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Department of Mathematics

Three methods for spatial prediction in Gaussian and transformed Gaussian

random fields are described and compared.

The first two methods are ordinary kriging and trans-Gaussian kriging.

The third method is the Bayesian Transformed Gaussian model (BTG), which

provides an alternative to trans-Gaussian kriging by taking into account the un-

certainty about the exact parameter in the ‘normalizing transformation’.

All three methods were applied to the simulated data sets for each of four

correlation families (exponential, rational quadratic, spherical, and Matérn), and

to actual rainfall intensity data sets. The normalizing transformation was selected

from the family of Box-Cox transformations.

Cross validation on the simulated data shows that all three methods are close

in terms of the mean squared error (MSE) and that BTG provides more realistic

prediction intervals. The analysis of the rainfall data in terms of cross-validation

shows that kriging and BTG are comparable.
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Chapter 1

Introduction

1.1 The Problem

The need to obtain an accurate prediction from observed data can be found in

all scientific disciplines. In many cases a quantity of interest, z, varies over a

domain in space according to an unknown function z : D ⊂ R
d → R, in a very

complicated way. In geostatistical literature this function is called a regionalized

variable, to emphasize the continuous nature of the spatial set D. In many cases it

is too expensive, too time consuming or even impossible to study z(.) by extensive

experimentation. In these situations z is measured at a small set of locations, and

inference about z for many other unobserved (and often unobservable) locations

in the domain of interest is based on a proposed mathematical model for the

function z(.). A good example is rainfall measured at a few locations in a given

region. Rainfall amounts in other locations are “predicted” conditional on the

observed amounts.

One possible approach to this problem is to treat the unknown function z(.) as

a realization of a random field {Z(s), s ∈ D}. Then the observed data are some

part of a realization of this random field and we want to predict an unobserved
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part of the same realization. To do so we can use the available data and the

known (or assumed) dependency structure of the random field. This approach

provides a mathematical framework for efficient predictions at unobserved loca-

tions and for computing uncertainty measures associated with these predictions.

Inference is usually summarized, for an unobserved location s0 ∈ D, by the pair(
Ẑ(s0), σ̂(s0)

)
, where Ẑ(s0) is the predictor for Z(s0), the value of z at location

s0, and σ̂(s0) is a measure of prediction uncertainty associated with Ẑ(s0).

In this work we will consider three ways to do the prediction: ordinary krig-

ing, which is the most popular stochastic method (Ripley, 1981), trans-Gaussian

kriging (Cressie, 1993), and the Bayesian Transformed Gaussian model, BTG,

(De Oliveira, Kedem, Short, 1997). We will compare them using simulated and

real data by means of cross-validation, and mean squared prediction error.

1.2 Thesis Synopsis

We now give a synopsis of this thesis chapter by chapter.

Chapter 2 describes the algorithms for ordinary and trans-Gaussian kriging,

defines the Box-Cox transformation, and gives implementations of these algo-

rithms in terms of S-Plus.

Chapter 3 studies transformed Gaussian random fields, where the transfor-

mation is known to belong to a parametric family of monotone transformations.

A Gaussian random field is a special case of this model.

Chapter 4 describes a method to generate Gaussian random fields with a

known correlation structure.

Chapter 5 provides the numerical results of the comparison of the three meth-

ods using generated and real data.

2



Chapter 2

Kriging

2.1 Ordinary Kriging

In this method we want to predict Z(s0) using the best linear unbiased predictor

(BLUP) based on the observed data. BLUP depends only on the second-order

properties of the random field and no full distributional assumptions are made.

We are given n observations Z(si) and we wish to map the process Z(s) within a

region D. We assume that all the sample points si are within a two-dimensional

domain D.

The data

Z ≡ (Z(s1), . . . , Z(sn))T

are observed at known spatial locations {s1, . . . , sn} ⊂ D.

Definition:

A random function Z(.) satisfying

E(Z(s)) = µ, for all s ∈ D

and

Cov(Z(s1),Z(s2)) = C(s1 − s2), for all s1, s2 ∈ D

3



is called second-order stationary. The function C(.) is called the covariogram or

stationary covariance function.

The correlation functions (normalized covariance functions) that we are going

to use are not just stationary, but also isotropic - they depend only on the distance

between the points, but not on the direction.

The value of the correlation function at zero is always equal to one, but since

the variance of the field does not have to be one we need to define the precision

of the random field τ . A parametric relationship between the covariance and

correlation functions is

Cov(Z(si),Z(sj)) = C(si − sj) =
1

τ
rθ(si − sj),

and

Cov(Z(si),Z(si)) = C(0) = Var(Z) =
1

τ
rθ(0) =

1

τ
1,

where rθ(si − sj) is the correlation function and θ is the parameter. We denote

by rθ(l) an isotropic correlation function with parameter θ, and l is the distance

between the points where the covariance is computed.

These are some of the commonly used correlation function families.

Exponential correlation:

rθ(l) = θlθ2
1 ,

where θ1 ∈ (0, 1) and θ2 ∈ (0, 2].

Matérn correlation:

rθ(l) =


1

2θ2−1Γ(θ2)

(
l

θ1

)θ2

Kθ2

(
l

θ1

)
, l 6= 0,

1, l = 0,

4



where θ1 > 0, θ2 > 0 and Kθ2 is a modified Bessel function of the third kind of

order θ2.

Rational quadratic correlation:

rθ(l) =

(
1 +

l2

θ2
1

)−θ2

,

where θ1 > 0 and θ2 > 0.

Spherical correlation:

rθ(l) =


1− 3

2

(
l

θ

)
+ 1

2

(
l

θ

)3

, l ≤ θ,

0, otherwise,

where θ > 0.

The ordinary kriging predictor satisfies the following two assumptions.

1. Model Assumption:

the field Z is second order stationary with the unknown mean µ,

Z(s) = µ + δ(s), s ∈ D, µ ∈ R, (2.1)

where δ(.) is a zero-mean, second-order stationary process with covariogram

C(h),h ∈ R
2.

2. Predictor Assumption: the predictor p(Z; s0) is linear and satisfies

p(Z; s0) =
n∑

i=1

λiZ(si), where
n∑

i=1

λi = 1. (2.2)

The condition that the coefficients of the linear predictor sum to 1 guarantees

uniform unbiasedness:

E(p(Z; s0)) = E

(
n∑

i=1

λiZ(si)

)

5



= E(Z(s0))
n∑

i=1

λi

= µ.

Of all the predictors satisfying the model and prediction assumptions, the

ordinary kriging predictor is defined as an optimal one, where the word “optimal”

refers to the squared-error loss. Therefore the goal is to minimize the mean-

squared prediction error

σ2
e(s0) ≡ E

(
Z(s0)− p(Z; s0)

)2
with respect to the predictor coefficients.

To find the ordinary kriging predictor we need to minimize the function f ,

f(λ1, . . . , λn, m) = E
(
Z(s0)− p(Z; s0)

)2 − 2m

(
n∑

i=1

λi − 1

)
(2.3)

with respect to λ1, . . . , λn and m (the parameter m is a Lagrange multiplier that

guarantees
n∑

i=1

λi = 1). For our model (2.1) and predictor (2.2) the expression

(2.3) becomes

f(λ1, . . . , λn, m)

= E

(
Z(s0)−

n∑
i=1

λiZ(si)

)2

− 2m

(
n∑

i=1

λi − 1

)

= E
(
Z(s0)

2
)− 2E

(
Z(s0)

n∑
i=1

λiZ(si)

)
+ E

( n∑
i=1

λiZ(si)

)2


− 2m

(
n∑

i=1

λi − 1

)

= C(0) + µ2 − 2
n∑

i=1

λiE
(
Z(s0)Z(si)

)
+

n∑
i=1

n∑
j=1

λiλjE
(
Z(si)Z(sj)

)− 2m

(
n∑

i=1

λi − 1

)

6



= C(0) + µ2 − 2
n∑

i=1

λi

(
C(s0 − si) + µ2

)
+

n∑
i=1

n∑
j=1

λiλj

(
C(si − sj) + µ2

)− 2m

(
n∑

i=1

λi − 1

)

= C(0) +
n∑

i=1

n∑
j=1

λiλjC(si − sj) (2.4)

− 2
n∑

i=1

λiC(s0 − si)− 2m

(
n∑

i=1

λi − 1

)
, since

∑∑
λiλj = 1

= C(0) +
∑
i=j

λiλjC(si − sj) +
∑
i6=j

λiλjC(si − sj)

− 2
n∑

i=1

λiC(s0 − si)− 2m

(
n∑

i=1

λi − 1

)

= C(0) + C(0)
n∑

i=1

λ2
i + 2

∑
i<j

λiλjC(si − sj)− 2
n∑

i=1

λiC(s0 − si)

− 2m

(
n∑

i=1

λi − 1

)
.

We need to minimize f with respect to λ1, . . . , λn and m. Note that f is a

second degree polynomial in λ1, . . . , λn and m.

Differentiating, we get

∂f

∂λ1

= 2λ1C(0) + 2
∑
1<j

λjC(s1 − sj)− 2C(s0 − s1)− 2m

= 2
n∑

j=1

λjC(s1 − sj)− 2C(s0 − s1)− 2m

...

∂f

∂λn

= 2λnC(0) + 2
∑
j 6=n

λjC(sn − sj)− 2C(s0 − sn)− 2m

= 2
n∑

j=1

λjC(sn − sj)− 2C(s0 − sn)− 2m

∂f

∂m
= −2

(
n∑

i=1

λi − 1

)

7



Now we need to solve the linear system:

n∑
j=1

λjC(s1 − sj) = C(s0 − s1) + m

. . .

n∑
j=1

λjC(sn − sj) = C(s0 − sn) + m

n∑
i=1

λi = 1

Denote

1 = (1, 1, . . . , 1)T
1×n,

c =
(
C(s0 − s1), . . . , C(s0 − sn)

)T
,

C is an n× n matrix with Cij = C(si − sj),

λ = (λ1, λ2, . . . , λn)T

m = m1.

Then we can rewrite the system as
Cλ = c + m

n∑
i=1

λi = 1.

(2.5)

The first equation gives

λ = C−1(c + m).

Plugging this into the second equation we get

n∑
i=1

λi = 1T λ = 1TC−1(c + m) = 1TC−1c + 1TC−1m = 1.

Therefore,

m =
1− 1TC−1c

1TC−11

8



=
1−∑i(C

−1c)i∑
i

∑
j(C

−1)ij

. (2.6)

So the λ that minimizes f is given by

λ̂ = C−1

(
c +

1−∑i(C
−1c)i∑

i

∑
j(C

−1)ij

1

)
, (2.7)

and the ordinary kriging predictor is

p̂(Z; s0) = λ̂
T
Z.

To simplify the notation we write λ for λ̂.

The minimized mean-squared prediction error is called the kriging variance

and is denoted by σ2
k(s0). For the ordinary kriging predictor p̂(Z; s0), the kriging

variance is

σ2
k(s0) = E

(
Z(s0)− p̂(Z; s0)

)2
= C(0) +

n∑
i=1

n∑
j=1

λiλjC(si − sj)− 2
n∑

i=1

λiC(s0 − si) (from (2.4))

= C(0) + λTCλ− 2λTc

= C(0) + λT (c + m)− 2λTc (from (2.5))

= C(0)− λTc + λTm

= C(0)− λTc + m.

So,

σ2
k(s0) = C(0)− λTc + m, (2.8)

where m and λ are defined in (2.6) and (2.7).

Under the assumption that Z(.) is Gaussian,

A ≡ [Ẑ(s0)− 1.96σk(s0), Ẑ(s0) + 1.96σk(s0)],

9



where Ẑ(s0) = p̂(Z, s0) is the 95% prediction interval for Z(s0), which means that

P (Z(s0) ∈ A) = .95.

This is not necessarily true for non-Gaussian data.

Therefore, the algorithm for ordinary kriging is as follows.

Given the values Z(s1), . . . , Z(sn) at points s1, . . . , sn, the covariogram func-

tion C(.) and the location of interest s0,

• Set Z = (Z(s1), . . . , Z(sn))T .

• Set c =
(
C(s0 − s1), . . . , C(s0 − sn)

)T
.

• Define C by Cij = C(si − sj).

• Set m =
1−∑i(C

−1c)i∑
i

∑
j(C

−1)ij

.

• Set λ = C−1 (c + m), where m = (m, m, . . . , m)T
1×n.

• Set σ2
k(s0) = C(0)− λTc + m.

– The ordinary kriging predictor of Z(s0) is p̂(Z; s0) = λTZ.

– The 95% prediction interval is

A = [Ẑ(s0)− 1.96σk(s0), Ẑ(s0) + 1.96σk(s0)].

The following is an S-plus implementation of this algorithm for an isotropic co-

variance with parameters θ1 and θ2.

Let data be an n × 3 matrix of the coordinates and the values of the data

points. That is, each row represents one (x, y, z) point. Since we use isotropic

correlation functions, the covariogram depends only on the distance between the

points, but not on their locations, and we can calculate the matrix C in this way:

10



distance <- function (data, i, j)

#distance between i and j locations

sqrt ((data[i, 1]-data[j,1])^2+(data[i, 2]-data[j,2])^2)

makeC <- function (data, cov, theta1, theta2, tau){

n <- length (data)/3

C <- matrix (rep(0, n^2), ncol=n)

for (i in 1:n)

for (j in 1:n)

C[i,j] <- cov (distance(data, i, j), theta1, theta2, tau)

C

}

Here cov is the covariance function, and theta1, theta2, and tau are its pa-

rameters.

Let (s0x, s0y) be the coordinates of the point s0 where we want to predict.

Then the function makec constructs the vector c:

makec <- function (s0x, s0y, data, cov, theta1, theta2, tau){

n <- length(data)/3

c <- numeric(n)

for (i in 1:n)

c[i] <- cov (sqrt((s0x-data[i, 1])^2 + (s0y-data[i, 2])^2),

theta1, theta2, tau)

c(c)

}

11



The function kriging performs the prediction at the points (x, y) with coor-

dinates stored in the vectors x and y. Here the filename is a name of the file in

which we want to put the results.

kriging <- function(x, y, data, cov, theta1, theta2, tau, filename){

n <- length(data)/3

Cinv <- solve(makeC(data, cov, theta1, theta2, tau))

sumCinv <- sum(Cinv)

lx <- length(x)

z <- numeric(lx)

for(i in 1:lx) {

s0x <- x[i]

s0y <- y[i]

vectorc <- makec(s0x, s0y, data, cov, theta1, theta2, tau)

m <- (1 - sum(Cinv %*% vectorc))/sumCinv

lambda <- c((vectorc + m) %*% Cinv)

z[i] <- sum(lambda * data[1:n, 3])

}

if(lx == 1) {

sigmak <- sqrt(1/tau - sum(lambda * vectorc) + m)

list(left = z[1] - 1.96 * sigmak, prediction = z[1],

right = z[1] + 1.96 * sigmak)

}

else write.table(cbind(x, y, z), file = filename, sep = " ",

dimnames.write = F)

}

12



Usually we want to make a prediction not just at one point, but on a grid.

Then we want to construct x, the vector of all the x-coordinates of the grid

points, and y, the vector of all the y-coordinates. For example, if we want to

have a 50 × 50 grid with x-coordinates from 200 to 249 and y-coordinates from

50 to 99, the function makegrid will give us the corresponding x and y vectors:

makegrid <- function () {

x <- numeric(2500)

for (i in 1:50)

x[((i-1)*50 + 1) : (i*50)] <- rep (200 + i - 1, 50)

y <- numeric(2500)

for (i in 1:50)

y[((i-1)*50 + 1) : (i*50)] <- 50:99

cbind (x , y)

}

For example if we want to do ordinary kriging with the exponential correlation

function, θ1 = exp(−0.03) , θ2 = 0.5, and variance 1/τ = 1, taking data from the

file “Sample” of the form

x y z

1 2 3.356

2 5 4.383

1 3 2.751

. . . ,

we proceed like this:
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expcov <- function (l, theta1, theta2, tau){

theta1^(l^theta2)/tau

}

data <- matrix(scan("Sample", byrow=T, ncol=3)

grid <- makegrid()

kriging (grid[,1], grid[,2], data, expcov,

exp(-0.03), 0.5, 1, "KrigResult")

Figures 2.1, 2.2, and 2.3 show results of applying the kriging algorithm. First

we generated a Gaussian random field (Figure 2.1), than sampled 50 random

points from it, and used them as data for kriging. Figure 2.2 shows the resulting

kriging surface. Figure 2.3 shows the the original Gaussian field overlaid with its

kriging prediction. In all the figures τ = 1.
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Figure 2.1: Gaussian(5, 1) random field, exponential(exp(-0.03), 1) correlation.
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Figure 2.2: Kriging surface obtained from 50 data points.
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Figure 2.3: Overlay of a Gaussian(5, 1) random field with exponential (exp(-0.03),

1) correlation and its kriging approximation from 50 data points.
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2.2 Trans-Gaussian Kriging

Suppose now that the Z(.) process is obtained from

Z(s) = φ(Y (s)), s ∈ D, (2.9)

where Y (.) is a stationary Gaussian process and φ is a one-to-one twice-differen-

tiable function. The idea is to transform the problem from the Z scale to the

Y scale, predict Y (s0) and transform the result back. The problem with this

approach is that it gives a biased predictor.

Using the δ-method around µY = E(Y (s)) we can obtain a bias correction.

The ordinary kriging predictor is unbiased and so

E(Y (s0)) = E(Ŷ (s0)) = µY .

Define

Ž(s0) = p̌Z(Z; s0) = φ(p̂Y (Y; s0))−B,

where p̂Y (Y; s0) is a regular kriging predictor on the Y scale and B is a constant,

such that the predictor is unbiased:

E(Ž(s0)) = E(Z(s0)).

We shall now find B such that the predictor is unbiased.

Expanding φ around µY we get

Z = φ(Y ) ≈ φ(µY ) + (Y − µY )φ′(µY ) +
(Y − µY )2

2
φ′′(µY ).

Therefore,

E(Z) ≈ φ(µY ) +
φ′′(µY )

2
E
(
(Y − µY )2

)

17



= φ(µY ) +
φ′′(µY )

2
Var(Y ). (2.10)

Similarly, if we denote Z(s0) by Z0

E(Ž0) = E(φ(Ŷ0))−B

≈ E

(
φ(µY ) + (Ŷ0 − µY )φ′(µY ) +

(Ŷ0 − µY )2

2
φ′′(µY )

)
−B

= φ(µY ) + (E(Ŷ0)− µY )φ′(µY ) +
φ′′(µY )

2
E
(
(Ŷ0 − µY )2

)
−B

= φ(µY ) +
φ′′(µY )

2
E
(
(Ŷ0 − µY )2

)
−B (2.11)

From (2.10) and (2.11), the unbiasedness condition becomes

φ(µY ) +
φ′′(µY )

2
Var(Y ) = φ(µY ) +

φ′′(µY )

2
E
(
(Ŷ0 − µY )2

)
−B.

So the bias B is

B =
φ′′(µY )

2
E
(
(Ŷ0 − µY )2

)
− φ′′(µY )

2
Var(Y ). (2.12)

It remains to compute E
(
(Ŷ0 − µY )2

)
. By definition (2.2),

Ŷ0 = λT
Y Y.

Therefore,

E
(
(Ŷ0 − µY )2

)
= E

(
(λT

Y Y − µY )2
)

= E
(
(λT

Y Y)2 − 2λT
Y YµY + µY

2
)

= E

( n∑
i=1

λiYi

)2
− 2µY E

(
n∑

i=1

λiYi

)
+ µY

2

=
∑

i

∑
j

λiλjE(YiYj)− µY
2

=
∑

i

∑
j

λiλj(Cij + µY
2)− µY

2

18



=
∑

i

∑
j

λiλjCij, because
∑

i

∑
j

λiλjµY
2 = µY

2

= λT
Y CY λY .

From (2.12),

B = φ′′(µY )

(
λT

Y CY λY

2
− Var(Y )

2

)
.

Since Cλ = c + m (see (2.5)),

B = φ′′(µY )

(
λT

Y (cY + mY )

2
− Var(Y )

2

)
= φ′′(µY )

(
λT

Y cY + λT
Y mY

2
− Var(Y )

2

)
= φ′′(µY )

(
λT

Y cY + mY

2
− Var(Y )

2

)
= φ′′(µY )

λT
Y cY + mY − C(0)

2

= φ′′(µY )
−(C(0)− λT

Y cY −mY )

2

Recall that from (2.8),

σ2
k(s0) = C(0)− λTc + m.

Then

B = φ′′(µY )
−(σ2

k,Y (s0)−mY −mY )

2

= −φ′′(µY )

(
σ2

k,Y (s0)

2
−mY

)
.

Therefore, the approximately unbiased predictor is

p̌Z(Z; s0) = φ(p̂Y (Y; s0)) + φ′′(µY )

(
σ2

Y (s0)

2
−mY

)
,
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Note, that we do not know µY , therefore we use its MLE instead. The likelihood

of µ is given by

L(µ|Y) =
1√

2π|C| exp

(
−1

2
(Y − µ)TC−1(Y − µ)

)
log L(µ|Y) = log

(
1√

2π|C|

)
− 1

2
(Y − µ)TC−1(Y − µ)

= log

(
1√

2π|C|

)
− 1

2

∑
i

∑
j

(Yi − µ)(C−1)ij(Yj − µ)

= log

(
1√

2π|C|

)
− 1

2

∑
i

∑
j

(µ2 − µ(Yi + Yj) + YiYj)(C
−1)ij.

Differentiating, we get

∂(log L)

∂µ
= −1

2

∑
i

∑
j

(2µ− Yi − Yj)(C
−1)ij.

Equating to zero,

2µ
∑

i

∑
j

(C−1)ij =
∑

i

∑
j

(Yi + Yj)(C
−1)ij

µ =
1

2

∑
i

∑
j(Yi + Yj)(C

−1)ij∑
i

∑
j(C

−1)ij

=

∑
i(C

−1Y)i∑
i

∑
j(C

−1)ij

(2.13)

So, the final form of the trans-Gaussian predictor is

p̌Z(Z; s0) = φ(p̂Y (Y; s0)) + φ′′(µ̂Y )

(
σ2

Y (s0)

2
−mY

)
,

where

µ̂Y =

∑
i(CY

−1Y)i∑
i

∑
j(CY

−1)ij

(from (2.13)),

mY =
1−∑i(CY

−1cY )i∑
i

∑
j(CY

−1)ij

,

σ2
Y (s0) = C(0)− λT

Y cY + mY .
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By definition, the mean squared prediction error of Ž(s0) is

σ2
k,Z(s0) = E(Ž(s0)− Z(s0))

2

= E
(
φ(Ŷ (s0))−B − φ(Y (s0))

)2

≈ E
(
φ(µY ) + (Ŷ (s0)− µ)φ′(µY )−B − φ(µY )− (Y (s0)− µY )φ′(µY )

)2

= E
(
φ′(µY )(Ŷ (s0)− Y (s0))−B

)2

= E((φ′(µY )(Ŷ (s0)− Y (s0)))
2)− 2B(φ′(µY )E(Ŷ (s0)− Y (s0)) + B2

= (φ′(µY ))2σ2
k,Y (s0) + B2, since Ŷ is unbiased.

For small values of the bias B the mean squared prediction error of Ž(s0) is

approximately given by (Cressie, p. 137)

σ2
k,Z(s0) ≈ (φ′(µ̂Y ))2σ2

k,Y (s0).

Indeed, in the calculations B2 took values in the range of 2% - 4% of the value

of (φ′(µ̂Y ))2σ2
k,Y (s0).

The 95% prediction interval is approximately

A = [Ž(s0)− 1.96σk,Z(s0), Ž(s0) + 1.96σk,Z(s0)].

Therefore, the algorithm for the trans-Gaussian kriging is as follows.

Given the values Z(s1), . . . , Z(sn) at points s1, . . . , sn, the covariance function

C(.), the transformation φ such that Z(s) = φ(Y(s)) for a Gaussian field Y, and

the location of interest s0,

• Set dataZ= (Z(s1), . . . , Z(sn))T .

• Construct the new dataset dataY as φ inverse of dataZ.

• Predict Y(s0) using ordinary kriging for dataY.

21



• Take φ of the result and add the correction term:

p̌Z(Z; s0) = φ(p̂Y (Y; s0)) + φ′′(µ̂Y )

(
σ2

Y (s0)

2
−mY

)
.

To make the prediction on a grid, again, we need first to construct the grid

using the function makegrid, read the data into the matrix dataZ, and use the

function transkriging:

dataZ <- matrix(scan("Sample", byrow=T, ncol=3)

transkriging <- function(x, y, data, cov, theta1, theta2, tau,

lambda, filename) {

n <- length(data)/3

dataY <- c(phiinverse (data[1:n, 3], lambda))

C <- makeC(data, cov, theta1, theta2, tau)

Cinv <- solve(C)

sumCinv <- sum (Cinv)

muY <- sum (Cinv %*% dataY) / sumCinv

lx <- length(x)

z <- numeric(lx)

for (i in 1:lx){

s0x <- x[i]

s0y <- y[i]

vectorc <- makec(s0x, s0y, data, cov, theta1, theta2, tau)

num <- sum(Cinv %*% vectorc)

mY <- (1 - num) / sumCinv

boldlambda <- c((vectorc + mY) %*% Cinv)

sigma2 <- 1/tau - sum(boldlambda * vectorc) + mY
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z[i] <- phi(sum(boldlambda * dataY), lambda) +

phidouble (muY, lambda) * (sigma2/2 - mY)

}

write.table(cbind(x,y,z), file = filename, sep = " ",

dimnames.write = F)

if (lx==1) {

sigmak <- phiprime(muY, lambda) * sqrt(sigma2)

list (left=z[1] - 1.96*sigmak, prediction=z[1],

right=z[1] + 1.96*sigmak)

}

}

Actually, we use trans-Gaussian kriging for φ ≡ φλ, where φλ is from the

family {φλ, λ ∈ Λ} and lambda in the program is the parameter of this family.

Therefore phidouble is the second derivative of the function φλ, and phiinv is

the inverse of φλ.

2.3 Box-Cox Transformation

The family of transformations that we discuss here is the Box-Cox family (Box

and Cox, 1964): for x > 0

gλ(x) =


xλ − 1

λ
, for λ 6= 0

log x, for λ = 0.

Our trans-Gaussian model (2.9) is

Z(s) = φ(Y (s)), s ∈ D,
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where Y (.) is a stationary Gaussian process and φ is a twice-differentiable func-

tion. Assumes in what follows that the Box-Cox transformation of the data gives

a Gaussian field. That is,

φ−1(Z(s)) = gλ(Z(s))

is a Gaussian random field. We use φ(x) = φλ(x). Note that

φ(x) =


(xλ + 1)

1
λ , for λ 6= 0,

exp(x) , for λ = 0.

φ(x)′ =


(xλ + 1)

1
λ
−1 , for λ 6= 0,

exp(x) , for λ = 0.

φ(x)′′ =


(

1

λ
− 1

)
λ(xλ + 1)

1
λ
−2 , for λ 6= 0,

exp(x) , for λ = 0.

The family of distributions obtained by the inverse Box-Cox transformation of

a Gaussian field includes the Gaussian distribution (λ = 1) and the lognormal

distribution (λ = 0).

Note that the inverse Box-Cox transformation φ(.) can result in a tremendous

increase of variance. For example, let Y be N(5, 1) and Z be such that the Box-

Cox transformation of Z is Gaussian, that is Z = φ(Y ). Then, for λ = 1,

Z ∼ N(6, 1) and so E(Z) = 6, Var(Z) = 1. For λ = 0.5,

E(Z) = E
(
(λY + 1)

1
λ

)
= E

((
1

2
Y + 1

)2
)

=

∫ (
1

2
y + 1

)2

f(y)dy
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=
1

4

∫
y2f(y)dy +

∫
yf(y)dy +

∫
f(y)dy

=
1

4
E(Y 2) + E(Y ) + 1

=
1

4
× 26 + 5 + 1

= 12.5

E(Z2) = E

((
(λY + 1)

1
λ

)2
)

= E

((
1

2
Y + 1

)4
)

=

∫ (
1

2
y + 1

)4

f(y)dy

=
1

16

∫
y4f(y)dy +

1

2

∫
y3f(y)dy +

3

2

∫
y2f(y)dy + 2

∫
yf(y)dy +

∫
f(y)dy

=
1

16
E(Z4) +

1

2
E(Z3) +

3

2
E(Y 2) + 2E(Y ) + 1

=
1

16
× 778 +

1

2
× 140 +

3

2
× 26 + 2× 5 + 1

= 168.625

Var(Z) = 168.625− (12.5)2 = 12.375

For λ = 0, Z is lognormal and

E(Z) = exp

(
µ +

1

2
σ2

)
= exp

(
5 +

1

2
1

)
= 244.69

Var(Z) = exp(2(µ + σ2))− exp(2µ + σ2)

= exp(12)− exp(11) = 102, 880.6

Figures 2.4 - 2.6 demonstrate how the field changes under the inverse Box-Cox

transformation.
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Figure 2.4: Inverse Box-Cox transformation with λ = 1 of the Gaussian(5, 1)

random field with exponential (exp(-0.03), 1) correlation. This is a Gaussian(6,

1) field.

26



200
210

220
230

240
250

50

60

70

80

90

100
8

10

12

14

16

18

20

22

Figure 2.5: Inverse Box-Cox transformation with λ = 0.5 of the Gaussian(5, 1)

random field with exponential (exp(-0.03), 1) correlation; mean = 12.5, variance

= 12.375
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Figure 2.6: Inverse Box-Cox transformation with λ = 0 of the Gaussian(5, 1)

random field with exponential (exp(-0.03), 1) correlation, that is a Lognormal

field; mean = 244.69, variance = 102,880.6
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Chapter 3

Bayesian Transformed Gaussian model

3.1 Introduction

The standard kriging approach to prediction in transformed Gaussian field has

some potential drawbacks. First, little is said about how to identify the nor-

malizing transformation, and in practice the logarithmic transformation is often

chosen by default (lognormal kriging). But some other transformation may be

better suited for this purpose. It is well known, at least for the Box-Cox family,

that few atypical observations, or even a single one, may lead to a selection of

an incorrect transformation, which would produce a bias in the resulting pre-

dictors (Atkinson and Shephard, 1996). Second, trans-Gaussian kriging and its

variants may significantly underestimate the prediction uncertainty, producing

overly optimistic prediction intervals.

In this chapter we describe a Bayesian method of prediction in transformed

Gaussian random fields due to De Oliveira, 1997, where the transformation is

known to belong to a certain parametric family of monotone transformations,

but the parameter is unknown.
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3.2 Model Description

Let {Z(s), s ∈ D}, D ⊆ R
2 be the random field of interest, and suppose that we

have n observations Z = (Z(s1), Z(s2), . . . , Z(sn))T from a single realization of

this field, where s1, s2, . . . , sn are known distinct locations in D. Based on Z and

our prior knowledge about the random field, we want to predict the unobserved

Z0 = Z(s0), where s0 is a given location in D. It is assumed that Z0 comes from

the same realization as the data vector Z.

Let G = {gλ : λ ∈ Λ} be a parametric family of transformations where each

gλ ∈ G is a nonlinear monotone transformation, such that (∂/∂λ)gλ exists and is

continuous in Λ× R.

Our main model assumption is that for some unknown transformation param-

eter λ, the field

{Y (s) = gλ(Z(s) : s ∈ D)}

is a Gaussian random field with the following properties:

E
(
Y (s)

)
=

p∑
j=1

βjfj(s) = βT f(s), s ∈ D,

where β = (β1, β2, . . . , βp)
T ∈ R

p are unknown regression parameters,

f(s) = (f1(s), f2(s), . . . , fp(s))
T is a set of known location-dependent covariates,

and

Cov{Y (s), Y (t)} =
1

τ
rθ(s− t); s, t ∈ D.

As before, τ is the precision of the random field, τ−1 = Var
(
Y (s)

)
, and θ =

(θ1, θ2, . . . , θq)
T ∈ Θ ⊂ R

q is a structural parameter controlling the range of cor-

relation and/or the smoothness of the random field Y . The correlation function

rθ is assumed continuous in θ.
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The cases where either the random field Z or some known transformation of

it is Gaussian are special cases of this model when the family contains only one

member.

By the stated assumptions, we have

(gλ(Z0),gλ(Z) | β, τ, θ, λ) ∼ Nk+n


X0β

Xβ

 ,
1

τ

Eθ Bθ

BT
θ Cθ


 (3.1)

for some λ ∈ Λ and (β, τ, θ)T ∈ R
p×(0,∞)×Θ. For any vector a = (a1, a2, . . . , an)T

we define gλ(a) as

gλ(a) ≡ (gλ(a1), gλ(a2), . . . , gλ(an))T , (3.2)

X and X0 are known n× p and k × p design matrices defined by

Xij = fj(si) and (X0)ij = fj(s0i), (3.3)

and Eθ,Bθ, and Cθ are k × k, k × n, and n× n correlation matrices:

(Eθ)ij = rθ(‖s0i − s0j‖),

(Bθ)ij = rθ(‖s0i − sj‖), and

(Cθ)ij = rθ(‖si − sj‖).

From (1.1), the likelihood of the model parameters, based on the original data

z = (z1, z2, . . . , zn)T , where zi = Z(si), is given by

L(β, τ, θ, λ; z) =
( τ

2π

)n/2

|Cθ|−1/2 exp
{
−τ

2
(gλ(z)−Xβ)T C−1

θ (gλ(z)−Xβ)
}

Jλ

for zi ∈ g−1
λ (R), and is 0 otherwise, where

Jλ =
n∏

i=1

|gT
λ (zi)|
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is the Jacobian of the transformation. As described in De Oliveira (1997) and

De Oliveira, Kedem, and Short (1997), the full Bayesian model is used to predict

Z0. The full prior specification is given by

p(β, τ, θ, λ) ∝ p(θ)p(λ)

τJ
p/n
λ

,

where p(θ) and p(λ) are the prior marginals of θ and λ. In particular, p(λ) is

uniform.

Assume now that Z0 is scalar. Then with the assumptions on Z this defines

the joint distribution of the parameters and the unobserved location given the

data,

p(β, τ, θ, λ, Z0 | Z).

By integrating out all the parameters we get the predictive density p(Z0 | Z),

the posterior distribution of the value of interest Z0. The predictor itself is the

median of this distribution.

Because the parameters θ and λ cannot be integrated out analytically, a

Monte Carlo algorithm is used to approximate the predictive density numerically.

3.3 The btg program

The btg program is an implementation of the BTG prediction algorithm (Bindel,

De Oliveira, Kedem, 1997). The btg program performs the following.

• Prediction of Z(s0) and computation of its uncertainty.

• Plotting of the predictive density for any specified location.

• Computation of medians and 95% prediction intervals based on the above

predictive pdf.
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• Mapping of predictions and prediction uncertainties over a rectanlar region.

• Estimation of the transformation and correlation parameters.

• Cross-validation assessment.

The tkbtg is an X Window graphical interface to the btg program. With tkbtg,

users can interactively manipulate program settings and access the functions of

the btg engine.

The program and its full description can be downloaded from

http://www.math.umd.edu/~bnk/btg_page.html .

Some limitations on using the btg program:

1. The field has to be positive.

The range of Z0 should always be strictly positive, since the domains of the

Box-Cox transformation functions are positive real numbers. If the data set

contains some zeros or very small values, we can shift the field up by adding

a positive constant, perform the prediction, and then shift everything back.

2. The parameters of the correlation function.

For the appropriate scaling in the multidimensional optimization for corre-

lation functions other than exponential, the btg program works not with

the original parameter vector θ of the correlation function, but with the

vector (exp(−θ1), exp(−θ2), . . . , exp(−θn)).

Suppose that an interval A is the range of the correlation parameter θ. Then

the optimization will be performed over the transformed range, exp(−A).

Therefore, exp(−A) should not fall out of the machine precision range.
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Because of this, parameters should be such that exp (−θ) > ε, and hence

we should have θ < − log ε, where ε is the machine accuracy.

To achieve this, one can try to scale the x- and y-coordinates of the data.

For example, for the spherical(50) correlation,

r50(l) = 1− 3

2

(
l

50

)
+

1

2

(
l

50

)3

= 1− 3

2

(
l/10

50/10

)
+

1

2

(
l/10

50/10

)3

= r5(l/10).

Therefore, we can use spherical(5) correlation instead of spherical(50), if we

move from l to l/10 by dividing the x- and the y-coordinates of the data

by 10. In this case the optimization will be performed around the value of

exp(−5), which is fine, rather than exp(−50), which would fail.

Simulations.

Figures 3.1 - 3.3 show the result of the BTG algorithm for a transformed

Gaussian field.

First a Gaussian(5, 1) random field with Matérn(1, 10) correlation was gen-

erated. Then it was transformed by the inverse Box-Cox transformation with

parameter λ = 0.5. The result is shown in Figure 3.1.

Then 50 random points where chosen and used as a data set for the BTG

algorithm. The result of the mapping of the whole field is shown in Figure 3.2.

Figure 3.3 shows the real and predicted field together.
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Figure 3.1: Transformed Gaussian(5,1) random field with λ = 0.5, Matérn(1,10)

correlation.
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Figure 3.2: BTG surface obtained from 50 data points
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Figure 3.3: Transformed Gaussian(5,1) random field with λ = 0.5 and its BTG

approximation from 50 data points.
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Chapter 4

Gaussian Field Simulation

4.1 The Problem

In this chapter we describe the method that we use to generate stationary Gaus-

sian random fields. We use such fields as simulated data in Chapter 5 in the

comparison of the prediction methods.

Suppose that we want to generate a sample from a Gaussian field with mean

zero and a given correlation function r over an n1×n2 grid S = {sij}. This means

that we need to generate n1n2 jointly normal random variables. We combine them

in a vector Z row-wise, starting at the upper left corner of the grid. The grid

together with the covariance function define the covariance matrix C, so that the

vector that we want to generate is Z ∼ N(0n1n2 ,Cn1n2×n1n2).

The standard way to do this is to use the Cholesky decomposition of C,

C = LLT ,

where L is a lower triangular matrix. The cost of this decomposition is (n1n2)
3/6

multiplications and n1n2 square roots. Once L is obtained, we can set

Z = Lε,
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where ε is a vector of independent identically distributed N(0, 1) random vari-

ables. Then indeed Z is normal and

E(Z) = E(Lε) = LE(ε) = 0,

Var(Z) = LVar(ε)LT = LLT = C.

This approach has the following problems:

• The storage of the n1n2 × n1n2 matrix C is required.

• The Cholesky decomposition of C is too expensive computationally.

Because of these difficulties we use the Circulant Embedding method instead

(Dietrich and Newsam, 1993).

4.2 Circulant Embedding Method

The Circulant Embedding method is applicable for generating realizations of

stationary Gaussian fields over regular grids (the grid is regular if it has constant

x and y steps). Under these conditions, the covariance matrix of the resulting

vector Z ∼ N(0n1n2 ,C) is block Toeplitz with Toeplitz blocks (Zimmerman,

1989). By definition, a regular Toeplitz matrix has constant values along all the

diagonals, as in

C =



1 5 6 7

2 1 5 6

3 2 1 5

4 3 2 1


.
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A block Toeplitz matrix with Toeplitz blocks is defined as a block matrix in

which the Toeplitz structure is applicable to the whole blocks and also within

each block.

Related to Toeplitz matrices is the class of circulant matrices. A circulant

matrix is a particular case of the Toeplitz matrix, in which all the columns start-

ing with the second one are obtained by circulation of the previous column (a

circulation is a cyclical permutation of the vector which moves its last element

to the first position and shifts all the others down by one), as in

V =



1 4 3 2

2 1 4 3

3 2 1 4

4 3 2 1


.

Similarly to the Toeplitz case, a block circulant matrix with circulant blocks is

defined as a block matrix in which the circulant structure applies to the whole

blocks and also within each block.

The idea of the Circulant Embedding method is to embed a block Toeplitz

matrix into a larger block circulant matrix with circulant blocks, using the stan-

dard embedding procedure, that we illustrate in the following example. Suppose

we have the symmetric block Toeplitz matrix

C =



1 2 3 4 5 6

2 1 2 7 4 5

3 2 1 8 7 4

4 7 8 1 2 3

5 4 7 2 1 2

6 5 4 3 2 1


=

 C(1) C(2)

C(2)T C(1)
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First, we embed each of the two blocks C(1) and C(2) into V(1) and V(2) re-

spectively. The first column of V(1) is obtained as follows: write out all the

entries of the first column of C(1), a zero, and all the entries of the first row of

C(1) backwards (without repeating C11). The rest of the V(1) is then defined by

circulation:

V(1) = embed
(
C(1)

)
=



1 2 3 0 3 2

2 1 2 3 0 3

3 2 1 2 3 0

0 3 2 1 2 3

3 0 3 2 1 2

2 3 0 3 2 1


The matrix V(2) is obtained from C(2) in the same way.

V(2) = embed
(
C(2)

)
=



4 5 0 6 8 7

7 4 5 0 6 8

08 7 4 5 0 6

0 8 7 4 5 0

6 0 8 7 4 5

5 6 0 8 7 4


Finally, we combine the blocks V(i) into the matrix V like that (note that

everything is actually defined by the first block column):

V =



V(1)T V(2) 06×6 V(2)T

V(2)T V(1)T V(2) 06×6

06×6 V(2)T V(1)T V(2)

V(2) 06×6 V(2)T V(1)T
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One can see that building V from the blocks is analogous to embedding the

individual blocks. Namely, one creates the first block column by putting together

the following:

• transposed embedded blocks from the first block column of the original

matrix C;

• a block matrix of zeros;

• the embedded blocks from the first block row of the original matrix C, in

the reversed order.

The resulting V is

V =



1 2 3 0 3 2 4 5 0 6 8 7 0 0 0 0 0 0 4 7 8 0 6 5

2 1 2 3 0 3 7 4 5 0 6 8 0 0 0 0 0 0 5 4 7 8 0 6

3 2 1 2 3 0 8 7 4 5 0 6 0 0 0 0 0 0 6 5 4 7 8 0

0 3 2 1 2 3 0 8 7 4 5 0 0 0 0 0 0 0 0 6 5 4 7 8

3 0 3 2 1 2 6 0 8 7 4 5 0 0 0 0 0 0 8 0 6 5 4 7

2 3 0 3 2 1 5 6 0 8 7 4 0 0 0 0 0 0 7 8 0 6 5 4

4 7 8 0 6 5 1 2 3 0 3 2 4 5 6 0 8 7 0 0 0 0 0 0

5 4 7 8 0 6 2 1 2 3 0 3 7 4 5 6 0 8 0 0 0 0 0 0

6 5 4 7 8 0 3 2 1 2 3 0 8 7 4 5 6 0 0 0 0 0 0 0

0 6 5 4 7 8 0 3 2 1 2 3 0 8 7 4 5 6 0 0 0 0 0 0

8 0 6 5 4 7 3 0 3 2 1 2 6 0 8 7 4 5 0 0 0 0 0 0

7 8 0 6 5 4 2 3 0 3 2 1 5 6 0 8 7 4 0 0 0 0 0 0

0 0 0 0 0 0 4 7 8 0 6 5 1 2 3 0 3 2 4 5 6 0 8 7

0 0 0 0 0 0 5 4 7 8 0 6 2 1 2 3 0 3 7 4 5 6 0 8

0 0 0 0 0 0 6 5 4 7 8 0 3 2 1 2 3 0 8 7 4 5 6 0

0 0 0 0 0 0 0 6 5 4 7 8 0 3 2 1 2 3 0 8 7 4 5 6

0 0 0 0 0 0 8 0 6 5 4 7 3 0 3 2 1 2 6 0 8 7 4 5

0 0 0 0 0 0 7 8 0 6 5 4 2 3 0 3 2 1 5 6 0 8 7 4

4 5 6 0 8 7 0 0 0 0 0 0 4 7 8 0 6 5 1 2 3 0 3 2

7 4 5 6 0 8 0 0 0 0 0 0 5 4 7 8 0 6 2 1 2 3 0 3

8 7 4 5 6 0 0 0 0 0 0 0 6 5 4 7 8 0 3 2 1 2 3 0

0 8 7 4 5 6 0 0 0 0 0 0 0 6 5 4 7 8 0 3 2 1 2 3

6 0 8 7 4 5 0 0 0 0 0 0 8 0 6 5 4 7 3 0 3 2 1 2

5 6 0 8 7 4 0 0 0 0 0 0 7 8 0 6 5 4 2 3 0 3 2 1
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The main advantage of circulant matrices is the following Diagonalization

Theorem (Nott and Wilson, 1997): if V is block circulant with circulant blocks,

then

V = FHΛF, (4.1)

where Λ is the diagonal matrix of the eigenvalues of V, and F is the matrix of

the two-dimensional Fourier transform defined by

Flm =
1√
n1n2

exp

(
−2πi

n1

[
l

n2

] [
m

n2

])
exp

(
−2πi

n2

(l mod n2)(m mod n2)

)
l,m = 0, 1, . . . , n1n2 − 1

The reason F is called the two-dimensional Fourier transform matrix is that for

any vector a the product Fa can be computed as

Fa = vector(FFT2(matrix(a))), (4.2)

where matrix(a) denotes the n1 × n2 matrix obtained from the vector a row-

wise, and vector(A) is the inverse of this operation, that is, the n1n2-vector

obtained row-wise from the matrix A. Finally, FFT2 is the two-dimensional

Fourier transform, which operates on rectangular matrices, and for an n1 × n2

matrix A returns the matrix B of the same size with the entries

Blm =
1√
n1n2

n1−1∑
g=0

n2−1∑
h=0

Agh exp

(
−2πgl

n1

i

)
exp

(
−2πhm

n2

i

)
l = 0, . . . , n1 − 1, m = 0, . . . , n2 − 1

The main importance of (4.2) is that the cost of FFT2 is n1n2 log2(n1n2), at least

in the ideal case of both n1 and n2 being powers of two. On the other hand, the

cost of computing Fa for an arbitrary matrix F is (n1n2)
2.
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From (4.1) it follows that λ, the vector of the eigenvalues of V, is given by

√
n1n2 FV1, where V1 is the first column of V:

FV = ΛF (from (4.1), because F is unitary)

FV1 = ΛF1 (consider the first columns)

FV1 =
1√
n1n2

λ
(
since F1 = (1/

√
n1n2, 1/

√
n1n2, . . . , 1/

√
n1n2 )T

)
.

In the Circulant Embedding method, this observation is an analog of the Cholesky

decomposition.

Now for a non-negative definite symmetric block circulant matrix V with cir-

culant blocks we can generate two independent realizations W(1),W(2) ∼ N(0,V)

by setting

δi, εi ∼ N(0, λi), i = 1, . . . , n1n2, mutually independent,

W(1) = Re(F(ε + iδ)),

W(2) = Im(F(ε + iδ)).

Now it remains to explain how the desired sample Z ∼ N(0,C) is obtained.

We start by embedding the symmetric non-negative definite block Toeplitz n1n2×
n1n2 matrix C with Toeplitz blocks into a larger 4n1n2 × 4n1n2 block circulant

matrix V with circulant blocks. Hopefully, the non-negative definiteness is pre-

served (the conditions are discussed in Kozintsev, 1999). Then we can generate

W
(1)
4n1n2

and W
(2)
4n1n2

as described above. Finally, we use the components of W(1)

and W(2) that correspond to the original field to create the vectors Z(1) and Z(2)

using the following procedure:

• take the first 2n1n2 elements of W;

• divide it into 2n1 groups of length n2 each;
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• use every other group starting with the first one to populate an n1 × n2

matrix row-wise; this matrix is the desired sample.

The advantages of this procedure over the Cholesky method are that only the

first column of C has to be stored (4n1n2 values rather than (n1n2)
2), and that

the cost is of the order of only 4n1n2 log2(4n1n2).

Therefore the Circulant Embedding algorithm is as follows. Given an n1×n2

regular grid and a covariance function,

• construct n1n2 × n1n2 block Toeplitz covariance matrix C;

• embed C into 4n1n2 × 4n1n2 block circulant matrix V;

• generate W(1),W(2) ∼ N(04n1n2 ,V);

• extract Z(1),Z(2) ∼ N(0n1n2 ,C) from W(1) and W(2).

The program (Kozintsev, 1999) implementing the Circulant Embedding algo-

rithm is available at http://www.math.umd.edu/~bnk/bak/generate.cgi.

Figures 4.1 - 4.4 demonstrate the results of generating Gaussian random fields

with different correlation functions.
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Figure 4.1: Gaussian(0, 1) r.f. with exponential (exp(-0.03), 1) correlation.
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Figure 4.2: Gaussian(0, 1) r.f. with Matérn(1, 10) correlation.
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Figure 4.3: Gaussian(0, 1) r.f. with spherical(50) correlation.
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Figure 4.4: Gaussian(0, 1) r.f. with rational quadratic(0.9, 1) correlation.
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Chapter 5

Comparison

In this chapter we compare the performances of the three prediction methods:

ordinary kriging, trans-Gaussian kriging, and BTG. We consider artificially gen-

erated data and real rainfall (instantaneous radar reflectivity) data separately.

5.1 Generated Data

We use the following procedure for the comparison.

1. Generate a Gaussian random field Y on a 50 by 50 grid. Throughout this

chapter we use Gaussian fields with mean 5, variance 1, and will every time

specify the correlation function.

2. Sample 50 random points from Y .

3. Take an inverse Box-Cox transformation of Y with fixed parameter λ. This

gives us the field of interest Z, and in particular the inverse Box-Cox trans-

formation of the 50 sampled points are the given data Z.

4. Perform the prediction of all 2500 points of the grid given the 50 data

points. Compare the mean squared error (this is possible only for the
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generated data).

5. Perform cross validation. That is, throw away one data point at a time and

predict it using the remaining 49 points. Compare the mean squared errors

(this is possible for both the generated and real data). While doing the

cross validation we also calculate the 95% prediction intervals and compare

their average lengths and the proportion of points that lie outside their

prediction intervals.

Tables 5.1 and 5.2 show the results of predicting all 2500 points.

Correlation Exponential Matérn

function (e−0.03, 1) (1, 10)

Transformation

parameter
λ = 0 λ = 0.5 λ = 1 λ = 0 λ = 0.5 λ = 1

KRIG 8117.8751 1.5318 0.11331 42406.756 3.8547 0.31564

TGK 8254.7361 1.5418 0.11331 33604.421 3.8193 0.31564

BTG 7755.0195 1.5652 0.11649 39879.496 3.7506 0.31088

Table 5.1: Mean squared error for the Exponential and Matérn correlations.

The big error for λ = 0 (lognormal data) in all three methods is due to the

big variance in the field (see Section 2.3 on the properties of the inverse Box-Cox

transformation). These results show that there is practically no significant dif-

ference between the methods if we consider only the MSE. Sometimes BTG gave

the best result (Matérn correlation, λ = 0.5), sometimes the worst (exponential

correlation, λ = 1), but the ratios of the BTG results and other two methods

never exceeded 1.2. One has to note, though, that ordinary kriging and trans-

Gaussian kriging had much more information about the data than BTG did -
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Correlation Rational Quadratic Spherical

function (0.9, 1) (50)

Transformation

parameter
λ = 0 λ = 0.5 λ = 1 λ = 0 λ = 0.5 λ = 1

KRIG 109303.978 12.8835 1.0516 48050.015 3.6724 0.26738

TGK 108684.558 12.8775 1.0516 48677.479 3.6429 0.26738

BTG 117419.446 12.9808 1.0525 48378.299 3.3690 0.27476

Table 5.2: Mean squared error for the Rational Quadratic and Spherical correla-

tions.

in both kriging methods the exact values of the transformation parameter λ and

the correlation parameters where provided.

Now we perform cross validation. Tables 5.3 and 5.4 show the mean squared

errors, the average lengths of the 95% prediction intervals (denoted by l), and the

percentages of the points that are outside of their prediction interval (denoted by

‘out’).
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Correlation Exponential Matérn

function (e−0.03, 1) (1, 10)

Transform.

parameter
λ = 0 λ = 0.5 λ = 1 λ = 0 λ = 0.5 λ = 1

KRIG

12212.3228

‘out’=98%

l=1.45525

1.83605

‘out’=64%

l=1.43314

0.13184

‘out’=2%

l=1.45315

68397.4887

‘out’=100%

l=2.4195

7.14896

‘out’=48%

l=2.5128

0.58113

‘out’=6%

l=2.4183

TGK

11974.7347

‘out’=20%

l=267.92

1.84176

‘out’=4%

l=5.24335

0.13184

‘out’=2%

l=1.45315

55260.9006

‘out’=18%

l=291.797

7.0762

‘out’=8%

l=8.21326

0.58113

‘out’=6%

l=2.4183

BTG

12520.7

‘out’=6%

l=466.69

1.89171

‘out’=2%

l=6.0971

0.13550

‘out’=2%

l= 1.6289

64134.3000

‘out’=12%

l=330.6752

7.30742

‘out’=6%

l=10.2343

0.55691

‘out’=6%

l=2.8660

Table 5.3: Cross Validation on 50 data points: exponential and Matérn correla-

tions. The entries are MSE, average length of the 95 % PI, and the percentage

of the observations outside their PI.
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Correlation Spherical Rational Quadratic

function (50) (0.9, 1)

Transform.

parameter
λ = 0 λ = 0.5 λ = 1 λ = 0 λ = 0.5 λ = 1

KRIG

3024.651

‘out’=100%

l= 1.4197

1.740893

‘out’=56%

l= 1.4197

0.157050

‘out’=6%

l=1.4197

28423.78

‘out’=98%

l=3.9102

10.35269

‘out’=56%

l=3.9102

0.91438

‘out’=2%

l=3.9102

TGK

2886.036

‘out’=12%

l=151.64

1.733068

‘out’=6%

l=4.7351

0.157050

‘out’=6%

l=1.4197

28362.65

‘out’=4%

l=552.24

10.34515

‘out’=0%

l=13.590

0.91458

‘out’=2%

l=3.91019

BTG

2788.953

‘out’=10%

l= 150.369

1.68321

‘out’=4%

l=5.5751

0.150843

‘out’=4%

l=1.6409

31120.6

‘out’=20%

l=305.31

10.42212

‘out’=2%

l=14.1282

0.92135

‘out’=4%

l=4.34191

Table 5.4: Cross Validation on 50 data points: spherical and rational quadratic

correlations. The entries are MSE, average length of the 95 % PI, and the per-

centage of the observations outside their PI.
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From these tables we can see that there is a big difference in the accuracy of

the prediction intervals. Ordinary kriging gives good results only for λ = 1, i.e.

for the Gaussian data. For all the correlation functions, except for the rational

quadratic, we see that in terms of giving the wrong intervals the BTG gave the

same result as the trans-Gaussian kriging on the Gaussian data (λ = 1), was a

little better for the data with λ = 0.5, and much better for the log-normal data

(λ = 0). This is so since the BTG prediction intervals tend to be wider. Due to

the difference in the variance of the fields all three methods have better accuracy

of the prediction intervals for the fields closer to Gaussian. The ordinary kriging

PI’s are based on the Gaussian assumption, because of this PI’s for λ = 0 and

λ = 0.5 are unrealistically narrow and miss most of the true values.

For some reason no pattern was found on the data with rational quadratic

correlation.

Up to this point we used the exact values for all the parameters in ordinary

and TG kriging. In practice we do not have them. To study the effects of mis-

specifying the parameters we now perform ordinary and trans-Gaussian kriging

with some of the parameters fixed at values close to the true values, but not

exactly equal.

Tables 5.5 and 5.6 show the results of the trans-Gaussian kriging performed

with different values of the transformation parameter λ, deviating from the true

λ∗.

Both times the original field has the exponential(e−0.03, 1) correlation. For

Table 5.5, λ∗ = 1 is the true λ-value and λ = 1.914 is the result of the BTG

prediction. For Table 5.6, λ∗ = 0 is the true λ-value and λ = 0.174642 is the

result of the BTG prediction.
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λ = 1.914 λ = 1.5 λ = 1.2 λ∗ = 1 λ = 0.8 λ = 0.5 λ = 0

0.13104

‘out’=64%

l=0.3195

0.13137

‘out’=48%

l=0.6353

0.13166

‘out’=16%

l=1.0441

0.13184

‘out’=2%

l=1.4531

0.13194

‘out’=0%

l=2.0215

0.13254

‘out’=0%

l=3.3140

0.25774

‘out’=0%

l=7.5355

Table 5.5: TGK with different values of λ. λ∗ = 1 is the true parameter value.

λ = 1 λ = 0.8 λ = 0.5 λ = 0.174642 λ∗ = 0 λ = −0.1

12212.323

‘out’=98%

l=1.4531

12160.493

‘out’=98%

l= 4.2326

12131.410

‘out’=92%

l= 20.537

12122.638

‘out’=56%

l=110.24

11974.733

‘out’=20%

l=267.92

12533.73

‘out’=4%

l=443.58

Table 5.6: TGK with different values of λ. λ∗ = 0 is the true parameter value.

The pattern here is that for smaller values of λ the length of the prediction

intervals increase and so the number of ‘wrong’ intervals decreases. So when λ

is overestimated we have too small prediction intervals, and when λ is underesti-

mated, the MSE becomes bigger and the length of prediction intervals increases

very fast. In other words, the length of the PI’s increases with λ.

Next we keep the true value of λ fixed but change the correlation parameter.

Table 5.7 shows the results for the spherical(50) correlation for various fixed

values of λ. Cross validation by the trans-Gaussian kriging was performed with

the true value of λ and different values of the correlation parameter.

For all three choices of λ, the minimum of the MSE was achieved for the true

parameter value θ∗ = 50. For smaller values of θ the prediction intervals became

longer and the number of ‘wrong’ intervals smaller. The length of PI’s decreases

as θ increases.
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θ = 5 θ = 25 θ = 40 θ∗ = 50 θ = 60 θ = 100 θ = 150

λ = 0

MSE

‘out’

l

118282.7

8%

848.4

10899.2

4%

388.9

9076.9

16%

254.1

8276.3

24%

192.9

8401.43

32%

l144.4

8791.52

58%

78.5

8942.31

72%

56.391

λ = 0.5

MSE

‘out’

l

10.9178

2%

13.913

1.43924

0%

7.171

1.3009

0%

5.512

1.2949

4%

4.815

1.3130

6%

4.271

1.3431

14%

3.132

1.3531

28%

2.505

λ = 1

MSE

‘out’

l

0.823386

4%

3.742

0.11387

0%

1.9682

0.1019

0%

1.5531

0.1015

4%

1.389

0.10269

4%

1.2683

0.10482

12%

0.9815

0.1055

18%

0.801

Table 5.7: TGK with various values of the correlation parameter. θ∗ = 50 is the

true parameter value.

5.2 Rainfall Data

The data set analyzed in this section is formed by rainfall intensity, measured in

terms of the radar reflectivity (dBZ) at 08:28 March 09, 1998 in Melbourne, FL by

a ground based radar during a period when the Tropical Rain Measuring Mission

(TRMM) satellite was overhead. The data consist of a 151x151 floating point

array of the intensity values. Figure 5.1 shows the data overlaid on a geographical

map.

The data contain -99’s as missing data, all of which should be ignored, being

either below minimum detectability or out of bound.

We selected a 50 by 50 area which does not have negative values. Figure 5.2

shows the shape of this area.
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Figure 5.1: Radar reflectivity data, measured in Melbourne, FL at 08:28 March

09, 1998 with the 50×50 region used in the comparison of the prediction methods.
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Figure 5.2: Rainfall field: Radar reflectivity in dBZ.
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Then we selected two uniform random samples of 50 points each. Tables 5.8

and 5.9 show the results of the BTG cross validation on these samples. MSE in

these tables is the mean squared error and ‘length’ is the average length of the

PI’s calculated over the 50 data points.

Exponential Rational Quadratic Matérn Spherical

MSE 23.9162 26.3607 32.5693 66.0787

‘out’ 4% 4% 8% 4%

length 22.147397 22.442944 22.602144 37.301770

lambda 0.873181 0.947889 0.914281 1.05367

theta1 0.994849 0.043728 9.20291e-08 9.83739e-09

theta2 1.04202 0.999999 0.507735 -

Table 5.8: Rainfall data. Cross validation BTG results - sample 1.

Exponential Rational Quadratic Matérn Spherical

MSE 13.5818 13.6904 14.5174 39.8341

‘out’ 4% 2% 4% 4%

length 18.061345 17.798766 18.800780 27.859814

lambda 0.0604596 -0.125429 0.0235469 0.180278

theta1 0.972899 0.0656118 6.86406e-07 1.85106e-08

theta2 1.04789 0.999998 0.51503 -

Table 5.9: Rainfall data. Cross validation BTG results - sample 2.

From now on only the second sample will be used, and since both samples

gave the best result with the exponential correlation, we will restrict the kriging

calculations only to this correlation.
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5.2.1 Parameter Estimation for the Ordinary and Lognor-

mal Kriging.

To do any type of kriging we need to know the correlation parameters θ1 and θ2,

and precision τ . We will discuss several ways to obtain these parameters.

For a known λ Cressie (1993, p. 97) suggests the following method of obtaining

θ1, θ2, and τ .

We know that semivariogram for the exponential correlation function is

γθ,τ (l) =
1

τ

(
1− θlθ2

1

)
, where θ = (θ1, θ2)

T .

We can use an estimator for this semivariogram

2γ(l) =

(
1

|N(l)|
∑
N(l)

|Z(si)− Z(sj)|1/2

)4

0.457 +
0.494

|N(l)|
,

where N(l) = {(si, sj) : l − 1/2 < ‖si − sj‖ < l + 1/2} and |N(l)| is the num-

ber of distinct sample pairs lagged by the distance l. The reasoning behind

this estimator is that, for Gaussian data, (Z(si) − Z(sj))
2 is a chi-squared ran-

dom variable with one degree of freedom. The power transformation that makes

this most Gaussian-like is the fourth root (Cressie and Hawkins, 1980), namely

|Z(si) − Z(sj)|1/2, the square root of the absolute difference. Thus, various lo-

cation estimators can be applied to {|Z(si) − Z(sj)|1/2 : (si, sj) ∈ N(l)}, which,

when normalized for bias, yield robust (to contamination by outliers; see Hawkins

and Cressie, 1984) variogram estimators.

Now weighted least squares estimates of the parameters are obtained by min-

imizing ∑
l∈L

|N(l)|
(

γ(l)

γθ,τ (l)
− 1

)2

(5.1)
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over (τ, θ1, θ2) ∈ (0,∞) × (0, 1) × (0, 2]. Joirnel and Huijbregts (1978, p.194)

recommend that the fit should be only up to half the maximum possible lag (in

our case (50
√

2)/2 ≈ 36) and then only using lags for which |N(l)| > 30. Figure

5.3 demonstrates the distribution of |N(l)|.

0 10 20 30 40 50 60

0
10

20
30

40

l

|N
(l)

|

Figure 5.3: Distribution of |N(l)|

Ordinary kriging. Ordinary kriging means that no transformation is needed.

For some reason the restriction |N(l)| > 30 did not work out well in this particular

case. We obtained parameters from a number of different sets L and performed

ordinary kriging with these parameters. The results are shown in Table 5.10.
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L = {l : |N(l)| > a} a = 30 a = 20 a = 10 a = 0

MSE 447.4841 14.63096 14.63174 15.06493

‘out’ 84% 4% 4% 2%

length 7.445913 18.444318 18.447704 19.277882

θ1 0.99999903 0.91722721 0.92131783 0.92899560

θ2 5.25347811 0.72268379 0.71743431 0.614514385

τ 0.01930967 0.01114444 0.01055865 0.0077932

Table 5.10: Parameter estimation for ordinary kriging: we first calculated the

parameters θ1, θ2, and τ and then performed the cross validation using these

parameters. The MSE, ‘out’ and ‘length’ are averages from the cross validation.
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In this table |N(l)| > 0 means that we considered sum over all l less than 36.

The best result was obtained for the summation over L = {l : |N(l)| > 20}.
Lognormal kriging. Now we assume that λ = 0. Table 5.11 shows the

results of lognormal kriging with different parameters.

Here, again, the condition |N(l)| > 30 was too strong to get the best result,

which was obtained for |N(l)| > 10.

L = {l : |N(l)| > a} a = 30 a = 20 a = 10 a = 0

MSE 19.48468 15.95985 15.7621 15.83358

‘out’ 2% 4% 4% 4%

length 23.153523 19.008782 18.728513 18.061345

θ1 0.9936533 0.9969230 0.9984204 0.999898834

θ2 0.2328222 0.4415105 0.4618606 0.453506187

τ 0.2415281 0.2218373 0.1198744 0.007488926

Table 5.11: Parameter estimation for lognormal kriging: we first calculated the

parameters θ1, θ2, and τ and then performed the cross validation using these

parameters. The MSE, ‘out’ and ‘length’ are averages from the cross validation.

5.2.2 Parameter Estimation for the Trans-Gaussian Krig-

ing.

Another common method for obtaining parameters is the maximum likelihood

estimation.

We take the Box-Cox transformation of the data Z with unknown parameter

λ. Since the result Y is assumed to be Gaussian(µ, 1/τ) with exponential(θ1, θ2)
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correlation, the likelihood function is

L(λ, θ1, θ2, µ, τ |Y) =
1

(2π)n/2
√|Cθ,τ |

exp

(
−1

2
(Y − µ1)TC−1

θ,τ (Y − µ1)

)
,

where θ = (θ1, θ2).

Therefore the log-likelihood is

log(L(λ, θ1,θ2, µ, τ | Y))

= log

(
1

(2π)n/2
√|Cθ,τ |

)
+

(
−1

2
(Y − µ1)TC−1

θ,τ (Y − µ1)

)
= −n

2
log(2π)− 1

2
log(|Cθ,τ |)−

(
1

2
(Y − µ1)TC−1

θ,τ (Y − µ1)

)
= −1

2

(
n log(2π) + log(|Cθ,τ |) + (Y − µ1)TC−1

θ,τ (Y − µ1)
)
.

Unfortunately, for this particular example maximization does not work: the func-

tion has many local maxima with approximately the same value.

Another way to do the MLE is to use profiling as in Box and Cox(1964). For

any fixed values of θ1, θ2, and λ, the ML estimators of µY and τY are

µ̂Y =
1TCθ,1

−1gλ(Z)

1TCθ,1
−11

,

where

gλ(a) ≡ (gλ(a1), gλ(a2), . . . , gλ(an))T ,

and

1

τ̂Y

= σ̂2
Y =

1

n
qθ,λ, (5.2)

where

qθ,λ = (gλ(Z)− µ̂Y 1)TCθ,1
−1(gλ(Z)− µ̂Y 1).
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Plugging this into the log-likelihood function in the place of µY and τY , we

obtain the profile log-likelihood, given, up to an additive constant, by

l(θ1, θ2, λ|Z) = (λ− 1)
n∑

i=1

log(Zi)− n

2
log(qθ1,θ2,λ)− 1

2
log(|Cθ,1|). (5.3)

Maximizing this function with respect to θ1, θ2, and λ gives θ1 = 0.85333, θ2 =

1.03889, and λ = 0.3. Now we can plug these numbers back into the estimation

of τ (5.2) and find that τ̂ = 3.3792. The result of TGK with these parameters is

shown in Table 5.12.

λ = 0.3

MSE 15.61601

‘out’ 4%

length 17.14286

θ1 0.85333

θ2 1.03889

τ 3.379156

Table 5.12: TGK with MLE parameters. The MSE, ‘out’, and ‘length’ are aver-

ages from the cross validation.

Table 5.13 shows all the results together.

We can see that BTG produced the smallest mean squared error, while the

accuracy of the prediction intervals was the same for all the methods, and the

length was the smallest for the TGK, but TGK produced the largest MSE.
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ordinary lognormal TGK with

kriging kriging MLE parameters BTG

|N(l)| > 20 |N(l)| > 10

MSE 14.63096 15.7621 15.61601 13.5818

‘out’ 4% 4% 4% 4%

length 18.444318 18.728513 17.142864 18.061345

θ1 0.91722721 0.9984204 0.85333 0.994849

θ2 0.72268379 0.4618606 1.03889 1.04202

τ 0.01114444 0.1198744 3.379156 -

λ - 0 0.3 0.0604596

Table 5.13: Summary for the exponential correlation. The MSE, ‘out’, and

‘length’ are averages obtained from the cross validation. For the first two columns

we used parameters from the semivariagram approximation, and for the TGK we

used the profiled MLE.
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We applied the same methods to another rainfall data set - rainfall intensity

was measured in Houston, TX on January 22, 1998 at 04:10. Figure 5.4 shows

this data overlaid on a geographical map.

Figure 5.4: Radar reflectivity data, measured in Houston, TX at 04:10 January

22, 1998 with the 50×50 region used in the comparison of the prediction methods.

Table 5.14 shows the results of BTG with different correlation functions.

Again, the best result was obtained for the exponential correlation, and so all

kriging calculations where performed with this correlation. Table 5.15 summa-

rizes all results for the Houston data set.

For this data set the ordinary kriging, TGK, and BTG gave close results. The
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Exponential Rational Quadratic Matérn Spherical

MSE 59.4902 63.2864 79.2416 152.611

‘out’ 6% 6% 6 % 2%

length 29.961526 30.952886. 31.283445 52.641230

lambda 1.46399 1.40802 1.44646 1.34011

theta1 0.970555 0.0596284 1.957e-07 2.6136e-08

theta2 1.27101 0.999999 0.512065 -

Table 5.14: Rainfall data. Houston, TX. Cross validation BTG results.

poor result of the lognormal kriging is probably due to the fact that the data are

very far from being lognormal. Indeed, both BTG and the MLE for the trans-

Gaussian kriging approximated λ as being close to 1.4, while in the lognormal

kriging λ = 0.
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ordinary lognormal TGK with

kriging kriging MLE parameters BTG

|N(l)| > 0 |N(l)| > 0

MSE 59.63783 119789.8 60.07092 59.4902

‘out’ 4% 84 % 6% 6%

length 25.614839 388.525195 30.866919 29.961526

θ1 0.975495660 0.975495655 0.965498 0.970555

θ2 1.395362802 1.32203625 0.821309 1.27101

τ 0.003707063 0.004421925 0.0008471929 -

λ - 0 1.3013 1.46399

Table 5.15: Summary for the Houston data. The MSE, ‘out’, and ‘length’ are

averages obtained from the cross validation. For the first two columns we used

parameters from the semivariagram approximation, and for the TGK we used

the profiled MLE.
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5.3 Conclusions

The Gaussian (or transformed Gaussian) assumption for the spatial data involves

the covariance parameters (θ, τ) and the transformation parameter λ.

To apply ordinary, lognormal, or trans-Gaussian kriging, one has to provide

the estimates of the parameters. These estimates are not easy to obtain. Among

the possible methods are the semivariogram approximation (see Section 5.2.1),

and the maximization of the profiled MLE (Section 5.2.2). In both cases, one

encounters difficulties with the multi-dimensional optimization in (5.1) and (5.3).

On the other hand, the BTG method does not require the specification of the

parameters, since their estimation is integrated into the method. Yet, it does

not fall behind the kriging techniques in terms of the mean squared error, and

outperforms them in terms of the accuracy of prediction intervals, even if the

kriging methods are provided with the exact true values of all the parameters.

Tables 5.3 and 5.4 show that for all the four correlations the difference in the

MSE never exceeded 15%, and in most cases was less than 10%.

Also for the simulated data we see that prediction intervals obtained by the

BTG are more realistic. For all the cases, except the rational quadratic correla-

tion, BTG performed as well as kriging for the Gaussian data and much better

in the lognormal case – the number of points outside of their prediction intervals

for BTG was at least 20% less, and for the exponential correlation three times

less than that for the TGK, with only a modest increase in the interval length.

One can also see (Tables 5.5, 5.6, and 5.7) that the kriging methods are not

very sensitive to parameter misspecification in terms of the mean squared error,

but in terms of the prediction intervals they are. TKG is especially sensitive to

the changes in the transformation parameter λ - even a slight increase in λ makes
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the prediction intervals twice as short and their accuracy half as much.

Therefore, the BTG is preferable in situations when there is a large number

of unknown parameters. The downside of the BTG algorithm, which employs

the Monte-Carlo integration, is its computational complexity. In the setup that

we used, it typically took the BTG program twice as long to predict.

From the practical point of view, we think it is useful to use both methods

and compare the results.

It should be noted that this is a pilot study. For further studies, it would be

helpful to obtain the confidence intervals for the parameters by using the multiple

snapshots. It also might be interesting to fit more then one correlation function.
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