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Abstract

A significant number of Model Predictive Control algorithms solve on-line an appropriate optimization
problem and do so at every sampling point. The major attraction of such algorithms, like the Quadratic
Dynamic Matrix Control (QDMC), lies in the fact that they can handle hard constraints on the inputs
(manipulated variables) and outputs of a process. The presence of such constraints results in an on-line
optimization problem that produces a nonlinear controller, even when the plant and model dynamics are
assumed linear. This paper provides a theoretical framework within which the stability and performance
properties of such algorithms can be studied. Necessary and/or sufficient conditions for nominal and
robust stability are derived and two examples are used to demonstrate their effectiveness.

1 Introduction

The problem of input saturation is present in almost every chemical system, even when the process dynamics
can be assumed linear. In addition to the input constraints, safety and certain performance specifications
also require the presence of hard constraints on some output and state variables. The urgency of rigorous
theoretical work in this area has been repeatedly pointed out by the industry (e.g., [8]). An approach that has
been tried in the chemical industry during the past few years is to on-line solve an appropriate optimization
problem and to do so at every sampling point. The repeated application of such methods (e.g., Quadratic
Dynamic Matrix Control (QDMC) {5] on industrial problems with considerable success indicate that sufficient
degrees of freedom exist in these formulations. A drawback that has prohibited their widespread use is the
fact that no exact tuning procedure for the optimization parameters exist and such tuning often has to be
carried out on-line by experienced designers.

The presence of hard constraints in the on-line optlmxzatlon problem produces a nonlinear controller
even when the plant and model dynamics are assumed linear. The fact that the overall control system
(plant + controller) is nonlinear makes the study of its properties quite involved, especially since no analytic
expression is available for the controller. The problems are compounded when robustness with respect to
model-plant mismatch is also considered, because no straighforward extension of the results of the Robust
Linear Control Theory to this particular problem exists, even though the plant and model dynamics are
assumed linear. Some efforts have been made recently [8,1] to achieve robustness by modifying the “min”
optimization problem that is solved on-line to a “min max” problem that minimizes the objective function
over all possible plants. One of the problems of this approach is that either the computations for solving
the optimization problem are too time consuming to be carried out on-line at every sample point or to
simplify the computations one has to use simplistic model uncertainty descriptions that are unrealistic.
Another, potentially serious problem is the fact that these methods inherently assume that by solving the
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“min max” problem to obtain a sequence of future inputs (manipulated variables) and then implementing
the first one and repeating the computation at the next sample point, one is guaranteed robust stability and
performance, provided that a sufficiently long horizon is used in the objective function. However, feedback
from an uncertain plant exists in reality and it is not taken into account in the formulation of the optimization
problem, which is an open-loop minimization of the objective function over all possible plants. This fact can
conceivably lead to performance deterioration and instability. Note that the situation is quite different from
studying (and guaranteeing) a stabilizing control algorithm when no model error is present, in which case
the assumption is reasonable, although not proven for the general case.

The problems discussed just above, cannot possibly be satisfactorily addressed without considering the -

problem in its proper nonlinear framework. It is the author’s opinion that instead of augmenting the objective
functions to add robustness, an action that dramatically increases the computational load and at the same
time produces no rigorous robustness guarantees, one should study the problem in its nonlinear nature,
obtain conditions that guarantee nominal and robust stability and performance and tune the parameters of
the original optimization problems (e.g., QDMC) to satisfy them. -

2 Preliminaries

Although control algorithms of the type described in Section 1 have been applied to systems with nonlinear
dynamic models (QDMC [4]), it is usually assumed that the dynamics are linear, the nonlinearity of the
problem arising from the hard constraints. The properties of the controller are independent of the type of
model description used for the plant (see, e.g., [9]). The impulse response description is a convenient one:

y(k + 1) = Hyu(k) + Hau(k — 1) + ... + Hyu(k — N + 1) (1)

where y is the output vector, u is the input vector and N is an integer sufficiently large for the effect of
inputs more than N sample points in the past on y to be negligible.

The QDMC-type algorithms {5,6,7,9] use a quadratic objective function that includes the square of the
weighted norm of the predicted error (setpoint - predicted output) over a finite horizon in the future as well
as penalty terms on u or Au. The minimization of the objective function is carried out over the values of
Au(k), Au(k+1),..., Au(k+ M — 1), where k is the current sample point and M a specified parameter. The
minimization is subject to possible hard constraints on the inputs u, their rate of change Au, the outputs y
and other process variables usually referred to as associated variables. The details on the formulation of the
optimization problem can be found in [10]. After the problem is solved on-line at k, only the optimal value
for the first input vector Au(k) is implemented and the problem is solved again at k + 1. The optimal u(k)
depends on the tuning parameters of the optimization problem, the current output measurement y(k) and
the past inputs u(k — 1),..., u(k — N) that are involved in the model output prediction. Let f describe the
result of the optimization:

u(k) = fy(k), u(k = 1),...,u(k — N)) (2)

The optimization problem of the QDMC algorithm can be written as a standard Quadratic Programming
problem:

1
min q(v) = §UTGv + gTv (3)
subject to
ATy >b (4)
where ) .
v=[ Au(k) ... Auk+M -1 (5)

and the matrices G, A, and vectors g, b are functions of the tuning parameters (weights, horizon, M, some
of the hard constraints). The vectors g, b are also linear functions of y(k), u(k — 1),..., u(k — N). For the

optimal solution v* we have [3]: )
G -4 vt g
e -1 g
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where AT, b consist of the rows of AT, b that correspond to the constraints that are active at the optimum
and A* is the vector of the Lagrange multipliers. The optimal Au(k), descibed by (2), corresponds to the
first m elements of the v* that satisfies (6), where m is the dimension of u.

The special form of the LHS matrix in (8) allows the numerically efficient computation of its inverse in
a partitioned form (3]:

¢ Al [ H -T . _
___AT 0 - _TT U (‘)
Then
vt = ~Hg+Th (8)
A =TTg-Ub o (9)
and } ) .
wB)=u(E )+ [T 0 ... 0]vE fylk), ulk = 1),...,u(k=N)) (10)

3 Stability Conditions

Some recent work by the author {11] used the Operator Control Theory framework [2], to study the properties
of the overall nonlinear system. In this approach, the stability and performance of the nonlinear system can
be studied by applying the contraction mapping principle on the operator F that maps the “state” of the
system (plant + controller) at sample point k to that at sample point k+ 1. The fact that the plant dynamics
are assumed linear allows us to obtain results and carry out computations that are not yet feasible in the
general case. We can define as the “state” of the system at sample point & the following vector

z1(k)
z(k) = (11)
zn (k)

where

z(k+1) = u(k) = f(ylk),u(k = 1),...,u(k - N))

f(Hyu(k - D4+...+ Hyu(k — N),

u(k - 1),...,u(k— N))

Y(u(k —-1),...,u(k = N))

¥(z(k)) (12)

za(k+1) Fu(k-1) = z.(k)

[«%
lle

vk +1) Fuk-N+1) = znoa(k)

The “state” vector z(k) is defined so that knowledge of it allows the computation of z(k + 1) by applying
the plant and controller equations on it. Indeed the operator F that maps z(k) to z(k + 1) is given by

¥(z(k))
X z1(k) .
r(k+ 1) = F(z(k)) = : (13)

rn-1(k)

Note, however, that although f is known, since it describes the on-line optimizing conirol algorithm and
it involves only the process model, ¥ is not exactly known, because it involves the “true” plant impulse
response coefficients Hy...., Hx :

Convergence of the successive substitution r{k+1) = F(z(k)) to the unique fixed point of the contraction
implies stability of the overall nonlinear system; fast convergence implies good performance. The use of the
contraction mapping principle allows the development of conditions for robust stability and performance in
terms of some induced matrix nerm of the derivative F' of the above operator F.



Let J; be a set of indices for the active constraints of (3) and Ji,..., J, correspond to all possible active
sets of constraints when all zs in the domain of F' are considered. Every such J; corresponds to an A; and a
b;. Tt was shown in [11] that for all zs that correspond to the same J; and for which an infinitecimal change
in their value does not change the set of active constraints, the derivative of ¥ and therefore of F exist and
it has the same value that depends on the particular set J;:

(erq’)l. (vx:‘I’)J‘ s (V:N—I‘I’)Jl (VrN‘I’)J.
I 0 e 0 0
F_’,‘ —. 0 | e 0 0 ) 7 {14)
0 o ... I 0

where from (12) it follows that : , : 7
(Ve ¥)s, = (Vo £)a, + (Vy f)i Hj | (15)

The derivatives of f can be computed easily from (10):
(Ve, N =[1 0 ... 0](—HsVe,9+T5,Vz;b) . : (16)

where the derivatives of g, b; are constant since g, b are linear functions of y(k), u(k —1),..., u(k — N). The
same expression as in (16) is also true for the derivative with respect to y(k), the current measurement. Also
note that in the case of z;, the identity matrix I should be added to the RHS of (16).

It turns out that F'(x) is quasi-linear and that it is differentiable everywhere except the points where an
infinitecimal change will change the set of active constraints at the optimum of (3). The following theorems
were proven in [11]. The terms stability and instability of the control system are used in the giobal sense
over the domain of F under consideration.

Theorem 1 F is a contraction if and only if there ezists a consistent matriz norm ||.[|, for which
WFill<l, i=1,...,n (17)

The practical use of (17) is limited by the fact that finding an appropriate consistent norm is not a trivial
task. The following three theorems provide conditions which are more readily computable.

Theorem 2 The control system is asymplotically stable if

(V¥ (Ve, B, o0 (VeuB)g, o<1, i=1,...,n (18)
where
N
[|1Bllec = miaXZbe'jl (19)
j=1 .

Note that for single-input single-output plants (18) becomes
N
oy .
S iS2<1, i=1,..,n (20)
P ij .
Jj=1

which for the unconstrained case is simply a sufficient condition for the closed-loop poles to lie inside the
Unit Circle.

Theoremn 3 F can be a contraction only if

p(F3)<1, i=1,...,n (21)



where p(A) is the spectral radius of A. Note that if the optimization (3) is not subject to (4), then n =1
and (21) becomes sufficient as well, because, given a matrix one can always find a consistent norm arbitrarily
close to its spectral radius. The reason that (21) is not sufficient in general is that such a consistent norm
is in general a different one for two different matrices (different Jis), while (17) requires the same norm for
all i. In the case of n = 1, (21) translates to the requirement that the closed-loop poles of the system are
located inside the Unit Circle.

If (21) is not true, then F is not a contraction. This however does not necessarily imply that the control
system is unstable. The following theorem provides a condition that is sufficient for instability.

Theorem 4 The control system is unstable if
p(F.;,)>17 i:l,...,n 7 (.22)

Theorem 4 can be used to predict instability of the overall nonlinear system. Theorem 3 on the other
hand does not seem at a first glance to be of much use, since violation of (21) does not necessarily imply
instability. From a practical point of view, however, violation of that condition for some i, should be taken
as a very serious warning that the control system parameters should be modified. The reason is that when
in the region of the domain of F' that corresponds to that i, the system will behave as a virtually unstable
system, the only hope for stability being to move to a region with p(F; ) < 1. It might be the case that
for a particular system in question this will always happen, making this system a stable one. But even in
this case, a temporary unstable-like behavior might occur, thus making the control algorithm practically
unacceptable.

From (15) we see that F'; depends on the impulse response coefficient matrices Hi,..., Hy of the actual
plant. These matrices are never known exactly and so in order to guarantee stability for the actual plant,
one has to compute the conditions of Section 3 not just for the model, but for all possible plants. To do so,
one needs to have some informar 1 on the possible modeling error associated with the His. Let H be the
set of possible values for these coeiticients. Then

Theorem 5 The control system is asymptotically stable for all plants with coefficients in H if

.Sl}l{p“ (Vo ), (Ve ®)s oo (Ve ®)s o<1, i=1,...,n (23)

Theorem 6 F can be a contraction for all plants with coefficients in H only if

s;pp(F}l)<1‘ i=1,...,n (24)

4 A Rcobust Linear Control Stabilization Interpretation of the
Necessary Stability Conditions

In order to carry out the maximizations over H described by (24), (23), one needs to parametrize the
“uncertain” Hyp,..., Hy, in terms of a fewer “uncertain” parameters. For example, in the simple case where
the linear plant dynamics are described by the transfer function ?TIE.T' where K, T, are within some ranges,
we can write Hy,..., Hy, as functions of K. 7, and compute supy, as supg ,. However, the situation is
usually more complex, a fact that makes the efficient parametrization of the modeling error in Hy,..., Hx. a
very important research topic.

The following re-formulation of the necessary conditions of the previous section, allows us to bypass the
problem of dealing with uncertainty in the Hs directly, and use the tools that were developed for Robust
Linear Control (e.g., the structured singular value) to treat any of the types of model error that can be
handled by that theory. Consider a standard feedback controller C'(z). Then

u(z) = C()(r(z) — y(2)) (25)
where r is the setpoint vector. Define

Cr() ™ = (Vo flr s =~ (Ve o] (Y ), (26)



Since the plant is assumed to be open-loop stable, for stability of this linear control system we need that the
closed-loop transfer function between u and r or d (disturbance) be stable. From (25), (26) we get by using
(1)

u(z) = — [I = (Vo,0)5,27 = .. = (Vaor ¥) 5,27 ] 7 (T F)u.r(2) (27)

where (V;¥),, is given by (15) Hence, provided that the truncation number N is chosen large enough so
that the eﬂ'ect of further terms 1s neghglble for both the model and the plant, stability of the system under
feedback control Cy,(2) is equivalent to stability of the transfer matrix in (27), which is equivalent to (21)
since Fj is the companion matrix of the denominator of (27). Hence we have

Theorem 7 F can be a contraction only if all feedback controllers CJ (), 1 -71 ., 1, produce a:stable
system when applied to the unconstrained process. )

Theorem 8 F can be a contraction for all plants in g set I, only if all feedback controIIers Cs(2),i=1,..,n,
stabilize all plants in the set 1.

. The advantage of Thm. 8 over Thm. 6 lies in the fact that through Thm. 8 we can handle any set
I that Robust Linear Control theory can. This new interpretation of the conditions also indicates that
robust performance conditions can be formulated for the same set of-feedback controllers. For the sufficient
conditions a similar formulation may be possible but it would probably involve some conservativeness.

5 Practical Interpretation of a Condition Violation

Conditions (21), (18) can be used to examine the stability of the system for a particular selection of tuning
parameters. An important question however is what are the implications if for a particular A; the conditions
are not satisfied. This would only be relevant if the particular combination of active constraints at the
optimum can actually occur during the operation of the control system. The following is a procedure that
can decide if a certain set of active constraints at the optimum is relevant.

Let AT, b consist of the rows of AT, b that correspond to the inactive constraints at the optimum. Then
by using (8), (9) we see that in order for such a combination to be possible at the optimumn we need to have

AT(-Hg+Tb)>b (28)

TTg-Ub>0 (29)

Since g, b are linear combinations of the past manipulated variables and the current measurement, (28), (29)

can be combined with the hard constraints on the past us, the past Aus and the output y(k) to constitute

a system of linear inequalities that have to have a feasible solution over the values of the past inputs and

the current measurement. Note that depending on the estimate of expected disturbances, one may wish to

modify the bounds on y(k) that are used in the above problem. If the problem has no feasible solution, then
the fact that for that particular A the stability corditions are not satisfied, is of no practical importance.

Note that the above procedure can also serve to construct a sequence of possible past inputs that can
lead to a situation during the operation of the control system where the stability conditions are not satisfied.

6 Illustrations

In this section two examples are given, to demonstrate the effectiveness of the nominal and robust stability
conditions and the nonlinear behavior of the control system. The examples are simple so that the effect of
incuding hard constraints in the on-line optimization problem is clear.

6.1 Nominal Stability of a 2 x 2 process

Let us consider a system with the following transfer function:

1
0o .
P(s)=| _30%s — 2 (30)
s+1 (s+2)(s+1)



DASHED LINE --v STTPOINT
SOLID LINE —--I- OUTPUT

i%" +—t t t t s 3 t P t t +
¢ 2 ¢ = {;—\—2 —————— - 2 -
_1 # \/
-2 j : . . ‘ : ,
o] : 2 4 - [ 8 10
TIME

Figure 1: Unconstrained minimization.
A sampling time T = 0.5 is used and the following objective function is minimized on-line:

P
1\ E+DT0%(k+1 E+l-1D)TB*u(k+1-1 31
U(E)MT(&M_”E[e( 0 e(k+ O +ulk+ ) u(k + )] 31

where [ is the current sample point, e is the predicted difference between the setpoints and the plant outputs

and ', B, are weights.
1 0
o={5 o5 ] )

is selected signifying that the first output is more important than the second.

Let us first consider the unconstrained probiem. First we select P = M = 2, which is a selection that is
expected {6,7] to produce an unstable control system if B = 0. The reason is the right-half plane (RHP) zero
of P(s). Indeed, one can easily check that for these values of the tuning parameters, we have p(F7 ) > 1,
where J; corresponds to the case where no constraints are active at the optimum. Hence the necessary
condition (21) predicts the instability. From theory [7] we know that by making B sufficiently large, we can
stabilize the system. Indeed by making

0 0
b= [ 0 0.1 ] (33)

the system is stabilized (p{F} ) < 1, which is sufficient for n = 1). The fact that the RHP zero is pinned to
the second plant output, made it unnecessary to increase the 11 element of B. The response to a unit step
change in setpoint 1 is shown in Fig. 1. The steady-state offset in output 2 is expected from theory and can
be avoided by modifying the control algorithm, but we will not do so to avoid the unnecessary complication
of the example.

Let us now assume that after looking at the response, the designer decides that a slight tightening of the
specifications is in order, namely the addition in the optimization problem of a lower bound on output 2 at
the value -0.9. Since output 2 only slightly violated this bound when the unconstrained algorithm was used,
one might think that the response for the constrained algorithm should be almost the same as that in Fig.
1. This is not so, however. The response for the same setpoint change is shown in Fig. 2. The system is
unstable. An instability warning was issued by the necessary condition for F' to be a contraction (21), since
p(Fy,) > 1, where J; corresponds to the case where the low constraint on output 2 is active at the optimum.
[ndeed by looking at a close-up of Fig. 2 in Fig. 3, we see that the system went unstable as soon as output

-1
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Figure 2: Minimization subject to lower bound constraint on output 2.
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Figure 3: Close-up of Fig. 2.
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2 reached the low bound to which the on-line minimization was subject. The constraint remained active at
the subsequent sample points and the system never stabilized.
A question that one may ask at this point is whether the use of a

0 0
B:[Oﬂ] T

with a 8 larger than the previously used value of 0.1, will stabilize the system. We know that this would
be the case for the unconstrained problem; however, for the constrained case that does not happen. By
examining the analytic expression for Fj one sees that 3 does not even appear in it and can therefore in
no way influence the stability of the system when the constraint becomes active. When the constraint is
reached, the algorithm puts as its higher priority keeping output 2 above the lower bound and to do so it
inverts the 22 element of P(s) and causes instability.

6.2 Robust Stability of a SISO process

Consider the process model
1
s+1

A sampling time T = 0.1 will be used and the control algorithm will minimize on-line the objective function

(35)

B(s) =

P
i E+DT0%k+0) +AuE+1 -\ D*Au(k+1 -1 36
u(E),--#m(lEn+M—H§[e( )y +_)+ ulk+ ) ulk+ ] (36)

To allow the analytic study of the properties of the control system we shall choose the parameters to be
P=M=T=1. A choice of D = 0, when there are no hard constraints, will result in an IMC controller
that inverts the model [6}.

Let us now consider a model-plant mismatch caused by a delay term in the plant:

6'0’153

_ 37)
o(s) o (37)

For this plant, robust linear control theory can easily show that the control system will be unstable for D = 0.
D has te ber increased over D = 0.2 to stabilize it. The choice D = 0.4 results in reasonable performance.

Our interest in this example has to do with the effect of hard constraints on its output. Let us specify a
lower bound of —1 and an upper bound of +1 for y and include these constraints in the on-line optimization
problem. Since the horizon P = 1, it is not possible for both to be active at the optimum. In this case
n = 3, corresponding to (i) no active constraints, (i) upper constraint active, (1ii) lower constraint active.
Analytic computaion of ¢y (z), 1 = 1,2, 3, results in the expressions

e (2) = (38)

Hi){(D* + H) + (HiHy = H} = D)™ + Hi(Ho — H1)z 2+ ..+ Hi(Hy — Hy-y)2™ VP — HyHy V)
(39)

ci(z) =ep(z) = (40)

VIH + Ho— H)z b4 4 (Hy — Hy-) eVt — Hyz™V) (41)

One can easily see from these exressions that ¢y, and ¢y, correspond to an IMC controller that inverts the
process model, the same as c;, for D = (. The difference is that D does not appear in (41) and therefore
this controller will be unstable when the model-plant mismatch is present. The question that arises now, is
the one discussed in Section 3. For the case of the upper constraint and for a setpoint equal to zero. (29)
predicts that if the system is at equilibrium, a disturbance of magnitude greater than 1.6 will result in an
on-line optimization where the wupper constraint is active. The system could however manage to return to
the contraction region of no active constraints. Indeed for a disturbance of 1.7, as Fig. 4 shows, the system
is still stable, although at the =dg= of instability. An increase of the disturbance to 1.75 however results in
an unstable system as Fig. 5 shows. Note that D = 0.4 is being used; although D does not appear in (41),
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it does play a role on whether the constraints are active at the optimum. Both simulations use the plant of
37).

Let us now remove the constraints from the optimization problem and repeat the simulation for the same
d = 1.75 and D = 0.4. The result is shown in Fig. 6. The response is reasonable and the constraints are
virtually satisfied, although they were removed from the optimization problem. This example is not meant
to suggest that cutput constraints should not be included in the optimization, but merely to point out that
their effect should be studied carefully before their inclusion and to demonstrate that the stability conditicns
that were provided in this paper can predict this effect successfuly.

7 Conclusions

This paper has provided a theoretical framework for the study of the properties of control algorithms that
are based on the on-line minimization of some objective function, subject to certain hard constraints. The
selected framework seems to be very promising since it allowed the derivation of necessary and/or sufficient
conditions for nominal and robust stability of the overall nonlinear system. These conditions can be formu-
lated in a way that allows the treatment of the kinds of model-plant mismatch that robust linear control
theory can handle. .

The simple examples that were used demonstrated in a clear way that one cannot afford to neglect the
nonlinear phenomena caused by the hard constraints to which the on-line optimization is subject. This
example also indicates that inclusion of hard constraints on the plant outputs in the specifications can
cause serious problemsa and that their effct should be carefully studied before they are used. The stability
conditions of this paper can be used in this study.
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1t does play a role on whether the constraints are active at the optimum. Both simulations use the plant of
(37).

Let us now remove the constraints from the optimization problem and repeat the simulation for the same
d = 1.75 and D = 0.4. The result is shown in Fig. 6. The response is reasonable and the constraints are
virtually satisfied, although they were removed from the optimization problem. This example is not meant
to suggest that output constraints should not be included in the optimization, but merely to point out that
their effect should be studied carefully before their inclusion and to demonstrate that the stability conditicns
that were provided in this paper can predict this effect successfuly.

7 Conclusions

This paper has provided a theoretical framework for the study of the properties of control algorithms that
are based on the on-line minimization of some objective function, subject to certain hard constraints. The
selected framework seems to be very promising since it allowed the derivation of necessary and/or sufficient
conditions for nominal and robust stability of the overall nonlinear system. These conditions can be formu-
lated in a way that allows the treatment of the kinds of model-plant mismatch that robust linear control
theory can handle. .

The simple examples that were used demonstrated in a clear way that one cannot afford to neglect the
nonlinear phenomena caused by the hard constraints to which the on-line optimization is subject. This
example also indicates that inclusion of hard constraints on the plant outputs in the specifications can
cause serious problemsa and that their effct should be carefully studied before they are used. The stability
conditions of this paper can be used in this study.
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