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Platensimycin/platencin are recently discovered natural products that inhibit 

membrane formation in bacteria and cyclic diguanylic acid (c-di-GMP) is a master 

regulator of bacterial biofilm formation. The rise of bacterial antibiotic resistance and the 

dwindling pipeline of new antibiotics make these molecules of interest to the scientific 

community. This dissertation reports the design, synthesis and biological evaluation of 

analogs of platensimycin/platencin and c-di-GMP.  

Platensimycin and platencin have garnered interest from synthetic chemists due to 

the complexity of their molecular architecture, coupled with their exciting biological 

profile (inhibition of bacterial fatty acid synthases). We have developed a concise 

synthetic approach towards the platensimycin/platencin class of antibiotics. The highlight 

of our synthesis is the use of dynamic ring-closing metathesis to prepare a bicyclo 

intermediate and a tandem nucleophilic addition of organolithium to a ketone moiety, 



followed by a subsequent ring opening of a nearby epoxide to generate complex tricyclic 

framework. 

The synthesis of platensimycin or closely related analogs requires multi-steps 

(average of 17 overall steps). Using a function-oriented synthetic approach, we developed 

short syntheses of N,N-dialkyl benzoic acid derivatives of platensimycin, and we 

demonstrate that these readily prepared molecules have comparable antibiotic properties 

to the difficult-to-synthesize platensimycin/platencin. 

C-di-GMP has been dubbed the master regulator of bacterial “lifestyle” due to the 

key role that this molecule plays in bacterial biofilm formation and virulence formation. 

In order to study c-di-GMP signaling in bacteria, with the ultimate goal of using key 

insights gained from such studies to develop anti-biofilm or anti-virulence agents, we 

prepared analogs of c-di-GMP and studied their biophysical and biological profiles. 

Interestingly, we reveal that conservative modifications to c-di-GMP affect both the 

biophysical and biochemical properties of this molecule. We also demonstrate a concept 

called “conformational steering” as a powerful principle to selectively target different 

classes of receptor proteins that bind to c-di-GMP. 
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Chapter  1. Introduction 

1.1  Bacterial antibiotic resistance problem 

(The majority of this section was published in ref [1].) 

The discovery of several antibiotics between the 1930s and 1960s led to effective 

management of previously lethal bacterial infections [2,3]. Several lethal epidemic 

diseases, caused by bacteria, were even considered extinct around 1980 in the western 

world (e.g. bubonic plague [4]). This success story did not last long, and soon multi-drug 

resistant bacteria (the so-called superbugs) emerged in hospital wards. It is hypothesized 

that the indiscriminate use of antibiotics  in both hospitals [5,6] and animal farms [7] and 

pollution of the environment with antibiotics, which are added to general household 

products [8], contribute the rise of antibiotic resistance in bacteria. 

Modern use of antibiotics probably began with the administration of sulfonamides 

(e.g. prontosil, compound 1–1 in Figure 1–1) and penicillins (e.g. penicillin G, 

compound 1–2) to patients. Penicillin was once called the “magic drug”, and it 

contributed to reducing the number of deaths among soldiers in World War II, who were 

infected with Streptococcus pneumonia [9]. After early resistance to penicillin was 

observed [10-12], a new generation of β-lactam antibiotics, such as methicillin (1–3), 

cephalothin (1–4) and imipenem (1–5), were developed [13]. In 1964, a methicillin-

resistant strain of S. aureus (MRSA) was isolated [14,15]. Sooner thereafter, other 

bacterial strains that were resistant to various antibiotics, e.g. streptomycin [16,17] (1–8), 

chloramphenicol [18] (1–9) and tetracycline [19,20] (1–6) were also identified. It is now 

widely recognized that bacteria can develop resistance to almost any antibiotic. 
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Table 1–1 lists several classical antibiotics and showcases the severity of the 

antibiotic resistance issue. With the exception of few antibiotics, e.g. vancomycin (1–14), 

bacteria developed resistance to most antibiotics within 15 years after their first clinical 

use. In the case of vancomycin [21], it took almost three decades, after the drug was first 

introduced into the US market, for scientists to observe the emergence of resistant 

bacteria strains (Table 1–1, Entry 7). 

In the last few decades, scientists have put tremendous efforts into researching the 

mechanisms of antibiotic resistance. The three main strategies that are used by bacteria to 

develop resistance to antibiotics are: 

1) Overexpression of enzymes that can modify the antibiotic to make it less 

effective.  

2) Mutation of the antibiotic target site so that the target (e.g. enzymes) can 

maintain its function but not bind to the antibiotic. 

3) Export of the antibiotic to the extracellular media by multidrug-resistant (MDR) 

efflux pumps or loss of porin channels resulting in lower permeability of the antibiotic. 
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Table 1–1. Structural classes, modes of action and antibiotic resistance mechanisms of selected antibiotics 

Entry Antibiotics Structural class 
Year 

introduced 
Target process 

Year resistance 
observed in 

hospital 

1 
Prontosil (1-1) sulfonamides 1935 Inhibition of DNA/RNA synthesis (binds to dihydropteroate 

synthase ) 
1943[22] 

2 Penicillin G (1-2) β-lactams 1943 Inhibition of cell wall synthesis (binds to transpeptidase) 1945[11,12] 

3 
Streptomycin (1-8) aminoglyco-

sides 
1943 Inhibition of protein synthesis (binds to the 16S site of 30S rRNA) 1945[16] 

4 
Chloramphenicol  
(1-9) 

amphenicols 1947 Inhibition of protein synthesis (binds to the 23S site of 50S rRNA) 1950[18] 

5 Tetracycline (1-6) tetracycline 1948 Inhibition of protein synthesis (binds to the 16S site of 30S rRNA) 1963[19,20] 
6 Erythromycin (1-7) macrolides 1952 Inhibition of protein synthesis (binds to the 23S site of 50S rRNA) 1956[23] 

7 
Vancomycin (1-14) glycopeptides 1956 Inhibition of cell wall synthesis (binds to D-Ala-D-Ala terminus of 

the peptidoglycan) 
1984[21] 

8 
Polymyxin B  
(1-17) 

polypeptides 1960s Disrupt outer and inner membranes (binds to lipopolysaccharide) 1975[24] 

9 Methicillin (1-3) β-lactams 1960 Inhibition of cell wall synthesis (binds to transpeptidase) 1964[14,15] 

10 
Ciprofloxacin  
(1-13) 

quinolones 1987[a] Inhibition of DNA replication (binds to bacterial DNA gyrase) 1990[25,26] 

11 Cephalothin (1-4) β-lactams 1964 Inhibition of cell wall synthesis (binds to transpeptidase) 1965[27] 

12 
Rifampicin (1-12) rifamycins 1967 Inhibition of RNA synthesis (binds  to RNA polymerase β 

subunit) 
1968[28,29] 

13 Clindamycin (1-16) lincosamides 1969 Inhibition of protein synthesis (binds to the 23S site of 50S rRNA) 1970[30,31] 
14 Imipenem (1-5) β-lactams 1985 Inhibition of cell wall synthesis (binds to transpeptidase) 1988[32,33] 

15 
Quinupristin/ 
dalfopristin (1-11) 

streptogramin 1999[b] Inhibition of protein synthesis (binds to the 23S site of 50S rRNA) 1999[34,35] 

16 Linezolid (1-10) oxazolidinones 2000 Inhibition of protein synthesis (binds to the 23S site of 50S rRNA) 2001[36,37] 
17 Daptomycin (1-15) lipopeptides 2003 Depolarization of bacterial membrane 2005[38] 

[a] Other quinolones were discovered in the 1960’s; [b] other streptogramin antibiotics were developed prior to this year including virginiamycin 
and pristinamycin.  
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Figure 1–1. Chemical structures of antibiotics 

 

β-Lactam drugs such as penicillin G (Figure 1–1, compound 1–2), methicillin (1–

3), cephalothin (1–4) and imipenem (1–5) are mainly inactivated via the overexpression 

of β-lactamases, which hydrolyze the antibiotics [39]. For an excellent review on the 

mechanism of action of β-lactamases, see ref [40]. Resistance to β-lactams via β-

lactamase-mediated hydrolysis can be minimized when the β-lactam antibiotic is used in 

combination with β-lactamase inhibitors such as clavulanic acid [41], tazobactam[42] and 
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sulbactam [43]. Both clavulanic acid and sulbactam irreversibly inactivate β-lactamases 

[41,44]. Unfortunately there are documented cases where some bacterial strains have 

been shown to be resistant to these β-lactamase inhibitors – a very worrisome scenario 

[45,46].  

Another antibiotic class, aminoglycosides, including streptomycin (1–8, Figure 

1–1) and tobramycin, can inhibit bacterial ribosome function and hence inhibit protein 

synthesis [47,48]. Aminoglycosides are rendered ineffective by bacteria via the 

overexpression of antibiotic-modifying enzymes, such as nucleotidyltransferase or 

phosphotransferase, which transfer a monophosphate moiety from ATP to a hydroxyl on 

the ring of an aminoglycoside [49]. Other aminoglycoside modifying enzymes include N-

acetyltransferases and O-adenyltransferases. These two enzymes catalyze acetyl CoA-

dependent acetylation of the amino functionality (1–8) and ATP-dependent adenylation 

of the hydroxyl group (1–8), respectively [49]. Other protein synthesis inhibitor 

antibiotics, such as the streptogramins and oxazolidinones (e.g. linezolid), are made 

ineffective via the modification of the 23S site of 50S ribosomal RNA in bacteria [50,51].  

 Bacteria can also use multiple pathways to inactivate an antibiotic. For example, 

resistance to vancomycin (1–14) can occur via thickening of the bacterial cell wall [52], 

changing the peptidoglycan precursor [53,54] or expression of an ‘abnormal’ ligase that 

makes the unusual Ala-lactate peptide bond [55,56].  

Efflux pump proteins such as AcrA and AcrB in E. coli [57,58], the MexA-

MexB-OprM systems in P. aeruginosa [59,60] and NorA in S. aureus [61] export 

antibiotics out of bacterial cells, thereby raising the MIC (minimum inhibitory 

concentration) values of antibiotics. Proton motive force inhibitor (or commonly referred 
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to as energy uncoupler), carbonyl cyanide m-chlorophenylhydrazone (CCCP) [62,63] and 

MDR (multidrug-resistant) efflux pump inhibitors e.g. L-phenylalanine-L-arginine-β-

naphthylamide dihydrochloride (PAβND) [64,65],  reserpine [66,67], biricodar [68] and 

timcodar [68] have been shown to potentiate the antibiotic activity of conventional 

antibiotics. The widespread use of MDR efflux inhibitors as combination therapeutics is 

probably not as popular as the use of β-lactamase inhibitors, due to the dearth of effective 

but non-toxic bacterial MDR efflux pump inhibitors.  

After years of the development of second- and third-generation antibiotics, which 

ultimately suffered from bacterial resistance, two new drugs were introduced at the 

beginning of the new millennium: daptomycin (compound 1–15, Figure 1–1) [69,70] and 

linezolid (1–10) [71,72].  Linezolid (1–10) is a synthetic oxazolidinone antibiotic, which 

was initially effective against vancomycin-resistant Enterococci (VRE) and MRSA [72]. 

Linezolid inhibits protein synthesis by binding to the 23S site of the 50S ribosome RNA 

[73]. Although its action is similar to the macrolides and amphenicols, no cross-resistance 

was observed [71]. Regretfully, linezolid resistance was reported in VRE and MRSA 

only a few years after it was introduced [36,74]. Daptomycin (1–15), a natural 

lipopeptide antibiotic, was also introduced in the early 21st century. Daptomycin kills 

bacteria via a novel mode of action involving binding to the bacterial cell wall and 

depolarizing the cell membrane [75]. Again, the early excitement regarding daptomycin’s 

ability to kill MRSA and VRE was diminished upon the identification of strains of 

MRSA and VRE that were resistant to daptomycin (1–15) [76,77]. Only a handful of 

antibiotics have been approved by the United States FDA for clinical use in the past few 

years (see Table 1–2 and Figure 1–2) [78-84]. Worryingly, these newer antibiotics (with 
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the exception of retapamulin) are merely derivatives of older generation antibiotics. Since 

the newer antibiotics are acting on the same targets, which have been shown to be 

evolvable, it would be naive to think that the newly introduced antibiotics will not 

ultimately suffer from bacterial resistance.  

Retapamulin (compound 1–21, Figure 1–2), introduced in 2007, belongs to a new 

class of antibiotics called pleuromutilins. It inhibits protein biosynthesis by binding to the 

peptidyl transferase center of the 23S ribosomal RNA, which is located on the 50S 

subunit and, thus, prevents peptide bond formation [85,86]. Retapamulin (1–21) may also 

destabilize transfer RNA in the P-site of the 50S subunit [86]. However, bacteria have 

shown in the past that ribosomal targets can be modified in order to abrogate antibiotic 

inhibition, and there is no reason to suggest that the 50S ribosome RNA is not evolvable.  

The previous discussion highlights an unsavory truth: we are in a never-ending 

battle against pathogenic bacteria. The ability of bacteria to find several pathways to 

render a bacteriocidal or bacteriostatic antibiotic ineffective, coupled with the lack of 

newer druggable targets in bacteria and the paucity of new structural classes of antibiotics, 

implies that there might be a need for a paradigm shift in the strategies used to treat 

bacterial infections. 
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Figure 1–2. Chemical structures of recently approved antibiotics. 
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Table 1–2. New antibiotics approved between 2004–2009 [78-84]. 

Antibiotic 
Structural class 

(lead compound) 
Year Introduced 
into US market 

Target process Indication 

Telithromycin  
(1–18) 

macrolides 
(erythromycin) 

2004 
inhibition of protein synthesis 
(binds to 50S rRNA) 

bronchitis, sinusitis, pneumonia 
etc. 

Rifaximin (1–19) 
rifamycins 
(rifampicin) 

2004 
inhibition of DNA-dependent 
RNA synthesis 

travelers’ diarrhea, 
gastrointestinal infections etc. 

Tigecycline (1–23) tetracyclines 
(tetracycline) 

2005 
inhibition of protein synthesis 
(binds to 30S rRNA) 

skin and soft tissue infections 
etc. 

Doripenem (1–20) β-lactams  
(imipenem) 

2007 
inhibition of cell wall synthesis 
(binds to transpeptidase) 

intra-abdominal, urinary tract 
infections etc. 

Azithromycin[a] 
macrolides 
(erythromycin) 

2007 
inhibition of protein synthesis 
(binds to 50S rRNA) 

conjunctivitis etc. 

Retapamulin (1–21) 
pleuromutilin 

2007 
inhibition of protein synthesis 
(binds to 50S rRNA) 

impetigo etc. 

Amoxicillin [a] 
β-lactams 
 (penicillin) 

2008 
inhibition of cell wall synthesis 
(binds to transpeptidase) 

tonsillitis, pharyngitis etc.  

Besifloxacin (1–22) 
quinolones 
(ciprofloxacin) 

2009 
inhibition of DNA replication 
(binds to bacterial DNA gyrase) 

conjunctivitis etc. 

Telavancin (1–24) 
glycopeptides 
(vancomycin) 2009 

inhibition of cell wall synthesis 
and depolarization of bacterial 
membrane 

skin infections etc. 

 
[a] These antibiotics were already in the market but were reintroduced for new indications. 
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1.2  Fatty acid biosynthesis – untapped opportunities to develop novel antibiotics 

1.2.1  Introduction of fatty acid biosynthesis and its inhibition 

Fatty acids play a key role in bacterial cellular structures and functions. Therefore, 

fatty acid synthases (FAS) are considered promising targets for the development of new 

antibiotics to resolve the rising drug resistant problem [87-91].  

Fatty acids are key components of phospholipid and lipid A, important 

components of cell envelope in Gram-positive (e.g. S. aureus) and Gram-negative (e.g. E. 

coli) bacteria. Phospholipid (Figure 1–3b) is the major constituent of cellular membrane 

of almost all bacteria strains [92], whereas lipid A is mostly found in Gram-negative 

bacteria [93]. Unlike the cell wall of Gram-positive bacteria (Figure 1–3a), which mainly 

consists of peptidoglycan and teichoic acids, the cell wall of Gram-negative bacteria have 

a second membrane which contains lipopolysaccharides and lipoproteins (Figure 1–3c); 

and this lipid component is termed lipid A (Figure 1–3d). Among all the bacteria strains, 

the fatty acid biosynthesis of E. coli is the most extensively studied, and the biosynthesis 

pathways in this organism are summarized in Scheme 1–1.  

 The cell envelope (i.e. the cell membrane and cell wall) of M. tuberculosis (MTB) 

is distinct from either typical Gram-positive or -negative bacteria (Figure 1–3d). MTB 

infections are difficult to treat, and the World Health Organization reported in 2010 that 

there are still about two billion people in the world who carry MTB and that more than 

two million people die from MTB infections each year in the world [94,95]. This makes 

MTB the number one killer bacteria in the world. Fatty acids make up to approximately 

60 % of the dry weight of a MTB bacterium. Among the MTB fatty acids, long-chain 
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mycolic acid (e.g. α-mycolic acid, Figure 1–3f), which is unique to MTB, is one of the 

best studied. The biosynthesis of α-mycolic acid is well characterized (Scheme 1–2).  

In summary, the inhibition of fatty acid synthesis will disrupt bacterial cell 

envelope formation and function. The intermediates in the fatty acid biosynthesis 

pathways are also used in cellular regulation and metabolism. For example, in quorum 

sensing (bacterial communication) of V. fisheri, the signal molecule (acyl homoserine 

lactone) is synthesized from hexanoyl-ACP (ACP = acyl carrier protein) [96]. Also, lipid 

A in Gram-negative bacteria pathogens is not only used as a shield to the external 

chemical insult, but is also responsible for the toxic syndrome associated with bacterial 

infection by inhibiting the activation of human immune system [97]. 

The next section will focus on the mechanisms of the fatty acid biosynthesis in E. 

coli and mycolic acid biosynthesis in MTB. Some mechanisms (e.g. elongation steps) of 

FAS enzymes for many other bacteria strains (e.g. Gram-positive bacteria) are expected 

to be similar to these two strains.  

 



 

Figure 1–3. a) The cell wall structure

structure of phospholipid; c

including an outer membrane

micrograph of the cell wall structure of 

(source: National Institute of Allergy and Infectious Diseases

 

 

a) The cell wall structure for Gram-positive bacteria [98]

structure of phospholipid; c) the cell wall structure of a regular Gram-negative bacteri

an outer membrane; d) chemical structure of Kdo2-lipid A 

wall structure of MTB; f) the chemical structure of 

source: National Institute of Allergy and Infectious Diseases, ref [98] and 
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[98]; b) chemical 

negative bacterium, 

 [99]; e) electron 

; f) the chemical structure of α-mycolic acid 

and [100]). 
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Fatty acid biosynthesis can be classified into two categories, type I and type II, 

according to their genetic features. Type I fatty acid synthesis has mainly been found in 

eukaryotes (e.g. mammal, bird and yeast cell) and very rarely in prokaryotes (e.g. 

mycobacteria cell). Type II fatty acid synthesis is mainly found in prokaryotes (bacteria) 

and some plants [101]. Type I FAS in most eukaryotes are encoded by one single gene, 

and the substrate does not fall off the multifunctional enzyme before synthesis is 

completed [102,103]. For example, the whole metabolic pathway for making 16-carbon 

fatty acids in yeast is carried out by a 2.6 MDa fatty acid synthase, which contains eight 

different active sites for catalysis [104]. On the other hand, the FAS enzymes of most 

prokaryotes are encoded by discrete genes, and these enzymes belong to type II.  

MTB has both type I and type II FAS. During the biosynthesis of mycolic acid, 

type I FAS first synthesizes a 20-carbon fatty acid, and then type II FAS takes this 20-

carbon substrate and continues with the synthesis of mycolic acid (Scheme 1–2).  

Generally speaking, type I FAS is more efficient than type II, and the products of 

type I are less diverse than type II [105,106]. Type II FAS can produce various chain 

lengths, unsaturated chains, branch chains, cyclic chains and hydroxy fatty acids [107]. 

Type I FAS (mostly in eukaryotes), on the other hand, usually only produces saturated, 

straight chain 16-carbon palmitic acid [105]. Despite the fact that the overall architectures 

of type I and II FAS enzymes are different, the catalytic mechanisms for the enzymatic 

reactions or the active site architectures of the enzymes are similar. Consequently, some 

small molecules can inhibit both type I and II FAS enzymes. For example, cerulenin is a 

potent inhibitor of bacterial type II FAS and can also inhibit type I FAS enzymes in 
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mammals [108].Cerulenin is a transition-state mimetic and is bound to FAS enzymes via 

a covalent linkage [109,110]. 

Some amino acid sequences of type II FAS enzymes are highly conserved. For 

example, the His-His-Cys catalytic triad is present in all of the condensing enzymes that 

are involved in the elongation steps (FabF and FabB) [111]. The conservation of the His-

His-Cys catalytic triad in most FAS elongation enzymes presents a good opportunity to 

design small molecules that could inhibit FAS in diverse bacteria.  

 

1.2.2 Modes of action of type II fatty acid biosyntheses 

Bacterial fatty acid biosynthesis has three modules: initiation, elongation and 

termination (Scheme 1–1 outlines the fatty acid biosynthesis in E. coli). It should be 

pointed out that in most bacteria, the strategies and/or mechanisms used to elongate fatty 

acids are similar to those used in E. coli, although alternative mechanisms may exist in 

some bacteria.  
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Scheme 1–1. Fatty acid biosynthesis in E. coli. During initiation step, acetyl-CoA is converted into malonyl-ACP (int 1), catalyzed by 

Acc protein and FabD. This is followed by a decarboxylative condensation, catalyzed by FabH to give acetoacetyl-ACP (int 2). 

During the elongation phase, two carbons are added in each cycle (step a–d). When a threshold chain length is reached, an 

intermediate in the elongation cycle is transferred to the termination pathway to produce phospholipid or lipid A.  
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Scheme 1–2. Biosynthesis of α-mycolic acid. Co-existance of type I and type II FAS system in bacteria is very rarely observed but 
occurs in mycobacteria. A 20-carbon long CoA thioester, synthesized by type I FAS system, is further extended by type II FAS to give 
an unsaturated 22-carbon CoA thioester (int 3). Subsequent elongations (recurring) then afford bis-alkene (int 4), which is then acted 
upon by cyclopropanase to give monomycolate (int 5).  Monomycolate (int 5) is modified by FadD32 and a multidomain protein 
Pks13 to furnish the final product α-mycolic acid [112]. 
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In E. coli, the initiation phase of fatty acid synthesis starts with the conversion of 

acetyl-CoA into malonyl-CoA, catalyzed by acetyl-CoA carboxylases (ACC). The ACC 

reaction requires four discrete enzymes, AccA, AccB, AccC and AccD, and the overall 

reaction is a biotin-dependent carboxylation of acetyl-CoA to form malonyl-CoA [113]. 

MTB has a similar initiation phase (not shown in Scheme 1–2). ACC is considered to be 

a promising target for antibiotic discovery. For example, NCI-65828 (see Figure 1–7; a 

small molecule belonging to the NCI small molecule diversity set) has a Ki value of 13 

µM to AccD5 (i.e. β5 subunit of AccD) of MTB [114].  

One of the most abundant proteins in the bacterial cell is acyl carrier protein 

(ACP). ACP (< 9,000 Da in most cases) is a small and diffusible protein and is a 

necessary enzyme for the initiation step of fatty acid synthesis in all bacteria strains. ACP 

is converted from an inactive to an active form by ACP synthase (AcpS) from apo-ACP. 

Several inhibitors of AcpS that are effective in various bacterial strains have been 

discovered. For example, anthranilic acid and analogs have MICs around 32 µM against S. 

aureus (MRSA) and B. subtilis (168) [115]. The activated ACP then reacts with malonyl-

CoA to form malonyl-ACP via a reaction that is catalyzed by transacylase (FabD, see 

Scheme 1–1). From this point on, the ACP will be a cofactor protein for all of the 

subsequent reactions until the acyl chain is transferred to the termination steps. For E. 

coli, malonyl-ACP can directly enter the elongation cycle by reacting with an acetyl-CoA 

catalyzed by FabH (Scheme 1–1). Whereas for MTB, malonyl-ACP first reacts with a 

20-carbon ester, catalyzed by FabH, to give a 1,3-keto thioester, which is then converted 

to a β,γ-unsaturated ACP thioester by reductase, dehydrase and isomerase enzymes (FAS-

II-A, Scheme 1–2). The mode of action of the dehydrase/isomerase in MTB FAS-II-A 
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pathway is still not clear. The resulting β,γ-unsaturated ACP thioester (22-carbon) then 

enters the elongation steps (FASII, Scheme 1–2). For either E. coli or MTB, four types of 

enzymes are involved in the elongation cycle: β-ketoacyl-ACP synthases (KAS), β-

ketoacyl-ACP reductase (KR), β-hydroxyacyl-ACP dehydrase (HD) and enoyl-ACP 

reductase (ER) (Scheme 1–1). The acyl chain is elongated via the addition of two 

carbons during each cycle.  

There are three known β-ketoacyl-ACP synthases (KAS) in E. coli, FabH, FabF 

and FabB. These three KAS enzymes all belong to the thiolase superfamily [111], which 

catalyze Claisen condensation reactions. Thus the KAS enzymes are also called 

condensing enzymes or KAS I–III in various literature reports (e.g. ref [116]). In MTB 

the three enzymes are referred to as FabH, KasA and KasB. FabH only catalyzes the first 

two condensation reactions in E. coli. For the first condensation, E. coli uses acetyl-CoA 

as the primer and malonyl-ACP as the acceptor to form the acetoacetyl-ACP as the 

product. For the second elongation cycle, the 4-carbon thioester ACP is used as primer 

instead [117]. Longer chains (C6 and up) require FabF and FabB for the condensation 

reactions. FabB is not efficient at elongating intermediates with long, saturated side 

chains, whereas FabF can elongate intermediates with both saturated and unsaturated side 

chains [116]. For MTB, FabH only catalyzes the first condensation reaction before the 

elongation (FASII, Scheme 1–2). The active site of FabH (both E. coli and MTB) 

contains a His-Asn-Cys catalytic triad, whereas those of both FabF and FabB have a His-

His-Cys triad. Figure 1–4 shows the catalytic mechanism of spFabF (sp means the 

protein was from Streptococcus pneumoniae) [118]. The thiol in the active site (Cys164) 

is activated into a thiolate, and the nucleophilic thiolate then attacks the carbonyl-ACP 
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substrate and transfers the acyl group. His303 and His337 are both protonated, and they 

stabilize the negative charge on the malonyl-ACP. After decarboxylation, the formed 

carbonanion will then attack the thioester on Cys164 [118]. It is also worth-noting that 

during the second thioester transfer, the amide bonds of Cys164 and Phe396 can stabilize 

the oxyanion intermediate via two hydrogen bonds, and this oxyanion binding site is 

usually refer as to an “oxyanion hole” in literature (Figure 1–4) [111]. The basic 

mechanisms of all the condensing enzymes are the same. For FabH, one of the histidines 

at the active site is replaced by an asparagine. In E. coli, FabF and FabB are homologous 

with 37 % sequence identity [87]. Consequently, FabB/F inhibitors often have similar 

structural features [87]. The best FabH and FabB/F inhibitors to Gram-positive bacteria 

discovered so far are platencin [119] and platensimycin [120] respectively.  Platencin has 

an IC50 value of 16 µM against FabH [119], and platensimycin has an IC50 value of 0.048 

µM against FabF in S. aureus [120]. In MTB, KasA and KasB are homologs of ecFabB 

and ecFabF (ec means E. coli), respectively [121].  

 

 

Figure 1–4. The catalytic mechanism of S. pneumoniae FabF [118].  
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KR (β-ketoacyl-ACP reductase, usually referred to as FabG) is a NADPH-

dependent reductase that converts β-ketoacetyl-ACP into β-hydroxyacyl-ACP [87]. 

Analysis of the X-ray crystal structure of KR (PDB code: 1Q7B) suggests that the 

hydride transfer from NADPH to the ketone carbon is probably facilitated by a Ser-Tyr-

Lys hydrogen bonding relay (Figure 1–5). And this Ser-Tyr-Lys triad was found in 

various bacteria strains, including Streptococcus pneumonia [122], E. coli [123] and 

MTB (in MTB, KR is often referred to as MabA) [124].  

 

 

Figure 1–5. The catalytic mechanism of S. pneumoniae FabG [122].  

 

In E. coli, β-hydroxyacyl ACP is dehydrated by HD (β-hydroxyacyl-ACP 

dehydrase), which is either FabZ or FabA. FabA is a bifunctional enzyme in E. coli that 

can dehydrate/ isomerize the substrate to give unsaturated intermediates or products. It is 

worth-noting that FabA is very narrow distributed in bacteria, and has only been observed 

in Gram-negative α- and γ-proteobacteria till today [125]. It is still unclear how MTB 

isomerize the double bonds via FAS-II-A and B (Scheme 1–2). Gram-positive bacteria 

do not have the homolog of ecFabA either. In Enterococcus faecalis, FabZ1 is the 

equivalent bifunctional isomerase/ dehydrase [125].  
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FabI, a NADH-dependent ER (enoyl-ACP reductase), is the last player to 

complete the elongation process of fatty acids in E. coli. Three other isoforms of ER in 

other bacteria strains, FabK, FabL and FabV, are also found [126]. Some bacteria strains 

can utilize more than one ER for fatty acid synthesis [127]. ER is a proven antibiotic 

target and isoniazid, which is an inhibitor of ER, has been used clinically to combat MTB 

since 1950’s [87].  

The catalytic mechanism of ER in MTB (referred to as InhA) is very similar to 

KR (Figure 1–5, 1–6). Instead of Ser-Tyr-Lys triad, InhA possesses a Phe-Tyr-Lys triad, 

where phenylalanine (Phe149) is probably used to direct the hydride transfer [128]. 

Studies utilizing isotopically enriched NADD (deuterated NADH) showed that Tyr158 

probably does not act as a proton donor, but rather performs the role of an electrophilic 

catalyst [129]. In E. coli, FabI has a Tyr-Tyr-Lys triad, but the replacement of one of the 

tyrosines (Tyr158) with phenylalanine has no effect on catalysis [130]. This probably 

suggests that the catalytic mechanisms of ecFabI and InhA are similar.   

 

 

Figure 1–6. Catalytic mechanism of MTB FabI homolog, InhA [128]. 

 

In typical Gram-positive or Gram-negative bacteria, the final long-chain carbon 

acyl-ACP will then react with glycerol-3-phosphate (G3P) to start the phospholipid 
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biosynthesis (see Scheme 1–1) [131]. In Gram-negative bacteria β-hydroxyacyl-ACP is 

transported into the cell inner membrane and used for lipid A biosynthesis. The 

biosyntheses of both phospholipid and lipid A are beyond the scope of this thesis, and the 

interested reader should refer to recent reviews for more information [99,132]. In MTB 

mycolic acid biosynthesis the resulting 24 carbon acyl-ACP substrate will repeat the 

FAS-II-A (referred to as FAS-II-B) and the FAS-II process for 5 cycles, followed by 

cyclopropanation of the two double bonds (Scheme 1–2). For a further reading on 

mycolic acid synthesis in MTB see ref [112].  

 

1.2.3  Type II FAS inhibitors 

Small molecule inhibitors of FAS will be discussed in four sections: fatty acid 

synthesis initiation module inhibitors, condensing enzyme (KAS) inhibitors, β-ketoacyl-

ACP reductase (KR) and β-hydroxyacyl-ACP dehydrase (HD) inhibitors, and, last but not 

least, enoyl-ACP reductase (ER) inhibitors. The antibiotic profiles of all the inhibitors are 

summarized in Table 1–3.  

 
Initiation module inhibitors 

As mentioned in the previous section 1.2.2, ACP is the one of the most abundant 

proteins in bacteria, and is an essential cofactor for quorum sensing [96]. The AcpS 

enzyme is required for the covalent attachment of 4’-phosphopantetheine (4’-PP) moiety 

to a conserved Ser36 on the apo-ACP to form the holo-ACP [133]. Apo-proteins are the 

proteins without a necessary cofactor bound, whereas proteins which are bound to 

cofactors are called holo-proteins. Both ACP and AcpS are essential to cellular viability. 

A high-throughput assay was devised to find inhibitors of AcpS by measuring the 
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incorporation of radio-labeled 4’-phospho-pantetheine moiety of CoA into preparations 

of apo-ACP [134].  

 

 

Figure 1–7. The inhibitors of fatty acid biosynthesis initiation phase. 

 

The first small molecule inhibitor of AspS, Sch-538415 (Figure 1–7), was found 

in 2003 [134]. The IC50 value for Sch 538415 inhibition of the incorporation of radio-

labeled 4’-phosphopantetheine (4’-PP) into AcpS is 4.2 µM. Sch 538415 was also found 

to inhibit bacterial growth (determined using a cell-based agar diffusion assay) [134]. 

Anthranilate 4H-oxazol-5-one derivatives (Figure 1–7) were synthesized as AspS 

inhibitors [135]. Although anthranilate 4H-oxazol-5-ones were found to inhibit AcpS in 

vitro (Table 1–3), these molecules were not effective at killing bacteria. Anthranilic acid 

derivatives (Figure 1–7) were also found to be inhibitors of AspS, and these analogs 

were cytotoxic to bacteria with MIC values of 32–64 µM to a number of Gram-positive 

strains. Gram-negative bacteria, however, were resistant to anthranilic acid derivatives 

[115].  



24 
 

Plants also have type II FAS, and many widely used herbicides target plant ACC 

(acetyl-CoA carboxylase) [136], validating ACC as a good antibacterial target [137]. 

Moiramide B (Figure 1–7) and andrimid were discovered in 1987 [138], and the first 

asymmetric synthesis of moiramide B was achieved in 1998 [139].  The mode of action 

of these pseudopeptide pyrrolidine dione antibiotics was not elucidated until 2004 [140]. 

Moiramide B is a selective inhibitor (nanomolar) of ACC of both Gram-positive and 

Gram-negative bacteria (see Table 1–3), but has an IC50 of > 100 µM for eukaryotic 

acetyl-CoA carboxylase from rat liver [140]. Abundance of mycolic acids, a class of long 

fatty acids that usually contain 60–80 carbons (see Figure 1–3f), and multi-methyl-

branched fatty acids are uniquely found in the cell envelope of all strains of mycobacteria 

[141]. Approximately 10 % of the genomes of mycobacteria are devoted to fatty acid 

biosynthesis [142]. NCI-65828 (see Figure 1–7), a lead compound that was originally 

identified via in silico inhibitor screening against AccD5 (one of the six known AccD in 

MTB), has a Ki value of 13 µM [143]. Further research also showed that NCI-172033 

(see Figure 1–7), an analog of NCI-65828 (see Figure 1–7), has a Ki value of 1.8 µM to 

AccD6 from MTB [144,145].  

To the best of our knowledge, the only FabD (MCAT; malonyl-CoA: acyl carrier 

protein transacylase) inhibitor discovered so far is corytuberine (Figure 1–7), which has 

an IC50 of 33 µM to the FabD of Helicobacter pylori. MCAT enzymatic assay also 

indicated that corytuberine probably inhibited the target in a non-competitive manner 

[146].  
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Table 1–3. The antibiotic activities of type II FAS inhibitors 

protein inhibitor IC50 (µM)/ enzymatic 
assay 

MIC (µM)/ strain name References 

AcpS Sch-538415 4.2/ AcpS (S. aureus) -- [134] 
4H-oxazol-5-one 1.3/ AcpS (B. subtilis) > 200/ B. subtilis [135] 
anthranilic acid 2.8/ AcpS (B. subtilis) 32/ S. aureus (MRSA) 

32/ B. subtilis (168) 
[115] 

ACC moiramide B 0.015/ ACC (E.coli) 
0.096/ ACC (S. aureus) 

70/ E. coli (Neumann) 
18/ S. aureus (133) 

[140] 

NCI 65828 13 (Ki)/ AccD5 (MTB) -- [143] 
FabD Corytuberine 33/ FabD  

(Helicobacter pylori) 
-- [146] 

FabH 1,2-dithiole-3-ones 
(HR12) 

5.7/ FabH (E. coli) 
1.9/ FabH (S. aureus) 

17/ E. coli 
38/ S. aureus (MRSA) 

[147,148] 

YKAF02 0.042 (Kd)/ FabH (E. coli) 16/ E. coli 
32/ S. aureus (MRSA) 

[149] 

YKAs3003 0.02 (Kd)/ FabH (E. coli) 584/ E. coli 
584/ S. aureus (MRSA) 

[150] 

SB418001 1.2/ FabH (E. coli) 
0.016/ FabH 
 (S. pneumonia) 

-- [151] 

benzoylamino-
benzoic acids 

0.004/ FabH (E. faecalis) 
3.8/ FabH (S. aureus) 

>106/ E. faecalis 
52/ S. aureus 

[152] 

Phomallenic acids 
(FabH/F) 

52/ FASII[a] (E.coli) 
21/ FASII (S. aureus) 

>388/ E.coli (wild-type) 
21/ S. aureus (wild-type) 

[153] 

platencin (FabH/F) 4.6/ FabH (S. aureus) 
9.2/ FabF (S. aureus) 

2.4/ S. aureus (MRSA) 
>150/ E.coli (wild-type) 

[119] 

FabB/F Cerulenin 3/ FabB (Kd, E.coli) 
20/ FabF (Kd,E.coli)  
700/ FabH (Kd,E.coli) 
4.5/ FASII (E.coli) 
6.7/ FASII (S. aureus) 

425/ E.coli (wild-type) 
287-573/ S. aureus 

[154-156] 

Thiolactomycin 26/ FabB (Kd,E.coli) 
60/ FabF (Kd,E.coli) 
158/ FabH (Kd,E.coli)  
61/ FASII (S. aureus) 

476/ E.coli (No-9) 
304-609/ S. aureus 
238/ B. subtilis (PCI-
219) 

[155-158] 

thiotetromycin 63/ FASII (S. aureus) 269-538/ S. aureus 
26/ Bacteroides fragilis 
(ATCC 23745) 

[159] 

BABX 69/ FASII (E.coli) 
21/ FASII (S. aureus) 

>460/ E.coli (wild-type) 
0.4/ S. aureus (wild-
type) 

[156] 

Platensimycin 
(FabF) 

0.16/ FabF (E.coli) 
0.048/ FabF (S. aureus) 
67/ FabH (S. aureus) 
0.5/ FASII (S. aureus) 

>145/ E.coli (wild-type) 
1.1/ S. aureus 

[120] 

FabG Polyphenols 
(EGCG, FabG/I) 

5/ FabG (E.coli) 
15/ FabI (E.coli) 

>200/ E.coli [160] 

FabA 3-decynoyl-NAC 
& Allenic acids 
(thioesters) 

-- 10/ E.coli [161,162] 

FabZ NAS-91, NAS-21 0.6/ FabZ (Kd, P. 
falciparum, NAS-91) 

-- [163] 

FabI isoniazid (INH- 0.00075/ FabI (Ki,  MTB) 0.12/ MTB (wild-type) [164-166] 
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NAD) >3,600/ E.coli 
thionamides 
(ethionamide) 

0.0007/ FabI (Ki, MTB) 5.9/ MTB (pMV261, 
PTH) 
>594/ E.coli 

[164,167,168] 

triclosan 2.0/ FabI (E. coli) 1.7/ E. coli (wild-type) [169] 
5-octyl-2-
phenoxyphenol 

0.005/ FabI (MTB) 6.7/ MTB (TN587) [170] 

diazoborine 
(benzodiazaborine) 

-- 83/ E. coli (wild-type) 
10/ K. pneumoniae 
40/ MTB 

[171,172] 

indole 
naphthyridinones 
(FabI/K) 

<0.06/ FabI (E. coli) 
0.05/ FabI (S. aureus) 
0.13/ FabI (H. influenzae) 
3.0/ FabK (S. 
pneumoniae) 

1.3/ E.coli (120AcrAB) 
0.04/ S. aureus 
(WCUH29) 
2.6/ H. influenzae (Q1) 
43/ S. pneumoniae 
(1629) 

[173,174] 

[a] The high through-put FASII inhibitory assay. 

 

Condensing enzyme inhibitors 

Cerulenin (CER) is a fungal mycotoxin, and was the first potent condensing 

enzyme inhibitor discovered [154]. The molecule is an irreversible inhibitor and mimics 

the transition state of the FabF/B catalyzed reaction (Figure 1–9a). FabH (the initiation 

condensing enzyme) is generally insensitive to cerulenin [155]. FabF is a homodimer, 

and Cys163 is located at the bottom of a mainly hydrophobic pocket at the dimer 

interface. Cerulenin is covalently attached to Cys163 via the opening of the epoxide ring 

by the Cys163 residue (Figure 1–9a). The amide carbonyl oxygen of cerulenin interacts 

with His340 and His303, and the hydroxyl group at C3 forms a hydrogen bond to the NH 

of Phe400 (Figure 1–9a) [175]. Cerulenin also inhibits the type I FAS. For example, it 

has IC50 of 4.5 µM to yeast KAS [176]. It is also worth-noting that cerulenin cannot be 

used for antibiotic therapy because it also inhibits human KAS. An analog of cerulenin 

C75 (Figure 1–8), however, has some clinical potential and was found to be cytotoxic to 

some human cancer cells [177].  
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Bacteria have developed resistance mechanisms to cerulenin [178]. Two 

resistance mechanisms to the action of cerulenin in B. subtilis have been reported: i) up-

regulation of transcription of the fabF gene increases 8-fold in response to cerulenin; ii) 

spontaneous mutations of FAS enzymes lead to 10-fold increase in the MIC of cerulenin 

[178].  

 

 

Figure 1–8. Structures of condensing enzyme inhibitors 

 
Thiolactomycin (TLM, Figure 1–8) is a natural product isolated from a Nocardia 

strain in 1982 [157]. Unlike cerulenin (CER), the toxicity of TLM is weak in animal 

experiments, and it has a broad-spectrum antibiotic activity against both Gram-negative 

and Gram-positive bacteria in vitro and in vivo [179]. Several thiolactomycin analogs, 

such as thiotetramycin (Figure 1–8) [159], were isolated from Streptomyces. The 

variables of these analogs are limited on the alkyl substituents. Both CER and TLM have 

high affinities to FabB [155], whereas the binding affinity with FabH is very weak [155]. 
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By changing the catalytic triad in FabB (His-His-Cys) into the His-Asn-Cys triad found 

in FabH, the mutated FabB showed significant resistance to both CER and TLM [155].  

  A Merck group designed a high through-put FASII inhibitory assay in 2005 by 

using an antisense silencing technology and changing the conventional substrates, acetyl-

CoA and malonyl-CoA, into long-chain acyl-CoA (octanoyl-CoA or lauroyl-CoA) [156]. 

Using this method the inhibitors of the elongation steps in fatty acid synthesis were 

discovered [156]. Four potent FabB/F/H inhibitors were found by this modified FASII 

inhibitory assay, namely BABX [156], phomallenic acid C [153], platensimycin [120] 

and platencin [119] (see Figure 1–8 and Table 1–3). All four compounds showed 

antibiotic activities in vivo only to Gram-positive but not Gram-negative bacteria. It was 

suggested that the action of efflux pumps in Gram-negative bacteria accounted for the 

poor activities of these compounds against Gram-negative bacteria.  E. coli lpxC or tolC 

strains that did not have the efflux pumps could be inhibited with these new FAS 

inhibitors [120]. Platensimycin, isolated from Streptomyces platensis, is the best FabF 

inhibitor discovered so far, with an IC50 of 48 and 160 nM for FabF of S. aureus and E. 

coli, respectively. The compound also showed a weak inhibition of S. aureus FabH, with 

an IC50 of 67 µM [120]. Furthermore, platensimycin showed no toxicity issue to the 

human cell-line and no antibiotic cross-resistance to MRSA (methicillin-resistant S. 

aureus) and VRE (vancomycin-resistant Enterococcus) strains.  

As previously mentioned, the FabF and FabB inhibitors usually share the same 

structural motifs because the binding sites these FabF/B inhibitors contain similar amino 

acids. Figure 1–9 depicts the X-ray crystal structures of FabF/B and shows the binding 

modes of CER, TLM [155] and platensimycin [120] to FabF/B. A carbonyl group in all 
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Figure 1–9. Co-crystal structure of FabF/B proteins with their inhibitors. a) Cerulenin 
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Besides FabF and FabB (or KasA and KasB in MTB), FabH is also a highly 

conserved protein. The amino acid sequence of FabH for S. aureus has 57, 40, and 34% 

sequence identity with the FabH of B. subtilis, E. coli, and M. tuberculosis, respectively 

[147]. Benzoylaminobenzoic acids (Figure 1–8) were discovered as FabH inhibitor in a 

structure-based drug design approach [152]. Many analogs of this class of compounds 

showed nanomolar inhibition activity against both Gram-positive and Gram-negative 

bacteria FabH [152]. Di- or tri- hydroxy benzene derivatives (e.g. YKAs3003, YKAF04; 

see Figure 1–8), which were discovered in silico, showed nanomolar inhibition to FabH 

[149,150]. However, the MIC values of these compounds are too high (16–584 µM) to be 

clinically useful (Table 1–3). Platencin, also isolated from S. platensis by the Merck 

group, is structurally similar to platensimycin with the only difference found in the 

tetracyclic moiety (Figure 1–8). Like platensimycin, platencin also has a broad-spectrum 

antibiotic activity against Gram-positive bacteria with no toxicity issue or antibiotic 

cross-resistance problem. However, platencin is 14-fold more active against FabH than 

platensimycin and maintains a similar inhibition activity to FabF, thus platencin is a dual 

FabF/H inhibitor. Also similar to platensimycin, platencin inhibited phospholipid 

biosynthesis in the whole-cell labeling experiments in S. aureus with IC50 values of 0.45 

µM [119].  

 
β-Ketoacyl-ACP reductase (KR) and β-hydroxyacyl-ACP dehydrase (HD) inhibitors 

KR of E. coli, or FabG is a NAD(P)-dependant reductase. Only a handful of FabG 

inhibitors are currently known. Epigallocatechin gallate (EGCG) is the major component 

of green tea extracts. EGCG and other polyphenol green tea extracts, which contain the 

galloyl moiety, showed a potent dual inhibition of FabG and FabI, but a moderate in vivo 
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MIC value [160]. Other plant polyphenols were screened, and some of them had good 

FabG inhibition and antibacterial activities, but the mode of action of inhibition of both 

of the NAD(P)-dependant reductases is still unknown [160].  

Little attention has been paid to the discovery of FabA inhibitors because not 

many bacterial strains have FabA as their β-hydroxyacyl-ACP dehydrase (e.g. C. 

acetobutylicum and C. difficile) [87]. The 3-decynoyl-N-acetylcysteamine, and its analogs, 

2,3-decadienoyl-N-acetylcysteamine and 2,3-decadienoic acid were shown to inhibit β-

hydroxydecanoyl thioester dehydrase of E. coli irreversibly (Figure 1–10) [161,162]. 

 

 

 

Figure 1–10. The structures of KR and HD inhibitors 

 

The only FabZ (HD) inhibitors reported so far are two synthetic compounds, 

NAS-91 (Figure 1–10) and NAS-21. These two compounds showed binding constants 

(Kb) of 1.6 × 106 and 1.2 × 106 M-1 to FabZ, respectively [163].  

 

 Enoyl-ACP reductase (ER) inhibitors 

Enoyl-ACP reductases, FabI/K/L/V (called InhA in MTB) are also validated 

antibiotic targets. At least four classes of ER inhibitors have been discovered so far: 

isoniazid (INH) [164], triclosan [169], diazoborine [171,172] and indole 

naphthyridinones [173,174] (see Figure 1–11 for structures).  
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Isoniazid has been used as an anti-MTB drug since 1950’s, and it still remains as 

the first-line antibiotic for MTB infections. Because of the drug-resistant problem, 

standard chemotherapy to treat MTB consists of at least four drugs: isoniazid, rifampin, 

ethambutol, and pyrazinamide. Although isoniazid has a very simple substituted pyridine 

structure (Figure 1–11), the mode of action of this pro-drug is complicated. It has been 

suggested that INH (isoniazid) is activated by KatG (catalaseperoxidase) and forms an 

adduct with NAD, and this INH-NAD adduct inhibits InhA (Figure 1–12) [180]. 

Inhibition of InhA results in the reduced synthesis of mycolic acid, which is required for 

the synthesis of Mycobacteria cell wall [180]. It should be pointed out that although it has 

became a common knowledge that isoniazid is a InhA inhibitor of MTB, there is still 

some evidence to suggest that there are more than one target of INH inside the MTB cell 

[181-183]. Bacterial resistance towards isoniazid is probably caused by mutations within 

the katG and inhA genes [180,184].  

 

 

Figure 1–11. Structures of FabI/K inhibitors.  
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2’-OH of the nicotinamide ribose and a boron atom in the drugs to generate a tightly 

bound adduct [186,190]. Mutational studies revealed that diazoborine binding to E. coli 

ER requires the presence of a glycine residue at position 93. Any other amino acid, other 

than glycine, at this position dramatically affected diazaborine binding to ER [191]. 

Triclosan (Figure 1–11) inhibits the ER with a dissociation constant of 7.1 pM 

[187]. Analysis of the co-crystal structure of triclosan and ER-NAD complex revealed 

that both triclosan and diazaborine inhibitors bind to the same site (Figure 1–12) [187]. 

Resistance to triclosan occurs via mutations to ER enzymes, such as FabI, akin to how 

mutations in INHA confer resistance to INH in MTB [169]. It should also be noted that 

many strains of bacteria do not possess FabI or have more than one ER. For such bacteria, 

triclosan is not a very effective antibiotic [127]. Additionally, the overexpression of the 

multidrug efflux pump locus acrAB, marA or soxS decreased susceptibility to triclosan 

in bacteria [192]. A detailed structure-activity relationship study of triclosan has been 

done by the Tonge group [170,193]. And they showed that many diphenyl ether analogs 

of triclosan (e.g. 5-octyl-2-phenoxyphenol) have similar or higher activity than triclosan 

to various bacteria, including E. coli and MTB [189].  

Indole naphthyridinones (Figure 1–11) were discovered as ER inhibitors in 2003 

[173]. This class of compounds showed potent antibiotic activity to various Gram-

positive bacteria and some Gram-negative pathogens, including some multi-drug resistant 

pathogens (Table 1–3) [173]. Extensive SAR studies showed that some of the analogs 

have a dual inhibition of both FabI and FabK, and they have a promising oral in vivo 

efficacy in a S. aureus infection model in rats [174].  
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1.2.4 Other considerations when developing new antibiotics 

As early as 1977, researchers noticed that in the presence of an inhibitory 

concentration of cerulenin, cells of S. aureus can resume growth when supplemented with 

either a saturated or an unsaturated fatty acid [194]. A very recent paper claimed that type 

II FAS is not a suitable antibiotic target for Gram-positive pathogens [195]. The uptake 

of exogenous fatty acids, which can be found in the human serum, would allow the 

bacteria to fully bypass the inhibition of the type II FAS process. Therefore the antibiotic 

activities of type II FAS inhibitors may be sensitive to the in vivo environment of the 

bacteria. It is therefore critical for the drug-developer to consider different scenarios 

whereby a therapeutic regimen will not work, when developing new antibiotics to solve 

the never-ending resistance problem. 

 

1.3  Biofilm formation – another important antibiotic target 

1.3.1  Introduction of c-di-GMP signaling 

Biofilm is an aggregation of micro-organisms in bio-matrix on living and 

nonliving surfaces [1]. It has been noted that bacteria in biofilms are more resistant to 

antibiotics than free-living (planktonic) ones, and hence diseases related with biofilm-

forming bacteria are usually chronic and difficult to treat [196]. Biofilm-forming bacteria 

have been implicated in several serious diseases, such as endocarditis, cystitis, cystic 

fibrosis pulmonary infections, and the infections of prosthetic devices [196]. Thus small 

molecules that can attenuate biofilm formation have the potential to solve the bacteria 

resistance problem. It is now known that a dinucleotide, cyclic diguanylic acid (c-di-
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GMP, Figure 1–13a), appears to be a master regulator of several processes related to 

biofilm in various bacteria strains [197,198]. 

C-di-GMP was first discovered as a cellulose synthase activator in 

Gluconacetobacter xylinus (formally known as Acetobactor xylinum) by the Benziman 

group over two decades ago [199]. It was proposed by Benziman that c-di-GMP was 

synthesized by a membrane-bound protein diguanylate cyclase (DGC) from two 

molecules of GTP in the presence of Mg2+ (Figure 1––––13b). C-di-GMP was shown to 

activate cellulose production in bacteria by binding to a cellulose synthase that is also a 

membrane protein. The degradation of c-di-GMP is catalyzed by phosphodiesterase A 

and B (PDE A/B), initially into pGpG by PDEA and then the pGpG is cleaved into two 

molecules of GMP by PDEB (Figure 1–13b).  

Mg2+ is required for c-di-GMP degradation but Ca2+ can strongly inhibit 

hydrolysis [199]. DGCs are characterized by the GGDEF [200,201], whereas PDEs are 

characterized by the EAL domain [202]. These two domains have now been shown to be 

the most abundant in bacterial genomes [203]. The first identified receptor for c-di-GMP 

was the BcsB β-subunit of cellulose synthase [204,205]. However, after some debate 

about whether the BcsB β-subunit of cellulose synthase was indeed a c-di-GMP binding 

domain [206,207], Amikam and Galperin clarified that PilZ domain in the sequence of 

cellulose synthase was in fact the long-sought after c-di-GMP binding protein [208].   
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Figure 1–14. Structure of c
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diesterases (PDEs). pGpG can be further degraded into two GMPs [199].  Some of the 

well characterized DGCs are WspR [200] and PleD [201]. These DGCs all contain a 

GGDEF domain [200,201] but the exact role played by this domain in DGC catalysis is 

not fully understood. Researchers have, however, postulated that the mechanism utilized 

by DGCs to make c-di-GMP from GTP could be similar to that of adenylyl cyclase 

[218,219]. PDE (e.g. FimX, RocR) contains an EAL domain [203]. Recent study showed 

that EAL domain can use one, two or three Mg2+ for catalysis but only one cation is 

essential [220]. Using RocR protein (from Pseudomonas aeruginosa) as a model, Liang’s 

group further proposed that this key Mg2+ coordinates and polarizes the P–O bond of c-

di-GMP, and lowers the pKa of the coordinated water to generate the nucleophilic 

hydroxide anion, with the assistance of Glu352 via a general acid/base mechanism 

(Figure 1–15) [220]. Proteins containing EAL domain specifically produce 5’-pGpG 

without the formation of 3’-pGpG.  

 

 

 
Figure 1–15. Proposed catalytic mechanism for EAL domain-containing PDE.  

  
 In the last few years, tremendous progress has been made towards identifying and 

understanding c-di-GMP metabolism proteins (PDEs and DGCs). However, very little is 
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known about the downstream proteins that bind to c-di-GMP and transmit the binding 

event into a biological response (the so-called adaptor proteins). Table 1–4 shows known 

proteins that bind to c-di-GMP.  

 
Table 1–4. Known c-di-GMP adaptor proteins and RNAs (modified from refs[213]). 

Adaptor family Example Species Functions controlled Refs 
Protein adaptors 

PilZ 

Alg44 
Pseudomonas 
aeruginosa 

Alginate synthesis [221] 

BcsA 
Various Gram-

negative bacteria 
Cellulose synthesis [207,208] 

DgrA 
Caulobacter 
crescentus 

Flagellar activity [222] 

PilZ P. aeruginosa Twitching motility [209] 
Plz 

proteins 
Vibrio cholerae 

Virulence gene 
expression 

[211] 

YcgR 
Escherichia coli and 

Salmonella spp. 
Flagella activity [223] 

FleQ FleQ P. aeruginosa 
Flagella expression 
and Pel synthesis 

[224] 

PelD PelE P. aeruginosa Pel synthesis [225] 

I site effectors PopA C. crescentus 
Cell cycle 

progression 
[215] 

RNA effectors 

c-di-GMP-I 
riboswitches 

(GEMM) 

Vc1 
(encoded 
by gbpA) 

V. cholerae Intestinal adhesion 

[212] 
Vc2 

(encoded 
by 

VC1722) 

V. cholerae 
Biofilm formation 

and rugosity 

Cd1 Clostridium difficile Flagella synthesis 
c-di-GMP-II 
riboswitches 

84 Cd Clostridium difficile Bacterial virulence [217] 

 

1.3.2  Polymorphism of c-di-GMP 

An interesting property of c-di-GMP is its ability to readily form dimers, 

tetraplexes and higher aggregates in the presence of cations at millimolar or even high 

micromolar concentration (Figure 1–16) [226,227]. Structural data analyses of proteins 
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that bind to c-di-GMP reveal that these proteins bind to either monomer (PDB code: 

3HV8 [228]) and dimer c-di-GMP (PDB code: 3KYF [229]; Figure 1–17). Cations such 

as those of magnesium, sodium, lithium and ammonium promote dimer formation in c-di-

GMP, whereas potassium ion promotes the formation of tetraplexes and octaplexes in c-

di-GMP [226,227]. Recently the Sintim group also showed that higher aggregates of c-di-

GMP, such as tetraplexes and octaplexes, can also form at physiological concentration 

(0–10 µM) in the presence of aromatic intercalators [230]. 

This propensity of c-di-GMP to form tetraplexes or octaplexes (G-quadruplexes) 

at micromolar concentrations in the presence of cations (such as that of potassium) is 

intriguing because simple nucleotides (such as cGMP, GTP or pGpG) do not readily form 

G-quadruplex structures at micromolar concentrations. G-quadruplexes are formed by 

four guanine groups linked by eight H-bonds (Figure 1–16). In c-di-GMP, the near-

planar G-quardruplex floors can stack with each other, stabilized by a face-face π–π 

stacking [227]. Not all bacterial c-di-GMP binding enzymes bind to the same c-di-GMP 

polymorphism. For example, P4397 (PilZ domain) binds to dimeric c-di-GMP (Figure 

1–17a), whereas FimX (EAL domain) prefers monomeric c-di-GMP (Figure 1–17b). 

Therefore, the polymorphism of c-di-GMP should have biological implications. Plausibly, 

the facile interconversion of c-di-GMP into different aggregation states (especially in the 

presence of cations) could be a means whereby bacteria regulate biofilm formation in the 

presence of different metals. 

 



 

Figure 1–16. Polymorphism of c

magnesium cations; b) potassium and aromatic intercalators. G
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a) Lithium, sodium, ammonium and 

quardruplexes are formed 

 

dimeric c-di-GMP 

GMP (PDB 3HV8) (green, 

red, blue and orange represent carbon, oxygen, nitrogen and phosphor atom on c-di-GMP, 

respectively; yellow represents the cartoon structure of the adaptor proteins). 
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Chapter 2. The synthesis and antibiotic activities of oxazinidinyl 

platensimycin 

2.1  Syntheses of novel FAS inhibitors, platensimycin and platencin 

In 2006, Merck reported a novel potent inhibitor of FabF, called platensimycin 

(Figure 2–1) [120], from a soil sample of Streptomyces platensis (MA7327) collected in 

South Africa. The yield of this natural product after extraction and HPLC purification 

was 0.6–1.3 mg/liter of the crude fermentation broth [120]. One year later, the same 

Merck team reported another compound called platencin (Figure 2–1), which is a good 

inhibitor of FabH, from a different strain of Streptomyces platensis (MA7339) from a soil 

sample collected in Spain with a similar purification method used for platensimycin 

discovery. Platencin was obtained in a yield of 1 mg/liter [119].  

 

 

 Figure 2–1. The structures of platensimycin and platencin. 

 

Platensimycin (compound 2–1, Figure 2–1) and platencin (compound 2–2) both 

show a broad-spectrum Gram-positive activity in vitro and in vivo [119,120]. Single-

enzyme catalytic assays showed that platensimycin is a superior inhibitor of saFabF (sa = 

S. aureus) with an IC50 of 0.048 µM but a weak inhibitor of saFabH with an IC50 of 67 

µM [120], whereas platencin is a dual inhibitor of saFabF and saFabH with an IC50 of 

0.11 and 16 µM, respectively [119]. In vivo, platensimycin and platencin both showed an 

MIC (minimum inhibitory concentration) value range of 0.5–8 µg/mL. These values 
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represent about 32-fold more antibiotic potency when compared to the commercial 

antibacterial drug, linezolid, on various antibiotic-resistant bacterial strains. Interestingly, 

both platensimycin and platencin do not exhibit significant cyto-toxicity (Table 2–1) 

[119,120].  

FabH and FabF are condensing enzymes that are both necessary for the 

biosynthesis of the fatty acid component of bacterial cellular membrane, phospholipid. 

Thus a bacterium deficient in any of these two essential enzymes cannot survive [87]. 

Platensimycin and platencin are the most potent inhibitors of FabF/H reported to date, 

and because their modes of action are distinct from any current antibiotics, such as β-

lactams, macrolides or oxazolidinones (e.g. linezolid), it was expected that platensimycin 

or platencin will not exhibit cross-resistance issue to these drugs (Table 2–1) [119,120]. 

 

Table 2–1. Microbiological and toxicity profiles of platensimycin, platencin and linezolid 

(adopted from ref [120] and [119]) 

Organism (genotype and description) Platensimycin Platencin Linezolid 
Antibacterial activity (MIC, µg/ml) 

S. aureus (MSSA, sensitive to methicilin) 0.5 0.5 4 
S. aureus + serum 2 8 4 
S. aureus (MRSA, resistant to methicilin) 0.5 1 2 
S. aureus (MRSA, resistant to macrolide)  0.5 1 2 
S. aureus (MRSA, resistant to linezolid) 1 1 32 
S. aureus (VISA, resistant to vancomycin)  0.5 0.5 2 
E. faecalis (resistant to macrolide) 1 2 1 
E. faecium (VRE, resistant to vancomycin) 0.1 <0.06 2 
S. pneumoniae 1 4 1 
E. coli (wild-type) >64 >64 >64 
E. coli (tolC) 16 2 32 

Toxicity (µg/ml) 
HeLa MTT (IC50)  >1,000 >100 >100 
Candida albicans (MIC) >64 >64 >64 

Whole-cell activity (IC50, µg/ml) 
Fatty acid synthesis (S. aureus) 0.1 0.19 ND 
Fatty acid synthesis (S. pneumonia) 0.8 2.7 ND 



 

It is worth-noting that although platensimycin and platencin showed superior 

antibacterial activities to various commercial antibiotics against several antibiotic

resistant bacterial strains in 

profiles and did not display good 

enzymes in the human serum.
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Structure  at 2.6 Å resolution of E. coli FabF (C163Q) (active site residues: 
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Platensimycin and platencin can be structurally divided into three moeities, the 

cyclic ketolide core, the benzoic acid, and the amide linker (

platencimycin, the carboxylate of the benzoic acid ring forms polar interactions with the 
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platensimycin, and would not be able to make as favorable a stacking interacti

explains why platensimycin binds selectively to the acyl

The hydroxyl group para to the carboxylic acid group makes weak 
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[120].  

Some critical binding interactions between platensimycin (green backbone) 

and amino acid residues (yellow backbone) in the active site of FabF. a) The interactions 

between the benzoic acid part of platensimycin and the FabF protein; b) 

the tetracyclic ketolide core and the amide linker of platensimycin with the residues of 

lue: nitrogen, red: oxygen). 
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The amide-linked, tetracyclic core of platensimycin is positioned in the mouth of 

the active site and is partly exposed to solvent (Figure 2–2) [120]. The amide linker 

makes two hydrogen bonds to the protein; the carbonyl oxygen hydrogen-bonds to the 

Thr307 side chain, and the amide nitrogen interacts with the backbone carbonyl of 

Thr270. The enone carbonyl oxygen of platensimycin makes a hydrogen bond to the 

backbone amide of Ala309, and the ether oxygen makes a hydrogen bond to the side-

chain hydroxyl group of Thr270 (Figure 2–3b) [120].  

More recent structural studies [231,232] showed that the binding modes of 

platencin, platensimycin A1 (a hydroxy congener of platensimycin, Figure 2–4; 

compound 2–3) and platencin A1 (a hydroxy congener of platencin, compound 2–4) are 

similar to platensimycin (Figure 2–5). The IC50 values of platensimycin A1 and platencin 

A1 are also similar to that of platensimycin and platencin in cell-free FASII assays, 

respectively [231,232]. For platensimycin A1, the hydroxylated tetracyclic core is slightly 

rotated and shifted compared to platensimycin in the binding site (Figure 2–5) [231]. For 

platencin and platencin A1, the terpenoid ring of the tricyclic core lacks the ether oxygen 

atom found in platensimycin and therefore, both compounds cannot form a direct 

hydrogen bond to Thr270 (Figure 2–3b). This missing hydrogen bond probably accounts 

for the 6-fold weaker binding affinity to FabF compared to platensimycin [232]. However, 

the benzoic acid moieties and the amide linker are bound to the protein almost exactly the 

same way in all the cases. The hydrogenation product of platensimycin, whereby the 

enone moiety of the tetracyclic core is reduced, dihydroplatensimycin (compound 2–5, 

Figure 2–4), binds to FabF with an affinity that is only 4-fold less than the natural 

platensimycin. The lower binding affinity of dihydroplatensimycin (compound 2–5) to 
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2.1.2  Previous total syntheses of platensimcyin and platencin 

In only four years since the seminal report [120] by the Merck group, over 20 

groups worldwide have reported the total syntheses of platensimycin [182,234-246] and 

platencin [247-257], or the enzymatic syntheses of platencimycin [258,259]. Additionally, 

several papers demonstrated various strategies to make analogs of these molecules 

[231,232,260-277], and the biological evaluations of these analogs [231,232,262-

264,266-268,271-277] have also been reported. Several review articles [278-282] on 

these molecules have also been published, establishing the platensimycin family of 

antibiotics as one of the most intensely studied bioactive molecules in the last decade. 

Despite the intense research efforts directed at discovering newer analogs of 

platensimycin and family, the majority of the reported syntheses of platensimycin or 

analogs typically involve close to twenty total steps, with the shortest linear steps being 

around nine [256]. Most total syntheses of platensimycin or platencin have produced only 

a few milligrams of material. As most antibiotic pills used in the clinics typically contain 

from one to two hundred milligrams of active substances, the current chemical syntheses 

of platensimycin or analogs reported so far would not be economically viable. 

Nicolaou’s group first reported the total synthesis of platensimycin in 2006 [234] 

and platencin in 2008 [250]. Nicolaou’s first platensimycin synthesis included 10 steps 

towards the core structure. The key step in Nicolaou’s strategy is a ketyl radical 

cyclization step to construct the tetracyclic ring core of platensimycin (Scheme 2–1).  
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Scheme 2–1. Nicolaou’s first total synthesis of platensimycin 

 

Snider reported a 7-step synthesis of the core structure 2–9 of platensimycin 

(Scheme 2–2) [241], the major drawback of this approach is that many steps are low 

yielding and result in mixtures of undesired products. Therefore, for practical purposes, 

Snider’s strategy is not ideal (Scheme 2–2). Yamamoto reported a 10-step asymmetric 

synthesis towards the core structure 2–9 of platensimycin in 2007 [237]. Yamamoto’s 

synthesis started with an asymmetric Diels-Alder reaction, and ended with a 

stereoselective Robinson annulation as a key step (Scheme 2–3).  
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Scheme 2–2. Snyder’s synthetic strategy towards the core structure of platensimycin 
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Scheme 2–3. Yamamoto’s synthetic strategy towards the core structure of platensimycin 

 

The core structure of platencin is less complicated than platensimycin. Instead of 

a tetracyclic moiety, the tricyclic moiety makes the platencin synthesis generally shorter 

than platensimycin. The shortest total synthesis of platencin so far is Tiefenbacher and 

Mulzer’s synthesis reported in 2009 [256]. The synthesis started with a commercially 

available compound perillaldehyde. After the key ring-closing metathesis/ Diels-Alder 

cascade reaction, the tricyclic structure was readily formed in only three steps (Scheme 

2–4). The total number of steps of Tiefenbacher and Mulzer’s synthesis is nine, with an 

overall yield of 9.6 % [256].   

 

 

Scheme 2–4. Tiefenbacher and Mulzer’s total synthesis of platencin. 

 

2.2  Design, syntheses and antibiotic activities of first generation platensimycin 

analog – oxazinidinyl platensimycin 

(The majority of this section was published in ref [273]) 
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2.2.1  The design of oxazinidinyl platensimycin 

Although platensimycin shows an excellent antibacterial activity, there are still 

some issues that must be addressed:  

i) Platensimycin is 4-fold less effective in serum than that is in bacterial growth 

medium (Table 2–1). The instability of platensimycin in serum might be due to the 

hydrolysis of the amide group. Replacement of the amide moiety with stable isosteric 

groups might lead to a longer lasting drug.  

ii) Practical chemical synthesis of platensimycin for mass usage is currently not 

feasible with the synthetic strategies reported so far.  

Since the benzoic acid moiety is important, SAR studies of platensimycin have 

mainly been focused on the tetracyclic core structure of platensimycin, and any attempts 

to modify the benzoic acid moiety rendered the molecule inactive (Table 2–2). 

Interestingly, although the tetracyclic moiety of platensimycin is distal from the active 

site in FabF, modifications on the core does not always give an active compound (Table 

2–2).  

 

Table 2–2. MIC values of platensimycin/ platencin analogs against S. aureus.  (Unless 

otherwise shown, analogs contain the benzoic acid moiety found in platensimycin) 

 active analogs inactive analogs 
core structures/ names MIC refs core structures/ names MIC refs 

 
platensimycin 

0.5 
(2) 

[120] 
[267] 

 

~78 
(B. subtilis) 

[271] 

 
platencin 

0.5–1 
(0.4–0.8) 

[119] 
([276])  

oxazinidinyl platensimycin 

90[a] [273] 

 
iso-platencin 

0.4–0.8 [276] 
 

iso-platensimycin 

128 [268] 
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carbaplatensimycin 

1.1–2.2 [263] 
 

>64 [272] 

 
adamantaplatensimycin 

1.3–1.8 [262] 
 

>64 [272] 

 

1 [267] 
 

>1000 [274] 

 
1 [267] 

 

>25.6 [276] 

 
dihydro-platensimycin 

2 [233] 

 

>64 [266] 

 

3.5–4.3 [264] 

 

>64 [266] 

 
nor-platencin 

4 [275] 

 

>64 [266] 

 
8.0–10 [264] 

 

>85 [264] 

 

16 [272] 

 

>85 [264] 

 
platensimycin A1 

16 [231] 
 

platensimide A 

>1000 [274] 

 

17–20 [264] 
 

platensic acid methyl ester 

>1000 [274] 

 
platensimycin A3 

20 [274] 

 
platensimycin B3 

>1000 [277] 

 
platensic acid 

37–58 
(>1000) 

[264] 
([274]) 

[a] The molecule was synthesized and reported by Sintim group [273] and will be 

discussed in this dissertation.  
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Herein, we report the total synthesis and biological testing of oxazinidinyl 

platensimycin (2-30, Scheme 2–6) and a simplified oxazinidinyl analog (2-57, Scheme 

2-17). This limited set of analogues was designed to answer two questions: a) Could the 

enone moiety of platensimycin be replaced with the oxazinidinyl ring to create a potential 

bioisostere compound 2? b) Could the tetracyclic core structure of platensimycin be 

replaced with other motifs that are synthetically easier to access? 

The choice of the oxazinidinyl moiety to replace the enone moiety was dictated 

by the observation by the Merck group that the enone functionality does not play a 

significant role in platensimycin inhibition of FabF [120]. Additionally, the replacement 

of the C4 atom (Scheme 2–5) with nitrogen will open up the possibility of synthesizing 

platensimycin analogs via reductive amination. Reductive amination reactions (Scheme 

2–5), with sodium cyanoborohydride, do not require stringent inert or anyhydrous 

conditions and are generally high yielding. Therefore the reaction is amenable for high-

throughput synthesis; enabling the rapid syntheses of platensimycin analogs via the 

coupling of the aryl side chain with readily available 1,3-hydroxyketones to generate a 

library of oxazolidinyl platensimycin analogs with different core-structures for biological 

testing.  

 

 
Scheme 2–5. Synthetic strategy towards platensimycin analogs. 
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2.2.2  Synthesis of oxazinidinyl platensimycin 

Scheme 2–6 outlines our retrosynthetic analysis for the core structure of 

platensimycin analogues. For the synthesis of the core structure of oxazolidinyl 

platensimycin 2–30, bis-alkene 2–34 was chosen as a key intermediate that could be ring-

closed with Grubb’s metathesis catalyst. Epoxidation of the resulting cyclic alkene would 

give compound 2–32, after a nucleophilic addition to the ketone moiety.  

 

 

Scheme 2–6. Retro-synthetic analysis of oxazinidinyl platensimycin. 

 

We reasoned that because the lone pairs of the hydroxyl oxygen anion of 2-32 

overlapped with the π* of the epoxide’s C-O bond, a facile 6-exo-tet ring closure should 

ensue to provide the tricyclic structure 2-36 (Scheme 2–7). Of concern was the 

possibility of obtaining the alternative diastereomer 2- 37 via a 5-exo-tet ring closure. 

 

 

Scheme 2–7. 6-exo-tet (pathway a) vs 5-exo-tet cyclization (pathway b). 

 

DFT calculations, using the Gaussian 03 program, indicated that the activation 

energy of pathway a via the transition state structure TS-a was 9.8 kcal/mol lower than 



 

that of pathway b via TS-

b (Scheme 2–8). Diastereomer 

energy of 2–37 is 14.0 kcal/mol higher compared to 

optimized ground state geometry of compound 

nucleophile and C1 atom (

3.7 Å away from C2. Taken together, these analyses gave us the confidence that our key 

step towards the synthesis of oxazin

 

Scheme 2–8. The energy surfaces o

reaction 

 

Initially, we set out to make

closing metathesis reaction. Treatment of commercially available vinylagous ester 

with anion 2–39, generated f

-b. This suggests that pathway a is more favorable than pathway 

). Diastereomer 2–37 contains a boat conformation and the ground state 

is 14.0 kcal/mol higher compared to 2–36 (Scheme 2–

optimized ground state geometry of compound 2–32, the distance between the oxygen 

nucleophile and C1 atom (Scheme 2–8) was 3.2 Å whereas the oxygen nucleophile was 

3.7 Å away from C2. Taken together, these analyses gave us the confidence that our key 

towards the synthesis of oxazinidinyl platensimycin was viable and worth pursuing.

 

The energy surfaces of pathway a and b for the epoxide ring

Initially, we set out to make bis-alkene 2–34, the requisite substrate for the ring

closing metathesis reaction. Treatment of commercially available vinylagous ester 

, generated from a stannane precursor via a lithium-tin exchange gave 
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enone 2–40 in good yield (84 %). The next step involved the allylation of enone 2–40 

with an allyl halide. Allyl bromide only gave the desired product 2–41 in a meagre 34% 

yield accompanied by a substantial amount of diallylated product 2–42 (44 % yield). 

Interestingly, changing the allylation reagent to allyl iodide improved the yield to 62 % 

and the formation of the diallylated product was suppressed to 25 %. A conjugate 

addition of vinyllithium to enone 2–41, in the presence of BF3·Et2O resulted in a 1 : 3.5 

mixture of cis-bis-alkene 2–34 and trans-bis-alkene 2–34 respectively. Unfortunately, the 

major product (trans-2–42) was not suitable for the subsequent ring-closing metathesis 

because the alkene moieties were trans- to each other (Scheme 2–9). The low overall 

yield of the desired cis-bis-alkene 2–34 led us to investigate the epimerization of 

compound trans-2–34 to give cis-2–34 (Scheme 2–10). Subjecting compound trans-2-34 

to 30 mol% DBU in toluene yielded an epimeric mixture of trans-2–34: cis-2–34 in an 11: 

9 ratio after 23 h (Scheme 2–10). It therefore appears that the undesired cis-bis-alkene 2–

34 is both the kinetic and thermodynamic product.  

Under the experimental condition, cis-2–34 and trans-2–34 may reach 70 % of 

their equilibrium in about 6 hours (see Appendix I). We wondered if we could perform 

the ring-closing metathesis in the presence of DBU. Should the ruthenium catalyst be 

compatible with the amine base, then a dynamic ring-closing resolution should ensue and 

both diastereomers cis-2–34 and trans-2–34 would be suitable for the ring closing 

reaction. To the best of our knowledge, a dynamic ring-closing metathesis has not been 

reported in the literature. For the successful implementation of the dynamic ring-closing 

strategy, the ruthenium catalyst will have to survive the amine base for over 24 h at reflux 

conditions without being completely poisoned.  



 

 
O

OMe

O

OBn

Li OBn

a

b

2-38

2-39

2-40

Scheme 2–9. Reaction conditions: 

LDA, HMPA, allyl iodide, THF, 

material); c) Sn(CHCH2)4

 

Scheme 2–10. Stacked NMR spectra of epimerization reaction of compound 

and trans-2–34 under the condition: 30 mol% DBU, 0.02 M substrate (pure 

alkene 2–34), 100 °C in d

oil bath and 1H spectra were collected at room temperature within 5 min.

n

O

OBn

O

OBn

+

O

OBn

b c

cis-2-34 : t rans-2-34 = 1 : 3.5O

OBn

2-41 cis-2-34 trans-2-34

2-42
byproduct

 

Reaction conditions: a) LiCH2OBn, THF, –78 °C � RT,

LDA, HMPA, allyl iodide, THF, –78 °C � RT, 12 h, 62 % (67 % based on the starting 

4, n-BuLi, CuCN, BF3·Et2O, –78 °C � RT, 12 h, 85 %. 

Stacked NMR spectra of epimerization reaction of compound 

under the condition: 30 mol% DBU, 0.02 M substrate (pure 

in d8-toluene. The reaction was carried in a 5 mm NMR tube with 

spectra were collected at room temperature within 5 min.
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Stacked NMR spectra of epimerization reaction of compound cis-2–34 

under the condition: 30 mol% DBU, 0.02 M substrate (pure trans-bis-

toluene. The reaction was carried in a 5 mm NMR tube with 

spectra were collected at room temperature within 5 min. 
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Scheme 2–11. Dynamic ring-closing metathesis. Reaction conditions: Hoveyda-Grubbs 

II catalyst (2 % x 5), 50 % DDQ, 30% DBU, toluene, 0.02 M compound 2–34, reflux, 6 h 

each loading, 69 % (83 % based on the starting material). See Appendix II for more 

information.  

 
Pleasingly, subjecting an epimeric mixture of compounds cis-2–34: trans-2–34 

(ration of 1:3.5) to Hoveyda-Grubbs II catalyst in the presence of DBU and benzoquinone 

afforded the ring-closed product in 69 % yield (83 % based on the starting material, 

Scheme 2–11). In contrast, in the absence of DBU, the desired product could be obtained 

in a meager 20% yield. The benzoquinone additive was important for minimizing the 

formation of the enone by-product 2–43 [283]. For this protocol to work, it was important 

to add the ruthenium catalysts in 2 mol% portions five times over a 24 h period. The 

portion-wise addition of the catalyst was necessary because even though the catalyst was 

tolerant of the amine base to some extent, the ruthenium catalyst was decomposed under 

the experiment condition in a period of approximately one hour [284]. More reaction 

conditions screened for the dynamic ring-closing metathesis refer to Appendix II.  

 

 

Scheme 2–12. Reaction conditions: a) m-CPBA, dichloromethane, 0 °C � RT, 12 h, 

64 %; b) MeLi, THF, –78 °C � RT, 5 h, 70%; c) Dess-Martin reagent, CH2Cl2, RT, 12 h, 

95 %; d) 10 mol% Pd/C, H2, MeOH, RT, 12 h, 90 %.  
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With bicyclic compound 2–33 in hand, in gram quantities, we proceeded with the 

epoxidation reaction using m-CPBA. The epoxide 2–35, obtained in 64 % yield, was then 

subjected to a tandem nucleophilic MeLi addition followed by a subsequent epoxide ring-

opening to afford tricycle 2–36 in 70 % yield (Scheme 2–13). In line with our 

expectation, the 5-exo-tet pathway b product 2–37 was not observed (Schemes 2–8 and 

2–13). Treatment of 2–32 with KOt-Bu (1.5 eq) in d6-DMSO resulted in epoxide ring-

opening product 2–36 within 5 minutes quantitatively (Scheme 2–14). Oxidation of 

compound 2–36 with Dess-Martin periodinane was followed by debenzylation with 

Pd/H2 to afford 2–44 without any incident.  

 

 

Entry Temperature Reaction time (h) 
Product distribution 

2–32 : 2–36 : 2–37  (overall yield) 
1 –78 � –10 °C 2 0.7 : 1 : 0 (87 %) 
2 –78 � rt 6 0 : 1 : 0 (70 %) 

 
Scheme 2–13. The product distribution of epoxide ring-opening reaction. 

 



 

Scheme 2–14. Epoxide ring

mixture in d6-DMSO; b) e

opening starting material 
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Scheme 2–15. a) NIS, TFA,

97 %; c) CNCO2Me, PhMgBr, 

CH2Cl2, RT, 12 h, 78 %; e) H

50 °C, 5 h, 95%; g) K2CO

Epoxide ring-opening reaction and the stacked NMR spectra of 

b) epoxide ring-opening product 2–36 in CDCl3; c) e

opening starting material 2–32 in CDCl3.  
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a) NIS, TFA, RT, 12 h, 100 %; b) MOMCl, Hunig base, CH

Me, PhMgBr, -78 °C � RT, THF, 12h, 78 %; d) MOMCl, Hünig base, 

12 h, 78 %; e) H2, 10 mol% Pd/C, MeOH, 69%; f) pyridine, benzene,

CO3, MeOH : H2O = 3:1, RT, 10 h, 99 %.  
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; c) epoxide ring-

CH2Cl2, RT, 12 h, 

THF, 12h, 78 %; d) MOMCl, Hünig base, 

ridine, benzene, RT � 
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The aromatic side chain of compound 5 was synthesized following the strategy 

shown in Scheme 2–15. The stage was now set to couple the aromatic side chain 2–50 

with the tricyclic ring core 2–44. The reductive amination intermediate 31 has two 

sterically similar faces (shown as faces A and B in Figure 2–6), and it appeared at first 

glance that a mixture of diastereomers would be obtained during the reductive amination 

step. We, however, postulated that because one face (face B) contained oxygen, subtle 

stereoelectronic factors could swing the selectivity towards the desired product. The 

Felkin-Anh model [285-287] is not suitable to interpret the stereoselectivity of this 

reaction. In Felkin-Anh model, the addition of nucleophiles to iminium 2–51 favors 

addition from face A (Figure 2–6) due to favorable interactions between the nucleophile 

and the low lying σ*C–O bond. However, literature examples [288-291] indicated that, for 

tricyclic systems such as 2–51, a Cieplak model [292,293] would be a more appropriate 

predictor for product distribution: A hydride approach from face B would lead to two σ C-

C interacting favorably with the developing σ C-H bond whereas a hydride approach from 

face A will only lead to one σ C-C interacting favorably with the developing σ*  C-H bond. σ 

C-O bonds are low lying and not expected to make any significant hyperconjugative 

contribution. Additionally, transition-state dipole minimization between the C–O bond 

and the forming C–N bond dictates that approach from face B should predominate [294].  

Together, these arguments strengthened our conviction that the desired product would be 

obtained via reductive amination. Model studies using a simplified side chain confirmed 

our prediction that hydride attack from face B predominates (Scheme 2–16). 
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Figure 2–6. The origin of the facial selectivity of reductive amination of compound 2–44 

and 2–50. In Felkin-Anh model, the s orbital of the hydride is stabilized by interaction 

with the σ* orbital of the C–O bond. In Cieplak model, the hyperconjugation of the 

forming σ*C–H and the two σ C–C orbitals favors the nucleophilic addition from the B face. 

The dipole moment is also minimized in the transition state of B face addition.  

 

 

Scheme 2–16. Facial selectivity of reductive amination for a model reaction. 

 

The end game of our synthesis proceeded smoothly. Reacting compounds 2-50 

and 2-44 in methanol in the presence of sodium cyanohydride gave compound 2-54; 

which was not purified but subjected to carbonyldiimidazole cyclization to afford 2-55 in 

76% yield. Deprotection of the methyl ester and the MOM groups led to oxazinidinyl 



64 
 

platensimycin (2-30) in 80% yield over two steps. Oxazinidinyl cyclohexaplatensimycin 

(2-57) was synthesized following the strategy outlined in Scheme 2-18. 

 

 
Scheme 2–17. a) NaB(CN)H3, MeOH, pH 4, RT, 5 h, 75%; b) carbonyl diimidazole, 20 

mol % DMAP, benzene, 50 °C, 12 h, 76%; c) 1 N LiOH, MeOH: H2O = 2:1, RT, 12 h, 

then, 2N HCl, MeOH: H2O = 2:1, RT, 24 h, 80%; d) 2 N HCl, MeOH:H2O=3:1, RT, 24 h, 

92%.  

 

 

Scheme 2–18. a) NaB(CN)H3, MeOH, pH 4, RT, 5 h; then, carbonyl diimidazole, 20 mol% 

DMAP, benzene, 50 oC, 12 h, 70 %; b) 1 N LiOH, MeOH: H2O = 2:1, RT, 12 h, then, 2N 

HCl, MeOH: H2O = 2:1, RT, 24 h, 85 %.  

 

2.2.3  The biological evaluation 

Oxazinidinyl platensinmycin (2-30) inhibited the growth of Staphylococcus 

aureus (Newman), Streptococcus agalactiae (2603V/R), and Bacillus subtilis (3160) at 

micromolar concentration (90 µg/mL). Despite its structural mimicry of platensimycin, 

oxazinidinyl platensinmycin (2-30) is two orders of magnitude less potent. 
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Carbaplatensimycin (see Table 2–2), an analog that has the ethereal oxygen of 

platensimycin replaced with carbon, has an MIC of 3–4 µM (MRSA), which is close to 

that of the parent compound. It appears that the enone moiety of platensimycin is more 

important than the ethereal oxygen with regard to antibiotic activity. Oxazinidinyl 

platensinmycin methyl ester (2-56) did not inhibit bacterial growth at micromolar 

concentrations. We conclude, based on this work and others’ [274] that bacterial esterases 

are unable to hydrolyze the ester analogs of platensimycin into active drugs.  
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Chapter 3. Syntheses and antibiotic activities of N,N-dialkylamino 

benzoic acids – second generation design of the platensimycin analogs  

(The majority of the work was published in ref [295]) 

3.1  The design of dialkylamino benzoic acid analogs 

Studies have shown that modifications on the 2,4-dihydroxybenzoic acid moiety 

of platensimycin diminish most of the antibiotic activity [264]. This is in agreement with 

the proposed mechanism whereby the dihydroxybenzoic acid subunit engages the His-

His-Cys catalytic triad of the condensing enzymes (FabF/H) [120]. It therefore appears 

that efforts aimed at discovering simpler platensimycin analogs have a higher chance of 

success if the essential dihydroxybenzoic acid moiety is kept intact or minimally 

modified (Table 2–2). 

Recently, several groups have focused their attention on the replacement of the 

“difficult-to-synthesize” tetracyclic core of platensimycin or platencin with moieties that 

are relatively easy to chemically prepare. For example the Metzler-Nolte group reported 

the synthesis and biological evaluation of a bioorganometallic analogs of 

platensimycin/platencin whereby the tetracyclic/tricyclic core of these antibiotics were 

replaced with a η6-arylCr(CO)3 moiety [271]. Although the synthesis of the 

organometallic analogs of platensimycin took a total of nine linear steps, which was 

significantly shorter than the chemical synthesis of the parent platensimycin antibiotic, 

the MIC of these analogs were close to two orders of magnitude higher than 

platensimycin. Recently, Mulzer has reported a new analog that took only 7 total steps to 

make and which show antibiotic activity profile that is similar to those of platensimycin 

or platencin [276]. 



 

We rationalized that since FAS enzymes utilize substrates with long alkyl chains 

to make fatty acids [87] there ought to be a hydrophobic pocket at or near the active site 

of these enzymes. It is also known that dihydroxybenzoic acids bind to the catalytic triad 

in FAS enzymes [120]

thiolactomycin [91] or alkyl disulfide

side chains. Therefore we wondered if a combinatorial strategy whereby 

dihydroxybenzoic was coupled to a variety of commercially available alkyl 

yield an active analog of platensimycin

Figure 3–1. Design of second generation of platensimycin/platencin analogs.
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gram-scale. A simple reductive amination with commercially available aldehydes 

We rationalized that since FAS enzymes utilize substrates with long alkyl chains 

there ought to be a hydrophobic pocket at or near the active site 

of these enzymes. It is also known that dihydroxybenzoic acids bind to the catalytic triad 

[120]. In fact, other FAS inhibitors such as cerulenin

or alkyl disulfide [296] analogs contain hydrophobic alkyl or alkenyl 
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dihydroxybenzoic was coupled to a variety of commercially available alkyl 

yield an active analog of platensimycin (Figure 3–1). 
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(Scheme 3–3) or reaction with acid chlorides or sulfonyl chlorides would then furnish 

myriads of easily accessible platensimycin/platencin analogs (see Figures 3–2 and 3–3).  

 

 
 Figure 3–2. Synthesized analogs for the initial screening. 

 

Table 3–1. MIC value of compounds 3–6 to 3–22. 

Compounds 
MIC (µg/mL) 

B. subtilis (3160) E. coli K12 (1655) 
platensimycin (1) 2 >32 

3–6 >256 >256 
3–7 128 >256 
3–8 4 >256 
3–9 >256 >256 
3–10 >256 >256 
3–11 >256 >256 
3–12 >256 >256 
3–13 >256 >256 
3–14 >256 >256 
3–15 >256 >256 
3–16 >256 >256 
3–17 >256 >256 
3–18 8 >256 
3–19 128 >256 
3–20 2 >256 
3–21 4 >256 
3–22 >256 >256 

 

Initial screening of analogs (Table 3–1), compounds 3–6 to 3–13, revealed that 

compound 3–8 (a myrtenal derivative) had the most potency amongst the molecules 
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tested with MIC values of 4, 16 and 8 µg/mL against B. subtilis (3160), methicillin-

resistant S. aureus (MRSA) and vancomycin-resistant enterococci (VRE) respectively 

(Table 3–1, 3–2). The MIC of compound 3–8 against B. subtilis (4 µg/mL) compared 

favorably with the MIC of platensimycin against B. subtilis (2 µg/mL). The other bis-

alkylamino analogs in Figure 3–2 were inactive and shows that the antibiotic activity of 

compound 3–8 is not just due to “greasiness”. Of note, compounds 3–10 and 3–11 which 

are structurally similar to compound 3–8 were found to be inactive. In line with earlier 

observation by the Merck group that platensimycin/platencin were ineffective against 

gram-negative bacteria [119,120], our new analog 8 was also ineffective against E. coli 

K12 (1655) (Table 3–1).  

 

Table 3–2. MIC values of compounds 3–8, 3–20 and 3–21. 

compounds 
MIC, µg/mL 

MRSA VRE E. coli + PAβND 
platensimycin (1) 0.5[120] 0.1[120] >32 

3–8 16 8 4 
3–20 32 32 2 
3–21 16 16 8 

 

 

  

Figure 3–3. Second set of analogs and probes derived from (–)-myrtemycin. 
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We chose compound 3–8 as the lead structure and we designed a second set of 

structurally related compounds (Figure 3–3; compounds 3–16 to 3–22). Compounds 3–

16 and 3–17 tested the importance of the carboxylic acid moiety by either deleting or 

modifying as the methyl ester. Methyl esters can usually hydrolyze in vivo to produce 

carboxylic acids but we and others have previously shown that methyl esters of 

platensimycin are not good pro-drugs and do not hydrolyze into carboxylic acids under in 

vivo conditions [231,273,274]. This is not surprising because the presence of two 

phenolic hydroxyls on the benzoic acid core of platensimycin is expected to reduce the 

reactivity of the ester carbonyl towards hydrolysis. Compound 3–18 had one extra 

methylene group in the linker region between the benzoic acid core and the myrtenyl 

moiety and was designed to test the importance of the length of the linker unit. 

Compound 3–19 was designed to test if the benzoic acid moiety was as important in our 

analog as it is in the natural antibiotic. Compound 3–20 synthesized from saturated 

myrtanal, was designed to probe the importance of the alkene unit for biological activity. 

Compound 3–21 is the enantiomer of the lead compound 3–8 whereas compound 3–22 

had only one (–)-myrtenyl group and was designed to test if both alkyl groups on 

nitrogen were needed for biological activity. The MIC values of the second-generation 

compounds 3–16 to 3–20 against S. aureus and B. subtilis are summarized in Table 3–1. 

From these results, we conclude that both carboxylic acid moiety and the di-

myrtenyl/myrtyl groups are important for the antibiotic activity of compound 3–8. 

Interestingly, the antibiotic activities of enantiomers (–)-3–8 and (+)-3–21 or the 

saturated form of (–)-3–8, compound (–)-3–20 are similar (see Table 3–1, 3–2). Adding 

one carbon length between the benzoic acid moiety and the di-myrtenyl amino moiety 
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didn’t change the MIC value significantly. However, analog 3–22 which had only one 

myrtenyl group attached to the nitrogen atom was inactive. The ineffectiveness of 

platensimycin/platencin against gram negative bacteria has been ascribed to efflux pumps 

in gram negatives that reduce the intracellular concentrations of this class of antibiotics 

[297]. Consequently, co-administration of efflux pump inhibitor, Phe-Arg-β-

naphthylamide dihydrochloride (PAβND), potentiated the effects of our new analogs on 

E.coli. In the presence of PAβND at 128 µg/mL, the MICs of compound 8 and analogs 

were 2–8 µg/mL. Interesting, these MICs were even lower than that of platensimycin in 

the presence of PAβND (see Table 3–2). 

In summary, we illustrate that biological function can be replicated with moieties 

that are easier to install but which would not have been predicted based on structure 

homology design. Significantly, we report a new set of analogs, which are exceptionally 

simple to make (three linear steps from commercial materials) yet they maintain 

biological activities that are comparable to the natural compounds which are typically 

synthesized in over 15 linear steps. Ongoing work in our laboratory is currently focused 

on investigating if these new platensimycin analogs target the same biological targets as 

those of platensimycin and platencin. 
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Chapter 4. C-di-GMP mediated biofilm formation in bacteria and 

efforts towards anti-biofilm agents. 

4.1 Endo-S-c-di-GMP, a conservative change to the phosphate moiety of c-di-GMP 

4.1.1 Introduction 

C-di-GMP signaling has become of interest in the development of anti-biofilm or 

anti-virulence drugs because it has recently been shown that it regulates diverse 

phenotypes in bacteria including biofilm formation [203]. Despite the central role that c-

di-GMP plays in bacterial “lifestyle”, several aspects of this signaling molecule remain 

far from being understood. For example, the so-called adaptor proteins that bind to c-di-

GMP and transmit this binding event into processes, which lead to biofilm formation, are 

poorly characterized. Most of the c-di-GMP adaptor proteins, which have been found so 

far (for example the PilZ family) do not have any enzymatic activities of their own, 

suggesting that they probably relay the c-di-GMP binding event into allosteric 

modulation of other enzymes that they associate with. However, these associated 

enzymes or factors of c-di-GMP adaptor proteins have largely not been found. An 

interesting property of c-di-GMP is its ability to readily form dimers, tetraplexes and 

higher aggregates in the presence of cations [226,227]. Divalent cations such as 

magnesium promote dimer formation in c-di-GMP whereas monovalent cations such as 

potassium promote the formation of tetraplexes and octaplexes in c-di-GMP [226,227]. 

This propensity of c-di-GMP to form tetraplexes or octaplexes (G-quadruplexes) at 

micromolar concentrations in the presence of cations (such as magnesium and potassium) 

is intriguing because simple nucleotides (such as cGMP, GTP or pGpG) do not readily 

form G-quadruplex structures at micromolar concentrations. Plausibly, the facile 



 

interconversion of c-di-GMP into different aggregation states (especially in the

of cations) could be a means whereby bact
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Understanding the structural features which allow c-di-GMP to readily form 

aggregates is important for the fundamental understanding of how different nucleic acids 

adopt different architectures, as well as for providing insights into how this important 

bacterial signaling molecule (c-di-GMP) achieves its interesting polymorphism. We have 

been particularly interested in G-quadruplex formation by c-di-GMP and how this is so 
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readily achieved when the dinucleotide pGpG does not so readily form intermolecular G-

quadruplexes. As both c-di-GMP and pGpG contain guanine bases, which are required 

for the formation of the G-tetrad plane found in G-quadruplexes, it is reasonable to 

assume that other structural features found in c-di-GMP, but not in the linear pGpG, are 

responsible for the enhancement of G-quadruplex formation. Herein, we reveal that small 

changes to the phosphodiester backbone of c-di-GMP (0.92 Å increase in the 

circumference of the backbone ring; Figure 4–1a) remarkably decrease the propensity to 

form G-quadruplexes. We show that a c-di-GMP analog which has one of the oxygens in 

the 5’-bridging phosphodiester linkages replaced by sulfur (endo-S-c-di-GMP (4–2), 

Figure 4–1b) has altered biophysical and biochemical properties, distinct from those of 

c-di-GMP.  

One general strategy that is typically used by drug developers to discover 

antagonists of signaling molecules is to modify the signaling molecule to afford analogs 

[299] that still maintain the ability to bind to the receptors that the signaling molecule 

binds to but unable to activate the receptors for biological function. In order to develop 

effective c-di-GMP analogs, which will be used to antagonize the actions of c-di-GMP, it 

is of interest to determine which functionalities on c-di-GMP could be modified to 

maintain binding to c-di-GMP processing proteins, without triggering processes that lead 

to biofilm formation. The aggregation of a c-di-GMP antagonist into higher aggregates 

would reduce its effective molarity. Therefore, we initiated a program to determine which 

moieties on c-di-GMP facilitate aggregate formation. C-di-GMP is a twelve-membered 

ring with limited conformational flexibility. The crystal structure of c-di-GMP reveals 

that the torsion angles found in this macrocycle are similar to those found in standard 
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linear RNAs, implying that the ring structure imposes little to no torsional stress to this 

molecule [300]. 

The ability of c-di-GMP but not linear pGpG, to readily form dimers and G-

quadruplexes at micromolar concentrations prompted us to hypothesize that the lack of 

conformational flexibility in c-di-GMP, coupled with the low torsional stress in the 

macrocycle poise this molecule to make aggregates, such as G-quadruplexes or dimers 

(Figure 1–16). As a starting point to determine if the 12-membered ring of c-di-GMP is 

critical to its biophysical (aggregate formation) as well as biochemical (binding to 

receptors) properties, we chose to study a very close analog of c-di-GMP, referred in this 

thesis as endo-S-c-di-GMP (4–2). 

The replacement of oxygen at the bridging positions in phosphate linkages in 

nucleic acids can be considered conservative; Kool has shown that the thermal stabilities 

of DNAs containing phosphodiester linkages have similar thermal stabilities as native 

DNAs [301]. Enzymes, such as Klenow DNA polymerase or T7 RNA polymerase, can 

utilize templates containing phosphothioates as effectively as those containing native 

phosphodiester linkages and no pauses were observed at the phosphothioester sites when 

these replicative enzymes were used [301]. 

 
4.1.2 Synthesis of endo-S-c-di-GMP.  

The synthesis of endo-S-c-di-GMP (4–2) is summarized in Scheme 4–1 (22% 

overall yield from commercially available phosphoramidite 4–3). The key step for the 

synthesis of 4–2 is the phosphothioate–iodide macro-ring closure, developed by Kool 

[302]. It has been shown by several researchers that the “bridging” positions in the 

phosphate linkages of both DNA [303-307] and RNA [308-311] can be replaced by sulfur 
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to give phosphothioester linkages. In DNA, 5’-phosphorothioester linkages are stable 

[301] whereas for RNAs, 5’-phosphorothioesters are about six fold more labile than the 

natural phosphodiester linkages at pH 7 [308]. Although endo-S-c-di-GMP (4–2) also 

contains 2’–OH (the functionality that is responsible for facilitating hydrolysis in RNA) it 

is stable at neutral pH because the cyclic structure positions the phosphate moiety more 

than 3.3 Å away from the 2’–OH, making it impossible for the 2’–OH in endo-S-c-di-

GMP to participate in an in-line cleavage reaction [312]. 

 

 

Scheme 4–1. Synthesis of endo-S-c-di-GMP (4–2). Conditions: a) cyanoethyl alcohol 

(5.0 eq.), imidazolium perchlorate (3.6 eq.), 6 h, then Beacauge reagent (2.5 eq.), 1 h, 

MeCN, RT; b) dichloroacetic acid (11–14 eq.), CH2Cl2, 10 min, 60 % over two steps; c) 

phosphoramidite 4–3 (1.5 eq.), imidazolium perchlorate (4.7 eq.), then t-BuOOH (9.3 

eq.), MeCN, RT, 6 h; d) Me(PhO)3P
+I– (5.3 eq.), 2,6-lutidine (20 eq.), DMF, RT, 1 h, 61 

% over three steps; e) ammonia, RT, 24 h; f) NEt3
.3HF (20 eq.), MeCN, RT, 12 h, 59 % 

over two steps. DMF = dimethylformamide.  



77 
 

4.1.3 Polymorphism of c-di-GMP and endo-S-c-di-GMP 

C-di-GMP can exist in myriads of conformations. These conformations can be 

generally categorized as “closed” (the two guanine bases are on the same face) or “open” 

(the two guanines are on opposite faces). Calculations using Gaussian 09 software with 

HF/6-31G(d) basis set revealed that the ground state conformer of c-di-GMP is an open 

conformer whereby the C5s of the two guanines are 13.5 Å apart. The “closed” 

conformer of c-di-GMP, where the two guanines are parallel and separated by 6.8 Å, is 

biologically relevant and found in the active site of many c-di-GMP binding proteins (for 

recent examples see protein databank (PDB) crystal structures 3KYF [229], 3KLO [313] 

and 3I5A [314]). Computational studies revealed that the torsion angle [300] of endo-S-c-

d-GMP is different from that of the native c-di-GMP (Table 4–1). From these 

computational studies, we predicted that the aggregative behavior of endo-S-c-di-GMP 

would be different from that of c-di-GMP. 

 
Table 4–1. Backbone torsion angles for computed c-di-GMP and endo-S-c-di-GMP 

structures.  

 
Angle, degrees 

α β γ δ ε ζ 

c-di-GMPa 
opend 72.3 –163.9 50.4 96.1 –161.5 63.6 

closede 79.7 –151.9 55.1 83.2 –179.4 64.9 

endo-S-c-di-GMPb 
openf 63.9 –146.6 58.9 94.3 –164.1 64.8 

closede 68.5 –137.6 64.5 80.6 –179.9 65.9 

linear RNAc 73.8 –168.2 62.2 81.6 –147.1 63.9 

The dihedral angular notations are determined as follows: a) O3’     P  α  O5’  β  C5’  γ  

C4’  δ  C3’  ε  O3’  ζ  P     O5’; b) O3’     P  α  S  β  C5’  γ  C4’  δ  C3’  ε  O3’  ζ  P     O5’; c) These are 

average values, taken from PDB 3MXH; d) C5–C5 of the guanines are 13.5 Å apart; e) 

C5–C5 of the guanines are 6.8 Å apart; f) C5–C5 of the guanines are 11.7 Å apart as the 

most stable conformer. 
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It is expected that the “closed conformer” of c-di-GMP (4–1) or endo-S-c-di-

GMP (4–2) would more readily form dimers or G-quadruplexes than the open conformers 

of c-di-GMP and endo-S-c-di-GMP (Figure 1–16). This is because in the closed 

conformation of both c-di-GMP and endo-S-c-di-GMP, the two guanines are suitably 

positioned for mutual intercalation (dimer, Figure 1–16) or for forming G-quadruplexes 

(Figure 1–16). One can therefore reliably predict the relative aggregative property of a c-

di-GMP analog by comparing the relative energy difference between the “closed” and 

“open” conformers of an analog to that of c-di-GMP. 

Computational studies done on both c-di-GMP and endo-S-c-di- GMP (both gas 

phase and using a solvent model) revealed that c-di-GMP is more likely (~ three times) to 

form a “closed” conformer than endo-S-c-di-GMP (see Table 2). This prediction was 

verified experimentally; the 1HNMR spectra of triethylammonium c-di-GMP and endo-S-

c-di-GMP show that both compounds exist as monomeric forms at 20 °C in the absence 

of monovalent cations such as K+ (see Figure 4–2c and 4–3c). The 1HNMR spectrum of 

c-di-GMP (which is C2 symmetric) shows two singlets at 5.87 and 7.96 ppm, assigned to 

the anomeric H1’ and guanine H8 protons, respectively (Figure 4–2c). Endo-S-c-di-GMP 

is not C2 symmetric, due to the presence of one “bridging” sulfur atom in the 

phosphothioate moiety and therefore the two anomeric H1’ as well as the two guanine H8 

in endo-S-c-di-GMP are chemically non-equivalent and have different chemical shifts 

(Figure 4–3c). The guanine H8 in endo-S-c-di-GMP appears as two singlets of equal 

intensities at 7.90 and 8.02 ppm, and the anomeric H1’ in endo-S-c-di-GMP appears as a 

singlet at 5.95 and a doublet at 5.85 ppm (Figure 4–3c). Upon the addition of 100 mM 

K+ to c-di-GMP, the intensities of the peaks at 7.96 and 5.87 ppm are reduced and other 
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peaks appear around 7.96 and 5.87 ppm (Figure 4–2b). These peaks are attributed to the 

different aggregates of c-di-GMP because upon heating the sample to 60 oC (which will 

break all aggregates), the multiple peaks disappear and new singlet peaks at 8.39 and 6.30 

ppm appear (corresponding to the guanine H8 and the anomeric H on c-di-GMP 

respectively, Figure 4–2a). The shift in ppm values for monomeric c-di-GMP is expected 

as temperature affects ppm values [315]. Based on integration of the peaks in the 1HNMR 

spectrum of c-di-GMP in a buffer containing 100 mM potassium cations at 20 oC, we 

estimate that only 14 % of c-di-GMP exists in the monomeric form under this condition 

(Figure 4–2b). On the other hand, upon the addition of 100 mM K+ to endo-S-c-di-GMP, 

43 % of the monomeric form still remains in the solution (compare Figures 4–2 and 4–

3).  It therefore appears that c-di-GMP has a higher propensity to form aggregates than 

endo-S-c-di-GMP and it is remarkable that a single conservative substitution in the 

phosphate moiety can result in such drastic consequences.  

 

Table 4–2. Energy difference between “open” and “closed” forms of c-di-GMP and 

endo-S-c-di-GMP.  

 
∆Egas (open–closed)a 

kcal/mol 
∆Esol (open–closed)b 

kcal/mol 
ratio (open : closed)c 

gas phase solution phase 

c-di-GMP –1.9 1.9 24: 1 1: 25 

endo-S-c-
di-GMP 

–2.8 1.3 113: 1 1: 9 

a) The electronic energy (in the gas phase) was computed with Gaussian 09 

software [298] with HF/6-31G(d) basis set; b) The solvent effect in H2O was calculated 

with Onsager’s model in a self-consistent reaction field (see Supporting Information for 

details); c) the ratio was determined from the equilibrium constant K, obtained from the 

equation ∆E = –RT lnK (T = 298 K).  
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In order to determine the nature of the aggregation states of both c-di-GMP and 

endo-S-c-di-GMP, DOSY experiments were conducted (see Appendix II for a brief 

introduction). Following literature precedent, the diffusion constants of the various c-di-

GMP/endo-S-c-di-GMP aggregates were obtained via analysis of T1/T2 relaxation [316]. 

According to the Stokes-Einstein equation, the hydrodynamic frictional coefficients or 

the diffusion constant D = k T / (6 π η R), where k is the Boltzmann constant, T is the 

temperature, η is the solvent viscosity and R is the radius of the molecular sphere. It 

therefore follows that the diffusion constant is inversely proportional to the radius of the 

molecule (or aggregate). The diffusion constants of c-di-GMP and endo-S-c-di-GMP in 

their monomeric forms can be obtained via DOSY experiments, in the absence of added 

metal cations (Figures 4–2c, 4–2d, 4–3c and 4–3d). Based on the obtained diffusion 

constant for monomeric c-di-GMP or endo-S-c-di-GMP, the diffusion constants for the 

dimeric, tetrameric and octameric forms can be predicted, using calculated radii of these 

aggregates (Figures 4–2d, 4–3d and Section 6.5.2). The monomer, dimer, tetramer and 

octamer of c-di-GMP or endo-S-c-di-GMP are denoted as M, B (Bimolecular, consistent 

with previous report ref [227]), T and O, respectively in Figures 4–2b and 4–3b. For c-

di-GMP, the majority of the aggregates in the presence of K+ are tetrameric (T) and 

octameric (O) [227], with predicted diffusion constants at 2.01 x 10–10 and 1.62 x 10–10 

m2/s; the experimental diffusion constants of the tetramer and octamer forms of c-di-

GMP (obtained from the DOSY experiment) are 1.91 x 10–10 and 1.60 x 10–10 m2/s, 

respectively. For endo-S-c-di-GMP, the only identified aggregate state in the presence of 

K+ was dimers (B), with the predicted and experimental diffusion constants at 2.07 x 10–

10 and 1.93 x 10–10 m2/s, respectively (Section 6.5.2).  
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Figure 4–2. 1HNMR stacked spectra of 1.0 mM c-di-GMP in D2O. Conditions: a) 100 

mM KCl, 60 oC; b) 100 mM KCl, 20 oC; the peaks were assigned based on T1/T2 

relaxation analysis and ref 18; c) no metal cation, 20 oC; d) T1/T2 relaxation analysis 

(from DOSY experiments) with 3 mM c-di-GMP in D2O in 100 mM KCl (blue) or no 

KCl added (red) solution at 30 °C.  
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Figure 4–3. 1HNMR stacked spectra of 1.0 mM endo-S-c-di-GMP in D2O. Conditions: a) 

100 mM KCl, 60 oC; b) 100 mM KCl, 20 oC; the peaks were assigned based on T1/T2 

relaxation analysis and NOE experiments (see Supporting Information); c) no metal 

cation, 20 oC; d) T1/T2 relaxation analysis (from DOSY experiments) with 3 mM endo-S-

c-di-GMP in D2O in 100 mM KCl (blue) or no KCl added (green) solution at 30 °C.  
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The relative conformations of the guanine H8 and anomeric H1’ were determined, 

following previous reported method [227]. Guanine H8 and anomeric H1, in the syn 

conformation, are expected to exhibit strong positive NOE effects; whereas guanine H8, 

in the anti conformation, is expected to show a much weaker NOE effect with the 

anomeric H1 (Section 6.6.1). The syn or anti relation was denoted as “s” or “a” in 

Figures 4–2b and 4–3b, respectively. For example, Ba represents a dimeric endo-S-c-di-

GMP with the H1’ and H8 in an anti conformation in Figure 4–3b.  

Circular dichroism (CD) is a powerful tool for identifying the aggregation state of 

nucleic acids [227,317,318]. Although CD cannot give detailed molecular structure of G-

quadruplex (tetramolecular or octamolecular complexes), it can be used to qualitatively 

determine if a G-quadruplex is present in solution. Jones has shown that a positive CD 

peak at around 310 nm is indicative of tetramolecular or octamolecular complex 

formation by c-di-GMP [227]. This CD signature which indicates the presence of c-di-

GMP tetramolecular or octamolecular complexes was corroborated with NMR studies by 

Jones group. 

The CD (circular dichroism) spectra of c-di-GMP (under different conditions) are 

also remarkably different from that of endo-S-c-di-GMP (Figure 4–4). In the presence of 

potassium cation, c-di-GMP (100 µM) forms G-quadruplexes (a positive CD peak around 

310 nm is indicative of G-quadruplex formation in c-di-GMP, see Figure 4–4a and also 

reference [227]). However, the CD spectra of endo-S-c-di-GMP (100 µM) in the 

presence of various monovalent cations (Na+, K+, Li+) do not show any sign of G-

quadruplex formation (no positive peak around 310 nm, see Figure 4–4b). Even when 
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CD spectra of c-di-GMP and endo-S-c-di-GMP. Conditions: 10 

is Li, Na or K] = 1.0 M, 10 mM Tris-HCl (pH 7.5). a) 100 µM c-di-GMP; b) 100 µM 

GMP; c) 100, 150 and 200 µM of endo-S-c-di-GMP in 1.0 M of KCl.

GMP and endo-S-c-di-GMP binding to metabolism and “adaptor

Having established via NMR and CD studies that endo-S-c-di-GMP has a lower 

propensity to form aggregates (dimers and tetraplexes), we proceeded to investigate if 

GMP would bind to proteins that have been previously shown to bind to t

GMP. Most of the crystal structures of c-di-GMP, bound to various proteins, 

reveal extensive interactions between the protein residues and the phosphate and 
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nucleobase moieties of c-di-GMP. For example, the phosphate moieties of c-di-GMP 

interact with Arg479 and Gln596 of the EAL domain of FimX [202,228] (from 

Pseudomonas aeruginosa, and binds monomeric c-di-GMP, Figure 4–5c) The majority 

of c-di-GMP binding proteins, whose crystal structures have been deposited in the protein 

databank (pdb), bind to dimeric c-di-GMP. In the majority of these structures, the protein 

residues interact with the phosphate moiety of c-di-GMP. The crystal structure of dimeric 

c-di-GMP bound to VpsT [313,319] (a transcriptional regulator from V. cholerae) reveal 

that Thr133 and Arg134 as well as other residues make specific interactions with the 

phosphate groups of c-di-GMP. Similarly, Arg123 and Asn124 of P4397 (a c-di-GMP 

“adaptor” protein containing the PilZ domain [209,229]) interact with the phosphate 

moiety in dimeric c-di-GMP (Figure 4–5b). Most diguanylate cyclases contain an 

inhibitory site (I-site) that allosterically modulates the synthesis of c-di-GMP [320]. 

WspR, a DGC from Pseudomonas aeruginosa also contains the I-site and analysis of a 

crystal structure of WspR bound to dimeric c-di-GMP (Figure 4–5a) [314] reveals 

specific interactions between the protein and the phosphate group found in c-di-GMP 

(Figure 4–5d) [321]. 
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from the catalytic site to inhibit the diguanylate cyclase activity. RocR is a potent PDE 

that has been shown to inhibit the expression of chaperone-usher pili that participate in 

biofilm formation [324]. Alg44 is a gene encoded in the alg operon that binds c-di-GMP 

and this binding is required for the production of the alginate polysaccharide. The 

interaction of Alg44 to c-di-GMP is well studied through isothermal calorimetry and 

filter binding assays [221]. To assess the effect of endo-S-c-di-GMP, the compound was 

tested for its ability to inhibit the DGC activity of WspR, to compete for cleavage by the 

PDE activity of RocR and to compete for binding to Alg44 by thin layer chromatography 

(TLC) or filter binding assay. The effect of endo-S-c-di-GMP was compared to c-di-

GMP, which blocks all three protein activities, and cGMP, which does not affect any of 

the proteins. In the presence of endo-S-c-di-GMP (1 mM), WspR (5 µM) in Tris buffer 

converted 70 % of GTP (8 nM) into c-di-GMP. 1 mM of c-di-GMP was however able to 

inhibit WspR from converting GTP into c-di-GMP (Figure 4–6). Similarly endo-S-c-di-

GMP failed to displace radio-labeled c-di-GMP from Alg44 whereas c-di-GMP was able 

to displace radio-labeled c-di-GMP from Alg44 (Figure 4–7). Endo-S-c-di-GMP did 

however bind to RocR, evident by the inhibition of RocR cleavage of radio-labeled c-di-

GMP in the presence of endo-S-c-di-GMP (Figure 4–8). In the case of RocR, endo-S-c-

di-GMP was almost as effective at competing with radio-labeled c-di-GMP as c-di-GMP. 

In the presence of Ca2+ [199], PDEs do not cleave c-di-GMP. Therefore, to determine the 

binding constant for c-di-GMP/endo-S-c-di-GMP and RocR, we added Ca2+ (5 mM) to 

the binding buffer. Unlabeled c-di-GMP could compete with radio-labeled c-di-GMP (5 

nM) binding to RocR (5 µM) with an IC50 of 236 nM, whereas endo-S-c-di-GMP 

competed with radio-labeled c-di-GMP with an IC50 of 431 nM (Figure 4–8a). The 
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The studies presented herein reveal that proteins that bind to c-di-GMP utilize the 

phosphate moiety of c-di-GMP as an important recognition element. The crystal structure 

of c-di-GMP bound to the EAL domain of FimX shows the dinucleotide bound in the 

“open” conformer (Figure 6c and d) whereas c-di-GMP is bound to most DGCs and PilZ 

proteins in the “closed” conformer (see Figure 6a and b). RocR has been crystallized but 

its structure not solved [325]. However, Rao et al. have computed the structure of RocR 

and shown that the computed structure binds to monomeric c-di-GMP, which is in the 

“open” conformer [326] Interestingly, endo-S-c-di-GMP (4–2) (which has a lower 

propensity to form a “closed” conformer) could only inhibit an EAL containing protein, 

RocR, and not DGC or PilZ containing proteins (WspR and Alg44 respectively). 

 
4.1.5 Conclusion 

C-di-GMP analogs that can selectively inhibit c-di-GMP metabolism or “adaptor” 

proteins will become useful tools for modulating c-di-GMP signaling in bacteria. To 

readily cross the bacterial cell membrane, it is desirable that such analogs are not 

charged. In this work, a conservative modification of one of the phosphate moieties in c-

di-GMP (by replacing only one of the “bridging” oxygens in the phosphate linkages in c-

di-GMP with sulfur) gives an analog, endo-S-c-di-GMP, which is remarkably different 

(biophysically and biochemically) from c-di-GMP. This suggests that the phosphate 

moieties in c-di-GMP play important roles in aggregate formation as well as the binding 

of c-di-GMP to metabolism and processing proteins. It appears that the interactions 

between proteins’ residues and the phosphate moieties in c-di-GMP are important for 

binding. Therefore, it is tempting to speculate that the amino acids that contact the 

phosphate moieties are partial determinants of c-di-GMP binding to the so-called adaptor 
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proteins. Future directions are aimed at mutating these residues in c-di-GMP proteins to 

determine if they are indeed determinants of c-di-GMP binding to adaptor proteins. These 

experiments are beyond the scope of this current Ph.D work. Adaptor proteins that bind 

to c-di-GMP are poorly characterized but they are thought of as mediators of c-di-GMP 

action. Understanding the determinants of c-di-GMP binding to proteins will aid in the 

prediction of c-di-GMP binding proteins as well as providing design principles for the 

construction of c-di-GMP antagonists. 

C-di-GMP interacts with numerous proteins and has pleiotropic effects on the 

bacterial cell. The effect of endo-S-c-di-GMP allows selective inhibition of proteins that 

bind the open form of c-di-GMP. This provides the basis for rationale design of small 

molecular inhibitors that only act on specific proteins in the c-di-GMP pathway. Future 

studies may also reveal selective inhibition of the proteins that bind the closed form of c-

di-GMP. 

 
4.2 Design and syntheses of c-di-GMP analogs  

4.2.1  The design of the c-di-GMP analogs 

 The previous section highlighted that conservative changes to the phosphate 

moiety of c-di-GMP remarkably affect structure and biological profile. To gain more 

insights into which of the functionalities in c-di-GMP are important for binding to c-di-

GMP signaling proteins, we extended our studies to look at how modifications to the 2’-

OH of c-di-GMP could affect the structure and biological profile of these analogs. Four 

sugar puckering conformations of ribose and deoxyribose can exist in equilibrium 

(Figure 4–9, [327]). The ribose unit in c-di-GMP adopts a 3’-endo, 2’-exo puckering; the 

3’-carbon and the nucleobase lie on the same face, whereas the 2’-carbon lies in the 



92 
 

opposite face [328]. The electronic properties and the size of the 2’-functionalities have a 

great effect on the sugar puckering modes [329]. The 2’-OH can also partake in hydrogen 

bonding interactions with the macromolecular receptor that binds to c-di-GMP (e.g. PDB 

code: 3HV8). Six analogs (4-52 to 4-57) were synthesized following Jones’ protocol 

(Figure 4–10) [330].  

 In compounds 4–52 and 4–53, the 2’-OH group in c-di-GMP is replaced with 2’-

OMe and 2’-H, respectively. 4-52 is expected to adopt a 3’-endo, 2’-exo puckering 

(similar to c-di-GMP) but the OMe group can only act as a hydrogen bond acceptor and 

not donor (unlike c-di-GMP, for which the 2’-OH can act as a hydrogen bond acceptor or 

donor). Also the 2’-OMe group is bigger than the native 2’-OH. Consequently analog 4-

52 is ideal for probing the effect of the 2’OH group in c-di-GMP. In compound 4-53, the 

2’-OH is replaced with a 2’-H. It was expected that 4-53 would adopt all puckering 

modes available to it (similar to the puckering modes in 2’deoxynucleotides [329]). 

Compound 4-53 would, therefore, be ideal for investigating how the sugar puckering 

mode affects the biophysics as well as the biology of c-di-GMP. We have already 

mentioned that the conservative substitution of the phosphate moiety of c-di-GMP 

affords an analog that has a lower propensity to form aggregates (Section 4.1). To arrive 

at c-di-GMP sugar analogs that also have a lower propensity to form aggregates, we 

designed compounds 4–54 to 4–57 in which both the 2’-OH and one of the bridging 

oxygens in the phosphodiesters are modified (Figure 4–10). 
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Figure 4–9. Sugar puckering modes in ribose and deoxyribose. 
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Figure 4–10. Chemical structures of designed c-di-GMP and endo-S-c-di-GMP analogs. 

  

4.2.2 Previous syntheses of c-di-GMP 

 The synthesis of c-di-GMP is non-trivial. The first preparative synthesis of c-di-

GMP was probably reported by Dennis and Jones groups in 1985 with a phosphotriester 

strategy [331]. Dennis and Jones prepared cyclic di-UMP (Scheme 4–2), cyclic di-AMP 

and cyclic UMP-AMP and investigated their inhibitory activity against RNA synthesis 

[331]. The highlight of their synthesis is a sulfonyl chloride (TPSCl) mediated coupling 

of an alcohol and a phosphate. This was followed by deprotection of the cyanoethyl 

group on phosphate with Et3N and a cyclization step, utilizing the same TPSCl for an 

intramolecular reaction of a 3’-phosphate with a 5’-OH of a dinucleotide to afford a 
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cyclized product (4–12). After global deprotections with 2-nitrobenaldoxime (NBO) and 

ammonia, cyclic dinucleotides (such as 4-13) were obtained. Later, in 1987, the 

Benziman et al. adapted this chemical synthetic strategy for synthesizing cyclic di-GMP, 

and they published a modified c-di-GMP chemical synthesis method using a different 

cyclization reagent (triisopropylbenzenesulfonyl nitrotriazole) and protecting groups 

[332]. In the following decades, Hayakawa [333], Jones [330], Sintim [334] and others 

all contributed to a better chemical synthesis of c-di-GMP. Recently an enzymatic 

synthesis of c-di-GMP using DGC from E. coli also reported [335].  

 

 
Scheme 4–2. Cyclic di-UMP synthesis by Dennis and Jones [331]. Conditions: a) TPSCl 

(3 eq), tetrazole (9 eq) in pyridine, RT, 2 h; b) NEt3, pyridine, RT, 2 h; c) BSA (2 %), 

CHCl3: MeOH (7: 3), 0 °C , 20 min; d) TPSCl (6 eq), tetrazole (18 eq), RT, 5 h; e) 

tetramethylguanidine (TMG), p-nitrobenzaldoxime (NBO), in dioxane: H2O (1: 1), RT, 
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12 h, then, ammonia (37 %, aq), RT�50 °C , 12 h; f) TBAF in pyridine, RT, 3 h, then 

pyridinium Dowex 50-X8, RT, 1 h.  

 Hayakawa’s synthesis was a modified procedure of the Dennis and Jones’ 

strategy. The yield of the cyclization step was claimed to improve,  up to 75 %, by 

changing the protecting groups on the phosphate [333]. We and others have however not 

managed to obtain a high yield in the cyclization step [336]. Jones’ group also introduced 

an H-phosphonate strategy [226] (Scheme 4–3). Firstly, guanosine phosphoramidite 4–15 

and phosphonate 4–16 were prepared by coupling a common starting material 4–14 with 

phosphoramidite and phosphorochloridite, respectively. The resulting phosphoramidite 

(4–15) and H-phosphonate (4–16) were then coupled and oxidized, followed by 

cyclization with an acid chloride (4–18). The final product (4–19) was achieved by 

removal of the TBS group with NEt3•3HF and global deprotection of the iso-butyrate and 

the cyanoethyl groups on the nucleobase and phosphate groups respectively with 

ammonia. Recently, the Jones’ group reported a gram scale synthesis of c-di-GMP and 

phosphothioate analog by using a modified H-phosphonate strategy that was originally 

reported by the group [316,330].  
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Scheme 4–3. Jones’ H-phosphonate strategy for c-di-GMP synthesis. Conditions: a) 

bis(diisopropylamino)cyanoethyl phosphoramidite, pyridinium trifluoroacetate; b) 2-

chloro-4H-1,3,2-benzodioxaphosphorin-4-one; c) pyridinium trifluoroacetate; d) tert-

butylhydroperoxide; e) sulfonic acid resin; f) adamantoylcarbonyl chloride; g) NBS, 

MeOH; h) pyridine: ammonia (37 %, aq) (1:1); i) NEt3•3HF. 

   

Taking advantage of solid-support synthesis, Sintim group proposed a miniscale 

synthesis of c-di-GMP synthesis (Scheme 4–4) [334]. The synthesis is programmed 

(steps a–d, Scheme 4–4) by DNA/RNA synthesizer and can be achieved automatically 

before the macro-ring is closed. The DNA/RNA synthesizer can perform four standard 

commands: detritylation with an acid, coupling reaction with a phosphoramidite (4–22), 

capping the trace amount of unreacted hydroxyl groups with an acid anhydride, and an 

oxidation reaction to convert phosphines into phosphates (Scheme 4–4). The synthesis 

start from an ODMT modified CPG bead 4–20 (for synthesis see Section 6.1), and after 

two complete cycles of synthesis with DMT-off mode (a–b–c–d–a–b–c–d–a, Scheme 4–4; 

DMT-off mode means the product is DMT deprotected when the programmed cycles 

finish), a 5’-OH diguanosine (4–28) was produced on the CPG beads.  After the CPG 

linker was cleaved by Et3N, the ring was cyclized with a sulfonyltriazole (1-
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mesitylenesulfonyl-3-nitro-1,2,4-triazole) followed by a global deprotection with 

ammonia and NEt3•3HF in sequence to yield the final product.  
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Scheme 4–4. Sintim’s solid support synthesis of c-di-GMP. Steps a–d were conducted on 

the DNA/RNA synthesizer with a standard program. Reaction conditions: a) detritylation: 

6 % dichloroacetic acid in CH2Cl2, RT, 45 s; b) coupling: phosphoramidite (0.1 g/mL), 

ETT (0.25 M) in CH3CN, RT, 90 s; c) capping: Ac2O (10 v%), 2,6-lutidine (10 v%) in 

THF (Cap A solution), then N-methylimidazole (10 v%) in THF (Cap B solution), RT, 30 

s; d) oxidation: I2 (0.02 M) in water: pyridine: THF (1: 2: 7), RT, 30 s; e) TEA in 

acetonitrile, then 1-mesitylenesulfonyl-3-nitro-1,2,4-triazole (0.1 M) in pyridine, RT, 48 

h, then filtered; g) NH4OH (28 %), RT or 40 °C , 14 h, then filtered; h) NEt3•3HF (20 eq.) 

in pyridine, 40 °C , 4 h. HPLC purification was conducted for the final products. 
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4.2.3 The synthesis of the designed c-di-GMP analogs 

 We choose the solid-supported strategy [334] for synthesizing endo-S-c-di-GMP 

analogs (see Scheme 4–5) and solution phase strategy [330] for synthesizing natural c-di-

GMP analogs. The advantages of preparing c-di-GMP analogs on a solid-support are 

numerous: i) the intermediate can be simply purified by washing off unreacted reagents 

with organic solvents, rather than by using tedious column chromatography or HPLC 

purification; and ii) most reactions can be pre-programmed in a DNA/RNA synthesizer 

and, hence, easier to execute. For the synthesis of endo-S-c-di-GMP analogs, 

sulfurization was achieved using Beaucage reagent. The mechanism for phosphothioate 

using Beaucage reagent, or 3H-1,2-benzodithiole-3-one 1,1-dioxide is illustrated in 

Scheme 4–6b [337]. 

 In summary, eight c-di-GMP analogs (including the natural c-di-GMP, Figure 4–

9) were synthesized without incident. The characterization of the c-di-GMP analogs are 

referred to Section 6.4. The ongoing work by a new Ph.D student in the Sintim laboratory 

is to characterize the synthesized c-di-GMP analogs, using both biophysical and 

biochemical techniques. These experiments are expected to provide more insights 

regarding the pharmacophore units on c-di-GMP that are important for binding to the 

different classes of c-di-GMP binding proteins.  
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Scheme 4–5. Solid-support synthesis of dinucleotides and cyclization in solution phase. 

Steps a–e were conducted on the DNA/RNA synthesizer with a standard program. 

Reaction conditions: a) detritylation: 6 % dichloroacetic acid in CH2Cl2, RT, 45 s; b) 

coupling: phosphoramidite (0.1 g/mL), ETT (0.25 M) in CH3CN, RT, 90 s; c) capping: 

Ac2O (10 v%), 2,6-lutidine (10 v%) in THF (Cap A solution), then N-methylimidazole 

(10 v%) in THF (Cap B solution), RT, 30 s; d) sulfurization: Beaucage reagent (10 

mg/mL) in CH3CN, RT, 15 min; e) oxidation: I2 (0.02 M) in water: pyridine: THF (1: 2: 

7), RT, 30 s; f) methyltriphenoxyphosphonium iodide (20 eq.) in DMF, RT, 45 min, then 

filtered; g) NH4OH (37 %), RT or 40 °C , 14 h, then filtered; h) NEt3•3HF (20 eq.) in 

pyridine, 40 °C , 4 h. HPLC purification was conducted for the final products.  
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Scheme 4–6. a) Cleavage of nucleotide from CPG support, deprotection of cyanoethyl 

group and cyclization to afford endo-S-c-di-GMP analogs; b) the mechanism of 

sulfurization, using the Beaucage reagent.   
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Chapter 5. Conclusions and future directions 

5.1 FAS inhibitors 

In this dissertation we have highlighted an unsavory truth that we are in a never-

ending battle with bacterial pathogens. Solving this bacterial resistance problem demands 

the combination of several disciplines, from synthetic organic chemistry to biochemical 

characterization of ligand protein interactions and then to microbiology. Fatty acids are 

important building units in both human and bacterial cells. However the enzymes that are 

responsible for fatty acids in humans are different from those found in bacteria, 

presenting a great opportunity to target FAS enzymes for antibiotic development. 

Platensimycin and platencin are newly discovered potent bacterial FAS inhibitors. In the 

early part of this dissertation, we demonstrated concise synthetic strategies to access 

platensimycin-like molecules (such as compound 5–2, Figure 5–1) and showed that 

although the tetracyclic core of platensimycin was initially thought of as not been 

important for the drug’s action, conservative modifications to this ring can sometimes 

abrogate the drug’s affinity for the FabF enzyme.  Interestingly, using function-oriented 

synthetic approach [338-343], we also demonstrate that analogs whereby the tetracyclic 

core unit of platensimycin is drastically altered (such as compound 5–3, Figure 5–1) can 

also have good antibiotic profile. We have therefore identified a new class of antibiotic 

class, called N,N-dialkylamine benzoic acids (such as compound 5-3). 
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Figure 5–1. Structures of platensimycin (5–1), oxazinidinyl platensimycin (5–2) and 

myrtemycin (5–3).  

 

5.2  Development of dynamic ring-closing metathesis 

En route to making platensimycin-like compounds, we uncovered conditions that 

allowed for ring-closing metathesis, under dynamic conditions. The dynamic ring-closing 

metathesis is a one-pot reaction in the presence of both ruthenium and a compatible base. 

The dynamic ring-closing metathesis (RCM) permitted the use of either diastereomers 

cis-2–34 or trans-2–34 to be used for a ring-closing reaction. Normally RCM requires 

that both alkenes on cyclic structures to be on the same side, but a dynamic RCM 

combines epimerization and the ring-closing reaction in one pot and thereby obviating the 

need to have both alkenes on cyclic structures to be on the same side, see Scheme 2–11). 

The product obtained from our dynamic RCM procedure, 2–33, contains a bicyclo[3.2.1] 

moiety that is not only found in platensimycin but also in many other biologically active 

molecules (Figure 5–2). Thus the dynamic ring-closing metathesis would be a general 

way to construct these molecules. Future development of the dynamic RCM to shorten 

the reaction time as well as reduce the catalyst loading will make this methodology 

attractive for others to use for the synthesis of complex molecules.  
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Figure 5–2. Selected natural products that carry a bicyclo[3.2.1] moiety.  

 

5.3  Biofilm formation in bacteria 

C-di-GMP, dubbed a master regulator in bacteria is critical for several processes, 

including biofilm formation. As bacterial biofilms are known to confer greater antibiotic 

resistance, when compared to bacteria in the planktonic state, it is natural that the 

scientific community is now focused on finding means to interrupt c-di-GMP signaling in 

bacteria. Despite years of active research in the c-di-GMP field, very little is known about 

the functionalities on this important molecule that could be altered to achieve specificity 

in c-di-GMP binding to the different binding proteins. In this dissertation, we provide a 

general solution to this long-standing problem by demonstrating that one can use 

conformational steering to design c-di-GMP analogs that can specifically inhibit one 

class of binding proteins and not others. This is a first in the field, to the best of our 

knowledge and lays down the foundations to design other c-di-GMP analogs to alter the 

biofilm phenotype. The challenge now is to design analogs that will preferentially form c-

di-GMP dimers and only inhibit DGCs and PilZ-type adaptor proteins that are involved 

in the production of biofilm-related matrix. Future work in the Sintim group will examine 

the biophysical as well as biological properties of the c-di-GMP analogs, 4–52 to 4–57, 

that were prepared during this PhD project.  
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Chapter 6. Experimental Section 

6.1  General procedure 

6.1.1  General reaction conditions 

Air and moisture sensitive reactions are explicitly indicated in the reaction 

procedures. Reactions were carried out in oven-dried glassware and sealed with rubber 

septa under a positive pressure of anhydrous argon or nitrogen. All solution phase 

reactions were all stirred with teflon-coated magnetic stir bars. Elevated temperatures 

were obtained using silicone oil baths and monitored by a thermometer. Low 

temperatures were obtained by ice bath or by solid CO2 (dry ice) mixed with organic 

solvents such as acetone and acetonitrile. Organic solutions were all concentrated using a 

Büchi rotary evaporator with an aspirator pump. Trace amount of solvent or high boiling 

point solvent was removed by treatment under high vacuum for 0.5–5 hours.  

6.1.2  Preparation of the solvents 

Anhydrous tetrahydrofuran was obtained by distillation over metallic sodium or 

using a PureSolvent™ system prior to use. Dry dichloromethane, toluene and pyridine 

were distilled from CaH2 prior to use. Acetonitrile was first distilled over CaH2 and then 

dried overnight with activated molecular sieves (4Å). DMF was distilled over CaCl2 

under a reduced pressure before stored with activated molecular sieves (4Å) overnight. 

Anhydrous benzene was purchased from Sigma-Aldrich and used “as is”. Degassed 

solvent was obtained by bubbling argon through the solvent (5–10 bubbles per second) 

and venting with a needle for 30 min (Figure 6–1).  

 



 

Figure 6–1. The apparatus for solvent degassing. 
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6.1.4  Instrument 

Thin-layer chromatography (TLC) was performed on Merck Kieselgel 60 F254 

plates with a 365 nm fluorescent indicator. The TLC was visualized by UV light, KMnO4 

stain or acidic p-anisaldehyde stain followed by gentle heating. The crude reaction 

mixtures were purified by flash chromatography on silica gel (230-400 mesh) with slow 

elution of a mixture of organic solvents, or by HPLC. A Varian 210 system was used 

with a UV detector for all HPLC analysis and purification. The samples were all filtered 

by a 0.2 µm syringe filter (PVDF or PTFE) prior to the injection.  

 NMR spectra were measured on Bruker AV-400, Bruker DRX-400, Bruker 

DRX-500 or Bruker AVIII-600. Data for 1H-NMR spectra are reported as follows: 

chemical shift (ppm, relative to residual solvent peaks or indicated external standards; s = 

singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of 

doublets, dt = doublet of triplets, ddd = doublet of doublet of doublets, tdd = triplet of 

doublet of doublets, dddd = doublet of doublet of doublet of doublets, m = multiplet), 

coupling constant (Hz), and integration. Coupling constants were rounded to 0.5 Hz. Data 

for 13C-NMR are reported in terms of chemical shift (ppm) relative to residual solvent 

peak. HSQC (Heteronuclear Single Quantum Coherence), COSY (COrrelation 

SpectroscopY) and selective NOE (Nuclear Overhauser effect) were also reported for the 

structural elucidation purpose. DOSY (Diffusion Ordered Spectroscopy) experiment 

conditions refer to Section 6.6.1.  

Mass spectra (MS) were recorded by JEOL AccuTOF-CS (ESI positive and 

negative modes) or Varian GC-MS (EI, 70 eV). High resolution mass spectra (HRMS) 

for ESI spectrometer were calibrated with an aqueous solution of CsI. The aggregated 



 

cation [Cs2I]
+ and anion [CsI

negative mode, respectively. 

UV absorbance spectra were obtained on a JASCO V

1 cm path length cuvette, and CD experiments were performed on a JASCO J

spectropolarimeter with 1 cm path length cuvette. The co

of c-di-GMP and endo-S

260 nm for c-di-GMP and endo

coefficient for both compounds.

 

Figure 6–2. a) A real 

Nakayama). 1 – synthesis columns (up to four columns can be installed); 2 

panel; 3 – phosphoramidites; 4 

Cap A solution (Ac2O (10 v%), 

methylimidazole (10 v%) in THF); 7 

6 % dichloroacetic acid in CH

b) detail illustration of a synthesis column. The column contains two separate parts 10 

and 11, and each part contains a fritted glass support that can hold the CPG beads and 

allow the liquid reagents to pass through. Around 0.1 g CPG beads can be loaded in 

between the two fritted glass supports

(The figure is modified from 

and anion [CsI2]
– peaks were used as standard for ESI positive and 

negative mode, respectively.  

absorbance spectra were obtained on a JASCO V-630 spectrophotometer with 

1 cm path length cuvette, and CD experiments were performed on a JASCO J

spectropolarimeter with 1 cm path length cuvette. The concentration of a stock solution 

S-c-di-GMP was determined by the measuring of absorbance at 

GMP and endo-S-c-di-GMP, using 21,600 M-1cm-1 as a molar extinction 

coefficient for both compounds. 

a) A real photo of DNA/RNA synthesizer (photo credit: Dr. Shizuka 

synthesis columns (up to four columns can be installed); 2 

phosphoramidites; 4 – ETT (0.25 M) in CH3CN with 4 Å molecular sieves; 5 

O (10 v%), 2,6-lutidine (10 v%) in THF); 6 – Cap B solution (

methylimidazole (10 v%) in THF); 7 – I2 (0.02 M) in water: pyridine: THF (1: 2: 7); 8 

6 % dichloroacetic acid in CH2Cl2; 9 – anhydrous acetonitrile (with 4 Å molecular sieves). 

a synthesis column. The column contains two separate parts 10 

and 11, and each part contains a fritted glass support that can hold the CPG beads and 

allow the liquid reagents to pass through. Around 0.1 g CPG beads can be loaded in 

glass supports. Bigger scale synthesis columns can also be used. 

(The figure is modified from www.abrf.org/jbt/2000/September00/sep00bintzler.html
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ESI positive and 

630 spectrophotometer with 

1 cm path length cuvette, and CD experiments were performed on a JASCO J-81 

ncentration of a stock solution 

GMP was determined by the measuring of absorbance at 

as a molar extinction 

 

photo of DNA/RNA synthesizer (photo credit: Dr. Shizuka 

synthesis columns (up to four columns can be installed); 2 – control 

CN with 4 Å molecular sieves; 5 – 

Cap B solution (N-

(0.02 M) in water: pyridine: THF (1: 2: 7); 8 – 

anhydrous acetonitrile (with 4 Å molecular sieves). 

a synthesis column. The column contains two separate parts 10 

and 11, and each part contains a fritted glass support that can hold the CPG beads and 

allow the liquid reagents to pass through. Around 0.1 g CPG beads can be loaded in 

Bigger scale synthesis columns can also be used.  

www.abrf.org/jbt/2000/September00/sep00bintzler.html) 
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DNA/RNA synthesizer (ABI Applied Biosynthesis 392) was used to conduct the 

pre-programmed synthesis of nucleotides (Figure 6–2). Regular 1.0 µmol synthesis 

program was used for all CPG-supported reactions.  

 

6.2  Synthetic protocols for compounds in Chapter 2 

3-(Benzyloxymethyl)cyclopent-2-enone (2–39) 

 

(Benzyloxymethyl)tributylstannane was prepared (50 g scale) using the reported 

literature method [345]. This reaction was air and moisture sensitive. To a solution of 

(benzyloxymethyl)tributylstannane (13.0 g, 31.6 mmol) in dry THF (130 mL) at –78 oC 

under argon, n-BuLi (1.6 M in hexane, 17.0 mL, 27.2 mmol) was added via syringe. 

After stirring for 15 min, 3-methoxycyclopent-2-enone 2–38 (2.20 g, 19.6 mmol) in dry 

THF (15 mL) was added dropwise within 10 min. A precipitate sometimes forms before 

addition is complete. After stirring for 1 h, the reaction mixture was allowed to warm to 

room temperature and stirred at room temperature for an additional 4 h before the mixture 

was quenched with NH4Cl (saturated aqueous solution, 50 mL). The aqueous layer was 

then extracted with EtOAc (30 mL x 3). The combined organic layer was dried over 

MgSO4 and was concentrated in vacuo. The crude material was purified by silica gel 

column chromatography (Rf = 0.35, hexane/EtOAc = 3:1) to afford product 2–39 (3.35 g, 

84 %) as a pale yellow crystal. Product 2–39 showed black on TLC after staining with p-

anisaldehyde followed by gentle heating.  



109 
 

1H NMR (400 MHz, CDCl3) δ ppm 7.52-7.15 (m, 5H), 6.17 (m, 1H), 4.56 (s, 2H) , 4.28 

(s, 2H), 2.61-2.46 (m, 2H), 2.40-2.35 (m, 2H). 13C NMR (100 MHz, CDCl3) δ ppm 

208.7, 177.7, 137.1, 128.7, 128.1, 127.5, 127.2, 72.7, 69.0, 34.4, 28.0. GCMS (EI): 202 

(M+), 173, 107, 91. IR (cm–1): 3072 (w), 2852 (w), 1699 (s), 1677 (s), 1625 (m), 1498 

(w), 1437 (m), 1402 (w), 1265 (s), 1240 (w), 1143 (s), 1105 (m), 1024 (m), 971 (w), 868 

(w), 735 (s), 699 (s), 628 (w).  

(±)-5-Allyl-3-(benzyloxymethyl)cyclopent-2-enone (2–40) 

 

This reaction was air and moisture sensitive. To a solution of diisopropylamine 

(2.0 mL, 15 mmol) in dry THF (50 mL) at –78 °C under argon, n-BuLi (1.6 M in hexane, 

8.2 mL, 13 mmol) was added dropwise within 10 min. After stirring for 30 min, the 

reaction mixture was allowed to warm to 0 °C. After stirring for another 1 h, dry HMPA 

(1.5 mL, 8.6 mmol) was added via syringe, and the reaction mixture was cooled to –78 

°C. Enone 2–39 (2.44 g, 12.1 mmol) in dry THF (10 mL) was added dropwise within 5 

min. The reaction mixture was stirred for 1 h at –78 °C before allyl iodide (1.4 mL, 15 

mmol) in dry THF (10 mL) was added dropwise within 30 min. After stirring for another 

30 min, the reaction mixture was allowed to warm to room temperature overnight. The 

reaction mixture was quenched with NH4Cl (saturated aqueous solution, 30 mL), the 

water layer was extracted with EtOAc (20 mL x 3). The combined organic layer was 

dried over MgSO4 and was concentrated in vacuo. The crude material was purified by 

silica gel column chromatography (Rf = 0.40, hexane/EtOAc = 5:1) to afford product 2–

40 (1.83 g, 62 %) as a colorless oil. Some starting material enone 2–39 was recovered 
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(0.15 g, 8 %). The product 2–40 showed black on TLC after staining with p-anisaldehyde 

followed by gentle heating. Byproduct 2–41 was obtained (~ 25 %) as a colorless oil.  

1H NMR (400 MHz, CDCl3) δ ppm 7.43-7.27 (m, 5H), 6.22-6.17 (m, 1H), 5.74 (tdd, J = 

17.0, 10.0, 7.0 Hz, 1H), 5.07 (ddd, J = 17.0, 3.0, 1.5 Hz, 1H), 5.05-5.01 (m, 1H), 4.60 (s, 

2H), 4.30 (d, J = 0.5 Hz, 2H), 2.72 (tdd, J = 19.0, 7.0, 1.0 Hz, 1H), 2.61-2.46 (m, 2H), 

2.31 (d, J = 19.0 Hz, 1H), 2.20-2.10 (m, 1H). 13C NMR (100 MHz, CDCl3) δ ppm 210.3, 

176.6, 137.3, 135.2, 128.5, 128.4, 127.9, 127.6, 116.8, 73.0, 69.3, 44.8, 35.3, 34.2. 

GCMS (EI): 242 (M+), 136, 121, 91. IR (cm–1): 1695 (s), 1627 (m), 1440 (m), 1370 (w), 

1265 (m), 1144 (s), 1106 (m), 1027 (m), 1000 (w), 913 (s), 854 (w), 740 (s), 697 (m).  

5,5-Diallyl-3-(benzyloxymethyl)cyclopent-2-enone (2–41) 

O

OBn  

1H NMR (400 MHz, CDCl3) δ ppm 7.42-7.28 (m, 5H), 6.28 (t, J = 2.0 Hz, 1H), 5.63 

(dddd, J = 17.0, 10.0, 8.0, 7.0 Hz, 2H), 4.98-4.90 (m, 4H), 4.78 (s, 2H), 2.66 (dd, J = 

13.0, 7.0 Hz, 2H), 2.41-2.28 (m, 4H), 2.19 (m, 2H). 13C NMR (100 MHz, CDCl3) δ ppm 

222.1, 140.8, 137.3, 134.4, 128.4, 127.9, 127.3, 118.2, 117.4, 73.9, 57.0, 40.5, 39.0, 23.5. 

GCMS (EI): 281 (M-H+), 251, 214, 173, 91. IR (cm–1): 2861 (w), 1737 (s), 1641 (w), 

1454 (w), 1270 (w), 1093 (s), 997 (m), 915 (s), 737 (m), 698 (s).  

(±)-2-Allyl-4-(benzyloxymethyl)-4-vinylcyclopentanone (2–34) 
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This reaction is air and moisture sensitive. In a 250 mL round bottom flask, CuCN 

(2.6 g, 29 mmol) was added and dried under high vacuum at 100 °C for 1 h. After the 

mixture had been cooled to room temperature, the flask was flushed with argon before 

tetravinyltin (3.5 mL, 19 mmol) in dry THF (100 mL) was added. The mixture was then 

cooled to –78 °C, and n-BuLi (18.0 mL, 1.6 M in hexane, 28.8 mmol) was added 

dropwise within 15 min. After stirring for 30 min, the reaction mixture turned greenish. 

BF3·Et2O (11.4 mL, 90.0 mmol) was then added via syringe and stirring continued for 10 

min before enone 2–40 (1.14 g, 4.70 mmol) in dry THF (10 mL) was added dropwise 

within 10 min. After stirring for another 1 h, the reaction mixture was allowed to warm to 

room temperature overnight, and it slowly turned black. The reaction mixture was 

quenched with NH4Cl (saturated aqueous solution, 20 mL), whereupon the black color 

disappeared to give a clear brown solution, and the water layer was extracted with EtOAc 

(15 mL x 3). The combined organic layer was dried over MgSO4 and was concentrated in 

vacuo. The crude material was purified by silica gel column chromatography (Rf = 0.40, 

hexane/EtOAc = 10:1) to afford product (a mixture of cis- and trans- 2–34, 1.08 g, 85 %) 

as a colorless oil. The product 2–34 mixture showed black on TLC after staining with p-

anisaldehyde followed by gentle heating. The product ratio was determined by GCMS 

and 1H NMR. cis-2–34: trans-2–34 = 1: 3.7.  

1H NMR (400 MHz, CDCl3) δ ppm 7.40-7.23 (m, 5H for trans, 5H for cis), 5.95 (dd, J = 

18.0, 11.0 Hz, 1H for cis), 5.9 (dd, J = 18.0, 11.0 Hz, 1H for trans), 5.79-5.66 (m, 1H for 

trans, 1H for cis), 5.15 (d, J = 11.0 Hz, 1H for trans), 5.03 (m, 3H for trans, 3H for cis), 

4.54 (s, 2H for trans), 4.51 (d, J = 7.0 Hz, 2H for cis), 3.38 (s, 2H for trans), 3.35 (dd, J 

= 24.0, 9.0 Hz, 2H for cis), 2.57-2.44 (m, 1H for trans, 1H for cis), 2.43-2.22 (m, 3H for 
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trans, 3H for cis), 2.07 (m, 2H for trans, 2H for cis), 1.77 (t, J = 12.0 Hz, 1H for trans, 

1H for cis). 13C NMR (100 MHz, CDCl3) δ ppm 218.8, 218.5, 142.7, 141.6, 138.1, 137.9, 

135.7, 135.7, 128.3, 128.3, 127.6, 127.5, 127.4, 127.3, 127.2, 116.5, 116.4, 114.5, 113.1, 

76.3, 75.9, 73.3, 73.2, 47.0, 46.8, 46.6, 45.5, 44.9, 44.4, 37.4, 36.0, 35.2, 34.0, 31.8, 29.6, 

29.6, 29.3, 27.8, 27.6, 26.8, 26.6, 22.6, 17.4, 14.1, 13.5, 13.5. GCMS (EI): 179, 149, 136, 

121, 107, 91.  

(±)-(2S,4R)-2-Allyl-4-(benzyloxymethyl)-4-vinylcyclopentanone (trans-2–34) 

 

Analytically pure 2–34 was obtained by subjecting the cis-/ trans- mixture to 

Hoveyda-Grubbs II catalyst. With this approach, only the cis-isomer ring-closed. The 

crude material was purified by flash chromatography, silica gel (Rf = 0.40, hexane/EtOAc 

= 10:1).  

1H NMR (400 MHz, CDCl3) δ ppm 7.39-7.27 (m, 5H), 5.85 (dd, J = 18.0, 11.0 Hz, 1H), 

5.73 (tdd, J = 18.0, 11.0, 7.0 Hz, 1H), 5.15 (d, J = 11.0 Hz, 1H), 5.06 (d, J = 18.0 Hz, 

1H), 5.04 (ddd, J = 18.0, 3.5, 1.5 Hz, 1H), 5.01 (tdd, J = 11.0, 2.0, 1.0 Hz, 1H), 4.54 (s, 

2H), 3.37 (s, 2H), 2.56-2.45 (m, 1H), 2.42 (dd, J = 2.0, 1.5 Hz, 1H), 2.40-2.30 (m, 2H), 

2.12-2.01 (m, 2H), 1.77 (d, J = 15.0 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ ppm 218.5, 

141.6, 138.1, 135.7, 128.3, 127.6, 127.4, 116.4, 114.5, 75.9, 73.2, 46.6, 45.5, 44.9, 36.0, 

34.0. GCMS (EI): 179, 149, 136, 121, 107, 91.  
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(±)-1-(Benzyloxymethyl)bicyclo[3.2.1]oct-2-en-6-one (2–33) 

 

This reaction was air sensitive. Dry toluene (250 mL) was transferred into a 500 

mL round bottom flask containing bis-alkene 2–34 (0.680 g, 2.50 mmol), 

dichlorodicyano quinone (0.11 g, 0.48 mmol), and DBU (0.17 mL, 1.14 mmol) under 

argon. The resulting black red solution was cooled to -78 °C and degassed under high 

vacuum for 1 h. The reaction mixture was heated to 100 °C and Hoveyda-Grubbs II 

catalyst (50 mg, 0.080 mmol, 3.2 mol %) in degassed dry toluene (1 mL) was added via 

syringe. A black precipitate was observed in the reaction mixture. More Hoveyda-Grubbs 

II catalyst (same quantity as previously) was added every 6 h interval. A total of 16 mol% 

of catalyst was added. 30 min after the last catalyst portion was added, the reaction 

mixture was allowed to cool to room temperature, and the solvent was removed in vacuo. 

The crude material was purified by silica gel column chromatography (hexane/EtOAc = 

10:1) to afford recovered starting material bis-alkene 2–34 (Rf = 0.40, 0.120 g, 18%) and 

product 2–33 (Rf = 0.35, 0.420 g, 69 %, 83 % based on the starting material) as a 

colorless oil. The product 2–33 showed blue on TLC after staining with p-anisaldehyde 

followed by gentle heating. The major byproduct (10 %) was enone 2–43, which resulted 

from alkene migration.  

1H NMR (400 MHz, CDCl3) δ ppm 7.46-7.15 (m, 5H), 5.89 (ddd, J = 9.5, 4.0, 2.0 Hz, 

1H), 5.55 (td, J = 9.5, 3.0 Hz, 1H), 4.58 (s, 2H), 3.48 (q, J = 9.0 Hz, 2H), 2.68 (t, J = 4.5 

Hz, 1H), 2.48-2.39 (m, 1H), 2.33-2.29 (m, 2H), 2.28-2.19 (m, 1H), 2.06 (dd, J = 11.0, 5.5 

Hz, 1H), 1.94 (dd, J = 11.0, 2.5 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ ppm 220.3, 
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138.2, 135.3, 128.3, 127.6, 127.4, 124.7, 74.5, 73.3, 51.6, 46.4, 42.7, 36.4, 32.4. GCMS 

(EI): 242 (M+), 136, 91. IR (cm–1): 1722 (s), 1452 (w), 1270 (s), 1112 (m), 1025 (m), 712 

(s). 

(±) 4-(benzyloxymethyl)-2-propylidene-4-vinylcyclopentanone (2–43) 

 

1H NMR (400 MHz, CDCl3) δ ppm 7.35-7.21 (m, 5H), 6.51 (tt, J = 7.5, 2.5 Hz, 1H), 5.88 

(dd, J = 18.0, 11.0 Hz, 1H), 5.06 (d, J = 11.0 Hz, 1H), 5.01 (d, J = 18.0 Hz, 1H), 4.49 (s, 

2H), 3.34 (s, 2H), 2.61 (dd, J = 73.0, 17.0 Hz, 2H), 2.42 (dd, J = 53.0, 18.0 Hz, 2H), 

2.15-2.05 (m, 2H), 1.02 (t, J = 7.5 Hz, 3H). GCMS (EI): 270 (M+), 240, 149, 136, 107, 

91. IR (cm–1): 2928 (w), 2857 (w), 1736 (s), 1652 (w), 1454 (w), 1407 (w), 1271 (w), 

1206 (w), 1096 (s), 735 (s), 698 (s), 1027 (m), 918 (m).  

(±) Compound 2–35 

 

To a solution of alkene 2–33 (0.388 g, 1.60 mmol) in dichloromethane (5 mL) at 0 

°C, mCPBA (0.46 g, 70 %, 2.6 mmol) was added quickly under the protection of 

nitrogen. After stirring for 1 h, the reaction mixture was allowed to warm to room 

temperature overnight. The solvent was removed in vacuo and the crude material was 

immediately purified by silica gel column chromatography (hexane/EtOAc = 3:1) to 

afford the desired product 2–35 (Rf = 0.40, 0.232 g, 64 %) and diastereomer byproduct 2–
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35b (Rf = 0.30, 0.045 g, 12 %). The products 2–35 and 2–35b showed blue on TLC after 

staining with p-anisaldehyde followed by gentle heating.  

1H NMR (500 MHz, CDCl3) δ ppm 7.39-7.21 (m, 5H), 4.62-4.51 (m, 2H), 3.65 (d, J = 

9.0 Hz, 1H), 3.53 (d, J = 9.0 Hz, 1H), 3.19 (d, J = 3.0 Hz, 1H), 3.04 (t, J = 4.0 Hz, 1H), 

2.31 (s, 2H), 2.19 (t, J = 5.5 Hz, 1H), 2.09 (dd, J = 15.0, 5.5 Hz, 1H), 2.03-1.96 (m, 1H), 

1.93 (ddd, J = 16.0, 4.5, 1.5 Hz, 1H), 1.54 (dd, J = 11.0, 5.5 Hz, 1H). 13C NMR (125 

MHz, CDCl3) δ ppm 219.1, 137.9, 128.2, 127.4, 127.2, 73.6, 73.2, 56.6, 48.8, 45.4, 43.7, 

43.0, 30.0, 27.7. ESI+/MS for [C16H19O3]
+: 259 (m/z). 

(±) Compound 2–35b 

 

1H NMR (500 MHz, CDCl3) δ ppm 7.40-7.27 (m, 5H), 4.60 (s, 2H), 3.65 (d, J = 9.0 Hz, 

1H), 3.57 (d, J = 11.0 Hz, 1H), 3.38 (d, J = 4.0 Hz, 1H), 3.10 (t, J = 3.0 Hz, 1H), 2.51 

(dd, J = 17.0, 3.0 Hz, 1H), 2.43 (d, J = 15.0 Hz, 1H), 2.28 (t, J = 5.5 Hz, 1H), 2.08 (ddd, 

J = 15.0, 6.0, 3.0 Hz, 1H), 1.81-1.77 (m, 3H). 13C NMR (125 MHz, CDCl3) δ ppm 218.4, 

137.9, 128.4, 127.7, 127.6, 74.8, 73.4, 58.8, 50.0, 44.5, 42.9, 41.6, 36.2, 33.2. ESI+/MS 

for [C16H19O3]
+: 259 (m/z). IR (cm–1): 2920 (w), 2858 (w), 1742 (s), 1455 (w), 1364 (w), 

1258 (w), 1102 (s), 1075 (m), 1012 (w), 838 (w), 750 (m), 700 (m).  

NOE of compound 2–35 and 2–35b 

  



116 
 

(±) Compound 2–36 

 

This reaction was air and moisture sensitive. To a solution of epoxide 2–35 (88 

mg, 0.340 mmol) in dry THF (3 mL) at –78 °C under argon, n-BuLi (0.30 mL, 1.6 M in 

hexane, 0.48 mmol) was added dropwise within 1 min via a syringe. After stirring for 1 h, 

the reaction was allowed to warm to 0 °C and stirred at 0 °C for another 2 h. The reaction 

was quenched with NH4Cl (saturated aqueous solution, 1 mL). The water layer was 

extracted with EtOAc (2 mL x 3). The combined organic layer was dried over MgSO4 

and was concentrated in vacuo. The crude material was purified by silica gel column 

chromatography (Rf = 0.25, hexane/EtOAc = 3:1) to afford product 2–36 (65 mg, 70 %) 

as a colorless oil. The product 2–36 showed purple on TLC after staining with p-

anisaldehyde followed by gentle heating. See Section 6.5.1 for the details of 

computational study of this reaction.  

1H NMR (400 MHz, CDCl3) δ ppm 7.41-7.26 (m, 5H), 4.51 (dd, J = 27.5, 12.0 Hz, 2H), 

4.21 (t, J = 4.0 Hz, 1H), 3.94 (d, J = 3.5 Hz, 1H), 3.69 (s, 1H), 3.60 (d, J = 9.0 Hz, 1H), 

3.30 (d, J = 9.0 Hz, 1H), 2.20 (t, J = 6.5 Hz, 1H), 2.10 (d, J = 11.5 Hz, 1H), 2.09 (d, J = 

11.5 Hz, 1H), 1.86-1.74 (m, 1H), 1.65 (dd, J = 11.5, 3.5 Hz, 1H), 1.38 (s, 3H), 1.35 (tdd, 

J = 11.5, 7.0, 2.0 Hz, 1H), 1.30 (d, J = 11.5 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ ppm 

137.6, 128.4, 127.7, 127.4, 85.6, 78.6, 77.2, 73.5, 73.2, 49.1, 47.3, 44.4, 39.5, 37.4, 22.6. 

ESI+/MS for [C17H23O3]
+: 275 (m/z).   
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(±) Compound 2–31 

 

To a solution of alcohol 2–36 (36mg, 0.131 mmol) in wet dichloromethane [346] 

(1 mL) at 0 °C under nitrogen, Dess-Martin reagent (15 wt% in dichloromethane, 0.90 

mL, 0.20 mmol) was added dropwise within 1 min via a syringe. The reaction was 

allowed to warm to room temperature overnight. After the removal of the solvent in 

vacuo, the crude material was purified by silica gel column chromatography (Rf = 0.35, 

hexane/EtOAc = 5:1) to afford product 2–31 (34 mg, 95 %) as a colorless oil. The 

product 2–31 showed black on TLC after staining with p-anisaldehyde followed by gentle 

heating. 

1H NMR (500 MHz, CDCl3) δ ppm 7.36-7.25 (m, 5H), 4.53 (d, J = 1.0 Hz, 2H), 4.24 (d, 

J = 4.5 Hz, 1H), 3.59 (dd, J = 25.0, 10.0 Hz, 2H), 2.57 (t, J = 6.0 Hz, 1H), 2.25 (tdd, J = 

11.0, 6.0, 4.5 Hz, 1H), 2.21-2.15 (m, 2H), 2.05 (d, J = 12.0 Hz, 1H), 1.85 (d, J = 12.0 

Hz, 1H), 1.58 (dd, J = 12.0, 3.5 Hz, 1H), 1.53 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 

ppm 208.5, 138.4, 128.2, 127.4, 127.4, 86.9, 83.7, 73.3, 68.6, 58.8, 51.1, 44.6, 44.2, 42.5, 

22.3. ESI+/MS for [C17H21O3]
+: 273 (m/z).  

(±) Compound 2–44 

 

This reaction was air sensitive. To a solution of benzyl protected alcohol 2–31 (27 

mg, 0.100 mmol) in MeOH (1 mL), Pd/C (5 % on activated carbon, 20 mg, 0.095 mmol) 

was added. The flask was evacuated and flushed with hydrogen, and the mixture was 
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stirred at room temperature overnight. The crude material was filtered through a pad of 

silica gel and the solvent was evaporated to afford product 2–44 (16 mg, 90 %) as a 

colorless oil. The product 2–44 showed purple on TLC after staining with p-anisaldehyde 

followed by gentle heating (Rf = 0.25, hexane/EtOAc = 1:1). 

1H NMR (500 MHz, CDCl3) δ ppm 4.24 (d, J = 4.5 Hz, 1H), 3.64 (ddd, J = 18.0, 12.0, 

5.5 Hz, 2H), 2.61 (t, J = 6.0 Hz, 1H), 2.33 (t, J = 6.5 Hz, 1H), 2.29 (dd, J = 12.0, 3.5 Hz, 

1H), 2.22-2.28 (m, 1H), 1.93 (ddd, J = 12.0, 6.5, 4.0 Hz, 1H), 1.86 (d, J = 12.0 Hz, 1H), 

1.79 (d, J = 12.0 Hz, 1H), 1.77 (dd, J = 12.0, 3.5 Hz, 1H), 1.54 (s, 3H). 13C NMR (125 

MHz, CDCl3) δ ppm 211.4, 87.1, 83.5, 64.3, 60.3, 51.5, 44.8, 44.2, 42.5, 22.2. HRMS 

(ESI+, m/z) calculated for C10H15O3 [M + H]+ 183.1033, found 183.1040. IR (cm–1): 

3426 (br, m), 1721 (s), 1381 (m), 1079 (s), 1033 (s), 993 (s), 961 (m), 918 (w), 830 (m), 

735 (m). 

4-Iodo-2-nitrobenzene-1,3-diol (2–45b) 

 

To a solution of 2-nitroresorcinol 2–45 (5.36 g, 34.6 mmol) in TFA (150 mL) at 0 

°C, N-iodosuccinimide (NIS, 7.60 g, 33.8 mmol) was added in aliquots. The resulting 

solution was warmed to room temperature and stirred at 25 °C overnight. The reaction 

mixture was poured into ice-water (60 mL) and extracted with toluene (3 x 30 mL). The 

combined organic extract was washed with saturated aqueous sodium hydrosulfite and 

dried (MgSO4). The solvent was removed under reduced pressure to afford product 2–

45b (9.70 g, 99 %) as an orange crystalline.  
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1H NMR (500 MHz, CDCl3) δ ppm 11.45 (s, 1H), 10.69 (s, 1H), 7.88 (d, J = 9.0 Hz, 1H), 

6.54 (d, J = 9.0 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ ppm 156.7, 154.6, 147.5, 123.8, 

111.6, 72.5.  

1-Iodo-2,4-bis(methoxymethoxy)-3-nitrobenzene (2–46) 

 

This reaction was moisture sensitive. To a solution of 2-nitroresorcinol derivative 

2–45b (9.27 g, 33.0 mmol) in anhydrous dichloromethane (100 mL) at 0 °C, Hünig’s 

base (11.0 g, 85.1 mmol) was added. After stirring for 30 min, MOMCl (6.6 g, 82 mmol) 

was added to the resulting brown solution and stirred at 25 °C overnight. After the 

removal of the solvent in vacuo, the crude material was purified by silica gel column 

chromatography (Rf = 0.40, hexane/EtOAc = 5:1) to afford product 2–46 (11.8 mg, 97 %) 

as a yellow solid.  

1H NMR (500 MHz, CDCl3) δ ppm 7.76 (d, J = 9.0 Hz, 1H), 6.86 (d, J = 9.0 Hz, 1H), 

5.19 (s, 2H), 5.11 (s, 2H), 3.51 (s, 3H), 3.44 (s, 3H). 13C NMR (125 MHz, CDCl3) δ ppm 

149.5, 149.3, 140.3, 138.1, 113.7, 100.7, 95.0, 82.0, 57.8, 56.6. IR (cm–1): 2980 (w), 1538 

(s), 1464 (m), 1368 (m), 1259 (w), 1125 (m), 1029 (s), 937 (m), 879 (s), 807 (m).  

Methyl 2-hydroxy-4-(methoxymethoxy)-3-nitrobenzoate (2–46b) 

 

This reaction was air and moisture sensitive and the procedure was modified from 

ref [347]. To a solution of iodobenzene derivative 2–46 (4.20 g, 11.3 mmol) in anhydrous 

THF (300 mL) at –78 °C, PhMgBr (11 mL, 3.0 M, 33 mmol) was added, maintaining 
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rigorous stirring. Stirring was continued for 30 min before methyl carbonocyanidate (3.5 

mL, 40 mmol) was added dropwise to the resulting green viscous reaction mixture. After 

stirring for another 1 h at –78 °C, the reaction mixture was allowed to warm to room 

temperature overnight. The reaction mixture was quenched with NH4Cl (saturated 

aqueous solution, 60 mL) and the water layer was extracted with EtOAc (30 mL x 3). The 

combined organic layer was dried over MgSO4 and was concentrated in vacuo. The crude 

material was purified by silica gel column chromatography (Rf = 0.30, hexane/EtOAc = 

5:1) to afford product 2–46b (2.26 g, 85 %) as a yellow solid. It appears that the reaction 

or the work-up conditions lead to the deprotection of one of the MOM groups.  

1H NMR (500 MHz, CDCl3) δ ppm 11.41 (s, 1H), 7.87 (d, J = 9.0 Hz, 1H), 6.77 (d, J = 

9.0 Hz, 1H), 5.28 (s, 2H), 3.96 (s, 3H), 3.49 (s, 3H). 13C NMR (125 MHz, CDCl3) δ ppm 

169.3, 154.4, 153.9, 132.2, 131.4, 107.5, 105.7, 94.7, 56.8, 52.7.  

Methyl 2,4-bis(methoxymethoxy)-3-nitrobenzoate (2–47) 

MOMO

OMOM
O2N CO2Me

 

This reaction was air sensitive. To a solution of compound 2–46b (1.85 g, 7.20 

mmol) in anhydrous dichloromethane (50 mL) at 0 °C, Hünig’s base (1.30 g, 10.1 mmol) 

was added. The reaction mixture was warmed to room temperature and stirred for 30 min 

before MOMCl (0.70 g, 8.7 mmol) was added. The reaction mixture was then stirred 

overnight. After the removal of the solvent in vacuo, the crude material was purified by 

silica gel column chromatography (Rf = 0.30, hexane/EtOAc = 5:1, overlap with 2–46b) 

to afford product 2–47 (1.70 mg, 78 %) as a yellow solid. 
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1H NMR (500 MHz, CDCl3) δ ppm 7.96 (d, J = 9.0 Hz, 1H), 7.06 (d, J = 9.0 Hz, 1H), 

5.26 (s, 2H), 5.13 (s, 2H), 3.88 (s, 3H), 3.47 (s, 3H), 3.47 (s, 3H). 13C NMR (125 MHz, 

CDCl3) δ ppm 164.2, 152.2, 150.6, 138.4, 133.8, 118.0, 110.6, 102.1, 94.9, 57.7, 56.8, 

52.3. IR (cm–1): 3313 (w), 1668 (m), 1608 (w), 1503 (w), 1435 (s), 1308 (s), 1249 (m), 

1134 (s), 1041 (s), 997 (s), 920 (m), 736 (m). 

Methyl 3-amino-2,4-bis(methoxymethoxy)benzoate (2–48) 

 

This reaction was air sensitive. To a solution of nitrobenzene 2–47 (1.50 g, 4.98 

mmol) in MeOH (25 mL) and trace of toluene (0.5 mL), Pd/C (5 % on activated carbon, 

1.1 g, 0.52 mmol; wet with MeOH before adding) was added. The flask was evacuated 

and flushed with hydrogen, and the mixture was stirred at room temperature overnight. 

After the removal of the solvent in vacuo, the crude material was purified by silica gel 

column chromatography (Rf = 0.30, hexane/EtOAc = 2:1) to afford product 2–48 (0.94 g, 

70 %) as a colorless oil. 

1H NMR (500 MHz, CDCl3) δ ppm 7.24 (d, J = 8.5 Hz, 1H), 6.85 (d, J = 8.5 Hz, 1H), 

5.24 (s, 2H), 5.10 (s, 2H), 4.25 (s, br, 2H), 3.86 (s, 3H), 3.61 (s, 3H), 3.49 (s, 3H). 13C 

NMR (125 MHz, CDCl3) δ ppm 166.2, 148.5, 145.4, 131.7, 120.0, 118.0, 109.5, 101.1, 

94.8, 57.6, 56.3, 51.7. HRMS (ESI+, m/z) calculated for C12H18NO6 [M + H]+ 272.1134, 

found 272.1134. IR (cm–1): 2269 (w), 2925 (w), 1716 (m), 1595 (m), 1459 (m), 1295 (m), 

1198 (m), 1128 (s), 1079 (m), 1032 (s), 992 (s), 920 (s), 742 (m).  
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Methyl 3-(3-aminopropanamido)-2,4-bis(methoxymethoxy)benzoate (2–50) 

 

3-(2,2,2-Trifluoroacetamido)propanoic acid was prepared following literature ref 

[348]. The reaction was moisture sensitive. To a mixture of 3-(2,2,2-

trifluoroacetamido)propanoic acid (1.48 g, 8.00 mmol) and 2 drops of dry pyridine in 

anhydrous benzene (20 mL), oxalyl chloride (1.0 mL, 11.7 mmol) was added dropwise 

(effervescence was observed). After stirring at 50 °C for another 30 min, the solvent was 

removed in vacuo. The resulting viscous black oil (acid chloride 2–49) was diluted with 

anhydrous dichloromethane (10 mL) and was added into a solution of amine 2–48 (0.76 

g, 2.80 mmol) in anhydrous dichloromethane (10 mL), followed by the addition of 

pyridine (1.5 mL, 18.6 mmol). The mixture was stirred for 5 h at room temperature and 

the solvent was removed in vacuo (Rf = 0.40, hexane/EtOAc = 2: 1). MeOH (10 mL), 

H2O (3 mL) and K2CO3 (0.76 g, 5.50 mmol) was then added, and the mixture was stirred 

at room temperature for 7 h. The crude material was concentrated at reduced pressure and 

the residue was purified by silica gel column chromatography (Rf = 0.40, CHCl3: MeOH: 

28% NH4OH = 35: 7: 1) to afford product 2–50 (0.91 g, 95 %) as a colorless solid. The 

products 2–50 showed purple on TLC after staining with ninhydrin followed by gentle 

heating. 

1H NMR (500 MHz, CDCl3) δ ppm 7.70 (d, J = 8.5 Hz, 1H), 6.93 (d, J = 8.5 Hz, 1H), 

5.16 (s, 2H), 4.99 (s, 2H), 3.80 (s, 3H), 3.47 (s, 3H), 3.41 (s, 3H), 3.05 (s, br, 2H), 2.51 (s, 

br, 2H). 13C NMR (125 MHz, CDCl3) δ ppm 170.8, 165.3, 156.6, 154.1, 130.3, 121.4, 

117.8, 110.3, 100.9, 94.5, 57.3, 56.3, 51.8, 38.3, 37.9. HRMS (ESI+, m/z) calculated for 
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C15H23N2O7 [M + H]+ 343.1492, found 343.1485. IR(cm–1): 2952 (w), 1692 (m), 1596 

(w), 1460 (m), 1294 (m), 1199 (m), 1152 (m), 1033 (m), 994 (s), 922 (m), 750 (m).  

 (±) Compound 2–52 and 2–53 

 

To a mixture of ketone 2–31 (20 mg, 0.073 mmol) and O-benzylhydroxylamine 

(18 mg, 0.146 mmol) in MeOH (0.3 mL, pH 3, adjusted by HCl) at 0 °C, NaB(CN)H3 

(7.0 mg, 0.111 mmol) was added. After stirring for 5 h, the solvent was removed in vacuo 

and the crude material was purified by silica gel column chromatography (hexane: EtOAc 

= 10:1) to afford product 2–52 (20 mg, 72%) and 2–53 (6 mg, 14 %) as colorless oil.  

2–52: 1H NMR (400 MHz,CDCl3) δ ppm 7.41-7.24 (m, 10H), 4.67 (s, 2H), 4.48 (dd, J = 

12.0 Hz, 2H), 4.49-4.47 (m, 1H), 3.34-3.33 (m, 1H), 3.40 (d, J = 9.5 Hz, 1H), 3.28 (d, J 

=  9.5 Hz, 1H), 2.21 (t, J = 6.5 Hz, 1H), 2.13 (d, J = 11.0 Hz, 1H), 1.83-1.79 (m, 3H), 

1.41 (s, 3H), 1.37-1.33 (m, 2H). 13C NMR (100 MHz, CHCl3) δ ppm 138.2, 137.8, 128.4, 

128.3, 128.2, 127.7, 127.4, 127.2, 86.0, 77.7, 76.5, 75.6, 73.2, 63.4, 49.4, 48.1, 44.7, 39.8, 

37.7, 22.9. ESI+/MS for [C24H30NO3]
+: 380 (m/z). IR (cm–1): 2927 (w), 2855 (w), 1454 

(w), 1270 (w), 1096 (m), 1028 (w), 914 (w), 828 (w), 734 (s), 698 (s).  

2–53: 1H NMR (400 MHz,CDCl3) δ ppm 7.39-7.27 (m, 10 H), 4.66 (s, 2H), 4.55 (d, J = 

4.5 Hz, 1H), 4.48 (s, 2H), 3.60 (d, J = 9.0 Hz, 1H), 3.18 (d, J = 9.0 Hz, 1H), 3.04 (s, 1H), 

2.23 (t, J = 6.0 Hz, 1H), 2.00 (tdd, J = 8.0, 5.5, 2.0 Hz, 1H), 1.67-1.59 (m, 4H), 1.35 (s, 

3H), 1.20 (d, J = 11.0 Hz, 1H). 13C NMR (100 MHz, CHCl3) δ ppm 138.7, 138.2, 128.3, 

128.2, 128.2, 127.5, 127.3, 127.3, 86.3, 77.2, 75.9, 73.7, 73.2, 61.3, 48.7, 45.0, 44.2, 43.9, 
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39.7, 23.1. ESI+/MS for [C24H30NO3]
+: 380 (m/z). IR (cm–1): 2927 (w), 2853 (w), 1721 

(w), 1453 (w), 1269 (m), 1098 (m), 1026 (m), 965 (w), 919 (w), 735 (s), 711 (m), 697 (s). 

Stereochemistry of 2–52 and 2–53 was determined based on NOE experiments.  

(±) Compound 2–52 and 2–53 

   

(±) Compound 2–55 

 

To a mixture of ketone 2–44 (12 mg, 0.066 mmol) and amine 2–50 (90 mg, 0.26 

mmol) in MeOH (0.3 mL, pH 4, adjusted by HCl) at 0 °C, NaB(CN)H3 (7.0 mg, 0.111 

mmol) was added in 3 portions within 1 h. After stirring for another 5 h, the solvent was 

removed in vacuo and the crude material was redissolved in CHCl3: MeOH (20:1). This 

solution was then filtered through a pad of silica gel and washed with CHCl3: MeOH 

(20:1, 5 mL x 2). This procedure removes the unreacted amine starting material from the 

filtrate. The stereochemistry of crude product 2–54 was determined by NOE experiment. 

(±) Compound 2–36 and 2–54 
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The filtrate (crude compound 2–54) was concentrated at a reduced pressure and 

then further dried under high vacuum for 2 h before it was diluted with anhydrous 

benzene (1 mL). Carbonyl diimidazole (50 mg, 0.31 mmol) and DMAP (8.0 mg, 0.066 

mmol) were sequentially added to the reaction mixture and stirred at 50 °C for 24 h. The 

reaction mixture was concentrated at reduced pressure and the residue was purified by 

silica gel column chromatography (hexane: acetone = 1:1) to afford product 2–55 (20 mg, 

56 %) as a colorless oil and as a single diastereomer. A major side reaction was the 

reduction of the ketone 2–44. Also when the concentration of ketone 2–44 was < 0.2 M, 

the yield of product 2–55 was generally low.  

1H NMR (500 MHz, CHCl3) δ ppm 7.79 (d, J = 7.5 Hz, 1H), 7.62 (s, 1H), 7.04 (d, J = 

9.0 Hz, 1H), 5.29-5.20 (m, 2H), 5.10-5.04 (m, 2H), 4.71 (s, 1H), 4.19 (d, J = 11.0 Hz, 

1H), 4.06-3.94 (m, 1H), 3.86 (s, 3H), 3.77 (d, J = 11 Hz, 1H), 3.67 (s, 1H), 3.58 (s, 3H), 

3.50 (s, 3H), 3.47-3.37 (m, 1H), 2.93-2.72 (br, 1H), 2.68-2.58 (br, 1H), 2.32 (t, J = 6.5 

Hz, 1H), 1.98 (dd, J = 12.0, 3.0 Hz, 2H), 1.80 (d, J = 11.0 Hz, 1H), 1.68 (dd, J = 11.0, 

3.5 Hz, 1H), 1.56 (dd, J = 11.0, 7.5 Hz, 1H), 1.49 (d, J = 11.0 Hz, 1H), 1.43 (s, 3H). 13C 

NMR (125 MHz, CHCl3) δ ppm 169.0 (br), 165.2, 156.8, 154.3 (br), 153.4, 130.5 (br), 

121.5, 117.8, 111.0, 101.8, 94.8, 86.8, 76.3, 72.4, 58.4, 57.4, 56.4, 51.9, 45.8, 43.8, 43.2, 

40.6, 40.1, 37.7, 34.9 (br), 22.6. HRMS (ESI+, m/z) calculated for C26H35N2O10 [M + H]+ 

535.2291, found 535.2216.  

 (±) Compound 2–56 
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To a solution of compound 2–55 (10 mg, 0.0187 mmol) in MeOH (0.3 mL), 6 M 

HCl aqueous solution (0.1 mL) was added. After stirring at room temperature for 24 h, 

the reaction mixture was extracted with CHCl3: i-PrOH = 3: 1 (0.3 mL x 5). The organic 

layer was concentrated in vacuo and under high vacuum and the residue was purified by 

silica gel column chromatography (hexane: acetone = 1:1) to afford product 2–56 (7.8 

mg, 92 %) as a colorless solid. 

1H NMR (500 MHz, CHCl3) δ ppm 11.65 (s, 1H), 10.71 (s, 1H), 8.11 (s, 1H), 7.58 (d, J 

= 9.0 Hz, 1H), 6.52 (d, J = 9.0 Hz, 1H), 4.67 (t, J = 3.5 Hz, 1H), 4.19 (d, J = 11.0 Hz, 

1H), 3.99 (ddd, J = 14.0, 7.0, 6.0 Hz, 1H), 3.92 (s, 3H), 3.79 (d, J = 11.0 Hz, 1H), 3.64 

(d, J = 3.5 Hz, 1H), 3.46 (td, J = 14.0, 7.0 Hz, 1H), 2.99 (td, J = 15.0, 7.0 Hz, 1H), 2.78 

(td, J = 15.0, 6.5 Hz, 1H), 2.34 (t, J = 6.5 Hz, 1H), 2.03-1.95 (m, 1H), 1.99 (dd, J = 12.0, 

3.5 Hz, 1H), 1.82 (d, J = 12.0 Hz, 1H), 1.72 (dd, J = 11.0, 3.5 Hz, 1H), 1.63-1.56 (m, 

1H), 1.50 (d, J = 11.0 Hz, 1H), 1.44 (s, 3H). 13C NMR (125 MHz, CHCl3) δ ppm 171.4, 

170.6, 155.0, 153.9, 153.7, 127.7, 114.0, 111.3, 104.2, 86.9, 76.4, 72.5, 59.0, 52.2, 45.8, 

43.7, 43.3, 40.9, 40.1, 37.7, 35.1, 22.5. HRMS (ESI+, m/z) calculated for C22H27N2O8 [M 

+ H]+ 447.1777, found 447.1760.  

 (±) Compound 2–30 

 

To a solution of compound 2–55 (5.0 mg, 0.0096 mmol) in MeOH (0.3 mL), 

LiOH (1.6 M in MeOH: H2O = 3: 1, 0.2 mL) was added. HCl (4 M in MeOH: H2O, 0.3 

mL) was added before the reaction mixture was stirred for 12 h at room temperature. 
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After stirring at room temperature for another 24 h, the reaction mixture was extracted 

with CHCl3: i-PrOH = 3: 1 (0.3 mL x 5). The organic layer was concentrated in vacuo 

and under high vacuum and the residue was purified by silica gel column 

chromatography (acetone: hexane: AcOH = 1: 1: 0.1) to afford product 2–30 (3.3 mg, 80 

%) as a colorless solid. 

1H NMR (600 MHz, d4-MeOD) δ ppm 7.68 (d, J = 9.0 Hz, 1H), 6.45 (d, J = 9.0 Hz, 1H), 

4.72 (t, J = 3.0 Hz, 1H), 4.31 (d, J = 11.0 Hz, 1H), 4.05 (td, J = 13.0, 6.0 Hz, 1H), 3.88-

3.82 (m, 1H), 3.83 (d, J = 11.0 Hz, 1H), 3.44 (td, J = 15.0, 7.0 Hz, 1H), 2.89 (td, J = 

15.0, 7.0 Hz, 1H), 2.66 (td, J = 14.0, 6.5 Hz, 1H), 2.35 (t, J = 6.5 Hz, 1H), 1.98-1.94 (m, 

1H), 1.90 (dd, J = 12.0, 3.0 Hz, 1H), 1.87 (d, J = 12.0 Hz, 1H), 1.70 (dd, J = 11.0, 3.0 

Hz, 1H), 1.68-1.62 (m, 1H), 1.60 (d, J = 11.0 Hz, 1H), 1.42 (s, 3H). 13C NMR (150 MHz, 

d4-MeOD) δ ppm 176.7, 175.4, 175.2, 161.4, 157.8, 132.5, 114.8, 110.6, 108.1, 89.9, 

79.2, 75.2, 60.9, 48.0, 46.6, 45.9, 43.5, 42.3, 40.2, 36.6, 24.3. HRMS (ESI+, m/z) 

calculated for C21H25N2O8 [M + H]+ 433.1611, found 433.1590.  

Compound 2–59 

 

To a mixture of 2-(hydroxymethyl)cyclohexanone (256 mg, 2.00 mmol) and 

amine 2–50 (342 mg, 1.00 mmol) in MeOH (5 mL, pH 3-4, adjusted by HCl) at 0 °C, 

NaB(CN)H3 (140 mg, 2.22 mmol) was added in 3 portions within 1 h. After stirring for 

another 5 h, the solvent was removed in vacuo and the crude material was redissolved in 

CHCl3: MeOH (20:1). This solution was then filtered through a pad of silica gel and 
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washed with CHCl3: MeOH (20: 1, 5 mL x 2). This procedure removes the unreacted 

amine starting material from the filtrate. The filtrate was concentrated at a reduced 

pressure and then further dried under high vacuum for 2 h before it was diluted with 

anhydrous benzene (5 mL). Carbonyl diimidazole (200 mg, 1.24 mmol) and DMAP (80 

mg, 0.66 mmol) were sequentially added to the reaction mixture and stirred at 50 °C for 

24 h. The reaction mixture was concentrated at reduced pressure and the residue was 

purified by silica gel column chromatography (hexane: acetone = 1:1) to afford product 

2–59 (336 mg, 70 %) as a colorless oil.  

1H NMR (400 MHz, CHCl3) δ ppm 7.80 (s, 1H for trans, 1H for cis), 7.71 (d, J = 9.0 Hz, 

1H for trans, 1H for cis), 6.95 (d, J = 9.0 Hz, 1H for cis), 6.94 (d, J = 9.0 Hz, 1H for 

trans), 5.16 (s, 2H for trans, 2H for cis), 4.98 (s, 2H for trans, 2H for cis), 4.32 (dd, J = 

11.0, 11.0 Hz, 1H for cis), 3.99 (dd, J = 11.0, 11.0 Hz, 1H for trans), 3.98 (dd, J = 11.0, 

11.0 Hz, 1H for cis), 3.79 (dd, J = 11.0, 11.0 Hz, 1H for trans), 3.78 (s, 3H for trans, 3H 

for cis), 3.75-3.57 (m, 2H for trans, 1H for cis), 3.51 (s, 3H for cis), 3.50 (s, 3H for 

trans), 3.41 (s, 3H for cis), 3.40 (s, 3H for trans), 3.40-3.30 (m, 2H for cis), 3.01 (t, J = 

8.5 Hz, 1H for trans), 2.94-2.71 (m, 1H for trans, 1H for cis), 2.70-2.60 (m, br, 1H for 

cis), 2.58-2.46 (m, br, 1H for trans), 2.45-2.38 (m, br, 1H for cis), 2.34-2.21 (m, 1H for 

trans, 1H for cis), 1.94 (d, J = 12.0 Hz, 1H for cis), 1.81 (d, J = 8.0 Hz, 1H for trans), 

1.76-1.51 (m, 3H for trans, 3H for cis), 1.51-1.31 (m, 2H for cis), 1.30-1.10 (m, 2H for 

trans, 3H for cis), 1.10 (dd, J = 14.0, 8.5 Hz, 1H for trans), 0.94 (ddd, J = 13.0, 3.5, 3.5 

Hz, 1H for trans). 13C NMR (100 MHz, CHCl3) δ ppm 169.3 (br, trans / cis), 165.1 

(trans / cis), 156.6 (trans), 156.5 (cis), 154.5 (br, trans / cis), 153.7 (trans), 153.0 (cis), 

130.5 (br, trans / cis), 121.3 (trans / cis), 117.7 (cis), 117.6 (trans), 110.5 (cis), 110.4 
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(trans), 101.3 (cis), 101.2 (trans), 94.5 (trans / cis), 70.0 (trans), 66.7 (cis), 59.5 (cis), 

57.1 (trans), 56.3 (cis), 56.2 (trans), 51.7 (trans / cis), 44.0 (br, cis), 40.4 (br, trans), 38.6 

(trans / cis), 35.2 (br, trans), 34.9 (br, cis), 31.3 (trans), 30.6 (cis), 30.2 (trans), 27.6 

(cis), 25.9 (trans), 25.1 (cis), 24.3 (trans), 24.1 (trans), 23.5 (cis), 20.8 (cis). HRMS 

(ESI+, m/z) calculated for C23H33N2O9 [M + H]+ 481.2189, found 481.2169.  

Compound 2–57 

 

To a solution of compound 2–59 (240 mg, 0.50 mmol) in MeOH (1 mL), LiOH 

(1.6 M in MeOH: H2O = 3: 1, 0.8 mL) was added. HCl (4 M in MeOH: H2O, 1.6 mL) 

was added before the reaction mixture was stirred for 12 h at room temperature. After 

stirring at room temperature for another 24 h, the reaction mixture was extracted with 

CHCl3: i-PrOH = 3: 1 (2 mL x 5). The organic layer was concentrated in vacuo and under 

high vacuum and the residue was purified by silica gel column chromatography (acetone: 

hexane: AcOH = 1: 1: 0.1) to afford product 2–57 (161 mg, 85 %) as a colorless solid. 

The ratio of cis-4 and trans-4 is 2:3, determined by 1H NMR. The stereochemistry of 

product 2–57 was determined by NOE experiment. 

1H NMR (500 MHz, d4-MeOD) δ ppm 7.63 (d, J = 8.5 Hz, 1H for cis, 1H for trans), 6.41 

(d, J = 8.5 Hz, 1H for cis, 1H for trans), 4.43 (dd, J = 11.0, 11.0 Hz, 1H for cis), 4.07 

(dd, J = 11.0, 11.0 Hz, 1H for cis), 4.06 (dd, J = 11.0, 11.0 Hz, 1H for trans),  3.92 (dd, J 

=  11.0, 11.0 Hz, 1H for trans), 3.90-3.78 (m, 1H for cis, 1H for trans), 3.72-3.58 (m, 1H, 

trans), 3.59-3.50 (m, 1H, cis), 3.46 (td, J = 14.0, 6.5 Hz, 1H, cis), 3.22 (t, J = 9.5 Hz, 1H, 
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trans), 2.88-2.74 (m, 1H for cis, 1H for trans), 2.69-2.48 (m, 1H for cis, 1H for trans), 

2.40-2.26 (m, 1H for cis, 1H for trans), 1.99 (d, J = 12.0 Hz, 1H, cis), 1.84 (d, J = 5.5 

Hz, 1H, trans), 1.78-1.58 (m, 3H for trans, 3H for cis), 1.53 (dd, J = 23.0, 12.0 Hz, 1H, 

cis), 1.50-1.36 (m, 1H, cis), 1.42-1.22 (m, 2H for cis, 2H for trans), 1.17 (dd, J = 23.0, 

13.0 Hz, 1H, trans), 1.03 (dd, J = 21.0, 12.0 Hz, 1H, trans). 13C NMR (125 MHz, d4-

MeOD) δ ppm 173.9 (cis), 173.8 (trans), 173.6 (cis / trans), 159.9 (cis), 159.8 (trans), 

156.7 (cis / trans), 156.0 (cis / trans), 130.9 (cis / trans), 113.4 (trans), 113.4 (cis), 109.2 

(trans), 109.2 (cis), 106.5 (cis / trans), 71.6 (trans), 68.6 (cis), 60.5 (trans), 57.4 (cis), 

45.3 (cis), 41.6 (trans), 40.1 (trans), 35.9 (trans), 35.7 (cis), 33.0 (cis), 31.3 (trans), 28.6 

(cis), 27.2 (trans), 26.3 (cis), 25.7 (trans), 25.5 (trans), 24.9 (cis), 22.1 (cis). HRMS 

(ESI+, m/z) calculated for C18H23N2O7 [M + H]+ 379.1505, found 379.1525.  

Compound trans-2–57 and cis-2–57 

 

  

 

6.3  Synthetic protocols for compounds in Chapter 3. 

6.3.1  Synthetic strategies 

All the analogs in Chapter 3 are generated from four methods (Scheme 6–2) 

except for compound 3–16. The synthesis of compound 3–16 refers to Scheme 6–3.  

  



131 
 

Method A 

Experimental details for the synthesis of compound 6–1 refer to Section 6.2 

(compound 2–50). The reactions were performed at 1.0–10 mmol scale. Amine 6–1 (1.0 

eq.), acetic acid (3.0 eq.) and aldehyde/ ketone (3.0 eq.) were stirred in MeOH ([6–1] = 

0.2 M) at RT for 15 min. Sodium cyanoborohydride (1.5 eq.) was added in five aliquots 

over 1 h. The reaction mixture was stirred at RT for another 2 h and then quenched with 1 

M NaOH. The mixture was extracted with CHCl3 (x 3) and then concentrated under 

vacuum. The crude product was purified on silica-gel with hexane: EtOAc to give pure 

product 6–2 in up to 85% yield.  

Intermediate 6–2 was stirred with NaOH (5.0 eq.) in MeOH: H2O (3: 1, [6–2] = 

0.2 M) for 5–14 h, at which point the starting material disappeared on TLC. HCl (6 M in 

H2O, 20.0 eq.) was then added to the cloudy reaction mixture to form a clear solution at 

RT. The reaction was heated to 40 °C and stirred overnight before quenching with 

saturated NaHCO3. The mixture was extracted with CHCl3: i-PrOH (3: 1) three times. 

The crude product was concentrated under vacuum and purified on silica-gel with CHCl3: 

MeOH (5% NH4OH), or using HPLC C18 reverse phase column (Nacalai tesque 5C18-

MS II column) to give product 6–3 in up to 69% yield. The product displayed a 

distinctive blue color under UV light (365 nm) on TLC (F254). For gram-scale syntheses, 

the products can be recrystallized with 2:1 MeOH: 2 M HCl aqueous solution.  

Method B 

The procedure was the same as method A with the only exception being the use of 

1 equiv. of aldehyde used instead of the 3 equiv. used in method A.  
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Method C 

Sulfonyl chloride (2.0 eq.) was added to a solution of amine 6–1 (1.0 eq.) and 

NEt3 (2.5 eq.) in anhydrous CH2Cl2 and the reaction was stirred at RT for overnight. The 

crude product was concentrated under vacuum and purified on silica-gel (hexane: EtOAc) 

to give the product 6–6 in 57% yield.  

 

 

Scheme 6–2. General synthesis of platensimycin analogs: a) synthesis of N-di-alkyl 

analogs; b) synthesis of N-mono-alkyl analogs; c) synthesis of N-sulfonyl analogs; d) 

synthesis of acyl analogs.  
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Method D 

For experimental details for the synthesis of compound 6–8, refer to Section 6.2 

(compound 2–48). This reaction is moisture sensitive. The acid chloride (1.5 eq.) was 

added to a solution of 6–8 (1.0 eq.) and NEt3 (2.0 eq.) in CH2Cl2 and the reaction was 

stirred at RT for 1 h. The reaction mixture was washed with saturated NaHCO3 and the 

aqueous layer was extracted with CHCl3 (x 2). The crude product was concentrated under 

vacuum and purified on silica-gel (hexane: EtOAc) to give the product S9 in up to 90% 

yield. 

 

6.3.2  Physical data of the analogs 

3-(3-(Bis(cyclopropylmethyl)amino)propanamido)-2,4-dihydroxybenzoic acid (3–6) 

 

The compound was synthesized with an overall yield of 13% from 2–50 and 10 

mg material was obtained. Rf = 0.30, NH3•H2O (28% aq.)/ MeOH/ CHCl3 = 1/7/55. 

1H NMR (500 MHz, MeOD) δ 7.68 (d, J = 8.5 Hz, 1H), 6.36 (d, J = 8.5 Hz, 1H), 3.70 (t, 

J = 6.5 Hz, 2H), 3.20 (t, br, J = 6.5 Hz, 4H), 3.01 (t, J = 6.5 Hz, 2H), 1.29 – 1.13 (m, 2H), 

0.87 – 0.71 (m, 4H), 0.56 – 0.44 (m, 4H). 13C NMR (125 MHz, MeOD) δ 175.8, 172.2, 

159.8, 157.4, 132.2, 131.1, 112.6, 107.3, 59.6, 50.0, 30.5, 6.9, 5.2. HRMS (ESI+, m/z) 

calculated for C18H25N2O5 [M + H]+ 349.1763, found 349.1758. 

3-(3-(Dibutylamino)propanamido)-2,4-dihydroxybenzoic acid (3–7) 
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The compound was synthesized with an overall yield of 13% from 2–50 and 14 

mg material was obtained. The major byproduct is the benzoic acid methyl ester (50%). 

Rf = 0.35, NH3•H2O (28% aq.)/ MeOH/ CHCl3 = 1/7/55. 

1H NMR (500 MHz, CDCl3) δ 9.14 (s, br, 1H), 7.62 (d, J = 9.0 Hz, 1H), 6.39 (d, J = 9.0 

Hz, 1H), 3.45 – 3.39 (m, 2H), 3.05 – 3.00 (m, 6H), 1.75 – 1.68 (m, 4H), 1.40 (q, J = 7.5 

Hz, 4H), 0.98 (t, J = 7.5 Hz, 6H). 13C NMR (125 MHz, CDCl3) δ 174.9, 170.1, 155.8, 

153.2, 128.9, 113.7, 110.8, 108.8, 52.5, 49.7, 32.3, 25.4, 20.4, 13.8. HRMS (ESI+, m/z) 

calculated for C18H29N2O5 [M + H]+ 353.2076, found 353.2069. 

(–)-Myrtemycin (3–8) 

 

The compound was synthesized with an overall yield of 68% from 2–50 and 18 

mg material was obtained. Rf = 0.40, NH3•H2O (28% aq.)/ MeOH/ CHCl3 = 1/7/55. 

[α]D
20 = –10.6° (c = 1.0 in MeOH). 1H NMR (600 MHz, [D5] pyridine) δ 10.84 (s, 1H), 

8.12 (d, J = 8.5 Hz, 1H), 6.88 (d, J = 8.5 Hz, 1H), 5.56 (s, 2H), 3.42 (d, J = 12.5 Hz, 2H), 

3.35 – 3.25 (m, br, 1H), 3.23 – 3.08 (m, 4H), 3.08 – 2.90 (m, br, 1H), 2.64 (s, 2H), 2.36 

(dt, J = 8.5, 5.5 Hz, 2H), 2.24 (d, J = 17.5 Hz, 1H), 2.15 (d, J = 17.5 Hz, 1H), 1.96 (s, 

2H), 1.24 (s, 6H), 1.20 (d, J = 8.5 Hz, 2H), 0.85 (s, 6H). 13C NMR (126 MHz, [D5] 

pyridine) δ 175.8, 174.5, 159.0, 158.8, 146.2, 130.4, 123.9, 116.3, 111.2, 108.1, 61.0, 
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51.4, 45.8, 42.1, 39.1, 34.6, 33.2, 32.9, 27.4, 22.3. HRMS (ESI+, m/z) calculated for 

C30H41N2O5 [M + H]+ 509.3015, found 509.3014.  

Compound 3–9 

 

The compound was synthesized with an overall yield of 21% from 2–50 and 23 

mg material was obtained. Rf = 0.40, NH3•H2O (28% aq.)/ MeOH/ CHCl3 = 1/7/55. 

1H NMR (500 MHz, MeOD) δ 7.48 (d, J = 8.5 Hz, 1H), 6.22 (dd, J = 8.5, 1.5 Hz, 1H), 

5.75 – 5.42 (m, 4H), 3.14 – 2.93 (m, 5H), 2.93 – 2.67 (m, 4H), 2.57 (d, J = 37.5 Hz, 1H), 

2.49 – 2.18 (m, 5H), 2.18 – 1.99 (m, 1H), 1.99 – 1.74 (m, 2H). 13C NMR (125 MHz, 

MeOD) δ 173.8, 171.5, 156.0, 153.9, 133.6, 130.7, 128.9, 113.7, 109.4, 108.2, 63.7, 57.3, 

46.2, 42.5, 41.0, 40.0, 39.2. HRMS (ESI+, m/z) calculated for C24H29N2O5 [M + H]+ 

425.2076, found 425.2066. 

Compound 3–10 

 

The compound was synthesized with an overall yield of 40% from 2–50 and 8 mg 

material was obtained. Rf = 0.35, NH3•H2O (28% aq.)/ MeOH/ CHCl3 = 1/7/55. 

1H NMR (500 MHz, CDCl3) δ 7.55 (d, J = 8.5 Hz, 1H), 6.33 (d, J = 8.5 Hz, 1H), 5.69 (s, 

2H), 3.16 (s, br, 4H), 3.05 (s, br, 2H), 2.85 (s, br, 2H), 2.06 – 1.86 (m, br, 8H), 1.60 – 

1.40 (m, br, 8H). 13C NMR (125 MHz, CDCl3) δ 174.4, 172.1, 156.0, 154.2, 131.8, 130.3, 
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129.1, 113.3, 110.0, 108.7, 61.1, 50.1, 31.6, 27.5, 25.8, 22.7, 22.2. HRMS (ESI+, m/z) 

calculated for C24H33N2O5 [M + H]+ 429.2389, found 429.2383. 

Compound 3–11 

 

The compound was synthesized with an overall yield of 58% from S1 and 13 mg 

material was obtained. Rf = 0.40, NH3•H2O (28% aq.)/ MeOH/ CHCl3 = 1/7/55. 

1H NMR (500 MHz, CDCl3) δ 7.63 (d, J = 8.5 Hz, 1H), 6.39 (d, J = 8.5 Hz, 1H), 6.17 (s, 

2H), 5.95 (s, 2H), 3.53 – 3.12 (m, 2H), 3.12 – 2.87 (m, 2H), 2.87-2.79 (m, 4H), 2.70 – 

2.50 (m, 2H), 2.55-2.35 (m, 4H), 1.98 (s, br, 2H), 1.55 – 1.36 (m, 2H), 1.34 – 1.23 (m, 

2H), 0.63 (dd, J = 23.0, 12.0 Hz, 2H). 13C NMR (125 MHz, CDCl3) δ 174.4, 170.9, 

155.7, 153.7, 139.0, 131.7, 129.1, 113.4, 109.9, 108.9, 58.4, 50.3, 50.0 (covered by the 

solvent peak), 45.9, 42.8, 34.9, 34.6, 32.6. HRMS (ESI+, m/z) calculated for C26H33N2O5 

[M + H]+ 453.2389, found 453.2402. 

2,4-Dihydroxy-3-(3-(adamantylamino)propanamido)benzoic acid (3–12) 

 

The compound was synthesized with an overall yield of 46% from S1 and 27 mg 

material was obtained. Rf = 0.30, NH3•H2O (28% aq.)/ MeOH/ CHCl3 = 1/7/55. 

1H NMR (500 MHz, MeOD) δ 7.69 (d, J = 8.5 Hz, 1H), 6.39 (d, J = 8.5 Hz, 1H), 3.48 – 

3.42 (m, 3H), 3.10 – 3.00 (m, 2H), 2.26 (s, br, 2H), 2.08 – 1.98 (m, 4H), 1.96 – 1.86 (m, 

4H), 1.84 (s, br, 2H), 1.77 (d, J = 8.0 Hz, 2H). 13C NMR (125 MHz, MeOD) δ 175.8 (br), 
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172.0, 159.0, 157.1, 130.4, 111.6, 106.7, 63.5, 42.5, 37.4, 37.0, 31.0, 30.1, 27.4. HRMS 

(ESI+, m/z) calculated for C20H27N2O5 [M + H]+ 375.1920, found 375.1900. 

Compound 3–13 

 

The compound was synthesized with an overall yield of 20% from S1 and 12 mg 

material was obtained. Rf = 0.40, MeOH/ CHCl3 = 1/10. 

1H NMR (500 MHz, CDCl3) δ 7.57 (d, J = 9.0 Hz, 1H), 6.43 (d, J = 9.0 Hz, 1H), 3.49 

(qd, J = 13.5, 7.0 Hz, 2H), 3.42 (d, J = 15.0 Hz, 1H), 2.88 (d, J = 15.0 Hz, 1H), 2.79 (t, J 

= 6.0 Hz, 2H), 2.32 (ddd, J = 18.5, 7.5, 7.5 Hz, 1H), 2.25 (ddd, J = 14.5, 12.0, 3.5 Hz, 

1H), 2.06 (t, J = 4.5 Hz, 1H), 2.03 – 1.92 (m, 1H), 1.87 (d, J = 18.5 Hz, 1H), 1.77 (ddd, J 

= 14.0, 9.5, 4.5 Hz, 1H), 1.38 (ddd, J = 13.0, 9.5, 4.0 Hz, 1H), 0.98 (s, 3H), 0.82 (s, 4H). 

13C NMR (126 MHz, CDCl3) δ 216.8, 174.0, 171.9, 155.3, 155.1, 128.8, 113.7, 110.5, 

104.9, 58.9, 49.6, 42.8 (2 carbons), 39.5, 36.8, 27.0, 25.8, 19.7, 19.5. HRMS (ESI+, m/z) 

calculated for C20H27N2O8S [M + H]+ 455.1488, found 455.1502. 

3-Hexanamido-2,4-dihydroxybenzoic acid (3–14) 

 

The compound was synthesized with an overall yield of 41% from 2–48 and 14 

mg material was obtained.  

1H NMR (500 MHz, Acetone) δ 7.65 (d, J = 9.0 Hz, 1H), 6.49 (d, J = 9.0 Hz, 1H), 2.64 

(t, J = 7.5 Hz, 2H), 1.83 – 1.64 (m, 2H), 1.45 – 1.31 (m, 4H), 0.93 (t, J = 7.0 Hz, 3H). 13C 
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NMR (126 MHz, Acetone) δ 175.8, 172.7 (br), 156.8, 156.3, 129.0, 115.4, 111.3, 105.2, 

30.3, 30.1, 26.3, 23.1, 14.2. HRMS (ESI+, m/z) calculated for C13H18NO5 [M + H]+ 

268.1185, found 268.1197. 

2,4-Dihydroxy-3-(2-methylbutanamido)benzoic acid (3–15) 

 

The compound was synthesized with an overall yield of 54% from 2–48 and 15 

mg material was obtained.  

1H NMR (500 MHz, CDCl3) δ 11.55 (s, br, 1H), 11.35 (s, br, 1H), 7.97 (s, 1H), 7.66 (d, J 

= 9.0 Hz, 1H), 6.58 (d, J = 9.0 Hz, 1H), 2.61 – 2.43 (m, 1H), 1.90 – 1.70 (m, 1H), 1.70 – 

1.52 (m, 1H), 1.31 (d, J = 7.0 Hz, 3H), 1.02 (t, J = 7.5 Hz, 3H). 13C NMR (125 MHz, 

CDCl3) δ 177.7, 174.2, 156.1, 154.5, 128.6, 114.6, 112.0, 103.1, 43.8, 27.7, 17.7, 11.9. 

HRMS (ESI+, m/z) calculated for C12H16NO5 [M + H]+ 254.1028, found 254.1020. 

 

 

Scheme 6–3. Synthesis of compound 3–16.  
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1,3-bis(methoxymethoxy)-2-nitrobenzene (6–11) 

 

The reaction procedure refers to Section 6.2 (compound 2–46). The compound 

was synthesized with an overall yield of 83% from 2-nitroresorcinol and 0.16 g material 

was obtained.  

1H NMR (400 MHz, CDCl3) δ 6.79 (d, J = 8.5 Hz, 2H), 6.64 (AA’BB’, J = 8.5, 7.5 Hz, 

1H), 5.20 (s, 4H), 3.95 (s, br, 2H), 3.51 (s, 6H). 13C NMR (100 MHz, CDCl3) δ 145.2, 

127.4, 116.9, 109.0, 95.2, 56.0. HRMS (ESI+, m/z) calculated for C10H16NO4 [M + H]+ 

214.1079, found 214.1079. 

Compound 3–16 

 

The compound was synthesized with an overall yield of 17% from 6–11 and 26 

mg material was obtained.  

[α]D
22 = –13.5° (c = 0.5 in MeOH: CHCl3 = 1 : 20). 1H NMR (500 MHz, CDCl3) δ 10.32 

(s, 1H), 6.96 (t, J = 8.0 Hz, 1H), 6.51 (d, J = 8.0 Hz, 2H), 5.44 (s, 2H), 3.21 (dd, J = 13.5, 

1.5 Hz, 2H), 3.06 – 2.96 (m, 1H), 2.85 (d, J = 13.5 Hz, 2H), 2.76 – 2.64 (m, 1H), 2.64 – 

2.50 (m, 2H), 2.42 – 2.10 (m, 8H), 2.03 (s, br, 2H), 1.16 (s, 6H), 1.05 (d, J = 8.5 Hz, 2H), 

0.81 (d, J = 4.0 Hz, 6H). 13C NMR (125 MHz, CDCl3) δ 173.4, 149.7, 145.1, 126.8, 

122.4, 115.5, 109.8, 60.2, 49.8, 44.8, 40.8, 38.0, 33.3, 31.8 (2 carbons), 26.4, 21.2. 

HRMS (ESI+, m/z) calculated for C29H41N2O3 [M + H]+ 465.3117, found 465.3109.  
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(–)-Myrtemycin methyl ester (3–17) 

 

The compound was synthesized with an overall yield of 65% from 2–50 and 15 

mg material was obtained. Rf = 0.40,  MeOH/ CHCl3 = 1:10. 

[α]D
22 = –9.4° (c = 0.5 in MeOH: CHCl3 = 1 : 20).1H NMR (500 MHz, CDCl3) δ 11.59 (s, 

1H), 10.75 (s, 1H), 10.52 (s, 1H), 7.61 (d, J = 9.0 Hz, 1H), 6.53 (d, J = 9.0 Hz, 1H), 5.43 

(s, 2H), 3.94 (s, 3H), 3.23 (d, J = 12.5 Hz, 2H), 3.10 – 2.92 (m, 1H), 2.80 (d, J = 13.0 Hz, 

2H), 2.75 – 2.63 (m, 1H), 2.63 – 2.46 (m, 2H), 2.28 (dd, J = 11.5, 5.0 Hz, 4H), 2.20 (dd, J 

= 18.0, 2.5 Hz, 2H), 2.14 (dt, J = 8.5, 5.5 Hz, 2H), 2.09 – 1.94 (m, 2H), 1.14 (s, 6H), 1.04 

(d, J = 8.5 Hz, 2H), 0.80 (s, 6H). 13C NMR (126 MHz, CDCl3) δ 173.8, 171.1, 156.0, 

155.1, 145.3, 127.7, 122.3, 115.1, 111.5, 104.2, 60.4, 52.3, 50.0, 44.6, 40.7, 37.9, 33.3, 

31.7 (2 carbons), 26.2, 21.2. HRMS (ESI+, m/z) calculated for C31H43N2O5 [M + H]+ 

523.3172, found 523.3172.  

(–)-Homo-myrtemycin (3–18) 

 

The compound was synthesized with an overall yield of 45% from 2–50 and 25 

mg material was obtained. Rf = 0.45, NH3•H2O (28% aq.)/ MeOH/ CHCl3 = 1/7/55. 

[α]D
22 = –7.4° (c = 0.5 in MeOH: CHCl3 = 1 : 20). 1H NMR (600 MHz, CDCl3/MeOD = 

20/1) δ 7.65 (d, J = 8.5 Hz, 1H), 6.33 (d, J = 8.5 Hz, 1H), 5.73 (s, 2H), 3.48 (d, br, J = 

11.5 Hz, 2H), 3.41 – 3.21 (m, covered by the solvent residue peak, 2H), 3.05 (s, br, 1H), 
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2.88 (s, br, 1H), 2.74 – 2.55 (m, 2H), 2.45 (dt, J = 9.0, 5.5 Hz, 2H), 2.42 – 2.19 (m, 6H), 

2.19 – 1.97 (m, 4H), 1.26 (s, 6H), 1.14 (d, J = 9.0 Hz, 2H), 0.83 (s, 6H). 13C NMR (150 

MHz, CDCl3/MeOD = 20/1) δ 176.0 (br), 175.3, 159.0, 156.6, 142.3 (br), 130.6, 128.6 

(br), 113.4, 112.5, 107.8, 71.5, 60.1, 54.4, 45.7, 41.8, 39.1, 34.9, 32.7 (2 carbons), 26.6, 

21.6. HRMS (ESI+, m/z) calculated for C31H43N2O5 [M + H]+ 523.3172, found 523.3164.  

Compound 3–19 

 

The compound was synthesized with an overall yield of 67% from β-alanine and 

(–)-myrtenal and 0.30 g material was obtained.  

[α]D
27 = –8.3° (c = 3.0 in MeOH: CHCl3 = 1 : 20). 1H NMR (400 MHz, CDCl3) δ 5.52 (s, 

2H), 3.24 (d, J = 12.0 Hz, 2H), 3.08 – 2.94 (m, 1H), 2.89 (d, J = 13.0 Hz, 2H), 2.67 – 

2.45 (m, 3H), 2.42 (dt, J = 9.0, 5.5 Hz, 2H), 2.29 (d, br, J = 18.0 Hz, 2H), 2.21 (dd, br, J 

= 18.0, 2.5 Hz, 2H), 2.14 (t, br, J = 5.0 Hz, 2H), 2.16 – 1.98 (m, 2H), 1.25 (s, 6H), 1.06 

(d, J = 9.0 Hz, 2H), 0.78 (s, 6H). 13C NMR (100 MHz, CDCl3) δ 174.0, 142.3, 125.1, 

58.9, 48.9, 44.3, 40.3, 38.0, 31.7, 31.6, 29.4, 26.1, 21.1. HRMS (ESI+, m/z) calculated 

for C23H36NO2 [M + H]+ 358.2746, found 358.2743. IR (cm–1): 2916 (s), 1718 (s), 1383 

(s), 1195 (s), 1038 (m), 752 (m).  

(–)-Myrtamycin (3–20) 
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 (–)-Myrtanal was prepared by Corey-Kim oxidation [349] from (1S,2S,5S)-(–)-

myrtanol (99 % ee). And the crude material was used for pathway 1 without further 

purification. The compound (3–20) was synthesized with an overall yield of 63% from 2–

50 and 0.40 g material was obtained. Rf = 0.35, NH3•H2O (28% aq.)/ MeOH/ CHCl3 = 

1/7/55. 

 [α]D
21 = –9.6° (c = 0.6 in MeOH: CHCl3 = 1 : 20). 1H NMR (500 MHz, [D5] pyridine) δ 

8.25 (d, J = 8.5 Hz, 1H), 6.80 (d, J = 8.5 Hz, 1H), 3.05 – 2.88 (m, 1H), 2.87 – 2.65 (m, 

3H), 2.22 – 2.12 (m, 4H), 2.11 – 2.02 (m, 4H), 1.85 – 1.65 (m, 6H), 1.63 (d, J = 6.5 Hz, 

2H), 1.62 – 1.50 (m, 2H), 1.36 – 1.26 (m, 4H), 1.22 (s, 6H), 0.83 (s, 6H). 13C NMR (126 

MHz, [D5] pyridine) δ 175.9, 174.4, 158.9, 155.5, 129.6, 123.8, 115.9, 109.2, 61.2, 53.4, 

44.5, 42.2, 40.0, 34.0, 31.2, 27.6, 25.5, 24.3, 21.5, 20.9. HRMS (ESI+, m/z) calculated 

for C30H45N2O5 [M + H]+ 513.3328, found 513.3326. IR(cm–1): 2916 (m), 1556 (m), 

1384 (s), 1266 (m), 736 (s).  

(+)-Myrtemycin (3–21) 

 

The compound was synthesized with an overall yield of 69% from 2–50 and 0.75 g 

material was obtained. (+)-Myrtenal was synthesized by literature method [350] from 

(+)-pinene (99 % ee). Rf = 0.40, NH3•H2O (28% aq.)/ MeOH/ CHCl3 = 1/7/55.  

[α]D
20 = +10.8° (c = 1.0 in MeOH). 1H NMR (600 MHz, [D5] pyridine) δ 10.84 (s, 1H), 

8.12 (d, J = 8.5 Hz, 1H), 6.88 (d, J = 9.0 Hz, 1H), 5.56 (s, 2H), 3.42 (d, J = 12.4 Hz, 2H), 

3.35 – 3.25 (M, BR, 1H), 3.23 – 3.08 (m, 4H), 3.08 – 2.90 (m, br, 1H), 2.64 (s, 2H), 2.36 
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(dt, J = 8.5, 5.5 Hz, 2H), 2.20 (dd, J = 50.0, 17.5 Hz, 4H), 1.96 (s, 2H), 1.24 (s, 6H), 1.20 

(d, J = 8.5 Hz, 2H), 0.85 (s, 6H). 13C NMR (126 MHz, [D5] pyridine) δ 175.8, 174.5, 

159.0, 158.8, 146.2, 130.4, 123.9, 116.3, 111.2, 108.1, 61.0, 51.4, 45.8, 42.1, 39.1, 34.6, 

33.2, 32.9, 27.4, 22.3.  HRMS (ESI+, m/z) calculated for C30H41N2O5 [M + H]+ 

509.3015, found 509.3015. IR(cm–1): 2917 (s), 1654 (s), 1447 (m), 1366 (m), 1312 (s), 

1181 (s), 1051 (s), 891 (m), 792 (s).  

Compound 3–22 

 

The compound was synthesized with an overall yield of 20% from 2–50 and 26 

mg material was obtained. Rf = 0.30, NH3•H2O (28% aq.)/ MeOH/ CHCl3 = 1/7/55. 

1H NMR (600 MHz, MeOD) δ 7.65 (d, J = 8.5 Hz, 1H), 6.34 (d, J = 8.5 Hz, 1H), 5.78 (s, 

1H), 3.56 (d, br, J = 5.0 Hz, 2H), 3.40 – 3.30 (m, covered by the solvent residue peak, 

2H), 2.92 (t, J = 6.0 Hz, 2H), 2.50 (dt, J = 9.0, 5.5 Hz, 1H), 2.35 (q, br, J = 18.0 Hz, 2H), 

2.27 – 2.18 (m, 1H), 2.12 (s, 1H), 1.32 (s, 3H), 1.22 (d, J = 8.5 Hz, 1H), 0.87 (s, 3H). 13C 

NMR (151 MHz, MeOD) δ 176.0, 172.3, 159.6, 157.2, 140.8, 131.0, 127.0, 112.8, 112.7, 

107.4, 58.4, 53.3, 45.4, 44.7, 41.8, 39.2, 32.3 (2 carbons), 26.5, 21.5. HRMS (ESI+, m/z) 

calculated for C20H27N2O5 [M + H]+ 375.1920, found 375.1919. 

3-(3-aminopropanamido)-2,4-dihydroxybenzoic acid (as TEAA salt, 3–23) 
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The compound was synthesized with an overall yield of 15% from 2–50 and 5 mg 

material was obtained. The product was purified on HPLC (RP-C18 column), 1 % � 15 

% B in 0 � 20 min (A: 0.1 M TEAA in water, B: acetonitrile).  

1H NMR (500 MHz, MeOD) δ 7.69 (d, J = 9.0 Hz, 1H), 6.47 (d, J = 9.0 Hz, 1H), 3.28 (t, 

J = 6.5 Hz, 2H), 2.89 (t, J = 6.5 Hz, 2H). 13C NMR (126 MHz, MeOD) δ 173.7, 172.2, 

160.2, 131.3, 113.0, 109.0, 106.4, 40.6, 37.1. HRMS (ESI+, m/z) calculated for 

C10H13N2O5 [M + H]+ 241.0824, found 241.0801. 

 

6.4  Synthetic protocols for compounds in Chapter 4 

6.4.1  Synthesis of compound 4–1 and 4–2 

For the synthesis of natural c-di-GMP, see ref [330]. The synthesis of endo-S-c-

di-GMP is outlined in Scheme 4–1 in Section 4.1.1, and the detailed procedure was 

described below.  

2’-OTBS, N-acetyl guanosine-3’-dicyanoethylphosphorothioate (4–4) 

 

Standard guanosine phosphoramidite 4–3 (1.03 g, 1.09 mmol) and cyanoethyl 

alcohol (0.40 mL 5.5 mmol) were dissolved in anhydrous acetonitrile (15 mL) at RT 

under argon and stirred for 15 min. After the addition of imidazolium perchlorate [351] 

(0.70 g, 4.0 mmol), the reaction mixture was stirred for 6 h at RT. Beacauge reagent (3H-

1,2-benzodithiole-3-one 1,1-dioxide,  0.55 g, 2.8 mmol) was then added, and the reaction 
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mixture was stirred for an extra 1 h before an aqueous solution of Na2S2O3 (1 M, 30 mL) 

was poured into the reaction vessel to quench the reaction and CH2Cl2 (30 mL) was 

added. The two layers were immediately separated and the organic layer was collected. 

The aqueous layer was then extracted with CH2Cl2 (50 mL x 2) and the combined organic 

layer was concentrated with a rotary evaporator to dryness.  

The crude material was re-dissolved in CH2Cl2 (20 mL), and dichloroacetic acid 

(1.00 mL, 12.2 mmol) was added dropwise over 5 min to form a red/orange solution. 

After stirring for 10 min at RT, an aqueous solution of NaHCO3 (saturated solution, 30 

mL) was poured into the reaction mixture to quench the reaction. The two layers were 

separated and the organic layer was collected. The aqueous layer was then extracted with 

CH2Cl2 (50 mL x 2) and the combined organic layer was concentrated at a reduced 

pressure. The crude product was immediately purified with a silica-gel (40 g, 400-mesh) 

column with gradient elution (2–10 % MeOH in CH2Cl2, Rf = 0.45, 10 % MeOH in 

CH2Cl2). Product (60 % from phosphoramidite 4–3) was collected as a pale yellow 

glacial solid.  

1H NMR (500 MHz, CDCl3) δ 12.33 (s, 1H), 9.96 (s, br, 1H), 7.89 (s, 1H), 5.76 (d, J = 

7.0 Hz, 1H), 5.12 (dd, J = 10.5, 4.5 Hz, 1H), 5.04 (d, J = 5.0 Hz, 1H), 4.87 (d, J = 5.0 Hz, 

1H), 4.40 – 4.22 (m, 4H), 3.99 (d, J = 12.5 Hz, 1H), 3.90 – 3.71 (m, 1H), 2.95 – 2.71 (m, 

4H), 2.31 (s, 3H), 0.73 (s, 9H), –0.09 (s, 3H), –0.28 (s, 3H). 31P NMR (202 MHz, CDCl3) 

δ 67.7. 13C NMR (126 MHz, CDCl3) δ 173.0, 155.6, 147.9, 139.5, 122.4, 116.8, 89.3, 

84.6, 78.9, 73.5, 63.0, 61.9, 53.6, 31.0, 25.6, 24.5, 19.7, 18.0, –4.7, –5.2. ESI+/MS for 

[C24H37N7O8PSSi]+: calculated 642.1931, found 642.1902.  
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Compound 4–5 

 

A solution containing guanosine phosphothioate 4–4 (0.27 g, 0.42 mmol) and 

phosphoramidite 4–3 (0.59 g, 0.63 mmol) in anhydrous acetonitrile (15 mL) was stirred 

at RT under argon for 15 min. After the addition of imidazolium perchlorate (0.35 g, 2.0 

mmol), the reaction mixture was stirred for 6 h at RT. t-BuOOH (70 % aqueous solution, 

0.50 mL, 3.9 mmol) was then added, and the reaction mixture was stirred for an extra 10 

min before an aqueous solution of Na2S2O3 (1 M, 30 mL) was poured into the reaction 

vessel to quench the reaction and CH2Cl2 (30 mL) was added. The two layers were 

immediately separated and the organic layer was collected. The aqueous layer was then 

extracted with CH2Cl2 (50 mL x 2) and the combined organic layer was concentrated 

with a rotary evaporator to dryness.  

The crude material was re-dissolved in CH2Cl2 (20 mL), and dichloroacetic acid 

(0.50 mL, 6.1 mmol) was added dropwise over 5 min to form a red/orange solution. After 

stirring for 10 min at RT, an aqueous solution of NaHCO3 (saturated solution, 30 mL) 

was poured into the reaction mixture to quench the reaction. The two layers were 

separated and the organic layer was collected. The aqueous layer was then extracted with 

CH2Cl2 (50 mL x 3) and the combined organic layer was concentrated at a reduced 

pressure. The crude product was passed through a short silica-gel column (10 g) with 
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elution of 2:1 acetone: hexane (100 mL) to remove the byproduct. The desired product 

could be eluted with 1:10 MeOH: CH2Cl2 (Rf = 0.25) and then dried thoroughly under 

high vacuum.  

A mixture of the crude material, methyltriphenoxyphosphonium iodide (0.95 g, 

2.10 mmol) and 2,6-lutidine (1.00 mL, 8.61 mmol) was dissolved in anhydrous DMF (10 

mL) under argon. The reaction was stirred for 1 h at RT before an aqueous solution of 

Na2S2O3 (1 M, 30 mL) and CH2Cl2 (30 mL) was poured into the reaction mixture. The 

two layers were separated and the organic layer was collected. The aqueous layer was 

then extracted with CH2Cl2 (50 mL x 3) and the combined organic layer was concentrated 

at a reduced pressure. The crude product was immediately purified with a silica-gel (40 

g) column with gradient elution (1–8 % MeOH in CH2Cl2, Rf = 0.30, 5 % MeOH in 

CH2Cl2). 0.42 g product (61 % from intermediate 4–4) was collected as a pale yellow 

glacial solid. 

1H NMR (500 MHz, CDCl3) δ 12.28 (s, 1H), 12.15 (s, 1H), 10.75 (d, J = 7.0 Hz, 2H), 

7.84 (s, 1H), 7.72 (s, 1H), 5.76 (dd, J = 22.0, 7.0 Hz, 2H), 5.41 – 5.15 (m, 2H), 5.15 – 

4.89 (m, 2H), 4.74 – 4.49 (m, 2H), 4.49 – 4.12 (m, 8H), 3.62 (dd, J = 10.5, 8.0 Hz, 1H), 

3.46 (dd, J = 10.5, 5.0 Hz, 1H), 2.84 – 2.69 (m, 6H), 2.24 (d, J = 2.5 Hz, 6H), 0.74 (s, 

9H), 0.73 (s, 9H), –0.05 (s, 3H), –0.06 (s, 3H), –0.23 (s, 3H), –0.29 (s, 3H). 31P NMR 

(202 MHz, CDCl3) δ 67.9, –2.9. 13C NMR (126 MHz, CDCl3) δ 173.1, 155.9, 155.7, 

148.5, 148.1, 139.7, 138.8, 122.8, 122.3, 116.9, 116.7, 89.3, 88.8, 82.5, 81.4, 79.7, 72.8, 

71.9, 67.8, 63.3, 63.0, 29.7, 25.6, 24.3, 19.8, 18.0, 5.5, –4.57, –4.79, –5.15, –5.18. 

ESI+/MS for [C45H67IN13O15P2SSi2]
+: calculated 1306.2659, found 1306.2570.  
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Endo-S-c-di-GMP (4–2, as a triethylammonium salt) 

 

5’-Iodo guanosine phosphothioate 4–5 (50 mg, 0.038 mmol) was stirred with 

ammonia (30 % NH4OH in water, 5 mL) at RT for 24 h. The solvent was removed with a 

rotary evaporator and the crude material was thoroughly dried under high vacuum. 

Anhydrous pyridine (1.0 mL) and NEt3
.3HF (0.25 g, 1.6 mmol; caution! the chemical is 

highly toxic) were added carefully into the plastic reaction vessel, and the mixture was 

stirred vigorously at 50 °C for 6 h. Upon the immediate addition of acetone (20 mL), a 

white precipitate formed. The solid was filtered by a powder funnel with a piece of 

cotton, and was washed with acetone (5 mL x 4). The collected crude product was then 

re-dissolved in water (10 mL), purified by HPLC (Nacalai tesque 5C18-MS II column), 

concentrated at a reduced pressure, and washed with acetone (2 mL x 5) to remove the 

excess of TEAA (triethylammonium acetate) buffer. 16 mg product was collected as a 

white solid (59 % from 4–5).  

1H NMR (500 MHz, D2O, with water suppression) δ 8.25 (s, 1H), 8.10 (s, 1H), 6.12 (s, 

1H), 6.05 (d, J = 4.5 Hz, 1H), 5.22 – 5.02 (m, 3H), 4.87 (d, J = 5.0 Hz, 1H), 4.59 – 4.53 

(m, 2H), 4.50 (d, J = 12.5 Hz, 1H), 4.24 (d, J = 12.5 Hz, 1H), 3.42 (ddd, J = 13.0, 12.5, 

7.5 Hz, 1H), 3.30 (q, J = 7.5 Hz, 12H), 3.22 (ddd, J = 14.0, 12.0, 3.0 Hz, 1H), 1.38 (t, J = 

7.5 Hz, 18H). 31P NMR (202 MHz, D2O) δ 19.9, –0.4. 13C NMR (151 MHz, D2O) δ 158.9 



 

(2 carbons), 153.9, 153.8, 151.6, 150.9,

79.6, 74.3, 73.5, 72.0, 70.8, 62.4, 46.7, 31.4, 8.2. 

calculated 705.0647, found 

 

6.4.2  Cleavage of c-di-

The RocR enzymatic reaction was scaled up 

total volume of 0.50 mL, and other conditions remained the same as indicated in Section 

6.6.2. At three time points: 30 min, 2 h and 18 h, 

the reaction was stopped by adding a final concentration of 5 mM EDTA and cooling on 

ice. RocR was then removed by running through a size exclusion column. The samples 

were subsequently stored at 

Figure 6–3. HPLC analysis of cleavage of endo

11 % B, 0 � 16 min (A: 100 mM TEAA buffer in water; B: acetonitrile), RT. 

(2 carbons), 153.9, 153.8, 151.6, 150.9, 138.1, 137.1, 116.5 (2 carbons), 89.2, 88.0, 81.1, 

79.6, 74.3, 73.5, 72.0, 70.8, 62.4, 46.7, 31.4, 8.2. ESI–/MS for [C20

, found 705.0620. 

-GMP and endo-S-c-di-GMP by RocR 

The RocR enzymatic reaction was scaled up to 500 µM endo-S

total volume of 0.50 mL, and other conditions remained the same as indicated in Section 

. At three time points: 30 min, 2 h and 18 h, aliquots of the reaction were taken and 

reaction was stopped by adding a final concentration of 5 mM EDTA and cooling on 

ice. RocR was then removed by running through a size exclusion column. The samples 

were subsequently stored at –20 °C until HPLC analysis (Figure 6–3). 

ysis of cleavage of endo-S-c-di-GMP by RocR. Condition: 1 

16 min (A: 100 mM TEAA buffer in water; B: acetonitrile), RT. 
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138.1, 137.1, 116.5 (2 carbons), 89.2, 88.0, 81.1, 

20H23N10O13P2S]–: 

S-c-di-GMP in a 

total volume of 0.50 mL, and other conditions remained the same as indicated in Section 

aliquots of the reaction were taken and 

reaction was stopped by adding a final concentration of 5 mM EDTA and cooling on 

ice. RocR was then removed by running through a size exclusion column. The samples 

 

GMP by RocR. Condition: 1 � 

16 min (A: 100 mM TEAA buffer in water; B: acetonitrile), RT.  
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The HPLC chromatography (Figure 6–3) clearly showed that endo-S-c-di-GMP 

(at 15.5 min) was converted to a product (at 20.3 min) almost quantitatively after 18 h. 

Mass spectrometry and NMR analysis both indicated that 5’-pGSpG was the product 

(terminal phosphothioates usually give a 31PNMR signal at 16–17 ppm [352,353], 

whereas the endo-sulfur phosphothioates have signals around 20 ppm [354]. Additionally 

terminal phosphates (dianionic) have 31PNMR peaks around 1 ppm (see NMR data for 

pGpG (4–7)), whereas phosphodiesters (monoanionic) have 31PNMR signals around –1 

pm [333]. The 31PNMR of the product of the RocR cleavage reaction has peaks at –0.5 

and 20.3 ppm (characteristic of a phosphodiester and a terminal phosphothioate 

respectively); therefore we conclude that cleavage of endo-S-c-di-GMP exclusively 

occurred at the natural phosphate site.  

5’-pGSpG (4–6) 

1H NMR (600 MHz, D2O) δ 7.82 (s, 1H), 7.78 (s, 1H), 6.00 (d, J = 3.0 Hz, 1H), 5.63 (d, J 

= 5.0 Hz, 1H), 5.33 (td, J = 7.5, 3.5 Hz, 1H), 5.13 (ddd, J = 11.0, 7.0, 5.0 Hz, 1H), 4.62 – 

4.51 (m, 2H), 4.47 – 4.37 (m, 1H), 4.20 (ddd, J = 11.5, 4.5, 2.5 Hz, 1H), 4.12 (dt, J = 

11.0, 5.5 Hz, 1H), 4.06 (dt, J = 6.0, 4.5 Hz, 1H), 3.08 (q, J = 7.5 Hz, 9H), 2.60 (ddd, J = 

20.5, 14.5, 5.5 Hz, 2H), 1.15 (t, J = 7.5 Hz, 15H). 31P NMR (162 MHz, D2O) δ 20.3, –

0.5. ESI–/MS for [C20H23N10O13P2S]–: calculated 705.0647 [M–H3O]–, found 705.0622. 

pGpG bis(triethylammonium) salt (4–7) 

1H NMR (600 MHz, D2O) δ 7.93 (s, 1H), 7.86 (s, 1H), 5.74 (d, J = 5.5 Hz, 1H), 5.69 (d, J 

= 5.5 Hz, 1H), 4.48 – 4.33 (m, 1H), 4.30 (s, 1H), 4.21 (s, 1H), 4.13 (dt, J = 11.5, 3.0 Hz, 

1H), 4.05 (dt, J = 11.5, 4.0 Hz, 1H), 3.99 – 3.77 (m, 2H), 3.07 (q, J = 7.5 Hz, 12H), 1.15 
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(t, J = 7.5 Hz, 18H). 31P NMR (243 MHz, D2O) δ 1.1, –0.6. ESI–/MS for 

[C20H25N10O15P2]
–: calculated 707.0982, found 707.0989. 

 

6.4.3 Syntheses of compounds 4–52 and 4–53 

Jones’ strategy for the synthesis of c-di-GMP [330] was adopted for the synthesis 

of c-di-GMP analogs containing natural phosphate linkages, 4–52 and 4–53. Crude 

materials were used for the steps up until intermediate 6–14 before the first purification 

was done (Scheme 6–4). 2.0 g of starting phosphoramidite 6–11 was used. After mono-

cyanoethyl protected 6–14 was obtained, the solvent was removed from the reaction 

mixture by high-vacuum to yield a sticky yellow solid. This crude material was 

transferred to a centrifuge tube and was sequentially washed with EtOAc (50 mL x 2), 

MeOH (50 mL x 3) and centrifuged each time. The EtOAc layer was extracted with H2O 

(25 mL x 2), and the aqueous layer combined with the MeOH layer and was concentrated 

and subjected to HPLC purification. HPLC condition: 10 � 25% B, 0 � 20 min (A: 0.1 

M TEAA in water; B: acetonitrile). The product was identified by ESI-MS (negative 

mode) before the global deprotection step. Procedures for global deprotection, using 

ammonium hydroxide, and HPLC purification of the final compound were similar to 

those used for preparing compound 4–2. 
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Scheme 6–4. Synthesis of compounds 4–52 (R1 = Me) and 4–53 (R1 = F). Modified 

conditions from ref [330] were used: a) pyridinium trifluoroacetate, H2O, then t-BuNH2; 

b) dichloroacetic acid, then quenched with pyridine; c) compound 6–11; d) t-BuOOH; e) 

dichloroacetic acid, then quenched with pyridine; f) 5,5-dimethyl-2-oxo-2-chloro-1,3,2-

dioxaphosphinane (DMOCP); g) I2, H2O, then HPLC purification; h) ammonia, then 

HPLC purification.  

 

2’,2’-di-OMe c-di-GMP bis(triethylammonium) salt (4-52) 

 

1H NMR (500 MHz, D2O) δ 7.93 (s, 2H), 5.88 (d, J = 6.0 Hz, 2H), 4.81 (td, J = 8.5, 4.5 

Hz, 2H), 4.44 (t, J = 5.5 Hz, 2H), 4.33 (d, J = 3.0 Hz, 2H), 3.81 (dd, J = 13.0, 2.5 Hz, 2H), 

3.76 (dd, J = 13.0, 3.5 Hz, 2H), 3.39 (s, 6H), 3.10 (q, J = 7.5 Hz, 12H), 1.18 (t, J = 7.5 Hz, 

18H). 31P NMR (202 MHz, D2O) δ 0.1. 13C NMR (126 MHz, D2O) δ 158.7, 153.7, 151.3, 

138.0, 116.6, 86.0, 85.0, 81.2, 72.1, 61.1, 58.1, 46.6, 8.1. ESI–/MS for [C22H27N10O14P2]
–: 

calculated 717.1189, found 717.1150. 
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C-di-dGMP bis(triethylammonium) salt (4-53) 

 

1H NMR (400 MHz, D2O) δ 7.96 (s, 2H), 6.21 (s, 2H), 5.07 – 4.86 (m, 1H), 4.15 (s, 2H), 

4.00 (dd, J = 40.0, 10.5 Hz, 3H), 3.06 (q, J = 7.5 Hz, 12H), 2.99 – 2.77 (m, 2H), 2.63 (dt, 

J = 14.0, 7.0 Hz, 2H), 1.14 (t, J = 7.5 Hz, 18H). 31P NMR (161 MHz, D2O) δ –0.5. ESI–

/MS for [C20H23N10O12P2]
–: calculated 657.0978, found 657.0998. 

 
6.4.4  Solid support synthesis (compounds 4–54 to 4–57) 

Sulfonylethyl-ODMT CPG (10 µmol/g) was prepared following literature [344] 

(see Scheme 6–1, credit: Andrew Shurer). The solid support was loaded (0.1 g) into the 

synthesis column (Figure 6–2b) and sealed tightly. A DNA/RNA synthesizer was used 

for making the dinucleotide and was set up as described in Section 6.1.4 (Figure 6–2). 

Two cycles of standard 1.0 µmol RNA program (DMT-off) were performed with an 

interruption before the oxidation step during the first cycle and the oxidation step was 

done manually, using a solution of Beacauge reagent (1 mg/mL in anhydrous acetonitrile, 

1 mL) for 30 min using the apparatus shown in Figure 6–4. A white precipitate might be 

observed in the syringes in the sulfurization step, and after the reaction was finished, the 

synthesis column was put back on to the DNA/RNA synthesizer for the rest of the 

synthesis cycles.  



 

Figure 6–4. Sulfurization of the phosphonate on CPG beads. An empty syringe and 

another one with 1 mL Beacauge reagent (1 mg/mL in anhydrous acetonitrile) were 

attached on each side of the synthesis column. The liquid was passed through the column 

by pushing and pulling the two syringes simultaneously. This liquid transfer was repeated 

three times during the 30 min. 

  

When the two synthesis cycles 

with anhydrous acetonitrile for another 60 s on the DNA/RNA synthesizer before the 

CPG beads in the synthesis column 

DNA/RNA synthesizer can handle four synthesis columns simulta

24 columns were synthesized for each analog. The argon

in a round-bottom flask (theoretically contained 24 

were then further dried under the high vacuum for 5 h while ge

DMF (10 mL) was transferred to the flask containing the dried CPG beads with a 

cannula, followed by a rapid transfer

2.10 mmol) and 2,6-lutidine (1

reaction was stirred for 1 h at RT before 

was poured into the reaction 

3) and methanol (10 mL x 3) in a Buchner funnel before transferred into

flask and stirred with ammonia (30 % NH

The reaction mixture was then filtered and rinsed with H

Sulfurization of the phosphonate on CPG beads. An empty syringe and 

another one with 1 mL Beacauge reagent (1 mg/mL in anhydrous acetonitrile) were 

tached on each side of the synthesis column. The liquid was passed through the column 

by pushing and pulling the two syringes simultaneously. This liquid transfer was repeated 

three times during the 30 min.  

When the two synthesis cycles were completed, the synthesis column was washed 

with anhydrous acetonitrile for another 60 s on the DNA/RNA synthesizer before the 

CPG beads in the synthesis column were dried by blowing through 

DNA/RNA synthesizer can handle four synthesis columns simultaneously

24 columns were synthesized for each analog. The argon-dried CPG beads were collected 

bottom flask (theoretically contained 24 µmol nucleotides). The CPG beads 

were then further dried under the high vacuum for 5 h while gently stirring. Anhydrous 

DMF (10 mL) was transferred to the flask containing the dried CPG beads with a 

followed by a rapid transfer of methyltriphenoxyphosphonium iodide

lutidine (1.00 mL, 8.61 mmol) under the protection of argon

reaction was stirred for 1 h at RT before an aqueous solution of Na2S2O

was poured into the reaction mixture. The CPG beads were washed with H

3) and methanol (10 mL x 3) in a Buchner funnel before transferred into

flask and stirred with ammonia (30 % NH4OH in water, 15 mL) at 40 °C for overnight. 

The reaction mixture was then filtered and rinsed with H2O (10 mL x 3). The combined 
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Sulfurization of the phosphonate on CPG beads. An empty syringe and 

another one with 1 mL Beacauge reagent (1 mg/mL in anhydrous acetonitrile) were 

tached on each side of the synthesis column. The liquid was passed through the column 

by pushing and pulling the two syringes simultaneously. This liquid transfer was repeated 

the synthesis column was washed 

with anhydrous acetonitrile for another 60 s on the DNA/RNA synthesizer before the 

dried by blowing through with argon. The 

neously and a total of 

dried CPG beads were collected 

mol nucleotides). The CPG beads 

ntly stirring. Anhydrous 

DMF (10 mL) was transferred to the flask containing the dried CPG beads with a 

of methyltriphenoxyphosphonium iodide (0.95 g, 

on of argon. The 

O3 (1 M, 30 mL) 

. The CPG beads were washed with H2O (10 mL x 

3) and methanol (10 mL x 3) in a Buchner funnel before transferred into a round-bottom 

OH in water, 15 mL) at 40 °C for overnight. 

O (10 mL x 3). The combined 
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filtrate was concentrated and for analogs 4–54, 4–55 and 4–57 the crude products were 

directly subjected to HPLC purification. For the procedure of OTBS group deprotection 

of analog 4–56 and HPLC conditions refer to the preparation of compound 4–2. The 

factions collected from HPLC were concentrated at a reduced pressure, and washed with 

acetone (2 mL x 5) to remove the excess of TEAA (triethylammonium acetate) buffer. 3–

14 mg product of compounds 4–54 to 4–57 was collected as a white solid (estimated 

yields of 18–83 % were obtained, based on the estimated loading of the CPG beads). 

2’,2’-difluoro-endo-S-c-di-GMP bis(triethylammonium) salt (4-54) 

 

1H NMR (500 MHz, D2O, water suppression, 50 °C) δ 8.28 (s, 1H), 8.15 (s, 1H), 6.51 (d, 

J = 19.0 Hz, 1H), 6.42 (d, J = 19.0 Hz, 1H), 5.98 (dd, J = 52.0, 3.5 Hz, 1H), 5.80 (dd, J = 

52.0 3.5 Hz, 1H), 5.50 (tdd, J = 13.0, 8.5, 5.0 Hz, 1H), 5.35 (dt, J = 22.5, 9.0 Hz, 1H), 

4.63 (d, J = 12.5 Hz, 1H), 4.33 (d, J = 11.0 Hz, 1H), 3.69 (dt, J = 13.5, 5.0 Hz, 1H), 3.30 

(t, J = 11.0 Hz, 1H). 31P NMR (202 MHz, D2O, 50 °C) δ 19.3, –0.5. ESI–/MS for 

[C20H21F2N10O11P2S]–: calculated 709.0561, found 709.0596. 

2’,2’-di-OMe-endo-S-c-di-GMP bis(triethylammonium) salt (4-55) 
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1H NMR (500 MHz, D2O, 50 °C) δ 8.31 (s, 1H), 8.18 (s, 1H), 6.30 (s, 1H), 6.19 (d, J = 

4.5 Hz, 1H), 5.35 (dt, J = 10.0, 5.0 Hz, 1H), 5.21 (td, J = 9.0, 5.0 Hz, 1H), 4.91 (t, J = 4.5 

Hz, 1H), 4.66 – 4.52 (m, 4H), 4.39 – 4.23 (m, 1H), 3.87 (s, 3H), 3.76 (s, 3H), 3.52 (ddd, J 

= 14.0, 11.5, 7.5 Hz, 1H), 3.38 (q, J = 7.5 Hz, 12H), 3.32 (ddd, J = 14.0, 11.5, 3.0 Hz, 

1H), 1.47 (t, J = 7.5 Hz, 18H). 31P NMR (202 MHz, D2O, 50 °C) δ 18.9, –0.7. 13C NMR 

(126 MHz, D2O, 50 °C) δ 159.9 (2 carbons), 154.9, 154.8, 152.6, 152.0, 139.1, 138.2, 

117.6 (2 carbons), 88.1, 87.7, 83.7, 82.3, 81.8, 80.8, 74.1, 71.3, 71.2, 63.3, 59.9, 47.9, 

32.4, 9.30. ESI–/MS for [C22H27N10O13P2S]–: calculated 733.0960, found 733.0981. 

2’,2’-OMe-OH-endo-S-c-di-GMP (4-56) 

 

1H NMR (500 MHz, D2O, water suppression, 50 °C) δ 8.32 (s, 1H), 8.18 (s, 1H), 6.29 (s, 

1H), 6.12 (d, J = 4.5 Hz, 1H), 5.35 – 5.06 (m, 3H), 4.74 – 4.48 (m, 3H), 4.31 (d, J = 13.0 

Hz, 1H), 3.84 (d, J = 3.0 Hz, 3H), 3.50 (ddd, J = 13.5, 11.5, 7.5 Hz, 1H), 3.35 – 3.17 (m, 

1H). 31P NMR (202 MHz, D2O, 50 °C) δ 19.1, –0.2. ESI–/MS for [C21H25N10O13P2S]–: 

calculated 719.0804, found 719.0793. 

Endo-S-c-di-dGMP triethylammonium salt (4-57) 
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1H NMR (500 MHz, D2O, water suppression, 50 °C) δ 8.26 (s, 1H), 8.23 (s, 1H), 6.65 – 

6.43 (m, 2H), 5.41 (s, 2H), 4.69 – 4.48 (m, 2H), 4.46 – 4.27 (m, 2H), 3.42 (q, J = 7.5 Hz, 

6H), 3.33 (dd, J = 13.5, 5.5 Hz, 2H), 3.23 (ddd, J = 20.5, 13.5, 6.0 Hz, 2H), 3.02 (dt, J = 

13.5, 6.0 Hz, 1H), 2.92 (ddd, J = 11.0, 5.5, 5.0 Hz, 1H), 1.51 (t, J = 7.5 Hz, 9H). 31P 

NMR (202 MHz, D2O, 50 °C) δ 19.7, –0.3. ESI–/MS for [C20H23N10O11P2S]–: calculated 

673.0749, found 673.0702. 

 

6.5  Computational details 

All of the calculations were performed with the Gaussian 03/09 program [298].  

6.5.1   Ring-opening reaction 

For ring-opening reaction in Chapter 2 (Scheme 2–8), density functional B3LYP 

[355,356] was used to locate all the transition structures and intermediates. Frequency 

calculations at the same level have been performed to confirm each stationary point to be 

either a minimum or a transition structure. 6-31G basis set is applied for all elements. The 

reported energies (Table 6–1) are zero-point energy-corrected electronic energies (∆E0 

K), enthalpies (∆H298 K) and free energies (∆G298 K).  

 

Table 6–1. The computed energies and other thermal parameters for the ring-opening 

reaction (in Hartree).[a] 

Structures Eele E0 K H298 K G298 K 
2–32 –547.920343986 –547.681748 –547.668910 –547.718623 
TS-a –547.879565801 –547.643849 –547.631576 –547.679279 
2–36 –547.960483826 –547.720075 –547.707858 –547.755868 
TS-b –547.864745024 –547.629002 –547.616869 –547.664266 
2–37 –547.938092690 –547.697860 –547.685563 –547.733836 

[a] For the Cartesian coordinates of the computed structures, see the Supporting 

Information of ref [273]. 
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6.5.2  Calculation of the radii (volumes) of c-di-GMP polymorphism 

Hartree-Fock method and Onsager’s model (Gaussian keyword: SCRF = dipole) 

in the self-consistent reaction field (SCRF) were used to calculate the radius of the solute 

cavity (Gaussian keyword: volume; parameters: H2O dielectric constant ε = 78.4, a0 = 

1000 Å). The 3-21G basis set was used for atom C, N, O, and H, and 6-31G(d) basis set 

was used for atom P, S and K.  

According to Stokes-Einstein equation, D = k T / (6 π η R), where k is the 

Boltzmann constant, T is the temperature, η is the solvent viscosity and R is the radius of 

the molecular sphere. The diffusion constants in solution phase are inversely proportional 

to the radii of the particles. The diffusion constant of monomeric c-di-GMP and endo-S-

c-di-GMP were measured with previous reported method [227,316]. The diffusion 

constants for other c-di-GMP aggregation states can be predicted from the calculated 

radii. Due to the low symmetry of endo-S-c-di-GMP aggregates, the radii calculation 

requires higher computing resource. However, we assume that the ratios of different 

aggregates of endo-S-c-di-GMP are similar to that of c-di-GMP. Thus we applied the 

ratio of calculated radii for c-di-GMP aggregates, and the measured monomeric endo-S-

c-di-GMP diffusion constant to predict other diffusion constants for endo-S-c-di-GMP 

aggregates. The results of the calculation were summarized in the Table 6–2 (See 

Supporting Information of ref [357] for the Cartesian coordinates of the c-di-GMP 

aggregate structures).  
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Table 6–2. Calculation of the radii and diffusion coefficients of c-di-GMP polymorphism 

Aggregates 
Calculate  
radii (Å) 

Symmetry of 
the structures 

Calculated diffusion 
constant (10-10 m/s2) 

c-di-GMP 
Monomeric c-di-GMP (closed) 6.41 C2 3.01a 
Monomeric c-di-GMP (open) 6.34 C2 -- 
Dimeric c-di-GMP 7.91 --b 2.45 
Tetrameric c-di-GMP 9.61 D4 2.01 
Octameric c-di-GMP 11.92 D4 1.62 

endo-S-c-di-GMP 
Monomeric endo-S-c-di-GMP 
 (closed) 

6.50 C1 2.55a 

Monomeric endo-S-c-di-GMP 
 (open) 

6.27 C1 -- 

Dimeric endo-S-c-di-GMP -- -- 2.07 
Tetrameric endo-S-c-di-GMP -- -- 1.70 
Octameric endo-S-c-di-GMP -- -- 1.37 

a) The diffusion constants of monomeric form of c-di-GMP and endo-S-c-di-GMP were 

measured from DOSY T1/T2 relaxation analysis with no metal cation added (average 

value; see Figure 4–2, 4–3 and Section 6.6.1 for detail); b) The dimeric c-di-GMP 

structure was adapted from x-ray crystal structure (PDB code: 315A) 

 

6.6  NMR experiments for T1/T2 relaxation analysis (DOSY) and NOE 

The Bruker AV III 600 MHz spectrometer was used to determine the diffusion 

constants and the NOE effect. The concentration of the samples was controlled at 3 mM 

in D2O (with or without K+) using UV analysis (ε260 nm =21600). The samples with 100 

mM KCl was incubated at 90 °C for 5 min, cooled down to RT, and stored at 4 °C for 

overnight before use. Shigemi NMR tubes (D2O) were used for all experiments, in which 

0.30 mL sample solution was applied. A temperature control module was used for all 

experiments at 30.0 °C [316]. 

DOSY was measured with the stimulated echo pulse sequence (Bruker pulse 

program stebpgp1s19) using bipolar gradient pulses and watergate 3-9-19 to subpressed 

the solvent. Key aquisition parameters for the DOSY experiment include the big delta (∆) 
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at 0.10 s, the number of scans at 8, relaxation delay at 2.5 s, and the gradient strength was 

varied 32 times lineary from 5 to 95% . The gradient pulse length (small delta δ) within 

the range of 1.4–1.8 ms was optimized under the experiment condition upon the point 

that the region of 5.5–9.0 ppm showed a good decay for the major peaks. The data were 

processed with TopSpin 2.1 software with T1/T2 relaxation analysis. Exponantial function 

was applied for the raw data and the curve-fitting of the decays was based on the area of 

the peaks.  

The condition of NOE experiment was referred to previous report [227], where a 

short mixing time (150 ms) was applied. The Figure 6–5 illustrates that the syn 

conformer of guanine H8 and anomeric H showed a significantly stronger positive NOE 

(> 35 %) compared to anti conformer (< 8 %).  

 

 

Figure 6–5. The NOE of syn- and anti- guanosines.  

 
 

6.7  Biological assays 

6.7.1  Minimal inhibitory concentration (MIC) 

In Chapter 2, Staphylococcus aureus (Newman), Streptococcus agalactiae 

(2603V/R), and Bacillus subtilis (3160) were routinely grown in tryptic soy broth, Todd 

Hewitt broth and Luria Broth, respectively. For minimal inhibitory concentration 

determination, each of the strains was diluted to 5 x 105 cfu/mL and 98 µL was added to 
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2 µL of diluted compounds or known antibacterial agent (carbenicillin or platensimycin) 

at the indicated concentration in sterile 96-well plate. The plates were shaken for 24 

hours at 37 ˚C in a humidified chamber. The MIC was determined as the lowest 

concentration at which no bacteria were observed to grow as determined by OD600 

(Figure 6–6). All experiments were performed in triplicate.  
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Figure 6–6. MIC determination for platensimycin analogs against a) S. aureus, b) S. 

agalactiae and c) B. subtilis.  

 

In Chapter 3, each of the strains of Bacillus subtilis (3160) and Escherichia coli 

K12 (1655) were grown in Luria Broth. The strains were diluted to 3 x 105 cfu/mL and 98 

µL was added to 2 µL of diluted compounds or known antibacterial agent (FAS inhibitors: 

platensimycin or cerulenin) at the indicated concentration in a sterile 96-well plate. When 

MDR inhibitor Phe-Arg β-naphthylamide dihydrochloride (PAβND) was added, 97 µL 

bacterial broth, 2 µL antibacterial solution and 1 µL MDR inhibitor solution was mixed in 

each well of a 96-well plate. The plates were shaken for 24 hours at 37 ˚C. The minimum 

inhibitory concentration (MIC) was determined as the lowest concentration at which no 

bacteria were observed to grow as determined by OD600. All experiments were performed 

in triplicate. The MIC testing against MRSA and VRE strains were done by Accugen 

Laboratories and AntiMicrobial Test Laboratories. 

 

  

0.00

0.10

0.20

0.30

0.40

0.50

0.60

c

0.00 0.01 0.10 1.00 10.00 100.00 1000.00

concentration/ µg·mL -1

OD 
600

Oxazinidinyl platensimycin (2–30) 

Oxazinidinyl platensimycin
methyl ester (2–56)

Compound 2–57 

Carbenicillin



163 
 

6.7.2 Enzymatic assays 

Alg44, RocR, and WspR were purified by histidine chromatography followed by 

Q-sepharose anion exchange column. Proteins were dialyzed into a 10 mM Tris, 100 mM 

NaCl solution. α-32P-c-di-GMP was generated from purified WspR as described in Lee et 

al.’s previous report [225]. For binding assay of Alg44, 5 µM protein was mixed with 1 

µM α-32P-c-di-GMP and indicated competitor (c-di-GMP or endo-S-c-di-GMP) in a 

buffer containing 10 mM Tris (pH 8.0), 100 mM KCl, and 5 mM MgCl2. This mixture 

was allowed to equilibrate for 10 min. The binding assay was analyzed using pulldown 

assay with Ni-NTA agarose beads [225]. For RocR and WspR enzymatic assays, 5 µM 

enzyme was added to 8 nM α-32P-c-di-GMP (for RocR) or 8 nM α-32P-GTP (for WspR) 

and 1 mM of the indicated competitor in reaction buffer (10 mM Tris pH 8.0, 100 mM 

NaCl, 5 mM MgCl2). 1 µL of sample were spotted on polyethyleneimine cellulose TLC 

plates at indicated times after addition of the enzyme. Samples were dried and separated 

using a mobile phase consisting of 1: 1.5 of saturated (NH4)2SO4 and 1.5 M KH2PO4. 

TLC plates were dried, exposed on a phosphorimager screen and visualized with a 

Fujifilm FLA-7000.  
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Appendix I. Kinetic study of the epimerization reaction 

Assuming the reaction pathway is as described in Scheme S1. 

 

  

Scheme S1. Proposed mechanism for DBU catalyzed epimerization of bis-alkene (2–34).  
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Thus, 
ξ

ξ−
=−−

1
2121 kkkk   (S5) 

Substitute Eq. S5 into Eq. S4,  
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A plot of )
][

][
1ln(

0A

B

ξ
−  versus t gives: ξ = 0.447 (R2 = 0.987) (Figure S1) 
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Figure S1. The scatter plot and the trend line of )
][
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Thus, 70 % of the equilibrium is reached in 6 h.   

ln (1-B/ξA0) = -0.0032 t - 0.1115

R
2
 = 0.9866

- 2. 1

- 1. 8

- 1. 5

- 1. 2

- 0. 9

- 0. 6

- 0. 3

0
0 200 400 600

t / mi n

ln
(1

-B
/ξ

A 0
)



167 
 

Appendix II. Reaction conditions for dynamic ring-closing metathesis 

Dynamic ring-closing metathesis (DRCM) was performed by combining the 

ruthenium catalyst and an epimerization base in the same flask. Other than Hoveyda-

Grubbs II catalyst, two other ruthenium catalysts, Grubbs I and Grubbs II catalyst 

(Figure S2), were also screened.  In the case of Grubbs I catalyst, no reaction occurred 

with the bis-alkene substrate 2–34 and the starting material was recovered. For Grubbs II 

catalyst, the yield of the reaction (23 %) was significantly lower than the reaction that 

was catalyzed by Hoveyda-Grubbs II catalyst (69 %). Significant side products (a 

complicated mixture) were also obtained when Grubbs II catalyst was used (Scheme S2). 

 

 

Figure S2. The structures of Grubbs I, Grubbs II and Hoveyda-Grubbs II catalyst.   

 

 

Scheme S2. The unsuccessful ring-closing metathesis reactions that were catalyzed by 

Grubbs I and Grubbs II catalyst. Reaction condition: 0.05 M cis-2–34: trans-2–34 (1: 

3.5), 16 h.  
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The rate-limiting step of the dynamic ring-closing metathesis (see Section 2.2.2) 

is the DBU catalyzed epimerization, with an apparent rate constant of 0.24 M–1min–1 (see 

Appendix I). Since the ruthenium catalyst is deactivated over time in the presence of 

alkenes [283,284] (t1/2 ~ 1 h under the experiment condition), the catalyst needs to be 

repeatedly added every other 3 h during the slow epimerization process. We envisaged 

that a base with better epimerization ability would reduce the loading of the ruthenium 

catalyst. Ideally, if the epimerization equilibrium can be rapidly reached before the 

catalyst is deactivated, the ruthenium catalyst can be added at the beginning of the 

reaction (one time loading).  Therefore we screened other amine and alkoxide bases for 

the epimerization ability and the compatibility with Hoveyda-Grubbs II catalyst (Table 

S1). The epimerization reaction was performed with 30 mol% of various bases and a 

mixture of cis-2–34: trans-2–34 (1: 5.7) at 75 °C. To test the compatibility of the bases 

and the ruthenium catalyst, a simpler bis-alkene, diallyl dimethylmalonate was used with 

3 mol% Hoveyda-Grubbs catalyst and 30 mol% indicated base. No ring-closure product 

can form if the ruthenium catalyst is poisoned (Scheme S2). Among all the amine bases 

that are screened, 1,5,7-triazabicyclo[4.4.0]dec-5-ene, solid-supported and solution phase 

DBU (entry 7, 9 and 4, Table S1) had the best epimerization abilities. In the case of 

1,5,7-triazabicyclo[4.4.0]dec-5-ene, the epimerization reaction was significantly more 

rapid than the reactions catalyzed by other bases, and the reaction almost reaches 

equilibrium after 1 h (at equilibrium, cis-2–34: trans-2–34 = 1.0: 1.2 in toluene). This 

amine, however, poisons the Hoveyda-Grubbs II catalyst, and is, therefore, not ideal for 

DRCM. Most of the amines or imines bearing an N–H moiety were not compatible with 

the ruthenium catalyst. Bulky tertiary amines, such as Hünig’s base (entry 2, Table S1) 
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and DBU are therefore most ideal for DRCM because they can epimerize ketone 

substrates and do not readily poison the ruthenium catalyst. Surprisingly, KOt-Bu (entry 

10, Table S1) was also compatible with Hoveyda-Grubbs II catalyst in protic solvent, t-

BuOH, and the epimerization ability was similar to DBU (entry 4 and 9, Table S1). 

 

Table S1. Epimerization of ketone 2–34 by various bases (the initial mixture of 2–34 

consisted of 1: 5.7 cis: trans) 

 

Entry Bases 
cis-2–34: 

trans-2–34[a] 
1 Et3N 1.0: 5.5 
2 Et(i-Pr)2N 1.0: 5.1 

3 
 

1.0: 5.5 

4 
 

1.0: 4.9 

5 
 

1.0: 5.2 

6 
 

1.0: 5.6 

7 
 

1.0: 1.4 

8 
 

1.0: 5.4 

9 
solid support-

DBU[b] 
1.0: 4.2 

10 KOt-Bu[c] 1.0: 4.2 
11 (no base) 1.0: 5.7 

[a] The reaction condition for the epimerization reaction: 30 mol% base and 0.05 M cis-

2–34: trans-2–34 (1: 5.7) was heated at 75 °C in (CH2Cl)2; [b] the concentration of 

substrate was 0.20 M; [c] the reaction was performed in t-BuOH.  
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 To test if the various bases in Table S1 can poison the ruthenium catalyst, a 

model reaction (Scheme S3) on a small scale was performed and monitored by TLC. In 

the absence of any added amine base, the reaction proceeded to completion, as judged by 

the disappearance of starting material and the appearance of a product. Initial TLC 

screening indicated that in the presence of Et3N, Hünig’s base, 7-methyl-1,5,7-

triazabicyclo[4.4.0]dec-5-ene , solid-support DBU and KOt-Bu (entries 1, 2, 6, 9 and 10 

in Table S1), the starting material was mostly consumed after 1 h, and the product band 

appeared on the TLC. For the bases DBU (solution phase) and 2,3,4,6,7,8-

hexahydropyrrolo[1,2-a]pyrimidine (entries 4 and 5 in Table S1), some starting material 

remained after 1 h, therefore we conclude that these two bases partially inhibited the 

ruthenium catalyst. For bases morpholine, 1,5,7-triazabicyclo[4.4.0]dec-5-ene and 

N,N,N',N'-tetramethylguanidine (entries 3, 7 and 8 in Table S1), no product band was 

observed and the starting material band remained on TLC after 1 h. Therefore, we 

conclude that these bases poisoned the catalyst.  

 

 

Scheme S3. Determination of which bases are compatible with the ruthenium catalyst.  
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Appendix III. Introduction on pulsed gradient spin echo for DOSY experiment 

DOSY (Diffusion Ordered SpectroscopY) experiment is a NMR technique based 

on Pulsed Gradient Spin Echo (PGSE), a method for measuring translational diffusion 

rate of each component in a mixture of various aggregates [357]. PGSE NMR is 

commonly used to determine the size of oligomerization of biomolecules in aqueous 

solution [358]. 

In the magnetic spin vector model, the magnetization vector of the atoms 

precesses (Larmor precession) when they are applied a magnetic field. Because a 90° 

radiofrequency (RF) pulse is applied, the magnetization precession rotates from the z-axis 

to the x-y plane [359]. When a linear gradient field is applied at t1 along the z-axis of the 

NMR tube in DOSY experiment (G in a duration of δ, Figure S3a), the magnetic field 

strength of each point along the z-axis is different from the others [359]; therefore the 

precession angles of the magnetization vector (Ω, Figure S3a) are shown as linear 

distribution along the z-axis (Figure S3b, S3c). After a period of time (∆), a second 

magnetic gradient field is applied to offset the previously generated precession (the 

precession is on a opposite direction due to the 180° RF pulse, see Figure S3a). If no 

translational diffusion occurs along the z-axis, the precession is completely cancelled out; 

therefore a maximum echo signal is obtained (Figure S3b). However, if the translation 

diffusion occurs, the spin precession cannot offset; therefore, the larger the diffusion, the 

poorer the spins are refocused and the smaller the echo signal is obtained [359].   

 



 

Figure S3. a) The Pulsed 

of the pulsed gradient (in duration 

Also shown are the magnetic

 

 

ulsed Gradient Spin Echo (PGSE) pulse sequence. G is the amplitude 

of the pulsed gradient (in duration δ), ∆ is the interval between two pulsed gradients. 

shown are the magnetic. 
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) pulse sequence. G is the amplitude 

 is the interval between two pulsed gradients. 
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Appendix IV. NMR, IR spectra and HPLC chromatography 

Compound 2–30 
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COSY 

 

HSQC 
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Compound 2–31 

 



176 
 

Compound 2–33 
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Compound cis-/ trans-2–34 
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Compound trans-2–34 
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Compound 2–35 
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Compound 2–35b 
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Compound 2–36 
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Compound 2–39 
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Compound 2–40 
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Compound 2–41 
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Compound 2–43 
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Compound 2–44 
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Compound 2–45b 
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Compound 2–46 
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Compound 2–46b 
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Compound 2–47 
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Compound 2–48 
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Compound 2–50 
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Compound 2–52 
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Compound 2–53 
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Compound 2–55 
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Compound 2–56 
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COSY 

 

HSQC 
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Compound 2–57 
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COSY 

 

HSQC 
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Compound 2–59 
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HSQC 
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Compound 3–6 
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HSQC 

 

HMBC 
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Compound 3–7 
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(–)-myrtemycin (3–8) 
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DEPT135 

 

HSQC 
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 HPLC chromatography 

 

HPLC condition: A: 0.1 % TFA in H2O; B: 0.1 % TFA in acetronitrile. 1 � 20 min: 33 

� 63 % B.  
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Compound 3–9 
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HSQC 
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Compound 3–10 (the peaks are broadened possibly due to the protonation of the amino group) 
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HSQC 
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Compound 3–11 (the peaks are broadened possibly due to the protonation of the amino group) 
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HSQC 
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Compound 3–12 

 

 



226 
 

Compound 3–13 
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Compound 14 
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Compound 3–15 
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Compound 6–11 
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Compound 3–16 
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Compound 3–17 
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(–)-Homo-myrtemycin (3–18) 
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Compound 3–19 
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(–)-Myrtamycin (3–20) 
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HPLC chromatography 

 

HPLC condition: A: 0.1 % TFA in H2O; B: 0.1 % TFA in acetronitrile. 1�20 min: 33 � 

63 % B.  

 

 

  



 

Compound 3–21 

HPLC chromatography 

HPLC condition: 0.1 % TFA in H

63 % B.  

 

HPLC condition: 0.1 % TFA in H2O; B: 0.1 % TFA in acetronitrile. 1 �

237 

 

 

� 20 min: 33 � 



238 
 



239 
 

Compound 3–22 
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Compound 3–23 
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HPLC chromatography 

HPLC condition: A: 100 mM TEAA buffer with 2% MeOH in water; B: acetonitrile; 0 

� 4 % B, 0 � 14 min, 50 °C. 

 

 

HPLC condition: A: 100 mM TEAA buffer with 2% MeOH in water; B: acetonitrile; 0 

14 min, 50 °C.  
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HPLC condition: A: 100 mM TEAA buffer with 2% MeOH in water; B: acetonitrile; 0 
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