* (o) & .#'(t, o). Our claim will follow if we show thatz < «a.
This is indeed the case because(or o < 7,

zef%}ia)g(z*(a)) < (n—1)h(o).
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On the other handj(z*(«)) = nh(«). This establishes that the maximumggk)
onz € .#'is attained on the hyperplaje;_, . , z = o.

Step 3. To compute the maximum g(fz) on z, let us form the Lagrangian

U(z,T,m2) = h(z)—i-z z; log (7:) —1—71(22'2,-—071) +7’2< Z zi—a>.
i=1 i=1

i=t+1
SettingVU = 0 andm; = log x, 0 = log y, we find that
<7>xiD if0<i<t

4
Z; =

(7) yz'D ift <i<n,
1
where we have denoted
t n
D= [Z <Z>w —i—y‘z <Z>x] .
1=0 i=t+1

Adding these equations together, we find conditionscfandy:

o = Dy zn: <7Z>ac

i=t4+1
! n " n
_ . % . %
on = D(ZZ(@)J} +ylz Z<Z>:L' >
=0 i=t+1
Oncey is eliminated from the last two equations, we obtain the @@ (4.4)
for . Finally, substituting the found values of,i = 1,...,n into g(z), we find

that the maximum evaluates to the expresdihn(c) given in [4.3) (and therefore,
o = 0p). Since we seek to obtain a valde < 0, the boundary condition for the
proportion of correctable errors is obtained by setting= 0. This concludes the
proof. O

Example: Using Theoreni 4.312 together with (#.3) we can compute tbe pr
portion of errors corrected by codes in the enserbl@, A), m — oo for several
choices of the local codd. For instance, takingl to be the binary Golay code of
lengthn = 23 we findo ~ 0.0048586 and therefore, the proportion of correctable
errors is2t ~ 0.00063. Similarly, for the 2-error-correctingn = 31,k = 21]
BCH code we findry ~ 0.000035 and%ﬁ ~ (0.0000023.

To underscore similarities with the results obtained fadoict codes and their
later variations including graph codes (e.g., [104]) we pata the proportion of
errors correctable with codes from the ensen#3l€2, A) in the case of large.
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Proposition 4.3.3. Lett = 7n. Then the ensemblé,(2, A) contains codes that
corrector N errors for anyo < gy, whereoy is given by

1—
o) = sup {O‘ >0:Voczeo (1—2)h <%) +zh(r) +e, < h(m)}
wheree,, = (1 + logn)/n.

Proof. Referring to the notation of the previous proof, let us estduthe asymp-
totic behavior of the exponerit of the probability in[(4.6). Sincé(z) < logn,
we have

n'F,4(0) < —h(o) +n” zer/;/l(a;');o ZZ’ log< ) +n7(1 + logn).

P2t () < San ()
t ) . n ) .
> rgn () e 3 En())

h( 112»2@) h(M),

l1—0 on

Lety =n~1 3", iz, then for anyz € .#(mn, o) we have

s () < ma {0 - (F22) <o (2)}

The function on the right-hand side of this inequality is cawve. Its global max-
imum equalsh(s) and is attained foy = o2. Thus, assuming that < 7, we
conclude that the constrained maximum occursyfee o, which gives the fol-
lowing bound om~1F,, ;(o) :

o(l—r7)
1—0

nFpi(0) < —h(o) + (1 —o)h (

As long as the right-hand side of the this inequality is niegathe previous proof
implies that the code corrects all errors of multiplicity topr7 V. O

) +oh(71) + en.

From the expression of this proposition we observe that(as o) the value
of oy approaches, so the ensembl&:(2, A) contains codes that correct up to a
72 proportion of errors, wheren = dy/2 is the error-correcting capability of the
code A. This result parallels the product bound on the error-cdimgaadius of
direct product codes. As in the case of product and exparksde.g., [17]), the
proportion of correctable errors can be improved from= (dy/(2n))? by using a
more powerful decoding algorithm.
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4.3.2 The ensembl&;(l, A)

In this section we first state a sufficient condition for thésnce of at least one
subprocedure within each step of Algorithm Il that redud¢esnumber of errors,
and then perform the analysis of random hypergraphs to shatwith high prob-
ability this condition is satisfied. Overall this will shoWwat the number of errors in
at least one of the candidates in the list generated aftex &deations is reduced
to a desired level.

Denote byE(v) the set of edges incident to a vertexc V. Let € € %65(l, A)
be a code and Idfi(V, E) be its associated graph. LétC E be the set of errors
at the start of some iteration of the algorithm. The next $erguments will refer
to this iteration. Letd; = {v € V; : |[E(v) N €| < t} be the set of vertices such
that each of them is incident to no more thaadges from€ (such errors will be
corrected upon one decoding). LBt = {v € V; : |[E(v) N E| > dy — t} be the set
of vertices that can introduce errors after one decodingtitsn. Note that each of
such vertices introduces at masdrrors.

The main condition for successful decoding is given in thd feanma.

Lemma 4.3.4. Assume that for every C E,|E| < yN there exists = i(€),1 <
i <lsuchthal&(G;)| > t|B;| + N, where(G;) is the set of edges éfincident
to the vertices of7; ande > 0. Then for any0 < 3 < ~, Algorithm Il will reduce
any~N errors in the received vector to at mgsiV errors inc(3, v, €), iterations
wherec is a constant independent of.

Proof. We need to prove that at least one of the subprocedures wdllafimector
with no more thanGN errors after a constant number of iterations. In any given
iteration by the assumption of the lemma there exists a coenqd’; for which the

ith subprocedure will decrease the count of error$diys; )| — tB; > ¢N. Thus,

in each iteration there exists a subprocedure that redbeasumber of errors by a
positive fraction. O

Next we show that the assumption of Lemima 4.3.4 holds with pigbability
over the ensemble. Consider the function

Fos(y) = e (h(z) + Z:; z; log <Z>) : (4.8)

where in this section the regio# (¢, v) will be as follows:

n t
M (t,y) = {zEZn:Zizi:’yn,Zizi: Z tzz}. (4.9)
Lemma 4.3.5.Letm — oo and let
Yo = sup{x >0: vO<'y§3[: (Z/H)Fn,t(’}/) < (l - 1) h(’Y)} (410)
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A hypergraph from the ensembleigbartite uniformn-regular hypergraphs with
probability 1 — 2~%(V) has the property that for af c E, |€] < 1NN, and some
e > 0, the inequality|E(G;)| > t|B;| + N holds for at leastone € {1,...,1}.

Proof. Leté C E,|€| =yN.Letm; =[{v e Vi: |[E(v)NE|=i},i=1,...,n
Clearly|E(G1)| = Y i_im; and|By| = Y7, _, m;. We have

p & PG < B+ M) = s S ()

HEMg(t,’Y)

wherep = {mq,...,m,},

M. (t,y) ={p € (ZyUO)" Zm,<m

szl N, sz,ﬁ Z tm; +eN}.

i=do—t

Denote by.Z(€) the event that for a given subsetC E, |E| = vN no partV; of
H satisfies the assumption of Lemma4.3.4. TReaZ(€)) = p! and

Pr(3€ : (€] <¥N) A (Z(E)} < N(V*’]VQpl.

Letting L to be the logarithm of the left-hand side of this inequalityided by N
and omittingoy (1) terms, we obtain

!
L<—(-1)h - 4.11
< —(=Dh()+~ L 9(2), (4.11)

whereg(z) is defined in[(4.17),

n t n
M (t,y)={z€Z,: Zz’zi = yn, Zizi < Z tz;}
i=1 i=1

i=do—t

andz; = m;/m (as in the previous section, we have omittedhich can be made
arbitrarily small).

The proof will be complete if we show that the optimizatiomiom .7’ can
be replaced by# . For that we follow the logic of the second part of the proof of
Theoreni4.312. As before, the maximumyot) without the constraing_._, iz; <
> iea,_¢ t7i is attained at the point*(v) = (25, 21, - - -, 2,) € Zn, Where
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We need to show that as long 8s< v < 7, the pointz* ¢ .#'(t,~). By
concavity of the objective function and the optimizatiogios, this will imply that
the maximum is on the boundary. As before, it is possible wasthat in the

neighborhood ofy = 0,
t n
Z izy > Z tz.

i=1 i=do—t

and thus fory < 3, whereg is the smallest positive root §F'_ iz = D iyt 175
the pointz*(vy) & .#'(t,~). Let

7 =sup{y: V0 < x <+, rhs of (411)< 0}.
We note that for ally < 7,

< (I —=1)nh(vy).
zef%éa)g(Z) (I = 1)nh(y)
On the other handy(z*(3)) = nh(3). This implies thaty < 3, and so for all
v < 7, the pointz*(v) & .#'(t,~). Thus the region#’ in the maximization can
be replaced with# (and¥y = ~). O

This lemma establishes that the number of errors in at lgastobdthe candi-
dates in the list generated after a few iterations is redtmweddesired level. After
that the residual errors can be removed by another procedudescribed above.
In this situation we say that the errors are correctable yoAihm II, without
explicitly mentioning the second stage.

In the next theorem, which is the main result of this sectibmefers to the
lower estimate of the average relative distance of the lgypph code ensemble
2 from Theoreni 4.318 below.

Theorem 4.3.6.Lett > 2 be the number of errors correctable by the local code
A. Algorithm Il corrects any combination of up f&(min(vy, §/2)) errors for any
codeC € %»(l, A) except for a proportion of codes that declines exponeptiall
with the code lengttv = nm, m — oo.

Proof. With high probability over the ensemble of hypergraphs mered, for a
given hypergrapt(V, E) a constant numbey of iterations of the algorithm will
decrease the weight of error from /N to any given positive proportiof for at
least one of thd® candidates in the IisYl(s“). Take 3 = og, wheregy is the
quantity given by Theorein 4.3.2. Next consider the bipadiaphG(Vg = V3 U
Vs, E) whereV;, V; are the parts ofl and where(vy,vy) € Eg if vi,v3 € €
for some edge € E. By the previous section, with high probability thesg/V
errors can be corrected with(log m) iterations of Algorithm 1. Finally, the correct
codevector will be selected from the list of candidates beeahe proportion of

errors is assumed not to excedd /2. O
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The complexity of this decoding i©(N log N) where the implicit constant
depends on the codé.

In the following theorem we extend the results of this sectio the case of
A being a perfect single-error correcting Hamming code ogtlem = 2" — 1
for somer = 3,4,.... In this case the maximum oa in the above proof can
be computed in a closed form. As remarked above, in this cadeeilast part of
the error correction procedure we use the decoding algoerdgh[106] to remove
residual errors from the candidate vectors.

Theorem 4.3.7.Suppose that the local coddsare taken to be one-error-correcting
Hamming codes and lét= 0(%>) be the relative average distande (4.1) of the en-
sembless (1, A). Then almost all codes in the ensembigi, A) can be decoded to
correct N min(~, §/2) errors, wherey, is given by[(4.10) and

Foa(y) = —ynlogz + log (1 +2,(n) <7Z> xi+1> (4.12)
1=2
wherez is the only positive root of the equation

S+ )3t _

Proof. It is obtained by maximizing the functiof( z) over the region

M(1L,y)={z€Z,: Zizi =n,z = ZZ’}
i=1 i=2

The Lagrangian takes the form

n

h(z)+§n:zi(logn+log <7Z>)—|—)\< (i+1)zi—7n>,
=2

=2

wherez = (z1,22,...,2n,1 — > ;%) andz; = >,z and\ is an arbitrary
multiplier. Setting the partial derivatives to zero, we fithet value) to satisfy
2% = )\, wherex is given above. The calculations are tedious but straightal
and will be omitted. O

The last theorem enables us to find the proportion of cofoéeterrors for the
case wher is the Hamming code of lengtlhh= 2" — 1,¢ = 1. Since the examples
below rely on the value of the ensemble-average distanceepiease and restate
the theorenh 2.415 from Chapfer 2.
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Theorem 4.3.8.Let 6(%2) be the asymptotic average relative distance of codes
in the I-hypergraph ensemble constructed from the local cddaf lengthn and
distanced,. Then
{ l
w: —
n

wherexy = z¢(w) is the positive solution of the equation

gn: <7;> (wn — i)z’ = 0.

For instance, for the case = 31,/ = 5 this theorem gives the value of the
relative distanceé(%,) > 0.01618 (the rate of code®® > 6/31). Performing the
calculation in[(4.1R), we find that the average code from tieembles; (5, A) the
proportion of errors correctable by codes in the ensembilgyuslgorithm Il to be
atleastyy = 1.2 x 107°.

We include some more examples. In the following table 2° — 1.

6(62) = sup
w>0

wn +

l 17 23 28 34
Rate | 0.7006 0.5949 0.5069 0.4012
Yo 0.000235 | 0.000401 | 0.000521 | 0.000644
0(%2) | 0.00415| 0.00504 | 0.00558 | 0.00608
l 40 45 51
Rate | 0.2955 0.2074 0.1018
Y | 0.000747 | 0.000821 | 0.000898
0(%2) | 0.00648 | 0.00676 | 0.00704
It is also of interest to compute the valuesygffor code rateR(C) ~ 0.5.
n 127 255 511 1023
l 9 16 28 51
Rate | 0.5039 0.4980 0.5068 0.5015
Yo 0.0002012 | 0.0004873 | 0.0005207 | 0.0004227
0(%2) | 0.01157 | 0.008658 | 0.005581| 0.003394

These estimates are at least an order of magnitude betteththaorresponding
results in [26, 106] obtained for LDPC codes and their gdizations based on the
“flipping” algorithm of [107].

The case of large. As in the previous section, it is interesting to examine the
case of long local coded because it reveals some parallels with the analysis of the
decoding algorithm in the case of nonrandom hypergrapHs Y¥d begin with the
observation that the proportiop of correctable errors for the ensemidg(l, A)
computed above is a function of the number of ertdalst each local code corrects
in each iteration.
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4.3. Number of correctable errors

Lemma 4.3.9. Lett = 7n, dy = dpn. The ensembl&:(l, A) contains codes that
correctyN errors for anyy < vo(7) £ min(r, zo(7)) where

zo(7) =sup{z > 0: (1 — %> h (ci)w—jw> + ;_Oh((go —7)

+en < (1-1/D)h(z)}
ande,, = logn/n.

Proof. Referring to the proof of Lemma 4.3.5, we aim at establistdagditions

for the exponent. of the eventZ(€) to be negative as approaches infinity. We
assume thaty < 7 (otherwise our estimates do not imply that the convergence
condition of Lemma 4.3]4 holds with high probability oveethraph ensemble).

From [4.11),[(4.7) we have

i llogn
L<—(-1)h l h(— ,
< —( )h(v) + zen/l//aécﬁ) izoz (n)—i—

where.Z (t,~) is defined in[(4.9). Next, write

ZzZ ( ) < Ah (%) - Ah(%), (4.13)

where we have denotel\_, 2 = A, Y.i_, iz = pin. In addition let us put
> ied,_t 12 = p2n, then the values of the sums, z; and}_; iz; over each of the
three intervald; = [0,t], I = [t + 1,dp — t — 1], I3 = [dy — t,n] can be found
from the following table:
I Iy I3

>z A l=A—wm/T m/T

DonFo ML YT g~ p2 o pe
The variables introduced above depend on the psiahd satisfy the following
natural constraints: for any € .Z (t,~),

p1 < TA
M1
— < — — -
r(1-a- ¢> V=1 = iz < (8 —7) (1= A ¢>
(0 — )L <py < EL. (4.14)
T T

Proceeding as i _(4.1.3), we can estimate the sum anL as follows:

Zzz (= ) < F ) (4.15)
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Chapter 4. Codes on Graphs: Correctable Errors

where

FO i, p2) zkh(%> + (1—A— %)h(%) +%h(%)

Our plan is to prove that some of the inequalities[in_(#.14) ba replaced by
equalities, thereby expressing the variableg,, u2 as functions ofy, 7. We will
rely on the fact that the functiofiis concave in its domain. The proof of this claim
follows.

First we prove that the function

oa,y) = (1 —2)h (=)

11—z

is concave (not necessarily in the strict sensedferz,y < 1,0 < v—y < 1 —=x.
For that, let us compute its Hessian matrix:

T~y _ 1
_ L ((1—95)(7—314-1‘—1) y—y+z—1 )
a 1 11—z
2 Cy—yta—1 (v=y)(y—y+a-1)

The eigenvalues aoff are

(v—y)P+ (1 -x)?
I-2)y—y)(vy—y—(1-1))

soH =< 0, and sog is concave. Next observe that the function

O A e rryes).

can be obtained from by a linear change of variables

0,

<0,

T=A+p/T, y=p1+ p2

and therefore is also concave. Finally, the functidig ., /\) and (g1 /7) h(pa7/11)
are also concave, and thus so is the funcffon, pi1, p2).
Note that for allz € Z,, the sum

Yon () <)
1=0

and that it equal$i(v) at the pointz such thatz; = 1 fori = [yn] andz; = 0
elsewhere. Also note that singe< r, the pointz is outside the region/ (t, )
and thus, by concavity,

“= zen/}?()t(y Zzl ( ) h(y).

58



4.3. Number of correctable errors

Let z; be the point at which this maximum is attained, andadet= (\, i1, p12)
be the corresponding point for the argumentsf oBy construction, the poink;
satisfies the inequalities df (4]114). At the same time, dmrsthe functionf (-)
on the lineA = p; = us. As the variables approach 0 along this line, the value
f(A 1, p2) approached(y).

To summarize, we have found two poinis,andxzs = (0, 0, 0) that are located
on different sides of the hyperplane

7(1—)\—%>:’Y—M1—M2

such thatf(x1) > a, f(x2) > a. Invoking concavity of the functiorf, we now
conclude that there is a feasible paititon this hyperplane such thafz’) > a.
Therefore, pufiz = v — 7(1 — A) and write

filA, ) = Ah(%) + <1_)\_ %) h(r) _1_%}1(7'(7—;(11 —)\)))

where the variables are constrained as follows: foramy.Z (¢, ~),

1 < TA
T(1=X)—p1 >0 (4.16)
(G0 -1 <y—r(1 - < 2L (4.17)
T T

Since f; is a restriction off to a hyperplane, it is still concave. Now notice that
f1(1,7) = h(y) and that the poinf1,7) does not satisfy inequality (4.16) and
the left of the inequalitied (4.17). Repeating the aboveiaent, we claim that
the functionf in (4.18) can be further restricted to the intersection ef pfanes
7(1 = A) = pyand(dg — 7)(u1/7) = v — 7(1 — X). Altogether this gives:

A=1-7/b, p1=7/do.

Let us substitute these values into the expressiorffa@nd rewrite [(4.15) as fol-
lows: forany0 < v < 7,

S (D) (10 () Da ). @as)

Thus if the condition in the statement is fulfilled thén< 0. This concludes the
proof. O

The main part of the proof is estimating the solution of thikofeing linear
program

- 1
g3 (1)
z = (20’21,...,Zn) c «%(t7f}/)
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Chapter 4. Codes on Graphs: Correctable Errors

where the variables define a probability distribution {@n1,...,n}. It is clear
from concavity that the maximum is attained at the point vwha&mong all the
indicesi € I; at most one value; is honzero, and the same applies/$cand I5.
We have shown that the value of the program is bounded aboteehyght-hand
side of [4.18). The following point gives this value and isrifore a maximizing
point:

zip =1 - 17 Ziy = l, z; = 0 otherwise
5 5
wherei; = ny7/(do — 7), 42 = n(dp — 7). Since
YT
<,
do—v

this shows that the worst-case allocation of errors to eestin a given part of the

graph assigns no edges to vertices that are neither goochdoiThis also confirms

the intuition suggested by Lemrha 4J3.4 that bad verticedi¢es assumed to add

errors) should each be assigned the smallest possible maindreor edgesiy — ¢.
The next proposition is now immediate.

Proposition 4.3.10. The ensembl&5(l, A) with long local codes contains codes
that can be decoded using Algorithm Il to correct all errortigans whose weight
is less thany, NV, where

o= max Yo(7). (4.19)

Estimating the number of correctable errors for the enserdh(l, A) from
Proposition”4.3.70 analytically is difficult because itdixes optimization onr
(generally, the local codes should be used to correct asntafing, /2 proportion
of errors). We note that in the particular caserof ¢§,/2 the proof of Lemma
[4.3.9 can be considerably simplified, although the reqykadue ofy is not always
optimal.

Example: Let [ = 3. Using local codes withly = 0.05 we can construct
hypergraph codes of rate > 0.19. From Corollary 2.4J6, the ensemble-average
relative distance is at leadt~ 0.0112 and the proportion of errors correctable by
Algorithm Il is found from [4.19) to be ~ 0.0035.

Example:Let 6, = 0.01 and/ = 10. In this case, we find fromn 2.4.6 the value
of the relative distancé ~ 0.00599. The code rate satisfids > 0.14. Performing
the computations i (4.19) and Lemfa 413.9 we find the estimiathe proportion
of correctable errors to bg) ~ 0.002198.

In conclusion we have estimated the proportion of errorsecteble by codes
from ensembles defined by randépartite graphs], > 2. In contrast to the case of
expander codes [93], [104], [17], [19], [14] our calculasocover the case of local
codes of arbitrary given length and distance, includinglbvatues of the distance.
In this part of the dissertation we provided answers to a sdtasic questions
regarding networks of short linear binary codes. This eddeour perspective of
concatenated code constructions to the case of sparsarggaphs.
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CHAPTER 5

Compressed Sensing and the RIP

5.1 Introduction

In the next two chapters we study applications of erroramiing codes in the
problem ofcompressed sensingCompressed sensing is a technique of recover-
ing sparseV-dimensional signals from low-dimensional sketches, ftir linear
images iNRR™, m < N. In formal terms the problem can be stated as follows. Let
® : R™ — RY be a linear operator used to create a “sketch” of a signa¢septed

by a real vector: € RY. In other words, we observe a vector= dx, whered is
anm x N sampling matrix. Recovering from r is generally impossible because
the system of equations is under-determined, and the aotutorm an affine sub-
space iRY. The problem becomes tractable if we know tieds sparse, i.e., have
only & < N nonzero entries. In particular we seek an approximatiom bl a
vectorz, such that

o~ @y <€ min -z — ]|, (5.1)
for somepy,po > 1 and some constaidt. A k-sparse vector is a vector withor
fewer nonzero coordinates, whete< N. Note that ifx is itself k-sparse, then
(5.1) implies thatz = x. Moreover, the recovery is stable: 4f is approximately
sparse (has onl¥ “significant” entries), then the approximation error is hdad
by (5.1).

In this formulation, the study of the compressed sensinglpro has been fo-
cused on the design of good sampling matrigés conjunction with low-complexity
recovery algorithms that provide an error guarantee of onen f{5.1) based on as
few samples as possible. As one of the first examples, it wawrshhat ran-
dom Gaussian matrices provide(m = 2,p, = 1) error guarantee witn =
O(klog(N/k)) sketch length and a polynomial-time (linear programmiregor-
ery algorithm [32].

It is known that at leasin = Q(klog(N/k)) samples are required for any
recovery algorithm with an error guarantee of the fdrml(fs#&}, for example, [69],
[7]); and the best known guarantee is given by random matrdth independent
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Chapter 5. Compressed Sensing and the RIP

Gaussian entries [32, 33]. It has also been shown that the sarar guarantee
is provided by independent Bernoulli random variablesrigkvalues in the set
{i\/%} with the same number of samples = Q(klog(N/k)) [33]. However,

constructing such a matrix requiresN = Q(kN log(N/k)) random bits, so this
approach is very far from being explicit (deterministiceavor small values of.

Arguably one of the most efficient ways of constructing deiaistic sampling
matrices relies on their links with error-correcting cadéf& pursue this link, pro-
viding constructions of matrices for sketch length = O(k?log V) where no
previous deterministic constructions were known (in jgattr, the constructions
of [46] and subsequent works requiggk? log? N') samples).

One notational difference this part has from the other paifrtbe dissertation
is that the length of the binary code concerned is denotes lyem instead ofn,
and the cardinality of the code is denoted Ny(rather than the notation/ used
elsewhere). We adopt this change in order not to deviate taritom the existing
literature on the compressed sensing problem.

A useful tool for the construction of sampling matrices isypded in the works
of Candeés et al. [32,33] who showed that recovery is passifith a(p; = 2, py =
1) error guarantee if the matrik has theestricted isometry property (RIPn par-
ticular most matrices in the ensemble of the random GaussidiBernoulli matri-
ces satisfy the RIP. Thus the construction problem of sangmperators reduces to
the problem of construction of RIP matrices. Checking waethgiven matrix has
the RIP property is computationally infeasible unless thadrix has some struc-
tural properties. In this chapter we give explicit constiuts of matrices with RIP
based on error-correcting codes.

The RIP is known to hold if the columns @ are near-orthonormal, i.e.,
il = 1, |pF¢;| < pforalli # j and someu < 1. Such collections of
vectors are also known @scoherent dictionariege.g., [100]). As such dictionar-
ies are chosen from the unit spherdRiff, the problem becomes equivalent to the
construction of goodpherical code$41]. If we further restrict the vectors in the
dictionary to have binary coordinate\%, then the problem reduces to construc-
tion of binary codes in which the Hamming distance betweamepair of vectors
is close tom /2 (the code has aarrow distance distribution This fact was used
implicitly in [46, 60] and later more explicitly in [11, 248288] and other works.
Thus, this thesis is not the first work to pursue the link betwsampling operators
and codes. The performance limits of these constructidrigysbounds on spheri-
cal and binary codes, precludes them from approaching ttiealsketch length.
The new results obtained in this chapter pertain to imprammover the existing
work: they lead to a deterministic construction of samplngtrices with RIP for
m = O(k%log N) which is by a factor oflog N smaller than what was known
before, and is a factgr away from the optimal (shortest possible) sketch length.

The results of this chapter appear in [11, 13].
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5.2. RIP and codes

5.1.1 The restricted isometry property of sampling matrice

LetI C [N] := {1,...,N}. Denote by®d; € R™*!l the matrix formed of the
columns of® with indices inI.

Definition 5.1.1 (The Restricted Isometry Property (RIPY) matrix ® € R™*N
is said to satisfy thék,d) restricted isometry propertyor (k,0)-RIP, & < m,
0<6<1,ifforall I c [N]suchthail| =k and for allu € R¥,

(1= O)ullf < [@rul3 < (1+0)]uls. (5.2)

It is known [34] that a(2k, /2 — 1)-RIP matrix enables one to approximate
any k-sparse signal witlip; = 2, po = 1) error guaranteé (5.1). Namely, the basis
pursuit algorithm of Candés et al. [33] solves the follogvlmear program:

|z|y — min
subject tobx = r, & ¢ R™*V,
The above optimization problem can be solved with time cexipt at mosiO(N?).

In [34], it is shown that if® is (2k, v/2 — 1)-RIP then the solutioz: of the above
linear program satisfies, for some constamnt

C
_ A < _— . _ ! .
Hm m||2 - \/Em’ islg}é})arseuiB r Hl

In the rest of this chapter our aim will be to construck N (k, §)-RIP matrices
with minimum possible number of samples;

5.2 RIP and codes

5.2.1 Sampling matrices as incoherent dictionaries

While random matrices with high probability have RIP, consting structured
sampling matrices is related to introducing certain restms on their entries. One
such constructive approach assumes that every colyrim R™ of @ is a unit-
length real vector (i.eJ|¢;||3 = 1). A system of such vectors is characterized by
their coherence parameter

p = max|¢; ;-

i#j

For everyl C [N]with |I| = k we have
dTd; =1dy + F,

whereld; is thel x [ identity matrix and the absolute value of every entryfbis
at mosty.
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Theorem 5.2.1.(The Gershgorin circle theorem [64, p.344], [72, p.24G3) A be
ann x n complex matrix and;; is the(, j)th entry ofA. Define the set af disks
in C given by|z — a;| = >, ; lai[, 1 < i < n. Then every eigenvalue of is
contained in one of these disks.

We use this theorem for the matid¥ @ ; which is real symmetric with in the
diagonal entries and the off-diagonal terms whose magmitsidounded above by
u. Therefore its eigenvalues, which are real, satjsfy- 1| < (k — 1)u. In other
words, the matrixd is (k, ku)-RIP.

Sets of unit vectors with small coherence (incoherent ahetiies) are called
spherical codesAn (m, N, ) spherical cod€ C R™ of size|C| = N is a set of
unit-norm vectors such that the points®fre well-separated, i.ex! z2 < p for
any two distincte,, 2 € C. Thus, bounds for spherical codes [41] can be used to
quantify the tradeoff between size, dimension, and colveref the dictionary. In
particular the Shannon bound implies that for larg¢here exist dictionaries with

coherence: such that
2In N

(14 0(1)).

At the same time, by the Kabatiansky-Levenshtein boundalfatictionaries

m <

S 4In N
= e/ i)

Further lower bounds on the sketch length for dictionaniemfspherical codes are
given by [75].

(1 - o(1)).

5.2.2 RIP property of matrices from binary codes

Further restricting the alphabet of dictionaries, we camtstsampling matrices
from binary codes. Le€ be a binary code of lengtim and sizeN (briefly, an
(m, N) code), i.e., a set aV vectors in{0,1}". Given a codeword: € C, let us
map it to a unit vectory € R™ by settingd — +\/_1m andl — —ﬁ. In this way,
a binary code gives rise to a matri® = (¢1,...,¢n). The inner product of any
two column of® equals

¢ dj =1~ 2w 25)

m

wherez;, z; are the codewords df that correspond t@;, ¢;. Assume that for
everyx;, x; € C,i # j, the Hamming distance between them satigfiés;, x;) —
%| < wy,. If the codeC satisfies this assumption for someg,, we call the number
w., thewidth of € (to be precise, this is the “width” of the distance distribatof
the code). From the above discussion we conclude:

Proposition 5.2.2. A binary codeC with widthw,,, gives rise to gk, §)-RIP matrix
with § = 2kwm
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Therefore, a sufficient condition ¢k, ¢)-RIP is given byw,,, < 72”—,3 Thus, we
would like to design a codé € {0, 1}™ of a given sizeV such that the following
condition is satisfied.

Property 1: For a givenk and any distinct;, co € C,

m mo
_ < =
dlere2) = 5= 55
For a linear binary cod€ the distribution of Hamming distances is identical
to the distribution of Hamming weights (see SEc.] 1.2). Tioeee we can restate

Property 1 as follows:
Property 2: All nonzero vectors: € C satisfy

(wt(c) - %‘ < ?—,f (5.3)

Linear codes with bounded width have been considered imgadtieory. One
prominent example is given by codes dual to primitive BCHe=odf lengthm that
correctt < y/m/2 errors. Their width is related to bounds on exponential sanas
is given by the Carlitz-Uchiyama bound [80, p.280]. This agldted constructions
of incoherent dictionaries were considered in [1, 6, 65]1G&neral constructions
of codes of small width were considered in Alon et al. [2],imtlie current best con-
struction by Ben-Aroya and Ta-Shma [18]. Independentlyd@e [46] followed
the same line of thought, considering binary images of Regldmon codes over
IF, under the trivial map that sends the symbat F, to its g-dimensional indicator
vector. The number of samples required in his constructien & ©(k?log? N).

5.2.3 Linear codes with random generator matrices

Next we present a randomized construction that usesranibg N random bits as
input and provides a matrix satisfying:, §)-RIP with high probability. We use
a version of the GV bound in an argument similar to Pfop. ]l witching from
random parity-check matrices to random generator matrices

Theorem 5.2.3.Let! = log N and letG = (g4,...,9,,) be anl x m binary
matrix whose columns are chosen independently Wiy, = y] = 27 for all
y € {0,1}. Letm = [4(k/6)? In N. Then the linear cod€ spanned by the rows
of GG satisfies Property 2 with probability approaching 1 85— oo.

Proof. Let X be the random number of codewords of weighinh the codeC such
thatjw — 2| > 20 Letu € {0,1}" be a nonzero row vector. We haiug; = 0
(mod 2)] = Plug, = 1 (mod 2)] = /2. Then the probability that the codeword
uG has weightw equals(’’)2~™. Hence the expected number of vectors of weight

w > 0in C equals
EA, = M <m> (5.4)
2m w
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Therefore, usind (116)

N -1 m(%—%) m 1_ 6
EX <2— > <w> < N2l-m=hG=5p)), (5.5)
w=0

Next we use the Taylor series expansionlfar) aroundt/2:
1 —h(Y2 —z) = (2/In2)(z* + 2/32* + O(29)) 0<z<l2). (5.6)

Finally, sincem > 4(k/6)? In N we obtainEX < 2/N. However,Pr(X > 0) =
>~ Pr(X =14) < EX, and thus the proportion of codes for which Property 2
holds approaches one Asincreases. O

5.2.4 Explicit RIP matrices

Here we derandomize the theorem and the proof from the pre\gection. This
results in an explicit construction @RIP matrices with complexit@) (mN).

The derandomization procedure that we employ is very sirtolaxplicit con-
structions of linear codes achieving GV bound. Lingarlog N] codes reaching
the GV bound can be shown to exist relying both on randomypalieck matrices
and random generator matrices (see, §e¢. 1.5). Deranchgntize parity-check
ensemble involves complexit(m?32m~1°¢ V) and is easily accomplished using
a greedy procedure. However in our setting= O(k*log N), i.e, the resulting
complexity isO(N’fz). We will show that the construction relying on random gen-
erator matrix of the previous section can also be derandmimiesulting in RIP
matrices constructible with a lower complexity @{mN).

Derandomizing Gilbert-Varshamov codes from generatorioest was recently
addressed by Porat and Rotschild [90]. We follow their mdeaiwith some slight
technical changes. In particular, we tailor it to our goatofstructing codes of
small width as opposed to codes with large distance. We hatecbdes of small
width constructed below also meet the Gilbert-Varshamawnbicon the minimum
distance.

The method of conditional expectations, used below andialf@0], is due to
Spenser and Raghavan (see [4]). We will recursively seldanms in thel x m
generator matrixG, I = log N. Before any columns are selected, the expected
number of vectors of weighty in the codeC (the row space ofy) is as given
in (5.4) and the expected number of vectors of weight far fref2 (outliers) is
given by [5.5). The algorithm selects columns one by one abtlie expectation
of the number of outlying vectorsonditionedon the columns already chosen is the
smallest possible.

Theorem 5.2.4.Letm = [4(k/6)? In N1]. It is possible to deterministically con-
struct in timeO(k?N log N) a linear code of widthgi,f (see(B.3)). Therefore, a
deterministicn x N sampling matrix® with (k, §)-RIP can be constructed in time
O(k*Nlog N).
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Proof. In this proof we denote by,,i = 1,...,m random variables taking values
in the set of vectorg0, 1}! (random columns of¥) and denote byj; realizations
of these random variables. As before, [étbe the random number of vectors

in the code with generator matri = (g,...,g,,) Wwhose weightw satisfies
lw — 2| > 20 The expectatioEX = E4 . X is given by [5F). Define
a sequence of random variabl&s = X, X1,..., X,,. Here fori = 1,...m the
variableX; = X;(¢1,. .., g;) is the random number of outlying vectors conditioned

on the specific choice of the firstolumns

X, = Haz ce: |Wt(m)—%| > Zl—]fgiventhatgj =g 1< gi}
The dependence of; on the vectorsy,...,g; is understood and will be sup-
pressed below. The quantity,, is a (nonrandom) number of outlying vectors in
the row space of7, and our purpose is to construct a code with < EX < 1.
Chooseg; arbitrary nonzero. Suppose thgt = g;,7 = 1...,i have been
chosen. For a given € {0,1}"™ consider the probability

Pr(Wt(U’G) =w ’ g1,--- 792) = Pr(wt(uG) =w ‘ g1 =91,---,9; = gl)
We have
Pr(Wt(U’G) =w ‘ g1, -- 792)
= Z 27 Pr(wt(uG) =w | g1,..., i 9511 = git1). (5.7)
gi+1€{0, 1}
Denoting the number of vectors of weightin € by A,,, we have
E(Aw | g1,---,91) = > _ Pr(wt(uG) =w | g1,...,9)
u#£0

forall 0 < ¢,w < m (if the values ofi, w are inconsistent with each other, then the
summation terms are 0). Finally, dy (5.7)

EXZ: Z E(Aw |gla"'7gi)
w:|w—m/2|2%
w:|w—m/2|27;—]j uF#0

- Z Z Z 27 Pr(wt(uG) =w | g1, .., 9, gir1)

s u#0 g;11€{0,1}!
lw—m/2|> 32

>  min l Z ZPr(wt(uG) =w| g1, 9, 9i+1)-
gi+1€{0,1} " Wt
jw—m/2|> %52
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This shows that for every = 1, ..., m. there is a choice of th& + 1)st column
such thatEX; > EX;,;. SinceEXy = EX, alsoEX,, = X,, < EX. From

G.9)-5.8),

X,, < Nol-m(-h(i-5)) < N21—2m%.

Finally, substituting the value of: from the statement, we observe thgt, < 1
forall N > 2, i.e., the width ofC is md/2k.

To estimate the complexity of the procedure described we teegpecify a way
to compute the probabilitieBr(wt(uG) = w | ¢1,...,9i),i = 1,2,..., which
can be used to compulX;;.

LetG; := (g1,...,9;) and letC; be the row space a;. For a given choice of
the firsti columnsg,, . .., g; and a giveru € {0, 1}! we have

m—1 —(m—1

if w > wt(uG;) and0 otherwise. Therefore,

m—1 —(m—1

u#0
and
EX; =) fi,wt(uGy)),
u#0
where

. . M =1\ ,—(m—i)
f(i,s) = %: <w—8>2 .
lw—m/2|>mé/2k

The complexity of the algorithm is determined by the cost oélifig the value
of g;+1. For that we must, for every possiblg. 1, computeE X, and find the
smallest of these quantities. Computifig{;,; takes finding the value (i +
1,wt(uG;y1)) for every choice ofu. There are at mos2m possible values of
f, but finding the weightsvt(uG;+1) has to be done for each and eachy; 1,
resulting inN? evaluations.

To reduce the complexity t0(m NN ), we follow the idea of [90]. Namely, it is
possible to choose the entries of the colughn, one by one, optimizing the choice
in every step. This results in a more cumbersome expressiotié expectation,
but gives a simpler algorithm. Sinee = ©(k?log N), we obtain the complexity
expression claimed in the theorem. O

Thus we have constructed expli¢i, 6)-RIP matrices of dimensions. x N
wherem = ©O(k?log N) which enables recovery of-sparse signals fromm-
dimensional sketches. In the next chapter we examine thatigneof what happens
if we relax the condition of RIP to permit a small proportidisparse signals to be
lost. It will turn out that much shorter sketches should seffi
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5.3 Further remarks on RIP matrices from code ensem-
bles

In this section we make brief comments relating to Thedrefr5.0nce it is real-
ized that codes with small width give good sampling matriti@s theorem follows
by a standard argument about the existence linear codesvauahithe GV bound
(as in[1.5.1). In applying it, we are seeking codes whostiveldistance differs
from 1/2 by a small amount, namely, hy/2k. Sincek is a growing quantity, the
result follows by looking at the asymptotic behavior of théerof codes achieving
the GV bound in the neighborhood &f = 0. We note that, apart from the ensem-
ble of linear codes defined by uniform random generator g&strit is possible to
consider other code ensembles that contain codes achigner@V bound or even
codes that do not attain it but are nevertheless asympitgtigaod. The purpose
of this consideration is a partial derandomization of thestuction of sampling
matrices.

This line of thought was examined in [11] where we looked atous fami-
lies of concatenated codes and codes on graphs and hygesdsge CH.J2) with
the purpose of locating code ensembles that give risg:t6)-RIP matrices re-
lying on a small number ofandom bits The number of random bits employed
in Theorem[5.2]3 is clearlyem which is O(k%log® N) sincek = log N and
m = O(k?log N). The smallest number of random bits among the ensembles con-
sidered in [11] is required for sampling matrices arisirapirhypergraph codes. It
it slightly less than the above quantity, and for the samgeai parameters equals
O(k?log N loglog N).
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CHAPTER 6

The Statistical Isometry Properties

6.1 Introduction

There is another aspect of compressed sensing where razat@miis built into
the signal and recovery model [28, 31, 57, 100]. As in manyliegporoblems
(for instance, transmission over noisy channels), perfowce can be enhanced by
permitting an almost always recovery kfsparse signals with some guarantee of
the form of [5.1). The idea behind this approach is a standaedin probabilistic
combinatorics, namely, we relax the requireméntl(5.2) thatsampling operator
® be a near-isometry from all to almost all sparse vectors.lyxiteg the recovery
properties under this relaxation is not immediate; howesenumber of useful
ideas in this direction have been suggested in earlier wa&<s7, 100]. The two
properties desired from a sampling matrix that had beengowiird by these works
are the Statistical RIP (SRIP) and Statistical Unique Renoroperty (SURP).
We show that it is possible to construct sampling matricesifcodes that sat-
isfy both SRIP and SURP, i.e. act as near-isometry on magtarse signals. Let
us define a version of the SRIP used in our analysis below. &fieition that we
give is slightly stronger than the one in [28] and is closehdefinition in [57].

Definition 6.1.1(SRIP) Anm x N sampling matrix® is said to satisfy thék, 9, ¢)-
SRIPE <m,0<6§<1,0<e<1(s(k,0,¢)-SRIP), if [5.2) holds for at least
1 — e proportion of all subset$ C [N] such that/| = k.

The statistical unique recovery property (SURP) is anotiseful property for
sparse signal recovery. The following definition is simitathe notion appearing in
[100]. Consider the product measurg x P, whereP;, is the uniform distribution
on the k-subsets of N] and whereP, is any absolutely continuous probability
distribution on the set dt-dimensional real vectors, with respect to the Lebesgue
measure ofR*. In the following definition the probability is computed acdimg
to this measure.

Definition 6.1.2(SURP) Letk <m,0 <e < 1. Anm x N sampling matrixp is
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said to satisfy thék, )-SURP if
Pr({k-sparsey € R",y # x : dy = dz}) < e. (6.1)

The definition of SURP is close to [28, Def. 2], but not equivsilto it.

The SRIP and SURP are used by Calderbank et al. [28, 29] to sbavery
guarantee fok-sparse signals under their reconstruction algorithm.séh@op-
erties are also used in [100] to show that exact recovery gofads under some
random models are possible. The good performance of somglisgnmatrices
are also justified by their statistical recovery properiief 3].

Taking a step back, we show that the above statistical iggrpedperties hold
for matrices constructed from a large class of binary lireeates. This conclusion
is made possible by properties of the distance distribudfarodes that we study in
the next sections.

6.2 Statistical isometry properties of matrices from codes

In this section, we address the task of constructing matidth statistical recovery
properties. The matrices that we examine are construcbaa lfiinary codes as in
Sec[5.2.P.

LetC c {0,1}™ be an(m, N) code. Surprisingly, we will find that the only
condition required from the codeto yield a statistical RIP matrix is that the first
two moments of its distance distribution are the same aethba random linear
code. This is ensured if the dual distante(€) > 3 which is not a very restrictive
condition. In the case of linear codes, this condition casthged as a requirement
that the generator matrix @ have no identical columns (such linear codes are
called projective).

We rely on the concepts of the distance distribution and disédnce of codes,
which apply both to linear and unrestricted codes (see[Sdg. To remind our-
selves, the distance distribution of &m, N') codeC is the set of numbergA, =
1,A1,..., Ay) such that

1
Ay = N!{(azl,wg) cC?: d(x1, x2) = w}.

Let d- be the dual distance of the cofle

We will need moments of the distance distribution of binavdes. If the dual
distance of the code satisfiés > [ for somel, it is possible to find the exact
values of the firsf moments, which do not depend on the code, and are equal to
the moments of the distance distribution of a code from tineloen parity-check
matrix ensemble (the binomial distance distribution).
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Lemma 6.2.1. (Pless power moment identitiels¢t C be a binary code of length
and suppose that*(€) > I. Then

-5 -m (-5 2

Proof. We use a version of these identities that relates to centoahents of the
distance distribution of the code. For linear codes a pregjfiven in [80, p. 132].
With minimal changes it also applies to general codes. O

In the particular case df = 2 we can compute these moments directly. The
following lemma will be useful later.

Lemma 6.2.2. Let € be an(m, N) binary code suchi*(C) > 3. Suppose that a
pair of codewordse, x, is chosen randomly and uniformly out of th§ N — 1)
such pairs and le¥ = d(x1,z2). Then

27\ 2 N —m
E@_E>:mw—n 63)
and
N —
Eh——-< S (6.4)

Proof. Inequality [6.4) is immediate froni (8.3) becaug| < (E|¢|?)'/? for any
random variabl€. What is left to prove is(6]3) which is done below.
The probability thatl(xz;, x2) = w satisfies

Ty, T 2. d(xy, x2) =w w
Hw:wﬁJﬂlyﬂiéN%ﬁyﬁ H:N{r

Therefore,
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The next lemma gives an approximation to the central momaiksnomial
distribution.

Lemma6.2.3.Forl > 2,

55 2 () (0= 5) = g (7)o
<va(1)"(3)" + 0,

Proof. Central moments of the binomial distribution form a welldied subject.
We quoted the first equality above from [105]. To prove theoaddnequality, we
use the Stirling formula for the factorials [80, p. 309] torguute that for all > 2,

s < V2(E)"

6.2.1 SRIP from codes

We are now ready to state one of the main theorems of this ehapt

Theorem 6.2.4.LetC be an(m, N) code withd(C) > 1, [ even, and le® be the
sampling matrix constructed from it. Suppose that

2lk2+2/l
= §2ee?/l
Then® is (k, d,¢)-SRIP.
Proof. Let I C [N] be a uniformly randont-subset. Note that the matrix! ®;
is real symmetric; therefore from the Rayleigh-Ritz theoi{&4, Thm. 4.2.2], for

anyx € RF, )
[Pl

13

)\min i < )\maxa

where,in and .« are the minimum and maximum eigenvaluesb@f@;.
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6.2. Statistical isometry properties of matrices from ode

For brevity we writel; = I \ {i}. We again rely on the Gershgorin theorem,
Thm.[5.2.1. For any eigenvalueof 7 &/,

A=11 <> (8] 6l
Jjel;
for somei € I. The remaining task is to show that the probability
Pr<3¢61;2|¢?¢j| >5) <e,
Jel;

which will imply that all eigenvalues o@?@l belong to the intervalll — 6,1 + J]
with probability at least — . This will prove the theorem.
We have

Pr (az' er:> (67 eyl > 5) < kPr(Zy¢Z¢j\ > 5)

Jjel; JjE€l;

<kzB( Y lelosl)

J€I;

k—1) 1 l
-l 3l )E(k—1z‘¢?¢j’>

Jel;

k(k — 1)1
<MD g S 6T a)

Jel;

Herec;, c; are the codewords df that correspond t@;, ;. The expectation on
the last line is taken with respect to the choice d@f-aubset/. We claim that the
value of the expectation does not change if instead, thegeet, c; are chosen
from € uniformly without replacement. Write out the expectationtbe choice of
I

oy (1 M)y v éz(l_zdw;,cm)z

jel; i1 <dg<-<ig
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where the expectation on the last line is defined with resigeatpair of uniform
distinct random vectors frorl. Next,

(i Mes) - ()30 e (02

- T T 5 ()]
- () voalm s () e 5) -5 (5)]

where on the last line we have used Lemima 6.2.1 as d*(€). Now invoke
Lemmd 6.2.B to compute

E(1- MY < <£>l/2£ 1+ o(1)).

m e ml/2(

This implies the following inequality:

Pr(3iel: > (67 >0) < ﬂk(%ﬂiyﬂu +o(1))

il em
<e,
where in the last step we used the assumptiomfor O

We can strengthen the previous theorem for some valugaueing a stronger
inequality than the Markov inequality. Namely, if we haveattol of the width of
the codeC then the number of samples can be made proportional teg 1/- rather
than tol/=>/!. To be specific, we have:

Theorem 6.2.5.Letk satisfies: < 21In N log(k /<) andm > 8(k/5?) log(k/e)In N.

. . : md 1
Suppose that is a linear (m, V) code of Wldthm andd—(€C) > 2, and
let ® be the sampling matrix constructed from it. Theis (k, 6, £)-SRIP.
Proof. The proof of the theorem relies on identifying a martingaguence and
then using the Azuma-Hoeffding inequality. LEtbe chosen randomly and uni-
formly from [N]. We use the same first few steps as in the proof of Thebrem 6.2.4.
We have,

Pr (32' er:> (67 eyl > 5) < kPr<Z|¢ZT¢j| > 5)

Jjel; Jjel;

< Z‘——dc,,cj ‘>5>

J€l;
k—1

Pr( Y%, > mij2),

i=1
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6.2. Statistical isometry properties of matrices from ode

whereY; = | —d(c,¢j),j = 1,...,k —1andey,...,cy_; are codewords
chosen uniformly frome \ {c} in that order without replacement. We want the
above probability to be less than

Define the random variablgs;, 0 < i < k — 1 as follows.

Zy =0 with probability 1,
andforl <i<k-1

7 %
Zi=)_Y;— ) EYj
j=1 j=1

It is easy to verify thalt[Z;|Z;_1] = Z;—,. Moreover, from the condition on
the width of G we have

mé
—F——a.S
2./2klog(k/e)

Therefore, the sequencg, 0 < ¢ < k — 1 forms a bounded martingale, and the
Azuma-Hoeffding large deviations bound [4, 62] applies. &&in

|Zi — Ziq| = |Y; —EY;| <

16a2k log(k /e
PI‘(Zk_1 > a) < exp ( - W;&;@)
The codeC satisfies[(6.4)
k—1
ZEYj < kyv'm/2.
j=1

We need to prove thatr(3-4"] Y; > md/2) < £/k. Leta = md/2—ky/m/2.
We have

k—1 k—1
mad md
Pr (;Y] > 7) —Pr (21> = —;EY]-)
< Pl“(Zk_l > a)
16m26%klog(k/e)(1 — k/V §2m)?
< _
=P ( A(k — 1)m28? )
k 2
< _ S
= exp( 410g(k/5)(1 \/81anog (k/s)) )
< exp ( —4log(k/e)(1 — 1/2)2)
=e/k,
where we have used the fact thak 21n N log(k/e). O
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We comment that the matrige of the above theorem can be constructed de-
terministically with complexity polynomial inV and k. To do that we need to
construct a lineatm, N) codeC with lengthm > 8(k/6%)log(k/c)In N, width

e — 2]:“5 5 andd*(C) > 2. We can modify Thm5.2]4 to construct a code with
og

the claimed length, width and dual distance. The modificatieals with the issue
of d+ > 2 which is guaranteed by constructing a generator matrix wigtinct
columns. We omit the specific details to have the focus on thm part of the
theorem.

6.2.2 SURP from codes

Next we prove that matrices constructed from some binargstédve the SURP.
Here we rely on the ideas of [100],making some changes telateur construction
of sampling matrices.

Theorem 6.2.6. Let @ be an(m, N) code and letd(C) > [ for some ever.
Suppose that

6LE2t2/1 2kl )
§2ee2/l 7 g2/1(1 - §)/

Then the sampling matri constructed front is (k,<)-SURP and(k, d,¢/3)-
SRIP.

mZmaX(

Since0 < § < 1 is an absolute constant (for instance, we can assume that
§ <+v2—1B2)), we assume below> §2/(1 — §).

We need the following lemma in whidfol(A) denotes the column space over
R of the matrixA.

Lemma 6.2.7. Suppose that a sampling matrik is constructed from a binary
(m, N)) codeC with d*(€) > [ for some eveh Suppose further that is (k, 8, £/3)-
SRIP. Letl, J C [N] be twok-subsets. If is uniformly random, then

Pr(dim(Col(®;) N Col(®,)) <k—-1)>1-— =

wheneverm > %
Proof. Without loss of generality we assume the dimension of colspace of
® is k, otherwise there is nothing to prove. L@y = &;(®7®;)~1dT be the
orthogonal projection on the spaCel(®;) (indeed,Q? = Q; andQ? = Q). Let
J # Tandi € J\ I. We will prove that|Q;¢;||? < ||#:]> = 1, which will imply
thatgbi ¢ COI(@[).

Since® satisfiegk, 6, ¢/3)-SRIP, the absolute value of any eigenvalu@fb
is at leastl — 6 with probability at least — /3. Therefore, with probability at least
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1—¢/3,

1Qr¢5l|*> = ¢ QT Q1 = (@] $:)" (@] @1) 1 (D] ¢4)
_ lef el
- 1-§

Denote bye; the codeword of that corresponds to the column. We have

2d(ej, ¢;)\ 2
|87 il = D167 o> = 3 (1 - =2=2)

Jel jer

and therefore for any evdrn< d+,
2d(ej, €;)\ 2\ /2
Tl _ Z _ js Ci
187 &1l = ( — (1 m > >
J

< Kl/2- 12( cj,c,))l.

jel
Hence,
_ 2d(ej, ¢)\!
Tyl — 1l/2—1 _ 4+ Ci
Eofoil < KPR (1- =)
jel
kl \1/2
< _ .
<V2(2) (1 o(1));
here we have used Lemmlas 612.1 and 6.2.3 and the derivati@Sinas in the

proof of Theorenh 6.214.
From the Markov inequality we further have

Pr(I@f ol 2 1) € T EloF ol
i) o)
<3

where in the last step we used the assumption atxout
Now combining the facts above we conclude that with prolistalt leastl —
2¢/3,
¢ 2
jQron < 120200 <y

which proves the lemma. O
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Proof of Theorerh 6.216The assumption om: together with Theorerh 6.2.4 im-
plies that® is (k, 0, £/3)-SRIP. Therefore, by (5.2), we have tha{ : rank(®;) =
k) > 1—¢/3, where the probability is computed with respect to the unifahoice
of k-subsetd of [N].

Let x be ak-sparse vector supported dnlet s = ®;x and letrank(®;) = k.

If there is ak-sparse vectoy such thatb;y = s then the support of is different
from I. Therefore, if a-sparser is supported on some randomly chogesubset

I andy is anotherk-sparse vector with the same sketch, then with probabitity a
leastl — /3 the supports of andy are different.

Assuming thatr andy have different supports, we observe that the vestor
lies inCol(®;) N Col(®,) wherel” = supdy). By Lemmd6.2.7, with probability
> 1 — 2¢/3 with respect to the uniform choice éf the vectors lies in an at most
(k — 1)-dimensional subspace, and so daewheneverd; has rankk. Now let
us use the absolute continuity of the distributiBp with respect to the Lebesgue
measure. A random vector froR* chosen with respect t&, falls in a (k — 1)-
dimensional space with probability 0.

To conclude, a random vecterfails the unique recovery condition (6.1) either
if there isy with the same support as(probability < £/3) or if Lemma6.2.7 fails
to hold (probability< 2¢/3), so® is (k, ¢)-SURP. O

Remark3. The two aspects of the compressed sensing problem analyzédsi
thesis correspond to the recovery of all sparse signals ambst all’ sparse sig-
nals. They are close in spirit to combinatorial vs. probstid error correction for
transmission over noisy channels. As in information theorgving from the ad-
versarial to the statistical scenario enables us to use feuar samples for reliable
signal recovery.

From previous works [10, 60, 88] it is known that RIP matricas be con-
structed from binary codes (as well as from codes over otpbahets). However,
constructions of this kind are limited by the classical kagiion error correcting
codes (binary or spherical). We have shown that it is possdbburpass these lim-
itations by permitting a small proportion of sparse sigriatswhich the sampling
operator fails to show near-isometry. In particukany binary codewith d+ > 1
can be used to construct anx N sampling matrix with(k, d, £)-SRIP and k, ¢)-
SURP, withm = O(k*>t2/!/(¢1/15)2). Note that the dual distance of the Delsarte-
Goethals codes employed in [29] equals 8. In that case the stodcture enables
one to prove the reliable recovery properties. Here we utsediard properties of
codes to be able to make a more general claim.

The dual distance of the code is known to control how far thegeds from a
random code. Examples of this principle include the belravionoments of the
distance distribution [80] as well as of the CDF of this disition (Sidelnikov’s
theorem [80, pp.295ff]). If the code is sufficiently randdnag largel"), the eigen-
value statistic should match that of random Gaussian neatri€his has been stud-

82



6.2. Statistical isometry properties of matrices from ode

ied experimentally in [6]. A proof has been recently annagshin [8].
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CHAPTER 7

Codes in Permutations: Bounds

7.1 Introduction

So far in this dissertation, we considered codes in the pilklmmming space
{0,1}™. The underlying geometric idea of constructing good packiextends to
other metric spaces such as the spheiR’irand a range of finite spaces of diverse
nature. One of these spaces is the set of permutationet@ments, i.e., theym-
metric groupS,,. Codes in permutations form a classical subject of codiegrth
Various metric functions o®,, have been considered, giving rise to diverse com-
binatorial problems. The most frequently studied metricsnis the Hamming
distance. Codes i,, with the Hamming distance, traditionally called permuta-
tion arrays, have been the subject of a large number of pegegse.g., the works
by Blake et al. [20], Colbourn et al. [38] and the survey by][38 this part of the
dissertation we are interested in a different metricgnwhich is defined below.
For any twoa < b € Z, let

[a,b] = {a,a+1,a+2,...,b}.
If a > b =1 we write[a] instead off1, a].

Definition 7.1.1. [70] Leto = (o(1),...,0(n)) be a permutation of the sét|.
TheKendall tau distance -(o, 7) from o to another permutationr is defined as
the minimum number of transpositions of pairwise adjacégments required to
changeo into .

Denote byX, = (&,,d;) the metric space of permutations enelements
equipped with the distancé,. We use the vector notation for permutations: for
instance (2,1,3) refers to the permutatigr{'3) . For a permutatiom = (o(1), ...,
o(n)) we denote its inverse by~! = (o=1(1),...,071(n)), where ifo (i) = j
theno=1(j) = .

The Kendall distance originates in statistics and has bdeptad as a measure
of quality of codes under the so-called rank modulation s@hefirst considered
by Chadwick and Kurz [35]. In this scheme, data is encodedl permutations
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of n elements while the information is carried by the relativegmitude (rank) of
elements in the transmitted sequences rather than by tbé&utisalue of the ele-
ments. The motivation for considering this scheme in [36jr& from systems in
which transmitted signals are subjected to impulse noigedhanges the value of
the signal substantially but has less effect on the relatimgnitude of the neigh-
boring signals.

7.1.1 Flash memory and the rank modulation scheme

Recently substantial attention in the literature was devod coding problems for
non-volatile memory devices, including error correctiarvarious models as well
as data management in memories [10,66—68]. Non-volatitaonies, in particular,
flash memory devices store data by injecting charges of mgrigivels in memory
cells that form the device. Consider a blockafells in floating-gate flash memory.
Each cell is capable of storing some amount of electricalgghacalled the capacity
of the cell. One can quantize this capacity of charge stoirstgey levels and write
information in the memory using @ary alphabet: each level of charge represents
an element ir{0,...,q — 1}. Reliability of the data stored in flash memory is
affected by the drift in the charge of the cells caused famimse by ageing devices
or other reasons. Because of the drift, after some amouimhefall (or most) of the
cells will contain erroneous values, and conventionalrecoorecting coding will
fail to recover the message written into the memory. It issatigeous to encode
the message into the ranking of the charge-levels oélls (i.e., a permutation).
Recently (and independently of [35]) codes in permutatimhtherank modulation
schemewas suggested by Jiang et al. [67, 68] as a means of efficiatihgvof
information into flash memories. Errors occur in the dataestan rank modulation
scheme only if the loss of charge in different cells occumifférent speed. In this
case errors introduced in the data are adequately accotontday tracking the
Kendall distance between the permutations. Details of Hmthwriting and the
error processes in memory are given in [68] and referenctmtrpaper.

The focus of our work is on bounds and constructions of coddisa Kendall
spaceX,,. The size of the maximum packing in the spa€eis related to finding
the volume of the sphere (sde_(1.3) in the Introduction). eBgghin the Kendall
space were studied by analytic means in a number of earliges}@9, 81] relying
on the well-known correspondence of permutations and iheersion vectors;
however it turned out that code bounds that can be obtaimed finese works do
not cover the range of parameters of interest to us. Regpspiacific code families
for correcting Kendall errors, the only previous work istthg Jiang et al. [68] who
constructed a codes of cardinality > 1(n — 1)! that correct one Kendall error.

An (n, M,d) codeC C X, is a set ofM permutations in which any two dis-
tinct permutations are at leagtdistance units apart. To distinguish these codes
from codes in the Hamming space, we call them rank permutaiboles (or rank
modulation codes) . In this chapter we discuss several lpessays to bound the
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size of codes for rank modulation, i.e. boundihfas a function of: andd. We
derive a Singleton-type bound and sphere-packing bounds@ncodes. Since the
maximum value of the distance i, is (}), this leaves a number of possibilities
for the scaling rate of the distance for asymptotic analysisging fromd = O(n)
tod = ©(n?). These turn out to be the two extremes for the size of optima ra
permutation codes. Namely, earlier work in combinatoricgesmutations implies
that the log-cardinality of a code with distande= ©(n?) occupies a vanishing
proportion oflog |X,,| while a code of distanc®(n) can take a close-to-one pro-
portion. We cover the intermediate cases, showing thatieeas optimal codes
with distanced ~ n'™¢,0 < ¢ < 1 scales asxp((1 — ¢)nlnn). It is interesting
that unlike many other asymptotic coding problems, the l&drgpace of permu-
tations affords an exact answer for the growth rate of the sfzoptimal codes.
The proof of the bounds relies on weight-preserving emlyegdofX,, into other
metric spaces which provide insights into the asymptosie sff codes.

We also show the existence of a family of rank permutatioresdtiat correct
a constant number of errors and have size within a constatdrfaf the sphere
packing bound. The construction relies on the well-knowsd&&howla Theorem
in additive number theory.

The results of this chapter appeared in [10].

7.2 Basics of permutations

We begin with a description of basic properties of the distahy such as its relation
to the number of inversions in the permutation, and weighs@rving embeddings
of &,, into other metric spaces. Their proofs and a detailed disoosare found
for instance in the books by Comtet [39] or Knuth [71, Sect.B.

The distanced. is a right-invariant metric which means théf(oq,02) =
d;(o10,090) for anyo,01,00 € &,, where the operation is the usual multipli-
cation of permutations. Therefore, we can define the weifjthieopermutatiors
as its distance to the identity permutatios- (1,2,...,n).

Because of the invariance, the graph whose vertices argaddsy the permu-
tations and edges connect permutations one Kendall step epagular of degree
n— 1. Atthe same time it is not distance-regular, and so the machiof algebraic
combinatorics does not apply to the analysis of the codetstre. The diameter
of the spacéX,, equalsN £ (’2‘) and is realized by pairs of opposite permutations
such aq1,2,3,4) and(4,3,2,1).

The main tool to study properties df- is provided by the inversion vector
of the permutation. An inversion in a permutatienc S,, is a pair(o(i),0(j))
such that < j ando(i) > o(j). Itis easy to see that.(o0,¢e) = I(0), the total
number of inversions ir. Therefore, for any two permutations , oo we have
d (01, 09) = (090, ) = I(o105 ). In other words,

dr(oym) = {(6,4) € n)* ri # 4,771 (@) > 771 (4), 07 (6) <o ()},
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To a permutatiow € &,, we associate amversion vectoe, € G, = [0, 1] x
[0,2] X --- x [0,n — 1], wherez,(i) = [{j : j < i+ 1,0(j) > o(i +1)}],i =
1,...,n — 1. Itis well known that the mapping from permutations to thacp
of inversion vectors is one-to-one, and any permutationbeagasily reconstructed
from its inversion vector. Lef : §,, — &,, be the map such that(x,) = o : for
instance,/((1,0,1,2,0,2,0,1)) = (2,1,6,4,3,7,5,9,8). Moreover,

n—1
I(o) =)z, (i). (7.1)
=1

For the type of errors that we consider below we introducédhawing ¢, distance
function ong,, :

n—1
di(@,y) =) |z(i) —y@)|  (z,y€Sn) (7.2)
=1

where the computations are performed over the integerswaite ||| for the
corresponding weight function (this is not a properly defimorm becausé,,
is not a linear space). For instance, dgt = (2,1,4,3),00 = (2,3,4,1), then
s = (1,0,1), x4, = (0,0,3). To compute the distana&- (o1, 02) we find

1(0201_1) =1((1,4,3,2)) = [|(0,1,2)]| = 3.

Observe that the mapping — x, is a weight-preserving bijection between
X, and the sef,,. At the same time, this mapping is not distance-preserving.
However, a weaker property is true, namely,

dT(017U2) > dl(w0'17w0'2)' (73)

Indeed, if the Kendall distance between two permutations tisen the/; distance
between the corresponding two inversion vectors és well. The converse is not
necessarily true.

From [Z.3), if there exists a code ), with ¢; distanced then there exists a
code of the same size i, with Kendall distance at least

Another embedding df,, is given by mapping each permutation to a binaiy
dimensional vectoa whose coordinates are indexed by the péirg) C [n]?,i <
J, anday; 5y = 1if the pair (i, j) is an inversion and; ;) = 0 otherwise. Clearly
the Hamming weight of equals! (¢), and so this mapping is an isometry between
X,, and a subset of the Hamming spgdée1}” . This mapping was first considered
in [36].
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7.3. Bounds on the size of rank permutation codes

7.3 Bounds on the size of rank permutation codes

Let X (n,d) be the maximum size of the code ¥, with distanced. For the
purposes of asymptotic analysis we define the rate of a €adéX,, of size M as

_lnM
o Inn!’

R(@) (7.4)
Let X (n.d)
n n
d) = i TN T
c(d) nho Inn!
be thecapacity of rank permutation codes of distande(our proof of Theorem
[7.3.1 will imply that the limit exists). The main result ofistsection is given in the
following theorem whose proof is given in Sectigns 7.3.2[@r&i3 below.

Theorem 7.3.1.

1 if d =0(n)
Cd)={1-¢ ifd=0(n'"), 0<e<1 (7.5)
0 if d = ©(n?).

Remarkd. As will be seen from the proof, the equality(d) = 1 — < holds under a
slightly weaker condition, namely, = n'*¢a(n), wherea(n) grows slower than
any positive power of.

7.3.1 A Singleton bound

Recall the well-known Singleton bound on the size of codekérHamming space
over ag-ary alphabetg > 2 [80]. Supposed is such a code in Hamming space
with distanced and lengthn. Let us delete coordinates...,d — 1 from every
vector inA. In the resulting set, all the vectors are distinct, andrthember is not
more than the total number of vectors of length- d + 1, i.e., |A] < ¢"~%*1.In
this section we adapt this idea for the spage

Theorem 7.3.2.Letd > n — 1, then

X(n,d) < [3/2++/n(n —1) — 2d + /4. (7.6)

Proof. LetC C X,, be an(n, M, d) code. Since the metrit- is right-invariant, we
can assume th&t contains the identity permutatian

Letk < nand letC, € &, be a code derived frordi in the following way. Let
Ui+ 6, — 6 be a mapping that acts enby deleting elements+ 1, ..., n from
it. Thus, (o) is a permutation o elements that maintains the relative positions
of the elements ofk] given byo.

Let & be the greatest number such thatis not injective. Then)y,, is in-
jective, andM < (k + 1)!. Suppose that permutations, o € &,, are such that
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Yr(o1) = Yr(o2). Because of the last equality, none of the fiegntries of the
permutationrao; ! contain pairs that form inversions. Therefore,

d < d-(o1,00) < (Z) _ (g)

1++/4n(n—1)—8d+1
2 )
which proves inequality (716). This estimate is nontrivfal

This gives

k<

g+\/n(n—1)—2d+1/4<n

which is equivalent to the conditioth > n — 1. O

To gain an insight into this bound, ldt = d/N. Using the inequalityn! <
(m/2)™ in (7.8), we obtain the asymptotic inequality

X(n,6N) < exp(n(Inn)v1—06(1+ c¢(Inn)™h)),

where the constartdoes not depend an As we will show in the next section, the
v/1 — ¢ in this bound can in fact be improved to a quantity that de@aysn n)~!
asn grows.

7.3.2 Sphere packing bounds

Sphere packing bounds on codes in the Kendall sfiacare related to the count
of inversions in permutations. In this section we discus®s classic and new
results in this area, showing that they imply the asymptstaling order ofC(d)
for very small or very large values df

Denote byB,.(X,, e) the ball of radiug- in X,, centered at the identity permu-
tatione. It is evident that inX,, the volume of a ball of a given radius does not
depend on the center of the ball. Frdm {1.3),

n! n!

Y X1 < —
By ()] = )< 1B, (%o

The embeddings df,, into other metric spaces can be used to derive estimates of
X (n,d) based on these inequalities. In particular, estimatingtheme of the/; -
metric ball in[n|" = {1,...,n}" and using[(7Z.12), both lower and upper bounds
will follow from the embedding ofX,, in the spacén|™.

Let K, (k) = [{o € &,, : I,(0) = k}| be the number of permutations with
inversions. By[(7N1)K,, (k) is the number of solutions of the equation

(7.7)

n—1
> xi=k, wherez; € [0,d].
=1
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7.3. Bounds on the size of rank permutation codes

Then clearlyK,, (k) = 0 for £k > N and
1
Ko(k) = Kn<N . k;) for0 <k < N.

The number of inversions in a random permutation is asyrigalft Gaussian with
mean%N and variancez”’*??’# = g—g [50, p.257]. This suggests that codes
with distance greater tha%qN cannot have large size. We show that this is indeed
the case in Sedt. 7.3.4.

The generating function for the numbéss, (k) has the form

=Y Kb = [[ = (7.8)

k=0 1=1

Forl < k < n the number of permutations withinversions can be found explic-
itly [71]:

n+k— n+k—
mo= (") - ()

n+k—u;—1 n+k—u;—j—1
e[ () oo
j>2

whereu; = (352 — j)/2 and the summation extends for as long as the bino-

mial coefficients are positive (it contains abdué/k terms). This implies that

|B1(Xp,e)] =n,andX (n,3) < (n—1)!. Asshownin [81], fom = k+m,k > 0
m+n—1

Jam

The case of > n is much more difficult to analyze. An obvious route for finding
asymptotic approximation ok, (k) is to start with the integral representation of
the coefficients ofK'(z) (7.8). Namely, sincek’(z) converges for every in the
finite plane, we can write

1—2’ k1
dz.
Kl 2772%1_[ 1—2 ®

where the integration is over any circle around the origmparticular, forjz| = 1
we obtain

K,(k) =(0.289...) (1+0(m™)). (7.10)

1 5 _ei&u —ikw
Kn(k) = o _WH o dw (7.11)
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Asymptotic analysis of this expression involves saddlenpoalculations and is
rather involved even in the particular cases for which itlbesn accomplished, see
Margolius [81] and Louchard and Prodinger [79]. The nexbtben is a combina-
tion of results of these works, stated here in the form slatédy our context.

Theorem 7.3.3. There exist constantg andcy such that

K, (k) < exp(cin) if £ =0(n),
K, (k) = n!/exp(can) if k = O(n?).

The implicit constants in this theorem can be found in ciefdnrences. From
this theorem and inequalitids (¥.7), we obtain the two bamndases of the expres-
sion forC(d) in (Z.5).

7.3.3 Bounds from embedding in the/; space

In this section we prove the main part of Theorem 7.3.1. Oaaii to derive
bounds onC'(d) by relating the Kendall metric to th§ metric on&,,. From the
results of Diaconis and Graham [48],

1/2D(O'1, 02) < dT(Ul_la 02_1) < D(01702)' (712)

whereD(o1,02) = > |01(i)—02(i)|. Therefore, existence of any cole- &,
with Kendall distancel must imply existence of a cod® = {o~! : 0 € C} of
same size that havg distance at leagt. On the other hand existence of any code
€ C &, with ¢, distanced implies the cod&®’ = {o~! : o € €} will have Kendall
distance at least/2.

Remark5. Define T'(o1,02) to be the number of inversions of (not necessarily
adjacent) symbols needed to chamgento o5. Paper [48] in fact shows that

dT(Jfl,ng) < D(o1,09) — T(01,09)

which is a stronger inequality than the one given above. Weekier will not use
it in the derivations below.

Proposition 7.3.4. Let B,.([n]", ) be the metric ball of radius with center atr
in the spacén|™ = {1,2,...,n}" with the/; metric. Then the maximum size of a
code inX,, with distanced satisfies

n! n"

< X(n,d) <

)

maXge(ppn [Baa—1([n]", )| Milgepyn [Bi([n]™, )|

wheret = [(d —1)/2].
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7.3. Bounds on the size of rank permutation codes

Proof. Under the trivial embeddin®,, — [n]™ the/; distance does not change, so
any codeC in G,, with ¢; distanced is also a code in|™ with the same distance
and as such, must satisfy the sphere-packing bound (s&). (Ilogether with
(Z.12) this gives the upper bound of our statement.

Turning to the lower bound, let us perform the standard @Gilllarshamov pro-
cedure in the space of permutations with respect tdthdistance (see Seét. 1.3),
aiming for a codeD with ¢; distancem. The resulting code satisfies

|D| max |Bm—1(6pn,0)| > nl.

Since|B,([n]",0)| > |B,(6,,0)|, we can replace the volume i&,, with the
volume in[n]™ in the last inequality. In the spacg,, the codeD’ = {o~! : o €
D} will then have Kendall distance at least/2. O

Below we consider only spheres in the spacl and omit the reference to it
from the notatiorB, ([n]", -).

Lemma7.3.5.Letl = (1,1,...,1) € [n]". Then for anyz,y € [n]",
27"B,(2)] < B (V)] < [Br(y)]-

Proof. Suppose that = (z1,z2,...,z,) € B.(1)andl # y = (y1,y2,---,Yn) €
[n]™. Consider the mapping : B,(1) — B,(y) wherex — wu, whereu =
(uy,us,...,uy,)is given by

w — yi+ (e —1) ify+ (v, —1)<n
Cln—(z—1) iy (i —1) >n.

Clearlyu € [n|" andz; — 1 > |u; — y;| fori = 1,...,n, so every point within
distancer of 1 is sent to a point within distanceof y. Furthermore, this mapping
is injective because i, x» are two distinct points iB,.(1) then their images can
coincide only if in some coordinates

yi+ (@1 — 1) =n— (v2, — 1).

However, the left-hand side of this equality>tsy; while the right-hand side is y;
by definition ofu;. This proves the right inequality.

To prove the lower bound, writ8,.(z) asz + D,(z), whereD,(z) is the set
of differences:

n
Di(z)={ueZ":|Ju| <n—-1,1<i<n; » |u| <randz+u e [n]"}.
=1

Writing B,-(1) in the same way as + D;", we have

n
Df={uecZ":0<u;<n-—1; Z]ul\gr}
i=1

95



Chapter 7. Codes in Permutations: Bounds

By taking the absolute values of the coordinates, any pai,i(z) is sent to a
point in D;, and no more tha@d™ points have the same image under this mapping.
This proves our claim. O

These arguments give rise to the next proposition.

Proposition 7.3.6.

|
o < X(nd) < — 1 (7.13)

2n 3 25 Q(n, ) Y, Qn,r)

where

i>0

and K, (i) = () (""" andt = [(d — 1)/2).

r—ni
This claim is almost obvious because, by the previous lemma,

nl n
" < X(nd) <
27 Bog—1(1)| ~ (n.d)

Next,

whereQ(n,r) is the number of integer solutions of the equation
1 +2x2+ ...+ =1,

where0 < z; < n—1,1 < i < n. The expression fof)(n,r) given in the
statement is well known (e.g., [53, p.1037]).

Expression[(7.13) gives little insight into the behaviortio¢ bound. In the
remainder of this section we estimate the asymptotic behafithis bound and
derive an estimate of the code capacity.

Lemma 7.3.7. Suppose that < n?/Inn. Then

(n—i—r— 1> _n<r— 1) < Q(n.r) < <n+r— 1>‘
T r—n T
Proof. Let S(n, j) = >_;».;(—1)'K,,(i). The lemma will follow if we prove that

S(n,1) < 0andS(n,2) > 0. (7.14)
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7.3. Bounds on the size of rank permutation codes

Under the assumption anwe have

(r+n—n(i+l)—1) n—1 . .
r—n(i+1) :HT—TLZ—H—F]
r—mni+j

( n >

n n—1
(- =1
r—n(i—1)—1

__n(n=1)
S e r—n(i-1)—1

3
—

<.
Il

IN

n—1

<n

|5

IA

Thus for: > 1

K (i+1) <n—i\/§<

A"
Ko, (i) ~i+1n

Therefore— K, .(2m — 1) + K, ,(2m) < 0 for all m. Since the sunS(n,1)
starts with a negative term and the s$tn, 2) with a positive one, the required
inequalities in[(7.14) follow. O

From the foregoing arguments we now have the following ekptiounds on
X(n,d):

n! n"

T, = X n’d < t n4r— r— ’
ity = X S S e )

(7.15)

wheret = |(d —1)/2]. Here the right part is obvious and for the left inequality we
used[Z.IB), Lemna7.3.7, and the idendiy_,, (°I*) = (**7*1).

3 n

Now we are ready to complete the proof of Theofem 7.3.1. Asstinatd =
O(n'*e) for somed < e < 1. The two boundary cases 6f(¥.5) were established in
the previous section. Let us prove the middle equality. F{orh3),
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To estimate the denominator, write

n+t—1 B t—1
n—1 \t—n

(because ofn(1+n/t) > (n/t) — 3(n/t)?, for n/t < 1.) So starting with some

we can estimate the denominator below! "::1). Therefore,

2n' 2n"(n — 1)"1

Next
In X (n, 0(n!te))

nlnn
On the other hand, using

(P37 (2 <

<2—(1+¢e)+o0(l)=1—c+o0(1).

andn! > (n/3)", we obtain from[(7.15)

nn
X >
(n,d) 2 (12e)"O(nne)

Taking the logarithms and the limit, we find th@td) > 1 — . This completes the
proof of Theorend 7.3]1.

7.3.4 Bounds from embedding in the Hamming space

Since the embedding 6k, into the Hamming spacg0, 1}V of dimensionN =
() is isometric, the known results for codes correcting Hangremrors can be
used to derive estimates and constructions for codes in ¢melddl space. In par-
ticular, the known bounds on codes in the Hamming space caavimitten with

respect to the spadé,. For instance, the Plotkin bound implies that
X(n,d) <2d/(2d — N)

and thus any codé C X,, with distance greater than the average (%éJ,) satisfies
|C| = O(N).
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Given the image of a code c X,, in {0,1}* it is easy to reconstruct the code
C itself. Indeed, it is immediate to find the inversion vectéraopermutations
given the image o# in {0, 1}V, and then to recover from its inversion vector.

Of course, not every code 0, 1} will have a code iriX,, corresponding to
it. The next simple proposition shows that neverthelessari codes in{0, 1}V
can be used to claim existence of good rank permutation codes

Proposition 7.3.8. Suppose that there exists a binary linggh), k£, d] code A.
Then there exists afn, M 2211?—!,,6, d) rank permutation code.

Proof. One of the2V—* cosets ofA in {0,1}" must contain at least!/2V—*
vectors that map back to valid permutations. O

For example, let us assume that the vaNiés such that there existsteerror-
correcting binary BCH code of lengtN (if not, we can add zeros to a shorter BCH
code). Its dimension is at leadt — ¢ log, (N + 1). This shows the existence of a
t-error-correcting rank permutation code of s% = #.

On the other hand, by the sphere packing bound the size-efr@r-correcting
code inX,, is at mostM < O(Z—E). Thus, using the embeddirlg,, — {0,1}"
we are not able to close a gap between the existence resdith@npper bounds.
In the next section we use a different method to construcesdiat achieve the

sphere packing bound to within a constant factor for anyrgive

7.4 Towards optimalt-error-correcting codes

The representation of permutations by inversion vectargiges a way to construct
error-correcting rank permutation codes. In this secti@encanstruct codes in the
space of inversion vectof, equipped with/; distanced;, and claim the existence
of rank permutation codes by the inequality on the code niigts((7.B). Belowx ||
denotes thé; norm of the vectore.

We begin with constructing codes over the integers thatcbadditive errors.
Once this is accomplished, we will be able to claim existarfagood rank permu-
tation codes. Letd be some subset & and letA” be the space of-tuples of
integers fromA equipped with the/; distancel[(72)L > 0 is an integer. A code
D c A" is said to correct additive errors if for any two distinct code vectaesy
and anye;, e; € Z%, both of weight at most (i.e., such thatle, ||, ||ea|| < 1),

T +e #y+eo.

Remark6. If in the above definitiore; > 0 for all 7, the code is said to correct
asymmetricrrors [40]. However below we need to consider the genesd.ca

We assume thadl andt are such thab is well defined: for instance, below we
will take A = [0, s — 1] wheres is some integer sufficiently large compared to
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Definition 7.4.1. Letm > L and lethy,...,hy,0 < h; <m,i=1,...,Lbea
set of integers. Define the co@es follows:

C= {a: € AL‘ ZL:hZ—wZ— =0 mod m} (7.16)
i=1

This code construction was first proposed by Varshamov andrfeltz [102]
for correction of one asymmetric error (it was rediscovdeder by Constantin and
Rao [40] and, in a slightly different context, by Golomb andlet [54]). General-
izations to more that one error as well as to arbitrary finiteigs were studied by
Varshamov [101], Delsarte and Piret [44], and others; henghese works dealt
with asymmetric errors. Below we extend this constructmithe symmetric case.

Proposition 7.4.2. The codeC defined in[(7.16) corrects additive errors if and
only if for all e € Z*, ||le|| < t the sumsy_~ , e;h; are all distinct and nonzero
modulom.

This proposition is obvious as it amounts to saying thattel $yndromes of
error vectors of weight up tbare different and nonzero.

We will need the following theorem of Bose and Chowla [23]tHe following
arguments; is a power of prime aneh = (¢'*! —1)/(¢ — 1).

Theorem 7.4.3.(Bose and Chowla) There exigt- 1 integersjyo = 0, j1,...,jq N
Z., such that the sums

Jin F i+t (0<d <ip <. <dp < q)
are all different modulon.

This theorem provides a way of constructing an asymmetadditive error-
correcting code of length. This is because for any error vecowith ||e|| <t <
m such thak; > 0, the sum§:§1:1 e;J; involve at most of the numberg; and thus
are all different. In coding theory, this theorem was praslg used to construct
constant weight codes in the Hamming space [45, 56].

We extend the Theorefn_7.4.3 so that one can construct a $enadaitive
error-correcting code. In the following discussions,rtgt= ¢(¢ + 1)m if ¢ is odd
andm; = t(t + 2)m if t is even.

Theorem7.4.4.For1 <i<qg-+1let

b jz’—l—l—%m for t odd
" i1+ im forteven

where the numberg; are given by the Bose-Chowla theorem. ForalkE Zd*!
such that|e|| < ¢ the sum fjll e;h; are all distinct and nonzero modute;.
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Proof. Lett be odd and lefd, = {0, hy, ..., hg+1}. Observe that
(t—1)m/2 < h; < (t+1)m/2. (7.17)

(i) Foranyk; < ks <...<k; € Hy, the sumstz1 k; are all distinct modulo
m and therefore also modula;. These sums are also nonzero modul@xcept
for the case when all thig’s are0.

(if) Moreover, for anyky < ko ... < kg € Hg, the sum

and is therefore nonzero modute.
(iii) Finally, for any 0 < k1, ko, ..., ko € Hy and anyr < t,

2
t+1 t—1

Z ki < —12_ m§(2t—T)Tm
i=2t—r+1

<) ki (7.18)

Let us suppose now that there exist nonzero veatgre, < Z+! both of
weight at most such that

either (a) itlerihi =0 mod my

+1 +1
or (b) Zgzl e1ih; = ;‘1:1 egih; mod my.

However assuming (a) contradicts property (i). On the oftaed if (b) is true
then one of the following two scenarios can happen. In thedasee;; > 0 and
eo; < 0foralliorey; < 0andey; > 0foralli. Itis easy to see that this assumption
contradicts property (ii). In all other situations, (b) tadlicts either property (i) or
property (iii) above.

The claim fort even is proved in an analogous way. Namely, we will have

tm/2 < h; < (t+2)m/2

and
2t 2t—r
t+2 tm
| Z ki<r( 5 >m§(2t—r)7§2ki
i=2t—r+1 i=1
instead of[(7.1I7) and (7.118), respectively. The rest of l®foremains the same.

O
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Together with Proposition 7.4.2 this theorem implies thistence of a-error-
correcting code of lengthg + 1 over the alphabetl = Z,,,, that corrects additive
errors. Recall that our goal is to construct a code over thefdaversion vectors
G, that corrects additive errors. At this point let us set+ 1 = n — 1. Note
that, G,, is a subset of0, n — 1]"~! which is a subset L7, !. SinceC is a group
code with respect to addition module, its cosets irZQ;l partition this space into
disjoint equal parts. At least one such coset containg n!/m; vectors fromg,,.
Invoking (7.3) we now establish the main result of this setti

Theorem 7.4.5.Letm = ((n — 2)'*! —1)/(n — 3), wheren — 2 is a power of
a prime. There exists @&error-correcting rank permutation code i#,, whose size
M satisfies

M>{n!/(t(t+1)m) (t odd)
1 nl/tE+2)m)  (teven.

This theorem establishes the existence of codes whosesfé&ie same order
O(n!/n') as given by the sphere packing bound of the previous section.

As a final remark, note that the construction is explicit gtder the last step
where we claim existence of a large-size code in some coskeéaodeC.
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CHAPTER 8

Codes in Permutations: Constructions

8.1 Introduction

In the previous chapter we established the asymptoticrgrafithe rate of optimal
codes in the Kendall spadg,. However, the main question related to the appli-
cations of the rank modulation scheme relates to expli@dirapschemes for error
correction. Codes correcting one Kendall error were cantd in [68]. In the
previous chapter we proved the existence of a family of ragnpitation codes
that correct a constant number of errors and have size watlionstant factor of
the sphere packing bound. The major gap in the literature@dmg for rank modu-
lation has been the absence of explicit constructions ofliizsrof rank modulation
codes. Addressing this issue, in the present chapter wéderéew general con-
structions of rank modulation codes that correct errors wiiplicity varying over
a large range of values.

The results of this chapter appear in [15].

8.2 Rank modulation codes and permutation polynomials

Our first construction of rank modulation codes is algebiaicature. We identify
the permutations on the elements of a field with the pernartaiblynomials over
the field.

Let g = p™ for some primep and letF, = (ag,a1,...,aq—1) be the finite
field of ¢ elements. A polynomiaj(z) € F,[x] is called apermutation polynomial
if it permutes the elements @, (this means that the valugga) are distinct for
distinct values of: € ) [76, Ch. 7].

Consider the evaluation mgp— (f (), ..., f(aq—1)) which sends permuta-
tion polynomials to permutations gfelements. Evaluations of permutation poly-
nomials of degreec k£ form a subset of g-ary Reed-Solomon code of dimension
k + 1. Reed-Solomon codes form a family of error-correcting soidethe Ham-
ming space with a number of desirable properties includffigient decoding. For
an introduction to them see [80, Ch. 10].
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At the same time, evaluating the size of a rank permutatiate @mnstructed
in this way is a difficult problem because it is hard to compgh&number of per-
mutation polynomials of a given degree. In this section wenfdize a strategy of
constructing codes along these lines. This does not resalvery good rank mod-
ulation code; in fact, our later combinatorial construstiawill be much better, in
terms of the size of the codes with given error-correctingpbélities. Nonetheless,
the construction involves some interesting observatiohghvis why we decided
to include it.

A polynomial overF, is calledlinearizedof degreev if it has the form

L(x) = ZV: azx”
=0

Note that a linearized polynomial of degreehas degre@” when viewed as a
standard polynomial.

Lemma 8.2.1. The number of linearized polynomials ové&y of degree less than
or equal tov that are permutation polynomials i, is at least

1 1 v+1 v
(1 p—1 +Q(p—1)>q =0

Proof. The polynomiall(z) acts onfF, as a linear homomorphism. It is injective

if and only if it has a trivial kernel, in other words if the gnioot of L(x) in F is

0. Hence,L(z) is a permutation polynomial if and only if the only root 6fx) in

Fqis0.

The total number of linearized polynomials of degree up is ¢**!. We are
going to prove that at least(a — p%l + m) proportion of them are permutation
polynomials. To show this, choose the coefficienats0 < i < v, of L(z) =
>-¥ o a;z?" uniformly and randomly fron¥,. For a fixeda € [y, the probability
thatLl(a) = 0is1/q. Furthermore, the set of roots of a linearized polynomiahis a
[F,-vector space, hence the set of non-zero roots is a multigle-al. The number
of 1-dimensional subspaces Bf over[F, is %. The probability that one of these

sets is included in the set of roots fx) is, from the union bound,

* g—1 1
Pr(daelF, : L(a)=0) < —— - —.
BaeFy:Lia)=0)< — -

Hence, the probability thaf (z) is a permutation polynomial is greater than or

_ _g-1_
equal tol =D O

8.2.1 Code construction

We can either takes = ¢ orn = g — 1 wheregq is the size of a field and we
construct a rank modulation code &,. Note that a linearized polynomidl(z)
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always maps zero to zero, so that when it is a permutationnpatjal it can be
considered to be a permutation of the elements 0énd also of the elements of
7. Lett be a positive integer and let= |log,(n — 2t — 1)]. Let P; be the set of
all linearized polynomials of degree v that permutéf,. Setn = ¢ — 1 and define
the setd C Fy

A={(L(a),a €Fy), L € Py}

to be the set of vectors obtained by evaluating the polynisnniadP; at the points of
[F;. Form a code€ by writing the vectors il as permutations (for that, we fix some
bijection betweerin| and[Fy, which will be implicit in the subsequent discussion).
We can have: = ¢ rather tham = ¢ — 1 if desired: for that we add the zero field
element in the first position of thg — 1)-tuples ofA, and the construction below
readily extends.

The idea behind the construction is quite simple: thedssta subset of a Reed-
Solomon code that correctdHamming errors. Every Kendall error is a transposi-
tion, and as such, affects at most two coordinates of thevomdieof €. Therefore
the codeC can correct up to/2 errors. By handling Kendall errors more carefully,
we can actually correct up toerrors. The main result of this part of our work is
given by the following statement.

Theorem 8.2.2.The code has lengthn = ¢ — 1 and size at leagg!'°%»(*—2¢=1)
It corrects all patterns of up té@ Kendall errors in the rank modulation scheme
under a decoding algorithm of complexity polynomiahin

Proof. Itis clear thaiC| = |A|, and from Lemm&8.21114| > qlogp(n=2t=1)]

Leto = (a1,a2,...,a:Qi41,---,0,), Wherea; € Fy,1 < j < n, bea
permutation inX,, (with the implied bijection betweefr] and[F;) and leto’ =
(a1,a9,...,a;11,0a;,...,a,) be a permutation obtained from by one Kendall

step (an adjacent transposition). We have
o—o =(0,...,0,0,—0,...,0)

wheref = a; — a; 41 € Fy.

Let
1 00 0
1 10 0
p_ 1 11 0
1 11 1

be amm x n matrix. Note that
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This means that multiplication by the accumulator maffigkonverts one adjacent
transposition error into one Hamming error. Extending tiiservation, we claim
that if d-(o,7) < ¢ with 7 being some permutation, and ahy< %, then the
Hamming weight of the vectaP(o — )7 is not more thar. Here we again take
and to be vectors with elements frofif with the implied bijection betweefn|
andFy.

Now letL () be alinearized permutation polynomial andllet;, o2, . .., a9~2
be the elements df; for some choice of the primitive element Let

o= (L1),L(a),L(a?),...,L(aT?).
Sincel(a + b) = L(a) + L(b), we have

PUT = (L(ﬁ(])vﬁ’(ﬁl)>£“(ﬁ2)v cee 7L(ﬁq—2))T
where

Bi=> o, i=01,..,q-2

Itis clear that3; # 0,0 <i <n —1landalsg3; # 3;for0 <i <j <n-—1,
Therefore, the vectaPo” is a permutation of the eIementsIDJ. Atthe same time,
it is the evaluation vector of a polynomial of degrgen — 2t — 1. We conclude
that the sef{ Po’, o € A} is a subset of vectors of an (extended) Reed-Solomon
code of lengtm, dimensionn — 2t and distanc@t 4 1. Any t errors in a codeword
of such a code can be corrected by standard RS decodingthafgerin polynomial
time.

The following scheme for writing data with the co@ecorrects any Kendall
errors. Suppose € A is read off from memory as;. Evaluatez = Pol,
and use a Reed-Solomon decoding algorithm to correct upHamming errors
in the vectorz, obtaining a vectoy. If d;(o,01) < t, theny corresponds to a
transformed version aof, i.e.,y = Po”. Soc is recovered a® 'y’ i.e.,

0i =Yi+1 —¥i, 1< <n—1; 0, =yn.

O

We note an earlier use of permutation polynomials for caesitng permutation
codes in [37]. Atthe same time, since the coding problemidensd in that paper
relies on the Hamming metric rather than the Kendall tawadist, its results have
no immediate link to the above construction.
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8.3. Rank modulation codes from codes in the Hamming space

8.3 Rank modulation codes from codes in the Hamming
space

In this section we present other ideas for constructing pemknutation codes using
the weight-preserving embedding of the Kendall sgégento a subset of integer
vectors discussed in SeLt. ]7.2. To evaluate the erroratorgecapability of the
resulting codes, we further link codes over integers witllesocorrecting Hamming
errors.

8.3.1 From inversion vectors to the Hamming space via Gray ma

Recall that the mapping from permutations to the space ef#iwn vectors is one-
to-one, and any permutation can be easily reconstructen finversion vector
with the mapJ defined in Secf. 712.

We will need theGray mapwhich is a mappingps from the ordered set of
integers|0, 2° — 1] to {0, 1}* with the property that the images of two successive
integers differ in exactly one bit. Suppose tihat bs_s...bg, b; € {0,1},0 <
i < s, is the binary representation of an integee [0,2° — 1]. Set by definition
bs = 0 and defineps(u) = (gs—1, gs—2, - - -, g0), Where

gj = (bj +bj11) (mod 2) (j=0,2,...s—1) (8.1)

(note that generally the Gray map is not uniquely defined for4).
Now leti =2,...,n,
m; = [logi],

and let
¥ {0,1}™ — [0,i — 1]

be the inverse Gray map = qﬁ;l. Clearlyv; is well defined; it is injective but not
onto since the size of its domain is orily:.

Proposition 8.3.1. Suppose that, y € {0,1}™:. Then
whered denotes the Hamming distance.

Proof. This follows from the fact that if the difference of magnieuts 1 between
the numbers, then their Gray images have Hamming distatetween them. If
two numbers: < v are such thau —v| = d, then one can obtain the ordered set of

d+ 1 numbersu,u +1,u +2,...,v = u + d. Hence, from the triangle inequality
the Hamming distance between the Gray images afidv is less than or equal to
d. O
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Consider a vectorr = (x3|xs|...|x,), wherex; € {0,1}™ i = 2,... n.
The dimensionn of x equalszj m; ~ logn!, or more precisely

mp—1
mo= Y (2T =)t m,(n+1-2m)
j=1
mp—1
= Z 327+ mp(n + 1 —2mn)
j=1
(my, —2)2™" + 24+ mp(n+1—2M")
= (n+41D)m, — 2™ 42

Given a vectote € {0,1}™ let
U(x) = V(x| .. . [xn) = (V2(@2), - - ., ¥n(Tn)).
Proposition 8.3.2. Letx,y € {0,1}™. Then
di(¥(z), U(y)) = d(z,y),

where the distancd; is the ¢, distance defined if_(7.2) andl is the Hamming
distance.

Proof.

d(W(2),¥(y) = > i@ — vi(y,)l
i=2

i=2
= d(z,y).
O

Now we can formulate a general method to construct rank pation codes:
take a binary code of lengtty and cardinality)M/ in the Hamming space and send
each of its vectors to a permutation using the compositiop sha ¥. Both parts
of this map are injective, so the cardinality of the resgjtaode isM. Moreover,
each of the two mappings can only increase the distance (pasee [7.B) and the
above proposition). Summarizing, we have

Theorem 8.3.3.Let C be a binary(m, M, d) code, wheren = (n + 1)|logn]| —
ollogn]+1 1 9 Then the set of permutations

C,={re6,:n=J(¥(x)),zcC}

forms an rank modulation code enelements of siz&/ and distance at least in
the Kendall spacél,,.
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Example: Consider &-error-correcting (shortened) BCH code of length=
(n+41)[logn) — 2lleenI+1 1 2 and designed distan@ + 1. If m is one less than
a power of two, then the size of the code is

2m
>
— (m+1)t

This shows that we can construct a set:afA/) rank modulation codes that correct
t errors. Note that for constartany codeC in X,, satisfies|C| < O(n!/n?).
The rank modulation codes constructed from binary BCH cdde® sizeM =
Q(n!/log' n!) = Q(n!/ntlog’ n).

For instance, take = 62, thenm = 253. Taking twice shortened BCH codes
C; of lengthm, we obtain a range of rank modulation codes according to ¢he d
signed distance df;. In particular, there are rank permutation code&(ia with
distance at leastt + 1 and sizeM given by:

log M 247 239 231 223...
t 1 2 3 4...

Similarly, takingn = 105, we can construct a suite of rank permutation codes from
shortened BCH codes of length = 510, etc.

Consider now the case when the number of ertagsows withn. Since the
binary codes constructed above are of lengibg n, we can obtain rank permuta-
tion codes irnl(,, that correct error patterns of Kendall weight (nlogn). But
in fact more is true. We need the following proposition.

Proposition 8.3.4. Letx,y € {0,1}™. Then

Proof. We first claim that, for any, y € {0, 1}, the inequalityd(x, y) > w; >
1 implies that|y;(z) — ;(y)| > 2@i~1. This is true because of the ‘reflective’
nature of the standard Gray map as is evident from[Eqg|. (8.1).

Now consider vectore: = (xa|xs|...|z,), vy = (ys|ys|...|y,) in {0,1}™
wherex;,y; € {0,1},2 < i < n. Suppose that(x;,y;) = w; for all 7, and
St o w; = wwherew = d(z, y).
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Hence,
dl(\Il(m%\IJ(y)) = Z W)Z mz - yz)|
> Z 211)1—1

i:w; >0

1=2

i w; =0

1 . .
§(wi>0,2n?§_r12wi:w Z2w B Z >

2:w; =0

v

v

5 (271 —1).

We have the following theorem as a result.

Theorem 8.3.5.Let € and C.- be the binary and rank permutation codes defined
in Theorent 8.313. Suppose furthermore that the minimum Hagnhdistanced of

the codeC satisfiesd > m wherem is the blocklength of. Then the minimum
Kendall distance of the cod®. is Q(n!*¢).

Proof. Observe thain > n(logn — 3) sod > em > en(logn — 3). From the
previous proposition the minimum distance@fis at least
n

%1 (2n0o8m9) 1) = (),

O

From the existing asymptotically good families of binargles with ratek > 0
and relative distancé < ¢ < 1/2, one can therefore construct rank permutation
codes of distanc€(n'*¢) and rateR (see [Z.4)). The upper limit of /2 on ¢
is due to the fact that no binary codes of large size (positite) are capable of
correcting a higher proportion of errors.

The above theorem can be extended to the case when1/2, namely, to
obtain rank permutation codes of distari@én!*<), 1/2 < ¢ < 1 and positive
rate. This extension is not direct, and results in an existealaim as opposed
to the constructive results above. To be precise, one cam 8tai for any0 <
e < 1, there exist infinite families of binarym, M, d) codesC, with rate R >
0, such that the associated rank modulation c8deor permutations ofn] in
Theoren8:313 has minimum Kendall distarfeé»!). We will not prove this
result here. Instead, in the next section we will presentteaonstruction of rank
modulation codes that is effective in this range of distance
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8.3.2 Another construction: A quantization map

In this section we describe another construction of rankufatihn codes that relies
on a different mapping from binary vectors to inversions.

Recall again our notatio§,, for the space of inversion vectors and the map
J : G, — &, that sends them to permutations (see $ect. 7.2). To obtaideain
G, we will start with a set of binary vectos € {0,1}" and send them to inversion
vectors. This is done using the mappifg {0, 1} — §,, such that

U
b:(bl,...,bn_l)l—>$:(ml,...,ﬂj‘n_l)
=0 Moi=0 . i=1,...,n—1.

1 ifb=1

Next, the obtained subset §f, is mapped by/ to a subset 08&,,, which we denote
by €.

Theorem 8.3.6.In the above construction |1€&(n, M,d > 2t+ 1) be a code in the
binary Hamming space. Then the caéle C &,, has cardinality M/ and corrects
anyr Kendall errors wherer = t2 /4 if ¢ is even and = (t> — 1) /4 if t is odd.

Proof. To prove the claim about error correction, consider theofaithg decoding
procedure of the codé,. Let 7 be a permutation. To decode it with, find its
inversion vectoer, = (x1,...,x,—1) and form a binary vectoy by putting

o ifa < (i)
YT 1 i > (i),

Next decodey with the codeC to obtain a codevectat. Then compute the overall
decoding result ag(J(c)).

Let o be the original permutation, lat, be its inversion vector, and le{o)
be the corresponding codeword @f The above decoding can go wrong only if
the Hamming distancé(c(o),y) > t. For this to happen thé distance between
x, andx, must be large, in the worst case satisfying the condifipfx., ,) >
St _,li/2]. This gives the claimed result. O

From a binary code in Hamming space of rédhat corrects anyn errors,
the above construction produces a rank modulation codee2§i* that is able to
correctQ)(n?) errors.

This construction can be further generalized to constrodes that are able
to correct a wide range of Kendall errors by observing thatghantization map
employed above is a rather coarse tool which can be refined ikly on codes in
the g-ary Hamming space fay > 2. As a result, for any < 1 we will be able to
construct families of rank permutation codes of rRte- R(¢) > 0 (see, [(7.14)) that
correctQ(n'*¢) errors.
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Let! > 0 be an integer. Let) = {a1,aq,...,a,} be the code alphabet.
Consider a cod€ of lengthn’ = 2(I —1)(¢ — 1) over@ and assume that it corrects
any t Hamming errors (i.e., its minimum Hamming distance is asti@a + 1).
Letn = (20 + 1)(¢ — 1). Consider the mappin®, : Q"' — G,,, defined as
@q(b) = (191(()1),192(()2), ce 719n—1(bn—1))> b= (bl, ce ,bn_l) € Qn_l, where

0 if i <3(¢g—1)
Uilaj) =9 2k —=1)(G—1) if (2k-1)(¢—1) <i<(2k+1)(¢—1)
k=231,

i=1,2,3,...,q.

To construct a code in permutatiois from the code we perform the follow-
ing steps:
1. Prepend each vector thwith 3(¢ — 1) — 1 symbolsay;
2. Map the obtained set ¢f, — 1)-dimensional vectors t6&,, using the mapy o O,.

The properties of this construction are summarized in tHeviing statement.

Theorem 8.3.7.In the above construction l&(n’, M,d > 2t + 1) be a code
in the binary Hamming space. Then the cdtle C &,, has cardinality M and
corrects anyr Kendall errors wherer = (t +1 — (¢ — 1)s)(s + 1) — 1 and

s = [(t+1)/(2(¢ - D).

Proof. We generalize the proof of the previous theorem. Consideirfatowing
decoding procedure of the co@e. Let © be a permutation. To decode it witly,
we first find its inversion vectat, = (z1,...,z,—1) and form ag-ary vectory by
putting

ap ifi<3(g—1)
yi=qa; if2k—1)(¢g—1)<i<(2k+1)(g—1)
and(2k —1)(j — 1) — (k—1) < 2; < (2k — 1)(j — 1) + K,
k=23...,1

fori = 1,...,n — 1. Next decodey’ = (y3(4—1),-- -, ¥n—1) With the codeC to
obtain a codevectat. The vectorc is used to obtain the end result (a permutation)
using the mapping defined before the theorem.

There will be an error in decoding only whghcontains at leagti-1 Hamming
errors.y’ contains coordinate¥ ¢ —1) ton—1 of y. Suppose that;, 1 < j <[1-1
is the number of errors in coordinates betwé2+1)(¢— 1) and(2j +3)(¢ — 1).
We havezg;l1 t; > t+ 1 andt; < 2(¢ — 1). Here the/; distance between the
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received and original inversion vectors is

-1 -1
it; >  min it
Z‘] I = dagey =T
Jj=1 Jj=1
Zj tj>t+1

=2(¢-1(1+24+---+s5)+(t+1-2(¢—1)s)(s+1)
=(g—Ds(s+1)+(t+1—-2(g—1)s)(s+1)
={t+1—(¢g—1)s)(s+1).

Therefore if the/; distance between the received and original inversion veto
less than or equal to then decodingy’ with the codeC will recover z,,. Using
(Z.3) we complete the proof. O

Choosingt = 2(l — 1)(¢ — 1)7, where0 < 7 < 1/4, the number of errors
correctable by, is

Jg—Dr = (=D =DN(r@ -] +1) -1

For instance, takg = O(n'=), 0 < ¢ < 1, thenr = Q(n'*®). If the codeC
has cardinality;™' then|@,| = ¢/ = ¢fi("=3(a=1) Using [7.3) yields the value
(1 — ¢)R for the rate of the cod€..

We have constructed a large class of rank permutation cadseciating them
with binary andg-ary codes in the Hamming space. If the latter codes possess
efficient decoding algorithms, then the methods discusbkedeatranslate these
algorithms to decoding algorithms of rank permutation sodé essentially the
same complexity. Thus, the existing theory of error-cdmgccodes can be used
to design practical error-correcting codes and procediarethe rank modulation
scheme.
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