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Abstract 7 

The group IIF iron meteorites and Eagle Station pallasites (PES) have highly siderophile 8 

element abundances (HSE; Re, Os, Ir, Ru, Pt, and Pd) of metal that are consistent with formation 9 

in planetesimal cores by fractional crystallization with minor to major solid metal-liquid metal 10 

mixing. Modeling of HSE abundances of the IIF irons indicates a complex formation history that 11 

included the mixing of primitive and evolved solid and liquid metals. By contrast, modeling of 12 

HSE abundances of PES metal suggests these meteorites formed mainly as equilibrium solids from 13 

a common liquid. Abundances of some of the siderophile elements in the IIF irons and PES are 14 

permissive of a common core origin, however, the abundances of W and Ni indicate the PES 15 

ultimately formed on a more oxidized body. The PES most likely formed by the injection of olivine 16 

present at the core-mantle boundary into a metallic core liquid as a result of impact. The core then 17 

crystallized inward, trapping the olivine.  18 

 19 

1. Introduction  20 

Some past studies have sought to explain the silicate and metal textures of pallasites by 21 

formation at the core-mantle boundary of planetesimals (Anders, 1964; Scott, 1977a; Wood, 22 

1978). Other studies have called for pallasite origins by mixing of core metal and mantle materials 23 

about:blank
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through impact (Wasson and Choi, 2003; Yang et al., 2010), or mixing of mantle-derived metal 24 

and silicate above the core-mantle boundary (Urey, 1966; Mittlefehldt, 1980; Malvin et al., 1985; 25 

Davis and Olsen, 1991; Boesenberg et al., 2012). A key issue with most models of pallasite 26 

formation is the requirement for co-mingling silicate and liquid metal, which because of density 27 

differences, is difficult to achieve, even in low gravity environments. Nevertheless, density 28 

separation of tightly-packed liquid metal and silicates may have been prevented in some 29 

circumstances by the high pressure of overlying materials or rapid crystallization of the enclosing 30 

metal (Rayleigh, 1942; Scott, 1977b). 31 

One potential key to discerning between different pallasite origin scenarios is to assess whether 32 

metal in pallasites formed in a manner similar to the planetesimal cores sampled by magmatic iron 33 

meteorites (Lovering et al., 1957). To do this, it is instructive to compare a pallasite or pallasite 34 

group to the most chemically similar magmatic iron meteorite group. Most attention relating to 35 

pallasite-iron comparisons has been focused on the possibility of a relation between the main group 36 

pallasites (PMG) and the group IIIAB iron meteorites (Scott, 1977a; Wasson and Choi, 2003). Due 37 

to the chemical similarities shared between these groups (Fig. 1), it has been argued that the PMG 38 

metal also formed in a planetesimal core (Yang et al., 2010), or even from the same parental melt 39 

to the IIIAB iron meteorites (Scott, 1977a; Wasson and Choi, 2003). In support of an origin on the 40 

same parent body, the PMG and IIIAB irons share similar “genetic” O, Mo, and S isotopic 41 

compositions (Clayton and Mayeda, 1996; Burkhardt et al., 2011; Dottin et al., 2018). However, 42 

differences in the measured cooling rates of PMG metal (2.5-18 K/Myr) and IIIAB irons (50-350 43 

K/Myr) are difficult to explain in a common core scenario, and have been interpreted by some to 44 

suggest that the PMG and IIIAB irons ultimately formed on separate bodies (Yang et al., 2010). 45 

Chemical and isotopic similarities have also been noted for the ungrouped Milton pallasite and the 46 
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South Byron Trio (SBT) iron meteorites, although it is problematic to relate Milton chemically to 47 

the SBT core without mixing with metal from a secondary source (Hilton et al., 2019; McCoy et 48 

al., 2019).  49 

In addition to the PMG-IIIAB and Milton-SBT associations, chemical similarities, including 50 

elevated Ge/Ga ratios of metal, have been noted for the IIF iron meteorites and Eagle Station 51 

pallasites (PES) (Kracher et al., 1980) (Fig. 1). Iron meteorites typically have Ge/Ga ratios of <4 52 

(Lovering et al., 1957), while both the IIF irons and PES metal are characterized by unusually high 53 

ratios near 14 (Kracher et al., 1980). From a limited suite of siderophile element abundances, 54 

Kracher et al. (1980) concluded that the IIF irons and PES likely formed on chemically similar 55 

parent bodies. Both groups have subsequently been determined to have had identical genetic Mo 56 

isotopic compositions, consistent with a common formational environment or even parent body 57 

(Dauphas et al., 2002; Burkhardt et al., 2011; Kruijer et al., 2017; Worsham et al., 2019). Further, 58 

similar cooling rates for the IIF irons and PES of 1-5 K/Myr (Rasmussen et al., 2001) and 15 59 

K/Myr (Yang et al., 2010), respectively, have also been reported, highlighting additional 60 

similarities in the origins of the groups.  61 

The IIF iron meteorite group ostensibly consists of 7 members (Dorofeevka, Del Rio, 62 

Monahans (1938), Repeev Khutor, Corowa, Purmela, and Balambala), which are grouped based 63 

on similar chemical compositions of certain siderophile elements (Kracher et al., 1980; Connolly 64 

et al., 2006; Meteoritical Bulletin 109, in prep). The PES consists of 5 pallasites (Eagle Station, 65 

Cold Bay, Itzawisis, Karavannoe and Oued Bourdim 001) that have been grouped based on 66 

chemical compositions of metal, fayalite content of olivine of ~20, and unusual 16O-rich oxygen 67 

isotopic compositions (Δ17O = -4.68 ‰) of olivines (Scott, 1977c; Clayton and Mayeda, 1996; 68 

Wasson and Choi, 2003; Korochantsev et al., 2013; Humayun et al., 2014; Bouvier et al., 2017). 69 
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In this study, we analyze 6 IIF irons and all 5 PES for abundances of 16 siderophile element 70 

abundances and Re-Os isotope systematics. The chemical compositions of the IIF iron meteorites 71 

and PES are revisited in order to further investigate the origins of these chemically and isotopically 72 

similar meteorite groups, and explore possible relationships between the groups.  73 

 74 

2. Materials and Methods 75 

Chunks of Eagle Station, Cold Bay, Corowa, and Del Rio, and a polished section of Itzawisis 76 

(USNM 7796a) were obtained from the Division of Meteorites, Department of Mineral Sciences, 77 

Smithsonian Institution. A chunk of Karavannoe was obtained from the Maine Mineral and Gem 78 

Museum. Chunks of Dorofeevka and Repeev Khutor were obtained from the Committee on 79 

Meteorites at the Russian Academy of Sciences, and Oued Bourdim 001, Monahans (1938) and 80 

Purmela were obtained from the Center of Meteorite Studies at Arizona State University.  81 

All 6 IIF irons and 4 PES (our sample of Cold Bay was fully consumed earlier by the bulk 82 

analysis) were analyzed for siderophile element abundances in situ using laser-ablation inductively 83 

coupled plasma mass spectrometry (LA-ICP-MS). A New Wave UP213 ultraviolet laser was used, 84 

coupled to a Thermo Finnigan Element 2 at the University of Maryland (UMd), following similar 85 

methods reported by Walker et al. (2008). Absolute concentrations were obtained from comparison 86 

with in-house laboratory reference iron meteorites Coahuila, North Chile, and Hoba. Data 87 

normalization was achieved using Ni concentrations reported by Wasson (1969), Scott and Wasson 88 

(1976), Scott (1977c), Connolly et al. (2006), Humayun et al. (2014), and Bouvier et al. (2017). 89 

Concentrations of Fe, Ni, and Co were then totaled to 100 % and concentrations of other 90 

siderophile elements were calculated relative to this total. Average concentrations and 1SD 91 

uncertainties for 2 to 8 laser ablation tracks from each meteorite were determined.  92 
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With the exception of Itzawisis, concentrations of highly siderophile elements (HSE; Re, Os, 93 

Ir, Ru, Pt, Pd) and 187Re-187Os isotopic data were determined for each meteorite using the isotope 94 

dilution method discussed by Walker et al. (2008). Approximately 30 to 90 mg metal pieces of 95 

each meteorite were cut from meteorite chunks, when necessary, using a water-cooled Leco Vari-96 

cut saw and a 12.7 cm diamond-wafering blade. These masses and corresponding volumes were 97 

interpreted to be sufficiently large to avoid heterogeneous sampling of kamacite and taenite, 98 

between which the HSE may partition differently (Hirata and Nesbitt, 1997), because most IIF 99 

irons have kamacite spindle bandwidths between 50 to 200 µm, Purmela has a bandwidth of <2 100 

mm, and the PES have kamacite bandwidths of 35 µm to 1 mm (Buchwald, 1975; Connolly et al., 101 

2006; Korochantsev et al., 2013; Bouvier et al., 2017). Blocks of SiC were cut prior to cutting each 102 

meteorite in order to clean the blade. Each cut meteorite piece was polished using a range of coarse- 103 

to fine-grit SiC sandpaper to remove sawblade marks, then sonicated in ethanol to remove sawing 104 

and polishing residue. Clean separates of metal and silicate were achieved for all processed PES 105 

except Karavannoe, which contained some fragments of olivine that were sufficiently small that 106 

they could not be separated from metal. As such, 3 pieces of Karavannoe were processed to 107 

constrain the bulk metal’s Re-Os isotopic composition.  108 

Metal pieces of each meteorite were combined in a Pyrex® Carius tube with 5 ml of 109 

concentrated HNO3, 2.5 ml of concentrated HCl, a platinum-group element spike (191Ir, 99Ru, 194Pt, 110 

and 105Pd), and a Re-Os spike (185Re and 190Os). Tubes were sealed and heated for at least 24 h at 111 

240 °C (Shirey and Walker, 1995). The tubes were allowed to cool, opened and solutions were 112 

transferred to centrifuge tubes, containing CCl4. Osmium was extracted using the CCl4 solvent-113 

extraction method of Cohen and Waters (1996) and then Os was purified using a microdistillation 114 

procedure (Birck et al., 1997). Spiked Os samples were analyzed by a Thermo-Fisher Triton 115 
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thermal ionization mass spectrometer to determine Os concentrations and 187Os/188Os ratios 116 

(Walker et al., 2008). Osmium isotopic data were corrected for instrumental and natural mass-117 

fractionation by normalizing 192Os/188Os to 3.08271 (Allègre and Luck, 1980).  118 

The other HSE were separated and purified using an anion column procedure, then Re and Ru 119 

separates were further purified using an additional anion column (Walker et al., 2008). The HSE 120 

solutions were evaporated to dryness and dissolved in 0.8 N HNO3. Aliquots for Re analyses were 121 

doped with W in order to correct for instrumental mass bias. Final solutions were measured using 122 

a Thermo-Fisher Neptune Plus multi-collector inductively-coupled plasma mass spectrometer at 123 

UMd, except for Eagle Station and Cold Bay, which were analyzed using a Nu Plasma multi-124 

collector inductively-coupled plasma mass spectrometer, also at UMd. The blanks (n = 3) for these 125 

methods ranged from 1 to 3, 3 to 5, 1 to 2, 3 to 80, 5 to 6, and 2 to 500 pg Re, Os, Ir, Ru, Pt, and 126 

Pd, respectively, which have an inconsequential effect on the reported concentrations.  127 

With the exception of Karavannoe, the uncertainties for Re and Os abundances were estimated 128 

to be  ≤0.3 % and ≤0.2 %, respectively, and the abundances of Ir, Ru, Pt, and Pd were estimated 129 

to be <3 % based on the reproducibility of Monahans (1938) from this study and the reproducibility 130 

of other iron meteorites analyzed using identical techniques by past studies (Walker et al., 2008; 131 

Worsham et al., 2016). Uncertainties for 187Os/188Os ratios were estimated to be ±0.1 %, and the 132 

uncertainties for 187Re/188Os ratios were estimated to be typically ±0.3 %. The Re, Os, Ir, Ru, Pt, 133 

and Pd abundances of three separately prepared samples of Karavannoe varied by as much as ±8 134 

%, ±5 %, ±6 %, ±6 %, ±5 %, and  ±9 %, respectively, and as little as ±1 %, ±1 %, ±1 %, ±0.2 %, 135 

±0.1 %, and  ±1 %, respectively. The Re/Ir, Os/Ir, Ru/Ir, Pt/Ir, and Pd/Ir ratios of the replicates of 136 

Karavannoe varied from 0.4 to 3 %, 0.1 to 0.4 %, 0.3 to 1 %, 0.2 to 0.8 %, and 2 to 4 %, 137 

respectively. The larger variations for absolute and relative abundances of HSE of Karavannoe 138 
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compared to the uncertainties cited for the other meteorites were interpreted to be the product of 139 

the incomplete separation of metal and silicate, which had the effect of variably diluting the 140 

concentrations of HSE in the metal as well as heterogeneously sampling inclusions, such as troilite, 141 

within olivine (Korochantsev et al., 2013). Since the silicate inclusions may affect the 142 

interpretation of the HSE abundances determined by isotope dilution, the HSE abundances of 143 

Karavannoe metal obtained by LA are used in subsequent comparisons of chemical comparisons.  144 

 145 

3. Results 146 

Siderophile element abundances determined by LA-ICP-MS for the IIF irons and PES are 147 

reported in Table 1. Average concentrations generally agree with those reported by past studies 148 

within 20 %, with a few values differing as much as 150 % (the three greatest deviations are 150 149 

%, 83 % and 44 %, observed for W – Corowa, Re – Corowa, and As – Itzawisis, respectively) 150 

(Wasson, 1969; Scott and Wasson, 1976; Scott, 1977c; Connolly et al., 2006; Bouvier et al., 2017). 151 

Highly siderophile element abundances, determined by isotope dilution, are reported in Table 2. 152 

Abundances of HSE typically agree with those determined by LA-ICP-MS within associated 2σ 153 

uncertainties. Some IIF iron meteorites have concentrations of certain elements that vary outside 154 

of 2σ uncertainties by as much as 15 % (the three greatest deviations are 15 %, 10 % and 9 %, 155 

observed for Pd – Corowa, Os – Corowa, and Pd – Del Rio, respectively).  156 

Rhenium-Os isotopic data are also reported in Table 2. The IIF irons are characterized by a 157 

moderate range of 187Re/188Os and 187Os/188Os ratios of 0.3675 to 0.5901 and 0.12444 to 0.14315, 158 

respectively. The PES are characterized by a smaller range in 187Re/188Os and 187Os/188Os ratios of 159 

0.3654 to 0.4836 and 0.12477 to 0.13456, respectively. When regressed using ISOPLOT (Ludwig, 160 

2003), the 187Re-187Os systematics of the IIF iron meteorites and PES form isochrons that yield 161 
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ages of 4.861 ± 0.310 Ga (MSWD = 23) and 4.416 ± 1.300 Ga (MSWD = 134), respectively. The 162 

IIF irons and PES have ΕOs values ranging from +1 ± 2 to +25 ± 2, calculated as the part per 10,000 163 

deviation from the 187Os/188Os ratio of a sample to a 4.568 Ga reference isochron, assuming an 164 

initial Solar System 187Os/188Os = 0.09517 and λ = 1.666 x 10-11 yr-1 (Smoliar et al., 1996; Archer 165 

et al., 2014).  166 

 167 

4. Discussion 168 

4.1 Re-Os chronometry 169 

The 187Re-187Os chronometer, in which 187Re decays to 187Os by β- emission with a half-life of 170 

41.6 Gyr (Smoliar et al., 1996), can be used to broadly constrain the age of metal crystallization 171 

for iron meteorites and pallasites. Application of this chronometer typically results in associated 172 

uncertainties of >10 Myr (e.g., Smoliar et al., 1996; Chen et al., 2002; Walker et al., 2008; McCoy 173 

et al., 2011). The large uncertainties for the IIF irons and PES isochrons (± >100 Myr) reflect both 174 

the limited number of meteorites for each isochron and minor open system behavior for some 175 

meteorites. Here, the Re-Os systematics are compared to a chondritic 4.568 Ga reference isochron 176 

in order to assess whether iron meteorite and pallasite metals have maintained closed-system 177 

behavior since crystallization, assuming crystallization within the first 10-20 Ma of Solar System 178 

history. The IIF iron meteorites and PES all fall within ±25 part per 10,000 of a 4.568 Ga reference 179 

isochron (Fig. 2), indicating that most of the iron meteorites and pallasites examined maintained 180 

closed-system behavior of Re and Os, and presumably the other HSE, since crystallization in the 181 

early Solar System. The largest deviation of +25 ± 2 was determined for Cold Bay, of which our 182 

piece was highly rusted (Scott, 1977c).  183 

 184 
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4.2 Origin of the IIF iron meteorites 185 

4.2.1 Group background 186 

Wasson (1969) reported similar Ni, Ga, Ge, and Ir abundances for Corowa and Monahans 187 

(1938), leading to the suggestion that the 2 meteorites may be related. Subsequent publication of 188 

Ni, Ga, Ge, and Ir abundances for Dorofeevka, Del Rio, and Repeev Khutor by Scott and Wasson 189 

(1976) led to the interpretation that Dorofeevka, Del Rio, and Monahans (1938) should be 190 

considered an iron trio, and that Repeev Khutor and Corowa may be a possible iron duo. This idea 191 

was then modified by Kracher et al. (1980) after measuring these 5 irons for abundances of 192 

additional siderophile elements, including Co, Cu, As, W, Re, and Au. Kracher et al. (1980) 193 

concluded that these irons should be designated as a new iron meteorite group termed the IIF irons. 194 

Purmela was later analyzed for Ni, Co, Ga, As, and Ir abundances (Connolly et al., 2006), and 195 

classified as the sixth member of this group. Balambala was classified as the seventh IIF iron, 196 

based on its Ge/Ga ratio and abundances of other siderophile elements that fall within the ranges 197 

observed for other IIF irons (Meteoritical Bulletin 109, in prep). Most IIF iron meteorites are 198 

classified as plessitic octahedrites while Del Rio is an ataxite (Buchwald, 1975). The IIF iron 199 

meteorites commonly contain kamacite, taenite, schreibersite, and troilite. Chromite and graphite 200 

were observed in the meteorites Monahans (1938) and Del Rio, respectively, as reported by 201 

Buchwald (1975).  202 

 203 

4.2.2 Chemical characteristics of IIF irons 204 

Siderophile element abundances determined by LA-ICP-MS for 6 IIF irons are compared in 205 

Fig. 3. Large variations (200 to 4,000 %) are observed in the abundances of Re, Os, W, Ir, Ru, Pt, 206 

As, Au, and Ge, while moderate variations (4 to 100 %) are observed for Mo, Rh, Ni, Co, Fe, Pd, 207 
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Cu, and Ga. Kracher et al. (1980) interpreted the variations in siderophile element abundances in 208 

IIF irons to be a result of fractional crystallization in a common core. The variations observed here 209 

are broadly consistent with those observed for other iron groups and grouplets interpreted to be 210 

products of fractional crystallization (i.e. SBT, IVA, and IVB), measured using similar techniques 211 

(Walker et al., 2008; McCoy et al., 2011, 2019), consistent with this interpretation. If an 212 

interpretation of fractional crystallization is correct, the degree of variations for the element 213 

concentrations of IIF irons must reflect the extent of crystal-liquid fractionation and changing 214 

partition coefficients (D values) of these elements between solid metal and liquid metal during 215 

fractional crystallization, with major variations of certain element abundances reflecting highly 216 

compatible (D values >> 1) or incompatible behavior (D values << 1) and moderate variations 217 

reflecting D values closer to 1.  218 

Germanium and Ga are 2 siderophile elements that are little affected by metal crystal-liquid 219 

fractionation processes because of their solid metal-liquid metal D values close to 1 (e.g., Chabot 220 

et al., 2017). The Ge/Ga ratios for most of the IIF irons of between 11 to 16 reported here are 221 

consistent with the ratios of 11 to 17 reported by Kracher et al. (1980). The ratio of ~3 for Purmela, 222 

however, is considerably outside the range of the other IIF irons (Fig. 1). This lower ratio is due 223 

to a substantially lower Ge abundance relative to Ga, which has a concentration similar to other 224 

IIF irons. Achieving such a low ratio by fractional crystallization or related mixing processes 225 

within a system common to the other IIF irons is difficult to envision by fractional crystallization. 226 

As such, this chemical difference suggests that Purmela may not be a IIF iron and may instead 227 

derive from a different parent body with a similar, but not identical bulk chemical composition.  228 

 229 

4.2.3 Fractional crystallization modeling 230 
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An origin of the IIF irons by fractional crystallization can be further evaluated by comparison 231 

of the high precision HSE bulk concentration data (Fig. 3), obtained by isotope dilution, to 232 

fractional crystallization models (e.g., Walker et al., 2008; McCoy et al., 2011; Hilton et al., 2019). 233 

To do this, we use the parameterization method discussed by Chabot et al. (2017) for calculating 234 

solid metal-liquid metal D values during fractional crystallization. This approach is necessary as 235 

D values of siderophile elements typically vary depending on the S, P, and/or C content of a liquid 236 

(e.g., Jones and Malvin, 1990, Chabot and Jones, 2003; Worsham et al., 2016). The approach used 237 

here treats the initial S, P, C, and HSE contents of a liquid as free parameters, and the D values of 238 

P, C, and the HSE are calculated as the initial S, P, and C contents are varied, based on 239 

experimentally-derived S/P/C abundance vs. D value relationships (Chabot et al., 2017). Changes 240 

in the D values for each element are calculated at each 0.1 % of fractional crystallization, as the 241 

progressive changes in S, P, and C content of the liquid occurs. The initial abundances of S, P, C, 242 

and HSE are varied iteratively until a fractional crystallization sequence is determined that best 243 

accounts for the chemical abundances of a certain meteorite group. Equilibrium solid and liquid 244 

HSE compositions predicted for fractional crystallization in systems with various S contents using 245 

this approach are shown in Fig. 4 for reference. Additional details about the fractional 246 

crystallization modeling calculations are provided in the supplementary information.  247 

For magmatic iron meteorite groups, fractional crystallization models of the cores from which 248 

they derive may be constrained by identifying at least 2 iron meteorites that formed as equilibrium 249 

solids from the same fractional crystallization sequence (e.g., Hilton et al., 2019). This is not 250 

possible for the IIF iron meteorites, however, indicating that a single fractional crystallization 251 

model cannot presently be constrained. For example, the Pd vs. Re systematics of Monahans 252 

(1938) and Repeev Khutor can be accounted for as equilibrium solids in a system with 3 wt. % S, 253 
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but their Pt/Os vs. Pt systematics require 16 wt. % S. Similarly, Dorofeevka and Monahans (1938) 254 

have Pd vs. Re systematics that match equilibrium solids produced in a system with 16 wt. % S 255 

but their Pt/Os vs. Pt systematics require 3 wt. % S. Here, Pd is an especially important siderophile 256 

element to model. Of the HSE measurable to high precision by isotope dilution, it is typically the 257 

only incompatible element. Consequently, the initial core concentration of Pd for an iron meteorite 258 

group usually must be greater than the lowest concentration for any of the meteorites from that 259 

group.  260 

In order to further investigate the origins of the IIF iron meteorites, we anchor all fractional 261 

crystallization models against the composition of Monahans (1938). This meteorite is assumed to 262 

be an equilibrium solid since it has the lowest concentration of Pd, and modeling attempts using 263 

any other IIF meteorite fail to account for the HSE systematics of other IIF irons. Given the 264 

limitless number of models that can produce Monahans (1938) as an equilibrium solid resulting 265 

from fractional crystallization, we restrict the possible models to those with parental melt 266 

compositions with relative abundances of HSE within the ranges observed in carbonaceous 267 

chondrites (Horan et al., 2003; Fischer-Gödde et al., 2010). Carbonaceous chondrites are chosen 268 

here because they are most similar to the IIF iron meteorites with respect to genetic isotope 269 

compositions (e.g., Budde et al., 2019). A range of parental melt compositions (Table 3) is 270 

constrained based on these assumptions and shown in Fig. 6. The IIF Model 1 (M1) assumes initial 271 

S = 13 wt. % and a parental melt Pd/Ir ratio that is in the middle of the range observed in 272 

carbonaceous chondrites. Model 2 (M2), assuming initial S = 11 wt. %, and Model 3 (M3), 273 

assuming initial S = 15 wt. %, have Pd/Ir ratios that are at the extremes of the 2SD range observed 274 

in carbonaceous chondrites.  275 
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Changing the S content to >15 wt. % or <11 wt. % requires parental melts with relative 276 

abundances of Pd, compared to the other HSE, that are outside the ranges observed in 277 

carbonaceous chondrites (Pd depleted and Pd enriched, respectively). A Pd depletion relative to 278 

the other HSE was constrained for the IVB iron meteorite parental melt (Campbell and Humayun, 279 

2005; Walker et al., 2008), but it was coupled with observed depletions for volatile elements. The 280 

IIF irons are volatile-rich compared to the IVB irons, making a relative depletion in Pd composition 281 

due to volatility unlikely. Worsham et al. (2016) observed, for the parental melt of the IAB-sLM 282 

iron meteorite subgroup, a Pd enrichment relative to other HSE, which was suggested to reflect 283 

fractionation of refractory elements by a volatility-driven process. However, the IIF irons do not 284 

exhibit depletions in other refractory elements (e.g., Mo; Fig. 3), making this explanation for the 285 

IIF irons also unlikely. 286 

The HSE parental melt compositions constrained using M1 and M2 fall between estimated 287 

bulk core compositions of the IIC, IVA, and SBT iron meteorites (Fig. 6), whereas the HSE 288 

parental melt composition resulting from M3 is similar to that of the IVA iron meteorites (Walker 289 

et al., 2008; McCoy et al., 2011; Hilton et al., 2019; Tornabene et al., 2020). The HSE parental 290 

melt compositions of M1, M2, and M3 are enriched compared to the average HSE abundances of 291 

carbonaceous chondrites by factors of 4 to 10. These enrichment factors suggest that if the IIF 292 

irons formed from a body with a bulk composition similar to carbonaceous chondrites, the IIF 293 

parental melt was between 10 and 22 % the mass of the body.  294 

 295 

4.2.4 IIF iron meteorite origin scenarios 296 

The IIF iron meteorites cannot all be related as equilibrium solids resulting from the same 297 

simple fractional crystallization sequence, as they do not define a linear trend on plots of HSE vs. 298 
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HSE. It is consequently instructive to compare their variations in chemical compositions to the 299 

IIIAB iron meteorite group, which is one of the most frequently studied magmatic iron meteorite 300 

groups. The IIIAB, similarly consists of numerous members that cannot be interpreted to be 301 

equilibrium solids resulting from simple fractional crystallization. Past studies have proposed a 302 

variety of pathways to explain the chemical complexities of the IIIAB irons, including mixing of 303 

residual metal from the mantle into a partially crystallized core (Pernicka and Wasson, 1987), 304 

separation of the core into isolated, separate magma chambers by early dendrites formation (Haack 305 

and Scott, 1993), crystallization from immiscible liquids (Ulff-Møller, 1998), equilibrium mixing 306 

of solids and trapped liquids by diffusion (Wasson, 1999; Chabot, 2019), and non-equilibrium 307 

mixing of primitive solids with evolved liquids (Cook et al., 2004).  308 

Compared to M1, Dorofeevka, Del Rio, and Repeev Khutor have HSE abundances that fall 309 

between the solid metal and liquid metal evolution curves (Fig. 7), permissive of forming by 310 

equilibrium solid metal-liquid metal mixing. This process was proposed by Wasson (1999) to 311 

explain the formation of certain IIIAB iron meteorites. For this process to occur, some crystallizing 312 

solids must trap equilibrium liquids, which then become chemically mixed by diffusion. Corowa, 313 

however, has Re/Os vs. Re and Pt/Os vs. Pt systematics that fall to the left of the solid metal and 314 

liquid metal evolution curves (Fig. 7), indicating that it cannot be a product of equilibrium solid 315 

metal-liquid metal mixing.    316 

The HSE abundances of Dorofeevka, Del Rio, and Repeev Khutor can also be explained by 317 

non-equilibrium mixing of primitive solids with evolved liquids. This process was proposed by 318 

Cook et al. (2004) to explain the Re/Os vs. Re and Pt/Os vs. Pt systematics of certain IIIAB iron 319 

meteorites that fall within and to the left of the solid metal and liquid metal evolution curves of 320 

that study’s favored IIIAB fractional crystallization model. As such, this mechanism can also 321 
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produce the Re/Os vs. Re and Pt/Os vs. Pt systematics of Corowa (Fig. 8). Non-equilibrium mixing 322 

of evolved liquid with earlier formed solids may have been achieved by the fracturing of a 323 

crystallizing core, followed by mobilization of the evolved melt throughout the fractures. The 324 

primitive solid and evolved liquid may then have equilibrated by diffusion, or by melting of the 325 

solid, mixing with the liquid, and re-crystallization. Fractures to a crystallizing core may be formed 326 

through impact to the parent body. Alternatively, as suggested by Cook et al. (2004), similar 327 

compositions may also be produced by the detachment of crystallized metal from the ceiling of a 328 

magma chamber and infiltration of evolved liquid into the resulting cavity.  329 

The late segregation of metal melts from the mantle to a residual liquid outer core (Pernicka 330 

and Wasson, 1987; Smoliar, 1996; Cook et al., 2004) can also account for the HSE abundances of 331 

Dorofeevka, Del Rio, Repeev Khutor, and Corowa. Pernicka and Wasson (1987) suggested that 332 

intermittent segregation of a metallic melt, which would likely be enriched in HSE, to an outer 333 

liquid core could alter the composition of highly compatible elements, like Re and Os, in liquid 334 

during crystallization. For example, adding 5 % of a late-segregated liquid with a composition of 335 

the bulk core to the liquid core after 40 % of crystallization results in a significant shift in the 336 

Re/Os vs. Re systematics of the liquid core and subsequent crystallizing metal (Fig. 8).  337 

One additional mechanism to consider as a means of generating the variations in HSE 338 

abundances among the IIF irons is the crystallization of dendrites in a core. Haack and Scott (1992, 339 

1993) argued that convection of the liquid core during inward dendritic crystallization could 340 

heterogeneously distribute chemically distinct liquids between dendrites, resulting in non-uniform 341 

crystallization of metal. Such liquids could be the products of incomplete mixing of a core prior to 342 

crystallization or the formation of immiscible liquids during crystallization (Ulff-Møller, 1998). 343 

Additionally, changes to the convection patterns of the core with increasing dendrite growth could 344 
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cause additional non-equilibrium mixing of these chemically distinct liquids. Mixing between a 345 

liquid with a composition after 10 % crystallization with a liquid with a composition after 40 % 346 

crystallization, for example, can result in metal compositions to the left of a given Re/Os vs. Re 347 

fractional crystallization field (Fig. 8). This mechanism was envisioned by Haack and Scott (1993) 348 

to explain the deviations of the chemical compositions of some IIIAB iron meteorites from simple 349 

fractional crystallization models and may also explain the IIF irons as well. Discerning between 350 

non-equilibrium solid metal-liquid metal mixing, late segregation of liquid metal, and dendritic 351 

crystallization may ultimately require the classification and chemical study of additional IIF iron 352 

meteorites.  353 

 354 

4.3 Eagle Station pallasites 355 

4.3.1 Group background 356 

Eagle Station was recognized by Wasson and Sedwick (1969) for its distinct chemical 357 

composition compared to the PMG, warranting its own classification. Scott (1977c) applied this 358 

classification to Itzawisis and Cold Bay, and dubbed the three pallasites the Eagle Station Trio. 359 

The metal in these pallasites were characterized as having greater Ni and Ge contents, as well as 360 

lesser Ga contents, than the metal in the PMG, and the olivine in the Eagle Station Trio had a 361 

greater fayalite content than the olivine in the PMG (Scott, 1977c). Additionally, the metal and 362 

olivine in the Eagle Station Trio were later determined to be isotopically distinct from the PMG 363 

using O and Mo as genetic tracers (Clayton and Mayeda, 1996; Dauphas et al., 2002; Burkhardt et 364 

al., 2011). Karavannoe and Oued Bourdim 001 have since been added to this Trio (Korochantsev 365 

et al., 2013; Humayun et al., 2014; Bouvier et al., 2017), bringing the total number of PES members 366 

to 5, the minimum number required for official group status (Wasson, 1974). The PES similarly 367 
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contain kamacite, taenite, schreibersite, and troilite, as well as chromite and olivine (Wasson and 368 

Choi, 2003; Korochantsev et al., 2013; Bouvier et al., 2017).  369 

It has been proposed that the PES either formed at the core-mantle boundary of a planetesimal, 370 

or as a result of 2 impacts (Malvin et al., 1985; Davis and Olsen, 1991). Malvin et al. (1985) 371 

proposed an origin through impacts based on the relatively high Ir content of the PES metal. The 372 

high Ir was interpreted to mean that the PES did not represent the core-mantle boundary based on 373 

the assumption that if a core crystallized from the center outwards, it would produce an outer core 374 

with relatively low Ir concentrations. Instead, these authors suggested that an initial impact to the 375 

PES parent body could have generated enough heat to form a metal-silicate melt. Upon separation 376 

into a bottom metal layer, a middle olivine residue layer, and an olivine cumulus layer on top, a 377 

second impact fractured the olivine and drove metallic melt throughout the olivine cracks. By 378 

contrast, Davis and Olsen (1991) measured the rare earth elements (REE) abundances in 379 

phosphates from Eagle Station and explained the compositions through the exchange of REE 380 

between olivine and phosphates at the core-mantle boundary. The authors proposed that the olivine 381 

present in the PES formed as a cumulate at the bottom of the mantle with a light-REE-depleted 382 

composition. Upon mixing with metal from the core, phosphates formed between the metal-olivine 383 

interfaces and inherited a light-REE-depleted composition through REE partitioning between 384 

olivine and phosphate. A combination of both ideas was proposed by Scott and Taylor (1990), 385 

suggesting that the PES, which contain highly angular olivine crystals (Scott, 1977b), formed as a 386 

result of impact, which mixed metal and olivine at the core-mantle boundary. Due to the relatively 387 

high Ir content of the PES metal, this event was proposed to have occurred prior to core 388 

crystallization. 389 

 390 
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4.3.2 Chemical characteristics of PES 391 

The abundances of 16 siderophile elements determined by LA-ICP-MS in metal from 4 PES 392 

are compared in Fig. 3. Major variations (>200 %) are observed in the abundances of Re, Os, and 393 

Ir among these pallasites, and more moderate variations (5 to 100 %) are observed for W, Mo, Ru, 394 

Pt, Rh, Ni, Co, Fe, Pd, As, Au, Cu, Ga, and Ge. Given the range of Re, Os, and Ir abundances 395 

observed for the PES, some fractional crystallization of the PES parental melt is apparent. The 396 

PES metal is characterized by relative depletions in W abundances compared to the abundances of 397 

other refractory siderophile elements, such as Os and Ir. This observation may reflect a 398 

comparatively high oxidation state of the PES parent body, an explanation that has been applied 399 

to similar depletions observed for some iron meteorites, such as the SBT (McCoy et al., 2019). 400 

Tungsten is redox sensitive and more likely to be retained by the mantle of an oxidized body. A 401 

relatively high oxidation state for the PES parent body has also been inferred from the high fayalite 402 

content of olivine and the high Ni content of the metal (Scott, 1977c). Itzawisis and Eagle Station 403 

have Ge/Ga ratios of 15 and 14, respectively, which are consistent with the ratios reported by Scott 404 

(1977c) of 15 and 17, respectively. Oued Bourdim 001 has a Ge/Ga ratio of 15 and Karavannoe 405 

has a Ge/Ga ratio of 12.   406 

 407 

4.3.3 Fractional crystallization modeling 408 

As with the IIF irons, the relationship among metal for the PES can be assessed by fractional 409 

crystallization modeling. Unlike the IIF irons, the PES metal form clear trends for HSE 410 

abundances, which can broadly be accounted for as equilibrium solids produced by fractional 411 

crystallization of a parental melt with 550 ppb Re, 7000 ppb Os, 6700 ppb Ir, 10000 ppb Ru, 12500 412 

ppb Pt, 6800 ppb Pd, 6 wt. % S, and 0.7 wt. % P, PES Model 1 (PES M1) (Fig. 6). The PES metal 413 
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compositions fall among compositions predicted for the first ~50 % of fractional crystallization 414 

from this parental melt (Fig. 9). Some shortcomings are apparent for this model, however, 415 

including Cold Bay for Re/Os vs. Re and Pd vs. Re and Karavannoe for Pt/Os vs. Pt. These 416 

variations may indicate some solid metal-liquid metal mixing affected the composition of these 417 

meteorites, however, any such mixing would likely affect the abundances of the other HSE as well. 418 

The HSE parental melt composition projected from this PES fractional crystallization sequence 419 

has relative abundances of HSE that are within the ranges observed in carbonaceous chondrites, to 420 

which the PES are genetically linked (Horan et al., 2003; Fischer-Gödde et al., 2010; Budde et al., 421 

2019). The absolute abundances are enriched compared to those of average carbonaceous 422 

chondrites by a factor of 11 (Fig. 6), which suggests that the parental metallic melt to the PES was 423 

~9 % the mass of the parent body.  424 

 425 

4.3.4 PES origin scenarios 426 

Given that the PES metal compositions can be accounted for by ~50 % fractional crystallization 427 

of a metallic liquid that was ~9 % the mass of a planetary body, our preferred interpretation is that 428 

the PES metal was derived from the core of the PES parent body. Given the broad adherence to a 429 

model of fractional crystallization, this core likely crystallized concentrically. Haack and Scott 430 

(1992) argued that during crystallization, S-rich melts would build up at the solid-liquid boundary 431 

layer, resulting in liquid heterogeneities. Crystallization would then preferentially progress in areas 432 

with less S contents, resulting in the growth of dendrites. However, if these dendrites were on the 433 

meter scale, dendritic crystallization may have resembled concentric crystallization (Haack and 434 

Scott, 1992). Formation of meter-scale dendrites may also help to explain the slight variations of 435 

certain HSE from the best fit model. 436 
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The occurrence of olivine throughout at least 50 % of a crystallized core is difficult to envision 437 

given the density differences among metal and olivine. This is especially unlikely to occur if the 438 

core was crystallizing from the center outward. Co-mingling of olivine and liquid metal may be 439 

possible, however, if the olivine was prevented from separating from a metallic liquid by a solid 440 

outer metallic rim (Fig. 10). This scenario may be plausible in an inward crystallizing core, which 441 

may also have forced the olivine further inward while also trapping some olivine in solid metal 442 

during crystallization. The initial mixing event of liquid metal and olivine to form pallasites has 443 

been envisioned by numerous studies to be the result of impact (e.g., Malvin et al., 1985; Scott and 444 

Taylor, 1990; Yang et al., 2010; Wasson, 2016). The angular olivine textures in the PES have also 445 

been interpreted as evidence for impact (Scott and Taylor, 1990). If impact did cause olivine to 446 

infiltrate a liquid core, it is plausible that the outer core crystallized quickly, given the contact with 447 

circulating colder mantle materials, thus trapping the infiltrated olivine and preventing density 448 

separation. 449 

 450 

4.4 IIF vs. PES parent bodies 451 

The chemical similarities between the IIF irons and PES metal were noted by Scott (1977c) 452 

based on Ge/Ga ratios. This study concluded that any genetic link between the 2 meteorite groups 453 

was “tenuous” unless chemical trends were better defined. It was also noted that the reported 454 

cooling rates for some IIF irons were factors of 20 to 75 times that of metal in Eagle Station. More 455 

similar cooling rates for the IIF irons and PES of 1-5 K/Myr (Rasmussen et al., 2001) and 15 456 

K/Myr (Yang et al., 2010), respectively, subsequently have been reported. 457 

Additional chemical comparisons were made between the IIF irons and PES by Kracher et al. 458 

(1980). These authors noted that the abundances of Re, Ir, As, and Au of the PES metal fall within 459 
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the ranges observed for IIF metal but that the PES have greater abundances of Co and Ni as well 460 

as lower abundances of Ga and Ge, compared to the IIF irons. Since these chemical dissimilarities 461 

were greater than observed for the IIIAB irons and PMG, Kracher et al. (1980) concluded the IIF 462 

irons and PES were less likely to originate from the same body than the IIIAB-PMG. Nevertheless, 463 

Kracher et al. (1980) noted that the 2 groups warranted association, and that they likely formed in 464 

chemically similar parent bodies. Measurements of genetic Mo isotopic compositions for the PES 465 

(Dauphas et al., 2002; Burkhardt et al., 2011) and the IIF irons (Kruijer et al., 2017; Worsham et 466 

al., 2019) indicate that these were isotopically similar bodies as well.  467 

The new composition data reported here support the conclusions of Kracher et al. (1980) that 468 

the IIF irons and the PES are from chemically similar bodies. For example, the PES have HSE 469 

abundances that fall within the range of the IIF irons (Fig. 7), permissive of an association between 470 

the PES and the IIF core. Yet the key differences in the chemical compositions of the PES and IIF 471 

irons noted by Kracher et al. (1980) remain difficult to reconcile. Specifically, the PES are 472 

systematically enriched in Ni by ~4 wt. % and depleted in Ga and Ge by ~3 ppm and ~46 ppm, 473 

respectively, compared to the IIF irons. Nickel enrichment can occur in a bulk core of an oxidized 474 

parent body, resulting from the increased incorporation of oxidized Fe in the mantle, compared to 475 

a more reduced body. Variable enrichment of this sort, however, would not occur on a single body. 476 

The lower W of the PES, compared to the IIF irons (Fig. 3) is consistent with an interpretation that 477 

the PES parent body was more oxidized than the IIF parent body. Nickel enrichment of the 478 

magnitude required to account for differences between the IIF irons and the PES could also occur 479 

as a result of extensive crystal-liquid fractionation, i.e. as observed in the group IIIAB irons. 480 

However, extensive crystal-liquid fraction would also be accompanied by other chemical 481 

characteristics, including large ranges in the concentrations of highly compatible HSE, such as Ir 482 
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and Os, which are not observed. Similar conclusions can be reached regarding Ga/Ni and Ge/Ni 483 

ratios. Collectively, these observations argue against a common parent body for the PES and IIF 484 

irons, consistent with the conclusions of Kracher et al. (1980). However, chemical similarities, as 485 

well as genetic isotopic compositions suggest that the 2 groups formed on similar parent bodies 486 

that likely formed in the solar nebula in the same general vicinity and possibly at the same time in 487 

nebular evolution.  488 

 489 

Conclusions 490 

Study of the siderophile element abundances present in metal in IIF irons and PES provides 491 

permissive evidence for each of derivation from a planetesimal core. The HSE compositions of the 492 

PES suggest these meteorites primarily formed as equilibrium solids while most of the IIF irons 493 

require substantial solid metal-liquid metal mixing. The presence of olivine in the PES can be 494 

explained through impact-driven intrusion of olivine into a liquid core, crystallization of the outer 495 

core, and subsequent inward crystallization. While the abundances of most siderophile elements 496 

examined in the IIF irons and PES can be explained by the formation in a common core, 497 

abundances of W and Ni indicate that the PES ultimately derived from a more oxidized body than 498 

the IIF irons.     499 
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Table 1: Average siderophile element abundances of 6 IIF iron meteorites and 4 Eagle Station Pallasites (PES) determined by LA-709 
ICP-MS.  710 

 IIF Dorofeevka Del Rio Monahans (1938) Purmela  Repeev Khutor Corowa PES Itzawisis Eagle Station Karavannoe Oued Bourdim 001 
Re  2.04 ± 0.03 1.60 ± 0.07 1.06 ± 0.05 0.74 ± 0.05  0.19 ± 0.04 0.06 ± 0.01  1.7 ± 0.2 1.1 ± 0.1 0.80 ± 0.06 0.35 ± 0.02 
Os  27 ± 1 21 ± 1 11.5 ± 0.2 9.6 ± 0.4  1.33 ± 0.08 0.64 ± 0.04  24 ± 2 15 ± 1 9.1 ± 0.4 3.5 ± 0.2 
W  1.26 ± 0.07 1.2 ± 0.1 2.6 ± 0.5 0.76 ± 0.05  0.72 ± 0.04 0.21 ± 0.03  0.3 ± 0.1 0.19 ± 0.05 0.17 ± 0.03 0.33 ± 0.05 
Ir  23 ± 1 19.6 ± 0.8 13.8 ± 0.2 9.8 ± 0.4  2.8 ± 0.2 0.80 ± 0.04  21 ± 1 11.6 ± 0.8 8.8 ± 0.4 5.7 ± 0.1 
Mo  11.4 ± 0.6 11.9 ± 0.7 13 ± 2 10.4 ± 0.4  13.1 ± 0.9 17 ± 2  13 ± 1 12 ± 2 18 ± 1 14.4 ± 0.7 
Ru  21.7 ± 0.7 19.2 ± 0.8 18.6 ± 0.4 12.0 ± 0.4  11.0 ± 0.3 3.8 ± 0.5  19 ± 1 18 ± 1 14 ± 1 11.3 ± 0.8 
Pt  27.3 ± 0.7 24 ± 1 25.4 ± 0.4 15.3 ± 0.4  16.1 ± 0.5 4.6 ± 0.1  24 ± 1 21 ± 2 17.5 ± 0.7 17.0 ± 0.5 
Rh  2.55 ± 0.09 2.2 ± 0.1 2.34 ± 0.08 1.60 ± 0.02  2.12 ± 0.05 1.48 ± 0.03  2.4 ± 0.2 2.2. ± 0.2 2.0 ± 0.1 2.0 ± 0.1 
Ni  11.3 ± 0.2 11.6 ± 0.5 9.9 ± 0.3 11.1 ± 0.3  12.2 ± 0.1 13.2 ± 0.6  15 ± 2 17 ± 2 19 ± 2 16 ± 1 
Co  6690 ± 60 6900 ± 100  6200 ± 100 6000 ± 100  7030 ± 60 6900 ± 200  8400 ± 600 8000 ± 1000 8800 ± 900 9400 ± 500 
Fe  88.0 ± 0.2 87.7 ± 0.5 89.5 ± 0.3 88.3 ± 0.3  87.1 ± 0.2 86.1 ± 0.6  84 ± 2 82 ± 2 80 ± 2 83.2 ± 0.9 
Pd  3.0 ± 0.2 2.7 ± 0.1 2.8 ± 0.2 2.6 ± 0.2  4.3 ± 0.2 5.0 ± 0.1  4.2 ± 0.7 4.2 ± 0.5 5.1 ± 0.6 5.4 ± 0.7 
As  5.5 ± 0.4 4.9 ± 0.1 5.0 ± 0.2 5.1 ± 0.1  11.9 ± 0.2 17 ± 1  11 ± 2 8 ± 1 10.9 ± 0.6 11.6 ± 0.8 
Au  0.80 ± 0.04 0.69 ± 0.3 0.69 ± 0.05 0.62 ± 0.01  1.4 ± 0.1 2.06 ± 0.03  1.4 ± 0.3 1.1 ± 0.1 1.45 ± 0.09 1.6 ± 0.1 
Cu  320 ± 20 336 ± 3 240 ± 10 307 ± 1  293 ± 7 250 ± 9  330 ± 50 290 ± 30 180 ± 30 230 ± 10 
Ga  10.0 ± 0.5 9.4 ± 0.2 9.3 ± 0.6 12.7 ± 0.5  10.4 ± 0.2 10.3 ± 0.3  5.9 ± 0.5 4.7 ± 0.4 7.2 ± 0.8 7.8 ± 0.2 
Ge  132 ± 4 100 ± 2 123 ± 2 32 ± 1  159 ± 3 165 ± 4  90 ± 10 68 ± 5 85 ± 6 118 ± 2 

Abundances are reported in ppm and wt. % (Ni and Fe). 1SD uncertainties are also reported.    711 
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Table 2: Highly siderophile element abundances and Re-Os isotope systematics of IIF iron meteorites and PES 712 
determined by isotope dilution.  713 

Meteorite Catalog Mass Re Os Ir Ru Pt Pd 187Re/188Os 187Os/188Os ΕOs 

IIF            
Dorofeevka KMAN 0.0735 2275 29818 24610 23750 27770 3494 0.3675 0.12444 +2 ± 2 
Del Rio USNM 6160 0.0415 1832 23474 20560 21490 25880 3282 0.3760 0.12505 +2 ± 2 
Monahans (1938) ASU 256 0.0630 1103 12037 14100 20770 25520 3231 0.4415 0.13119 +11 ± 2 
    rep ASU 256 0.0824 1100 12007 14080 20760 25620 3226 0.4418 0.13118 +11 ± 2 
Purmela ASU 1515 0.0954 863.6 10988 10730 13850 17220 3484 0.3786 0.12519 +1 ± 2 
Repeev Khutor KMAN 0.0405 186.4 1524.5 2867 11880 16860 4997 0.5901 0.14315 +13 ± 2 
Corowa USNM 7230 0.0751 75.69 795.62 868.2 3330 4931 6339 0.4585 0.13155 +1 ± 2  
            
PES            
Eagle Station USNM 0.0386 1167 15099 12310 17910 22240 4534 0.3723 0.12477 +2 ± 2 
Karavannoe MMGM 0.0289 678.3 8879.5 8230 12910 16150 5832 0.3680 0.12584 +16 ± 2 
   rep MMGM 0.0456 687.6 8991.9 8310 12940 16170 5751 0.3684 0.12589 +16 ± 2 
   rep MMGM 0.0326 735.2 9362.5 8683 13660 17000 6248 0.3783 0.12586 +8 ± 2 
Cold Bay USNM 0.0452 638.2 8413.1 7705 14310 20030 6497 0.3654 0.12656 +25 ± 2 
Oued Bourdim 001 ASU 1860 0.0643 369.7 3687.0 5819 12400 17060 6066 0.4836 0.13456 +12 ± 2 

Values are reported in grams for mass and ppb for HSE. ΕOs is the part per 10,000 deviation of the 187Os/188Os ratio 714 
of a meteorite from a 4.568 Ga reference isochron, calculated from an initial Solar System 187Os/188Os = 0.09517 715 
and λ = 1.666 x 10-11 yr-1 (Smoliar et al., 1996; Archer et al., 2014). KMAN = Committee on Meteorites, Academy 716 
of Sciences, Russia. MMGM = Maine Mineral and Gem Museum. USNM = Division of Meteorites, Department of 717 
Mineral Sciences, Smithsonian Institution. ASU = Center for Meteorite Studies at Arizona State University.718 
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Table 3: Calculated parental melt compositions of the IIF irons 719 
and PES.   720 
 Re Os Ir Ru Pt Pd S P 
IIF M1 355 4200 4200 6800 8200 4250 13 0.4 
IIF M2 480 5800 5500 8500 10300 4300 11 0.5 
IIF M3 235 2750 2850 5100 6150 4200 15 0.4 
         
PES M1 550 7000 6700 10000 12500 6800 6 0.7 

Concentrations are in ppb for HSE and wt. % for S and P. All 721 
models use a C content of < 0.05 wt. %. The IIF M2 and M3 define 722 
the endmembers of the possible parental melt compositions with 723 
relative abundances of HSE within the average ± 2SD range 724 
observed in carbonaceous chondrites. 725 
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 726 
Fig. 1. Comparison of Ga/Ni and Ge/Ni values of the PES to magmatic iron meteorite groups. 727 
Data are compiled from this study and the literature. The PES are most similar to the IIF irons. 728 
The similarities between the PMG-IIIAB and Milton-SBT are also shown. Pallasites (PES = 729 
green, PMG = red, and Milton = blue) are shown as circles and iron meteorites (IC = orange, 730 
IIAB = white, IIC = black, IID = light blue, IIF = green, IIIAB = red, and SBT = dark blue) are 731 
shown as triangles.  732 
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 733 

Fig. 2. (top) ΕOs vs. 187Re/188Os plot for the iron meteorites and pallasites from this study. ΕOs is 734 
the parts per 10,000 deviation of the 187Os/188Os ratio of a sample from the 4.568 Ga reference 735 
isochron in the bottom figure. (bottom) 187Os/188Os vs. 187Re/188Os plotted with a 4.568 Ga 736 
reference isochron, calculated from an initial Solar System 187Os/188Os = 0.09517 and λ = 1.666 737 
x 10-11 yr-1 (Smoliar et al., 1996; Archer et al., 2014). Uncertainties are smaller than the symbol 738 
size. 739 
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 740 

Fig. 3. (left) Siderophile element abundances, normalized to CI chondrites (Lodders, 2003), for 6 741 
IIF irons and metal from 4 PES obtained by LA-ICP-MS. (right) Highly siderophile element 742 
abundances, normalized to CI chondrites (Horan et al., 2003), for the IIF irons and PES. Data 743 
were obtained by isotope dilution except for Itzawisis and Karavannoe, which were obtained by 744 
LA-ICP-MS.  745 
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 746 

Fig. 4. Model HSE abundances, normalized to CI-chondrites (Horan et al., 2003), of equilibrium 747 
solids and trapped melt produced at 5 % intervals between initial and 30 % fractional 748 
crystallization for 3 different S parental melt contents. The D values for the HSE are determined 749 
from the parameterization method discussed by Chabot et al. (2017).     750 
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 751 

Fig. 5. Fractional crystallization models compared to the IIF irons. The Pt/Os vs. Pt compositions 752 
and Pd vs. Re compositions of any 2 IIF irons cannot be accounted for as equilibrium solids from 753 
the same metal system. Solid metal and liquid metal evolution lines are shown in black and red, 754 
respectively. Initial solid and liquid compositions are shown as black and red stars, respectively.   755 
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   756 
Fig. 6. Calculated HSE parental melt compositions, normalized to CI chondrites (Horan et al., 757 
2003), of the IIF M1, M2, and M3 as well as the PES M1 compared to parental melt compositions 758 
of the IVB (Walker et al., 2008), IVA (McCoy et al., 2011), SBT (Hilton et al., 2019), and IIC iron 759 
meteorites (Tornabene et al., 2020). The average HSE composition of carbonaceous chondrites is 760 
also shown (Horan et al., 2003; Fischer-Gödde et al., 2010).   761 
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 762 

Fig. 7. Fractional crystallization model of IIF M1. This model can account for the HSE 763 
compositions of the IIF irons and PES through various degrees of solid metal-liquid metal mixing. 764 
Solid metal and liquid metal evolution lines are shown in black and red, respectively. Initial solid 765 
and liquid compositions are shown as black and red stars, respectively. Grey lines reflect mixing 766 
of solid at initial, 10 %, and 20 % fractional crystallization with a liquid after 45 % crystallization. 767 
Tick marks on solid and liquid evolution curves as well as solid metal-liquid metal mixing lines 768 
reflect 10 % increments.  769 
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  770 
Fig. 8. Cartoons depicting possible pathways, including non-equilibrium solid metal-liquid metal 771 
mixing, late segregation of primitive, liquid metal from the mantle to an evolved, liquid outer core, 772 
and dendritic crystallization, for forming the IIF iron meteorites. Effects of these mechanisms on 773 
the Re-Os systematics of liquid metal and crystallizing metal are also shown.    774 
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 775 
Fig. 9. Fractional crystallization PES M1, which can account for most of the HSE compositions of 776 
the PES as equilibrium solids. Solid metal and liquid metal evolution lines are shown in black and 777 
red, respectively. Initial solid and liquid compositions are shown as black and red stars, 778 
respectively. Tick marks on solid and liquid evolution curves reflect 10 % increments.  779 
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 780 
Fig. 10. Cartoon depicting the proposed formation sequence of the PES. Olivine at the core-mantle 781 
boundary is forced into a liquid core by impact and the liquid core then quickly crystallizes an 782 
outer rim, trapping the buoyant olivine in the core. As the core crystallizes inward, some olivine 783 
is trapped in the crystallizing metal while the remaining olivine is pushed further inward by the 784 
crystallizing metal front.    785 
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 793 

S1. Fractional Crystallization Modeling 794 

The concentrations of S, P, C, and HSE in liquid during fractional crystallization were 795 

determined using Eq. S1. In this equation, Fn is the fraction of liquid (n = 100 is pure liquid), CLn 796 

is the concentration of an element in the liquid phase at Fn, and Dn is the partition coefficient of an 797 

element. The concentrations of these elements were calculated at each 0.1 % of crystallization. A 798 

constant partition coefficient of 0.001 was used for S (Walker et al., 2008). The partition 799 

coefficients for P and C were determined at each Fn by considering the concentration of S and P 800 

or S and C, respectively, in the liquid at Fn+1. Equation S2 is used to account for the effects of S 801 

on P and C partitioning behavior (Chabot and Jones, 2003).  802 

Values of Do for P and C are taken from Chabot et al. (2017) and Worsham et al. (2016), 803 

respectively. The βSPC variable is determined using Eq. S3 (Jones and Malvin, 1990), in which βS 804 

and βP are taken from Chabot et al. (2017) and βC is taken from Worsham et al. (2016). For P, the 805 

effects of C are not considered and for C, the effects of P are not considered. The βSPC and “Fe 806 

domains” (Eq. S4; Chabot et al., 2017) variables are calculated at each Fn, where Xi is the mole 807 

fraction of an element. Initial S, P, and C contents were determined iteratively.  808 

about:blank
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After determining the concentration of S, P, and C at each Fn, the D values for the HSE are 809 

calculated at each Fn using Eq. S2-S4 by collectively considering the changes in S, P, and C content 810 

in the liquid (Jones and Malvin, 1990; Chabot and Jones, 2003; Worsham et al., 2016; Chabot et 811 

al., 2017). Values for Do, βS, βP, and βC for the HSE are allowed to vary within the 2σ uncertainties 812 

provided by Chabot et al (2017) in order to achieve the best model fit. The concentrations of HSE 813 

in the liquid at each Fn are then determined using Eq. S1 and the solid composition (CSn) at each 814 

Fn is determined using Eq. S5. For solid metal-liquid metal mixing, the composition of the liquid 815 

endmember (“trapped melt”) was determined from CLn following the approach of Chabot (2019). 816 

The concentration of S in the liquid at each Fn was divided by 36.5 to determine the “x” value. The 817 

HSE concentrations of the trapped melt were determined by Eq. S6. Best fit initial HSE contents 818 

were determined iteratively, along with S, P, and C.  819 

 820 

 821 

Eq. S1: CLn−1 =
CLn

(Fn−1 + 1 −  Fn−1Dn−1)
 822 

Eq. S2: 
1
D

=
[Fe domains]βSPC

Do
 823 

Eq. S3: βSPC  =  �
2XS

2XS + 4XP + 4XC
� βS + �

4XP
2XS + 4XP + 4XC

� βP + �
4XC

2XS + 4XP + 4XC
� βC 824 

Eq. S4: Fe domains =  
1 − 2Xs − 4XP −  4XC
1 − Xs − 3XP −  3XC

 825 

Eq. S5: CSn =  CLnDn 826 

Eq. S6: Ctrapped melt =  CLn
(1−x)

  827 
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